

# VOLUNTARY REMEDIATION PROGRAM COMPLIANCE STATUS REPORT

32.91-ACRE CSXT PARCEL HUTCHINSON ISLAND SAVANNAH, CHATHAM COUNTY, GEORGIA HSI SITE NO. 10101

Prepared for Submission to:

Georgia Department of Natural Resources Hazardous Waste Management Branch Suite 1054, East Tower 2 Martin Luther King Jr. Drive SE Atlanta, Georgia 30334

Prepared by:

Amec Foster Wheeler Environment & Infrastructure, Inc. 2677 Buford Hwy., NE Atlanta, Georgia

August 1, 2016

CSX-RPI Project No. 9415575 Amec Foster Wheeler Project No. 6-4300-5247



Mr. Derrick Williams
CSX-RPI Project No. 9415575
Environmental Protection Division
Hazardous Site Response and Remediation Program
Floyd Tower East, Suite 1066
2 Martin Luther King, Jr. Blvd.
Atlanta, Georgia 30334

Subject:

Voluntary Remediation Program - Compliance Status Report

32.91-ACRE CSXT PARCEL

**Hutchinson Island** 

Savannah, Chatham County, Georgia

HSI Site No. 10101

Amec Foster Wheeler Project No. 6-4300-5247

Dear Mr. Williams:

On behalf of CSX Real Property, Inc. (CSX-RPI), Amec Foster Wheeler Environment & Infrastructure, Inc. (Amec Foster Wheeler) respectfully submits this Voluntary Remediation Plan Compliance Status Report (CSR) for the subject property in the Georgia Voluntary Remediation Program (VRP). This CSR documents the delineation of soil conditions to the appropriate risk reduction standards at the VRP property and documents the current status of groundwater conditions at the Hazardous Site Inventory (HSI) site which encompasses the VRP property.

This CSR is submitted in lieu of the Seventh Semi-Annual Progress Report to begin the process of removing the subject site from the HSI. It is our intent to suspend further activities under the VRP pending EPD's decision regarding removal of the subject property from the HSI. Please contact Chuck Ferry at 404-873-4761 with any questions you may have regarding this submittal.

Sincerely,

Amec Foster Wheeler Environment & Infrastructure, Inc.

Stephen R. Foley, P.G.

Senior Geologist

Senior Principal Engineer

CC:

Mr. Coley Campbell, P.E., CSX Real Property, Inc. Mr. Matthew Grostick, P.E., Amec Foster Wheeler

Tel: (404) 873 4761 Fax: (404) 817 0183 www.amecfw.com

#### **CERTIFICATION STATEMENT**

I certify under penalty of law that this report and all attachments were prepared under my direction in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Based on my review of the findings of this report with respect to the risk reduction standards of the Rules for Hazardous site Response, Rule 391-3-19-.07, I have determined that the site is in compliance with Type 3 or 4 risk reduction criteria for all constituents in soil and with Type 4 with controls risk reduction criteria for all constituents in groundwater.

Mr. Coley Campbell

CSX-RPI

Date

#### **GROUNDWATER SCIENTIST STATEMENT**

I certify that I am a qualified groundwater scientist who has received a baccalaureate or postgraduate degree in the natural sciences or engineering, and have sufficient training and experience in groundwater hydrology and related fields, as demonstrated by state registration and completion of accredited university courses, that enable me to make sound professional judgments regarding groundwater monitoring and contaminant fate and transport. I further certify that this report was prepared in conjunction with others working under my direction.

EN ROBERT

No. 0010

Mr. Stephen R. Foley, P.G. Georgia Registration No. 1057

# **TABLE OF CONTENTS**

|          | (GROUND                                          |    |
|----------|--------------------------------------------------|----|
| 1.1 SIT  | E HISTORY                                        | 1  |
|          | MMARY OF PAST RELEASES                           |    |
|          | EVIOUS ASSESSMENTS                               |    |
|          | VRP Implementation                               |    |
|          | POSE                                             |    |
|          | CEPTUAL SITE MODEL                               |    |
|          | ARACTERIZATION OF SUBSURFACE GEOLOGY             |    |
| 3.2 CH   | ARACTERIZATION OF HYDROGEOLOGY                   |    |
| 3.2.1    | Surface Water Drainage                           | 6  |
| 3.2.2    | Aquifer                                          |    |
| 3.3 HYI  | DRAULIC CONDUCTIVITY                             | 7  |
| 3.3.1    | Groundwater Flow                                 |    |
| 3.3.2    | Vertical Hydraulic Gradient                      | 8  |
| 4.0 DESC | CRIPTION OF THE RELEASE SOURCE                   | 9  |
|          | GULATED SUBSTANCES RELEASED FROM THE SOURCE      |    |
|          | RONOLOGY OF THE RELEASES                         |    |
|          | NEATION OF SOIL CONTAMINATION                    |    |
|          | ELIMINARY INVESTIGATIONS                         |    |
|          | EC FOSTER WHEELER INVESTIGATIONS                 |    |
| 5.2.1    | Analytical Parameters Selected                   |    |
| 5.2.2    | Sampling and Analysis Procedures                 |    |
| 5.2.3    | Sampling Equipment and Collection Techniques     |    |
| 5.2.4    | Soil Sample Handling and Preservation Techniques | 12 |
| 5.2.5    | Equipment Decontamination Procedures             |    |
| 5.2.6    | Chain-of-Custody Procedures                      |    |
| 5.2.7    | Laboratory Analytical Procedures                 |    |
| 5.2.8    | Quality Control Procedures                       |    |
| 5.2.9    | Summary of Pertinent Soil Testing Data           |    |
| 5.2.10   | Soil Delineation Results and Conclusions         |    |
| 5.2.11   | Site-Wide PSM Investigation                      |    |
|          | CKGROUND SOIL CONCENTRATIONS                     |    |
|          | NEATION OF GROUNDWATER CONTAMINATION             |    |
| 6.1 AN   | ALYTICAL PARAMETERS SELECTED                     | 18 |
| 6.2 MO   | NITORING WELL LOCATIONS AND CONSTRUCTION METHODS |    |
| 6.2.1    | Type of Well Casing Material                     |    |
| 6.2.2    | Screen Slot Size and Length                      |    |
| 6.2.3    | Filter Pack Materials and Length                 |    |
| 6.2.4    | Method of Filter Pack Emplacement                |    |
| 6.2.5    | Surface Seal                                     |    |
| 6.2.6    | Well Development Methods and Procedures          |    |
|          | MPLING AND ANALYSIS PROCEDURES                   |    |
| 6.3.1    | Groundwater Elevation                            |    |
| 6.3.2    | Well Evacuation Procedures                       |    |
| 6.3.3    | Groundwater Sampling, Handling and Preservation  |    |
| 6.3.4    | Decontamination Procedures                       |    |
| 6.3.5    | Laboratory Analytical Procedures                 |    |
|          | CKGROUND GROUNDWATER QUALITY                     |    |
|          | MMARY OF GROUNDWATER TESTING RESULTS             |    |
| 6.5.1    | 6.5.1 Pre-VRP Sampling and Testing               |    |
| 6.5.2    | 6.5.2 2010 Groundwater Monitoring                |    |
| 6.5.3    | 2011 Groundwater Monitoring                      |    |
| 6.5.4    | Post-VRP Sampling and Testing                    | 25 |
|          |                                                  |    |

| 7.0  | DESCRIPTION OF RESPONSIBLE PERSON FOR THE IMPACTS DETECTED AT THE PROPERTY |                                                                   |       |  |
|------|----------------------------------------------------------------------------|-------------------------------------------------------------------|-------|--|
| 8.0  | ACTIO                                                                      | ONS TAKEN TO ELIMINATE, CONTROL, OR MINIMIZE ANY POTENTIAL RISK A | T THE |  |
| 8.1  | GE.                                                                        | NERAL CONSTRUCTION METHODS                                        | 37    |  |
| 8    | .1.1                                                                       | Utility Protection                                                |       |  |
| 8    | .1.2                                                                       | Erosion Control Measures                                          | 38    |  |
|      | .1.3                                                                       | PROCESSES                                                         | 38    |  |
| 8.2  | SO                                                                         | IL EXCAVATION AND DISPOSAL                                        | 40    |  |
| _    | .2.1                                                                       | Lead Areas 1-5                                                    |       |  |
| 8    | .2.2                                                                       | Arsenic Area 1                                                    |       |  |
| _    | .2.3                                                                       | PAH Confirmation Soil Sampling                                    |       |  |
| _    | .2.4                                                                       | Petroleum Source Materials                                        |       |  |
| _    | .2.5                                                                       | Abandoned Piping                                                  |       |  |
|      |                                                                            | E RESTORATION                                                     |       |  |
| 8.4  |                                                                            | OUNDWATER CORRECTIVE ACTION                                       |       |  |
| _    | .4.1                                                                       | Groundwater Remediation System Construction                       |       |  |
| _    | .4.2                                                                       | System operation                                                  | 47    |  |
| 9.0  |                                                                            | RÉDUCTION STANDARDS                                               |       |  |
| 9.1  | SO                                                                         | IL CRITERIA                                                       | 48    |  |
| 9.2  |                                                                            | OUNDWATER CRITERIA                                                |       |  |
|      |                                                                            | OSURE PATHWAYS                                                    |       |  |
|      |                                                                            | IL CRITERIA                                                       |       |  |
|      | 2 GR<br>0.2.1                                                              | OUNDWATER Nitrification                                           |       |  |
|      | 0.2.1                                                                      | Dissolved Oxygen                                                  |       |  |
|      | 0.2.2                                                                      | Retardation                                                       |       |  |
|      | 0.2.3                                                                      | Degradation                                                       |       |  |
|      | 0.2.5                                                                      | Release History                                                   |       |  |
|      | 0.2.6                                                                      | Decay Constant                                                    |       |  |
|      | 0.2.7                                                                      | Model Results                                                     |       |  |
|      | 0.2.8                                                                      | Model sensitivity                                                 |       |  |
|      | 0.2.9                                                                      | Model validation                                                  |       |  |
|      | 0.2.10                                                                     |                                                                   |       |  |
| 10.3 | 3 NO                                                                       | ON-GOING SOURCE                                                   | 61    |  |
| 10.4 | 4 ON                                                                       | -SITE VAPOR INTRUSION                                             | 61    |  |
|      |                                                                            | RFACE WATER                                                       |       |  |
| 1    | 0.5.1                                                                      |                                                                   |       |  |
|      | 0.5.2                                                                      | Surface water sampling and testing                                |       |  |
| 11.0 | CON                                                                        | CLUSIONS                                                          | 65    |  |
|      |                                                                            |                                                                   |       |  |

# **TABLES**

# **FIGURES**

APPENDIX A - LABORATORY RESULTS (CD COPY)

APPENDIX B - BORING LOGS

APPENDIX C - BIOCHLOR OUTPUT SHEETS

APPENDIX D - CONTAMINANT TREND GRAPHS

APPENCIS E - VAPOR INTRUSION SCREENING

#### 1.0 BACKGROUND

This Compliance Status Report (CSR) has been prepared by Amec Foster Wheeler Environment & Infrastructure, Inc. (Amec Foster Wheeler) for the CSXT ("VRP parcel or property) property located on Hutchinson Island in Savannah, Georgia and for the following surrounding properties which comprise the HSI site ("Site"). See **Figure 1.** 

The subject property is owned by CSX-RPI and is comprised of a 32.91-acre parcel. The property occupies Chatham County Tax Parcel 1-0436-01-017 and currently consists of vacant land (see **Figure 2**).

The property was previously occupied by a bulk petroleum and chemical storage facility between approximately 1920 and 1992. CSX-RPI has engaged in significant soil and groundwater remediation at the property to address soils impacted with petroleum constituents and metals as described in previous submittals to EPD and has successfully completed implementation of the EPD-approved Modified Corrective Action Plan (MCAP) for impacted soils on the VRP parcel. Compliance with Type 3 risk reduction standards (RRS) for soil was certified in the 2008 Revised Compliance Status Report (CSR). The property also underwent groundwater remediation from 2008 through 2011 as described in the MCAP. The primary constituent of concern (COC) in groundwater is ammonia. Low levels of benzene, naphthalene, arsenic and lead remain in groundwater in limited to localized areas on the property.

#### 1.1 SITE HISTORY

As described in the January 2003 Revised CSR (BBL 2003a), Hutchinson Island was used for deposition of dredge spoils from the widening and deepening of the Savannah River from the mid-1800s until approximately 1982.

From 1920 to 1992, CSX or its predecessors leased the property to companies that operated bulk storage facilities. The property was leased to Gulf Refining Company from 1920 to 1973. Gulf Refining Company used the property as a bulk petroleum storage and transfer facility. In 1973, Charter International Oil Company (Charter) assumed the lease and continued to use the property as a bulk petroleum storage facility. While Charter operated at the property, it also stored other chemicals at the facility, primarily liquid fertilizer. Charter's lease ended in 1982, when Powell Duffryn Terminals, Inc. began operating the facility. Powell Duffryn continued to store petroleum products in smaller quantities, but primarily operated the facility as bulk storage for chemicals. Materials stored by Powell Duffryn reportedly included pulping liquors, sulfuric

acid, caustic soda, zeolite slurry, alum, latex and fatty acid. When the lease to Powell Duffryn ended in 1992, all tanks, buildings, rails and other aboveground facilities were removed.

At its peak, the facility's storage capacity included 24 circular aboveground petroleum storage tanks ranging in size from 84,000 gallons to 2.3 million gallons. Six additional tanks, located on the southeastern corner of the property, were installed during Powell Duffryn's operation of the facility. Reportedly, there were also five (5) rectangular storage tanks located at the property. However, their location on the property has not been documented.

#### 1.2 SUMMARY OF PAST RELEASES

Releases that occurred during the operating history of the former bulk storage facility include: disposal of tank bottoms to a settling pit located at the northern end of the property, deposition of tank bottoms on the ground surface adjacent to the tanks across the property; a release of approximately one to two tons of liquid fertilizer that reportedly occurred sometime between 1972 and 1982. In addition, the property was used for the historical deposition of dredge spoils generated during the deepening of the Savannah River beginning in the mid-1800s.

The source of detectable metals concentrations in soil and groundwater at the property has not been attributed to a specific release. The most likely source for metals at the property is the deposition of dredge spoils containing elevated metals concentrations.

Specific details regarding these releases as well as descriptions of past investigations were documented in the January 2003 Revised CSR (BBL 2003a) and subsequent Notice of Deficiency (NOD) Response Letters (BBL 2004a, BBL 2005a).

# 1.3 PREVIOUS ASSESSMENTS

Previous environmental assessments were performed at the VRP parcel and at surrounding properties which comprise the HSI site between 1988 and 2015.

Several investigations were conducted at the property between 1988 and 1994, prior to inclusion of the site on the HSI. The Hazardous Site Response Act (HSRA) was enacted by the GA-EPD in 1994, and the site was placed on the HSI in 1997. Orders were issued under HSRA to CSX Transportation, Inc., the extant property owner, and two prior operators on the property, Chevron (as successor to Gulf) and Powell Duffryn Terminals, Inc. Investigations were performed in 1997, 2002, and 2004 to support preparation of a CSR. Details on these

investigations are found in the January 2003 Revised CSR (BBL 2003a) and subsequent Notice of Deficiency (NOD) Response Letters (BBL 2004a, BBL 2005a).

### 1.3.1 VRP Implementation

Amec Foster Wheeler prepared a VRP application for the CSXT property which was approved by EPD in a letter dated July 31, 2012. Under the VRP, the following activities have been conducted at the site:

- 1. Semi-annual sampling and testing of groundwater from selected wells on the property and on surrounding site properties in December 2013, June 2014, December 2014, June 2015 and November 2015;
- 2. Installation and sampling of eight (8) additional off-property wells to further delineate the plume and to aid in groundwater modeling efforts;
- 3. Fate and transport model calculations to predict future plume migration and the potential for impact to downgradient receptors;
- 4. Semi-annual sampling and testing of surface water from the nearby drainage canal;
- 5. Completion of a Screening Level Ecological Risk Assessment (SLERA) to investigate potential ecological risks associated with discharged to the drainage canal;
- 6. Preparation of six (6) Semi-Annual Progress Reports (SAPRs) documenting activities completed during each period; and
- 7. Preparation of this Final CSR following the November 2015 sampling event.

#### 2.0 PURPOSE

This CSR has been prepared on behalf of CSXT RPI, for the site located in Savannah, Chatham County, Georgia. A Voluntary Investigation and Remediation Plan (VIRP) and VRP Application were submitted on June 7, 2012 and EPD accepted the property into the VRP by letter dated July 31, 2012. Since that time, the VIRP was implemented and the work was summarized in six semi-annual progress reports submitted to EPD from January 2013 through January 2016. CSXT is submitting the required Final CSR documenting compliance with the provisions, purposes, standards, and policies of the VRP and certifying compliance with applicable cleanup standards.

#### 3.0 CONCEPTUAL SITE MODEL

Groundwater assessment activities on site have been conducted by Amec Foster Wheeler and others between 1988 and 2015. A total of 62 groundwater monitoring wells and six piezometers have been installed on site, which includes the CSXT parcel and the immediately surrounding area. Most of the wells and piezometers have been destroyed or closed. Those utilized during the VRP sampling events are illustrated on **Figures 5**.

#### 3.1 CHARACTERIZATION OF SUBSURFACE GEOLOGY

The geology and hydrogeology of the site discussed below are based on the data obtained and review of published literature.

The subject HSI site is located within the Coastal Plain Geologic Region. Numerous soil borings have been drilled on the site during the course of the various investigations and remedial activities. The borings encountered soils typically consisting of a surficial layer of fine to medium sands that extends to a depth of 5-10 feet bgs. These surficial soils represent dredge spoils from the Savannah River that were deposited on Hutchinson Island beginning in the mid 1800s. In some areas, localized zones of coarse sand and fine gravel are present within the upper sand layer. Underlying the upper sand unit is a gray, lignitic clay which increasing stiffness with depth as the organic content decreases. This clay unit underlying the layer of dredge spoils is interpreted to be a former marsh area and is approximately 40 feet thick. Underlying the clay unit is a well sorted quartz sand that grades from fine to very coarse just below the clay layer. **Figures 6-8** depict cross sections of the subsurface conditions.

### 3.2 CHARACTERIZATION OF HYDROGEOLOGY

In the Coastal Plain Geologic Region, groundwater may occur under either unconfined (water table) or confined conditions. The uppermost water-bearing unit on site consists primarily of the dredged fine to medium sands in the upper ten feet. This sand unit overlies a thick clay rich confining layer located above a confined sand aquifer unit. Recharge to the water table aquifer occurs primarily through precipitation infiltrating the upper soils and percolating downward, under the influence of gravity, to the groundwater table. Typically, the water table is not a level surface, but a subdued reflection of the land surface. Depth to the water table is variable, being dependent on many factors which include: the amount of rainfall, the permeability of the soil and the amount of groundwater being pumped in the area. The depth to water across the site in wells that are not being pumped ranges between approximately 0 and 2 feet bgs. In areas

where the shallow sand unit is present, it forms a shallow water-bearing unit that is relatively permeable. The clay unit below the sand is also saturated and displays some permeability as evidenced by the recharge of monitoring wells screened in the upper portion of the clay unit. Permeability decreases significantly below a depth of approximately 5-10 feet, at which point the clay layer is encountered.

# 3.2.1 Surface Water Drainage

Surface water drainage in the surrounding area is controlled by small drainage ditches near the periphery of the property and a larger drainage canal located north of the property on the adjacent SEDA Parcel B. The canal is tidally influenced and varies from virtually filled at high tide to nearly dry at low tide. In general, the surface drainage of the site is to the north toward the drainage canal although in the southern portion of the site drainage appears to be toward the Savannah River.

# 3.2.2 Aquifer

Groundwater in the Coastal Plain Physiographic Province typically consists of an unconfined surficial aquifer, underlain by an upper confining unit and the Floridan aquifer. Locally, the surficial aquifer, is not typically used for potable drinking water purposes, and consists of Miocene and Pliocene to Recent undifferentiated sands, which are mixed and/or interbedded with clay, silt, shells or river gravel and extends to depths of approximately 90 to 100 feet below land surface. This aquifer is underlain by a confining unit, which ranges in thickness from 200 to 400 feet and consists primarily of clay.

The Floridan aquifer system is composed of three aquifers that include the Upper, Middle and Lower Floridan aquifers. The Upper Floridan aquifer is well documented as it provides an abundant supply of potable water for the area. The underlying Upper Floridan aquifer is recorded to be nearly 400 feet thick and ranges from approximately 300 to 800 feet below land surface in this area. Water supply wells are reported to be screened primarily in this aquifer. The Middle and Lower Floridan aquifers underlie the Upper Floridan aquifer. These aquifers are also used as secondary potable water sources to the Upper Floridan aquifer.

The well elevations were surveyed and water levels in each well were measured during each sampling event. Measured groundwater elevations from the most recent events following equilibration of the water table after the groundwater remediation system was shut down indicate the presence of a small drainage divide in the central portion of the site. Groundwater

flow in the northern portion of the site is toward the canal while in the southern portion of the site it is to the south or southeast, toward the river.

#### 3.3 HYDRAULIC CONDUCTIVITY

In-situ hydraulic conductivity tests were performed by AES in 1997 in monitoring wells MW-1, PDMW-1T, PDMW-9T, PDMW-11P, PDMW-15T and PDMW-28D. The tests were performed using the slug-test procedures described by Bouwer and Rice (1976, 1989). In the slug-test method, hydraulic conductivity is estimated from the rate of rise of fall of the groundwater level in a well after a solid of know volume, or "slug" is inserted or removed from well. The static water levels in each monitoring well were measured and recorded prior to the tests. For the "slug-in" test, the water level was raised by inserting the slug and the change in water level was measured. Water level measurements were taken over regular intervals the next 15 minutes to 60 minutes to monitor recovery of the water table. For the "slug-out" test, the water level was lowered by removing the slug and monitoring the water level recovery as described above.

Subsequent to the completion of the test, the data were analyzed using the Bouwer and Rice (1976, 1989) method. The results of the "slug-in" and "slug-out" tests were averaged to derive in-situ hydraulic conductivity values for the sand units within the shallow water bearing zone. Based on the slug-test data, the average hydraulic conductivity of these wells, was 3.5 x 10<sup>-3</sup> cm/sec.

#### 3.3.1 Groundwater Flow

A summary of the well depths, screened intervals, depth to groundwater and water table elevations is presented in Table 4. A potentiometric surface map of the shallow aquifer zone was prepared based on the groundwater elevation data measured in November 2015 (see Figure 12). Based on these data, shallow groundwater flow is generally to the north in the northern portion of the site and to the south or southeast in the southern portion of the site.

Effective porosity was assumed to be 25% (Applied Hydrology, C.W. Fetter, 1994). The formula used to calculate the groundwater flow rate is as follows (Applied Hydrology, C.W. Fetter, 1994):

Velocity = 
$$\frac{K i}{n_e}$$

where: K = hydraulic conductivity (feet per day) = 2.21 ft/dayi = hydraulic gradient (feet per foot) = 0.0069 ft/ft**n**<sub>e</sub> = effective porosity (unitless) = 0.25

Based on the data input, an estimated groundwater velocity ranging of approximately 0.061 feet/day or approximately 22 feet per year was calculated for the site. We note, however, that constituents do not migrate at the same rate as groundwater and also attenuate as they migrate.

# 3.3.2 Vertical Hydraulic Gradient

Two deep monitoring wells (PDMW-28D and PDMW-29D) have been installed on site. These wells were terminated at depths of 50 and 49.5 feet below grade, respectively, and screened in the sand layer underlying the clay. Groundwater elevations measured in these two wells were somewhat lower than in other wells on site, indicating a downward vertical hydraulic gradient. Neither of these wells has exhibited impacts above risk reduction standards historically. PDMW-28D was closed some years ago. The vertical hydraulic gradient at the site was calculated by comparing groundwater elevations within the deep well PDMW-29D and the adjacent shallow well, PDMW-26T, as measured on November 11, 2015. The difference in groundwater elevation was 2.02 feet with the deeper well exhibiting the lower groundwater elevation, indicating a downward hydraulic gradient of 0.05 ft/ft.

PDMW-29D, located in the source area has exhibited very low ammonia concentrations consistently below background during 27 sampling events between 1997 and 2016 (with the exception of one outlier result in 2010), indicating some interconnection between the surficial and deeper portions of the aquifer. Ammonia concentrations in PDMW-28D were also consistently below the RRS.

#### 4.0 DESCRIPTION OF THE RELEASE SOURCE

Results of soil and groundwater assessment activities indicate a release of regulated substances in soil and groundwater has occurred at the subject CSXT property. This section of the CSR provides a description of the source of the release.

The property was originally listed on the HSI for a known release of lead in soil and groundwater exceeding a reportable quantity based on the 1997 HSI listing.

#### 4.1 REGULATED SUBSTANCES RELEASED FROM THE SOURCE

The regulated substances identified in soil at the property include: acenaphthene, acenaphthylene, ammonia, anthracene, arsenic, benzene, benzo(a)anthracene), benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, beryllium, cadmium, chromium chrysene, dibenzo(a,h)anthracene, ethylbenzene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, lead, mercury, nickel, phenanthrene, pyrene, toluene, xylenes, and zinc.

The regulated substances identified in groundwater at the property include: The substances identified in groundwater on the property include: acenaphthene, acenaphthylene, ammonia, anthracene, arsenic, benzene, benzo(a)anthracene), benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chromium, chrysene, ethylbenzene, fluoranthene, fluorene, lead, naphthalene, nickel, phenanthrene, pyrene, toluene, xylenes, and zinc.

# 4.2 CHRONOLOGY OF THE RELEASES

The source of detectable metals concentrations in soil and groundwater at the property has not been attributed to any specific release. The most likely source for metals at the property is the deposition of dredge spoils from the Savannah River which contained metals concentrations exceeding regulatory standards. The dredging operations began in the mid 1800s and continued until sometime before the site was developed in the 1920s.

The exact dates of the releases that have occurred during the operating history of the property could not be accurately determined. The majority of the petroleum releases are thought to have occurred while the former bulk petroleum storage facility was operational, between the 1920s and the 1970s. Such releases would have likely included: disposal of tank bottoms to a settling pit located at the northern end of the property; depositing of tank bottoms on the ground surface

| adjacent to the tanks across the property; a reported release of approximately 1 to 2 tons of liquid fertilizer that occurred sometime between 1972 and 1982. |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|                                                                                                                                                               |  |  |  |  |  |  |  |
|                                                                                                                                                               |  |  |  |  |  |  |  |
|                                                                                                                                                               |  |  |  |  |  |  |  |
|                                                                                                                                                               |  |  |  |  |  |  |  |
|                                                                                                                                                               |  |  |  |  |  |  |  |
|                                                                                                                                                               |  |  |  |  |  |  |  |
|                                                                                                                                                               |  |  |  |  |  |  |  |
|                                                                                                                                                               |  |  |  |  |  |  |  |
|                                                                                                                                                               |  |  |  |  |  |  |  |
|                                                                                                                                                               |  |  |  |  |  |  |  |
|                                                                                                                                                               |  |  |  |  |  |  |  |

#### 5.0 DELINEATION OF SOIL CONTAMINATION

Soil samples were collected for laboratory analysis during several phases of investigation conducted by various consultants between 1988 and 2009. These assessments included soil sampling from 62 groundwater monitoring wells and several hundred soil borings.

#### 5.1 PRELIMINARY INVESTIGATIONS

Several investigations were completed prior to the subject property being listed on the HSI. The first assessment was conducted in 1988 by Chattahoochee Geotechnical Consultants and included a broadly scoped assessment of a large area of Hutchinson Island which included the installation of two soil borings on the property, the exact locations of which are not known. Two composite soil samples were collected and tested for metals and total petroleum hydrocarbons (TPH). TPH was detected at a concentration of 740 mg/kg in one soil sample. Metals were also detected in each sample, but none exceeded the HSRA NCs subsequently established in 1994.

In 1992, Kemron conducted an assessment of the former bulk storage facility. The assessment included the collection of 25 soil samples which were tested for metals, SVOCs, and TPH. One sample was analyzed for benzene, toluene, ethylbenzene and xylenes (BTEX). Lead, arsenic chrysene and benzo(a)pyrene were detected in concentrations exceeding the 1994 HSRA NCs. No BTEX constituents were detected above their HSRA NCs.

In August 1997, Applied Engineering and Science, Inc. (AES) conducted a soil sampling program in potential source areas. The sampling locations were selected to represent the most highly impacted areas of the former bulk storage facility, as evidenced by surficial staining, distressed vegetation or other visible indications of impacts. Eight soil samples were collected and tested for VOCs, SVOCs, metals, total Kjeldahl nitrogen (TKN), ammonia, nitrates and nitrites. No VOCs were detected above HSRA NCs. Chrysene and lead were the only regulated constituents detected above their respective NCs.

Soil sampling programs conducted by AES in 1997 and 2004 delineated concentrations of PAHs, volatile organic compounds (VOCs), metals and ammonia in soil to their background concentrations. A total of 127 soil samples were collected and analyzed to determine which substances exceed the applicable Type 3/4 RRSs. Those COCs detected above their respective RRSs were addressed by AES through a series of interim corrective actions as described in Section 9.0 and site specific risk analyses for PAHs, BTEX, and ammonia. The

AES interim corrective actions did not fully address all metals-impacted soils. However, these areas were addressed through additional assessment as described in Section 5.5.

#### 5.2 AMEC FOSTER WHEELER INVESTIGATIONS

Amec Foster Wheeler (and its predecessor companies) continued the corrective action effort on behalf of CSX-RPI. A Corrective Action Plan was prepared in 2004 to address outstanding issues related to soil and groundwater impacts. After several revisions, a Modified Corrective Action Plan (MCAP), dated March 14, 2006, was approved by EPD. The MCAP included two phases of soil assessment which were implemented as described below. Metals delineation was the initial phase of corrective action performed under the MCAP.

Two soil delineation programs were performed by Amec Foster Wheeler in 2006 and 2007 to facilitate completion of the soil corrective actions outlined in the MCAP. The procedures and findings of these programs are detailed in the following subsections.

# 5.2.1 Analytical Parameters Selected

Soil samples collected during previous sampling activities conducted between 2006 and 2007 by Amec Foster Wheeler were analyzed for volatile organic compounds (VOCs, SW-846 Test Method 8260B) PAHs (SW-846 Test Method 8270C) and metals (SW-846 Test Method 6010).

# 5.2.2 Sampling and Analysis Procedures

Amec Foster Wheeler employed the following procedures and reports by other consultants refer to similar procedures.

### 5.2.3 Sampling Equipment and Collection Techniques

Soil samples were collected from direct-push (Geoprobe) borings using a four-foot long stainless steel sampling tube which is lined with a polyethylene sleeve and driven into the ground to the desired sampling depth.

### 5.2.4 Soil Sample Handling and Preservation Techniques

The collected soil samples were removed from the sampling device and placed in clean sample containers supplied by the laboratory. Soil samples for laboratory testing of VOCs were collected in accordance with SW-846 Method 5035 (the syringe method) and preserved in the field with sodium bisulfate and methanol. Samples were collected for metals, pesticide and herbicide analysis in unpreserved containers. Clean nitrile gloves were worn during all

sampling activities and the gloves were then discarded. Following sample collection, the samples were maintained on ice in a cooler until they were transferred to the laboratory.

#### 5.2.5 Equipment Decontamination Procedures

Soil sampling tools and equipment, including drill rigs were decontaminated prior to beginning work on the site. During drilling operations, only clean drilling tools were used in each borehole. The split spoons and direct-push sampling tubes were decontaminated between samples and clean polyethylene liners were used for each Geoprobe sample. Clean nitrile gloves were used during the collection of all soil samples. Gloves were changed prior to the collection of each soil sample.

# 5.2.6 Chain-of-Custody Procedures

All collected samples were logged on a chain-of-custody form that was signed by the Amec Foster Wheeler field representative and the laboratory representative upon release of the samples to the laboratory. Chain-of-custody documentation are provided with the laboratory reports in Appendix A.

# 5.2.7 Laboratory Analytical Procedures

Following delivery to the laboratory, selected soil samples collected by Amec Foster Wheeler were analyzed for Ammonia using SW-846 Test Method 3-154, VOCs using SW-846 Test Method 8260B, PAHs using SW-846 Test Method 8270C, metals using SW-846 Test Method 6010C and 7471B.

### 5.2.8 Quality Control Procedures

Quality control samples were prepared and analyzed during the assessment. Duplicate soil and groundwater samples were tested. Trip blanks and field blanks were included with the samples submitted to the laboratory. The trip blanks were provided by the laboratory and consisted of 40-ml vials filled with water. Results of the trip blank analyses are included in the laboratory reports. Results of Surrogate analysis are also included in the laboratory reports. Backup QA/QC data for these samples were included in laboratory reports for each assessment phase.

The soil samples collected by Amec Foster Wheeler were submitted to TestAmerica Laboratories for laboratory analysis. TestAmerica maintains a National Environmental Laboratory Accreditation Conference (NELAC) certification for the analysis of ammonia, volatile organics, PAHs and metals.

All downhole equipment, tools and materials were decontaminated prior to use and between each boring to minimize the potential for introduced and/or cross contamination. Decontamination of equipment and appropriate sampling protocols were observed throughout the drilling operation to preclude the introduction of contaminants. The field work was supervised by environmental professionals and the work was conducted under the provisions of our Health and Safety Plan.

# 5.2.9 Summary of Pertinent Soil Testing Data

In accordance with the MCAP, Amec Foster Wheeler implemented the first phase of the soil sampling program at the property between May 1 and 6, 2006. The purpose of the program was to: 1) confirm that lead-impacted soil had been removed from Lead Area 1 by collecting confirmatory samples every 25 feet (ft) along the perimeter of the former excavation 1; 2) update and refine the estimated quantity of lead-impacted soil in Lead Areas 2 through 6; 3) assess arsenic concentrations in soil in the immediate vicinity of PDMW-31R; and 4) refine the estimated quantity of PSM present based on the observation of petroleum source material (PSM) at two boring locations in April 2006.

Amec Foster Wheeler directed the advancement of 145 soil borings at the Property using a Geoprobe direct-push drill rig. The locations of these borings are illustrated on **Figure 3**. Boring log data was not collected; however observations regarding the presence of PSM were noted as indicated in Table 2. Ninety of the borings were installed to assess the extent of lead in soil and 55 were installed to assess the extent of PSM. An additional four borings were installed using a hand auger to assess arsenic concentrations in soil around PDMW-31R. Each Geoprobe soil boring was installed to depths ranging from 4 to 8 ft below ground surface (bgs) and the four hand auger borings were installed to 2 ft bgs. The soil from each area was assessed as follows:

**Lead in Soil Borings**: Unsaturated soil samples from each boring were screened for lead in 1-ft intervals using an Innov-X portable X-Ray Fluorescence (XRF) analyzer. The purpose of using the XRF was to test the effectiveness of XRF technology as a screening tool.

Amec Foster Wheeler screened 167 samples from 98 locations using the XRF. Seventy-three of these samples, including 35 confirmation samples from the perimeter of Lead Area 1, were sent to Severn Trent Laboratories, Inc. (STL) for lead analysis by SW846 method 6010B to assess the correlation between XRF and fixed-laboratory results. The comparison of STL

results to the XRF readings found that correlation between the XRF and fixed-laboratory results was reasonable considering the heterogeneity of the soil (R2= 0.61). XRF and fixed-laboratory results are presented in Table 1.

**PDMW-31R Area Borings**: The March 2006 groundwater sampling event identified arsenic in the groundwater sample from PDMW-31R at a concentration of 72 micrograms per liter (μg/L). Amec Foster Wheeler collected and analyzed soil samples in accordance with the March 14, 2006 NOD response letter to the GAEPD. The boring locations were positioned within 20 ft to the north, south, east, and west of the well (Arsenic Area 1). Amec Foster Wheeler used the XRF analyzer to field screen recovered unsaturated soil from each boring in 1-ft intervals for arsenic. Of the eight soil samples screened, four were submitted to STL for arsenic analysis (Table 2). Two of these samples contained arsenic at concentrations exceeding the Type 3/4 RRS.

**PSM Delineation Borings**: Soil from the 55 borings was visually screened for the viscous, thick, weathered free product that is characteristic of PSM present at the Property. Where present, the depth and thickness of PSM was documented. The locations selected were based on previously delineated boundaries of PSM. The delineation was based on stepping out every 25 ft from impacted edges until no signs of PSM were identified. The PSM areas defined during this assessment were identified as PSM Areas 2, 3, and 4 (**Figure 4**).

#### 5.2.10 Soil Delineation Results and Conclusions

The results of the May 2006 delineation program showed that much of the lead-impacted soil in Lead Area 1 was removed during the 2005 excavation program as demonstrated by lead concentrations in soil samples from borings LIS-038, LIS-039, LIS-041, LIS-042, LIS-043, LIS-048, LIS-049, LIS-051, LIS-055, and LIS-063, being below the 400 mg/kg Type 3 RRS (as determined by Method 6010B.) Samples LIS-040, LIS-046, LIS-050, and LIS-052 contained lead at concentrations greater than the 400 mg/kg indicating that further excavation was necessary in several isolated areas along the boundary of Lead Area 1.

XRF screening results from five samples collected in Lead Area 6 did not confirm lead at concentrations exceeding 400 mg/kg. The highest screening concentration for lead was 52.97 mg/kg. The two samples with the highest concentrations were sent to STL for analysis. Both lead results were less than 50 mg/kg. The original sample PDMW31R-2 (860 mg/kg from 0-1 ft bgs) was collected in 2001. A resampling event in 2004 found concentrations ranging from 120

mg/kg from 0-6 inches (in.) bgs to 55 mg/kg from 6-12 in. bgs in the same location as the 2001 sample. Because Amec Foster Wheeler's five delineation sample results were consistent with the two 2004 samples, Amec Foster Wheeler concluded that the single lead-impacted soil sample identified in 2001 was either anomalous, extremely isolated, or has since been attenuated.

Two of the four samples collected from Arsenic Area 1 exceeded the 38 mg/kg Type 3/4 RRS for arsenic. Although Arsenic Area 1 was not delineated during the program, it is apparent that soil in the vicinity of PDMW-31R may be contributing to arsenic concentrations in groundwater. As such, soil corrective action measures were planned for Arsenic Area 1.

PSM was encountered in 60 of the 145 soil borings drilled during the program. The results further refined the interpreted boundaries of PSM Areas 2 and 3. The 13 borings installed along the northern edge of the Property confirmed the presence of PSM across an area of at least 0.25 acre. It is notable that historic maps indicated a former tank bottoms settling pit in this area. Based on the findings, this area was designated as PSM Area 4 and was scheduled for corrective action.

# 5.2.11 Site-Wide PSM Investigation

As Amec Foster Wheeler's soil corrective action program for metals described progressed, three previously unidentified areas containing PSM were found either along abandoned piping or adjacent to metals impacted areas. These areas were designated as PSM Areas 5, 6, and 7. Based on these findings, Amec Foster Wheeler re-evaluated the existing data for the Property and concluded that a thorough site-wide assessment of PSM was warranted. Amec Foster Wheeler established a grid across the Property and initiated an investigation program using a Geoprobe direct-push drill rig. A licensed land surveyor was subcontracted prior to initiating the site-wide investigation to ensure proper coverage near the Property boundaries.

Amec Foster Wheeler advanced 260 soil borings on a 50 ft by 50 ft grid in areas of the Property where excavation activities had not previously been performed. Each boring was installed to a depth of 8 ft bgs. Each boring was logged for general soil characteristics and the presence or absence of PSM based on visual and olfactory screening. In the interest of expediting the program and given the extensive geologic data available for the site, formal logs were not created for each boring. A photoionization detector (PID) was used periodically during the

assessment to screen impacted soil. The majority of the PSM is aged, highly weathered, viscous material that in general does not result in elevated PID readings.

Eighteen (18) of the grid locations in six general areas confirmed the presence of PSM. These areas were designated PSM Areas 8 through 13. An additional 55 borings were advanced to delineate the six new PSM areas. Table 2 summarizes the observations from each of the 315 soil borings.

The soil and PSM delineation data were utilized by Amec Foster Wheeler to bound the extent of soils requiring corrective action as described in Section 9.0.

### 5.3 BACKGROUND SOIL CONCENTRATIONS

Background concentrations for COCs in soil were calculated during previous assessment work conducted by Blasland, Bouck & Lee, Inc. and submitted to EPD in the Compliance Status Report Notice of Deficiency Response Letter: Hutchinson Island, Savannah, Georgia, prepared by Blasland, Bouck & Lee, Inc., February 2005. These same background values were incorporated into Amec Foster Wheeler's Revised CSR, dated February 29, 2008. The soil background concentrations are included in Tables 9-1 and 9-2.

#### 6.0 DELINEATION OF GROUNDWATER CONTAMINATION

Numerous groundwater monitoring events have been conducted for the project since 1997. A total of 62 monitoring wells have been installed on the site, which includes the adjacent properties, during the course of the various assessments. Monitoring wells MW-1 through MW-5, TMW-1 through TMW-4R and PDMW-1T through PDMW-34T were originally installed by AES in the 1990s. PDMW-35P through PDMW-53, EW-1, and MW-201 through MW-204 were installed by Amec Foster Wheeler between 2008 and 2015. The wells installed on the site were intended to evaluate the horizontal and vertical extent of contamination.

### 6.1 ANALYTICAL PARAMETERS SELECTED

Groundwater samples collected by Amec Foster Wheeler were submitted to TestAmerica Laboratories of Savannah, Georgia for analysis of ammonia using EPA method 350.1, polycyclic aromatic hydrocarbons (PAHs) using SW-846 method 8310, BTEX using SW-846 method 8260 and total metals (As, Cr, Pb, Ni, Zn) using SW-846 method 6010. In the event that turbidity could not be reduced to below 10 nephelometric units (NTU) after 2 hours of purging, both filtered and unfiltered metals samples were collected at the respective well.

#### 6.2 MONITORING WELL LOCATIONS AND CONSTRUCTION METHODS

The monitoring wells were generally installed in borings drilled with hollow-stem augers. Due to equipment inaccessibility, monitoring wells PDMW-28 through PDMW-52 were installed in borings drilled using a 6-inch diameter hand auger (see Table 3).

### 6.2.1 Type of Well Casing Material

The monitoring wells installed on site consist of Schedule 40 PVC well casing and screen with threaded joints. Most of the monitoring wells on site consist of two-inch diameter PVC pipe. PDMW-35Pthroug PDMW-38P and PDM-45R were constructed with one-inch diameter PVC. MW-201 through MW-203 and EW-1 were constructed of four-inch diameter PVC.

# 6.2.2 Screen Slot Size and Length

Each of the drilled wells on site was constructed with 0.01-inch factory slotted PVC well screen. Monitoring wells PDMW-23R, PDMW-31R2, PDMW-40R, and MW-201 utilized a 7-foot screen length. Monitoring wells MW-3R, PDMW-8R, PDMW-10R, PDMW-27R, PDMW-45R, TMW-4R, MW-203 and MW-204 utilized an 8-foot screen length. MW-1, MW-2, PDMW-35P, PDMW-36P,

PDMW-38P, and EW-1 utilized a 10-foot screen length. All other monitoring wells on site utilized a 5-foot screen length.

#### 6.2.3 Filter Pack Materials and Length

Washed 20/30 sieve size quartz sand was used to create the filter pack around the well screen in each of the wells. The sand extended to a height of approximately one to two feet above the top of the screen.

# 6.2.4 Method of Filter Pack Emplacement

The sand pack in the augered wells was placed around the screen by pouring the sand through the hollow-stem augers while simultaneously raising the augers to prevent bridging of the sand within the augers. Sand was placed around the hand augered well screens by pouring the sand around the well screen from the surface. The filter pack was then sealed from above with a one to two-foot layer of hydrated bentonite clay.

#### 6.2.5 Surface Seal

The wells were grouted to within approximately six inches of the ground surface with Portland cement grout (Type II well construction). These wells were then topped with stick-up lockable steel covers.

# 6.2.6 Well Development Methods and Procedures

The initial well development procedures employed by AES included development of shallow wells using disposable bailers and the removal of at least five well volumes of water. The two deep wells were developed with submersible pumps and the removal of 100-200 gallons of water.

Monitoring wells installed by Amec Foster Wheeler were developed using peristaltic pumps or submersible pumps at least 24 hours after installation. The parameters temperature, pH, specific conductivity and turbidity were periodically monitored during well development. Development continued until these parameters stabilized pursuant to EPA methodology and a minimum of five well volumes of water were removed during well development.

#### 6.3 SAMPLING AND ANALYSIS PROCEDURES

#### 6.3.1 Groundwater Elevation

During each of Amec Foster Wheeler's groundwater monitoring events, groundwater levels were measured in each well from the top of the well casing. As discussed in Section 5.4, a survey was conducted to measure the elevation of the top of each well casing for preparation of potentiometric surface maps (see **Figure 12**).

#### 6.3.2 Well Evacuation Procedures

Prior to resampling of existing wells, the wells were purged using a peristaltic pump and Teflon tubing. During purging, the parameters temperature, pH, specific conductivity and turbidity were monitored and submitted in the previous reports. Purging continued until these parameters stabilized pursuant to EPA methodology and a minimum of three well volumes were removed or the well went dry.

#### 6.3.3 Groundwater Sampling, Handling and Preservation

Immediately following purging, groundwater samples were collected using a peristaltic pump and low-flow sampling procedures. Clean nitrile gloves were worn during all purging and sampling activities and were changed between each well location.

Samples were collected in clean sample containers, supplied by the laboratory, which contained the appropriate preservative. 40ml glass vials were used for the collection of groundwater samples for VOC analysis. VOC samples obtained by Amec Foster Wheeler were collected using a peristaltic pump by allowing the tubing to fill and then sealing the end near the pump, removing the tubing from the well and allowing it to gravity drain into the VOC vials to minimize turbulence and reduce the potential for volatilization (the straw method). The vials were completely filled, with no bubbles or headspace. Samples to be tested for PAHs, metals and ammonia were collected using a low flow peristaltic pump with the discharge line discharging directly into the sample container. Following sample collection, the bottles were stored on ice in a cooler until they were transferred to the laboratory. The samples were maintained under strict chain-of-custody control from the time they were collected until they were relinquished to the laboratory.

#### 6.3.4 Decontamination Procedures

Decontamination procedures consisted of the use of clean, unused tubing at each sampling location. Nitrile gloves were also worn and changed between each sampling location. Tubing was disposed of after each use. No equipment was used to sample more than one well.

### 6.3.5 Laboratory Analytical Procedures

The samples collected during Amec Foster Wheeler's pre-VRP monitoring events were submitted to TestAmerica Laboratories in Savannah, Georgia and tested for the presence of ammonia, VOCs, PAHs and metals.

Groundwater samples collected by Amec Foster Wheeler in 2013-2015 VRP sampling events were submitted to TestAmerica Laboratories and tested for the presence of ammonia, metals, and in certain cases, VOCs, PAHs, nitrate and nitrite. The exact suite of constituents varied for each well in accordance with the sampling schedule and the access agreements negotiated for the sampling of off-site wells.

#### 6.3.5.1 Quality Control Samples

The groundwater samples were maintained under chain-of-custody control and submitted to the analytical laboratory for testing. Duplicate samples and field blanks were tested. Trip blanks prepared by the laboratory were also submitted for testing. QA/QC was conducted in accordance with the laboratory analysis selected. Backup QA/QC data for these samples was included in the laboratory reports. For quality assurance/quality control (QA/QC) purposes, duplicate, equipment blank, and matrix spike (MS)/matrix spike duplicate (MSD) samples were collected during each event. Additionally, trip blank and temperature blank samples accompanied each sample shipment.

### 6.3.5.2 Chain-of-Custody Procedures

Samples collected during the assessment were delivered to the analytical laboratory under strict chain-of-custody protocol. From the time of collection until they were released to the laboratory, the samples were stored in ice-filled coolers. Chain-of-Custody records documenting the transfer of the samples to the laboratory were maintained and are included in the laboratory reports in Appendix A.

#### 6.4 BACKGROUND GROUNDWATER QUALITY

Background concentrations for the COCs detected on site were calculated by BBL and were previously submitted in Amec Foster Wheeler's Revised 2009 CSR and are included in Table 9-2.

#### 6.5 SUMMARY OF GROUNDWATER TESTING RESULTS

Groundwater monitoring has occurred on numerous occasions at the site beginning in October 1997. The next sampling event was conducted by AES in August 1999. A series of quarterly monitoring events were then undertaken by AES in November 1999, February 2000, May 2000, August 2000 and January 2001. The cumulative groundwater testing results for these and all other sampling events are summarized in Table 7. The results of the groundwater monitoring events completed by AES were generally consistent with those obtained by Amec Foster Wheeler during the ensuing years. Due to the volume of data collected, the focus of this discussion will be on the Amec Foster Wheeler sampling events conducted between 2008 and 2015. The most recent groundwater testing results are summarized on **Figure 5** and on **Figures 8-11**. Contaminant trend graphs for COCs are presented in Appendix D.

# 6.5.1 Pre-VRP Sampling and Testing

Nine groundwater monitoring events were conducted by Amec Foster Wheeler following the installation of the groundwater treatment system and prior to the Property's entry into the VRP.

This section presents an overview of the results for these groundwater sampling events. More detailed discussions of the results were provided in the Corrective Action Annual Reports (CAPR) dated, April 6, 2010, March 30, 2011 and March 12, 2012 which were previously submitted to EPD. Table 7 summarizes the data for these and all other groundwater monitoring events.

As reported in the 2009 Annual Groundwater Corrective Action Progress Report, between April 2008 and December 2009, four groundwater monitoring events were conducted at the property, which included the sampling of 45 monitoring wells. The data obtained during these four sampling events are summarized as follows:

Ammonia was detected at concentrations exceeding its RRS of 30 mg/L in up to 15 wells during the four sampling events. The highest ammonia concentrations were observed in the northern portion of the Property, particularly in TMW-1, which ranged from 1,400 mg/L in April 2008 to

330 mg/L in December 2009. The 330 mg/L value was not consistent with historical data for this well. Each of the ammonia results from TMW-1 was significantly below the historic high value for this well of 18,000 mg/L which was detected in 2000, although all subsequent results from TMW-1 were well below this historic high value. PDMW-26T, located near TMW-1 consistently exhibited ammonia at between 500 and 600 mg/L. Elevated ammonia concentrations were also detected in the east-central portion of the Property in EW-1 and MW-204 at concentrations of up to 520 mg/L. The RRS exceedances were generally located in these two areas. Ammonia concentrations toward the periphery of the property typically were significantly lower.

Lead was detected in excess of RRS in five wells (MW-3T, PDMW-13P, TMW-1, EW-1 and MW-204). The lead concentrations were generally consistent with historical observations. Arsenic was detected in excess of its RRS in MW-8R, TMW-1 and PDMW-7P; however, only the result in TMW-1 was consistent with historical data. Chromium, nickel and zinc were not detected above their respective RRS.

Benzene and naphthalene were the only other COCs detected above their respective RRS in groundwater. Benzene was detected in TWM-1 and MW-204 while naphthalene was detected in TMW-1, MW-204, PDMW14-TR and PDMW-23R.

### 6.5.2 2010 Groundwater Monitoring

As reported in the 2010 Annual Groundwater Corrective Action Progress Report, four quarterly groundwater monitoring events were conducted at the Property which included as many as 43 wells. As described in the CAPR, the wells sampled and specific analytes varied during each event in accordance with the MCAP. The data obtained during these four sampling events are summarized as follows:

Ammonia was detected in excess of its RRS in 16 wells during the 2010 annual monitoring period. The ammonia testing results were generally consistent with the 2009 results, with the highest concentrations detected in TMW-1 (maximum concentration of 3,200 mg/L) and elevated concentrations remaining in PDMW-26T (520 mg/L maximum), EW-1 (580 mg/L maximum) and MW-204 (300 mg/L maximum). The size and shape the ammonia plume appeared similar to previous configurations, indicating that the plume was not migrating significantly.

Lead concentrations were generally consistent with historical observations with only one RRS exceedance in MW-1 (0.04 mg/L). A new Type 1/3 groundwater RRS of 0.010 mg/L for arsenic was established in December 2009. The accepted background concentration for arsenic at the Property is 0.018 mg/L, which was adopted as the new Type 3/4 RRS. As a result, a greater number of monitoring exhibited arsenic exceedances, only one of which (PDMW-8R) would have exceeded the previous standard. Chromium, nickel and zinc were not detected above their respective RRS and were eliminated from upcoming groundwater sampling events at the Property.

For the well identified as PDMW-14TR, the concentration of naphthalene in March 2010 was 28  $\mu$ g/L, non-detect in June and September 2010, and 320  $\mu$ g/L in December 2010. The December result is within the historical range, but higher than naphthalene concentrations detected since 2006. Benzene was only detected on two occasions in TMW-1 and in each case was above its RRS.

# 6.5.3 2011 Groundwater Monitoring

As described in the 2011 Annual Corrective Action Progress Report, two semi-annual groundwater monitoring events were conducted in June and December 2011, which included sampling up to 40 wells. The data obtained during these four sampling events are summarized as follows:

Ammonia was detected at concentrations exceeding the RRS in 18 wells in June 2011 and 12 wells in December 2011. Ammonia exceedences in 2011 were generally consistent with historic data with the exception of somewhat higher than normal concentrations noted in PDMW-1T and PDMW-2T during the June 2011 monitoring event. Consistent with previous monitoring events, the highest ammonia concentrations were noted in the northern portion of the site (TMW-1 and PDMW-26T) and in the east-central portion of the Property (EW-1 and MW-204). The highest concentration observed (4,600 mg/L) was again detected in TMW-1. Again, the size and shape the ammonia plume appeared similar to previous configurations, indicating that the plume was not migrating significantly. The magnitude of the ammonia concentrations had generally decreased since start-up and operation of the groundwater remediation system.

One lead exceedance was noted in the sample collected in June 2011 from monitoring well PDMW-13P. Lead concentrations in 2011 were generally consistent with historic observations and no other exceedances of the lead RRS were observed in 2011. Arsenic was detected at

concentrations exceeding its RRS in eight wells in June 2011 and four wells in December 2011. Arsenic detections are generally consistent with historic data with the exception of one exceedance noted in PDMW-45R during the June 2011 monitoring event. The arsenic detection in PDMW-45R was the first exceedance detected in the well since January 2004. However, the June 2011 arsenic concentration was within the same order of magnitude as historic detections in PDMW-45R.

Naphthalene was detected in both samples collected from well PDMW-14TR in 2011 at concentrations exceeding its RRS. No other samples analyzed for naphthalene in 2011 had concentrations exceeding the RRS. Naphthalene concentrations at well PDMW-14TR in 2011 were generally consistent with historic data and lower then an anomalously high result observed in December 2010.

# 6.5.4 Post-VRP Sampling and Testing

Following the Property's entry into the VRP, Amec Foster Wheeler prepared a Sampling and Analysis Plan (SAP) for the semi-annual groundwater monitoring events to be undertaken in accordance with the requirements of the VRP. The general sampling and testing protocols outlined in the SAP were similar to those previously employed by Amec Foster Wheeler, with the exception that the suite of COCs to be tested for had been reduced in certain wells with an established history of compliance for those particular COCs and that nitrate, a breakdown product of ammonia, would be included in the analyses. An access agreement between CSXT and SEDA to allow for the installation of several wells on the SEDA property also prohibited the testing of constituents other that ammonia and nitrate from wells on the SEDA property.

Five sampling events have occurred to date under the VRP. These events took place in December 2013, June 2014, November 2014, May 2015 and November 2015. The results of the VRP semi-annual monitoring were submitted to EPD in Semi-Annual Progress Report (SAPR) Nos. 2 through 6 between January 2014 and January 2016 and are discussed below. Groundwater testing results for the most recent sampling event are illustrated on **Figure 5** and the cumulative groundwater testing data is summarized in Table 7. **Figures 8-11** depict isopleths of the primary constituents of concern (COCs) in groundwater. COC trend graphs are also included in Appendix D.

The first VRP sampling event included testing of groundwater from 18 wells. The number of wells utilized in the VRP sampling events had been reduced from the monitoring program under

the MCAP due to the consistent lack of detection of COCs above applicable RRS in numerous wells. Several of the wells located in the interior of the site had been eliminated as groundwater conditions had been well established in this area over the previous sampling events. The VRP sampling focused on presumed source areas and near the Property boundaries as well as off-site locations downgradient of the source areas. The source areas were monitored to continue to assess the most heavily impacted areas and evaluate whether discontinuing the groundwater recovery would have adverse effects. Subsequent monitoring events incorporated newly installed wells on the adjacent properties, primarily located downgradient of ammonia contaminant plumes. The downgradient areas were investigated and monitored with the newly installed wells to act as "point of demonstration" wells on SEDA Parcel B. They were also used to provide data for groundwater modeling input and validation and to assess the condition of the groundwater in the immediate vicinity of the drainage canal on SEDA Parcel B.

# First VRP Sampling Event

The first VRP monitoring event was conducted in December 2013 and included sampling 18 wells. MW-2 was intended to be sampled, but could not be located. Groundwater monitoring results indicated that of the 18 wells sampled, five exceeded established background concentrations for ammonia. The concentrations of ammonia in TMW-1 and MW-1, the wells located in the area of historically highest ammonia impacts, had decreased substantially since the last sampling event in 2011. Lesser decreases in ammonia concentrations were observed in the other three wells with ammonia above background concentrations. Significant changes in ammonia concentrations were not noted in those wells in which ammonia was detected below established background concentrations.

VOCs were detected above laboratory reporting limits in only one well, TMW-1. Total BTEX concentrations in TMW-1 remained generally consistent with previous data and benzene remained the only VOC constituent detected above its RRS at this location or in any of the wells sampled.

PAHs were detected above laboratory reporting limits in only one well, TMW-1. During previous sampling events, naphthalene was the only PAH constituent detected above its RRS of 20  $\mu$ g/L in this well. The naphthalene concentration of 5.2  $\mu$ g/L was below its RRS for one of the few times since this well began to be sampled in 2000.

The metals lead and arsenic were the only metals detected above applicable RRS. Lead was detected above its RRS of 15  $\mu$ g/L in three wells (EW-1, PDMW-13P and PDMW-32R). PDMW-32R had its first exceedance of the RRS for lead and the other wells were consistent with previous results. Arsenic exceeded its RRS of 18  $\mu$ g/L in two wells, TMW-1 and PDMW-26T. Both of these results were consistent with previous data.

Six of the wells sampled contained detectable levels of nitrate although only in TMW-1 did the nitrate concentration exceed the drinking water standard of 10 mg/L.

# **Second VRP Sampling Event**

The second VRP monitoring event was conducted in June 2014 and included the sampling of all 19 wells originally specified in the SAP as well as seven additional wells installed on the Hutchinson Island Ventures property to the east (PDMW-46), the Spartan Hutchinson Island Investments, LLC property to the west (PDMW-47 and PDMW-48) and the SEDA Parcel B property (PDMW-49 through PDMW-52).

Ammonia concentrations were above the RRS for ammonia in six wells, including: TMW-1, EW-1, PDMW-8R, PDMW-26T, PDMW-47 and PDMW-48. The concentrations of ammonia in TMW-1 and EW-1, the wells located in the area of historically highest ammonia impacts remain elevated relative to the rest of the site. The highest ammonia concentration observed during the most recent sampling event was in TMW-1 at 2,600 mg/L, which was slightly lower than the previous event and significantly lower than the historic high. The ammonia concentration in PDMW-26T, located in the vicinity of TMW-1, remained consistent with historic ammonia levels in this well. Ammonia in PDMW-48, located downgradient to TMW-1, was approximately two orders of magnitude below the ammonia concentration of TMW-1.

EW-1 exhibited ammonia at a concentration of 1,100 mg/L, which was an increase from the previous testing event in December 2013 (400 mg/L), and its highest to date, but consistent with reasonably expected variation for its relatively new data set (first sampled in 2008).

Newly installed wells, PDMW-47 (located west of the CSXT parcel) and PDMW-48 (located between the area of highest ammonia concentrations and the drainage canal) exhibited ammonia at 72 mg/L and 27 mg/L, respectively.

The remaining 17 wells that were sampled exhibited ammonia concentrations below the site-specific background concentration of 15 mg/L. Some minor fluctuations were noted among

Amec Foster Wheeler Environment and Infrastructure, Inc.

these samples compared with previous data, but the data were generally consistent with previous results.

The newly installed wells located adjacent to the drainage canal (PDMW-49 through PDMW-52) exhibited only very low concentrations of ammonia, below 1 mg/L.

# **Third VRP Sampling Event**

The third VRP monitoring event was conducted in June 2014 and included the sampling of 29 wells on the subject Property and immediately surrounding properties, including a new well (PDMW-53) located on the Spartan Hutchinson Island Investments property west of the subject Property. The following observations are provided based upon the data obtained:

Ammonia concentrations were above the established site-specific background concentration of 15 mg/L in 12 of the 29 wells tested. Seven of the test results exceeded the RRS for ammonia, including: EW-1, MW-204, TMW-1, PDMW-8R, PDMW-26T, PDMW-40R and PDMW-47. Ammonia concentrations in most of the wells remained consistent with those measured during the previous sampling event in June 2014. Ammonia concentrations in EW-1, MW-204 and PDMW-26T decreased. The ammonia concentration in TMW-1 was higher when compared to the June 2014 sampling event, but was consistent with recent historical data.

The concentrations of ammonia in TMW-1 and EW-1, the wells which have historically exhibited the highest ammonia impacts, remained elevated relative to the rest of the site. The highest ammonia concentration observed during the most recent sampling event was in TMW-1 at 3,900 mg/L. PDMW-48 located on the SEDA Parcel B, downgradient of TMW-1, exhibited an ammonia concentration of 22 mg/L, again over two orders of magnitude below the concentrations of TMW-1, located nearby and upgradient.

During the June 2014 monitoring event, EW-1 had exhibited its highest concentration of ammonia to date (1,100 mg/L) and the assumption was made at that time that the elevated concentration was within a normal range of fluctuation. The November 2014 data supported the previous assumption as it showed the ammonia concentration in EW-1 at less than half the June 2014 concentration and consistent with 2011 data.

PDMW-47 (located west of the CSXT parcel) exhibited ammonia at 110 mg/L during the June 2014 sampling event. A new well PDMW-53, was installed in the area west of PDMW-47. This

well exhibited an ammonia concentration of 5.5 mg/L, below the established background concentration of 15 mg/L.

Some minor fluctuations were noted among the remaining wells compared with previous data, but the current data were generally consistent with previous results.

Three of the 29 wells sampled (TMW-1, PDMW-26T and EW-1) exhibited nitrate above the laboratory reporting limits. Of these, only TMW-1, with a nitrate concentration of 120 mg/L (down from 170 in June 2014) exceeded the drinking water standard of 10 mg/L. These results are also generally consistent with the previous testing results.

PAHs were only detected in monitoring well TMW-1 and naphthalene was the only HSRA-regulated PAH detected above laboratory reporting limits at that location. The naphthalene concentration of 44  $\mu$ g/L at TMW-1 was above its RRS of 20  $\mu$ g/L, which it consistently has been since this well began to be sampled in 2000. The naphthalene concentration at TMW-1 was also higher than the previous sampling event, but was consistent with recent historical results.

VOCs were only detected in monitoring well TMW-1. Benzene and xylenes were the only VOCs detected in this well and benzene was the only VOC detected above its RRS of 31.2  $\mu$ g/L. The benzene concentration of 80  $\mu$ g/L was consistent with previous results and the xylene concentration of 420  $\mu$ g/L was somewhat higher than previous results (though still well below its RRS of 10,000  $\mu$ g/L).

Metals were detected in four of the wells tested, including: EW-1, TMW-1, PDMW-13P and PDMW-32R. Total metals concentrations in groundwater were typically below site-specific background concentrations and applicable RRS with the exceptions noted below. Based upon the findings from the June 2014 sampling event for PDMW-13P, in which lead was detected above its RRS of 15  $\mu$ g/L, PDMW-13P was resampled in August 2014 for both total and dissolved lead analyses. The retesting indicated a total lead result of 23  $\mu$ g/L while the dissolved lead result was below the laboratory reporting limit of 10  $\mu$ g/L. This result indicates possible contribution from suspended sediment in the samples, even though the turbidity of the dissolved lead sample was relatively low (5.7 NTU). During the November 2014 sampling event, total lead was detected at 33  $\mu$ g/L in PDMW-13P (and 39  $\mu$ g/L in a duplicate sample) with a turbidity of 7 NTU. These concentrations are consistent with the earlier results and well below the maximum concentration of 280  $\mu$ g/L recorded in June 2011. Lead was delineated in

the vicinity of PDMW-13P using the results obtained from nearby wells PDMW-24T, PDMW-32R, MW-201 and MW-202 during the November 2014 sampling event. None of the wells used for delineation of PDMW-13P contained detectable concentrations of total lead (see **Figure 10**).

Total arsenic was detected in TW-1 at 150  $\mu$ g/L, consistent with recent historical results and above its RRS of 18  $\mu$ g/L. Total arsenic was detected in EW-1 at its detection limit of 20  $\mu$ g/L. Arsenic is delineated in the northwest portion of the CSXT property and around TMW-1 as it was not detected in the nearby surrounding wells PDMW-48, MW-3R or PDMW-1T during the November 2014 sampling event. Arsenic is delineated in the central portion of the site as it was not detected in wells surrounding EW-1 (PDMW-10R, PDMW-23R, MW-201 PDMW-4T and PDMW-27R) during the November 2014 sampling event.

# **Fourth VRP Sampling Event**

The fourth VRP monitoring event was conducted in May 2015 and included the sampling of 27 wells on the subject Property and immediately surrounding properties. The following observations are provided based on the data obtained:

Ammonia was detected at concentrations exceeding the RRS in samples collected from five monitoring wells, including: EW-1, TMW-1, PDMW-8R, PDMW-26T, and PDMW-47. May 2015 analytical results showed a decrease in ammonia concentrations in wells EW-1, PDMW-8R, PDMW-32R, PDMW-47, and PDMW-48 when compared to the results of the November 2014 sampling event. May 2015 ammonia concentrations for wells TMW-1 (4,300 mg/L) and PDMW-26T (550 mg/L) were higher when compared to November 2014 analytical results, but were generally consistent with recent historical data for these wells. Ammonia concentrations for the remaining wells sampled in May 2015 are generally consistent with recent historical data for these wells.

Nitrate was again detected in only three of the wells sampled (TMW-1, PDMW-26T and EW-1) with only TMW-1 exceeding drinking water standard, consistent with previous results.

At the request of the Georgia EPD, the active monitoring well network was sampled for nitrite for the first time in May 2015. Nitrite was detected at concentrations above the laboratory reporting limit in nine of the 27 wells sampled (MW-2, MW-3R, PDMW-7P, PDMW-8R, PDMW-47, PDMW-48, PDMW-50, PDMW-53, and TMW-4R) in May 2015. Although a drinking water standard for nitrite has not been established, none of the detected nitrite concentrations

exceeded the maximum contaminant level goal (MCLG) of 1 mg/L for drinking water established by the USEPA.

PAH sampling was limited to one monitoring well (TMW-1) for the May 2015 monitoring event. Naphthalene was detected at a concentration of 44  $\mu$ g/L in the sample collected from TMW-1, which exceeds the RRS of 20  $\mu$ g/L. This naphthalene exceedance is the same concentration as the previous sampling event and is consistent with recent historical results for TMW-1. No other HSRA-regulated PAHs were detected above laboratory reporting limits in the sample collected from TMW-1.

VOCs sampling was limited to one monitoring well (TMW-1) for the May 2015 monitoring event. Benzene was detected at a concentration of 48  $\mu$ g/L in the sample collected from TMW-1, which exceeds the RRS of 31.2  $\mu$ g/L. In addition, total xylenes were detected at a concentration of 120  $\mu$ g/L, which is well below its RRS. The detections of benzene and total xylenes were less than the concentrations detected during the November 2014 sampling event and were generally consistent with recent historical results for TMW-1. No other VOCs were detected above laboratory reporting limits in the sample collected from TMW-1.

Groundwater samples were collected for total metals analysis from 21 monitoring wells during the May 2015 monitoring event. Total metals were detected in five of the wells, including: EW-1, MW-3R, TMW-1, PDMW-26T and PDMW-32R. Total metals concentrations detected in groundwater samples were typically below site-specific background concentrations and applicable RRS with the exceptions noted below.

Total lead was not detected above the laboratory reporting limit in samples collected from the 27 monitoring wells. A review of historical analytical results showed that this is the first time since June 2010 (seven sampling events) that total lead has not been detected in monitoring well PDMW-13P.

Total arsenic was detected in monitoring wells TMW-1 (160  $\mu$ g/L) and PDMW-26T (25  $\mu$ g/L) at concentrations exceeding the RRS of 18  $\mu$ g/L. These exceedances are generally consistent with recent historical results for wells TMW-1 and PDMW-26T. Arsenic is delineated in the northwest portion of the CSXT property and around wells TMW-1 and PDMW-26T, as it was not detected in the nearby surrounding wells MW-3R, PDMW-8R, PDMW-29D, and PDMW-33R2 during the May 2015 sampling event. Historical analytical results for nearby wells PDMW-1T,

PDMW-2T, PDMW-35P, and PDMW-48 also indicate that total arsenic exceedences are generally limited to wells TMW-1 and PDMW-26T in the northwest corner of the CSXT property.

Total chromium was detected in monitoring well TMW-1 at a concentration of 32  $\mu$ g/L, which is above the background level of 13  $\mu$ g/L but below the RRS of 100  $\mu$ g/L. This detection of total chromium is generally consistent with historical analytical results for well TMW-1. Recent historical analytical results for nearby wells MW-3R, PDMW-1T, PDMW-26T, PDMW-29D, PDMW-35P, and PDMW-48 indicate that total chromium detections above background are limited to well TMW-1 in the northwest corner of the CSXT property.

## Fifth VRP Sampling Event

The fifth VRP monitoring event included the sampling of 17 wells. The scope of this monitoring event was reduced from previous events based on EPD's approval of the reduction in scope in October 2015. The groundwater monitoring plan was modified by reducing the monitoring well network by 10 wells (from 27 to 17) and eliminating the surface water sampling and testing. The majority of the wells eliminated, as well as the surface water sampling points, were located on the adjacent SEDA Parcel which had recently been delisted from the HSI. The remainder were located on CSXT property, well away from areas of significant groundwater impact. These sampling points had consistently demonstrated compliance with applicable remediation standards for both groundwater and surface water. The following observations are provided based upon the most current ammonia concentration data:

Ammonia was detected at concentrations exceeding the RRS in samples collected from five monitoring wells (EW-1, TMW-1, PDMW-8R, PDMW-26T, and PDMW-47). Again these results were consistent with the results of the previous sampling event. The November 2015 analytical results for those six wells above background show a decrease in ammonia concentrations in wells EW-1, PDMW-8R and TMW-1 when compared to the results of the May 2015 sampling event while the ammonia concentrations in PDMW-26T and PDMW-48 were slightly higher. The PDMW-47 result remained unchanged from May 2015. Ammonia concentrations for the remaining 11 of 17 wells sampled in May 2015 were generally consistent with recent historical data for these wells and all were below the background concentration.

Nitrate was detected at concentrations above the laboratory reporting limit in four of the 17 wells sampled (TMW-1, MW-3R, PDMW-32R and PDMW-48) in November 2015. Only TMW-1, with a nitrate concentration of 250 mg/L (down from 290 mg/L in May 2015), exceeded the drinking

water standard established by the USEPA. These results are generally consistent with the previous analytical results.

Nitrite was detected at concentrations above the laboratory reporting limit in four of the 17 wells sampled (MW-3R, PDMW-48, PDMW-32R and PDMW-46) in November 2015. None of the detected nitrate concentrations exceeded the MCLG of 1 mg/L for drinking water.

PAH sampling was limited to one monitoring well (TMW-1) for the November 2015 monitoring event. Naphthalene was detected at a concentration of 63  $\mu$ g/L in the sample collected from TMW-1, which exceeds the RRS of 20  $\mu$ g/L. This naphthalene concentration is consistent with historical results for TMW-1. No other HSRA-regulated PAHs were detected above laboratory reporting limits in the sample collected from TMW-1.

VOCs sampling was also limited to monitoring well TMW-1 for the November 2015 monitoring event. Benzene was detected at a concentration of 52  $\mu$ g/L, which exceeds the RRS of 31.2  $\mu$ g/L. In addition, total xylenes were detected at a concentration of 220  $\mu$ g/L, which is well below its RRS. The detections of benzene and total xylenes were somewhat higher than the concentrations detected during the May 2015 sampling event; however, they were generally consistent with or lower than recent historical results for TMW-1. No other VOCs were detected above laboratory reporting limits in the sample collected from TMW-1.

Groundwater samples were collected for total metals analysis from 15 monitoring wells during the November 2015 monitoring event. Total metals were detected in five of the wells, including: EW-1, MW-3R, TMW-1, PDMW-26T and PDMW-32R. Total lead was detected at or just above the laboratory reporting limit of 10  $\mu$ g/L in three samples (MW-3R, PDMW-13P and PDMW-47). None of these three lead detections exceeded the RRS of 15  $\mu$ g/L. Total arsenic was again detected only in monitoring well TMW-1 at a concentration of 150  $\mu$ g/L, which exceeds the RRS of 18  $\mu$ g/L. This result is generally consistent with recent historical results for well TMW-1. Total arsenic remains delineated in the northwest portion of the CSXT property, as it was not detected in the wells surrounding TMW-1.

Total chromium was again detected in monitoring well TMW-1 at a concentration of 32  $\mu$ g/L, which is below the RRS and consistent with historical analytical results for well TMW-1.

## **Follow-up Testing**

In order to further investigate the condition of the groundwater and further delineate the extent of ammonia on the adjacent Spartan Hutchinson Island Ventures Property, follow-up testing was conducted in monitoring well in May and July 2016. Groundwater from this well was tested for ammonia. In each case, the ammonia concentration detected met the Type 1 RRS of 30 mg/L, with the most recent test result of 19 mg/L.

# 7.0 DESCRIPTION OF RESPONSIBLE PERSON FOR THE IMPACTS DETECTED AT THE PROPERTY

During the course of the various assessments conducted at the site, the extent of soil and groundwater contamination have been delineated to Type 1 RRS which defines the HSI site boundaries. Based on the available data, it is apparent that the ammonia contamination in groundwater at the property is emanating from the northern and east-central portions of the property and is mapped as migrating generally to the north and southeast, respectively, consistent with shallow groundwater flow.

Following is a summary of information currently known about the three separate industrial entities that have operated on the subject Property.

CSX Real Property, Inc. 301 West Bay Street Suite 800 Jacksonville, Florida 32202 Contact: Coley Campbell

Chevron Products Company (a division of Chevron U.S.A)
P.O. Box 1706
Atlanta, Georgia 30301
Contact: Mr. Peter Kasbohm

Powell Duffryn Terminals, Inc.
2 Commerce Street
Bayonne, New Jersey 07002
Contact: Registered Agent: Mr. Ronald R. Sprague
R Roy Enterprises, L.L.C.
P.O. Box 85
Woodbridge, NJ 07095

# 8.0 ACTIONS TAKEN TO ELIMINATE, CONTROL, OR MINIMIZE ANY POTENTIAL RISK AT THE SITE

A number of interim corrective actions were completed prior to Amec Foster Wheeler's involvement in the project to address localized areas where soil did not meet the applicable RRS. These interim measures are briefly described in chronological order below. **Figure 11** illustrates the locations of soil corrective actions performed at the Property prior to implementing the MCAP.

- 1. In November 1999, Applied Engineering & Sciences, Inc. (AES) excavated approximately 92.5 tons of petroleum-impacted soil from the area of PDMW-11P. Soil was disposed at the Waste Management Superior Landfill in Savannah, GA. Additionally, over 7,800 gallons of impacted groundwater were removed and disposed offsite during the project. Follow up sampling performed in October 2001 found no benzene, toluene, ethylbenzene, or xylenes (BTEX) above laboratory detection limits in samples collected at the boundary of the former excavation. The monitoring well was removed during excavation and replaced with PDMW-11R (AES 2000a).
- In November 1999, AES excavated and disposed of approximately 9.6 tons of petroleum-impacted soil from the area of PDMW-10T. Follow up sampling performed in October 2001 found no BTEX above laboratory detection limits in samples collected at the boundary of the former excavation (AES 2000a).
- 3. In November 1999, AES excavated approximately 11 tons of arsenic-impacted soil from the area of PDMW-31P. Soil was disposed at the Waste Management Superior Landfill in Savannah, GA. Confirmation soil samples demonstrated compliance with Type 4 RRS for arsenic. The monitoring well was removed during excavation and replaced with PDMW-31R (AES 2000a).
- 4. In September 2001, AES excavated and disposed of approximately 26 cubic yards (yd3) of benzene-impacted soil. Confirmatory samples were collected from the sidewalls at three locations on the perimeter and analyzed for BTEX. Results indicated concentrations below detection limits for all constituents. The excavated soil was added to the stockpiled material from the recovery trench excavation for future management. (AES 2002a).

- 5. In May 2004, BBL excavated approximately 447 tons of petroleum-impacted soil from the area of PDMW-14T. Soil was disposed at the Waste Management Superior Landfill in Savannah, GA. Confirmation soil samples demonstrated compliance with Type 4 RRS for polycyclic aromatic hydrocarbons (PAHs). The monitoring well was removed during excavation and replaced with PDMW-14TR.
- 6. In July 2005, Amec Foster Wheeler removed approximately 5,800 linear feet (LF) of underground steel piping, 2,200 tons of PSM, and 11,621 gallons of impacted groundwater from the property. PSM was disposed at the Savannah Regional Landfill in Port Wentworth, GA; piping was recycled by Southern Metal Recycling in Savannah; and groundwater was treated at Industrial Water Services (IWS) in Jacksonville, FL.

In March 2006, Amec Foster Wheeler submitted a Modified Corrective Action Plan (MCAP) to address remaining issues at the site which were not adequately addressed by the interim corrective actions that had already been undertaken. These outstanding issues related to metals-impacted soil, petroleum source material (PSM) in soil, abandoned piping and ammonia, lead, arsenic, benzene and naphthalene in groundwater.

#### 8.1 GENERAL CONSTRUCTION METHODS

CSX-RPI contracted with Environmental Remediation Services, Inc. (ERS) to perform the soil corrective actions on the property. Amec Foster Wheeler was contracted by CSX-RPI to perform construction management and documentation. On November 13, 2006, Amec Foster Wheeler and ERS mobilized to the Site to initiate the project. Amec Foster Wheeler and ERS demobilized from the Site on May 18, 2007 after excavating approximately 48,220 tons of PSM and metals-impacted soil. Once the County determined that a Temporary Stream Buffer Variance was not required, Amec Foster Wheeler and ERS remobilized to the Site on August 28, 2007, to excavate the remaining PSM within 25 feet of the Savannah River. This excavation resulted in the removal of an additional 2,325 tons of PSM. The combined excavated tonnage resulting from both mobilizations was 50,545 tons of metals-impacted soil and PSM. The subsections below describe the general construction methods and approaches used on the project.

## 8.1.1 Utility Protection

The State of Georgia Utility Protection Center (GAUPC) requires 72 business hours notice for underground utility clearance for any intrusive subsurface work. As such, Amec Foster Wheeler

contacted GAUPC prior to initiation of field activities and received the appropriate utility clearances.

#### 8.1.2 Erosion Control Measures

Amec Foster Wheeler contacted the Chatham County Engineering Department regarding the need for a land disturbance permit. Upon review of the application, the County Engineer indicated that the Site activities could be performed under the existing Permit Number 2004-039, which has been used for site excavation and grading activities since March 2004.

Upon initial mobilization to the property, ERS inspected the existing silt fence that borders the Site. In locations where the fence was damaged, new silt fence was installed in accordance with the land disturbance permit. When Amec Foster Wheeler and ERS remobilized to the property in August 2007 to conduct the excavation of the remaining PSM adjacent to the Savannah River, silt fence was placed in appropriate locations during excavation activities.

## 8.1.3 PROCESSES

Removal of metals-impacted soil and PSM was performed in three separate phases. During the first phase, metals-impacted soil was excavated from the ground surface to the delineated depth until confirmation samples demonstrated that the extent of metals-impacted soil were removed. Phase two included the excavation of PSM based on visual and olfactory senses. Phase three included the excavation of the remaining PSM within 25 feet of the Savannah River. Care was taken to ensure that no overburden or PSM was allowed to accidentally enter the Savannah River. The following subsections describe the general excavation methods used during the project.

#### Overburden Removal

Where non-impacted overburden was present, this material was stripped off the surface using an excavator equipped with a flat sand plate and stockpiled in designated non-impacted areas located nearby. The use of the flat sand plate on the excavator bucket allowed for more efficient separation of non-impacted overburden from PSM. In general, where it existed, the thickness of non-impacted overburden ranged from 6-in. to 4 ft. Overburden was used as excavation backfill during the entire course of the project.

## Stockpiling and Loading

Stockpile locations were designated throughout the Site on an as needed basis depending upon trucking routes and access limitations. In general, metals-impacted soil and PSM was either live-loaded into dump trucks or stockpiled on other nearby impacted areas pending load-out. Stockpiled PSM was covered with poly sheeting when it was stockpiled for more than a day or a rain event was anticipated.

#### Disposal

All metals-impacted soil and PSM were profiled in accordance with requirements set forth by Waste Management, Inc. (WMI). Upon approval from WMI, the materials were transported by Lanyard Development, Inc. and Dorchester Dirt Company to Superior Landfill in Savannah, GA using non-hazardous waste manifests.

#### Water Handling

Over the course of the project, liquids handling was performed to control groundwater infiltration into open excavations and to address the extensive ponding of rainwater on the ground surface.

# **Excavation Dewatering**

The depth to groundwater at the property is on average approximately 2 ft bgs. Since the excavation depths ranged from 3 to 8 ft bgs, excavations were periodically dewatered with either a vacuum truck or a trash pump to remove groundwater. When excavations were deeper or obstacles (e.g. concrete foundations or wooden pilings) slowed production, Light Non-Aqueous Phase Liquid (LNAPL) accumulated in the base of the excavation pit. The LNAPL was removed using the vacuum truck and the underlying impacted soil was scraped to remove any remaining LNAPL film on the soil. The LNAPL and impacted groundwater was stored in two 21,000 gallon frac tanks at the Site, pending disposal. Initially, the dewatering liquids were transported to IWS in Jacksonville, Florida for treatment. As the volume of water increased, Amec Foster Wheeler received approval from the City of Savannah Water Quality Control Department to dispose of the water at the City's Publicly Owned Treatment Works (POTW) located at President Street. This approval was based on the condition that the Frac tanks be arranged in series and used as settling tanks to separate the sediments and LNAPL from the water to be disposed. Oreogin, Inc. of Allenhurst, GA was contracted to transport the water to the POTW.

A total of 389,447 gallons of impacted water was transported off-site for treatment. This total included 139,047 gallons of impacted groundwater sent to IWS and 250,400 gallons sent to the POTW for treatment. The volume of water generated during the August 2007 buffer zone excavation was limited to 829 gallons and was transported to IWS. This volume is included in the numbers presented above.

## **Stormwater Handling**

Heavy rains occurred during certain periods of the project that resulted in extensive ponding in areas slated for excavation. In order to access these areas, the standing stormwater was pumped to portions of the Site where excavation was not necessary (or had already been completed). The pumping operation was monitored to ensure that erosion did not occur and that the runoff remained on Site.

#### 8.2 SOIL EXCAVATION AND DISPOSAL

The following areas of impacted soil were during the initial phase of the MCAP implementation.

#### 8.2.1 Lead Areas 1-5

Lead Areas 1, 2, 3, 4, and 5 were excavated following the general methods described above. The area previously identified as Lead Area 6 was eliminated as a result of updated analytical data. A total of 1,520 tons of lead-impacted soil was excavated from five areas.

Amec Foster Wheeler used a portable XRF unit to screen soils and guide the lead-impacted soils excavation. Based on the correlation of XRF data and SW846 method 6010B data from the May 2006 delineation sampling, a screening action level for lead of 266 mg/kg was established. Screening samples were collected approximately every 25 ft along the excavation sidewalls to confirm successful removal of soil exceeding the Type 3 RRS for lead. Where excavations did not reach the groundwater table, a sample was collected from the center of each 25 ft by 25 ft grid. If the lead reading found using the XRF was less than 266 mg/kg, the sample was sent to STL for lead confirmatory analysis by SW846 method 6010B.

Any location where either the XRF screening result exceeded 266 mg/kg for lead or the STL analytical result exceeded 400 mg/kg for lead was marked for further excavation. These locations were excavated in 5 to 10-ft "cells" and new confirmation samples were collected and screened/analyzed as described above. Elevated arsenic concentrations were detected in XRF screening samples from Lead Areas 1B, 2A, 3B, 4A, and 5C (above 20 mg/kg on the XRF). In

each of these areas, confirmation samples were sent to STL for arsenic analysis as well as lead analysis.

Table 8 presents the tabulated XRF screening results and corresponding STL analytical results. Table 9 presents the confirmation sample results that demonstrate the extents of lead-impacted and arsenic-impacted soil in the five areas has been removed to meet the Type 3 RRSs. It should be noted that all confirmation samples were analyzed using SW846 methods, and that XRF was used only as a pre-screening tool. The overall excavation boundaries of all metals excavation areas are presented on **Figure 12**. **Figures 13** through **23** illustrate the individual excavation boundaries of each area and the final confirmation sample results.

#### 8.2.2 Arsenic Area 1

The excavation of Arsenic Area 1 involved removing a 50 ft by 50 ft square area around PDMW-31R down to 4 ft below grade into the water table. The area was dewatered by removing water from PDMW-31R before and during excavation of the 50 ft square area. The excavation was conducted to remove arsenic-impacted soil present in the vicinity of PDMW-31R below the water table that could be impacting groundwater. The remainder of the Arsenic Area 1 excavation was conducted as a surface soil scraping down to 6 in. bgs in areas where laboratory analytical results exceeded the Type 3/4 RRS of 38 mg/kg. A total of 700 tons of arsenic-impacted soil was excavated from this area.

In accordance with the March 14, 2006 NOD response letter (AMEC 2006a), confirmation samples were collected in Arsenic Area 1 for both arsenic and lead. Initially, samples were screened with an XRF. As with the lead areas, AMEC used a screening action level of 20 mg/kg for arsenic and 266 mg/kg for lead. However, as the program progressed in Arsenic Area 1, the correlation between the XRF readings for arsenic and the STL analytical results was found to be very poor. As a result, AMEC discontinued the XRF screening process in this area and started sending all samples to STL for arsenic and lead analyses by SW846 method 6010B. Any location where the STL analytical result exceeded the Type 3/4 RRS was marked for further excavation. These locations were excavated in 5 to 10-ft "cells" and new confirmation samples were collected and analyzed.

Table 4 presents the tabulated XRF screening results and corresponding STL analytical results. Table 5 presents the confirmation sample results demonstrating that impacted soil in Arsenic Area 1 has been removed to meet the Type 3/4 RRSs for arsenic and lead. Once again, all

confirmation samples were analyzed using SW846 methods and XRF was used only as a prescreening tool. **Figure 22** illustrates the excavation boundaries and the final confirmation sample results.

In accordance with the March 14, 2006 NOD response letter (AMEC 2006a), confirmation samples were collected in Arsenic Area 1 for both arsenic and lead. Initially, samples were screened with an XRF. As with the lead areas, AMEC used a screening action level of 20 mg/kg for arsenic and 266 mg/kg for lead. However, as the program progressed in Arsenic Area 1, the correlation between the XRF readings for arsenic and the STL analytical results was found to be very poor. As a result, AMEC discontinued the XRF screening process in this area and started sending all samples to STL for arsenic and lead analyses by SW846 method 6010B. Any location where the STL analytical result exceeded the Type 3/4 RRS was marked for further excavation. These locations were excavated in 5 to 10-ft "cells" and new confirmation samples were collected and analyzed.

Table 8 presents the tabulated XRF screening results and corresponding STL analytical results. Table 9 presents the confirmation sample results demonstrating that impacted soil in Arsenic Area 1 has been removed to meet the Type 3/4 RRSs for arsenic and lead. Once again, all confirmation samples were analyzed using SW846 methods and XRF was used only as a prescreening tool. **Figure 22** illustrates the excavation boundaries and the final confirmation sample results.

## 8.2.3 PAH Confirmation Soil Sampling

Soil confirmation samples for PAH analysis were required in any area where groundwater data historically indicated naphthalene at concentrations exceeding the Type 3 RRS for groundwater.

Based on the July 2004 and March 2006 groundwater analytical results, naphthalene was present at concentrations exceeding the Type 3 RRS in groundwater samples collected from PDMW-14T, PDMW-39, and PDMW-42. During the excavation program, eight confirmation samples were collected in locations where excavation sidewalls were in the vicinity of these wells. The analytical results presented in Table 10 and illustrated on **Figure 24** confirm that PAH-impacted soil in this area has been removed.

#### 8.2.4 Petroleum Source Materials

After excavating the metals-impacted soil areas, Amec Foster Wheeler and ERS initiated the PSM excavation program. In accordance with the requirements of the GAEPD, PSM was excavated based on visual screening of materials. Once a large enough area was excavated down to clean native soil, test pits were excavated every 20 ft to assess the presence of deeper PSM layers buried under the soil that visually appeared to be clean. In areas where the nature of the PSM was questionable, the material was placed in a jar of water to assess whether LNAPL or a sheen formed.

As previously documented in the MCAP, PSM Area 1 was excavated in 2005. During the November 2006 mobilization, excavation of PSM Areas 2, 3, and 4 was planned. During excavation of Arsenic Area 1, a fifth PSM Area was identified and designated as PSM Area 5. During excavation of Lead Area 4, PSM Area 6 was identified. PSM Area 7 was discovered during the removal of a previously identified underground steel pipe. Discovery of these additional PSM areas led AMEC to perform the Site-wide investigation documented in Section 5.5. As a result of the investigation, PSM Areas 8 through 13 were identified. Table 11 summarizes the area and depth ranges of each PSM Area. Approximately 48,325 tons of PSM were removed from the Site from November 2006 through August 2007. **Figure 23** illustrates the excavation boundaries of each PSM area.

The following bullets summarize several notable observations or occurrences encountered during the PSM excavation program:

- Several concrete structures were encountered during the PSM excavation in PSM areas 3, 10, and 11. Some of the concrete structures contained free flowing thick amber brown to black PSM. The heavily stained concrete was excavated and was mixed with PSM and disposed at WMI. Non-stained concrete was placed in the excavation pit and covered with backfill material.
- During excavation of PSM Area 4, it became apparent that PSM extended up to the
  property line that is shared with the parcel referred to as "SEDA Parcel B". AMEC
  contracted a licensed land surveyor to demarcate the property line. PSM was
  excavated in PSM Area 4 on the CSX-RPI property, up to the SEDA Parcel B property
  line. A 1-ft-thick layer of viscous amber brown to black PSM with a petroleum odor

was apparent at the edge of property line at about 4 ft bgs. This material was not removed because it was not on CSX-RPI property.

- Cross ties and wooden pilings were encountered in PSM Areas 2, 3, 4, 5, and 6 during excavation activities. Some of the cross ties were associated with a former rail line that ran through a portion of the Site. Other cross ties were apparently used for structural support of former site features such as bulk chemical and petroleum storage tanks. Where practical, the cross ties were completely excavated when encountered. The majority of the wooden pilings in PSM Area 2 extended at least 12 ft bgs. The majority of these cross ties were broken off at the base of the excavation, where no PSM was identified.
- Based on the results of the April 2007 site-wide investigation and the implementation of the large-scale excavation program, PSM has been removed from the Site to the extent practicable. In certain areas within PSM Areas 3 and 6, soil containing PSM was left in place to provide structural support for existing telephone poles (Figure 23). A radius of approximately 5 ft was left in place around four of these telephone poles for safety reasons. It is estimated that between 20-40 tons of PSM remains at these locations combined.

#### 8.2.5 Abandoned Piping

Throughout the excavation project, abandoned piping was removed, staged, and disposed. In addition to the 1,500 linear feet of piping that was previously identified, approximately 700 linear feet of additional piping was encountered. This additional piping was primarily either steel or transite piping that was not detected using the geophysical survey methods employed during the 2005 survey. The piping generally ranged in size from 2 to 6-in. diameter and was encountered between 2 and 4 ft bgs. One exception was a 75-ft section of 24-in. steel pipe filled with petroleum product that was encountered in PSM Area 2. The condition of the majority of the piping was poor, with much of it containing holes. None of the piping had been properly abandoned and most contained thick black residual petroleum material. During pipe removal, the petroleum material was allowed to drain onto the PSM stockpiles. Care was taken to ensure that draining pipes were managed properly and petroleum product was contained on existing PSM. Transite pipe was wrapped in plastic sheeting as requested by WMI. The piping was disposed along with the PSM at WMI. It should be noted that only piping that was identified by ground penetrating radar (GPR) or was encountered during excavation activities was removed.

**Figure 25** illustrates all of the underground piping that was removed from the Site in 2005 and 2006/2007.

#### 8.3 SITE RESTORATION

Excavations were backfilled using both clean overburden from on-site and silty sand from an off-site borrow pit operated by Lanyard Development, Inc. Backfill material was placed in the excavations and compacted using a combination of the excavator bucket, a front end loader, and a bull dozer. Approximately 48,150 tons of clean borrow material was brought to the Site to replace the excavated PSM and metals impacted soil. The borrow material was analyzed for PAHs, diesel range organics, and Resource Conservation and Recovery Act (RCRA) 8 metals prior to being accepted for on-site use as backfill.

After backfilling, a hyrdroseed mixture was applied to the ground surface as part of the Site restoration activities. The only exception to this is the area within 25 feet of the Savannah River, which was restored using grass seed and a hand spreader. Due to an unseasonably dry Spring (3.7 inches of rain vs. an average of 10.6 inches) the grass did not establish a suitable vegetative cover. ERS applied a second hydroseed mixture to the Site the week of May 14, 2007 and watered the grass on a bi-weekly basis. ERS placed straw mulching across these areas in August 2007 in accordance with the Land Disturbance Permit for the Site. This met the stabilization requirements of the permit.

The PSM excavation activities required removing the gravel road that provides access to the Savannah Marine Services facility. Once excavation of the road area was complete, a new gravel road was constructed following the same general alignment and elevation as the original road. The road was constructed by backfilling each excavated area in 8 inch lifts using the bulldozer and a sit-on roller. The road was constructed with a 12-in. gravel drainage layer and a 6-in. crush-and-run road surface.

## 8.4 GROUNDWATER CORRECTIVE ACTION

Since the original CSR was published in 1998, removal of ammonia from groundwater has been the focal point of groundwater corrective actions at the Property. Other regulated substances present in groundwater at concentrations exceeding the applicable RRS are generally colocated with elevated ammonia concentrations, and would therefore be addressed through the ammonia corrective action.

In accordance with the approved MCAP, Amec Foster Wheeler installed a groundwater remediation system to address impacted groundwater in the northern portion of the site. The primary COC in this area of the site was ammonia; however, elevated VOC and PAH concentrations were also located in the area of the highest ammonia impact and would also be addressed by the remediation system.

## 8.4.1 Groundwater Remediation System Construction

The groundwater remediation system was installed between November 2007 and February 2008 in accordance with the design documents prepared by Amec Foster Wheeler. The remedial action objective of the groundwater remediation system is to reduce the concentrations of the compounds of concern (COCs), primarily ammonia, below the defined RRS.

The extraction system was designed to draw groundwater from a field of 21 wells, and carry it to a central location where it could be monitored and sampled before being discharged into a sanitary sewer manhole at the Site boundary for conveyance to the City of Savannah's President Street Wastewater Treatment Plant (WWTP).

System construction involved installing 21 pumping wells, excavating trenches and installing subsurface piping and electrical conduit, placement of the system shed, and installing a tap into the nearby sanitary sewer manhole. Each well riser was installed in a precast concrete well vault with secure hatch door. The extraction pump for each well is located within the well vault, which also contains piping, tubing and appurtenances for the extracted groundwater, tubing and appurtenances for the compressed air being supplied to the extraction pump, and an electrical junction box for the conductivity/level probes that are installed within the riser.

Each pumping well fed into a dedicated subsurface line that connects the well to a centralized equipment shed. The equipment shed contained an air compressor and piping manifold to supply compressed air to the extraction well vaults. Extracted groundwater is discharged into the nearby sanitary sewer manhole via a second piping manifold. The automated system is monitored and controlled by a process logic controller (PLC) located within the control panel inside the equipment shed. The pressure of the compressed air, the pH, flow rate and total accumulated volume of the extracted groundwater and the internal temperature of the shed are continuously monitored by the PLC. Unfavorable conditions will result in a system interlock that effectively shuts down the extraction process, with an automated alert being remotely communicated to the operator for investigation and resolution.

## 8.4.2 System operation

Following a final inspection, the system was started up on 6 March 2008. Between April 2008 and October 2008, the treatment system was operated using its original design. The treatment system was shut down between November 2008 and September 2009 to conduct evaluation, upgrading, and optimization and was restarted in September 2009.

After upgrading and restarting the remediation system, a significant mass of ammonia was removed from groundwater. During the reporting period, over 2.1 million gallons were recovered and over 1900 pounds of ammonia was removed during the reporting period, with almost 50 percent of that being within the four months post-upgrade.

During 2010, the groundwater remediation system was in operation for 10 of 12 months. From mid-August through mid October 2010, the remediation system was not in operation for maintenance and repair purposes. The remediation system was brought back on-line in mid-October and operated nearly continuously through the end of 2010. During the reporting period, over 2.1 million gallons were recovered and approximately 1,868 pounds of ammonia was removed from groundwater.

The groundwater remediation system was in operation for 278 days in 2011. The remediation system was shut down from March 1 through May 8, 2011 for maintenance and repair purposes. Extensive system maintenance was also performed in November and December 2011, which decreased the volume of groundwater recovered from the system during this period. The remediation system was also shut down for brief periods of time throughout the year to perform maintenance and repair activities. During the reporting period, over 1.7 million gallons of groundwater containing ammonia were recovered and approximately 1,219 pounds of ammonia were removed from groundwater.

Operation of the groundwater remediation system was suspended upon submission of the VRP application in June 2012.

#### 9.0 RISK REDUCTION STANDARDS

The subject site is located in Savannah, Georgia in an area of former industrial properties. The property, as well as adjoining properties to the north, east and south are zoned for heavy industrial use and are classified as "non-residential" property as defined under HSRA. The Spartan Hutchinson Island Ventures property to the west was previously zoned for heavy industrial use but is currently zoned for residential use.

As discussed in Section 4.2, HSRA-regulated substances were detected in soil and groundwater samples obtained during various assessments conducted by Amec Foster Wheeler and others. Therefore, risk reduction standards (RRS) were calculated for these substances in accordance with the HSRA Rules and are summarized below. See Appendix C for complete RRS calculations.

## 9.1 SOIL CRITERIA

A total of 28 HSRA-regulated constituents were detected in soil during Amec Foster Wheeler's assessments. Type 1-4 RRS for all constituents detected in soil on the CSXT property were previously calculated for the Property as presented in the 2009 Revised CSR and are summarized below in Table 9-1 along with the highest concentration of each constituent remaining in soil on the property after remediation.

TABLE 9-1 - RISK REDUCTION STANDARDS FOR SOIL

| Regulated Substance    | Background | Type 1<br>RRS | Type 2<br>RRS | Type 3<br>RRS | Type 4<br>RRS | Maximum Concentration Detected (pre-remediation) | Maximum<br>Concentration<br>Remaining on<br>CSXT Property* |  |  |  |
|------------------------|------------|---------------|---------------|---------------|---------------|--------------------------------------------------|------------------------------------------------------------|--|--|--|
| PAHs, mg/kg            |            |               |               |               |               |                                                  |                                                            |  |  |  |
| Acenaphthene           | 0.092      | 300           | 410           | 300           |               | 0.18                                             | <1.1                                                       |  |  |  |
| Acenaphthylene         | 0.17       | 130           | 0.01          | 130           |               | 1.4                                              | <1.1                                                       |  |  |  |
| Anthracene             | 0.21       | 500           | 3089          | 500           |               | 4.3                                              | 4.3                                                        |  |  |  |
| Benzo(a)anthracene     | 0.156      | 5.0           | 8.3           | 5.0           |               | 2.3                                              | <1.1                                                       |  |  |  |
| Benzo(a)pyrene         | 0.17       | 1.6           | 1.2           | 1.6           | 7.8           | 3.6                                              | <1.1                                                       |  |  |  |
| Benzo(b)fluoranthene   | 0.425      | 5.0           | 12.5          | 5.0           |               | 1.1                                              | <1.1                                                       |  |  |  |
| Benzo(g,h,i)perylene   | 0.152      | 500           | 0.77          | 500           |               | 1.1                                              | 0.083                                                      |  |  |  |
| Benzo(k)fluoranthene   | 0.131      | 5.0           | 125           | 5.0           |               | 1.2                                              | <1.1                                                       |  |  |  |
| Chrysene               | 0.581      | 5.0           | 843           | 5.0           | 7,200         | 25                                               | 0.11                                                       |  |  |  |
| Dibenzo(a,h)anthracene | 0.099      | 2.0           | 1.2           | 5.0           |               | 0.26                                             | <1.1                                                       |  |  |  |
| Fluoranthene           | 0.4        | 500           | 2222          | 500           |               | 1.4                                              | 0.15                                                       |  |  |  |
| Fluorene               | 0.17       | 360           | 370           | 360           |               | 1.6                                              | 0.23                                                       |  |  |  |
| Indeno(1,2,3-cd)pyrene | 0.142      | 5.0           | 12            | 5.0           |               | 0.94                                             | <1.1                                                       |  |  |  |
| Naphthalene            | 0.028      | 100           | 1.32          | 100           |               | 120                                              | 0.11                                                       |  |  |  |
| Phenanthrene           | 0.115      | 110           | 0.07          | 110           |               | 24                                               | 0.38                                                       |  |  |  |
| Pyrene                 | 0.562      | 500           | 2178          | 500           |               | 170                                              | 0.15                                                       |  |  |  |
| VOCs, mg/kg            |            |               |               |               |               |                                                  |                                                            |  |  |  |
| Benzene                | 0.0085     | 0.5           | 0.05          | 0.5           | 9.1           | 0.035                                            | NT                                                         |  |  |  |
| Ethylbenzene           | 0.0085     | 70            | 15.7          | 70            |               | 0.16                                             | NT                                                         |  |  |  |
| Toluene                | 0.0085     | 100           | 14            | 100           |               | 0.51                                             | NT                                                         |  |  |  |
| Inorganics, mg/kg      |            |               |               |               |               |                                                  |                                                            |  |  |  |
| Arsenic                | 32.18      | 20            | 5.84          | 38            | 38            | 36                                               | 33                                                         |  |  |  |
| Beryllium              | 1.5        | 2             | 63            | 3             |               | 1.9                                              | NT                                                         |  |  |  |
| Cadmium                | 0.57       | 2             | 7.5           | 39            |               | 6.7                                              | NT                                                         |  |  |  |
| Chromium               | 123.6      | 100           | 18.1          | 1,200         |               | 66.8                                             | NT                                                         |  |  |  |
| Lead                   | 56.45      | 75            | 270           | 400           | 1,320         | 1,400                                            | 390                                                        |  |  |  |
| Mercury                | 0.33       | 0.5           | 2.09          | 17            |               | 4.6                                              | NT                                                         |  |  |  |
| Nickel                 | 46.39      | 50            | 130           | 420           |               | 24.3                                             | NT                                                         |  |  |  |
| Zinc                   | 103.86     | 100           | 2488          | 2,800         |               | 371                                              | NT                                                         |  |  |  |
| Ammonia                | 1.58       | 238           |               | 238           |               | 74                                               | NT                                                         |  |  |  |

 $\mu g/kg\,$  -  $\,$  micrograms per liter (equivalent to parts per billion)

Note: Shaded values exceed Type 2 RRS

\*Based on 2006/2007 confirmation sampling

NT – No confirmation samples tested as RRS exceedances were not identified.

As documented in the 2009 CSR, on the soil testing data collected to date and following the soil remediation measures described in Section 8.0, the subject site is currently in compliance with applicable Type 3 RRS for regulated constituents in soil.

## 9.2 GROUNDWATER CRITERIA

Type 1-4 RRS for all constituents detected in groundwater on site are presented below in Table 9-2. HSRA RRS criteria for groundwater for the detected constituents are shown compared to their highest concentrations detected on the property.

TABLE 9-2 – RISK REDUCTION STANDARDS FOR GROUNDWATER

| Regulated Constituent | Background | Type<br>1/3 RRS | Type 2 RRS | Type 4 RRS | Maximum Historic<br>Concentration Detected | Highest Concentration<br>Detected During VRP<br>Monitoring |  |  |  |  |
|-----------------------|------------|-----------------|------------|------------|--------------------------------------------|------------------------------------------------------------|--|--|--|--|
| PAHs, μg/L            |            |                 |            |            |                                            |                                                            |  |  |  |  |
| Acenaphthene          | 1          | 2,000           | 940        | 6,100      | 520                                        | BRL                                                        |  |  |  |  |
| Acenaphthylene        | 1.4        | 1.4             | ND         | 510        | 200                                        | BRL                                                        |  |  |  |  |
| Anthracene            | 0.2        | 0               | 4,700      | 5,100      | 59                                         | BRL                                                        |  |  |  |  |
| Benzo(a)anthracene    | 0.2        | 0.1             | 2.5        | 3.9        | 19                                         | BRL                                                        |  |  |  |  |
| Benzo(a)pyrene        | 0.2        | 0.2             | 0.25       | 0.39       | 0.62                                       | BRL                                                        |  |  |  |  |
| Benzo(b)fluoranthene  | 0.2        | 0.2             | 1.2        | 0.65       | 0.26                                       | BRL                                                        |  |  |  |  |
| Benzo(k)fluoranthene  | 0.131      | 10              | 12         | 39         | 1.3                                        | BRL                                                        |  |  |  |  |
| Chrysene              | 0.2        | 0.2             | 120        | 65         | 18                                         | BRL                                                        |  |  |  |  |
| Fluoranthene          | 0.5        | 1,000           | 630        | 4,100      | 120                                        | BRL                                                        |  |  |  |  |
| Fluorene              | 0.5        | 1,000           | 630        | 4,100      | 270                                        | BRL                                                        |  |  |  |  |
| Naphthalene           | 1          | 20              | 1.4        | 20         | 6,200                                      | 63                                                         |  |  |  |  |
| Phenanthrene          | 0.22       | 0.22            | ND         | 510        | 360                                        | BRL                                                        |  |  |  |  |
| Pyrene                | 0.5        | 1,000           | 470        | 3,100      | 84                                         | BRL                                                        |  |  |  |  |
| VOCs, μg/L            |            |                 |            |            |                                            |                                                            |  |  |  |  |
| Benzene               | 1          | 5               | 4.5        | 31         | 160                                        | 81                                                         |  |  |  |  |
| Ethylbenzene          | 1          | 700             | 15         | 29         | 650                                        | BRL                                                        |  |  |  |  |
| Toluene               | 1          | 1,000           | 880        | 5,200      | 1,300                                      | BRL                                                        |  |  |  |  |
| Xylenes               | 2          | 10,000          | 59         | 290        | 2,500                                      | 0.42                                                       |  |  |  |  |
| Inorganics, µg/L      |            |                 |            |            |                                            |                                                            |  |  |  |  |
| Arsenic               | 18         | 50              | 0.57       | 50         | 570                                        | 160                                                        |  |  |  |  |
| Chromium              | 13         | 100             | 1.7        | 5.7        | 100                                        | BRL                                                        |  |  |  |  |
| Lead                  | 7          | 15              | ND         | 15         | 210                                        | 39*                                                        |  |  |  |  |
| Nickel                | 130        | 100             | 310        | 2,000      | 170                                        | 100                                                        |  |  |  |  |
| Zinc                  | 960        | 2,000           | 4,700      | 31,000     | 2,100                                      | 550                                                        |  |  |  |  |
| Ammonia               | 15         | 30              | 30         | 30         | 18,000                                     | 4,300                                                      |  |  |  |  |
| Nitrate               | NE         | 10              |            |            | 290                                        | 290                                                        |  |  |  |  |

μg/L - micrograms per liter (equivalent to parts per billion)
Note: Shaded values exceed one or more of the Type 1-4 RRS

<sup>\*</sup>Recent lead testing results were all compliant with Type 1 RRS

Based on the groundwater testing data available to Amec Foster Wheeler and presented herein, groundwater at the property currently complies with Type 1 or 2 residential RRS except for the following regulated substances: ammonia, arsenic, lead, benzene, naphthalene and nitrate. There are no regulated substances detected in groundwater on parcels adjacent to the CSXT property that exceed the Type 1 or Type 2 RRS as of the November 2015 sampling event and retest of PDMW-47 in April and July 2016.

#### 10.0 EXPOSURE PATHWAYS

An examination of potential exposure pathways and receptors was presented in previous reports and, in part, supplemented by recent research. Based on the data collected to date, the potential exposure pathways include:

- Potential exposure to regulated constituents in soil;
- Potential exposure to regulated constituents in groundwater;
- Potential exposure to regulated constituents in surface water;
- Potential exposure to regulated constituents due to vapor intrusion from impacted soil or groundwater beneath occupied buildings.

The CSXT property is zoned heavy industrial and is located across the Savannah River from downtown Savannah, Georgia. The Property is currently undeveloped. Nearby property uses include an office building and a golf course to the north and commercial properties along the river to the south and east. The property to the west was previously occupied by a concrete plant but is currently vacant. Unauthorized access to the property is controlled through a partial enclosure provided by a fence which surrounds the property, although the fence has been damaged in some areas.

In order to eliminate certain exposure pathways, engineering and institutional controls will be implemented on the property in the form of an Environmental Covenant that will (1) restrict the use of groundwater for drinking, (2) restrict residential use of the property without further corrective action (i.e. soil remediation or engineering controls). The covenant will include a provision for annual certification of continued compliance.

#### 10.1 SOIL CRITERIA

No soil impacts have been documented on parcels adjacent to the CSXT property. Based on the industrial use of the property it is considered non-residential and, therefore, potential receptors include industrial workers, construction workers and utility workers. The applicable non-residential RRS for all constituents detected in soil on site are summarized in Table 9-1.

As documented in Section 9.0, only lead and arsenic remain in soil samples above the residential RRS, along with a small amount of visibly impacted petroleum source material surrounding four utility poles. Of the 28 regulated constituents detected in soil, all were at

concentrations below their applicable residential RRS, except for arsenic and lead in the following samples: Arsenic - AS1A-E02-3", AS1A-E03-6", AS1A-N07A-3", AS1A-S01-3" and AS1A-W06-3", Lead - PB3B-E01-6", PB3B-E02-6", PB3B-N04-1', PB4A-E02-6", PB4A-N01-6", PB4A-W01-6", PB4A-W02-6" and PB5C-N02-1'. All arsenic and lead concentrations comply with non-residential RRS. As such, the subject property satisfies non-residential RRS criteria calculated for potential exposure to soil.

#### 10.2 GROUNDWATER

Amec Foster Wheeler compared recent groundwater testing data from the Property to Type 1-4 RRS for the constituents detected in groundwater on the site. Based on the November 2015 groundwater testing data and a retest of PDMW-47 in 2016, the property exceeds groundwater Type 1 or Type 2 RRS for ammonia, nitrate, benzene, naphthalene and arsenic; however, there are no exceedances of Type 1 groundwater RRS on surrounding properties. Groundwater on Hutchinson Island is not used for drinking water and no drinking water wells are known to exist on Hutchinson Island. In addition, owners of property are prevented from using groundwater as a drinking water source due to a Chatham County Ordinance prohibiting the installation of drinking water wells in areas served by municipal water systems. The property will comply with Type 4 RRS with controls upon execution of an Environmental Covenant that restricts groundwater usage. For these reasons, the groundwater exposure pathway for properties comprising the site is incomplete.

As discussed in Section 3.0, the site lies in a hydrogeologic setting where groundwater typically consists of an unconfined surficial aquifer, underlain by an upper confining unit and the Floridan aquifer. Regional hydrogeologic conditions at the property and surrounding areas indicate the first potable water is found in the Upper Floridan aquifer at least 300 feet below the site elevation. This aquifer is separated by an approximately 200 feet thick confining unit of the Floridian aquifer, reinforcing the conclusion that the exposure pathway for human consumption of impacted groundwater is incomplete.

Based on the groundwater data obtained during previous assessments, groundwater concentrations are below the risk reduction standards for construction and utility workers in the event that ground-disturbing activities intercept groundwater in the future. Commercial/industrial workers are not expected to come into contact with groundwater. Therefore, the exposure pathway of any workers is incomplete.

In order to evaluate the risk that regulated constituents in groundwater could impact a potential receptor within 1,000 feet of the downgradient extent of the plume and to estimate the time required to achieve compliance with applicable RRS, Amec Foster Wheeler applied the BIOCHLOR software to the release of ammonia in groundwater on site. BIOCHLOR utilizes a combination of site specific data and literature values to determine the various physical properties of the plume and the migration potential of dissolved constituents. The model was developed to predict the migration pattern of a contaminant plume where no engineering controls have been implemented and monitored natural attenuation (MNA) is the groundwater remedial option. Refer to Appendix D for model output sheets and supporting information.

#### 10.2.1 Nitrification

Ammonia (NH<sub>3</sub>) within the subsurface predominately exists in an ionized (protonated) state of ammonium (NH<sub>4</sub><sup>+</sup>) under the pH and temperature conditions observed at the site (pH typically between 6 and 7 and groundwater temperatures between approximately 18 and 24 degrees C). These conditions are also optimal for oxidation (nitrification) of ammonium, the primary mechanism for ammonium degradation. Ammonium initially oxidizes to nitrite (NO<sub>2</sub>-) which is catalyzed by Nitrosomonas bacteria. Nitrite is then oxidized by Nitrobacter bacteria resulting in the formation of nitrate (NO<sub>3</sub><sup>+</sup>). Nitrate is generally stable in the subsurface environment under aerobic conditions and can persist for long periods of time if it is not removed via plant uptake or discharged to surface water bodies. The very low nitrate concentrations outside of the immediate source area indicate that significant uptake of nitrate is likely in the heavily vegetated marsh located on the SEDA Parcel B. The biodegradation of ammonium and nitrite are typically maximized under aerobic conditions and may be halted under anaerobic conditions. However, anaerobic oxidation of ammonium (anammox) and its byproducts can occur under anoxic conditions via biological denitrification. This process is facilitated by the absence of oxygen and the presence of organic carbon, and reduced sulfur or iron (Buss, S.R., Herbert, A. W., Morgan, P. and Thornton, S.F, 2003). At EPD's request, nitrite analysis has been included in the suite of testing parameters during the last two sampling events to provide additional data regarding ammonia degradation.

## 10.2.2 Dissolved Oxygen

Review of well purging records indicates concentrations of dissolved oxygen (DO) in the shallow groundwater varies considerably both across the site and seasonally, with the higher DO concentrations observed during the summer sampling events. During the current sampling

event, most wells contained low concentrations DO at the time of sampling. There does appear to be some correlation between DO and nitrite concentrations. Typically, nitrite was not detected in samples exhibiting low DO concentrations (<1.0 mg/L) and the highest nitrite concentrations were detected within wells located in tidal marsh areas. The daily influx of surface water may serve to oxygenate the shallow groundwater in the marsh area. Such conditions would enhance the biodegradation of ammonium within the marsh area. This relationship does not hold in all cases, however, as the highest nitrite concentrations were detected in two wells (PDMW-7P and PDMW-48) which also exhibited low DO. Both of these wells were located in marshy areas which indicates other factors, such as anammox may have locally influenced the formation of nitrite.

#### 10.2.3 Retardation

Subsurface migration of ammonia can also be heavily influenced by retardation effects from aquifer materials. Specifically, the presence of even small amounts (0.1%) of clay can result in retardation factors of 2-3.5 due to cation exchange or adsorption effects. The retardation effects are most pronounced with mixed layer clays such as montmorillonite, which are not expected in this geologic setting. However, double layer clays such as illite and even single layer clays, such as kaolinite (which would be expected on the site) will have a significant retardation effect. As noted in boring logs for site monitoring wells, the aquifer material believed responsible for the bulk of shallow groundwater migration consists primarily of fine to medium grained sand, but minor to moderate amounts of clay are also present throughout the site, particularly in the marshy areas; although the precise mineralogy of these clays has not been determined. The soils within the marshy areas were observed to contain significant amounts of clay generally throughout the depth of the wells in this area. Such conditions represent lower hydraulic conductivities which would be consistent with reduced migration of the ammonia plume across the marsh as is noted with the sharp drop off in observed ammonia and nitrate concentrations between the apparent source area and any wells located within the marsh (MW-3R, PDMW-48, PDMW-49, PDMW-50, PDMW-51 and PDMW-52).

## 10.2.4 Degradation

The presence of low concentrations of ammonia and nitrate in groundwater and the surface waters of the canal provide evidence that ammonia degradation is occurring on the site. However, much of the nitrate previously detected in the surface water may be attributable to influx from the Savannah River as nitrate concentrations in groundwater were generally below

detection limits except in those wells with the highest ammonia concentrations. As described in previous reports, significant variations in nitrate concentrations in surface water were noted between low tide and high tide which supports the conclusion that the Savannah River has a substantial influence on nitrate concentrations in the surface water in the canal. Unlike the nitrate results, nitrite concentrations in surface water were generally higher in the low tide samples, indicating primary input from groundwater rather than surface water.

## 10.2.5 Release History

The initial release of ammonia to groundwater was assumed to have occurred approximately 40 years ago. This date was selected as a reasonable starting date based on the use of the property for chemical storage (including liquid fertilizer) by Charter International Oil Company (Charter) beginning in 1973. The storage of ammonia likely ceased when Powell Duffryn took over the site in 1982, but definitely ceased by the early 1990s when Powell-Duffryn vacated the site and the on-site storage tanks were removed. As such, the release was modeled as emanating from a decaying source as all ongoing sources have long since been removed and the ammonia will undergo biotransformation to nitrite and then to nitrate.

# 10.2.6 Decay Constant

The ammonia decay constant was calculated by preparing a semi-log plot of ammonia concentration vs. time in TMW-1. The slope of the trend line provided the initial model input value. However, the value obtained appeared to be very conservative as it would result in predicted source area concentrations well in excess of what is currently observed. The decay constant valued may have been affected by the previous operation of the remediation system. Therefore, the decay constant was modified somewhat to more closely match observed conditions.

#### 10.2.7 Model Results

Due to the groundwater flow pattern, it was necessary to prepare two models. One model considers the ammonia fate and transport to the north-northwest toward the drainage canal and a second model considers the ammonia fate and transport to the southeast toward the Savannah River.

The northward trending plume model illustrates the migration of ammonia from the source area near TMW-1 toward the drainage canal. An ammonia concentration of 18,000 mg/L was established as an original source area concentration to adjust model input parameters and

establish a decay rate that reasonably matches current field observations. This value represents the highest concentration of ammonia detected on site to date. We note that the exact location and size of the original source area or areas is not known. In addition, the heterogeneity of the aquifer materials (e.g., the hydraulic conductivity measured on site can vary by up to two orders of magnitude) introduces a component of variability as well. For this reason, an average hydraulic conductivity of 7.8 x 10<sup>-4</sup> cm/sec, was calculated from 2005 slug test results from TMW-1, TMW-3T and PDMW-22T in the northern portion of the site.

The highest measured ammonia concentration of 18,000 mg/L was utilized as the initial concentration and the model was run over a 120-year time span. The attached output sheets illustrate that after 40 years (i.e. now) the predicted ammonia concentrations generally correspond to those currently observed in TMW-1 and in the area to the north. The northerly plume is modeled between the assumed source area around TMW-1, and PDMW-48 and PDMW-49, the point of demonstration wells located immediately south of the canal. The May 2015 sample result for PDMW-49 was utilized in the current model as this was the most recent data available for this well.

Ammonia concentrations in groundwater predicted by the model were compared to the previously approved risk reduction standard of 30 mg/L. The model output predicts a maximum ammonia concentration in PDMW-49, immediately south of the canal, of approximately 24, mg/L, which should occur approximately 10 years into the future. The predicted maximum ammonia concentration will remain below the RRS of 30 mg/L in the area north of the canal. Although the predicted maximum ammonia concentration of 24 mg/L exceeds the approved ecological criteria for surface water, this does not take into account the significant dilution effects associated with the twice daily influx of fresh surface water from the Savannah River.

The model was also run with the starting concentration of ammonia increased to the point at which the predicted concentration in PDMW-49 would exceed the RRS. As shown on the attached output, an ammonia concentration of 35,000 mg/L would be required for PDMW-49 to exceed the RRS of 30 mg/L. This is more than twice the highest concentration historically detected and more than eight times the highest concentration detected during the VRP monitoring period.

The southward trending plume model run illustrates ammonia migration from the area around EW-1, which is the area of highest observed ammonia concentration located south of the assumed source area around TMW-1. An ammonia concentration of 1,100 mg/L was utilized as

a starting concentration as this was the highest ammonia concentration recorded in this portion of the site. An average hydraulic conductivity of 3 x 10<sup>-3</sup> cm/sec was utilized for the southern model. This value was calculated from slug test results obtained from PDMW-10T, PDMW-24T and PDMW-15T which are located in the southern portion of the site. The modeled flow path utilized EW-1 as the source area, and included MW-10R and PDMW-46P to the east-southeast, the direction of groundwater flow in this area as depicted on **Figure 4**, rather than a direct path to the river. We note that the exact flow path is difficult to determine in the area around EW-1 as it is located near the groundwater divide in the central portion of the site and slight variations in the water table configuration can alter the flow direction from EW-1. In order to provide a conservative model, a flow path approximately 1,200 feet long, generally toward the river was assumed. The model output continues to predict that the ammonia concentration reaching the river will remain well below the RRS into the foreseeable future.

The highest concentration of ammonia to reach the river is predicted to be less than 1 mg/L, which are modeled to be occurring now. Ammonia concentrations at the River are predicted to remain at approximately these same levels for the next 15 to 20 years before declining. The source area concentration was increased to evaluate the maximum concentration necessary to result in an exceedance of the RRS at the river. A source area ammonia concentration of 580,000 mg/L was necessary for an exceedance of the RRS at the Savannah River to occur. This concentration is over two orders of magnitude higher than has ever been observed in the area around EW-1.

## 10.2.8 Model sensitivity

Sensitivity analysis of the BIOCHLOR model input parameters was performed by increasing and decreasing their baseline values for the calibrated model. The results of the analysis are shown in Table A for monitoring well PMW-49 which is the point of demonstration well for the northern plume which represents the most significantly impacted groundwater at the site. This well is adjacent to the drainage canal and therefore is most representative of potential groundwater impacts on the surface water quality.

For modeling purposes, TMW-1 and EW-1 have been assumed to represent the source locations for the northern and southern plume migration, respectively; although, based on the previous testing from EW-1, this may not be the case. In the case of TMW-1, the highest historic concentrations was utilized as the initial ammonia concentration.

The model was developed by inputting a combination of field-measured parameters and literature values into the model which were then adjusted until the constituent distribution curves reasonably matched the groundwater conditions measured at the site as described in previous reports. Those same input parameters were then utilized in longer duration models to predict concentrations of ammonia over time.

#### 10.2.9 Model validation

As illustrated on the attached outputs from the BIOCHLOR model, the model predicts that after approximately 40 years (i.e. now), the ammonia concentrations modeled as emanating from the TMW-1 location is a close match to the conditions currently observed in downgradient wells, including previous results from those wells along the canal and in the marsh, which have been eliminated from the sampling program. Results from the point of demonstration well for the southern plume also provide a relatively close match to the conditions predicted for the southern plume. Modeled concentrations for both nitrate and nitrite, when compared with field conditions indicate that the biotransformation of ammonia to these degradation products is very slow and that the observed downgradient conditions appear to be related to migration with minimal biotransformation. With the exception of the source area well itself, TMW-1, no nitrate concentrations have been observed on site approaching its MCL.

## 10.2.10 Predictions

The results of the groundwater fate and transport modeling continue to indicate that the migration of ammonia, nitrate and nitrite in either the northerly or southerly directions will not result in exceedences of the RRS in the foreseeable future either at the drainage canal or at the northern hypothetical point of exposure (POE) located 1,000 feet to the north or at the southern hypothetical POE located at the Savannah River boundary. Based on the model, the furthest extent of the plume is approximately 900 feet from the source area which will not occur until approximately 110 years from now. The concentrations predicted at that time are less than 1 mg/L, well below the Type 1 RRS. The furthest extent of ammonia concentrations in excess of the Type 1 RRS is approximately 300 feet downgradient of the source area, which is predicted to occur approximately 10 years from now.

For these reasons, the groundwater exposure pathway is incomplete. Also, the proposed filing of an Environmental Covenant will restrict the use of groundwater on the property where the only exceedances of Type 1 groundwater RRS currently exist.

Based on the information obtained, the groundwater contaminant plume exceeding Type 1/3 RRS for groundwater is limited to the property itself. Fate and transport modeling predicts the plume to be generally stable so that future significant migration will be negligible. Therefore, exposure to contaminated groundwater is considered unlikely in the site vicinity due to the fact that local properties are all connected to municipal water supplies. Groundwater fate and transport modeling have demonstrated the groundwater conditions will not result in exceedances of drinking water standards within 1,000 feet downgradient of the current extent of the plume or Georgia in-stream water quality standards. As such, the properties comprising the site are in compliance with appropriate groundwater criteria under the VRP.

#### 10.3 NO ON-GOING SOURCE

With the demolition of the bulk storage facility in the 1980s and the removal of petroleum source materials and metals-impacted soils in the various corrective actions conducted between 1999 and 2007 the known ongoing contributions to subsurface impacts have been eliminated, as documented in the 2008 Revised CSR. Additionally, no light non-aqueous phase liquid (LNAPL) has been detected on site during numerous groundwater monitoring events. The Property is currently undeveloped. As described in the 2008 Revised CSR, based on previous certification of compliance with RRS for soil, with the exception of small amounts of soil surrounding four utility poles, no additional source materials remain on the Property which would require removal.

#### 10.4 ON-SITE VAPOR INTRUSION

Amec Foster Wheeler evaluated the potential impact of soil gas on future indoor air quality for the Property. The evaluation was completed in accordance with the February 22, 2004 USEPA "User's Guide for Evaluating Subsurface Vapor Intrusion in Buildings". A screening level vapor intrusion risk evaluation was performed for the Property. The results of the evaluation indicate that: (1) the ammonia impacts in the source area (TMW-1) exceed the target groundwater vapor intrusion screening levels for both residential and non-residential properties and (2) benzene and naphthalene concentrations in TMW-1 exceed the residential screening levels but are compliant with the non-residential screening levels.

#### 10.5 SURFACE WATER

The subject site is located on Hutchinson Island, which is surrounded by two channels of the Savannah River. The site is located just north of the southern channel of the river. The

northern channel of the river is located approximately 3,000 feet north of the site. A small drainage canal is located approximately 200 feet north of the site. This canal connects to the southern channel of the river and is subject to significant tidal fluctuations, as is the river in this area. At low tide, the canal is essentially dry.

## **10.5.1 Ecological Risk Assessment**

As requested by EPD in a letter to CSX-RPI dated January 31, 2013, a Screening-Level Ecological Risk Assessment (SLERA), which is provided as the Addendum to this progress report, has been prepared in accordance with Ecological Risk Assessment Guidance for Superfund: Process for Defining and Conducting Ecological Risk Assessments (ERAGS; U.S. Environmental Protections Agency [USEPA], 1997) and the Supplemental Guidance to RAGS: Region 4 Bulletins, Ecological Risk Assessment (USEPA, 2001). The primary purpose of this SLERA is to assess the potential for adverse impacts to ecological receptors in the off-property drainage canal bordering the northern property line. This SLERA evaluated surface water and sediment data collected in December 2013 and January 2014 from the off-property drainage Analyses for chemicals historically associated with the subject property, including dissolved metals, ammonia, nitrate, polycyclic aromatic hydrocarbons (PAHs), and volatile organic compounds (VOCs), were performed on surface water and sediment samples. Reported concentrations were compared to applicable environmental screening values (ESVs) protective of a variety of aquatic organisms to identify constituents of potential concern (COPCs) in surface water and sediment. Both freshwater and marine ESVs were considered in the SLERA due to the brackish nature of the surface water in the canal.

In addition, a biological reconnaissance of the canal and surrounding areas was conducted in January 2014 to assess likely ecological receptors and habitat suitability. The biological reconnaissance noted fiddler crabs in the canal, but no fish were noted. The canal is largely dry at low tide, limiting available habitat for fish populations. The SLERA was focused on risk to benthic macroinvertebrates (e.g., crabs) in the canal because these receptors are directly exposed to surface water and sediment in the canal and form the base of the food chain to other wildlife in the area. Evaluation of higher-trophic level mammals and birds were not included at this step in the ecological risk process.

Based on a comparison to surface water ESVs, no COPCs were identified in surface water. Therefore, surface water in the off-property drainage canal is not anticipated to pose unacceptable ecological risk to aquatic receptors. Sediment constituents with maximum

detected concentrations exceeding their respective sediment ESVs were identified as sediment COPCs and included ammonia, arsenic, lead, nitrate, and zinc. As a next step, concentrations of COPCs in sediments were compared to chemical-specific toxicity benchmarks protective of benthic macroinvertebrates. Because sediment concentrations were less than sediment toxicity benchmarks, exposure within the drainage canal is unlikely to pose significant adverse effects for benthic macroinvertebrates or other aquatic life. The results of the SLERA indicate that no additional ecological risk assessment of the drainage canal is necessary for this property.

Based on the detected concentrations of COCs dissolved in groundwater at the site, the results of the analytical groundwater fate and transport model for the VOCs in question and the results of the testing of the only surface water in the nearby site vicinity, in-stream water quality standards are not exceeded currently, and are not predicted to be exceeded in the future. Therefore, the surface water exposure pathway is incomplete.

## 10.5.2 Surface water sampling and testing

The drainage canal was sampled on several occasions between 1997 and 2004 by AES. During each sampling event, surface water samples were collected from two locations at the eastern and western portions of the canal nearest the CSXT property at both low and high tide. These samples were generally tested for PAHs, BTEX, metals (filtered and unfiltered) and ammonia. Low concentrations of ammonia have been detected in surface water samples collected from the canal north of the site during previous surface water sampling events conducted by BBL between 1997 and 2004 (see Table 12). Other COCs included in the previous surface water testing program include PAHs, BTEX and metals. Out of a total of 39 surface water samples tested over a seven year period, no PAHs were detected in the surface water samples. Ethylbenzene, toluene and xylenes were detected at very low concentrations in one sample collected in 2002 and were below detection limits in all other events. Lead was detected in three samples and zinc was detected in 24 samples. We note that lead and zinc results appear to have been influenced by suspended sediment as dissolved metals testing, performed on approximately half of the samples, typically exhibited significantly lower metals concentrations, with no detections of lead.

Between 2013 and 2015, Amec Foster Wheeler sampled the canal on four occasions. Surface water samples were collected from four locations within the drainage ditch located on the SEDA property north of the CSXT property. Sample SW-1 was collected where the drainage ditch crosses the road that borders the western portion of the CSXT property. SW-2 and SW-3 were

collected in the area north of the CSXT parcel, downgradient of the two major lobes of the ammonia plume in groundwater. SW-4 was collected where the drainage ditch crosses the road that borders the eastern portion of the CSXT property.

Two rounds of surface water samples were collected during each sampling event, one at high tide and one at low tide. The samples were collected in laboratory supplied containers using a peristaltic pump and Teflon-lined tubing. The following observations are provided based upon an evaluation of the analytical results for surface water samples collected during the May 2015 monitoring event, see Table 15 for a summary of all surface water testing results collected during the VRP monitoring events:

Ammonia concentrations ranged from 0.41 to 0.91 mg/L at high tide and from 0.62 to 1.5 mg/L at low tide. These concentrations are below both the fresh water environmental screening level of 3.206 mg/L and the marine environmental screening level of 1.896 mg/L. May 2015 ammonia concentrations and fluctuations between tidal stages are generally consistent with the results of previous surface water sampling events. Generally, higher ammonia concentrations are observed in surface water samples collected during low tide. After several sampling events, a seasonal pattern to the ammonia concentrations in surface water has become apparent. Ammonia concentrations in summer tend to be significantly higher than those observed in winter. However, even the highest ammonia concentrations remain below applicable ESLs.

Nitrate concentrations ranged from 0.25 to 0.29 mg/L at high tide and from 0.17 to 0.28 mg/L at low tide. May 2015 nitrate concentrations and fluctuations between tidal stages are generally consistent with the results of previous surface water sampling events. Generally, nitrate concentrations are higher at high tide, indicating input from the Savannah River.

Nitrite concentrations ranged from non-detect (less than 0.05 mg/L) to 0.060 mg/L at high tide and from non-detect to 0.094 mg/L at low tide. At the request of the Georgia EPD, surface water samples were analyzed for nitrite for the first time in May 2015.

Alkalinity concentrations ranged from 39 to 100 mg/L at high tide and from 77 to 130 mg/L at low tide. May 2015 alkalinity concentrations are generally consistent with the results of previous surface water sampling events. Generally, higher alkalinity concentrations are observed in surface water samples collected during low tide.

11.0 CONCLUSIONS

Based on the information obtained to date at the property, we offer the following conclusions

regarding the CSXT and surrounding properties:

**CSXT Property** 

• The CSXT property is in compliance with Type 3 RRS for soil. Limited areas of soil

impacts exceeding Type 2 RRS remain.

• Ammonia, arsenic, benzene, naphthalene and nitrate exceed Type 1/3 RRS for

groundwater on the CSXT property. The five VRP sampling events have demonstrated

that impacts outside of the source areas are limited in concentration to below applicable

RRS and in most areas, site-specific background concentrations, as well. Groundwater

impacts within the source areas have been demonstrated to be stable or decreasing in

concentration over time and have been laterally and vertically delineated.

• The tidal marsh located adjacent to the CSXT property to the north has been shown to

provide an effective barrier to the migration of ammonia and other COCs and appears to

facilitate the degradation of ammonia.

Preliminary vapor intrusion screening indicates the northern corner of the site exceeds

residential vapor intrusion screening levels for ammonia, benzene and naphthalene and

non-residential screening levels for ammonia.

Spartan Hutchinson Island Investments (west of property)

Soil impacts have not been identified on the Spartan Hutchinson Island Investments

property.

Groundwater complies with Type 1/3 RRS.

**SEDA Parcel B (north of property)** 

Soil and groundwater on the SEDA Parcel B are in compliance with Type 3 RRS and the

SEDA property has been delisted from the HSI.

Surface waters within the drainage canal are compliant with ecological risk standards.

Amec Foster Wheeler Environment & Infrastructure, Inc.

# **Hutchinson Island Ventures (east of property)**

- No soil impacts have been identified on the Spartan Hutchinson Island Investments property.
- Groundwater complies with Type 1/3 RRS.

The CSXT property will be eligible for delisting from the HSI because it is in compliance with Type 3 RRS for soil and will be in compliance with Type 4 with controls risk reduction criteria for groundwater upon filing of the Environmental Covenant using institutional controls upon filing of the Environmental Covenant.

References:

Agronomy Solutions, Co. 2002. Bench Study of Ammonium Removal for Soul at Hutchinson

Island, Georgia – Powell Duffryn Site.

Applied Engineering & Science, Inc., 2002. Corrective Action Plan: HSI # 10101, Hutchinson

Island, Georgia. Prepared for CSX Transportation, Powell Duffryn Terminals, Inc., and Chevron

Products Company.

Blasland Bouck & Lee, Inc., 2002. Groundwater Modeling Report. BBL project #425.30,

prepared for CSX Real Property, Powell Duffryn Terminals, Inc., and Chevron Products

Company.

Blasland, Bouck & Lee, Inc., 2003. Revised Compliance Status Report: Hutchinson Island,

Savannah, Georgia. Prepared for CSX Real Property, Powell Duffryn Terminals, Inc., and

Chevron Products Company.

Blasland, Bouck & Lee, Inc., 2005. Compliance Status Report Notice of Deficiency Response

Letter: Hutchinson Island, Savannah, Georgia. Prepared for CSX Real Property, Powell

Dufferyn Terminals, Inc., and Chevron Products Company.

Modified Corrective Action Plan, CSXT-Hutchinson Island, prepared by AMEC, dated June 6,

2009:

Response to Notice of Deficiency and Revised Compliance Status Report – Post Soil Corrective

Action Report, prepared by AMEC, dated February 29, 2008;

Buss, S.R., Herbert, A.W., Morgan, P., & Thornton, S.F., Review of Ammonium Attenuation in

Soil and Groundwater, National Groundwater and Contaminated Land Centre Report NC/02/49,

dated July 2003;

Buss, S.R., Rivett, M.O., Morgan, P., & Bemment, C.D., Attenuation of Nitrate in the Subsurface

Environment, Environment Agency Science Report SC030155/SR2, dated November 2005;

Amec Foster Wheeler Environment & Infrastructure, Inc.

Bumb, A.C., McKee, C.R., Way, S.C., Drever, J.I and Halepaska, J.C., Ammonia and Nitrate Migration from the Vadose Zone to the Groundwater System; Containment, Recovery and Natural Restoration.

USEPA, 2015. Vapor Intrusion Screening Level (VISL) Calculator, Version 3.4, June 2015 RSLs.



|                 |               | ٦           | Γable 1 - Summ       | ary of May 2006 S                          | oil Delineation P       | rogram Results                               |                       |                                          |
|-----------------|---------------|-------------|----------------------|--------------------------------------------|-------------------------|----------------------------------------------|-----------------------|------------------------------------------|
| Area            | Sample ID     | Sample Date | Lead, mg/kg<br>(XRF) | Lead, mg/kg<br>(6010B)<br>Type 3 RRS = 400 | Arsenic, mg/kg<br>(XRF) | Arsenic, mg/kg<br>(6010B) Type<br>3 RRS = 38 | PSM Present?<br>(Y/N) | Interval of Petroleum Source<br>Material |
|                 | LIS-029[0-1'] | 5/3/2006    | 244.18               | NA                                         | ND                      | NA                                           | Yes                   | (0-4') 18-26"                            |
|                 | LIS-029[1-2'] | 5/3/2006    | 1300.16              | 2100                                       | 50.78                   | NA                                           | Yes                   | (0-4') 18-26"                            |
|                 | LIS-030[0-1'] | 5/3/2006    | 65.44                | NA                                         | ND                      | NA                                           | Yes                   | (0-4') 12-18"                            |
|                 | LIS-030[1-2'] | 5/3/2006    | 38.16                | NA                                         | ND                      | NA                                           | Yes                   | (0-4') 12-18"                            |
|                 | LIS-031[0-1'] | 5/3/2006    | 38                   | NA                                         | ND                      | NA                                           | No                    |                                          |
|                 | LIS-031[1-2'] | 5/3/2006    | 14.82                | NA                                         | ND                      | NA                                           | No                    |                                          |
|                 | LIS-032[0-1'] | 5/3/2006    | 364.13               | 350                                        | ND                      | NA                                           | No                    |                                          |
| 2A              | LIS-032[1-2'] | 5/3/2006    | 54.24                | NA                                         | ND                      | NA                                           | No                    |                                          |
| Lead Area 2A    | LIS-033[0-1'] | 5/3/2006    | 174.86               | NA                                         | ND                      | NA                                           | No                    |                                          |
| δ               | LIS-033[1-2'] | 5/3/2006    | 2049.42              | 11000                                      | ND                      | NA                                           | No                    |                                          |
| Lea             | LIS-034[0-1'] | 5/3/2006    | 205.36               | NA                                         | ND                      | NA                                           | Yes                   | (0-4') 21-27"                            |
| _               | LIS-034[1-2'] | 5/3/2006    | 207.33               | 270                                        | ND                      | NA                                           | Yes                   | (0-4') 21-27"                            |
|                 | LIS-035[0-1'] | 5/3/2006    | 115.26               | 120                                        | ND                      | NA                                           | No                    |                                          |
|                 | LIS-035[1-2'] | 5/3/2006    | 70.4                 | NA                                         | ND                      | NA                                           | No                    |                                          |
|                 | LIS-036[0-1'] | 5/3/2006    | 132.99               | 110                                        | ND                      | NA                                           | No                    |                                          |
|                 | LIS-036[1-2'] | 5/3/2006    | 47.59                | NA                                         | ND                      | NA                                           | No                    |                                          |
|                 | LIS-037[0-1'] | 5/3/2006    | 197.73               | 430                                        | ND                      | NA                                           | No                    |                                          |
|                 | LIS-037[1-2'] | 5/3/2006    | 275.64               | NA                                         | ND                      | NA                                           | No                    |                                          |
| Ø               | LIS-027[0-1'] | 5/3/2006    | 205.97               | 2700                                       | ND                      | NA                                           | Yes                   | (0-4') 26-32"                            |
| Lead Area<br>2B | LIS-027[1-2'] | 5/3/2006    | 70.19                | NA                                         | ND                      | NA                                           | Yes                   | (0-4') 26-32"                            |
| 2d<br>2I        | LIS-028[0-1'] | 5/3/2006    | 260.48               | 270                                        | ND                      | NA                                           | No                    | , ,                                      |
| ۳               | LIS-028[1-2'] | 5/3/2006    | 64.72                | NA                                         | ND                      | NA                                           | No                    |                                          |
|                 | LIS-019[0-1'] | 5/2/2006    | 91.19                | 86                                         | ND                      | NA                                           | Yes                   | (0-4') 25-30"                            |
|                 | LIS-019[1-2'] | 5/2/2006    | 62.5                 | NA                                         | ND                      | NA                                           | Yes                   | (0-4') 25-30"                            |
|                 | LSI-020[0-1'] | 5/2/2006    | 231.63               | 280                                        | ND                      | NA                                           | Yes                   | (0-4') 22-26"                            |
|                 | LIS-020[1-2'] | 5/2/2006    | 36.65                | NA                                         | ND                      | NA                                           | Yes                   | (0-4') 22-26"                            |
|                 | LIS-021[0-1'] | 5/2/2006    | 193.93               | NA                                         | ND                      | NA                                           | Yes                   | (0-4') 29-34"                            |
|                 | LIS-021[1-2'] | 5/2/2006    | 118.38               | NA                                         | ND                      | NA                                           | Yes                   | (0-4') 29-34"                            |
| O               | LIS-021[2-3'] | 5/2/2006    | 33.88                | NA                                         | ND                      | NA                                           | Yes                   | (0-4') 29-34"                            |
| Lead Area 2C    | LIS-022[0-1'] | 5/2/2006    | 352.52               | 260                                        | ND                      | NA                                           | Yes                   | (0-4') 18-30"                            |
| Are             | LIS-022[1-2'] | 5/2/2006    | 124.62               | NA                                         | ND                      | NA                                           | Yes                   | (0-4') 18-30"                            |
| ad              | LIS-023[0-1'] | 5/2/2006    | 210.27               | NA                                         | ND                      | NA                                           | Yes                   | (0-4') 20-26"                            |
| ڀّ              | LIS-023[1-2'] | 5/2/2006    | 109.92               | NA                                         | ND                      | NA                                           | Yes                   | (0-4') 20-26"                            |
|                 | LIS-024[0-1'] | 5/2/2006    | 177.55               | NA                                         | ND                      | NA                                           | Yes                   | (0-4') 26-29"                            |
|                 | LIS-024[1-2'] | 5/2/2006    | 98.87                | NA                                         | ND                      | NA                                           | Yes                   | (0-4') 26-29"                            |
|                 | LIS-025[0-1'] | 5/2/2006    | 186.03               | NA                                         | ND                      | NA                                           | Yes                   | (0-4') 18-20"                            |
|                 | LIS-025[1-2'] | 5/2/2006    | 54.99                | NA                                         | ND                      | NA                                           | Yes                   | (0-4') 18-20"                            |
|                 | LIS-026[0-1'] | 5/2/2006    | 121.53               | 120                                        | ND                      | NA                                           | Yes                   | (0-4') 13-17"                            |
|                 | LIS-026[1-2'] | 5/2/2006    | 331.07               | NA                                         | ND                      | NA                                           | Yes                   | (0-4') 13-17"                            |
| ₽ &             | LIS-087[0-1'] | 5/4/2006    | 43.34                | NA                                         | ND                      | NA                                           | No                    |                                          |
| Lead<br>Area 3A | LIS-088[0-1'] | 5/4/2006    | 291.49               | NA                                         | 20.72                   | NA                                           | No                    |                                          |
| Ā F             | LIS-088[1-2'] | 5/4/2006    | 127.55               | NA                                         | 13.19                   | NA                                           | No                    |                                          |

|              |               | 1           | Table 1 - Summ       | ary of May 2006 S                          | oil Delineation P       | rogram Results                               |                       |                                          |
|--------------|---------------|-------------|----------------------|--------------------------------------------|-------------------------|----------------------------------------------|-----------------------|------------------------------------------|
| Area         | Sample ID     | Sample Date | Lead, mg/kg<br>(XRF) | Lead, mg/kg<br>(6010B)<br>Type 3 RRS = 400 | Arsenic, mg/kg<br>(XRF) | Arsenic, mg/kg<br>(6010B) Type<br>3 RRS = 38 | PSM Present?<br>(Y/N) | Interval of Petroleum Source<br>Material |
|              | LIS-070[0-1'] | 5/4/2006    | 319.25               | NA                                         | ND                      | NA                                           | Yes                   | (0-4') 9-20"                             |
|              | LIS-071[0-1'] | 5/4/2006    | 381.19               | NA                                         | ND                      | NA                                           | Yes                   | (0-4') 10-16"                            |
|              | LIS-072[0-1'] | 5/4/2006    | 239.01               | 420                                        | ND                      | NA                                           | Yes                   | (0-4') 10-17"                            |
|              | LIS-073[0-1'] | 5/4/2006    | 992.14               | 990                                        | ND                      | NA                                           | Yes                   | (0-4') 26-27"                            |
|              | LIS-074[0-1'] | 5/4/2006    | 608.07               | NA                                         | ND                      | NA                                           | Yes                   | (0-4') 15-19"                            |
|              | LIS-075[0-1'] | 5/4/2006    | 167.34               | NA                                         | ND                      | NA                                           | No                    |                                          |
| m            | LIS-075[1-2'] | 5/4/2006    | 81.21                | NA                                         | ND                      | NA                                           | No                    |                                          |
| a 3B         | LIS-076[0-1'] | 5/4/2006    | 420.86               | NA                                         | ND                      | NA                                           | No                    |                                          |
| Ĭ.           | LIS-077[0 1'] | 5/4/2006    | 656.28               | NA                                         | ND                      | NA                                           | No                    |                                          |
| δ ρ          | LIS-078[0-1'] | 5/4/2006    | 134.71               | NA                                         | ND                      | NA                                           | No                    |                                          |
| Lead Area    | LIS-079[0-1'] | 5/4/2006    | 740.84               | NA                                         | ND                      | NA                                           | Yes                   | (0-4') 9-13"                             |
|              | LIS-080[0-1'] | 5/4/2006    | 720.65               | NA                                         | ND                      | NA                                           | No                    | · ·                                      |
|              | LIS-081[0-1'] | 5/4/2006    | 45.84                | NA                                         | ND                      | NA                                           | No                    |                                          |
|              | LIS-082[0-1'] | 5/4/2006    | 123.43               | NA                                         | ND                      | NA                                           | Yes                   | (0-4') 13-14" and 19-24"                 |
|              | LIS-083[0-1'] | 5/4/2006    | 148.52               | NA                                         | ND                      | NA                                           | No                    | , ,                                      |
|              | LIS-084[0-1'] | 5/4/2006    | 659.75               | 1700                                       | ND                      | NA                                           | No                    |                                          |
|              | LIS-085[0-1'] | 5/4/2006    | 11.74                | 9.6                                        | ND                      | NA                                           | No                    |                                          |
|              | LIS-086[0-1'] | 5/4/2006    | ND                   | 2.5                                        | ND                      | NA                                           | No                    |                                          |
|              | LIS-135[0-1'] | 5/6/2006    | 280.3                | NA                                         | ND                      | NA                                           | No                    |                                          |
| ₹            | LIS-135[1-2'] | 5/6/2006    | 342.08               | 450                                        | ND                      | NA                                           | No                    |                                          |
| 4 A          | LIS-136[0-1'] | 5/6/2006    | 148.92               | NA                                         | 15.85                   | NA                                           | No                    |                                          |
| l e          | LIS-137[0-1'] | 5/6/2006    | 316.24               | 430                                        | ND                      | NA                                           | No                    |                                          |
| Lead Area    | LIS-138[0-1'] | 5/6/2006    | 259.07               | NA                                         | 21.02                   | NA                                           | No                    |                                          |
| ea           | LIS-139[0-1'] | 5/6/2006    | 123.8                | NA                                         | ND                      | NA                                           | No                    |                                          |
|              | LIS-140[0-1'] | 5/6/2006    | 99.2                 | 95                                         | ND                      | NA                                           | No                    |                                          |
|              | LIS-140[1-2'] | 5/6/2006    | 70.13                | NA                                         | ND                      | NA                                           | No                    |                                          |
|              | LIS-006[0-1'] | 5/2/2006    | 11.11                | 17                                         | ND                      | NA                                           | No                    |                                          |
|              | LIS-006[1-2'] | 5/2/2006    | 52.23                | 150                                        | ND                      | NA                                           | No                    |                                          |
|              | LIS-007[0-1'] | 5/2/2006    | 92.29                | 94                                         | ND                      | NA                                           | No                    |                                          |
|              | LIS-007[1-2'] | 5/2/2006    | 1036.67              | 620                                        | ND                      | NA                                           | No                    |                                          |
|              | LIS-008[0-1'] | 5/2/2006    | 270.26               | 190                                        | ND                      | NA                                           | No                    |                                          |
| ⋖            | LIS-008[1-2'] | 5/2/2006    | 40.9                 | 99                                         | ND                      | NA                                           | No                    | _                                        |
| a<br>5       | LIS-009[0-1'] | 5/2/2006    | 18.54                | 14                                         | ND                      | NA                                           | No                    |                                          |
| , Le         | LIS-009[1-2'] | 5/2/2006    | ND                   | 5.2                                        | ND                      | NA                                           | No                    |                                          |
| / pi         | LIS-010[0-1'] | 5/2/2006    | ND                   | 10                                         | ND                      | NA                                           | No                    |                                          |
| Lead Area 5A | LIS-010[1-2'] | 5/2/2006    | 19.5                 | 21                                         | ND                      | NA                                           | No                    |                                          |
| _            | LIS-011[0-1'] | 5/2/2006    | 71.01                | 88                                         | ND                      | NA                                           | No                    |                                          |
|              | LIS-011[1-2'] | 5/2/2006    | 32.8                 | 43                                         | ND                      | NA                                           | No                    |                                          |
|              | LIS-012[0-1'] | 5/2/2006    | 64.25                | 63                                         | ND                      | NA                                           | No                    |                                          |
|              | LIS-012[1-2'] | 5/2/2006    | 93.62                | 94                                         | ND                      | NA                                           | No                    |                                          |
|              | LIS-013[0-1'] | 5/2/2006    | 83.79                | 82                                         | 13.87                   | NA                                           | No                    |                                          |
| l            | LIS-013[1-2'] | 5/2/2006    | 75.44                | 96                                         | ND                      | NA                                           | No                    |                                          |

|                       |               |             | able 1 - Julilli     | ary of May 2006 So                         | oil Delineation P       | rogram Results                               |                       |                                          |
|-----------------------|---------------|-------------|----------------------|--------------------------------------------|-------------------------|----------------------------------------------|-----------------------|------------------------------------------|
| Area                  | Sample ID     | Sample Date | Lead, mg/kg<br>(XRF) | Lead, mg/kg<br>(6010B)<br>Type 3 RRS = 400 | Arsenic, mg/kg<br>(XRF) | Arsenic, mg/kg<br>(6010B) Type<br>3 RRS = 38 | PSM Present?<br>(Y/N) | Interval of Petroleum Source<br>Material |
|                       | LIS-001[0-1'] | 5/2/2006    | 58.33                | 77                                         | ND                      | NA                                           | No                    |                                          |
|                       | LIS-001[1-2'] | 5/2/2006    | 56.15                | 65                                         | ND                      | NA                                           | No                    |                                          |
|                       | LIS-002[0-1'] | 5/2/2006    | 54.89                | 59                                         | ND                      | NA                                           | No                    |                                          |
|                       | LIS-002[1-2'] | 5/2/2006    | 50.07                | 44                                         | ND                      | NA                                           | No                    |                                          |
|                       | LIS-003[0-1'] | 5/2/2006    | 84.34                | 82                                         | ND                      | NA                                           | No                    |                                          |
|                       | LIS-003[1-2'] | 5/2/2006    | 28.81                | 32                                         | ND                      | NA                                           | No                    |                                          |
|                       | LIS-004[0-1'] | 5/2/2006    | 70.4                 | 410                                        | ND                      | NA                                           | No                    |                                          |
|                       | LIS-004[1-2'] | 5/2/2006    | 27.14                | 37                                         | ND                      | NA                                           | No                    |                                          |
| œ.                    | LIS-005[0-1'] | 5/2/2006    | 126.95               | 130                                        | ND                      | NA                                           | No                    |                                          |
| Lead Area 5B          | LIS-005[1-2'] | 5/2/2006    | 62.38                | 82                                         | ND                      | NA                                           | No                    |                                          |
| V.E.                  | LIS-064[0-1'] | 5/4/2006    | 159.48               | NA                                         | ND                      | NA                                           | No                    |                                          |
| φp                    | LIS-064[1-2'] | 5/4/2006    | 253.1                | NA                                         | ND                      | NA                                           | No                    |                                          |
| ea                    | LIS-065[0-1'] | 5/4/2006    | 486.84               | 610                                        | ND                      | NA                                           | No                    |                                          |
|                       | LIS-065[1-2'] | 5/4/2006    | 31.54                | NA                                         | ND                      | NA                                           | No                    |                                          |
|                       | LIS-066[0-1'] | 5/4/2006    | 1028.41              | 2400                                       | ND                      | NA                                           | No                    |                                          |
|                       | LIS-066[1-2'] | 5/4/2006    | 380.17               | NA                                         | ND                      | NA                                           | No                    |                                          |
|                       | LIS-067[0-1'] | 5/4/2006    | 87.72                | 100                                        | ND                      | NA                                           | No                    |                                          |
|                       | LIS-067[1-2'] | 5/4/2006    | 92.43                | NA                                         | ND                      | NA                                           | No                    |                                          |
|                       | LIS-068[0-1'] | 5/4/2006    | 120.95               | 120                                        | ND                      | NA                                           | No                    |                                          |
|                       | LIS-068[1-2'] | 5/4/2006    | 37.82                | NA                                         | ND                      | NA                                           | No                    |                                          |
|                       | LIS-069[0-1'] | 5/4/2006    | 189.77               | 220                                        | ND                      | NA                                           | No                    |                                          |
|                       | LIS-069[1-2'] | 5/4/2006    | 197.75               | NA                                         | ND                      | NA                                           | No                    |                                          |
|                       | LIS-014[0-1'] | 5/2/2006    | 122.83               | 140                                        | ND                      | NA                                           | No                    |                                          |
|                       | LIS-014[1-2'] | 5/2/2006    | 72.35                | 82                                         | ND                      | NA                                           | No                    |                                          |
| 0                     | LIS-015[0-1'] | 5/2/2006    | 145.56               | 130                                        | ND                      | NA                                           | No                    |                                          |
| Lead Area 5C          | LIS-015[1-2'] | 5/2/2006    | 303.14               | 210                                        | ND                      | NA                                           | No                    |                                          |
| je je                 | LIS-016[0-1'] | 5/2/2006    | 221.89               | NA                                         | ND                      | NA                                           | No                    |                                          |
| 5                     | LIS-016[1-2'] | 5/2/2006    | 206.75               | NA                                         | ND                      | NA                                           | No                    |                                          |
| e<br>g                | LIS-017[0-1'] | 5/2/2006    | 339.4                | 460                                        | ND                      | NA                                           | No                    |                                          |
|                       | LIS-017[1-2'] | 5/2/2006    | 305.16               | NA                                         | ND                      | NA                                           | No                    |                                          |
|                       | LIS-018[0-1'] | 5/2/2006    | 278.49               | NA                                         | ND                      | NA                                           | No                    |                                          |
|                       | LIS-018[1-2'] | 5/2/2006    | 259.8                | NA                                         | ND                      | NA                                           | No                    |                                          |
| pg                    | LIS-145[0-1'] | 5/6/2006    | 43.96                | 46                                         | ND                      | NA                                           | No                    |                                          |
| e [e                  | LIS-146[0-1'] | 5/6/2006    | 21.66                | NA                                         | ND                      | NA                                           | No                    |                                          |
| mrer Lea<br>Area 6    | LIS-147[0-1'] | 5/6/2006    | 52.97                | 35                                         | ND                      | NA                                           | No                    |                                          |
| Fomrer Lead<br>Area 6 | LIS-148[0-1'] | 5/6/2006    | 46.38                | NA                                         | ND                      | NA NA                                        | No                    |                                          |
| 요 -                   | LIS-149[0-1'] | 5/6/2006    | 40.98                | NA<br>NA                                   | ND                      | NA NA                                        | No                    |                                          |

|          |                                | ٦                         | Γable 1 - Summ       | ary of May 2006 S                          | oil Delineation F       | Program Results                              |                       |                                        |
|----------|--------------------------------|---------------------------|----------------------|--------------------------------------------|-------------------------|----------------------------------------------|-----------------------|----------------------------------------|
| Area     | Sample ID                      | Sample Date               | Lead, mg/kg<br>(XRF) | Lead, mg/kg<br>(6010B)<br>Type 3 RRS = 400 | Arsenic, mg/kg<br>(XRF) | Arsenic, mg/kg<br>(6010B) Type<br>3 RRS = 38 | PSM Present?<br>(Y/N) | Interval of Petroleum Sour<br>Material |
|          | LIS-056[0-4']                  | 5/3/2006                  | NA                   | NA                                         | NA                      | NA                                           | No                    |                                        |
|          | LIS-057[0-4']                  | 5/3/2006                  | NA                   | NA                                         | NA                      | NA                                           | No                    |                                        |
|          | LIS-058[0-4']                  | 5/3/2006                  | NA                   | NA                                         | NA                      | NA                                           | No                    |                                        |
|          | LIS-059[0-4']                  | 5/3/2006                  | NA                   | NA                                         | NA                      | NA                                           | Yes                   | (0-4') 13-17"                          |
|          | LIS-060[0-4']                  | 5/3/2006                  | NA                   | NA                                         | NA                      | NA                                           | No                    |                                        |
|          | LIS-061[0-4']                  | 5/3/2006                  | NA                   | NA                                         | NA                      | NA                                           | Yes                   | (0-4') 18-22"                          |
|          | LIS-089[0-4']                  | 5/4/2006                  | NA                   | NA                                         | NA                      | NA                                           | Yes                   | (0-4') 14-33"                          |
|          | LIS-090[0-4']                  | 5/4/2006                  | NA                   | NA                                         | NA                      | NA                                           | No                    | (2.4) 22.24                            |
|          | LIS-091[0-4']                  | 5/4/2006                  | NA                   | NA                                         | NA                      | NA NA                                        | Yes                   | (0-4') 20-21"                          |
|          | LIS-092[0-4']                  | 5/4/2006                  | NA<br>NA             | NA<br>NA                                   | NA<br>NA                | NA<br>NA                                     | Yes                   | (0-4') 13-21"                          |
|          | LIS-093[0-4']<br>LIS-107[0-4'] | 5/4/2006<br>5/5/2006      | NA<br>NA             | NA<br>NA                                   | NA<br>NA                | NA<br>NA                                     | Yes<br>Yes            | (0-4') 10-22"<br>(0-4') 18-34"         |
|          | LIS-107[0-4]                   | 5/5/2006                  | NA<br>NA             | NA<br>NA                                   | NA<br>NA                | NA<br>NA                                     | Yes                   | (0-4) 18-34                            |
|          | LIS-109[0-4']                  | 5/5/2006                  | NA<br>NA             | NA<br>NA                                   | NA<br>NA                | NA<br>NA                                     | Yes                   | (0-4') 29-34"                          |
|          | LIS-110[0-4']                  | 5/5/2006                  | NA NA                | NA NA                                      | NA<br>NA                | NA<br>NA                                     | Yes                   | (0-4') 24-29"                          |
|          | LIS-111[0-4']                  | 5/5/2006                  | NA                   | NA                                         | NA                      | NA                                           | Yes                   | (0-4') 29-37"                          |
|          | LIS-112[0-4']                  | 5/5/2006                  | NA                   | NA                                         | NA                      | NA                                           | No                    | (0 1, =0 01                            |
| 4 2      | LIS-113[0-4']                  | 5/5/2006                  | NA                   | NA                                         | NA                      | NA                                           | No                    |                                        |
| ⊃SM AREA | LIS-114[0-4']                  | 5/5/2006                  | NA                   | NA                                         | NA                      | NA                                           | Yes                   | (0-4') 16-18"                          |
| ₹        | LIS-115[0-4']                  | 5/5/2006                  | NA                   | NA                                         | NA                      | NA                                           | Yes                   | (0-4') 23-29"                          |
| Σ        | LIS-116[0-4']                  | 5/5/2006                  | NA                   | NA                                         | NA                      | NA                                           | Yes                   | (0-4') 11-17"                          |
| ă.       | LIS-117[0-4']                  | 5/5/2006                  | NA                   | NA                                         | NA                      | NA                                           | Yes                   | (0-4') 21-24"                          |
|          | LIS-118[0-4']                  | 5/5/2006                  | NA                   | NA                                         | NA                      | NA                                           | Yes                   | (0-4') 38-43"                          |
|          | LIS-119[0-4']                  | 5/5/2006                  | NA NA                | NA<br>NA                                   | NA                      | NA                                           | Yes                   | (0-4') 16-22"                          |
|          | LIS-120[0-4']                  | 5/5/2006                  | NA<br>NA             | NA<br>NA                                   | NA<br>NA                | NA                                           | Yes                   | (0-4') 12-17"                          |
|          | LIS-121[0-4']                  | 5/5/2006                  | NA<br>NA             | NA<br>NA                                   | NA<br>NA                | NA<br>NA                                     | No<br>No              |                                        |
|          | LIS-122[0-4']<br>LIS-123[0-4'] | 5/5/2006<br>5/5/2006      | NA<br>NA             | NA<br>NA                                   | NA<br>NA                | NA<br>NA                                     | No<br>No              |                                        |
|          | LIS-123[0-4]                   | 5/5/2006                  | NA<br>NA             | NA<br>NA                                   | NA<br>NA                | NA<br>NA                                     | No                    |                                        |
|          | LIS-125[0-4']                  | 5/5/2006                  | NA<br>NA             | NA<br>NA                                   | NA<br>NA                | NA<br>NA                                     | Yes                   | (0-4') 16-28"                          |
|          | LIS-126[0-4']                  | 5/5/2006                  | NA<br>NA             | NA<br>NA                                   | NA<br>NA                | NA<br>NA                                     | Yes                   | (0-4') 23-36"                          |
|          | LIS-127[0-4']                  | 5/5/2006                  | NA                   | NA                                         | NA                      | NA                                           | Yes                   | (0-4') 12-26"                          |
|          | LIS-128[0-4']                  | 5/5/2006                  | NA                   | NA                                         | NA                      | NA                                           | No                    |                                        |
|          | LIS-129[0-4']                  | 5/5/2006                  | NA                   | NA                                         | NA                      | NA                                           | No                    |                                        |
|          | LIS-130[0-4']                  | 5/5/2006                  | NA                   | NA                                         | NA                      | NA                                           | Yes                   | (0-4') 10-28"                          |
|          | LIS-131[0-4']                  | 5/5/2006                  | NA                   | NA                                         | NA                      | NA                                           | No                    |                                        |
|          | LIS-132[0-4']                  | 5/5/2006                  | NA                   | NA                                         | NA                      | NA                                           | No                    |                                        |
|          | LIS-133[0-4']                  | 5/5/2006                  | NA                   | NA                                         | NA                      | NA                                           | No                    |                                        |
|          | LIS-134[0-4']                  | 5/5/2006                  | NA                   | NA                                         | NA                      | NA                                           | No                    |                                        |
|          | LIS-094[0-8']                  | 5/5/2006                  | NA                   | NA                                         | NA                      | NA                                           | No                    |                                        |
|          | LIS-095[0-8']                  | 5/5/2006                  | NA                   | NA                                         | NA                      | NA                                           | Yes                   | (0-4') 16-25"                          |
|          | LIS-096[0-8']                  | 5/5/2006                  | NA                   | NA                                         | NA                      | NA                                           | Yes                   | (4-8') 14-25"                          |
|          | LIS-097[0-8']                  | 5/5/2006                  | NA                   | NA                                         | NA                      | NA                                           | Yes                   | (0-4') 24-35" (4-8') 0-15'             |
| 4<br>4   | LIS-098[0-8']                  | 5/5/2006                  | NA                   | NA                                         | NA                      | NA                                           | No                    |                                        |
| PSM AREA | LIS-099[0-8']                  | 5/5/2006                  | NA                   | NA                                         | NA                      | NA                                           | Yes                   | (4-8') 19-22"                          |
| ₹        | LIS-100[0-8']                  | 5/5/2006                  | NA                   | NA                                         | NA                      | NA                                           | Yes                   | (4-8') 18-19"                          |
| Š        | LIS-101[0-8']                  | 5/5/2006                  | NA                   | NA                                         | NA                      | NA                                           | Yes                   | (4-8') 20-21"                          |
| ₽.       | LIS-102[0-8']                  | 5/5/2006                  | NA                   | NA                                         | NA                      | NA                                           | Yes                   | (0-4') 9-32" (4-8') 0-2"               |
|          | LIS-103[0-8']                  | 5/5/2006                  | NA                   | NA                                         | NA                      | NA NA                                        | No                    |                                        |
|          | LIS-104[0-8']                  | 5/5/2006                  | NA<br>NA             | NA<br>NA                                   | NA<br>NA                | NA                                           | No                    | (0.41) 10.00"                          |
|          | LIS-105[0-4']                  | 5/5/2006                  | NA<br>NA             | NA<br>NA                                   | NA<br>NA                | NA<br>NA                                     | Yes                   | (0-4') 12-29"                          |
|          | LIS-106[0-4']                  | 5/5/2006<br>of XRF device | NA                   | NA                                         | NA                      | NA                                           | Yes                   | (0-4') 20-36"                          |

ND = less than detection limit of XRF device

NA = Not Analyzed

PSM = Petroleum Source Material

Results shaded and in bold denote exceedence of the EPD Type 3/4 RRS for lead/arsenic, XRF reading greater than 266 mg/kg for lead, or the presence of PSN All units are in mg/Kg

Table 2 - Summary of 2007 Site Wide Investigation - PSM Boring Observations

| Boring ID          | PSM Present<br>(Y/N) | Detph to PSM (inches bgs) | PSM thickness<br>(inches) | Comments                                                                                                 |
|--------------------|----------------------|---------------------------|---------------------------|----------------------------------------------------------------------------------------------------------|
|                    |                      |                           |                           | 3/27/2007                                                                                                |
| SWI-001            | N                    |                           |                           | Gray sand, no odor, no sheen                                                                             |
| SWI-002            | N                    |                           |                           | Gray sand, no sheen, no odor                                                                             |
| SWI-003            | N                    |                           |                           | Gray sand, some clay, no sheen, no odor                                                                  |
| SWI-004            | N                    |                           |                           | Gray sand, no sheen, no odor                                                                             |
| SWI-005            | N                    |                           |                           | Gray sand, no sheen, no odor                                                                             |
| SWI-006            | N                    |                           |                           | Gray sand, no sheen, no odor                                                                             |
| SWI-007            | N                    |                           |                           | Gray sand, trace clay, no sheen, no odor                                                                 |
| SWI-008            | N                    |                           |                           | Gray sand, no sheen, no odor                                                                             |
| SWI-009            | N                    |                           |                           | Gray sand, no sheen, no odor                                                                             |
| SWI-010            | N                    |                           |                           | Grav sand, no sheen, no odor                                                                             |
| SWI-011            | N                    |                           |                           | Gray sand, no sheen, no odor                                                                             |
| SWI-012            | N                    |                           |                           | Gray sand, no sheen, chemical odor, no PSM                                                               |
| SWI-013            | N                    |                           |                           | Gray sand, no sheen, no PSM, strong chemical odor                                                        |
| SWI-014            | N                    |                           |                           | Dark gray sand, trace clay, trace coal, no sheen, no PSM, strong chemical odor                           |
| SWI-015            | N                    |                           |                           | Gray sand, no sheen, no odor, no PSM                                                                     |
| SWI-015            | N                    |                           |                           | Gray sand, no sheen, no odor, no PSM                                                                     |
| SWI-017            | N                    |                           |                           | Gray sand, dense, no sheen, no odor, no PSM                                                              |
| SWI-017            | N N                  |                           |                           | Gray sand, some black stains not PSM, mud odor                                                           |
|                    |                      |                           |                           |                                                                                                          |
| SWI-019            | N<br>N               |                           |                           | Gray sand and clay, no sheen, no PSM, minor organic odor                                                 |
| SWI-020            | N<br>N               |                           |                           | Gray sand and clay, no sheen, no PSM, slight odor                                                        |
| SWI-021            |                      |                           |                           | Black stained sand from 2-2.5' not PSM, strong odor                                                      |
| SWI-022<br>SWI-023 | N                    |                           |                           | Brown sand, no sheen, no odor, no PSM                                                                    |
|                    | N                    |                           |                           | Gray sand and clay, no sheen, no odor, no PSM                                                            |
| SWI-024            | N                    |                           |                           | Gray sand and clay (6') no sheen, no odor, no PSM                                                        |
| SWI-025            | N                    |                           |                           | Gray sand and clay (6') no sheen, no odor, no PSM                                                        |
| SWI-026            | N                    |                           |                           | Gray sand and clay, no sheen, no odor, no PSM                                                            |
| SWI-027            | N                    |                           |                           | Gravel (trench material) no PSM, no sheen, no odor                                                       |
| SWI-028            | N                    |                           |                           | Gray sand, no PSM, no sheen, no odor                                                                     |
| SWI-029            | N                    |                           |                           | Some black possibly organic staining 1-2" no PSM                                                         |
| SWI-030            | N                    |                           |                           | No PSM, no odor, no sheen                                                                                |
| SWI-031            | N                    |                           |                           | No PSM, no odor, no sheen                                                                                |
| SWI-032            | N                    |                           |                           | No PSM, no odor, no sheen                                                                                |
| SWI-033            | Y                    | 10"                       | 8"                        | Black sticky PSM layer, strong petroleum odor and sheen                                                  |
| SWI-034            | N                    |                           |                           | Gray sand and clay, no sheen, no odor                                                                    |
| SWI-035            | N                    |                           |                           | Gray sand, no sheen, no odor                                                                             |
| SWI-036            | N                    |                           |                           | No PSM, brown sand, no sheen, no odor                                                                    |
| SWI-037            | N                    |                           |                           | No PSM, no sheen, no odor                                                                                |
| SWI-038            | N                    |                           |                           | No PSM, white gray sand                                                                                  |
|                    | 1                    |                           |                           | 3/28/2007                                                                                                |
| SWI-039            | N                    |                           |                           | Gray sand, no PSM, no sheen, no odor                                                                     |
| SWI-040            | N                    |                           |                           | Dark gray sand, strong odor, trace PSM at 18"                                                            |
| SWI-041            | N                    |                           |                           | Dark gray sand, no PSM, strong odor PID = 141ppm                                                         |
| SWI-042            | N                    |                           |                           | Dark gray sand, no PSM, strong odor PID =195 ppm, no sheen                                               |
| SWI-043            | N                    |                           |                           | Gray sand, no sheen, no odor, no PSM                                                                     |
| SWI-044            | N                    |                           |                           | Gray sand, no sheen, no odor, no PSM                                                                     |
| SWI-045            | N                    |                           |                           | Gray sand, no sheen, no odor, no PSM                                                                     |
| SWI-046            | N                    |                           |                           | Gray sand, no sheen, no odor, no PSM                                                                     |
| SWI-047            | N                    |                           |                           | Dark gray sand, no sheen, no odor, no PSM                                                                |
| SWI-048            | N                    |                           |                           | Dark gray sand, trace PSM at 18", strong petroleum odor, sheen present, PID                              |
| 3001-046           | IN                   |                           |                           | = 151ppm                                                                                                 |
| SWI-049            | N                    |                           |                           | Dark gray to black sand, no sheen, no odor, no PSM                                                       |
| SWI-050            | N                    |                           |                           | Gray sand, slight odor, no sheen, no odor, no PSM                                                        |
| SWI 051            | Y                    | 10 "                      | ~12"                      | Amber brown to black PSM layer, amber from 10-22", black soft silty clay under PSM layer, strong organic |
| SWI-051            |                      | 10                        | ~12                       | odor                                                                                                     |
| SWI-052            | N                    |                           |                           | Black soft layer of slight PSM from 10-13", no sheen                                                     |
| SWI-053            | N                    |                           |                           | No PSM, gray sand, no sheen, no odor                                                                     |
| SWI-054            | N                    |                           |                           | Grayish black sand and clay, slight PSM at 18", no sheen                                                 |
| SWI-055            | N                    |                           |                           | Dark gray sand, very strong odor, PID=392 ppm, no PSM, no sheen                                          |
| SWI-056            | N                    |                           |                           | Gravel (trench material) not much recovery, some black clay, moderate petroleum odor, no PSM, no sheen   |
| SWI-057            | N                    |                           |                           | Black stained sand (4-6') slight odor, no sheen, no PSM                                                  |
| SWI-058            | N                    |                           |                           | Dark gray sand and clay, no sheen, no odor, no PSM                                                       |
| SWI-059            | N                    |                           |                           | Dark gray sand and clay, no sheen, no odor, no PSM                                                       |
| SWI-060            | N                    |                           |                           | Dark gray sand 0-4.5', strong chemical odor, (PID=428ppm), no PSM, clay below 4-5', no sheen             |
| SWI-061            | N                    |                           |                           | Dark gray sand 0-4.5', strong chemical odor, (PID=275ppm), no PSM, clay below 4-5', no sheen             |
| SWI-062            | N                    |                           |                           | Dark gray sand 0-5', clay below, moderate chemical odor, (PID=87), no PSM, no sheen                      |
|                    |                      |                           |                           | Dark gray sand 0-5', clay below, moderate chemical odor, (FID=80), trace                                 |
| SWI-063            | N                    |                           |                           | PSM near surface, no PSM, no sheen                                                                       |
| SWI-064            | N                    |                           |                           | Gray medium sand above clay, no sheen, no odor, no PSM                                                   |
| SWI-065            | N                    |                           |                           | Gray sand and clay at 6', no sheen, no odor, no PSM                                                      |
| SWI-066            | N                    |                           |                           | Dark gray sand above clay at 6', no sheen, slight chemical odor, PID=8ppm, no PSM                        |
| SWI-067            | N                    |                           |                           | Dark gray sand above clay at 5', no sheen, slight chemical odor, no PSM                                  |
| SWI-068            | N                    |                           |                           | Dark gray sand above clay at 6', no sheen, no odor, no PSM                                               |
| SWI-069            | N                    |                           |                           | Grayish brown sand above clay at 6', no sheen, no odor, no PSM                                           |
| J 000              | 1 19                 |                           | 1                         | 2.2, 2. 2. 2                                                                                             |

Table 2 - Summary of 2007 Site Wide Investigation - PSM Boring Observations

| Boring ID          | PSM Present<br>(Y/N) | Detph to PSM (inches bgs) | PSM thickness<br>(inches) | Comments                                                                                                                                                                     |
|--------------------|----------------------|---------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SWI-070            | N                    |                           |                           | Gray sand over clay at 5', no sheen, no odor, no PSM                                                                                                                         |
| SWI-071            | N                    |                           |                           | Gray sand over clay at 7', no sheen, no odor, no PSM                                                                                                                         |
| SWI-072            | N                    |                           |                           | Gray sand over clay at 7', no sheen, no odor, no PSM                                                                                                                         |
| SWI-073            | N                    |                           |                           | Gray sand over clay at 6', no sheen, slight chemical odor, no PSM                                                                                                            |
| SWI-074            | N                    |                           |                           | Gray sand over clay at 7', no sheen, no odor, no PSM                                                                                                                         |
| SWI-075            | N                    |                           |                           | Gray sand over clay at 7.5', no sheen, no odor, no PSM                                                                                                                       |
| SWI-076            | N                    |                           |                           | Brown sand down to 8', no sheen, no odor, no PSM                                                                                                                             |
| SWI-077            | N                    |                           |                           | Gray sand down to 8', no sheen, no odor, no PSM 3/29/2007                                                                                                                    |
| SWI 079            | N                    |                           |                           |                                                                                                                                                                              |
| SWI-078<br>SWI-079 | N N                  |                           |                           | Gray sand to 8', no sheen, no odor, no PSM Gray sand to 8', no sheen, no odor, no PSM                                                                                        |
| SWI-079            | N N                  |                           |                           | Gray sand to 6, no sheen, no odor, no PSM  Gray sand coarse to 8', no sheen, no odor, no PSM                                                                                 |
| SWI-080            | N N                  |                           |                           | Gray sand coarse to 8, no sheen, no odor, no PSM                                                                                                                             |
| SWI-082            | N                    |                           |                           | Gray sand coarse to 8, no sheen, no odor, no PSM                                                                                                                             |
| SWI-083            | N                    |                           |                           | Gray sand over clay at 7', no sheen, no odor, no PSM                                                                                                                         |
| SWI-084            | N                    |                           |                           | Gray sand to 8', no sheen, no odor, no PSM                                                                                                                                   |
| SWI-085            | N                    |                           |                           | Gray sand over clay at 7', no sheen, no odor, no PSM                                                                                                                         |
| SWI-086            | N                    |                           |                           | Dark gray sand, slight petro odor, (PID=11ppm), no sheen, no PSM                                                                                                             |
| SWI-087            | N                    |                           |                           | Trace PSM at 3', (2") thick layer black, no sheen, mild odor                                                                                                                 |
| SWI-088            | N                    |                           |                           | Gray brown coarse sand to 8', no sheen, no odor, no PSM                                                                                                                      |
| SWI-089            | N                    |                           |                           | Gray sand to 8', no sheen, no odor, no PSM                                                                                                                                   |
| SWI-090            | N                    |                           |                           | Gray brown sand to 8', no sheen, no odor, no PSM                                                                                                                             |
| SWI-091            | N                    |                           |                           | Gray sand to 8', no sheen, no odor, no PSM                                                                                                                                   |
| SWI-092            | N                    |                           |                           | Brown medium sand to 8', no sheen, no odor, no PSM                                                                                                                           |
| SWI-093            | N                    |                           |                           | Gray sand down to 8', no sheen, no odor, no PSM                                                                                                                              |
| SWI-094            | N                    |                           |                           | Gray sand down to 8', no sheen, no odor, no PSM                                                                                                                              |
|                    |                      |                           |                           | Gray sand to 6.5' clay below, black stained sand at 3', no sheen, no odor, no                                                                                                |
| SWI-095            | N                    |                           |                           | PSM                                                                                                                                                                          |
| SWI-096            | N                    |                           |                           | Gray sand to 8', trace PSM in top 12", no sheen, no odor                                                                                                                     |
| SWI-097            | N                    |                           |                           | Gray sand to 6' clay below, trace PSM at 2-4", no sheen, no odor, no PSM                                                                                                     |
| SWI-098            | N                    |                           |                           | Gray sand, no sheen, no odor, no PSM, clay not found sand to 8'                                                                                                              |
| SWI-099            | N                    |                           |                           | Gray sand to 8', no sheen, no odor, no PSM                                                                                                                                   |
| SWI-100            | N                    |                           |                           | Gray sand to 6' clay below, no sheen, no odor, no PSM                                                                                                                        |
| SWI-101            | N                    |                           |                           | Gray sand to 6' clay below, no sheen, no odor, no PSM                                                                                                                        |
| SWI-102            | N                    |                           |                           | Gray sand to 6' clay below, trace PSM 2-2.5', no sheen, no odor                                                                                                              |
| SWI-103            | N                    |                           |                           | Gray sand to 6' clay below, no sheen, no odor, no PSM                                                                                                                        |
| SWI-104            | N                    |                           |                           | Gray sand to 8' no sheen, no odor, no PSM                                                                                                                                    |
| SWI-105            | N                    |                           |                           | Gray sand to 6' clay below, no sheen, no odor, no PSM                                                                                                                        |
| SWI-106            | N                    |                           |                           | Gray sand to 6' clay below, no sheen, no odor, no PSM                                                                                                                        |
| SWI-107            | N                    |                           |                           | Gray sand to 8' no clay, no sheen, no odor, no PSM                                                                                                                           |
| SWI-108            | N                    |                           |                           | Brown to gray sand to 7' clay below, no sheen, no odor, no PSM                                                                                                               |
| SWI-109            | N                    |                           |                           | Gray and brown sand no clay, no sheen, no odor, no PSM                                                                                                                       |
| SWI-110            | N                    |                           |                           | Gray coarse sand no clay, no sheen, no odor, no PSM                                                                                                                          |
|                    |                      |                           |                           | 3/30/2007                                                                                                                                                                    |
| SWI-111            | N                    |                           |                           | Gray sand to 6' clay below, no sheen, no odor, no PSM                                                                                                                        |
| SWI-112            | N                    |                           |                           | Gray sand to 8' no sheen, no odor, no PSM                                                                                                                                    |
| SWI-113            | N                    |                           |                           | Gray sand to 7' clay below, no sheen, no odor, no PSM                                                                                                                        |
| SWI-114            | N                    |                           |                           | Gray sand to 7' clay below, black stained 4" layer of sand at 5', no sheen, no odor, no PSM                                                                                  |
| SWI-115            | N                    |                           |                           | Gray sand to 8' no clay, no sheen, no odor, no PSM                                                                                                                           |
| SWI-116            | N                    |                           |                           | Gray sand to 8' no clay, no sheen, no odor, no PSM                                                                                                                           |
| SWI-117            | N                    |                           |                           | Gray (dark) sand to 8' no clay, slight sheen, slight petroleum odor (PID=33)                                                                                                 |
|                    | .,                   |                           |                           | no PSM                                                                                                                                                                       |
| SWI-118            | N                    |                           |                           | Gray sand to 8' no clay, no sheen, no odor, no PSM                                                                                                                           |
| SWI-119            | N                    |                           |                           | Gray sand to 8' no clay, no sheen, no odor, no PSM                                                                                                                           |
| SWI-120            | N                    |                           |                           | Gray brown sand to 8' no clay, no sheen, no odor, no PSM                                                                                                                     |
| SWI-121            | N                    |                           |                           | Gray sand to 8' no clay, no sheen, no odor, no PSM                                                                                                                           |
| SWI-122            | N                    |                           |                           | Gray sand to 8' no clay, no sheen, no odor, no PSM                                                                                                                           |
| SWI-123            | N                    |                           |                           | Gray sand to 6.5' clay below, no sheen, no odor, no PSM                                                                                                                      |
| SWI-124            | N                    |                           |                           | Gray sand to 6' clay below, no sheen, no odor, no PSM                                                                                                                        |
| SWI-125            | N                    |                           |                           | Gray sand to 6.5' clay below, slight sheen, no odor, no PSM                                                                                                                  |
| SWI-126            | N                    |                           |                           | Gray sand to 7' clay below, no sheen, no odor, no PSM                                                                                                                        |
| SWI-127            | N                    |                           |                           | Gray sand above clay at 6', no sheen, no odor, no PSM                                                                                                                        |
| SWI-128            | N                    |                           |                           | Gray sand to 7' clay below, no sheen, no odor, no PSM                                                                                                                        |
| SWI-129            | N                    |                           |                           | Gray sand to 6' clay below, no sheen, no odor, no PSM                                                                                                                        |
| SWI-130            | N                    |                           |                           | Gray sand to 8' no clay, no sheen, no odor, no PSM                                                                                                                           |
| SWI-131            | N                    |                           |                           | Gray sand to 7' no clay, no sheen, no odor, no PSM                                                                                                                           |
| SWI-132            | N                    |                           |                           | Tan to light sand down to 8', no sheen, no odor, no PSM                                                                                                                      |
| SWI-133            | N                    |                           |                           | Brown to tan sand down to 6' clay below, no sheen, no odor, no PSM Gray sand to 6.5 clay below, dark gray standed layer (3.) at 2, moderate petroleum door, no sheen, no PSM |
| SWI-134            | N                    |                           |                           | (DID_69 at stained layer)                                                                                                                                                    |
| SWI-135            | N                    |                           |                           | Gray sand to 7' clay below, no sheen, no odor, no PSM                                                                                                                        |
| SWI-136            | N                    |                           |                           | Gray sand to 5' clay below, no sheen, no odor, no PSM                                                                                                                        |
| SWI-137            | N                    |                           |                           | Gray sand to 6' clay below 4" black stained layer at 2' (PID=57) no sheen, no odor, no PSM                                                                                   |
| SWI-138            | N                    |                           |                           | Gray sand down to 7' clay below, moderate petroleum odor throughout sand                                                                                                     |
|                    | l                    | l                         | <u> </u>                  | (PID=102), no sheen, no PSM                                                                                                                                                  |

Table 2 - Summary of 2007 Site Wide Investigation - PSM Boring Observations

| Boring ID | PSM Present<br>(Y/N) | Detph to PSM (inches bgs) | PSM thickness (inches) | Comments                                                                                                                                                                     |
|-----------|----------------------|---------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CVA/I 420 | N                    |                           |                        | Gray sand down to 6' clay below, moderate petroleum odor on all sand                                                                                                         |
| SWI-139   | N                    |                           |                        | PID=72, no sheen, no PSM oray samu down to 7 day below, moderate petroleum odor triroughout, z biack stainled layer at 10 PiD=12,                                            |
| SWI-140   | N                    |                           |                        | clight choop, no PSM                                                                                                                                                         |
| SWI-141   | Y                    | 24"                       | 10"                    | Black to blackish silver PSM layer, strong petroleum odor and sheen                                                                                                          |
| SWI-142   | N                    |                           |                        | Gray sand to 8' no clay, slight odor, no sheen, no PSM                                                                                                                       |
| SWI-143   | N                    |                           |                        | Dark gray stained sand, slight sheen, moderate petroleum odor, no PSM Dark gray sand to 6 cray below, black stained layer (2 ) at 2, no PSM, moderate petroleum odor PID=83, |
| SWI-144   | N                    |                           |                        | Dark gray Sand to 6 day below, black stained layer (2 ) at 2 , no PSIVI, moderate petroleum odor iniD=65,                                                                    |
| SWI-145   | N                    |                           |                        | PID-102 clight shoop                                                                                                                                                         |
| SWI-146   | N                    |                           |                        | Dark gray sand to 8', appears stained dark, not PSM, moderate petroleum odor PID=456, slight sheen                                                                           |
| SWI-147   | Y                    | 16"                       | 12"                    | Black to amber brown PSM layer, strong petroleum odor and sheen, no clay                                                                                                     |
| SWI-148   | Y                    | 12"                       | 10"                    | Black to dark gray PSM layer, strong petroleum odor and sheen, silty clay layer at 7'                                                                                        |
| SWI-149   | N                    |                           |                        | Gray sand down to 8', no clay, no sheen, no odor, no PSM Gray sand to 6 clay beneath trace PSM from 2-2.5, slight sheen, moderate petroleum odor PSM trace is not            |
| SWI-150   | N                    |                           |                        | Consistent through 2.2.5' interval but intermined                                                                                                                            |
|           |                      | 1                         | ı                      | 4/2/2007                                                                                                                                                                     |
| SWI-151   | N                    |                           |                        | Brown sand to 1.5', trace PSM from 1.5-2.0 feet bgs, stained black and not consistent, no sheen, slight odor                                                                 |
| SWI-152   | N                    |                           |                        | Gray sand down to 7' clay below, no sheen, no odor, no PSM                                                                                                                   |
| SWI-153   | N                    |                           |                        | Gray sand down to 7' clay below, no sheen, no odor, no PSM                                                                                                                   |
| SWI-154   | Υ                    | 18"                       | 24"                    | Amber brown to black PSM layer, strong petroleum odor and free phase globules noted, very consistent layer                                                                   |
| SWI-155   | Y                    | 33"                       | 41"                    | Two PSM layers, amber brown, sticky, sheen, strong petroleum odor 13" top and 18" bottom 10" layer of gray sand between PSM layers, 2" gray sand at bottom of 4-8' boring    |
| SWI-156   | Y                    | 20"                       | 10"                    | Amber brown sticky PSM layer, strong petroleum odor and sheen, no clay                                                                                                       |
| SWI-157   | N                    |                           |                        | Gray sand down to 8', no PSM, no sheen, slight odor, 3" dark gray stained layer at 3.5'                                                                                      |
| SWI-158   | Y                    | 16"                       | 7"                     | Amber brown to black, sticky PSM layer, strong petroleum odor and sheen, gray sand below 8'                                                                                  |
| SWI-159   | N                    |                           |                        | Gray sand down to 8' no clay, no sheen, no odor, no PSM                                                                                                                      |
| SWI-160   | N                    |                           |                        | Gray sand down to 7' clay below, no sheen, no odor, no PSM                                                                                                                   |
| SWI-161   | Y                    | 12"                       | 22"                    | Amber brown to black, sticky PSM layer, strong petroleum odor and sheen, clay at 7.5'                                                                                        |
| SWI-162   | N                    |                           |                        | No PSM gray sand to 7.5' clay below, no sheen, no odor, no PSM                                                                                                               |
| SWI-163   | N                    |                           |                        | Dark gray sand down to 7' clay below, no sheen, no odor, no PSM                                                                                                              |
| SWI-164   | N                    |                           |                        | Gray sand to 7' clay below, no sheen, no odor, no PSM                                                                                                                        |
| SWI-165   | N                    |                           |                        | Gray sand to 6.5' clay below, no sheen, no odor, no PSM                                                                                                                      |
| SWI-166   | N                    |                           |                        | Gray sand to 8' no clay, no sheen, no odor, no PSM                                                                                                                           |
| SWI-167   | Y                    | 28"                       | 3"                     | Amber brown PSM layer, intermixed with gray sandy clay at 6.5', strong petroleum odor and sheen                                                                              |
| SWI-168   | N                    |                           |                        | Gray sand to 5' clay below, no sheen, no odor, no PSM                                                                                                                        |
| SWI-169   | N                    |                           |                        | Gray sand to 4' refusal at 4' concrete no clay, no PSM, no sheen, no odor                                                                                                    |
| SWI-109   | N                    |                           |                        | Gray sand to 5' refusal at 5' concrete no clay, no PSM, no sheen, no odor                                                                                                    |
| 3VVI-170  | IN                   |                           |                        | Gray sand and gravel to 4.5' refusal at 4.5' concrete, slight 2" layer of PSM at                                                                                             |
| SWI-171   | N                    |                           |                        | 22-24" black stained                                                                                                                                                         |
| SWI-172   | Y                    | 12"                       | 10"                    | Amber brown sticky PSM layer, strong pungent odor, gravel below                                                                                                              |
| SWI-172   | N                    |                           |                        | Dark brownish gray fine sand, slight to moderate petroleum odor, slight sheen, trace PSM 6-12"                                                                               |
| SWI-173   | N N                  |                           |                        | Gray sand to 8' no clay, no sheen, no odor, no PSM                                                                                                                           |
| SWI-174   | N N                  |                           |                        | Grayish brown sand down to 7' clay below, trace PSM 6-12", moderate petroleum odor, no sheen                                                                                 |
| SWI-176   | N                    |                           |                        | Yellow till to 3.5' gray sand/clay below, no sheen, no odor, no PSM                                                                                                          |
| SWI-177   | N                    |                           |                        | Gray sand to 3' refusal at 3' no clay, no sheen, no odor, no PSM                                                                                                             |
| SWI-178   | N                    |                           |                        | Gray sand to 6' refusal at 6', no PSM, no sheen, no odor, no PSM                                                                                                             |
| SWI-179   | N                    |                           |                        | Gray sand to 4.5' refusal at 4.5' no clay, no sheen, no odor, no PSM                                                                                                         |
| SWI-180   | N                    |                           |                        | Gray sand to 3' refusal at 3', slight black staining (2") at 2.5', no PSM, no sheen, slight odor                                                                             |
|           | •                    | ı                         |                        | 4/3/2007                                                                                                                                                                     |
| SWI-181   | N                    |                           |                        | Gray brown sand to 8' no clay, no sheen, no odor, no PSM                                                                                                                     |
| SWI-182   | N                    |                           |                        | Gray sand to 6.5' clay below, no sheen, no odor, no PSM                                                                                                                      |
| SWI-183   | N                    |                           |                        | Gray sand to 8' no clay, no sheen, no odor, no PSM                                                                                                                           |
| SWI-184   | N                    |                           |                        | Gray sand to 7' clay below, no sheen, no odor, no PSM                                                                                                                        |
| SWI-185   | N                    |                           |                        | Gray sand to 8' no clay, no sheen, no odor, no PSM                                                                                                                           |
| SWI-186   | N                    |                           |                        | Gray sand to 8' no clay, no sheen, no odor, no PSM                                                                                                                           |
| SWI-187   | N                    |                           |                        | Gray sand to 7.5' clay below, no sheen, no odor, no PSM                                                                                                                      |
| SWI-188   | N                    |                           |                        | Gray sand to 8' no clay, no sheen, no odor, no PSM                                                                                                                           |
| SWI-189   | N                    |                           |                        | Gray sand to 8' no clay, no sheen, no odor, no PSM                                                                                                                           |
| SWI-190   | N                    |                           |                        | Gray sand to 3.5' refusal at 3.5', no sheen, no odor, no PSM                                                                                                                 |
| 2441-120  | IN IN                | _ <del>-</del>            |                        | Citay Saina to 5.5 Telusal at 5.5, 110 Sileen, 110 Guor, 110 F Givi                                                                                                          |

Table 2 - Summary of 2007 Site Wide Investigation - PSM Boring Observations

| Boring ID          | PSM Present<br>(Y/N) | Detph to PSM (inches bgs) | PSM thickness<br>(inches) | Comments                                                                                                                                                                                           |
|--------------------|----------------------|---------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SWI-191            | N                    |                           |                           | Gray sand to 8' no clay, no sheen, no odor, no PSM                                                                                                                                                 |
| SWI-192            | N                    | -                         |                           | Gray sand to 8' no clay, no sheen, no odor, no PSM                                                                                                                                                 |
| SWI-193            | N                    | -                         |                           | Brown sand to 3.5' refusal at 3.5' no clay, no sheen, no odor, no PSM                                                                                                                              |
| SWI-194            | Y                    | 50"                       | 4"                        | Amber brown PSM layer, strong petroleum odor and free phase globules noted, no clay                                                                                                                |
| SWI-195            | N                    |                           |                           | Gray brown sand down to 8' no clay, no sheen, no odor, no PSM                                                                                                                                      |
| SWI-196            | Y                    | 18"                       | 17"                       | Amber brown sticky PSM layer, strong petroleum odor and sheen, clay at 6.5'                                                                                                                        |
| SWI-197            | N                    |                           |                           | Gray sand to 7.5' clay below, no sheen, no odor, no PSM                                                                                                                                            |
| SWI-198            | N                    |                           |                           | Gray sand to 6' clay below, no sheen, no odor, no PSM                                                                                                                                              |
| SWI-199            | N                    |                           |                           | Gray sand down to 7' clay below, no sheen, no odor, no PSM                                                                                                                                         |
| SWI-200            | N                    |                           |                           | Gray sand to 6.5' clay below, no sheen, no odor, no PSM                                                                                                                                            |
| SWI-201            | N                    | -                         |                           | Black organic silty sand, slight sheen, no PSM, no odor                                                                                                                                            |
| SWI-202            | N                    | -                         |                           | Gray sand down to 8' no clay, no sheen, no odor, no PSM                                                                                                                                            |
| SWI-203            | N                    |                           |                           | Gray sand down to 8' no clay, no sheen, no odor, no PSM                                                                                                                                            |
| SWI-204            | N                    | -                         |                           | Gray sand no clay, no sheen, no odor, no PSM                                                                                                                                                       |
| SWI-205            | N                    | -                         |                           | Gray sand to 6.5' clay below, no sheen, no odor, no PSM                                                                                                                                            |
| SWI-206            | N                    |                           |                           | Gray sand to 8' no clay, no sheen, no odor, no PSM                                                                                                                                                 |
| SWI-207            | N                    |                           |                           | Brown sand to 2.5' clay below, no sheen, no odor, no PSM                                                                                                                                           |
| SWI-208            | N                    |                           |                           | Gray sand to 6.5' clay below, no sheen, no odor, no PSM                                                                                                                                            |
| SWI-209            | N                    |                           |                           | Gray brown sand to 4' clay below, no sheen, no odor, no PSM                                                                                                                                        |
| SWI-210            | N                    |                           |                           | Gray sand to 7.5' clay below, no sheen, no odor, no PSM                                                                                                                                            |
| SWI-211            | N                    |                           |                           | Gray sand to 8' no clay, slight sheen, slight odor, no PSM                                                                                                                                         |
| SWI-212            | N                    |                           |                           | Gray sand to 8' no clay, no sheen, no odor, no PSM                                                                                                                                                 |
| SWI-213            | N                    |                           |                           | Gray sand to 7.5' clay below, slight sheen, no odor, no PSM                                                                                                                                        |
|                    |                      |                           |                           | Black stained soil from 2-4' moderate petro odor, no sheen, not PSM clay not found, this black layer is                                                                                            |
| SWI-214            | N                    |                           |                           | questionable PSM Gray sand to 6: Slight 2 inch PSM layer at 6 feet. Not consistent layer. Sheen and odor present but not                                                                           |
| SWI-215            | N                    |                           |                           | significant.                                                                                                                                                                                       |
| SWI-216            | N                    |                           |                           | Black stained soil layer from 3-3.5', moderate petro odor, not PSM, no sheen, PID=233 in black stained layer                                                                                       |
| SWI-217            | N                    |                           |                           | Gray sand down to 6' clay below, no sheen, no odor, no PSM                                                                                                                                         |
| SWI-218            | N                    |                           |                           | Gray sand to 7' clay below, no sheen, slight petro odor, no PSM                                                                                                                                    |
| SWI-219            | N                    |                           |                           | Gray and brown sand down to 4.5' at refusal, no sheen, no odor, no PSM                                                                                                                             |
| SWI-220            | N                    |                           |                           | Gray sand to 6' clay below, no sheen, no odor, no PSM                                                                                                                                              |
|                    |                      | 1                         |                           | 4/4/2007                                                                                                                                                                                           |
| SWI-221            | N<br>Y               | 22"                       | 19"                       | Gray sand to 7.5' clay below, no sheen, no odor, no PSM                                                                                                                                            |
| SWI-222<br>SWI-223 | N N                  |                           |                           | Amber brown PSM layer intermixed with gray sand, strong petroleum odor and free phase globules noted  Gray sand to 1' clay below, no sheen, no odor, no PSM                                        |
| SWI-224            | N                    |                           |                           | Brown sand to 18". Gray clay with slight PSM from 18"-24" amber brown color within clay on fine sand, not consistent, no sheen, moderate petroleum odor                                            |
| SWI-225            | N                    |                           |                           | Gray sand to 6', no sheen, no odor, no PSM, clay from 6' below                                                                                                                                     |
| SWI-226            | N                    |                           |                           | Gray sand to 7.5' clay below, no sheen, no odor, no PSM                                                                                                                                            |
| SWI-227            | N                    |                           |                           | Gray sand to 8', no sheen, no odor, no PSM, small clay layer 6-6.5'                                                                                                                                |
| SWI-228            | Y                    | 6"                        | 12"                       | Black asphalt-like PSM layer, moderate petroleum odor and free phase globules noted, gives off free phase                                                                                          |
| SWI-229            | N                    |                           |                           | oil when placed in jar with water, no clay                                                                                                                                                         |
|                    | N                    |                           |                           | Gray sand down to 8' no sheen, no odor, no PSM                                                                                                                                                     |
| SWI-230            | N<br>Y               |                           |                           | Gray sand to 7' clay below, no sheen, no odor, no PSM                                                                                                                                              |
| SWI-231            |                      | 12"                       | 12"                       | Amber brown PSM layer,strong petroleum odor and free phase globules noted                                                                                                                          |
| SWI-232            | N                    | -                         |                           | Gray sand down to 7.5' clay below, no sheen, no odor, no PSM                                                                                                                                       |
| SWI-233            | N                    |                           |                           | Gray sand to 8', no sheen, no odor, no PSM                                                                                                                                                         |
| SWI-234            | N                    |                           |                           | Gray sand to 8', no sheen, no odor, no PSM                                                                                                                                                         |
| SWI-235<br>SWI-236 | N<br>Y               | 20"                       | 24"                       | Gray sand to 8' no clay, black stained material at 3-3.5' not PSM, no sheen, slight petro odor  Amber brown sticky PSM layer, strong petroleum odor and free phase globules noted, gray sand below |
| SWI-237            | N                    |                           |                           | Gray sand to 8' no clay, no sheen, no odor, no PSM                                                                                                                                                 |
| SWI-238            | N                    |                           |                           | Gray sand to 8' no clay, no sheen, no odor, no PSM                                                                                                                                                 |
| SWI-239            | N                    |                           |                           | Gray sand down to 8' no clay, no sheen, no odor, no PSM                                                                                                                                            |
| SWI-240            | N                    |                           |                           | Gray sand to 8' no clay, no sheen, no odor, no PSM                                                                                                                                                 |
| SWI-241            | N                    |                           |                           | Gray sand to 8' no caly, no sheen, no odor, no PSM                                                                                                                                                 |
| SWI-242            | N                    |                           |                           | Gray sand to 6' clay below, no sheen, no odor, no PSM                                                                                                                                              |
| SWI-243            | N                    |                           |                           | Slight PSM from 8-10" gray to amber brown, slight sheen and odor not significant                                                                                                                   |
| SWI-244            | N                    |                           |                           | Gray sand to 8' no clay, slight 1" PSM layer at 20" not continuous, slight sheen, moderate petro odor                                                                                              |
| SWI-245            | N                    | -                         |                           | Gray sand to 7' clay below, no sheen, no PSM, slight petroleum odor PID=33                                                                                                                         |
| SWI-246            | N                    |                           |                           | Gray sand to 8' no clay, no sheen, no odor, no PSM                                                                                                                                                 |
| SWI-247            | N                    |                           |                           | Gray sand to 5' clay below, no sheen, no odor, no PSM                                                                                                                                              |
| SWI-248            | N                    |                           |                           | Gray sand to 8' no clay, no sheen, no odor, no PSM                                                                                                                                                 |
| SWI-249            | N                    |                           |                           | Gray sand to 8' no clay, no sheen, no odor, no PSM                                                                                                                                                 |
| SWI-250            | N                    |                           |                           | Gray sand to 8' no clay, no sheen, no odor, no PSM                                                                                                                                                 |
| SWI-251            | N                    |                           |                           | Gray sand to 8' no clay, no sheen, no odor, no PSM                                                                                                                                                 |
| SWI-252            | N                    |                           |                           | Gray sand to 8' no clay, some black and amber brown staining intermittenly, no sheen, no odor, no PSM                                                                                              |
| <u> </u>           | <u> </u>             |                           | l                         | 1                                                                                                                                                                                                  |

Table 2 - Summary of 2007 Site Wide Investigation - PSM Boring Observations

|                    |                      |                           | -                         |                                                                                                                                             |
|--------------------|----------------------|---------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Boring ID          | PSM Present<br>(Y/N) | Detph to PSM (inches bgs) | PSM thickness<br>(inches) | Comments                                                                                                                                    |
| SWI-253            | N                    |                           |                           | Gray sand to 8' no clay, no sheen, no odor, no PSM                                                                                          |
| SWI-254            | N                    | -                         |                           | Gray sand to 7' clay below, no sheen, no odor, no PSM                                                                                       |
| SWI-255            | N                    | 1                         |                           | Gray sand to 8' no clay, no sheen, no odor, no PSM                                                                                          |
| SWI-256            | N                    |                           |                           | Gray sand to 8' trace 1/2" layer of inconsistent PSM at 4', no clay                                                                         |
| SWI-257            | N                    |                           |                           | Gray sand to 8' 1/2" layer of inconsistent PSM at 4', no clay                                                                               |
| SWI-258            | N                    |                           |                           | Gray sand to 8', 5" of clay above sand, no PSM                                                                                              |
|                    |                      |                           |                           | 4/5/2007                                                                                                                                    |
| SWI-259            | N                    | -                         |                           | Gray sand to 5' clay below, no sheen, no odor, no PSM                                                                                       |
| SWI-260            | N                    |                           |                           | Gray sand to 8' no clay, no sheen, no odor, no PSM                                                                                          |
| SWI-261            | Y                    | 20"                       | 4"                        | Dark gray to black PSM layer, strong petroleum odor and sheen, not as significant as SWI-141                                                |
| SWI-262            | N                    |                           |                           | Dark gray sand moderate petroleum odor, no sheen, no PSM                                                                                    |
| SWI-263            | N                    | -                         |                           | Dark gray sand no clay, no sheen, no odor, no PSM                                                                                           |
| SWI-264            | N                    | -                         |                           | Dark gray sand 3" layer at 20" of darker sand not PSM, no clay, no sheen, no odor, no PSM                                                   |
| SWI-265            | N                    | -                         |                           | Gray sand to 6' clay below, no sheen, no odor, no PSM                                                                                       |
| SWI-266            | N                    |                           |                           | Gray sand to 7' clay below, no sheen, no odor, no PSM                                                                                       |
| SWI-267            | Y                    | 18"                       | 15"                       | Black to amber brown PSM layer, strong petroleum odor and free phase globules noted, no clay                                                |
| SWI-268            | N                    |                           |                           | Gray sand to 6' clay below, no sheen, no odor, no PSM                                                                                       |
| SWI-269            | N                    |                           |                           | Gray sand to 8' no clay, no sheen, no odor, no PSM                                                                                          |
| SWI-270<br>SWI-271 | N<br>Y               | 20"                       |                           | Gray sand to 5' refusal at 5' no clay, no sheen, no odor, no PSM                                                                            |
| SWI-271<br>SWI-272 | N N                  | 20"                       | 15"                       | Amber brown to silver gray PSM layer, strong petroleum odor (sweet) and sheen present                                                       |
| SWI-272            | Y                    | 24"                       | 40"                       | Gray sand to 4' refusal at 4' no clay, no sheen, no odor, no PSM  Amber brown to black PSM layer moderate petroleum odor and sheen, no clay |
| SWI-273            | N                    |                           |                           | Gray sand down to 8' no clay, no sheen, no odor, no PSM                                                                                     |
| SWI-274            | N                    |                           |                           | Gray sand to 8' no clay, slight odor, no sheen, no PSM                                                                                      |
| SWI-275            | Y                    | 20"                       | 8"                        | Black PSM layer, strong petroleum odor and heavy sheen                                                                                      |
| SWI-277            | Y                    | 12"                       | 12"                       | Amber brown to silver gray, discontinuous PSM layer, strong sweet odor and moderate sheen                                                   |
| SWI-278            | Y                    | 20"                       | 12"                       | Very dark gray to black PSM layer, strong petroleum odor and sheen present, clay at 7.5'                                                    |
| SWI-279            | N                    |                           |                           | Brown gray sand to 8' no clay, no sheen, no odor, no PSM                                                                                    |
| SWI-280            | Y                    | 21"                       | 18"                       | Amber brown to black to silver gray, discontinous PSM layer, moderate petroleum odor                                                        |
| SWI-281            | N                    |                           |                           | Gray sand to 7' clay below, no sheen, no odor, no PSM                                                                                       |
| SWI-282            | Υ                    | 18"                       | 16"                       | Black to amber brown PSM layer, strong petroleum odor and sheen                                                                             |
| SWI-283            | Υ                    | 20"                       | 8"                        | Dark amber brown sticky PSM layer, strong petroleum odor, gray sand below clay at 7'                                                        |
| SWI-284            | N                    |                           |                           | Gray sand to 7.5' clay below, no sheen, no odor, no PSM                                                                                     |
| SWI-285            | N                    | -                         |                           | Gray sand to 8' no clay, no sheen, no odor, no PSM                                                                                          |
| SWI-286            | N                    | -                         |                           | Gray sand to 8' no clay, no sheen, no odor, no PSM                                                                                          |
| SWI-287            | N                    |                           |                           | Gray sand to 8' no clay, no sheen, no odor, no PSM                                                                                          |
| SWI-288            | N                    | 1                         |                           | Gray sand to 8' no clay, no sheen, no odor, no PSM                                                                                          |
| SWI-289            | N                    | 1                         |                           | Gray sand to 8' no clay, no sheen, no odor, no PSM                                                                                          |
| SWI-290            | N                    | -                         |                           | Gray sand to 8' no clay, no sheen, no odor, no PSM                                                                                          |
| SWI-291            | N                    |                           |                           | Gray sand to 7' clay below, no sheen, no odor, no PSM                                                                                       |
| SWI-292            | Υ                    | 12"                       | 19"                       | Dark amber brown sticky PSM layer, free product saturating entire interval, strong petroleum odor no clay,                                  |
| SWI-293            | Υ                    | 68"                       | 3"                        | Amber brown sticky PSM layer, strong petroleum odor, under clay                                                                             |
| SWI-294            | Υ                    | 30"                       | 34"                       | Amber brown to black discontinuous PSM layer intermixed with clay                                                                           |
| SWI-295            | Υ                    | 32"                       | 27"                       | Dark amber brown discontinuous PSM layer, strong petroleum odor and sheen                                                                   |
| SWI-296            | N                    | -                         |                           | Gray sand to 1' clay below, no sheen, no odor, no PSM                                                                                       |
| SWI-297            | Y                    | 31"                       | 14"                       | Amber brown discontinuous PSM layer, moderate petroleum odor                                                                                |
| SWI-298            | Y                    | 16"                       | 48"                       | Amber brown to silver gray PSM, free product saturating entire interval, strong petroleum odor, located 10' from river                      |
| SWI-299            | N                    | -                         |                           | Brown sand at 18-21" there is slight refusal at 5', PSM not continuous, moderate petroleum odor, no sheen                                   |
| SWI-300            | N                    |                           |                           | Gray sand, septic odor, and staining black from 19-21" not PSM, no sheen, refusal at 4"                                                     |
| SWI-301            | N                    |                           |                           | Brown gray sand to 6' clay below, no sheen, no odor, no PSM                                                                                 |
| SWI-302            | Υ                    | 20"                       | 20"                       | Amber brown to dark blackish gray PSM layer, very strong petroleum odor and sheen present, PSM located right above clay layer at 40"        |
| SWI-303            | N                    |                           |                           | Brown sand down to 6' at clay, no sheen, no odor, no PSM                                                                                    |
| SWI-304            | N                    |                           |                           | Gray brown sand to 6' clay below, no sheen, no odor, no PSM                                                                                 |
|                    |                      |                           |                           | 4/6/2007  Dark blackish gray PSM layer, strong petroleum odor and heavy sheen resembles free phase product,                                 |
| SWI-305            | Y                    | 28"                       | 8"                        | refusal at 4'                                                                                                                               |
| SWI-306            | Y                    | 35"                       | 12"                       | Amber brown to black, sticky PSM layer, strong petroleum odor                                                                               |
| SWI-307            | Y                    | 20"                       | 35"                       | Dark amber brown, discontinuous PSM layer, strong petroleum odor and sheen                                                                  |
| SWI-308            | N                    |                           |                           | Dark gray sand some black staining at 7.5', no sheen, no odor, no PSM                                                                       |
| SWI-309<br>SWI-310 | N<br>N               |                           |                           | Dark gray sand and clay, no staining, no sheen, no odor, no PSM  Gray sand, moderate petroleum odor 2-3', no sheen, no PSM, no clay         |
| SWI-310            | N<br>N               |                           |                           | Gray sand, moderate petroleum odor 2-3 , no sneen, no PSM, no clay Gray sand to 6' clay below, no sheen, no odor, no PSM                    |
| SWI-311            | N<br>N               | -                         |                           | Gray sand to 3' clay below, no sheen, no odor, no PSM  Gray sand to 3' clay below, slight PSM at 5', no sheen, mild odor                    |
| SWI-312<br>SWI-313 | N<br>N               |                           |                           | Gray sand to 3 clay below, slight PSM at 5, no sneen, mild odor  Gray sand to 5' refusal at 5', no sheen, no odor, no PSM                   |
| SWI-313            | N<br>N               |                           |                           | Gray sand to 5' refusal at 5', no sheen, no odor, no PSM  Gray sand to 5' refusal at 5', no sheen, no odor, no PSM                          |
| SWI-314            | N                    |                           |                           | Brown sand to 3.5' refusal at 3.5', no sheen, no odor, no PSM                                                                               |
| J441-919           | IN                   |                           |                           | promit sails to 5.5 fetudal at 5.5, tip sheeti, tip buot, tip FOM                                                                           |

Notes:

All borings were advanced from 0-8' bgs. Visual characteristics were noted in each boring. PSM = Petroleum Source Material ppm = parts per million
Results shaded denote the presence of PSM PID - photoionization detector

August 1, 2016

#### **Ground Surface Top of Casing** Top of Screen **Bottom of Scree** Top of Screen **Bottom of Screen** May 2015 May 2015 Well Depth Well Diamete Well ID Elevation Elevation Elevation Depth to Water Nater Table Elevati Depth (inches) (ft bgs) (ft above msl) (ft above msl) (ft bgs) (ft bgs) (ft msl) (ft below TOC) (ft msl) (ft msl) MW-1 4.87 7.67 15.0 5.0 15.0 -0.13 -10.13 3.37 4.30 MW-2 5.25 7.90 15.0 5.0 15.0 0.25 -9.75 3.05 4.85 2 MW-3R 4.21 5.90 10.0 2.0 10.0 2.21 -5.79 2.05 3.85 PDMW-1T 5.21 7.71 8.0 3.0 8.0 2.21 -2.79 2.63 5.08 PDMW-2T 4.87 7.37 8.0 3.0 8.0 1.87 2.07 5.30 -3.13 PDMW-3T 7.05 9.55 8.0 3.0 4.05 -0.95 4.85 4.70 2 8.0 PDMW-4T 6.85 9.35 8.0 3.0 8.0 3.85 -1.15 4.58 4.77 2 PDMW-5T 8.09 4.91 5.59 8.0 3.0 8.0 2.59 -2.41 3.18 2 PDMW-6P 6.74 9.24 8.0 -1.26 4.55 4.69 2 3.0 8.0 3.74 PDMW-7P 2 4.74 7.24 8.0 3.0 8.0 1.74 -3.26 2.51 4.73 PDMW-8R 2 6.43 9.08 9.0 1.0 9.0 5.43 -2.57 3.98 5.10 PDMW-9T 6.91 9.38 8.0 3.0 8.0 3.91 -1.09 4.31 5.07 PDMW-10R 5.04 7.03 9.44 9.0 1.0 9.0 6.03 -1.97 4.40 PDMW-12P 2 6.92 9.42 8.0 3.0 8.0 3.92 -1.08 4.41 5.01 PDMW-13P 5.59 8.09 8.0 3.0 8.0 2.59 -2.41 3.13 4.96 PDMW-15T 5.94 8.44 8.0 3.0 8.0 2.94 -2.06 3.24 5.20 PDMW-17T 6.60 9.10 8.0 3.0 8.0 3.60 -1.40 4.2 4.90 PDMW-19P 6.77 9.27 8.0 3.0 8.0 3.77 -1.23 4.45 4.82 PDMW-20T 5.14 7.64 8.0 3.0 8.0 2.14 -2.86 2.42 5.22 PDMW-21T 4.59 7.09 8.0 3.0 8.0 1.59 -3.41 2.09 PDMW-22T 6.13 8.63 8.0 3.0 3.13 -1.87 3.56 5.07 8.0 2 PDMW-23R 10.07 8.0 4.96 7.36 1.0 -0.64 5.11 2 8.0 6.36 PDMW-24T 4.21 2 6.69 9.19 7.5 2.5 7.5 4.19 -0.81 4.98 PDMW-26T 4.77 7.27 8.0 1.99 5.28 2 3.0 8.0 1.77 -3.23 PDMW-27R 2 6.42 8.78 9.5 1.5 9.5 4.92 -3.08 4.00 4.78 PDMW-29D 5.58 8.56 49.5 44.5 49.5 -38.92 -43.92 6.95 1.61 PDMW-30P 6.63 9.13 8.0 3.0 8.0 3.63 -1.37 4.71 4.42 PDMW-31R2 5.47 8.23 8.0 1.0 8.0 4.47 -2.53 3.08 5.15 2 9.40 2.5 4.38 5.02 PDMW-32R 2 7.31 7.5 7.5 4.81 -0.19 8.48 10.0 3.72 4.76 PDMW-33R2 5.40 15.0 15.0 -4.60 -9.60 25.0 PDMW-35P 5.73 9.53 15.0 25.0 -9.27 5.01 4.52 -19.27 9.92 12.0 2.0 5.26 4.66 PDMW-36P 6.18 12.0 4.18 -5.82 PDMW-37P 6.93 9.75 8.0 3.0 8.0 3.93 -1.07 5.05 4.70 PDMW-38P 6.47 10.37 12.0 2.0 12.0 4.47 -5.53 5.42 4.95 PDMW-40R 8.06 22.0 22.0 -8.74 4.92 3.14 6.26 15.0 -15.74 2 PDMW-45R 6.03 8.59 10.0 2.0 10.0 4.03 -3.97 3.99 4.60 1 PDMW-46 6.34 9.82 10.0 5.0 10.0 1.34 -3.66 5.13 4.69 2 8.52 4.04 PDMW-47 5.80 10.0 5.0 10.0 0.80 -4.20 4.48 2 PDMW-48 2 3.70 6.45 7.0 2.0 7.0 1.70 -3.30 3.02 3.43 PDMW-49 2.85 5.25 7.0 2.0 7.0 0.85 -4.15 2.89 2.36 PDMW-50 5.00 7.80 7.0 2.0 7.0 3.00 -2.00 3.67 4.13 PDMW-51 4.26 7.46 7.0 3.7 3.76 2.0 7.0 2.26 -2.74 PDMW-52 4.97 7.73 7.0 2.0 7.0 2.97 -2.03 4.03 3.70 PDMW-53 NA NA 8.0 3.0 8.0 NA NA 4.43 NA TMW-1 2 5.13 8.45 13.0 8.0 13.0 -2.87 -7.87 3.08 5.37 TMW-4R 6.47 9.24 9.0 4.44 4.80 2 1.0 9.0 5.47 -2.53 EW-1 6.68 8.45 12.0 2.0 12.0 4.68 -5.32 3.53 4.92 MW-201 7.01 10.27 9.5 2.0 9.5 5.01 -2.49 5.03 5.24 MW-202 6.35 9.15 8.0 2.0 8.0 4.35 -1.65 4.17 4.98 MW-203 6.83 10.00 10.0 2.0 10.0 4.83 -3.17 5.07 4.93 MW-204 6.64 9.13 10.0 2.0 10.0 4.64 -3.36 3.63 5.50

bgs = below ground surface msl = mean sea level

ft = feet

Table 3 - Well Construction Details.xlsx Page 1 of 1

|                       |                                     | msl) (ft below TOC) Elevation (ft ms 3.71 3.96 |                                   | 6/3                           | 3/2014                            | 11/6                          | 6/2014                            | 5/18/                            | 2015                                 | 11/10                         | /2015                                |
|-----------------------|-------------------------------------|------------------------------------------------|-----------------------------------|-------------------------------|-----------------------------------|-------------------------------|-----------------------------------|----------------------------------|--------------------------------------|-------------------------------|--------------------------------------|
| WELL ID               | Top of Casing<br>Elevation (ft msl) | •                                              | Water Table<br>Elevation (ft msl) | Depth to water (ft below TOC) | Water Table<br>Elevation (ft msl) | Depth to water (ft below TOC) | Water Table<br>Elevation (ft msl) | Depth to water<br>(ft below TOC) | Water Table<br>Elevation (ft<br>msl) | Depth to water (ft below TOC) | Water Table<br>Elevation (ft<br>msl) |
| MW-1                  | 7.67                                | 3.71                                           | 3.96                              | 3.44                          | 4.23                              | 3.6                           | 4.17                              | 3.37                             | 4.30                                 | 3.28                          | 4.39                                 |
| MW-2                  | 7.90                                | Not Found                                      | NA                                | Not Found                     | NA                                | 3.64                          | 4.26                              | 3.05                             | 4.85                                 | 3.08                          | 4.82                                 |
| MW-3R                 | 5.90                                | 1.12                                           | 4.78                              | 2.21                          | 3.69                              | 2.3                           | 3.60                              | 2.05                             | 3.85                                 | 2.00                          | 3.90                                 |
| PDMW-1T               | 7.71                                | 2.68                                           | 5.03                              | 2.72                          | 4.99                              | 2.94                          | 4.77                              | 2.63                             | 5.08                                 | 2.44                          | 5.27                                 |
| PDMW-2T               |                                     |                                                |                                   | 2.49                          | 4.88                              |                               | 4.09                              |                                  |                                      |                               |                                      |
|                       | 7.37                                | 2.03                                           | 5.34                              |                               |                                   | 3.28                          |                                   | 2.07                             | 5.30                                 | 1.90                          | 5.47                                 |
| PDMW-3T               | 9.55                                | 3.96                                           | 5.59                              | 4.94                          | 4.61                              | 5.42                          | 4.13                              | 4.85                             | 4.70                                 | 3.33                          | 6.22                                 |
| PDMW-4T               | 9.35                                | 3.55                                           | 5.8                               | 5.07                          | 4.28                              | 5.2                           | 4.15                              | 4.58                             | 4.77                                 | 2.69                          | 6.66                                 |
| PDMW-5T               | 8.09                                | 2.29                                           | 5.8                               | Damaged                       | NA                                | 4.05                          | 4.04                              | 3.18                             | 4.91                                 | 2.00                          | 6.09                                 |
| PDMW-6P               | 9.24                                | 3.47                                           | 5.77                              | 4.96                          | 4.28                              | 5.18                          | 4.06                              | 4.55                             | 4.69                                 | 2.91                          | 6.33                                 |
| PDMW-7P               | 7.24                                | 2.36                                           | 4.88                              | 2.86                          | 4.38                              | 2.98                          | 4.26                              | 2.51                             | 4.73                                 | 2.30                          | 4.94                                 |
| PDMW-8R               | 9.08                                | 3.34                                           | 5.74                              | 4.3                           | 4.78                              | 4.85                          | 4.23                              | 3.98                             | 5.10                                 | 3.34                          | 5.74                                 |
| PDMW-9T               | 9.38                                | 3.83                                           | 5.55                              | 4.65                          | 4.73                              | 5.11                          | 4.27                              | 4.31                             | 5.07                                 | 3.37                          | 6.01                                 |
| PDMW-10R              | 9.44                                | 3.79                                           | 5.65                              | 5.02                          | 4.42                              | 5.37                          | 4.07                              | 4.4                              | 5.04                                 | 2.75                          | 6.69                                 |
| PDMW-12P              | 9.42                                | 4.27                                           | 5.15                              | 5.04                          | 4.38                              | 5.02                          | 4.40                              | 4.41                             | 5.01                                 | 2.47                          | 6.95                                 |
| PDMW-13P              | 8.09                                | 3.07                                           | 5.02                              | 3.67                          | 4.42                              | 3.8                           | 4.29                              | 3.13                             | 4.96                                 | 2.10                          | 5.99                                 |
| PDMW-14TR             | 8.00                                | Damaged                                        | NA                                | Destroyed                     | NA                                | Destroyed                     | NA                                | Destroyed                        | NA                                   | Destroyed                     | NA                                   |
| PDMW-15T              | 8.44                                | 2.67                                           | 5.77                              | 4.03                          | 4.41                              | 4.32                          | 4.12                              | 3.24                             | 5.20                                 | 1.92                          | 6.52                                 |
| PDMW-17T              | 9.10                                | 3.18                                           | 5.92                              | 4.67                          | 4.43                              | 4.97                          | 4.13                              | 4.2                              | 4.90                                 | 2.56                          | 6.54                                 |
| PDMW-19P              | 9.27                                | 4.38                                           | 4.89                              | 5.3                           | 3.97                              | 5.32                          | 3.95                              | 4.45                             | 4.82                                 | 2.63                          | 6.64                                 |
| PDMW-20T              | 7.64                                | 2.11                                           | 5.53                              | 2.68                          | 4.96                              | 3.31                          | 4.33                              | 2.42                             | 5.22                                 | 1.87                          | 5.77                                 |
| PDMW-21T              | 7.09                                | 4.22                                           | 2.87                              | 5.41                          | 1.68                              | 5.71                          | 1.38                              | 5                                | 2.09                                 | 3.66                          | 3.43                                 |
| PDMW-22T              | 8.63                                | 3.29                                           | 5.34                              | 4.11                          | 4.52                              | 4.31                          | 4.32                              | 3.56                             | 5.07                                 | 2.41                          | 6.22                                 |
| PDMW-23R              | 10.07                               | 4.72                                           | 5.35                              | 5.62                          | 4.45                              | 5.86                          | 4.21                              | 5.11                             | 4.96                                 | 3.16                          | 6.91                                 |
| PDMW-24T              | 9.19                                | 4.25                                           | 4.94                              | 4.72                          | 4.47                              | 4.81                          | 4.38                              | 4.21                             | 4.98                                 | 2.81                          | 6.38                                 |
| PDMW-26T              | 7.27                                | 2.07                                           | 5.2                               | 2.26                          | 5.01                              | 2.85                          | 4.42                              | 1.99                             | 5.28                                 | 1.81                          | 5.46                                 |
| PDMW-27R              | 8.78                                | 2.94                                           | 5.84                              | 4.46                          | 4.32                              | 4.82                          | 3.96                              | 4                                | 4.78                                 | 2.45                          | 6.33                                 |
| PDMW-29D              | 8.56                                | 6.3                                            | 2.26                              | 5.88                          | 2.68                              | 7.5                           | 1.06                              | 6.95                             | 1.61                                 | 5.12                          | 3.44                                 |
| PDMW-30P              | 9.13                                | 6.15                                           | 2.98                              | 6.08                          | 3.05                              | 5.96                          | 3.17                              | 4.71                             | 4.42                                 | 4.19                          | 4.94                                 |
| PDMW-31R2             | 8.23                                | 3.13                                           | 5.1                               | 3.92                          | 4.31                              | 4.11                          | 4.12                              | 3.08                             | 5.15                                 | 2.92                          | 5.31                                 |
| PDMW-32R              | 9.40                                | 4.54                                           | 4.86                              | 4.92                          | 4.48                              | 5.12                          | 4.28                              | 4.38                             | 5.02                                 | 3.56                          | 5.84                                 |
| PDMW-33R2<br>PDMW-35P | 8.48<br>9.53                        | 4.54                                           | 3.94                              | 3.98                          | 4.50                              | 4.03                          | 4.45                              | 3.72                             | 4.76                                 | 3.31                          | 5.17                                 |
| PDMW-35P              | 9.92                                | 5.08<br>4.99                                   | 4.45                              | 5.23<br>5.63                  | 4.30<br>4.29                      | 5.02<br>5.51                  | 4.51<br>4.41                      | 5.01<br>5.26                     | 4.52<br>4.66                         | 4.77<br>5.05                  | 4.76<br>4.87                         |
| PDMW-37P              | 9.75                                | 4.45                                           | 4.93<br>5.3                       | 5.82                          | 3.93                              | 5.77                          | 3.98                              | 5.05                             | 4.70                                 | 4.21                          | 5.54                                 |
| PDMW-38P              | 10.37                               | 4.78                                           | 5.59                              | 6.12                          | 4.25                              | 6.07                          | 4.30                              | 5.42                             | 4.70                                 | 4.85                          | 5.52                                 |
| PDMW-40R              | 8.06                                | 5.21                                           | 2.85                              | 5.27                          | 2.79                              | 5.52                          | 2.54                              | 4.92                             | 3.14                                 | 4.16                          | 3.90                                 |
| PDMW-45R              | 8.59                                | 2.94                                           | 5.65                              | 4.92                          | 3.67                              | 4.92                          | 3.67                              | 3.99                             | 4.60                                 | 2.68                          | 5.91                                 |
| PDMW-46               | 9.82                                | Not Installed                                  | Not Measured                      | 5.81                          | 4.01                              | 6.46                          | 3.36                              | 5.13                             | 4.69                                 | 5.83                          | 3.99                                 |
| PDMW-47               | 8.52                                | Not Installed                                  | Not Measured                      | 4.18                          | 4.34                              | 5.47                          | 3.05                              | 4.48                             | 4.04                                 | 3.57                          | 4.95                                 |
| PDMW-48               | 6.45                                | Not Installed                                  | Not Measured                      | 4.51                          | 1.94                              | 3.1                           | 3.35                              | 3.02                             | 3.43                                 | 3.09                          | 3.36                                 |
| PDMW-49               | 5.25                                | Not Installed                                  | Not Measured                      | 3.12                          | 2.13                              | 2.55                          | 2.70                              | 2.89                             | 2.39                                 | 2.83                          | 2.42                                 |
| PDMW-50               | 7.80                                | Not Installed                                  | Not Measured                      | 4.4                           | 3.40                              | 3.91                          | 3.89                              | 3.67                             | 4.13                                 | 3.52                          | 4.28                                 |
| PDMW-51               | 7.46                                | Not Installed                                  | Not Measured                      | 4.16                          | 3.30                              | 4.41                          | 3.05                              | 3.7                              | 3.76                                 | 3.75                          | 3.71                                 |
| PDMW-52               | 7.73                                | Not Installed                                  | Not Measured                      | 4.42                          | 3.31                              | 3.58                          | 4.15                              | 4.03                             | 3.70                                 | 3.66                          | 4.07                                 |
| TMW-1                 | 8.45                                | 3.44 1.95                                      |                                   | 3.44                          | 5.01                              | 4.1                           | 4.35                              | 3.08                             | 5.37                                 | 2.88                          | 5.57                                 |
| TMW-4R                | 9.24                                | 4.81 3.36                                      |                                   | 4.81                          | 4.43                              | 5.4                           | 3.84                              | 4.44                             | 4.80                                 | 2.81                          | 6.43                                 |
| EW-1                  | 8.45                                | 2.48                                           | 5.97                              | 2.48                          | 5.97                              | 4.36                          | 4.09                              | 3.53                             | 4.92                                 | 1.72                          | 6.73                                 |
| MW-201                | 10.27                               | 4.98                                           | 5.29                              | 4.98                          | 5.29                              | 5.7                           | 4.57                              | 5.03                             | 5.24                                 | 3.40                          | 6.87                                 |
|                       | 9.15                                | 4.09                                           | 5.06                              | 4.09                          | 5.06                              | 4.81                          | 4.34                              | 4.17                             | 4.98                                 | 2.53                          | 6.62                                 |
| MW-202                | 00                                  |                                                |                                   |                               |                                   |                               |                                   |                                  |                                      |                               |                                      |
| MW-203                | 10.00                               | 4.87                                           | 5.13                              | 4.87                          | 5.13                              | 5.7                           | 4.30                              | 5.07                             | 4.93                                 | 3.09                          | 6.91                                 |

TOC - Top of Casing MSL - Mean Sea Level

|               |                               |            |       |            | Location:    | EW-1       | MW-3R       | PDMW-8R     | PDMW-10R     | PDMW-13P     | PDMW-19P     | PDMW-23R     | PDM         | W-26T        | PDMW-32R     | PDMW-33R2             | PDMW-45R     | PDMW-46     | PDMW-47     | PDMW-47     | PDMW-48     | PDMW-53     | ТМУ            | V-1            | TMW-4R      |
|---------------|-------------------------------|------------|-------|------------|--------------|------------|-------------|-------------|--------------|--------------|--------------|--------------|-------------|--------------|--------------|-----------------------|--------------|-------------|-------------|-------------|-------------|-------------|----------------|----------------|-------------|
|               |                               |            |       | San        | ple Date:    | 11/12/2015 | 11/12/2015  | 11/12/2015  | 11/12/2015   | 11/11/2015   | 11/12/2015   | 11/11/2015   | 11/12/2015  | 11/12/2015   | 11/11/2015   | 11/11/2015            | 11/11/2015   | 11/11/2015  | 7/25/2016   | 7/25/2016   | 11/11/2015  | 11/11/2015  | 11/12/2015     | 11/12/2015     | 11/12/2015  |
|               |                               |            |       | Sam        | ple Type:    | Normal     | Normal      | Normal      | Normal       | Normal       | Normal       | Normal       | Dup         | Normal       | Normal       | Normal                | Normal       | Normal      | Normal      | Duplicate   | Normal      | Normal      | Dup            | Normal         | Normal      |
|               |                               |            |       | 9          | ample ID:    | EW-        | MW-         | PDMW-       | PDMW-        | PDMW-        | PDMW-        | PDMW-        | DUP-        | PDMW-        | PDMW-        | PDMW-<br>33R2_1111201 | PDMW-        | PDMW-       | PDMW-47     | PDMW-47     | PDMW-       | PDMW-       | DUP-           | TMW-           | TMW-        |
|               | Т                             |            |       |            | 1            | 1_11122015 | 3R_11122015 | 8R_11122015 | 10R_11122015 | 13P_11112015 | 19P_11122015 | 23R_11112015 | 01_11122015 | 26T_11122015 | 32R_11112015 | 5                     | 45R_11112015 | 46_11112015 | 1 5 1111 47 | 1 5 1111 47 | 48_11112015 | 53_11112015 | 02_11122015    | 1_11122015     | 4R_11122015 |
| Method Group  | Analyte                       | Background |       | Type 4 RRS |              | Result     | Result      | Result      | Result       | Result       | Result       | Result       | Result      | Result       | Result       | Result                | Result       | Result      | Result      | Result      | Result      | Result      | Result         | Result         | Result      |
|               | ACENAPHTHENE                  | 1          | 2000  |            | ug/l         | NA         | NA          | NA          | NA           | NA           | NA           | NA           | NA          | NA           | NA           | NA                    | NA           | NA          | NA          | NA          | NA          | NA          | 9.7 U          | 9.5 U          | NA          |
|               | ACENAPHTHYLENE                | 1.4        | 1     | 510        | ug/l         | NA         | NA          | NA          | NA           | NA           | NA           | NA           | NA          | NA           | NA           | NA                    | NA           | NA          | NA          | NA          | NA          | NA          | 9.7 U          | 9.5 U          | NA          |
|               | ANTHRACENE                    | 0.2        | 0.2   | 5100       | ug/l         | NA         | NA          | NA          | NA           | NA           | NA           | NA           | NA          | NA           | NA           | NA                    | NA           | NA          | NA          | NA          | NA          | NA          | 9.7 U          | 9.5 U          | NA          |
|               | BENZO(A)ANTHRACENE            | 0.2        | 0.1   | 3.9        | ug/l         | NA         | NA          | NA          | NA           | NA           | NA           | NA           | NA          | NA           | NA           | NA                    | NA           | NA          | NA          | NA          | NA          | NA          | 9.7 U          | 9.5 U          | NA          |
|               | BENZO(A)PYRENE                | 0.2        | 0.2   | 0.39       | ug/l         | NA         | NA          | NA          | NA           | NA           | NA           | NA           | NA          | NA           | NA           | NA                    | NA           | NA          | NA          | NA          | NA          | NA          | 9.7 U          | 9.5 U          | NA          |
|               | BENZO(B)FLUORANTHENE          | 0.2        | 0.2   | 0.65       | ug/l         | NA         | NA          | NA<br>      | NA           | NA           | NA           | NA           | NA          | NA           | NA           | NA                    | NA<br>       | NA          | NA          | NA          | NA          | NA          | 9.7 U          | 9.5 U          | NA          |
|               | BENZO(G,H,I)PERYLENE          |            |       |            | ug/l         | NA         | NA          | NA<br>      | NA           | NA           | NA           | NA           | NA<br>      | NA           | NA           | NA                    | NA<br>       | NA          | NA          | NA          | NA          | NA          | 9.7 U          | 9.5 U          | NA          |
|               | BENZO(K)FLUORANTHENE CHRYSENE | 0.2        | 0.2   | 65         | ug/l         | NA<br>NA   | NA<br>NA    | NA<br>NA    | NA<br>NA     | NA<br>NA     | NA<br>NA     | NA<br>NA     | NA<br>NA    | NA<br>NA     | NA<br>NA     | NA<br>NA              | NA<br>NA     | NA<br>NA    | NA<br>NA    | NA<br>NA    | NA<br>NA    | NA<br>NA    | 9.7 U<br>9.7 U | 9.5 U<br>9.5 U | NA<br>NA    |
| PAHs          | DIBENZO(A,H)ANTHRACENE        | 0.2        | 0.2   |            | ug/l<br>ug/l | NA NA      | NA<br>NA    | NA<br>NA    | NA<br>NA     | NA<br>NA     | NA<br>NA     | NA<br>NA     | NA<br>NA    | NA<br>NA     | NA NA        | NA<br>NA              | NA<br>NA     | NA<br>NA    | NA<br>NA    | NA<br>NA    | NA<br>NA    | NA<br>NA    | 9.7 U          | 9.5 U          | NA<br>NA    |
| FAITS         | FLUORANTHENE                  | 0.5        | 1000  |            | ug/I         | NA NA      | NA NA       | NA NA       | NA NA        | NA NA        | NA NA        | NA NA        | NA NA       | NA NA        | NA NA        | NA NA                 | NA NA        | NA NA       | NA NA       | NA NA       | NA NA       | NA NA       | 9.7 U          | 9.5 U          | NA NA       |
|               | FLUORENE                      | 0.5        | 1000  |            | ug/I         | NA NA      | NA NA       | NA NA       | NA NA        | NA NA        | NA NA        | NA NA        | NA NA       | NA NA        | NA NA        | NA NA                 | NA NA        | NA NA       | NA NA       | NA NA       | NA NA       | NA NA       | 9.7 U          | 9.5 U          | NA NA       |
|               | INDENO(1,2,3-CD)PYRENE        |            | 0.4   |            | ug/l         | NA NA      | NA NA       | NA NA       | NA NA        | NA NA        | NA NA        | NA NA        | NA NA       | NA NA        | NA NA        | NA NA                 | NA NA        | NA NA       | NA NA       | NA NA       | NA NA       | NA NA       | 9.7 U          | 9.5 U          | NA NA       |
|               | 1-METHYLNAPHTHALENE           |            |       |            | ug/l         | NA NA      | NA NA       | NA NA       | NA NA        | NA NA        | NA NA        | NA NA        | NA NA       | NA NA        | NA NA        | NA NA                 | NA NA        | NA NA       | NA NA       | NA NA       | NA NA       | NA NA       | 11             | 9.5 U          | NA NA       |
|               | 2-METHYLNAPHTHALENE           |            |       |            | ug/l         | NA         | NA          | NA          | NA           | NA           | NA NA        | NA NA        | NA NA       | NA NA        | NA           | NA                    | NA           | NA          | NA          | NA NA       | NA          | NA NA       | 13             | 9.5 U          | NA          |
|               | NAPHTHALENE                   | 1          | 20    | 20         | ug/l         | NA         | NA          | NA          | NA           | NA           | NA           | NA           | NA          | NA           | NA           | NA                    | NA           | NA          | NA          | NA          | NA          | NA          | 63             | 32             | NA          |
|               | PHENANTHRENE                  | 0.22       | 0.2   | 510        | ug/l         | NA         | NA          | NA          | NA           | NA           | NA           | NA           | NA          | NA           | NA           | NA                    | NA           | NA          | NA          | NA          | NA          | NA          | 9.7 U          | 9.5 U          | NA          |
|               | PYRENE                        | 0.5        | 1000  |            | ug/l         | NA         | NA          | NA          | NA           | NA           | NA           | NA           | NA          | NA           | NA           | NA                    | NA           | NA          | NA          | NA          | NA          | NA          | 9.7 U          | 9.5 U          | NA          |
|               | TOTAL PAHs                    |            |       |            | ug/l         | NA         | NA          | NA          | NA           | NA           | NA           | NA           | NA          | NA           | NA           | NA                    | NA           | NA          | NA          | NA          | NA          | NA          | 87             | 58             | NA          |
|               | BENZENE                       | 1          | 5     | 31.2       | ug/l         | NA         | NA          | NA          | NA           | NA           | NA           | NA           | NA          | NA           | NA           | NA                    | NA           | NA          | NA          | NA          | NA          | NA          | 51             | 52             | NA          |
|               | ETHYLBENZENE                  | 1          | 700   |            | ug/l         | NA         | NA          | NA          | NA           | NA           | NA           | NA           | NA          | NA           | NA           | NA                    | NA           | NA          | NA          | NA          | NA          | NA          | 1 U            | 1 U            | NA          |
| VOCs          | TOLUENE                       | 1          | 1000  | 1900       | ug/l         | NA         | NA          | NA          | NA           | NA           | NA           | NA           | NA          | NA           | NA           | NA                    | NA           | NA          | NA          | NA          | NA          | NA          | 1 U            | 1 U            | NA          |
|               | XYLENES (TOTAL)               | 2          | 10000 |            | ug/l         | NA         | NA          | NA          | NA           | NA           | NA           | NA           | NA          | NA           | NA           | NA                    | NA           | NA          | NA          | NA          | NA          | NA          | 220            | 220            | NA          |
|               | TOTAL BTEX                    |            |       |            | ug/l         | NA         | NA          | NA          | NA           | NA           | NA           | NA           | NA          | NA           | NA           | NA                    | NA           | NA          | NA          | NA          | NA          | NA          | 271            | 272            | NA          |
|               | ARSENIC                       | 0.018      | 0.018 | 0.018      | mg/l         | 0.02 U     | 0.02 U      | 0.02 U      | 0.02 U       | 0.02 U       | 0.02 U       | 0.02 U       | 0.02 U      | 0.02 U       | 0.02 U       | 0.02 U                | 0.02 U       | 0.02 U      | NA          | NA          | NA          | NA          | 0.12           | 0.15           | 0.02 U      |
|               | CHROMIUM                      | 0.013      | 0.1   |            | mg/l         | 0.01 U     | NA          | NA          | NA           | NA           | NA           | NA           | NA          | NA           | NA           | NA                    | NA           | NA          | NA          | NA          | NA          | NA          | 0.023          | 0.029          | NA          |
| Metals, Total | LEAD                          | 0.007      | 0.015 | 0.015      | mg/l         | 0.01 U     | 0.01        | 0.01 U      | 0.01 U       | 0.011        | 0.01 U       | 0.01 U       | 0.01 U      | 0.01 U       | 0.01 U       | 0.01 U                | 0.01 U       | 0.01 U      | NA          | NA          | NA          | NA          | 0.01 U         | 0.01 U         | 0.01 U      |
|               | NICKEL                        | 0.13       | 0.1   | 2          | mg/l         | 0.06       | 0.04 U      | 0.04 U      | 0.04 U       | 0.04 U       | 0.04 U       | NA           | NA          | NA           | 0.04 U       | NA                    | 0.04 U       | NA          | NA          | NA          | NA          | NA          | 0.04 U         | 0.04 U         | NA          |
|               | ZINC                          | 0.96       | 2     | 31         | mg/l         | 0.17       | 0.035       | NA          | NA           | 0.02 U       | NA           | NA           | NA          | NA           | 120          | NA                    | NA           | NA          | NA          | NA          | NA          | NA          | 63             | 78             | NA          |
|               | AMMONIA AS N                  | 15         | 30    | 30         | mg/l         | 270        | 1.7         | 60          | 7.9          | 2.7          | 4.9          | 2.8          | 600         | 600          | 1.3          | 15                    | 0.8          | 1.1         | 19          | 19          | 28          | 3.6         | 3400           | 3600 F1        | 3.1         |
| Miscellaneous | NITRATE (AS N)                |            | 10    |            | mg/l         | 0.05 U     | 0.056       | 0.05 U      | 0.05 U       | 0.05 U       | 0.05 U       | 0.05 U       | 0.05 U      | 0.05 U       | 0.17         | 0.05 U                | 0.05 U       | 0.05 U      | NA          | NA          | 0.11        | 0.05 U      | 230            | 250 F1         | 0.05 U      |
|               | NITRITE (AS N)                |            |       |            | mg/l         | 0.05 U     | 0.11        | 0.05 U      | 0.05 U       | 0.05 U       | 0.05 U       | 0.05 U       | 0.05 U      | 0.05 U       | 0.05 U       | 0.05 U                | 0.05 U       | 0.073       | NA          | NA          | 0.11        | 0.05 U      | 10 U           | 10 U           | 0.05 U      |

#### Notes:

Shaded cell indicates comparison standard used in data evaluation.
Highlighted cell indicates analytical result exceeds comparison criteria.

Bold and italic text indicates analytical result exceeds background value.

# - Nitrate comparison standard based on the Maximum Contaminant Level (MCL) established by the USEPA National Primary Drinking Water Regulations.

ND - No constituents detected above the laboratory minimum detection limit.

F1: Indicates MS or MSD recover was outside of specified limits.

U: Incidactes constituent was not detected above value shown.

|                   |                         |            |            | L          | ocation:    |                   |            | EW-1               |           |            |        | MV                 | V-1        |            | М          | W-2        |          |                   | MW-3R      |                   |                   |                   | MW-201             |                   | MW-202            | MW-204    |                     | PDMW-7P             |                     |                     |                    | PDMW-8R             |                     |                     |
|-------------------|-------------------------|------------|------------|------------|-------------|-------------------|------------|--------------------|-----------|------------|--------|--------------------|------------|------------|------------|------------|----------|-------------------|------------|-------------------|-------------------|-------------------|--------------------|-------------------|-------------------|-----------|---------------------|---------------------|---------------------|---------------------|--------------------|---------------------|---------------------|---------------------|
|                   |                         |            |            | Samı       | ple Date:   | 6/4/2014          | 11/4/2014  | 5/20/2015          | 5/20/2015 | 11/12/2015 | 6/3/   | 2014               | 11/3/2014  | 5/20/2015  | 11/4/2014  | 5/19/2015  | 6/5/2014 | 11/5              | /2014      | 5/19/2015         | 11/12/2015        | 6/4/2014          | 5/20/2015          | 5/20/2015         | 11/4/2014         | 11/5/2014 | 6/4/2014            | 11/4/2014           | 5/19/2015           | 6/3/2               | 2014               | 11/5/2014           | 5/20/2015           | 11/12/2015          |
|                   |                         |            |            | Samp       | ole Type:   | Normal            | Normal     | Dup                | Normal    | Normal     | Normal | Dup                | Normal     | Normal     | Normal     | Normal     | Normal   | Normal            | Dup        | Normal            | Normal            | Normal            | Dup                | Normal            | Normal            | Normal    | Normal              | Normal              | Normal              | Normal              | Dup                | Normal              | Normal              | Normal              |
|                   |                         |            |            | S-0        | mnlo ID:    | EW-<br>01_0604201 | EW-        | DUP-<br>02 0520201 | EW-       | EW-        | MW-    | DUP-<br>01 0603201 | MW-        | MW-        | MW-        | MW-        | MW-      | MW-<br>3R 1105201 | DUP-       | MW-<br>3R 0519201 | MW-<br>3R_1112201 | MW-<br>201 060420 | DUP-<br>03 0520201 | MW-<br>201 052020 | MW-<br>202 110420 | MW-       | PDMW-<br>07P 060420 | PDMW-<br>7P 1104201 | PDMW-<br>7P 0519201 | PDMW-<br>8R 0603201 | DUP-<br>02 0603201 | PDMW-<br>8R 1105201 | PDMW-<br>8R 0520201 | PDMW-<br>8R 1112201 |
|                   |                         |            |            | 1          | IIIIpic ID. | 4                 | 1_11042014 | 5                  | 5         | 1_11122015 | 4      | 4                  | 1_11032014 | 1_05202015 | 2_11042014 | 2_05192015 | 4        | 4                 | 2_11052014 | 5<br>5            | 5                 | 14                | 5                  | 15                | 14                | 14        | 14                  | 4                   | 5                   | 4                   | 4                  | 4                   | 5                   | 5                   |
| Method Group      | Analyte                 | Background | Type 3 RRS | Type 4 RRS | Units       | Result            | Result     | Result             | Result    | Result     | Result | Result             | Result     | Result     | Result     | Result     | Result   | Result            | Result     | Result            | Result            | Result            | Result             | Result            | Result            | Result    | Result              | Result              | Result              | Result              | Result             | Result              | Result              | Result              |
|                   | ACENAPHTHENE            | 1          | 2000       |            | ug/L        | 10 U              | NA         | NA                 | NA        | NA         | 9.5 U  | 9.6 U              | NA         | NA         | NA         | NA         | 10 U     | NA                | NA         | NA                | NA                | 10 U              | NA                 | NA                | NA                | 10 U      | 9.9 U               | NA                  | NA                  | 9.9 U               | 9.9 U              | NA                  | NA                  | NA                  |
|                   | ACENAPHTHYLENE          | 1.4        | 1          | 510        | ug/L        | 10 U              | NA         | NA                 | NA        | NA         | 9.5 U  | 9.6 U              | NA         | NA         | NA         | NA         | 10 U⁴    | NA                | NA         | NA                | NA                | 10 U              | NA                 | NA                | NA                | 10 U      | 9.9 U               | NA                  | NA                  | 9.9 U               | 9.9 U              | NA                  | NA                  | NA                  |
|                   | ANTHRACENE              | 0.2        | 0.2        | 5100       | ug/L        | 10 U              | NA         | NA                 | NA        | NA         | 9.5 U  | 9.6 U              | NA         | NA         | NA         | NA         | 10 U     | NA                | NA         | NA                | NA                | 10 U              | NA                 | NA                | NA                | 10 U      | 9.9 U               | NA                  | NA                  | 9.9 U               | 9.9 U              | NA                  | NA                  | NA                  |
|                   | BENZO(A)ANTHRACENE      | 0.2        | 0.1        | 3.9        | ug/L        | 10 U              | NA         | NA                 | NA        | NA         | 9.5 U  | 9.6 U              | NA         | NA         | NA         | NA         | 10 U     | NA                | NA         | NA                | NA                | 10 U              | NA                 | NA                | NA                | 10 U      | 9.9 U               | NA                  | NA                  | 9.9 U               | 9.9 U              | NA                  | NA                  | NA                  |
|                   | BENZO(A)PYRENE          | 0.2        | 0.2        | 0.39       | ug/L        | 10 U              | NA         | NA                 | NA        | NA         | 9.5 U  | 9.6 U              | NA         | NA         | NA         | NA         | 10 U     | NA                | NA         | NA                | NA                | 10 U              | NA                 | NA                | NA                | 10 U      | 9.9 U               | NA                  | NA                  | 9.9 U               | 9.9 U              | NA                  | NA                  | NA                  |
|                   | BENZO(B)FLUORANTHENE    | 0.2        | 0.2        | 0.65       | ug/L        | 10 U              | NA         | NA                 | NA        | NA         | 9.5 U  | 9.6 U              | NA         | NA         | NA         | NA         | 10 U     | NA                | NA         | NA                | NA                | 10 U              | NA                 | NA                | NA                | 10 U      | 9.9 U               | NA                  | NA                  | 9.9 U               | 9.9 U              | NA                  | NA                  | NA                  |
|                   | BENZO(G,H,I)PERYLENE    |            |            |            | ug/L        | 10 U              | NA         | NA                 | NA        | NA         | 9.5 U  | 9.6 U              | NA         | NA         | NA         | NA         | 10 U     | NA                | NA         | NA                | NA                | 10 U              | NA                 | NA                | NA                | 10 U      | 9.9 U               | NA                  | NA                  | 9.9 U               | 9.9 U              | NA                  | NA                  | NA                  |
|                   | BENZO(K)FLUORANTHENE    |            |            |            | ug/L        | 10 U              | NA         | NA                 | NA        | NA         | 9.5 U  | 9.6 U              | NA         | NA         | NA         | NA         | 10 U     | NA                | NA         | NA                | NA                | 10 U              | NA                 | NA                | NA                | 10 U      | 9.9 U               | NA                  | NA                  | 9.9 U               | 9.9 U              | NA                  | NA                  | NA                  |
|                   | CHRYSENE                | 0.2        | 0.2        | 65         | ug/L        | 10 U              | NA         | NA                 | NA        | NA         | 9.5 U  | 9.6 U              | NA         | NA         | NA         | NA         | 10 U     | NA                | NA         | NA                | NA                | 10 U              | NA                 | NA                | NA                | 10 U      | 9.9 U               | NA                  | NA                  | 9.9 U               | 9.9 U              | NA                  | NA                  | NA                  |
| PAHs              | DIBENZO(A,H)ANTHRACENE  |            | 0.3        |            | ug/L        | 10 U              | NA         | NA                 | NA        | NA         | 9.5 U  | 9.6 U              | NA         | NA         | NA         | NA         | 10 U     | NA                | NA         | NA                | NA                | 10 U              | NA                 | NA                | NA                | 10 U      | 9.9 U               | NA                  | NA                  | 9.9 U               | 9.9 U              | NA                  | NA                  | NA                  |
|                   | FLUORANTHENE            | 0.5        | 1000       |            | ug/L        | 10 U              | NA         | NA                 | NA        | NA         | 9.5 U  | 9.6 U              | NA         | NA         | NA         | NA         | 10 U     | NA                | NA         | NA                | NA                | 10 U              | NA                 | NA                | NA                | 10 U      | 9.9 U               | NA                  | NA                  | 9.9 U               | 9.9 U              | NA                  | NA                  | NA                  |
|                   | FLUORENE                | 0.5        | 1000       |            | ug/L        | 10 U              | NA         | NA                 | NA        | NA         | 9.5 U  | 9.6 U              | NA         | NA         | NA         | NA         | 10 U     | NA                | NA         | NA                | NA                | 10 U              | NA                 | NA                | NA                | 10 U      | 9.9 U               | NA                  | NA                  | 9.9 U               | 9.9 U              | NA                  | NA                  | NA                  |
|                   | INDENO(1,2,3-CD)PYRENE  |            | 0.4        |            | ug/L        | 10 U              | NA         | NA                 | NA        | NA         | 9.5 U  | 9.6 U              | NA         | NA         | NA         | NA         | 10 U     | NA                | NA         | NA                | NA                | 10 U              | NA                 | NA                | NA                | 10 U      | 9.9 U               | NA                  | NA                  | 9.9 U               | 9.9 U              | NA                  | NA                  | NA                  |
|                   | 1-METHYLNAPHTHALENE     |            |            |            | ug/L        | 10 U              | NA         | NA                 | NA        | NA         | 9.5 U  | 9.6 U              | NA         | NA         | NA         | NA         | 10 U     | NA                | NA         | NA                | NA                | 10 U              | NA                 | NA                | NA                | 10 U      | 9.9 U               | NA                  | NA                  | 9.9 U               | 9.9 U              | NA                  | NA                  | NA                  |
|                   | 2-METHYLNAPHTHALENE     |            |            |            | ug/L        | 10 U              | NA         | NA                 | NA        | NA         | 9.5 U  | 9.6 U              | NA         | NA         | NA         | NA         | 10 U     | NA                | NA         | NA                | NA                | 10 U              | NA                 | NA                | NA                | 10 U      | 9.9 U               | NA                  | NA                  | 9.9 U               | 9.9 U              | NA                  | NA                  | NA                  |
|                   | NAPHTHALENE             | 1          | 20         | 20         | ug/L        | 10 U              | NA         | NA                 | NA        | NA         | 9.5 U  | 9.6 U              | NA         | NA         | NA         | NA         | 10 U     | NA                | NA         | NA                | NA                | 10 U              | NA                 | NA                | NA                | 10 U      | 9.9 U               | NA                  | NA                  | 9.9 U               | 9.9 U              | NA                  | NA                  | NA                  |
|                   | PHENANTHRENE            | 0.22       | 0.2        | 510        | ug/L        | 10 U              | NA         | NA                 | NA        | NA         | 9.5 U  | 9.6 U              | NA         | NA         | NA         | NA         | 10 U     | NA                | NA         | NA                | NA                | 10 U              | NA                 | NA                | NA                | 10 U      | 9.9 U               | NA                  | NA                  | 9.9 U               | 9.9 U              | NA                  | NA                  | NA                  |
|                   | PYRENE                  | 0.5        | 1000       |            | ug/L        | 10 U              | NA         | NA                 | NA        | NA         | 9.5 U  | 9.6 U              | NA         | NA         | NA         | NA         | 10 U     | NA                | NA         | NA                | NA                | 10 U              | NA                 | NA                | NA                | 10 U      | 9.9 U               | NA                  | NA                  | 9.9 U               | 9.9 U              | NA                  | NA                  | NA                  |
|                   | TOTAL PAHs              |            |            |            | ug/L        | ND                | NA         | NA                 | NA        | NA         | ND     | ND                 | NA         | NA         | NA         | NA         | ND       | NA                | NA         | NA                | NA                | ND                | NA                 | NA                | NA                | ND        | ND                  | NA                  | NA                  | ND                  | ND                 | NA                  | NA                  | NA                  |
|                   | BENZENE                 | 1          | 5          | 31.2       | ug/L        | 1 U               | NA         | NA                 | NA        | NA         | 1 U    | 1 U                | NA         | NA         | NA         | NA         | 1 U      | NA                | NA         | NA                | NA                | 1 U               | NA                 | NA                | NA                | NA        | 1 U                 | NA                  | NA                  | 1 U                 | 1 U                | NA                  | NA                  | NA                  |
|                   | ETHYLBENZENE            | 1          | 700        |            | ug/L        | 1 U               | NA         | NA                 | NA        | NA         | 1 U    | 1 U                | NA         | NA         | NA         | NA         | 1 U      | NA                | NA         | NA                | NA                | 1 U               | NA                 | NA                | NA                | NA        | 1 U                 | NA                  | NA                  | 1 U                 | 1 U                | NA                  | NA                  | NA                  |
|                   | METHYLENE CHLORIDE      |            |            |            | ug/L        | NA                | NA         | NA                 | NA        | NA         | NA     | NA                 | NA         | NA         | NA         | NA         | 5 U      | NA                | NA         | NA                | NA                | NA                | NA                 | NA                | NA                | NA        | NA                  | NA                  | NA                  | NA                  | NA                 | NA                  | NA                  | NA                  |
| VOCs              | TOLUENE                 | 1          | 1000       | 1900       | ug/L        | 1 U               | NA         | NA                 | NA        | NA         | 1 U    | 1 U                | NA         | NA         | NA         | NA         | 1 U      | NA                | NA         | NA                | NA                | 1 U               | NA                 | NA                | NA                | NA        | 1 U                 | NA                  | NA                  | 1 U                 | 1 U                | NA                  | NA                  | NA                  |
|                   | XYLENES (TOTAL)         | 2          | 10000      |            | ug/L        | 2 U               | NA         | NA                 | NA        | NA         | 2 U    | 2 U                | NA         | NA         | NA         | NA         | 2 U      | NA                | NA         | NA                | NA                | 2 U               | NA                 | NA                | NA                | NA        | 2 U                 | NA                  | NA                  | 2 U                 | 2 U                | NA                  | NA                  | NA                  |
|                   | METHYL TERT BUTYL ETHER |            |            |            | ug/L        | NA                | NA         | NA                 | NA        | NA         | NA     | NA                 | NA         | NA         | NA         | NA         | 10 U     | NA                | NA         | NA                | NA                | NA                | NA                 | NA                | NA                | NA        | NA                  | NA                  | NA                  | NA                  | NA                 | NA                  | NA                  | NA                  |
|                   | TOTAL BTEX              |            |            |            | ug/L        | ND                | NA         | NA                 | NA        | NA         | ND     | ND                 | NA         | NA         | NA         | NA         | ND       | NA                | NA         | NA                | NA                | ND                | NA                 | NA                | NA                | NA        | ND                  | NA                  | NA                  | ND                  | ND                 | NA                  | NA                  | NA                  |
|                   | ARSENIC                 | 0.018      | 0.018      | 0.018      | mg/L        | 0.02 U            | 0.02       | 0.02 U             | 0.02 U    | 0.02 U     | 0.02 U | 0.02 U             | 0.02 U     | 0.02 U     | 0.02 U     | 0.02 U     | 0.02 U   | 0.02 U            | 0.02 U     | 0.02 U            | 0.02 U            | 0.02 U            | 0.02 U             | 0.02 U            | 0.02 U            | NA        | 0.02 U              | 0.02 U              | 0.02 U              | 0.029               | 0.028              | 0.02 U              | 0.02 U              | 0.02 U              |
|                   | CHROMIUM                | 0.013      | 0.1        |            | mg/L        | 0.012             | 0.013      | 0.01 U             | 0.01 U    | 0.01 U     | 0.01 U | 0.01 U             | NA         | NA         | NA         | NA         | 0.01 U   | NA                | NA         | NA                | NA                | 0.01 U            | NA                 | NA                | NA                | NA        | 0.01 U              | NA                  | NA                  | 0.01 U              | 0.01 U             | NA                  | NA                  | NA                  |
| Metals, Total     | LEAD                    | 0.007      | 0.015      | 0.015      | mg/L        | 0.01              | 0.01 U     | 0.01 U             | 0.01 U    | 0.01 U     | 0.01 U | 0.01 U             | 0.01 U     | 0.01 U     | 0.01 U     | 0.01 U     | 0.01 U   | 0.01 U            | 0.039      | 0.01 U            | 0.01              | 0.01 U            | 0.01 U             | 0.01 U            | 0.01 U            | NA        | 0.01 U              | 0.01 U              | 0.01 U              | 0.01 U              | 0.01 U             | 0.01 U              | 0.01 U              | 0.01 U              |
|                   | NICKEL                  | 0.13       | 0.1        | 2          | mg/L        | 0.1               | 0.1        | 0.044              | 0.044     | 0.06       | 0.04 U | 0.04 U             | NA         | NA         | NA         | NA         | 0.04 U   | 0.04 U            | 0.04 U     | 0.04 U            | 0.04 U            | 0.04 U            | 0.04 U             | 0.04 U            | 0.04 U            | NA        | 0.04 U              | NA                  | NA                  | 0.04 U              | 0.04 U             | 0.04 U              | 0.04 U              | 0.04 U              |
|                   | ZINC                    | 0.96       | 2          | 31         | mg/L        | 0.55              | 0.47       | 0.19               | 0.19      | 0.17       | 0.02 U | 0.02 U             | NA         | NA         | NA         | NA         | 0.02 U   | 0.02 U            | 0.02 U     | 0.089             | 0.035             | 0.02 U            | 0.02 U             | 0.02 U            | 0.02 U            | NA        | 0.02 U              | NA                  | NA                  | 0.02 U              | 0.02 U             | NA                  | NA                  | NA                  |
| Metals, Dissolved | LEAD                    | 0.007      | 0.015      | 0.015      | mg/L        | NA                | NA         | NA                 | NA        | NA         | NA     | NA                 | NA         | NA         | NA         | NA         | NA       | NA                | 0.01 U     | NA                | NA                | NA                | NA                 | NA                | NA                | NA        | NA                  | NA                  | NA                  | NA                  | NA                 | NA                  | NA                  | NA                  |
|                   | AMMONIA AS N            | 15         | 30         | 30         | mg/L        | 1100              | 540        | 260                | 320 F1    | 270        | 25     | 18                 | 25         | 21         | 23         | 13         | 3.9      | 6.5               | 2.2        | 1.9               | 1.7               | 15                | 1.1                | 1.1               | 1                 | 340       | 12                  | 16                  | 16                  | 62                  | 63                 | 94                  | 64                  | 60                  |
| Miscellaneous     | NITRATE (AS N)          |            | 10         |            | mg/L        | 0.05 U            | 0.29       | 0.097              | 0.063     | 0.05 U     | 0.05 U | 0.05 U             | 0.05 U     | 0.05 U     | 0.05 U     | 0.05 U     | 0.05 U   | 0.05 U            | 0.05 U     | 0.05 U            | 0.056             | 0.07              | 0.05 U             | 0.05 U            | 0.05 U            | 0.05 U    | 0.05 U              | 0.05 U              | 0.05 U              | 0.05 U              | 0.05 U             | 0.05 U              | 0.05 U              | 0.05 U              |
|                   | NITRITE (AS N)          |            |            |            | mg/l        | NA                | NA         | 0.05 U             | 0.05 U    | 0.05 U     | NA     | NA                 | NA         | 0.05 U     | NA         | 0.17       | NA       | NA                | NA         | 0.078             | 0.11              | NA                | 0.05 U             | 0.05 U            | NA                | NA        | NA                  | NA                  | 0.11                | NA                  | NA                 | NA                  | 0.05                | 0.05 U              |
| SVOCs             | 1,4-DICHLOROBENZENE     |            |            |            | ug/L        | NA                | NA         | NA                 | NA        | NA         | NA     | NA                 | NA         | NA         | NA         | NA         | 1 U      | NA                | NA         | NA                | NA                | NA                | NA                 | NA                | NA                | NA        | NA                  | NA                  | NA                  | NA                  | NA                 | NA                  | NA                  | NA                  |

Shaded cell indicates comparison standard used in data evaluation.
Highlighted cell indicates analytical result exceeds comparison criteria.

Bold and Rolic text indicates analytical result exceeds background value.

ND - No constituents detected above the laboratory minimum detection limit. F1: Indicates MS or MSD recovery is outside of specified limits

J: Indicates constituent was detected at an estimated value.

UH: Indicates sample analyzed outside of specified hold time.

UJ: Indicates constituent was not detected at an estimated value shown.

Monitoring wells MW-3R, PDMW-8R, PDMW-10R, PDMW-11R, PDMW-14TR, PDMW-23R, PDMW-31R, PDMW-32R, PDMW-33R, PDMW-39R, PDMW-40R, PDMW-45R, and TMW-4R were installed to replace wells MW-3, PDMW-8T, PDMW-3T, PDMW-10T, PDMW-11P, PDMW-14T, PDMW-23T, PDMW-30P, PDMW-32R, PDMW-32R, PDMW-33R, PDMW-39P, PDMW-40P, PDMW-45R, and TMW-4 respectively.

|                   |                         |            |            | L          | ocation:  |                  | PDM\             | V-10R            |                  |                  | PDM              | W-13P            |                  |                  | PDMV             | W-19P     |                  |                  | PDMW-23R         |                  | PDMW-23T         | PDMW-24T         |                  |                  | PDM\            | W-26T            |                 |                  |                  | PDMW-29D         |                  | PDM\             | <i>N</i> -30P    | PDMW-30R         |
|-------------------|-------------------------|------------|------------|------------|-----------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|-----------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|-----------------|------------------|-----------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|                   |                         |            |            | Sam        | ple Date: | 6/5/2014         | 11/5/2014        | 5/20/2015        | 11/12/2015       | 6/5/2014         | 11/5/2014        | 5/19/2015        | 11/11/2015       | 6/4/2014         | 11/3/2014        | 5/20/2015 | 11/12/2015       | 11/5/2014        | 5/19/2015        | 11/11/2015       | 6/4/2014         | 11/5/2014        | 6/5/2014         | 11/6             | 2014            | 5/21/2015        | 11/12/2015      | 11/12/2015       | 6/3/2014         | 11/6/2014        | 5/21/2015        | 11/3/2014        | 5/20/2015        | 6/3/2014         |
|                   |                         |            |            | Samp       | ole Type: | Normal           | Normal    | Normal           | Normal           | Normal           | Normal           | Normal           | Normal           | Normal           | Normal           | Dup             | Normal           | Dup             | Normal           |
|                   |                         |            |            | 0-         | I. ID.    | PDMW-            | PDMW-     | PDMW-            | PDMW-            | PDMW-            | PDMW-            | PDMW-            | PDMW-            | PDMW-            | PDMW-            | DUP-            | PDMW-            | DUP-            | PDMW-            |
|                   |                         |            |            | Sa         | imple ID: | 10R_060520<br>14 | 10R_110520<br>14 | 10R_052020<br>15 | 10R_111220<br>15 | 13P_060520<br>14 | 13P_110520<br>14 | 13P_051920<br>15 | 13P_111120<br>15 | 19P_060420<br>14 | 19P_110320<br>14 |           | 19P_111220<br>15 | 23R_110520<br>14 | 23R_051920<br>15 | 23R_111120<br>15 | 23R_060420<br>14 | 24T_110520<br>14 | 26T_060520<br>14 | 26T_110620<br>14 | 03_1106201<br>4 | 26T_052120<br>15 | 01_1112201<br>5 | 26T_111220<br>15 | 29D_060320<br>14 | 29D_110620<br>14 | 29D_052120<br>15 | 30P_110320<br>14 | 30P_052020<br>15 | 30R_060320<br>14 |
| Method Group      | Analyte                 | Background | Type 3 RRS | Type 4 RRS | Units     | Result           | Result    | Result           | Result           | Result           | Result           | Result           | Result           | Result           | Result           | Result          | Result           | Result          | Result           | Result           | Result           | Result           | Result           | Result           | Result           |
|                   | ACENAPHTHENE            | 1          | 2000       |            | ug/L      | 9.8 U            | NA               | NA               | NA               | 9.7 U            | NA               | NA               | NA               | 9.8 U            | NA               | NA        | NA               | NA               | NA               | NA               | 10 U             | NA               | 9.8 U            | NA               | NA              | NA               | NA              | NA               | 9.7 U            | NA               | NA               | NA               | NA               | 9.8 U            |
|                   | ACENAPHTHYLENE          | 1.4        | 1          | 510        | ug/L      | 9.8 ∪*           | NA               | NA               | NA               | 9.7 U*           | NA               | NA               | NA               | 9.8 U            | NA               | NA        | NA               | NA               | NA               | NA               | 10 U             | NA               | 9.8 U⁴           | NA               | NA              | NA               | NA              | NA               | 9.7 U            | NA               | NA               | NA               | NA               | 9.8 U            |
|                   | ANTHRACENE              | 0.2        | 0.2        | 5100       | ug/L      | 9.8 U            | NA               | NA               | NA               | 9.7 U            | NA               | NA               | NA               | 9.8 U            | NA               | NA        | NA               | NA               | NA               | NA               | 10 U             | NA               | 9.8 U            | NA               | NA              | NA               | NA              | NA               | 9.7 U            | NA               | NA               | NA               | NA               | 9.8 U            |
|                   | BENZO(A)ANTHRACENE      | 0.2        | 0.1        | 3.9        | ug/L      | 9.8 U            | NA               | NA               | NA               | 9.7 U            | NA               | NA               | NA               | 9.8 U            | NA               | NA        | NA               | NA               | NA               | NA               | 10 U             | NA               | 9.8 U            | NA               | NA              | NA               | NA              | NA               | 9.7 U            | NA               | NA               | NA               | NA               | 9.8 U            |
|                   | BENZO(A)PYRENE          | 0.2        | 0.2        | 0.39       | ug/L      | 9.8 U            | NA               | NA               | NA               | 9.7 U            | NA               | NA               | NA               | 9.8 U            | NA               | NA        | NA               | NA               | NA               | NA               | 10 U             | NA               | 9.8 U            | NA               | NA              | NA               | NA              | NA               | 9.7 U            | NA               | NA               | NA               | NA               | 9.8 U            |
|                   | BENZO(B)FLUORANTHENE    | 0.2        | 0.2        | 0.65       | ug/L      | 9.8 U            | NA               | NA               | NA               | 9.7 U            | NA               | NA               | NA               | 9.8 U            | NA               | NA        | NA               | NA               | NA               | NA               | 10 U             | NA               | 9.8 U            | NA               | NA              | NA               | NA              | NA               | 9.7 U            | NA               | NA               | NA               | NA               | 9.8 U            |
|                   | BENZO(G,H,I)PERYLENE    |            |            |            | ug/L      | 9.8 U            | NA               | NA               | NA               | 9.7 U            | NA               | NA               | NA               | 9.8 U            | NA               | NA        | NA               | NA               | NA               | NA               | 10 U             | NA               | 9.8 U            | NA               | NA              | NA               | NA              | NA               | 9.7 U            | NA               | NA               | NA               | NA               | 9.8 U            |
|                   | BENZO(K)FLUORANTHENE    |            |            |            | ug/L      | 9.8 U            | NA               | NA               | NA               | 9.7 U            | NA               | NA               | NA               | 9.8 U            | NA               | NA        | NA               | NA               | NA               | NA               | 10 U             | NA               | 9.8 U            | NA               | NA              | NA               | NA              | NA               | 9.7 U            | NA               | NA               | NA               | NA               | 9.8 U            |
|                   | CHRYSENE                | 0.2        | 0.2        | 65         | ug/L      | 9.8 U            | NA               | NA               | NA               | 9.7 U            | NA               | NA               | NA               | 9.8 U            | NA               | NA        | NA               | NA               | NA               | NA               | 10 U             | NA               | 9.8 U            | NA               | NA              | NA               | NA              | NA               | 9.7 U            | NA               | NA               | NA               | NA               | 9.8 U            |
| PAHs              | DIBENZO(A,H)ANTHRACENE  |            | 0.3        |            | ug/L      | 9.8 U            | NA               | NA               | NA               | 9.7 U            | NA               | NA               | NA               | 9.8 U            | NA               | NA        | NA               | NA               | NA               | NA               | 10 U             | NA               | 9.8 U            | NA               | NA              | NA               | NA              | NA               | 9.7 U            | NA               | NA               | NA               | NA               | 9.8 U            |
|                   | FLUORANTHENE            | 0.5        | 1000       |            | ug/L      | 9.8 U            | NA               | NA               | NA               | 9.7 U            | NA               | NA               | NA               | 9.8 U            | NA               | NA        | NA               | NA               | NA               | NA               | 10 U             | NA               | 9.8 U            | NA               | NA              | NA               | NA              | NA               | 9.7 U            | NA               | NA               | NA               | NA               | 9.8 U            |
|                   | FLUORENE                | 0.5        | 1000       |            | ug/L      | 9.8 U            | NA               | NA               | NA               | 9.7 U            | NA               | NA               | NA               | 9.8 U            | NA               | NA        | NA               | NA               | NA               | NA               | 10 U             | NA               | 9.8 U            | NA               | NA              | NA               | NA              | NA               | 9.7 U            | NA               | NA               | NA               | NA               | 9.8 U            |
|                   | INDENO(1,2,3-CD)PYRENE  |            | 0.4        |            | ug/L      | 9.8 U            | NA               | NA               | NA               | 9.7 U            | NA               | NA               | NA               | 9.8 U            | NA               | NA        | NA               | NA               | NA               | NA               | 10 U             | NA               | 9.8 U            | NA               | NA              | NA               | NA              | NA               | 9.7 U            | NA               | NA               | NA               | NA               | 9.8 U            |
|                   | 1-METHYLNAPHTHALENE     |            |            |            | ug/L      | 9.8 U            | NA               | NA               | NA               | 9.7 U            | NA               | NA               | NA               | 9.8 U            | NA               | NA        | NA               | NA               | NA               | NA               | 10 U             | NA               | 9.8 U            | NA               | NA              | NA               | NA              | NA               | 9.7 U            | NA               | NA               | NA               | NA               | 9.8 U            |
|                   | 2-METHYLNAPHTHALENE     |            |            |            | ug/L      | 9.8 U            | NA               | NA               | NA               | 9.7 U            | NA               | NA               | NA               | 9.8 U            | NA               | NA        | NA               | NA               | NA               | NA               | 10 U             | NA               | 9.8 U            | NA               | NA              | NA               | NA              | NA               | 9.7 U            | NA               | NA               | NA               | NA               | 9.8 U            |
|                   | NAPHTHALENE             | 1          | 20         | 20         | ug/L      | 9.8 U            | NA               | NA               | NA               | 9.7 U            | NA               | NA               | NA               | 9.8 U            | NA               | NA        | NA               | NA               | NA               | NA               | 10 U             | NA               | 9.8 U            | NA               | NA              | NA               | NA              | NA               | 9.7 U            | NA               | NA               | NA               | NA               | 9.8 U            |
|                   | PHENANTHRENE            | 0.22       | 0.2        | 510        | ug/L      | 9.8 U            | NA               | NA               | NA               | 9.7 U            | NA               | NA               | NA               | 9.8 U            | NA               | NA        | NA               | NA               | NA               | NA               | 10 U             | NA               | 9.8 U            | NA               | NA              | NA               | NA              | NA               | 9.7 U            | NA               | NA               | NA               | NA               | 9.8 U            |
|                   | PYRENE                  | 0.5        | 1000       |            | ug/L      | 9.8 U            | NA               | NA               | NA               | 9.7 U            | NA               | NA               | NA               | 9.8 U            | NA               | NA        | NA               | NA               | NA               | NA               | 10 U             | NA               | 9.8 U            | NA               | NA              | NA               | NA              | NA               | 9.7 U            | NA               | NA               | NA               | NA               | 9.8 U            |
|                   | TOTAL PAHs              |            |            |            | ug/L      | ND               | NA               | NA               | NA               | ND               | NA               | NA               | NA               | ND               | NA               | NA        | NA               | NA               | NA               | NA               | ND               | NA               | ND               | NA               | NA              | NA               | NA              | NA               | ND               | NA               | NA               | NA               | NA               | ND               |
|                   | BENZENE                 | 1          | 5          | 31.2       | ug/L      | 1 U              | NA               | NA               | NA               | 1 U              | NA               | NA               | NA               | 1 U              | NA               | NA        | NA               | NA               | NA               | NA               | 1 U              | NA               | 1 U              | NA               | NA              | NA               | NA              | NA               | 1 U              | NA               | NA               | NA               | NA               | 1 U              |
|                   | ETHYLBENZENE            | 1          | 700        |            | ug/L      | 1 U              | NA               | NA               | NA               | 1 U              | NA               | NA               | NA               | 1 U              | NA               | NA        | NA               | NA               | NA               | NA               | 1 U              | NA               | 1 U              | NA               | NA              | NA               | NA              | NA               | 1 U              | NA               | NA               | NA               | NA               | 1 U              |
|                   | METHYLENE CHLORIDE      |            |            |            | ug/L      | 5 U              | NA               | NA               | NA               | 5 U              | NA               | NA               | NA               | NA               | NA               | NA        | NA               | NA               | NA               | NA               | NA               | NA               | 5 U              | NA               | NA              | NA               | NA              | NA               | NA               | NA               | NA               | NA               | NA               | NA               |
| VOCs              | TOLUENE                 | 1          | 1000       | 1900       | ug/L      | 1 U              | NA               | NA               | NA               | 1 U              | NA               | NA               | NA               | 1 U              | NA               | NA        | NA               | NA               | NA               | NA               | 1 U              | NA               | 1 U              | NA               | NA              | NA               | NA              | NA               | 1 U              | NA               | NA               | NA               | NA               | 1 U              |
|                   | XYLENES (TOTAL)         | 2          | 10000      |            | ug/L      | 2 U              | NA               | NA               | NA               | 2 U              | NA               | NA               | NA               | 2 U              | NA               | NA        | NA               | NA               | NA               | NA               | 2 U              | NA               | 2 U              | NA               | NA              | NA               | NA              | NA               | 2 U              | NA               | NA               | NA               | NA               | 2 U              |
|                   | METHYL TERT BUTYL ETHER |            |            |            | ug/L      | 10 U             | NA               | NA               | NA               | 10 U             | NA               | NA               | NA               | NA               | NA               | NA        | NA               | NA               | NA               | NA               | NA               | NA               | 10 U             | NA               | NA              | NA               | NA              | NA               | NA               | NA               | NA               | NA               | NA               | NA               |
|                   | TOTAL BTEX              |            |            |            | ug/L      | ND               | NA               | NA               | NA               | ND               | NA               | NA               | NA               | ND               | NA               | NA        | NA               | NA               | NA               | NA               | ND               | NA               | ND               | NA               | NA              | NA               | NA              | NA               | ND               | NA               | NA               | NA               | NA               | ND               |
|                   | ARSENIC                 | 0.018      | 0.018      | 0.018      | mg/L      | 0.02 U           | 0.02 U    | 0.02 U           | 0.02 U           | 0.02 U           | 0.02 U           | 0.02 U           | NA               | 0.025            | 0.02 U           | 0.02 U          | 0.025            | 0.02 U          | 0.02 U           | 0.02 U           | 0.02 U           | 0.02 U           | 0.02 U           | 0.02 U           | 0.02 U           |
|                   | CHROMIUM                | 0.013      | 0.1        |            | mg/L      | 0.01 U           | NA               | NA               | NA               | 0.01 U           | NA               | NA               | NA               | 0.01 U           | NA               | NA        | NA               | NA               | NA               | NA               | 0.01 U           | NA               | 0.01 U           | NA               | NA              | NA               | NA              | NA               | 0.01 U           | NA               | NA               | NA               | NA               | 0.01 U           |
| Metals, Total     | LEAD                    | 0.007      | 0.015      | 0.015      | mg/L      | 0.01 U           | 0.01 U           | 0.01 U           | 0.01 U           | 0.021            | 0.033            | 0.01 U           | 0.011            | 0.01 U           | 0.01 U           | 0.01 U    | 0.01 U           | 0.01 U           | 0.01 U           | 0.01 U           | 0.01 U           | 0.01 U           | 0.01 U           | 0.01 U           | 0.01 U          | 0.01 U           | 0.01 U          | 0.01 U           | 0.01 U           | 0.01 U           | 0.01 U           | 0.01 U           | 0.01 U           | 0.01 U           |
|                   | NICKEL                  | 0.13       | 0.1        | 2          | mg/L      | 0.04 U           | 0.04 U    | 0.04 U           | NA               | NA               | NA               | 0.04 U           | NA               | 0.04 U           | NA               | NA              | NA               | NA              | NA               | 0.04 U           | NA               | NA               | NA               | NA               | 0.04 U           |
|                   | ZINC                    | 0.96       | 2          | 31         | mg/L      | 0.02 U           | NA               | NA               | NA               | 0.02 U           | NA               | NA        | NA               | NA               | NA               | NA               | 0.02 U           | NA               | 0.02 U           | NA               | NA              | NA               | NA              | NA               | 0.02 U           | NA               | NA               | NA               | NA               | 0.02 U           |
| Metals, Dissolved | LEAD                    | 0.007      | 0.015      | 0.015      | mg/L      | NA               | NA               | NA               | NA               | NA               | 0.01 U           | NA               | NA               | NA               | NA               | NA        | NA               | NA               | NA               | NA               | NA               | 0.01 U           | NA               | NA               | NA              | NA               | NA              | NA               | NA               | NA               | NA               | NA               | NA               | NA               |
|                   | AMMONIA AS N            | 15         | 30         | 30         | mg/L      | 13               | 12               | 7.3              | 7.9              | 1.9              | 2                | 2.7              | 2.7              | 5.6              | 4.5              | 4.7       | 4.9              | 2.3              | 1.5              | 2.8              | 3.6              | NA               | 600              | 470              | 490             | 550              | 600             | 600              | 11               | 10               | 11               | 2.2              | 2                | 1.6              |
| Miscellaneous     | NITRATE (AS N)          |            | 10         |            | mg/L      | 0.05 U           | 0.05 U           | 0.05 U           | 0.05 U           | 0.21             | 0.05 U           | 0.05 U    | 0.05 U           | 0.05 U           | 0.05 U           | 0.05 U           | 0.11             | NA               | 1.1              | 0.051            | 0.07            | 0.26             | 0.05 U          | 0.05 U           | 0.05 U           | 0.05 U           | 0.05 U           | 0.05 U           | 0.05 U           | 0.05 U           |
|                   | NITRITE (AS N)          |            |            |            | mg/l      | NA               | NA               | 0.05 U           | 0.05 U           | NA               | NA               | 0.05 U           | 0.05 U           | NA               | NA               | 0.05 U    | 0.05 U           | NA               | 0.05 U           | 0.05 U           | NA               | NA               | NA               | NA               | NA              | 0.05 U           | 0.05 U          | 0.05 U           | NA               | NA               | 0.05 U           | NA               | 0.05 U           | NA               |
| SVOCs             | 1,4-DICHLOROBENZENE     |            |            |            | ug/L      | 1 U              | NA               | NA               | NA               | 1 U              | NA               | NA               | NA               | NA               | NA               | NA        | NA               | NA               | NA               | NA               | NA               | NA               | 1 U              | NA               | NA              | NA               | NA              | NA               | NA               | NA               | NA               | NA               | NA               | NA               |

Shaded cell indicates comparison standard used in data evaluation.
Highlighted cell indicates analytical result exceeds comparison criteria.

Bold and italic text indicates analytical result exceeds background value.

ND - No constituents detected above the laboratory minimum detection limit. F1: Indicates MS or MSD recovery is outside of specified limits

J. Indicates constituent was detected at an estimated value.

UH: Indicates sample analyzed outside of specified hold time.

UJ: Indicates constituent was not detected at an estimated value shown.

Monitoring wells MW-3R, PDMW-8R, PDMW-10R, PDMW-11R, PDMW-14TR, PDMW-23T, PDMW-31R, PDMW-32R, PDMW-32P, PDMW-33T, FDMW-33T, FD

12/7/2015 Page 2 of 4

|                   |                         |            |            | L          | ocation:  |                  | PDM\             | W-32R            |                  |          | PDM\      | W-33R2            |                   | PDMW-40R         |          | PDM\             | W-45R            |                  |            | PDM             | IW-46           |                 |                 |                 | PDM             | W-47            |           |           |           |           |                 | PDM             | W-48            |                 |
|-------------------|-------------------------|------------|------------|------------|-----------|------------------|------------------|------------------|------------------|----------|-----------|-------------------|-------------------|------------------|----------|------------------|------------------|------------------|------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------|-----------|-----------|-----------|-----------------|-----------------|-----------------|-----------------|
|                   |                         |            |            | Sam        | ple Date: | 6/4/2014         | 11/6/2014        | 5/19/2015        | 11/11/2015       | 6/4/2014 | 11/4/2014 | 5/20/2015         | 11/11/2015        | 11/5/2014        | 6/3/2014 | 11/3/2014        | 5/20/2015        | 11/11/2015       | 6/4/2014   | 11/3/2014       | 5/20/2015       | 11/11/2015      | 6/4/2014        | 11/4/2014       | 5/20/2015       | 11/11/2015      | 5/25/2016 | 5/25/2016 | 7/25/2016 | 7/25/2016 | 6/4/2014        | 11/4/2014       | 5/19/2015       | 11/11/2015      |
|                   |                         |            |            | Samp       | ole Type: | Normal           | Normal           | Normal           | Normal           | Normal   | Normal    | Normal            | Normal            | Normal           | Normal   | Normal           | Normal           | Normal           | Normal     | Normal          | Normal          | Normal          | Normal          | Normal          | Normal          | Normal          | Normal    | Duplicate | Normal    | Duplicate | Normal          | Normal          | Normal          | Normal          |
|                   |                         |            |            |            | I. ID.    | PDMW-            | PDMW-            | PDMW-            | PDMW-            | PDMW-    | PDMW-     | PDMW-             | PDMW-             | PDMW-            | PDMW-    | PDMW-            | PDMW-            | PDMW-            | PDMW-      | PDMW-           | PDMW-           | PDMW-           | PDMW-           | PDMW-           | PDMW-           | PDMW-           |           |           |           |           | PDMW-           | PDMW-           | PDMW-           | PDMW-           |
|                   |                         |            |            | - Sa       | impie iu: | 32R_060420<br>14 | 32R_110620<br>14 | 32R_051920<br>15 | 32R_111120<br>15 | 014      |           | 33R2_05202<br>015 | 33R2_11112<br>015 | 40R_110520<br>14 |          | 45R_110320<br>14 | 45R_052020<br>15 | 45R_111120<br>15 | 46_0604201 | 46_1103201<br>4 | 46_0520201<br>5 | 46_1111201<br>5 | 47_0604201<br>4 | 47_1104201<br>4 | 47_0520201<br>5 | 47_1111201<br>5 | PDMW-47   | PDMW-47   | PDMW-47   | PDMW-47   | 48_0604201<br>4 | 48_1104201<br>4 | 48_0519201<br>5 | 48_1111201<br>5 |
| Method Group      | Analyte                 | Background | Type 3 RRS | Type 4 RRS | Units     | Result           | Result           | Result           | Result           | Result   | Result    | Result            | Result            | Result           | Result   | Result           | Result           | Result           | Result     | Result          | Result          | Result          | Result          | Result          | Result          | Result          | Result    | Result    | Result    | Result    | Result          | Result          | Result          | Result          |
|                   | ACENAPHTHENE            | 1          | 2000       |            | ug/L      | 9.9 U            | NA               | NA               | NA               | 9.7 U    | NA        | NA                | NA                | 10 U             | 9.4 UH   | NA               | NA               | NA               | 9.6 U      | NA              | NA              | NA              | 9.6 U           | NA              | NA              | NA              | NA        | NA        | NA        | NA        | NA              | 9.8 U           | NA              | NA              |
|                   | ACENAPHTHYLENE          | 1.4        | 1          | 510        | ug/L      | 9.9 U            | NA               | NA               | NA               | 9.7 U    | NA        | NA                | NA                | 10 U             | 9.4 UH   | NA               | NA               | NA               | 9.6 U      | NA              | NA              | NA              | 9.6 U           | NA              | NA              | NA              | NA        | NA        | NA        | NA        | NA              | 9.8 U           | NA              | NA              |
|                   | ANTHRACENE              | 0.2        | 0.2        | 5100       | ug/L      | 9.9 U            | NA               | NA               | NA               | 9.7 U    | NA        | NA                | NA                | 10 U             | 9.4 UH   | NA               | NA               | NA               | 9.6 U      | NA              | NA              | NA              | 9.6 U           | NA              | NA              | NA              | NA        | NA        | NA        | NA        | NA              | 9.8 U           | NA              | NA              |
|                   | BENZO(A)ANTHRACENE      | 0.2        | 0.1        | 3.9        | ug/L      | 9.9 U            | NA               | NA               | NA               | 9.7 U    | NA        | NA                | NA                | 10 U             | 9.4 UH   | NA               | NA               | NA               | 9.6 U      | NA              | NA              | NA              | 9.6 U           | NA              | NA              | NA              | NA        | NA        | NA        | NA        | NA              | 9.8 U           | NA              | NA              |
|                   | BENZO(A)PYRENE          | 0.2        | 0.2        | 0.39       | ug/L      | 9.9 U            | NA               | NA               | NA               | 9.7 U    | NA        | NA                | NA                | 10 U             | 9.4 UH   | NA               | NA               | NA               | 9.6 U      | NA              | NA              | NA              | 9.6 U           | NA              | NA              | NA              | NA        | NA        | NA        | NA        | NA              | 9.8 U           | NA              | NA              |
|                   | BENZO(B)FLUORANTHENE    | 0.2        | 0.2        | 0.65       | ug/L      | 9.9 U            | NA               | NA               | NA               | 9.7 U    | NA        | NA                | NA                | 10 U             | 9.4 UH   | NA               | NA               | NA               | 9.6 U      | NA              | NA              | NA              | 9.6 U           | NA              | NA              | NA              | NA        | NA        | NA        | NA        | NA              | 9.8 U           | NA              | NA              |
|                   | BENZO(G,H,I)PERYLENE    |            |            |            | ug/L      | 9.9 U            | NA               | NA               | NA               | 9.7 U    | NA        | NA                | NA                | 10 U             | 9.4 UH   | NA               | NA               | NA               | 9.6 U      | NA              | NA              | NA              | 9.6 U           | NA              | NA              | NA              | NA        | NA        | NA        | NA        | NA              | 9.8 U           | NA              | NA              |
|                   | BENZO(K)FLUORANTHENE    |            |            |            | ug/L      | 9.9 U            | NA               | NA               | NA               | 9.7 U    | NA        | NA                | NA                | 10 U             | 9.4 UH   | NA               | NA               | NA               | 9.6 U      | NA              | NA              | NA              | 9.6 U           | NA              | NA              | NA              | NA        | NA        | NA        | NA        | NA              | 9.8 U           | NA              | NA              |
|                   | CHRYSENE                | 0.2        | 0.2        | 65         | ug/L      | 9.9 U            | NA               | NA               | NA               | 9.7 U    | NA        | NA                | NA                | 10 U             | 9.4 UH   | NA               | NA               | NA               | 9.6 U      | NA              | NA              | NA              | 9.6 U           | NA              | NA              | NA              | NA        | NA        | NA        | NA        | NA              | 9.8 U           | NA              | NA              |
| PAHs              | DIBENZO(A,H)ANTHRACENE  |            | 0.3        |            | ug/L      | 9.9 U            | NA               | NA               | NA               | 9.7 U    | NA        | NA                | NA                | 10 U             | 9.4 UH   | NA               | NA               | NA               | 9.6 U      | NA              | NA              | NA              | 9.6 U           | NA              | NA              | NA              | NA        | NA        | NA        | NA        | NA              | 9.8 U           | NA              | NA              |
|                   | FLUORANTHENE            | 0.5        | 1000       |            | ug/L      | 9.9 U            | NA               | NA               | NA               | 9.7 U    | NA        | NA                | NA                | 10 U             | 9.4 UH   | NA               | NA               | NA               | 9.6 U      | NA              | NA              | NA              | 9.6 U           | NA              | NA              | NA              | NA        | NA        | NA        | NA        | NA              | 9.8 U           | NA              | NA              |
|                   | FLUORENE                | 0.5        | 1000       |            | ug/L      | 9.9 U            | NA               | NA               | NA               | 9.7 U    | NA        | NA                | NA                | 10 U             | 9.4 UH   | NA               | NA               | NA               | 9.6 U      | NA              | NA              | NA              | 9.6 U           | NA              | NA              | NA              | NA        | NA        | NA        | NA        | NA              | 9.8 U           | NA              | NA              |
|                   | INDENO(1,2,3-CD)PYRENE  |            | 0.4        |            | ug/L      | 9.9 U            | NA               | NA               | NA               | 9.7 U    | NA        | NA                | NA                | 10 U             | 9.4 UH   | NA               | NA               | NA               | 9.6 U      | NA              | NA              | NA              | 9.6 U           | NA              | NA              | NA              | NA        | NA        | NA        | NA        | NA              | 9.8 U           | NA              | NA              |
|                   | 1-METHYLNAPHTHALENE     |            |            |            | ug/L      | 9.9 U            | NA               | NA               | NA               | 9.7 U    | NA        | NA                | NA                | 10 U             | 9.4 UH   | NA               | NA               | NA               | 9.6 U      | NA              | NA              | NA              | 9.6 U           | NA              | NA              | NA              | NA        | NA        | NA        | NA        | NA              | 9.8 U           | NA              | NA              |
|                   | 2-METHYLNAPHTHALENE     |            |            |            | ug/L      | 9.9 U            | NA               | NA               | NA               | 9.7 U    | NA        | NA                | NA                | 10 U             | 9.4 UH   | NA               | NA               | NA               | 9.6 U      | NA              | NA              | NA              | 9.6 U           | NA              | NA              | NA              | NA        | NA        | NA        | NA        | NA              | 9.8 U           | NA              | NA              |
|                   | NAPHTHALENE             | 1          | 20         | 20         | ug/L      | 9.9 U            | NA               | NA               | NA               | 9.7 U    | NA        | NA                | NA                | 10 U             | 9.4 UH   | NA               | NA               | NA               | 9.6 U      | NA              | NA              | NA              | 9.6 U           | NA              | NA              | NA              | NA        | NA        | NA        | NA        | NA              | 9.8 U           | NA              | NA              |
|                   | PHENANTHRENE            | 0.22       | 0.2        | 510        | ug/L      | 9.9 U            | NA               | NA               | NA               | 9.7 U    | NA        | NA                | NA                | 10 U             | 9.4 UH   | NA               | NA               | NA               | 9.6 U      | NA              | NA              | NA              | 9.6 U           | NA              | NA              | NA              | NA        | NA        | NA        | NA        | NA              | 9.8 U           | NA              | NA              |
|                   | PYRENE                  | 0.5        | 1000       |            | ug/L      | 9.9 U            | NA               | NA               | NA               | 9.7 U    | NA        | NA                | NA                | 10 U             | 9.4 UH   | NA               | NA               | NA               | 9.6 U      | NA              | NA              | NA              | 9.6 U           | NA              | NA              | NA              | NA        | NA        | NA        | NA        | NA              | 9.8 U           | NA              | NA              |
|                   | TOTAL PAHs              |            |            |            | ug/L      | ND               | NA               | NA               | NA               | ND       | NA        | NA                | NA                | ND               | ND       | NA               | NA               | NA               | ND         | NA              | NA              | NA              | ND              | NA              | NA              | NA              | NA        | NA        | NA        | NA        | NA              | ND              | NA              | NA              |
|                   | BENZENE                 | 1          | 5          | 31.2       | ug/L      | 1 U              | NA               | NA               | NA               | 1 U      | NA        | NA                | NA                | NA               | 1 U      | NA               | NA               | NA               | 1 U        | NA              | NA              | NA              | 1 U             | NA              | NA              | NA              | NA        | NA        | NA        | NA        | NA              | 1 U             | NA              | NA              |
|                   | ETHYLBENZENE            | 1          | 700        |            | ug/L      | 1 U              | NA               | NA               | NA               | 1 U      | NA        | NA                | NA                | NA               | 1 U      | NA               | NA               | NA               | 1 U        | NA              | NA              | NA              | 1 U             | NA              | NA              | NA              | NA        | NA        | NA        | NA        | NA              | 1 U             | NA              | NA              |
|                   | METHYLENE CHLORIDE      |            |            |            | ug/L      | NA               | NA               | NA               | NA               | NA       | NA        | NA                | NA                | NA               | NA       | NA               | NA               | NA               | NA         | NA              | NA              | NA              | NA              | NA              | NA              | NA              | NA        | NA        | NA        | NA        | NA              | NA              | NA              | NA              |
| VOCs              | TOLUENE                 | 1          | 1000       | 1900       | ug/L      | 1 U              | NA               | NA               | NA               | 1 U      | NA        | NA                | NA                | NA               | 1 U      | NA               | NA               | NA               | 1 U        | NA              | NA              | NA              | 1 U             | NA              | NA              | NA              | NA        | NA        | NA        | NA        | NA              | 1 U             | NA              | NA              |
|                   | XYLENES (TOTAL)         | 2          | 10000      |            | ug/L      | 2 U              | NA               | NA               | NA               | 2 U      | NA        | NA                | NA                | NA               | 2 U      | NA               | NA               | NA               | 2 U        | NA              | NA              | NA              | 2 U             | NA              | NA              | NA              | NA        | NA        | NA        | NA        | NA              | 2 U             | NA              | NA              |
|                   | METHYL TERT BUTYL ETHER |            |            |            | ug/L      | NA               | NA               | NA               | NA               | NA       | NA        | NA                | NA                | NA               | NA       | NA               | NA               | NA               | NA         | NA              | NA              | NA              | NA              | NA              | NA              | NA              | NA        | NA        | NA        | NA        | NA              | NA              | NA              | NA              |
|                   | TOTAL BTEX              |            |            |            | ug/L      | ND               | NA               | NA               | NA               | ND       | NA        | NA                | NA                | NA               | ND       | NA               | NA               | NA               | ND         | NA              | NA              | NA              | ND              | NA              | NA              | NA              | NA        | NA        | NA        | NA        | NA              | ND              | NA              | NA              |
|                   | ARSENIC                 | 0.018      | 0.018      | 0.018      | mg/L      | 0.02 U           | 0.02 U           | 0.02 U           | 0.02 U           | 0.02 U   | 0.02 U    | 0.02 U            | 0.02 U            | NA               | 0.02 U   | 0.02 U           | 0.02 U           | 0.02 U           | 0.02 U     | 0.02 U          | 0.02 U          | 0.02 U          | 0.02 U          | 0.02 U          | 0.02 U          | 0.02 U          | NA        | NA        | NA        | NA        | NA              | 0.02 U          | NA              | NA              |
|                   | CHROMIUM                | 0.013      | 0.1        |            | mg/L      | 0.01 U           | NA               | NA               | NA               | 0.01 U   | NA        | NA                | NA                | NA               | 0.01 U   | NA               | NA               | NA               | 0.01 U     | NA              | NA              | NA              | 0.01 U          | NA              | NA              | NA              | NA        | NA        | NA        | NA        | NA              | 0.01 U          | NA              | NA              |
| Metals, Total     | LEAD                    | 0.007      | 0.015      | 0.015      | mg/L      | 0.01 U           | 0.01 U           | 0.01 U           | 0.01 U           | 0.01 U   | 0.01 U    | 0.01 U            | 0.01 U            | NA               | 0.01 U   | 0.01 U           | 0.01 U           | 0.01 U           | 0.01 U     | 0.01 U          | 0.01 U          | 0.01 U          | 0.01 U          | 0.01 U          | 0.01 U          | 0.01            | NA        | NA        | NA        | NA        | NA              | 0.01 U          | NA              | NA              |
|                   | NICKEL                  | 0.13       | 0.1        | 2          | mg/L      | 0.04 U           | 0.04 U           | 0.04 U           | 0.04 U           | 0.04 U   | NA        | NA                | NA                | NA               | 0.04 U   | 0.04 U           | 0.04 U           | 0.04 U           | 0.04 U     | NA              | NA              | NA              | 0.04 U          | NA              | NA              | NA              | NA        | NA        | NA        | NA        | NA              | 0.04 U          | NA              | NA              |
|                   | ZINC                    | 0.96       | 2          | 31         | mg/L      | 0.031            | 0.21             | 0.11             | 0.12             | 0.02 U   | NA        | NA                | NA                | NA               | 0.02 U   | NA               | NA               | NA               | 0.4        | NA              | NA              | NA              | 0.02 U          | NA              | NA              | NA              | NA        | NA        | NA        | NA        | NA              | 0.02 U          | NA              | NA              |
| Metals, Dissolved | LEAD                    | 0.007      | 0.015      | 0.015      | mg/L      | NA               | NA               | NA               | NA               | NA       | NA        | NA                | NA                | NA               | NA       | NA               | NA               | NA               | NA         | NA              | NA              | NA              | NA              | NA              | NA              | NA              | NA        | NA        | NA        | NA        | NA              | NA              | NA              | NA              |
|                   | AMMONIA AS N            | 15         | 30         | 30         | mg/L      | 11               | 7                | 0.7              | 1.3              | 16       | 20        | 14                | 15                | 44               | 8.6      | 4.7              | 3.6              | 0.8              | 2.9        | 2.2             | 0.6             | 1.1             | 72              | 110             | 39              | 39              | 29        | 30        | 19        | 19        | 27              | 22              | 8.5             | 28              |
| Miscellaneous     | NITRATE (AS N)          |            | 10         |            | mg/L      | 0.05 U           | 0.05 U           | 0.05 U           | 0.17             | 0.05 U   | 0.05 U    | 0.05 U            | 0.05 U            | 0.05 U           | 0.05 U   | 0.05 U           | 0.05 U           | 0.05 U           | 0.05 U     | 0.05 U          | 0.05 U          | 0.05 U          | 0.05 U          | 0.05 U          | 0.05 U          | 0.05 U          | NA        | NA        | NA        | NA        | 0.05 U          | 0.05 U          | 0.05 U          | 0.11            |
|                   | NITRITE (AS N)          |            |            |            | mg/l      | NA               | NA               | 0.05 U           | 0.05 U           | NA       | NA        | 0.05 U            | 0.05 U            | NA               | NA       | NA               | 0.05 U           | 0.05 U           | NA         | NA              | 0.05 U          | 0.073           | NA              | NA              | 0.052           | 0.05 U          | NA        | NA        | NA        | NA        | NA              | NA              | 0.19            | 0.11            |
| SVOCs             | 1,4-DICHLOROBENZENE     |            |            |            | ug/L      | NA               | NA               | NA               | NA               | NA       | NA        | NA                | NA                | NA               | NA       | NA               | NA               | NA               | NA         | NA              | NA              | NA              | NA              | NA              | NA              | NA              | NA        | NA        | NA        | NA        | NA              | NA              | NA              | NA              |

Shaded cell indicates comparison standard used in data evaluation.
Highlighted cell indicates analytical result exceeds comparison criteria.

Bold and italic text indicates analytical result exceeds background value.

ND - No constituents detected above the laboratory minimum detection limit. F1: Indicates MS or MSD recovery is outside of specified limits

J. Indicates constituent was detected at an estimated value.

UH: Indicates sample analyzed outside of specified hold time.

UJ: Indicates constituent was not detected at an estimated value shown.

Monitoring wells MW-3R, PDMW-8R, PDMW-10R, PDMW-11R, PDMW-14TR, PDMW-23T, PDMW-31R, PDMW-32R, PDMW-32P, PDMW-33T, FDMW-33T, FD

|                   |                                           |       |            | ı         | Location:    |                     | PDMW-49             |                     |                     | PDMW-50             |                     |                     | PDMW-51             |                     |                     | PDM                | W-52                |                     |                     | PDMW-53             |                     |                    |                |                | TMW-1          |                |                    |                |                    | TMV                | V-4R               |                    | FIEL              | DQC               |
|-------------------|-------------------------------------------|-------|------------|-----------|--------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|--------------------|---------------------|---------------------|---------------------|---------------------|---------------------|--------------------|----------------|----------------|----------------|----------------|--------------------|----------------|--------------------|--------------------|--------------------|--------------------|-------------------|-------------------|
|                   |                                           |       |            | Sam       | ple Date:    | 6/6/2014            | 11/4/2014           | 5/18/2015           | 6/4/2014            | 11/6/2014           | 5/19/2015           | 6/6/2014            | 11/6/2014           | 5/18/2015           | 6/5/2               | 2014               | 11/6/2014           | 5/18/2015           | 11/4/2014           | 5/19/2015           | 11/11/2015          | 6/5/2014           | 11/5/          | 2014           | 5/21/2015      | 5/21/2015      | 11/12/2015         | 11/12/2015     | 6/3/2014           | 11/4/2014          | 5/19/2015          | 11/12/2015         | 6/3/2014          | 11/6/2014         |
|                   |                                           |       |            | Sam       | ple Type:    | Normal              | Dup                | Normal              | Normal              | Normal              | Normal              | Normal              | Normal             | Normal         | Dup            | Dup            | Normal         | Dup                | Normal         | Normal             | Normal             | Normal             | Normal             | Normal            | Normal            |
|                   |                                           |       |            | S         | ample ID:    | PDMW-<br>49 0606201 | PDMW-<br>49 1104201 | PDMW-<br>49_0518201 | PDMW-<br>50_0604201 | PDMW-<br>50 1106201 | PDMW-<br>50_0519201 | PDMW-<br>51_0606201 | PDMW-<br>51 1106201 | PDMW-<br>51_0518201 | PDMW-<br>52_0605201 | DUP-<br>03_0605201 | PDMW-<br>52 1106201 | PDMW-<br>52_0518201 | PDMW-<br>53 1104201 | PDMW-<br>53_0519201 | PDMW-<br>53 1111201 | TMW-<br>01_0605201 | TMW-           | DUP-           | DUP_01_05      |                | DUP-<br>02 1112201 | TMW-           | TMW-<br>4R 0603201 | TMW-<br>4R 1104201 | TMW-<br>4R 0519201 | TMW-<br>4R 1112201 | FB-<br>01_0603201 | FB-<br>01_1106201 |
|                   | T                                         | I     | l          | L         |              | 4                   | 4                   | 5                   | 4                   | 4                   | 5                   | 4                   | 4                   | 5                   | 4                   | 4                  | 4                   | 5                   | 4                   | 5                   | 5                   | 4                  | 1_11052014     | 1_11052014     | 212015         | 12015          | 5                  | 1_11122015     | 4                  | 4                  | 5                  | 5                  | 4                 | 4                 |
| Method Group      | Analyte                                   | -     | Type 3 RRS | Type 4 RR |              | Result              | Result             | Result              | Result              | Result              | Result              | Result              | Result             | Result         | Result         | Result         | Result         | Result             | Result         | Result             | Result             | Result             | Result             | Result            | Result            |
|                   | ACENAPHTHENE  ACENAPHTHYLENE              | 1.4   | 2000       | 510       | ug/L         | NA<br>NA            | NA<br>NA           | NA<br>NA            | NA<br>NA            | NA<br>NA            | NA<br>NA            | NA<br>NA            | 9.8 U*             | 9.7 U<br>9.7 U | 9.8 U<br>9.8 U | 9.9 U<br>9.9 U | 9.7 U<br>9.7 U | 9.7 U<br>9.7 U     | 9.5 U<br>9.5 U | 9.9 U<br>9.9 U     | NA<br>NA           | NA<br>NA           | NA<br>NA           | 9.8 U<br>9.8 U    | 9.6 U<br>9.6 U    |
|                   | ANTHRACENE                                | 0.2   | 0.2        | 5100      | ug/L<br>ug/L | NA<br>NA            | NA<br>NA            | NA<br>NA            | NA<br>NA            | NA<br>NA            | NA<br>NA            | NA NA               | NA NA               | NA<br>NA            | NA NA               | NA<br>NA           | NA<br>NA            | NA<br>NA            | NA<br>NA            | NA<br>NA            | NA<br>NA            | 9.8 U              | 9.7 U          | 9.8 U          | 9.9 U          | 9.7 U          | 9.7 U              | 9.5 U          | 9.9 U              | NA<br>NA           | NA NA              | NA<br>NA           | 9.8 U             | 9.6 U             |
|                   | BENZO(A)ANTHRACENE                        | 0.2   | 0.1        | 3.9       | ug/L         | NA NA               | NA NA              | NA NA               | NA NA               | NA NA               | NA NA               | NA NA               | 9.8 U              | 9.7 U          | 9.8 U          | 9.9 U          | 9.7 U          | 9.7 U              | 9.5 U          | 9.9 U              | NA NA              | NA NA              | NA NA              | 9.8 U             | 9.6 U             |
|                   | BENZO(A)PYRENE                            | 0.2   | 0.1        | 0.39      | ug/L         | NA NA               | NA NA              | NA NA               | NA NA               | NA NA               | NA NA               | NA.                 | 9.8 U              | 9.7 U          | 9.8 U          | 9.9 U          | 9.7 U          | 9.7 U              | 9.5 U          | 9.9 U              | NA NA              | NA NA              | NA NA              | 9.8 U             | 9.6 U             |
|                   | BENZO(B)FLUORANTHENE                      | 0.2   | 0.2        | 0.65      | ug/L         | NA NA               | NA NA              | NA NA               | NA NA               | NA NA               | NA NA               | NA NA               | 9.8 U              | 9.7 U          | 9.8 U          | 9.9 U          | 9.7 U          | 9.7 U              | 9.5 U          | 9.9 U              | NA NA              | NA NA              | NA NA              | 9.8 U             | 9.6 U             |
|                   | * * *                                     | 1     | 0.2        | 0.65      |              |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                    |                     |                     |                     |                     | 1                   | ļ                  |                |                |                |                |                    |                |                    |                    |                    |                    |                   |                   |
|                   | BENZO(G,H,I)PERYLENE BENZO(K)FLUORANTHENE |       |            |           | ug/L         | NA<br>NA            | NA<br>NA           | NA<br>NA            | NA<br>NA            | NA<br>NA            | NA<br>NA            | NA<br>NA            | 9.8 U              | 9.7 U<br>9.7 U | 9.8 U<br>9.8 U | 9.9 U<br>9.9 U | 9.7 U<br>9.7 U | 9.7 U<br>9.7 U     | 9.5 U<br>9.5 U | 9.9 U<br>9.9 U     | NA<br>NA           | NA<br>NA           | NA<br>NA           | 9.8 U<br>9.8 U    | 9.6 U<br>9.6 U    |
|                   | CHRYSENE                                  | 0.2   | 0.2        | 65        | ug/L<br>ug/L | NA<br>NA            | NA<br>NA           | NA<br>NA            | NA<br>NA            | NA<br>NA            | NA<br>NA            | NA<br>NA            | 9.8 U              | 9.7 U          | 9.8 U          | 9.9 U          | 9.7 U          | 9.7 U              | 9.5 U          | 9.9 U              | NA<br>NA           | NA<br>NA           | NA<br>NA           | 9.8 U             | 9.6 U             |
| BALLO             | DIBENZO(A.H)ANTHRACENE                    | 0.2   | 0.2        | 65        |              | NA<br>NA            | NA<br>NA            | NA NA               | NA<br>NA            | NA<br>NA            | NA<br>NA            | NA<br>NA            | NA NA               | NA<br>NA            | NA<br>NA            | NA<br>NA           | NA<br>NA            | NA NA               | NA<br>NA            | NA NA               | NA<br>NA            | 9.8 U              |                |                |                |                |                    |                |                    | NA<br>NA           | NA NA              | NA<br>NA           | 9.8 U             | 9.6 U             |
| FARS              | FLUORANTHENE                              |       | 1000       |           | ug/L         | NA<br>NA            | -                   |                     |                     |                     |                     |                     |                     |                     |                     |                    |                     |                     |                     | NA<br>NA            | NA<br>NA            | 9.8 U              | 9.7 U          | 9.8 U          | 9.9 U          | 9.7 U          | 9.7 U              | 9.5 U          | 9.9 U              | NA<br>NA           | NA<br>NA           | NA<br>NA           | 9.8 U             |                   |
|                   | FLUORANTHENE                              | 0.5   | 1000       |           | ug/L         | NA<br>NA            | NA<br>NA            | NA                  | NA                  | NA                  | NA                  | NA<br>NA            | NA                  | NA                  | NA<br>NA            | NA NA              | NA                  | NA                  | NA<br>NA            |                     | NA<br>NA            | 9.8 U              | 9.7 U          | 9.8 U          | 9.9 U          | 9.7 U          | 9.7 U              | 9.5 U          | 9.9 U              |                    | NA<br>NA           | NA<br>NA           |                   | 9.6 U             |
|                   |                                           | 0.5   |            |           | ug/L         |                     |                     | NA                  | NA                 | NA                  | NA                  | NA                  | NA                  |                     | 9.8 U              | 9.7 U          | 9.8 U          | 9.9 U          | 9.7 U          | 9.7 U              | 9.5 U          | 9.9 U              | NA                 |                    |                    | 9.8 U             | 9.6 U             |
|                   | INDENO(1,2,3-CD)PYRENE                    |       | 0.4        |           | ug/L         | NA                  | NA                 | NA                  | NA                  | NA                  | NA                  | NA                  | 9.8 U              | 9.7 U          | 9.8 U          | 9.9 U          | 9.7 U          | 9.7 U              | 9.5 U          | 9.9 U              | NA                 | NA                 | NA                 | 9.8 U             | 9.6 U             |
|                   | 1-METHYLNAPHTHALENE                       |       |            |           | ug/L         | NA                  | NA                 | NA                  | NA                  | NA                  | NA                  | NA                  | 15                 | 12             | 12             | 11             | 9.7 U          | 11                 | 9.5 U          | 9.9 U              | NA                 | NA                 | NA                 | 9.8 U             | 9.6 U             |
|                   | 2-METHYLNAPHTHALENE                       |       |            |           | ug/L         | NA                  | NA                 | NA                  | NA                  | NA                  | NA                  | NA                  | 15                 | 16             | 16             | 11             | 9.7 U          | 13                 | 9.5 U          | 9.9 U              | NA                 | NA                 | NA                 | 9.8 U             | 9.6 U             |
|                   | NAPHTHALENE                               | 1     | 20         | 20        | ug/L         | NA                  | NA                 | NA                  | NA                  | NA                  | NA                  | NA                  | 39                 | 44             | 40             | 44             | 40             | 63                 | 26 F1          | 9.9 U              | NA                 | NA                 | NA                 | 9.8 U             | 9.6 U             |
|                   | PHENANTHRENE                              | 0.22  | 0.2        | 510       | ug/L         | NA                  | NA                 | NA                  | NA                  | NA                  | NA                  | NA                  | 9.8 U              | 9.7 U          | 9.8 U          | 9.9 U          | 9.7 U          | 9.7 U              | 9.5 U          | 9.9 U              | NA                 | NA                 | NA                 | 9.8 U             | 9.6 U             |
|                   | PYRENE                                    | 0.5   | 1000       |           | ug/L         | NA                  | NA                 | NA                  | NA                  | NA                  | NA                  | NA                  | 9.8 U              | 9.7 U          | 9.8 U          | 9.9 U          | 9.7 U          | 9.7 U              | 9.5 U          | 9.9 U              | NA                 | NA                 | NA                 | 9.8 U             | 9.6 U             |
|                   | TOTAL PAHs                                |       |            |           | ug/L         | NA                  | NA                 | NA                  | NA                  | NA                  | NA                  | NA                  | 69                 | 72             | 68             | 66             | 40             | 87                 | 58             | ND                 | NA                 | NA                 | NA                 | ND                | ND                |
|                   | BENZENE                                   | 1     | 5          | 31.2      | ug/L         | NA                  | NA                 | NA                  | NA                  | NA                  | NA                  | NA                  | 81                 | 80             | 77             | 48             | 47             | 51                 | 52             | 1 U                | NA                 | NA                 | NA                 | 1 U               | 1 U               |
|                   | ETHYLBENZENE                              | 1     | 700        |           | ug/L         | NA                  | NA                 | NA                  | NA                  | NA                  | NA                  | NA                  | 2 U                | 5 U            | 5 U            | 1 U            | 1 U            | 1 U                | 1 U            | 1 U                | NA                 | NA                 | NA                 | 1 U               | 1 U               |
|                   | METHYLENE CHLORIDE                        |       |            |           | ug/L         | NA                  | NA                 | NA                  | NA                  | NA                  | NA                  | NA                  | 10 U               | NA             | NA             | NA             | NA             | NA                 | NA             | NA                 | NA                 | NA                 | NA                 | NA                | NA                |
| VOCs              | TOLUENE                                   | 1     | 1000       | 1900      | ug/L         | NA                  | NA                 | NA                  | NA                  | NA                  | NA                  | NA                  | 2 U                | 5 U            | 5 U            | 1 U            | 1 U            | 1 U                | 1 U            | 1 U                | NA                 | NA                 | NA                 | 1 U               | 1 U               |
|                   | XYLENES (TOTAL)                           | 2     | 10000      |           | ug/L         | NA                  | NA                 | NA                  | NA                  | NA                  | NA                  | NA                  | 250                | 420            | 420            | 120            | 110            | 220                | 220            | 2 U                | NA                 | NA                 | NA                 | 2 U               | 2 U               |
|                   | METHYL TERT BUTYL ETHER                   |       |            |           | ug/L         | NA                  | NA                 | NA                  | NA                  | NA                  | NA                  | NA                  | 20 U               | NA             | NA             | NA             | NA             | NA                 | NA             | NA                 | NA                 | NA                 | NA                 | NA                | NA                |
|                   | TOTAL BTEX                                |       |            |           | ug/L         | NA                  | NA                 | NA                  | NA                  | NA                  | NA                  | NA                  | 331                | 500            | 497            | 168            | 157            | 271                | 272            | ND                 | NA                 | NA                 | NA                 | ND                | ND                |
|                   | ARSENIC                                   | 0.018 | 0.018      | 0.018     | mg/L         | NA                  | NA                 | NA                  | NA                  | NA                  | NA                  | NA                  | 0.095              | 0.13           | 0.15           | 0.14           | 0.16 F1        | 0.12               | 0.15           | 0.02 U             | 0.02 U             | 0.02 U             | 0.02 U             | 0.02 U            | 0.02 U            |
|                   | CHROMIUM                                  | 0.013 | 0.1        |           | mg/L         | NA                  | NA                 | NA                  | NA                  | NA                  | NA                  | NA                  | 0.017              | 0.026          | 0.03           | 0.019          | 0.032          | 0.023              | 0.029          | 0.01 U             | NA                 | NA                 | NA                 | 0.01 U            | 0.01 U            |
| Metals, Total     | LEAD                                      | 0.007 | 0.015      | 0.015     | mg/L         | NA                  | NA                 | NA                  | NA                  | NA                  | NA                  | NA                  | 0.01 U             | 0.01 U         | 0.01 U         | 0.01 U         | 0.01 U         | 0.01 U             | 0.01 U         | 0.01 U             | 0.01 U             | 0.01 U             | 0.01 U             | 0.01 U            | 0.01 U            |
|                   | NICKEL                                    | 0.13  | 0.1        | 2         | mg/L         | NA                  | NA                 | NA                  | NA                  | NA                  | NA                  | NA                  | 0.04 U             | 0.041          | 0.04 U         | 0.04 U         | 0.04 U         | 0.04 U             | 0.04 U         | 0.04 U             | NA                 | NA                 | NA                 | 0.04 U            | 0.04 U            |
|                   | ZINC                                      | 0.96  | 2          | 31        | mg/L         | NA                  | NA                 | NA                  | NA                  | NA                  | NA                  | NA                  | 0.072              | 0.097          | 0.094          | 0.072          | 0.077          | 0.063              | 0.078          | 0.02 U             | NA                 | NA                 | NA                 | 0.02 U            | 0.066             |
| Metals, Dissolved | LEAD                                      | 0.007 | 0.015      | 0.015     | mg/L         | NA                  | NA                 | NA                  | NA                  | NA                  | NA                  | NA                  | NA                 | NA             | NA             | NA             | NA             | NA                 | NA             | NA                 | NA                 | NA                 | NA                 | NA                | NA                |
|                   | AMMONIA AS N                              | 15    | 30         | 30        | mg/L         | 0.42                | 1.7                 | 0.63                | 7.8                 | 7.7                 | 5.9                 | 7                   | 5.7                 | 3                   | 11                  | 8.8                | 0.9                 | 0.58                | 5.5                 | 1.6                 | 3.6                 | 2600               | 3800           | 3900           | 3700           | 4300           | 3400               | 3600 F1        | 6.1                | 7.8                | 6.8                | 3.1                | 0.054             | 0.05 U            |
| Miscellaneous     | NITRATE (AS N)                            |       | 10         |           | mg/L         | 0.05 UH             | 0.05 U              | 0.05 UH             | 0.05 U              | 0.05 U              | 0.05 U              | 0.05 U             | 0.05 U              | 0.05 U              | 0.05 U              | 0.05 U              | 0.05 U              | 170                | 120            | 100            | 280            | 290            | 230                | 250 F1         | 0.05 U             | 0.05 U             | 0.05 U             | 0.05 U             | 0.17              | 0.17              |
|                   | NITRITE (AS N)                            |       |            |           | mg/l         | NA                  | NA                  | 0.05 U              | NA                  | NA                  | 0.088               | NA                  | NA                  | 0.05 U              | NA                  | NA                 | NA                  | 0.05 U              | NA                  | 0.089               | 0.05 U              | NA                 | NA             | NA             | 50 U           | 50 UF1         | 10 U               | 10 U           | NA                 | NA                 | 0.081              | 0.05 U             | NA                | NA                |
| SVOCs             | 1,4-DICHLOROBENZENE                       |       |            |           | ug/L         | NA                  | NA                 | NA                  | NA                  | NA                  | NA                  | NA                  | 2 U                | NA             | NA             | NA             | NA             | NA                 | NA             | NA                 | NA                 | NA                 | NA                 | NA                | NA                |

Shaded cell indicates comparison standard used in data evaluation.
Highlighted cell indicates analytical result exceeds comparison criteria.

Bold and italic text indicates analytical result exceeds background value.

ND - No constituents detected above the laboratory minimum detection limit. F1: Indicates MS or MSD recovery is outside of specified limits

J. Indicates constituent was detected at an estimated value.

UH: Indicates sample analyzed outside of specified hold time.

UJ: Indicates constituent was not detected at an estimated value shown.

Monitoring wells MW-3R, PDMW-8R, PDMW-10R, PDMW-11R, PDMW-14TR, PDMW-23T, PDMW-31R, PDMW-32R, PDMW-32P, PDMW-33T, FDMW-33T, FD

| Fig. 1   Fig. 2   Fig. 3   Fig. 4   Fig. 5   F   |                   |                         |            |            | Locat         | ion:          |        |                |             |                |             |               | EW-1      |                   |            |             |            |           |            |              |             |            |                                                  |                   |               |                  |            |                 |                |           |              | MW-1       |             |                |             |              |             |                 |               |           |              |          |                 |                  |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------|------------|------------|---------------|---------------|--------|----------------|-------------|----------------|-------------|---------------|-----------|-------------------|------------|-------------|------------|-----------|------------|--------------|-------------|------------|--------------------------------------------------|-------------------|---------------|------------------|------------|-----------------|----------------|-----------|--------------|------------|-------------|----------------|-------------|--------------|-------------|-----------------|---------------|-----------|--------------|----------|-----------------|------------------|----------|
| The image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                         |            |            | Sample D      | ate: 4/4/2008 | 7/19/  | 2008 10/8/2    | 12/3/       | 2009 6/19/2    | 2010 12/16  | 6/2010 6/14   | 1/2011 12 | 2/6/2011 12/12/20 | 113 6/4/20 | 14 11/4/201 | 4 5/20/20  | 5/20/2015 | 11/12/2015 | 10/15/1997   | 9/28/1999   | 11/18/1999 | 2/24/2000                                        | 5/16/2000 8/22    | 2000 1/10/2   | 7/12/200         | 1 2/7/20   | 02 9/11/2002    | 2/7/2003       | 6/27/2003 | 3            | 1/30/200   | 7/23/       | 2004 3/7/200   | 06 4/3/2008 | 7/21/200     | 8 10/6/20   | 12/3/2009       | 6/16/2010     | 6/13/2011 | 12/11/2013   | 6/3/201/ | 4               | 11/3/2014 5/20/2 | 2015     |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                         |            |            | Sample Ty     | /pe: Normal   | Nor    | mal Norn       | nal Nor     | mal Norn       | mal No      | rmal No       | rmal N    | Normal Norma      | l Norm     | al Norma    | Dup        | Normal    | Normal     | Normal       | Normal      | Normal     | Normal                                           | Normal No         | nal Norn      | nal Norma        | l Norm     | al Normal       | Normal I       | ormal     | Dup          | Normal     | Dup Nor     | mal Norma      | al Normal   | Normal       | Norm        | al Normal       | Normal        | Normal    | Normal       | Normal   | Dup             | Normal Norm      | nal      |
| The column                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                         |            |            | Sample        | ID: EW-       | EV     | W- EW          | /- EV       | W- EW          | V- E        | W-<br>/16/201 | EW-       | EW- 1 12/12/      | EW-        | EW-         |            | - EW-     | 1 EW-      | MW-          | MW-         | MW-        | MW-                                              |                   | v- M <i>v</i> |                  | MW-        | - MW-           | MW-            | m *** 1 D | MW-          | MW-        | MW-1        | v- MW-         | MW-         | MW-          | MW-         | - MW-           | MW-           | MW-1-     | MW-          | MW-      | DUP-<br>0603201 | MW- MY           | N-       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                         |            |            | Cumpic        | 1_4/4/200     | 1_7/19 | 9/2008 1_10/8/ | 2008 1_12/3 | 3/2009 1_6/19/ | /2010 1-12/ | 1_0           | 61411 1_1 | 12062011          | 4          | 1_110420    | 14 02_0320 | 5         | 1_11122015 | 7            | 1_9/28/1999 | 9          | 1_2/24/2000 1                                    | 1_5/16/2000 1_8/2 | /2000 1_1/10  | 2001 1_7/12/20   | 01 1_2/7/2 | 002 1_9/11/2002 | 1_2/7/2003 1_6 |           | 2003 1       | _1/30/2004 | 2004 1_7/23 | /2004 1_3/7/20 | 1_4/3/200   | 8 1_7/21/20  | 08 1_10/6/2 | 2008 1_12/3/200 | 9 1_6/16/2010 | 061311    | 3            | 4        | 4 1.            | 11032014 1_0520  | 2015     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Method Grou       | o Analyte               | Background | Type 3 RRS | Type 4 RRS Un | its Result    | Res    | sult Resi      | ult Res     | sult Resu      | ult Re      | sult Re       | sult F    | Result Resul      | t Resu     | lt Result   | Resu       | lt Result | Result     | Result       | Result      | Result     | Result                                           | Result Re         | ult Res       | ult Result       | Resu       | lt Result       | Result         | esult F   | Result       | Result     | Result Res  | ult Resul      | lt Result   | Result       | Resu        | lt Result       | Result        | Result    | Result       | Result   | Result          | Result Resu      | ult      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                         | 1          | 2000       | ug            | y/L 0.19 U    | 0.11   |                | _           |                |             | NA            | NA        |                   |            |             | _          |           |            |              |             |            |                                                  | 10 1              | J 1l          | J 1U             | 1 U        |                 | 0.2 U          |           |              |            |             | _              | _           |              | _           |                 |               | NA        |              |          |                 |                  |          |
| *** *** *** *** *** *** *** *** *** **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                         | -          | 1          | 510 ug        | /L 0.19 U     | 0.11   | 9 U 0.19       |             |                |             | NA            | NA        |                   |            |             | _          | _         |            | 1            | -           |            |                                                  |                   | _             |                  | 1 U        |                 |                |           |              |            |             |                |             |              | _           |                 | ++            | NA        |              |          |                 |                  | _        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                         |            | ++         | 5100 ug       | /L 0.19 U     | 0.11   | 9 U 0.19       | _           |                |             | NA            | NA        |                   |            |             | _          | _         |            | 1            |             |            |                                                  |                   |               |                  |            | _               |                |           |              |            |             |                |             |              |             |                 |               | NA        |              |          |                 |                  | _        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                         |            |            | 0.39 05       | VL 0.19 U     | 0.11   | 9 U 0.19       | _           |                |             | NA<br>NA      | NA<br>NA  |                   | _          |             | _          | _         |            | 1            | -           |            |                                                  | 0.2 U 0.3         |               |                  | _          |                 |                |           |              | _          |             |                | 0.19 U      |              | 19 U        |                 |               | NA<br>NA  |              |          |                 |                  | _        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                         | -          | 1          | 0.65 us       | /L 0.19 U     | 0.1    | 9 U 0.19       |             |                |             | NA NA         | NA.       |                   |            |             | _          | _         |            | _            | -           |            | 1 1                                              | 0.2 U 0.1         |               |                  |            |                 |                |           |              |            |             |                | 0.19 U      |              | 19 U        | _               | +             | NA.       |              |          |                 |                  | A .      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                         |            |            | ug            | /L 0.19 U     | 0.11   | 9 U 0.19       |             |                |             | NA            | NA        |                   |            |             | NA         | _         | NA         | _            | NA NA       |            | <del>                                     </del> | NA N              | NA NA         | . NA             | NA.        | 0.2 U           | 0.2 U          | 0.2 U     | 0.2 U        | _          |             |                | 0.19 U      |              | _           |                 | ++            | NA        |              |          |                 | NA N             | A        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | BENZO(K)FLUORANTHENE    |            |            | ug            | /L 0.19 U     | 0.11   | 9 U 0.19       | U 0.11      | 9 U 1.9 L      | uJ 1        | NA            | NA        | NA 9.2 U          | 10 L       | NA.         | NA         | NA        | NA         | 0.5 U        | NA          | NA         | NA                                               | NA N              | NA NA         | . NA             | NA         | 0.2 U           | 0.2 U          | 0.2 U     | 0.2 U        | 0.2 U      | 0.2 U 0.2   | U 1 U          | 0.19 U      | 0.19 U       | 19 U        | 0.19 U          | 0.19 U        | NA        | 10 U         | 9.5 U    | 9.6 U           | NA N             | A        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | CHRYSENE                | 0.2        | 0.2        | 65 ug         | /L 0.19 U     | 0.11   | 9 U 0.19       | U 0.11      | 9 U 1.9 L      | uJ 1        | NA            | NA        | NA 9.2 U          | 10 L       | NA.         | NA         | NA        | NA         | 0.2 U        | NA          | 0.2 U      | 0.2 U                                            | 0.2 U 0.:         | U 0.2         | U 0.2 U          | 0.2 U      | J 0.2 U         | 0.2 U          | ).2 U     | 0.2 U        | 0.2 U      | 0.2 U 0.2   | U 1 U          | 0.19 U      | 0.19 U       | 19 U        | 0.19 U          | 0.23          | NA        | 10 U         | 9.5 U    | 9.6 U           | NA N             | A        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PAHs              | DIBENZO(A,H)ANTHRACENE  |            | 0.3        | ug            | /L 0.19 U     | 0.11   | 9 U 0.19       | U 0.11      | 9 U 1.9 L      | u u         | NA            | NA        | NA 9.2 U          | 10 L       | NA.         | NA         | NA        | NA         | 1 U          | NA          | NA         | NA                                               | NA N              | NA NA         | NA NA            | NA         | 0.2 U           | 0.2 U          | 0.2 U     | 0.2 U        | 0.2 U      | 0.2 U 0.2   | U 1 U          | 0.19 U      | 0.19 U       | 19 U        | 0.19 U          | 0.19 U        | NA        | 10 U         | 9.5 U    | 9.6 U           | NA NA            |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | FLUORANTHENE            |            |            | ug            | /L 0.19 U     | 0.19   | 9 U 0.19       |             |                | uJ 1        | NA            | NA        |                   |            |             | _          |           |            |              |             |            | 0.5 U                                            |                   |               |                  | _          |                 |                |           |              |            |             |                |             | 0.54         | 19 U        |                 | 0.66          | NA        | 10 U         |          |                 |                  |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                         | 0.5        |            | ug            | /L 0.19 U     | 0.11   |                |             |                | _           |               |           |                   | _          | _           | _          | _         |            |              | -           |            | <del>                                     </del> |                   |               |                  |            |                 | -              |           |              |            |             |                | -           |              |             | _               |               |           |              |          |                 |                  | -        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                         |            | 0.4        | ug            | /L 0.19 U     | 0.19   |                |             |                |             |               |           |                   | _          | _           | _          |           |            |              |             |            |                                                  |                   |               |                  |            |                 |                |           |              |            |             |                |             |              | _           | _               |               |           |              |          |                 |                  | _        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                         | +          |            | ug            | VL 0.191      | 0.19   | 9 U 0.19       |             |                |             | NA NA         | NA.       |                   | 10 L       |             |            | _         | NA<br>NA   | +            | NA<br>NA    |            | NA<br>NA                                         | NA h              |               |                  | _          |                 |                |           |              |            |             |                | -           |              | _           |                 | + +           | NA<br>NA  |              |          |                 |                  | A        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                         | 1          | 20         | 20 uc         | VL 0.19 U     | 0.11   | 9 U 0.19       | _           |                |             | NA .          | NA .      |                   | 10 L       |             | _          | _         | NA NA      |              | NA NA       |            | 1.0                                              | 10 1              |               | _                | _          |                 |                |           |              |            |             |                |             |              |             | _               |               | NA NA     |              |          |                 |                  | Α        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                         | 0.22       |            | 510 ug        |               | 0.11   |                | _           |                |             |               |           |                   | _          | _           | _          |           |            | _            |             |            |                                                  |                   |               |                  | _          |                 |                |           |              |            |             |                | _           | _            | _           |                 |               |           |              |          |                 |                  | λ        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | PYRENE                  | 0.5        | 1000       | ug            | /L 0.19 U     | 0.11   | 9 U 0.19       | U 0.11      | 9 U 3.4        | J I         | NA            | NA        | NA 9.2 U          | 10 L       | NA.         | NA         | NA        | NA         | 0.5 U        | NA          | 0.5 U      | 0.5 U                                            | 0.5 U 0.5         | U 0.5         | U 0.5 U          | 0.5 L      | J 0.2 U         | 0.5            | 0.36      | 0.47         | 0.26       | 0.42 0.4    | 1.1            | 0.38        | 0.66         | 19 U        | 0.54            | 1.1           | NA        | 10 U         | 9.5 U    | 9.6 U           | NA N             | 4        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | TOTAL PAHs              |            |            | ug            | /L ND         | N      | ID NO          | ) N         | ID 5.7         | 7 1         | NA            | NA        | NA ND             | ND         | NA          | NA         | NA        | NA         | 0.26         | NA          | 0.22       | ND                                               | ND N              | ) NE          | ) ND             | ND         | ND              | 1.04           | 0.62      | 1.34         | 0.47       | 0.95 0.7    | 2 1.1          | 0.62        | 2.5          | ND          | 1.49            | 3.39          | NA        | ND           | ND       | ND              | NA N             | ,        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | BENZENE                 | 1          | 5          | 31.2 ug       | /L 1 U        | 1      | U 1 L          | J 1         | U 1 U          | JJ 1        | NA            | NA        | NA 1 U            | 1 U        | NA          | NA         | NA        | NA         | 1 U          | 1 U         | 1 U        | 1 U                                              | 10 1              | J 1L          | J 1 U            | 1 U        | 1 U             | 1 U            | 1 U       | 1 U          | 1 U        | 1 U 1       | J 1 U          | 1 U         | 1 U          | 1 U         | 10              | 1 U           | NA        | 1 U          | 1 U      | 1 U             | NA NA            |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                         | 1          | 700        | ug            | /L 1 U        | 1      | U 1 L          | J 1         | U 1U           | JJ 1        | NA            | NA        | NA 1 U            | 1 U        | _           | _          |           |            | -            |             |            | 1 U                                              | 1 U 1             | J 1 L         | J 1 U            | 1 U        | 1 U             | 1 U            | 1 U       | 1 U          | 1 U        |             | J 1 U          | 1 U         | 1 U          | 1 U         | 1 U             | 1 U           | NA        | 1 U          | 1 U      | 1 U             |                  |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                         |            |            | ug            | /L NA         | N      | IA NA          | N.          | IA NA          | A 1         | NA            | NA        | NA NA             | NA         |             | _          | _         |            |              |             | 1 U        | 1 U                                              | 1 U 1             | J 11          | J 1U             | NA         | NA              | NA .           | NA        | NA           |            |             | A 1U           | NA          | NA           | NA          | NA              | NA.           | NA        | NA           | NA .     | NA              |                  | _        |
| Column                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V/00°             |                         |            |            | ug            | /L NA         | N N    | IA NA          | N.          | IA NA          |             | NA<br>NA      | NA<br>NA  | NA 5U             | NA<br>NA   |             |            | _         |            | -            |             | NA 111     | NA 111                                           | NA N              | NA NA         | NA NA            | NA<br>NA   | NA<br>NA        | NA<br>NA       | NA<br>NA  | NA<br>NA     |            |             | NA NA          | NA<br>NA    | NA<br>NA     | NA<br>NA    | NA<br>NA        | NA NA         | NA<br>NA  | 5 U          | NA NA    | NA<br>NA        |                  | _        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VOCS              |                         | 1          | 1000       | 1900 us       | /L 1U         | 1      | U 1L           | J 1         | U 1U           |             | NA NA         | NA.       | NA 1U             | 1 U        |             | _          |           |            |              |             |            | 1                                                |                   |               | , 10<br>J 10     | 10         | 1 U             | 10             |           | -            |            |             |                |             | 1 U          | 1 U         | 1 U             | 1 U           | NA.       | 1 U          | 1 U      | 1 U             |                  | _        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                         | 2          |            | ug            | /L 2U         | 2      | U 21           | J 2         | U 2U           | JJ N        | NA .          | NA .      | NA 2U             | 2 U        | NA.         | _          | _         |            | -            | -           |            | 1 U                                              | 10 1              | J 11          | J 1U             | 2 U        | 2 U             | 2 U            |           | -            | 2 U        |             | U 2U           | 2 U         | 2 U          | 2 U         | 2 U             | 2 U           | NA .      | 2 U          | 2 U      | 2 U             |                  | _        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | METHYL TERT BUTYL ETHER |            |            | ug            | /L 10 U       | 10     | U NA           | . N         | IA 10 U        | JJ 1        | NA            | NA        | NA 10 U           | NA         | NA          | NA         | NA        | NA         | NA           | NA          | NA         | NA                                               | NA N              | NA NA         | . NA             | NA.        | NA              | NA             | NA        | NA           | NA         | NA N        | A 10 U         | 10 U        | 10 U         | NA          | NA              | 10 U          | NA        | 10 U         | NA .     | NA              | NA NA            | A        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | TOTAL BTEX              |            |            | ug            | /L ND         | N      | ID NE          | ) N         | ID ND          | 1 0         | NA            | NA        | NA ND             | ND         | NA          | NA         | NA        | NA         | ND           | ND          | ND         | ND                                               | ND N              | ) NE          | ) ND             | ND         | ND              | ND             | ND        | ND           | ND         | ND N        | D ND           | ND          | ND           | ND          | ND              | ND            | NA        | ND           | ND       | ND              | NA NA            | A        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | ARSENIC                 | 0.018      | 0.018      | 0.018 mg      | g/L 0.05 U    | 0.00   | 6 U 0.01       | U 0.0       | 2 U 0.02       | 1 U         | NA            | NA        | NA 0.02 L         | 0.02       | U 0.02      | 0.02 (     | U 0.02 U  | 0.02 U     | 0.01 U       | NA          | 0.01 U     | 0.01 U                                           | 0.01 U <b>0</b> . | 2 0.07        | <b>79</b> 0.01 U | 0.01       | U 0.01 U        | 0.01 U         | .01 U     | 0.022        | 0.01 U     | 0.01 U 0.0  | U 0.01 U       | J 0.01 U    | 0.01 U       | 0.01 (      | U 0.02 U        | 0.02 U        | 0.018 U   | 0.02 U       | 0.02 U   | 0.02 U          | 0.02 U 0.02      | U        |
| □ 日本                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   | BERYLLIUM               |            | 0.004      | mg            | g/L NA        | N      | IA NA          | N.          | IA NA          | A 1         | NA            | NA        | NA NA             |            |             | _          | _         |            |              | -           |            | <b>!</b>                                         | NA N              | NA NA         | NA NA            |            |                 | NA             | NA        |              | NA         |             |                | NA          | NA           | NA          | NA              | NA            | NA        | NA           | NA .     | NA              |                  | 1        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | BORON                   |            |            | m             | g/L NA        | N      | IA NA          | N.          | IA NA          | ۱ ۱         | NA            | NA        | NA NA             | NA         | NA.         | NA         | _         |            | 1            |             |            | NA                                               | NA N              | NA NA         | NA NA            | NA         | NA              | NA NA          | NA        |              | NA         |             | A NA           | NA          | NA           | NA          | NA              | NA.           | NA        | NA           | NA .     | NA              |                  | _        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | CALCIUM METAL           |            | 0.005      | m             | yl NA         | N<br>N | IA NA          | N N         | IA NA          | , ,         | NA<br>NA      | NA<br>NA  | NA NA             | NA<br>NA   | NA<br>NA    | NA<br>NA   | _         |            | 1            |             |            | NA<br>NA                                         | NA N              | A NA          | NA NA            | NA<br>NA   | NA<br>NA        | NA<br>NA       | NA<br>NA  |              | NA<br>NA   |             | A NA           | NA<br>NA    | NA<br>NA     | NA<br>NA    | NA<br>NA        | NA<br>NA      | NA<br>NA  | NA<br>NA     | NA NA    | NA<br>NA        |                  | _        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                         | 0.013      | 0.1        | m             | yL 0.05 U     | 0.0    |                |             |                |             | NA NA         | NA.       |                   |            | _           | _          | _         |            |              |             |            | <del>                                     </del> |                   |               | _                |            |                 |                |           |              |            |             |                |             |              |             |                 |               |           |              |          |                 |                  | A .      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Metals, Total     | LEAD                    |            |            | 0.015 mg      | y/L 0.025 U   | 0.0    | 0.05           |             |                | _           | 1.04 0.       | 02 U      |                   |            |             |            | _         |            |              | NA NA       | 0.005 U    | <del>                                     </del> |                   |               |                  | _          |                 |                |           |              |            |             |                |             |              | _           |                 | +             | NA .      |              |          |                 |                  | ı U      |
| 日本日本 日本日本 日本日本 日本日本 日本日本 日本日本 日本日本 日本                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | MAGNESIUM               |            |            | mg            | g/L NA        | N      | IA NA          | N.          | IA NA          | A 1         | NA            | NA        | NA NA             | NA         | NA          | NA         | NA        | NA         | NA           | NA          | NA         | NA                                               | NA N              | NA NA         | . NA             | NA         | NA              | NA             | NA        | NA           | NA         | NA N        | A NA           | NA          | NA           | NA          | NA              | NA.           | NA.       | NA           | NA       | NA              | NA NA            | A        |
| 一种性性性性性性性性性性性性性性性性性性性性性性性性性性性性性性性性性性性性                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | MERCURY                 |            | 0.002      | mg            | g/L NA        | N      | IA NA          | N.          | IA NA          | A 1         | NA            | NA        | NA NA             | NA         | NA          | NA         | NA        | NA         | 0.0002 U     | NA          | NA         | NA                                               | NA N              | NA NA         | . NA             | NA         | NA              | NA             | NA        | NA           | NA         | NA N        | A NA           | NA          | NA           | NA          | NA              | NA.           | NA        | NA           | NA       | NA              | NA NA            | A.       |
| 一种性性性性性性性性性性性性性性性性性性性性性性性性性性性性性性性性性性性性                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | NICKEL                  | 0.13       | 0.1        | 2 mg          | g/L 0.24      | 0.2    | 22 0.2         | 0.0         | 0.12           | 2 1         | NA            | NA        | NA 0.04           | 0.1        | 0.1         | 0.044      | 0.044     | 0.06       | 0.04 U       | NA          | 0.04 U     | 0.04 U                                           | 0.04 U 0.0        | U 0.04        | U 0.04 U         | 0.04       | U 0.04 U        | 0.04 U         | .04 U (   | 0.04 U       | 0.04 U     | 0.04 U 0.04 | U 0.04 U       | J 0.04 U    | 0.04 U       | 0.04 (      | U 0.04 U        | 0.04 U        | NA        | 0.0026       | 0.04 U   | 0.04 U          | NA NA            | ١.       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                         |            |            | mg            | g/L NA        | N      | IA NA          | N.          | IA NA          | A 1         | NA            | NA        |                   |            |             |            | _         |            |              | -           |            |                                                  |                   |               |                  | _          | _               |                |           |              |            |             |                |             | NA           | NA          | NA              | NA            | NA        | NA           | NA .     |                 |                  | _        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | SODIUM                  |            |            | mg            | g/L NA        | N      | IA NA          | N.          | IA NA          | A 1         | NA .          | NA .      |                   |            |             | _          | _         |            |              | -           |            | <b>!</b>                                         |                   |               | _                | _          | _               |                |           |              |            |             |                |             | NA           | NA          | NA              | NA            | NA NA     | NA           | NA       |                 |                  | _        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                 | ARSENIC                 |            | 0,018      | 0.018 mg      |               | _      | -              | J 0.1       | ID 0.75        | , ,         | NA NA         | NA NA     | NA NA             | 0.55<br>NA |             |            | _         |            | U.02 U<br>NA | NA<br>NA    |            |                                                  |                   |               |                  |            | _               |                |           | 0.02 U<br>NA | _          |             |                |             | 0.02 U<br>NA | 0.02 l      | 0.02 U<br>NA    | 0.02 U<br>NA  | NA<br>NA  | 0.02 U<br>NA | 0.02 U   | 0.02 U<br>NA    | NA NA            | <u>-</u> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                         |            |            | mg            |               | +-     |                | N N         | IA NA          | , ,         | NA .          | NA .      | NA NA             | NA NA      |             |            | _         |            | NA NA        | NA NA       |            | 1 1                                              |                   |               |                  |            |                 |                |           | NA           |            |             |                | _           | NA NA        | NA NA       | NA NA           | NA NA         | NA NA     | NA NA        | NA NA    | NA NA           | NA N             | A        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                         |            |            | mg            |               |        | _              | -           |                |             |               |           |                   | _          |             |            | _         | _          |              |             |            |                                                  |                   |               |                  |            | _               | -              |           |              |            |             |                |             | _            |             |                 | NA.           |           |              | NA NA    | NA              |                  | A        |
| EACH   CLOST   |                   | CHROMIUM                | 0.013      |            | mg            | g/L NA        | N      | IA NA          | N.          | IA NA          | A 1         | NA            | NA        | NA NA             | NA         |             |            | _         | NA         | NA           | NA          |            | 0.01 U                                           |                   | U 0.01        | U NA             | NA         | NA              | NA NA          | NA        | NA           | NA         | NA N        | _              | _           | NA           | NA          | NA              | NA.           | NA        | NA           | NA .     | NA              |                  | 4        |
| NCHEL 0.13 0.1 2 mgL NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | metais, Dissolved | LEAD                    | 0.007      | 0.015      | 0.015 mg      | y'L NA        | N      | IA NA          | N.          | IA NA          | Α 1         | NA            | NA        | NA NA             | NA         | NA          | NA         | NA        | NA         | NA           | NA          | 0.005 U    | 0.005 U                                          | NA 0.0            | 5 U NA        | NA NA            | NA         | NA              | NA             | NA        | NA           | NA         | NA N        | A NA           | NA          | NA           | NA          | NA              | NA.           | NA        | NA           | NA       | NA              | NA NA            | ١        |
| 2NC 0.96 2 31 mg l NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   | MERCURY                 |            |            | m             | _             |        |                | _           |                |             |               |           |                   | _          |             |            | _         |            | _            |             |            |                                                  |                   | _             | _                |            | _               |                |           |              |            |             | _              | _           |              |             | _               | +             |           |              |          |                 |                  | _        |
| ALFALENITY DTAL (AS CACOS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | NICKEL                  |            | 1 -        |               |               | _      | _              | _           |                |             |               |           |                   | _          |             |            | _         | _          | +            | -           |            | 1                                                |                   | _             | _                | _          | _               |                |           | -            |            |             | _              |             |              | _           | _               | + +           |           |              |          |                 |                  | _        |
| ALCALARITY, TOTAL (AS CACCO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                 | ZINC                    | 0.96       | 2          |               |               | _      |                |             |                |             |               |           |                   | _          | _           |            | _         |            | +            |             |            |                                                  |                   | _             | _                |            | _               |                |           |              |            |             | _              | _           |              |             | _               | +             |           |              |          |                 |                  | _        |
| AMICHAI 15 30 30 mg L 97 41 430 2.5 240 360 530 mg L 97 41 430 2.5 240 360 530 460 160 540 27 27 17 18 17 18 15 24 23 16 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 |                   |                         | 1          |            |               |               | _      |                |             |                |             |               |           |                   |            | _           |            |           |            | +            |             |            |                                                  |                   |               |                  |            | _               |                |           |              | _          |             |                | _           |              | _           | _               | + +           |           |              |          |                 |                  | _        |
| EICARBONATE mgL NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                         | 15         | 30         |               |               |        |                |             |                |             |               |           |                   |            | _           |            | _         |            |              |             |            |                                                  |                   |               | _                | _          |                 |                |           |              |            |             |                | _           | _            | _           |                 | +             |           |              |          |                 |                  | _        |
| Miscellaneus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                         |            |            | mg            |               | _      |                | _           | _              | _           |               |           |                   |            | _           | _          |           |            | _            |             |            |                                                  |                   | NA NA         |                  |            | _               |                |           |              | _          |             |                | _           | NA           | _           |                 | +             |           |              |          |                 |                  | _        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | CARBONATE               |            |            | mg            | g/L NA        | N      | IA NA          | N.          | IA NA          | Α 1         | NA            | NA        | NA NA             | NA         | NA          | NA         | NA        | NA         | NA           | NA          | NA         | NA                                               | NA N              | NA NA         | . NA             | NA         | NA              | NA             | NA        | NA           | NA         | NA N        | A NA           | NA          | NA           | NA          | NA              | NA.           | NA        | NA           | NA NA    | NA              | NA NA            | 4        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Miscellaneous     | CONDUCTIVITY            |            |            | uml           | nos/<br>m NA  | N      | IA NA          | N.          | IA NA          | ۱ ۸         | NA .          | NA        | NA NA             | NA         | NA          | NA         | NA        | NA.        | NA           | NA          | NA         | NA                                               | NA N              | NA NA         | NA NA            | NA         | NA              | NA NA          | NA        | NA .         | NA.        | NA N        | A NA           | NA          | NA           | NA          | NA              | NA.           | NA        | NA           | NA .     | NA              | NA NA            | A        |
| NITRATE (AS N) 10 mg/L NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   | NITRATE (AS N)          | **         | 10         | m             | g/L NA        | N      | IA NA          | N.          | IA NA          | Α 1         | NA .          | NA        | NA 0.044          | 0.05       | U 0.29      | 0.097      | 7 0.063   | 0.05 U     | NA           | NA          | NA         | NA                                               | NA N              | N/            | NA NA            | NA         | NA              | NA             | NA        | NA           | NA         | NA N        | NA NA          | NA          | NA           | NA          | NA              | NA            | NA        | 0.05 U       | 0.05 U   | 0.05 U          | 0.05 U 0.05      | U        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                         |            |            |               |               |        |                |             |                |             |               |           |                   | _          | _           |            |           |            | _            |             |            |                                                  |                   |               |                  |            |                 |                |           |              |            |             |                |             |              |             |                 |               |           |              |          |                 |                  | _        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                         |            |            |               |               | _      |                |             |                |             |               |           |                   |            |             |            | _         |            |              |             |            |                                                  |                   |               |                  |            | _               |                |           |              | _          |             |                | _           |              | _           |                 | ++            |           |              |          |                 |                  | _        |
| SOLDS, TOTAL DISSOLVED mg L NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SVOC*             |                         |            |            |               | _             |        |                | _           |                |             |               |           |                   |            |             |            |           |            |              |             |            |                                                  |                   |               |                  |            |                 |                |           |              |            |             |                |             | _            |             |                 |               |           |              |          |                 |                  |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34008             | ,,-DIONLONOBENZENE      | <u> </u>   |            | ug            | y- INA        | N      | NA NA          | . N         | NA NA          | <u> </u>    |               | nw t      | · 10              | NA         | N/A         | NA         | NA        | N/A        | NA           | NA          | NA         | NA.                                              | ises P            | , NA          | . NA             | N/A        | NA.             | INA            | ***       | AIN.         | INA        | Art N       | , NA           | NA.         | NA           | NA.         | INA             | NA            | ivet      | 10           | TWA .    | INA             | -en NA           |          |

Notes:

| Studed cell indicates comparison standard used in data evaluation.
| Splighted cell indicates comparison standard used in data evaluation.
| Splighted cell indicates analytical result exceeds comparison criteria.
| Rold and falls from indicates analytical result exceeds background value.
| Splighted cell indicates analytical result exceeds background value.
| Splighted cell indicates analytical result exceeds background value.
| Unicidates constituent was not detected above when those in the property of the pro

|               |                               |           |           |                    | Location:         |           |                        |            |                  |                 |               |          |               |           |                |                | MW-2           |                |            |                  |                    |               |                            |               |                      |             |                     |                    |                 |            |                |                        |                       |                          |                           |                  | MW-3R            |                  |                     |                   |                        |                     |              |             |                  |                      |
|---------------|-------------------------------|-----------|-----------|--------------------|-------------------|-----------|------------------------|------------|------------------|-----------------|---------------|----------|---------------|-----------|----------------|----------------|----------------|----------------|------------|------------------|--------------------|---------------|----------------------------|---------------|----------------------|-------------|---------------------|--------------------|-----------------|------------|----------------|------------------------|-----------------------|--------------------------|---------------------------|------------------|------------------|------------------|---------------------|-------------------|------------------------|---------------------|--------------|-------------|------------------|----------------------|
|               |                               |           |           | San                | nple Date: 10/15  | /1997 8/1 | 10/1999 11/17          | 17/1999 2/ | 2/24/2000        | 5/15/2000 8     | /21/2000      | 1/9/2001 | 7/12/2001     | 9/11/2002 | 2/7/2003 6/    | 27/2003        | 1/30/2004      | 7/23/2004      | 3/7/2006   | 4/3/2008         | 7/21/2008          | 10/5/2008     | 12/3/2009                  | 6/17/         | 2010 6/13/2          | 2011 11/4/2 | 2014 5/19           | 9/2015 8/29/2      | 2001 2/7/2      | 9/13/200   | 2 2/6/2003     | 6/26/2003 1/30         | 7/22/2004             | 3/8                      | /2006                     | 4/4/2008         | 7/22/2008        | 10/6/2008        | 12/7/2009 6         | 5/19/2010         | 6/17/2011              | 2/13/2013           | 6/5/2014     | 11/5/2014   | 5/19/20          | 015 11/12/2015       |
|               |                               |           |           | San                | nple Type: Nor    | mal N     | lormal No              | ormal I    | Normal           | Normal I        | Normal        | Normal   | Normal        | Normal    | Normal N       | lormal         | Normal         | Normal         | Normal     | Normal           | Normal             | Normal        | Normal Du                  | p Nor         | mal Norr             | mal Norm    | mal No              | rmal Norr          | mal Norr        | mal Normal | Normal         | Normal Nor             | nal Normal            | No                       | rmal                      | Normal           | Normal           | Normal           | Normal              | Normal            | Normal                 | Normal              | Normal       | Normal Du   | up Norm          | al Normal            |
|               |                               |           |           |                    | M                 | W-        | MW-                    | ww-        | MW-              | MW-             | MW-           | MW-      | MW-           | MW-       | MW-            | MW-            | MW-            | MW-            | MW-        | MW-              | MW-<br>2_7/21/2008 | MW-           | MW-<br>2_12/3/2009 DUP_12  | -2- MY        | w- MW                | /-2- MV     | W- M<br>42014 2_051 | IW- MV             | V- MV           | w- MW-     | MW-            | MW- M                  | /- MW-                | MW-3R                    | MW-3R                     | MW-              | MW-              | MW-              | MW-                 | MW-               | MW-                    | MW-                 | MW-          | MW-         | JP. MW-          | - MW-                |
|               |                               |           |           | •                  | Sample ID: 2_10/1 | 2_8       | MW-<br>8/10/1999 2_11/ |            |                  | 2_5/15/2000 2_6 |               |          |               |           | 2_2/7/2003 2_6 | 5/27/2003 2    | _1/30/2004     | 2_7/23/2004 2_ | _3/7/2006  | 2_4/3/2008       | 2_7/21/2008        | 2_10/5/2008   | 2_12/3/2009 DUP_12         | 2/3/20 2_6/17 | W- MW<br>7/2010 0613 | 311 2_1104  | 42014 2_051         | 192015 3R_8/2<br>1 | 9/200<br>3R_2/7 |            | 3R_2/6/2003    | 3R_6/26/200 3R_1/      | 0/200 3R_7/22/20<br>4 | 00 Filtered_3/8<br>/2006 | 8 Unfiltered_3<br>/8/2006 | 3R_4/4/2008      | 3R_7/22/200<br>8 | 3R_10/6/200<br>8 | 3R_12/7/200 3R<br>9 | R_6/19/201<br>0   | 3R_061711 <sup>3</sup> | R_12/13/20 3R<br>13 | R_0605201 3R |             | 3R_0519<br>52014 | 9201 3R_1112201<br>5 |
| Method (      | oup Analyte                   | te Backg  | ground Ty | pe 3 RRS Type 4 RR | S Units Res       | sult R    | Result Re              | esult I    | Result           | Result          | Result        | Result   | Result        | Result    | Result I       | Result         | Result         | Result         | Result     | Result           | Result             | Result        | Result Res                 | ult Res       | sult Res             | ult Res     | ult Re              | sult Res           | ult Res         | ult Result | Result         | Result Re              | ult Result            | Result                   | Result                    | Result           | Result           | Result           | Result              | Result            | Result                 | Result              | Result       | Result Res  | sult Resu        | ilt Result           |
|               | ACENAPHTHENE                  |           | 1         | 2000               | ug/L 1            | U         | 10 1                   | 1 U        | 1 U              | 1 U             | 1 U           | 1 U      | 1 U           | 0.2 U     | 0.59           | 0.42           | 0.48           | 0.47           | 0.61       | 0.45             | 0.46               | 0.72          | 0.8 0.8                    | 3 0.4         | 45 N/                | A NA        | A N                 | NA 1               | J 1             | U 0.44     | 0.2 U          | 0.2 U 0.2              | U 0.2 U               | 0.2 U                    | 0.21 U                    | 0.19 U           | 0.2 U            | 0.19 U           | 0.19 U              | 0.19 UJ           | NA                     | 9.1 U               | 10 U         | NA P        | IA NA            | NA                   |
|               | ACENAPHTHYLENE                | 1         | 1.4       | 1 510              | ug/L 1            | U         | 1 U 1                  | 1 U        | 1 U              | 1 U             | 1 U           | 1 U      | 1 U           | 0.2 U     | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 0.19 U     | 0.19 U           | 0.19 U             | 0.19 U        | 0.19 U 0.19                | U 0.11        | 9 U N/               | A NA        | A N                 | NA 1               | J 1l            | U 0.2 U    | 0.2 U          | 0.2 U 0.2              | U 0.2 U               | 0.2 U                    | 0.21 U                    | 0.19 U           | 0.2 U            | 0.19 U           | 0.19 U              | 0.19 UJ           | NA                     | 9.1 U               | 10 U*        | NA N        | IA NA            | NA                   |
|               | ANTHRACENE                    | 0         | 0.2       | 0.2 5100           | ug/L 0.2          | U I       | 0.2 U 0.               | ).2 U      | 0.2 U            | 0.2 U           | 0.2 U         | 0.2 U    | 0.2 U         | 0.2 U     | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 0.19 U     | 0.19 U           | 0.19 U             | 0.19 U        | 0.19 U 0.19                | U 0.19        | 9 U N/               | A NA        | A N                 | NA 0.2             | U 0.2           | U 0.2 U    | 0.2 U          | 0.2 U 0.2              | U 0.2 U               | 0.2 U                    | 0.21 U                    | 0.19 U           | 0.2 U            | 0.19 U           | 0.19 U              | 0.19 UJ           | NA                     | 9.1 U               | 10 U         | NA N        | IA NA            | NA                   |
|               | BENZO(A)ANTHRACE!             | ENE 0     | 0.2       | 0.1 3.9            | ug/L 0.2          | U         | 0.2 U 0.               | ).2 U      | 0.2 U            | 0.2 U           | 0.2 U         | 0.2 U    | 0.2 U         | 0.2 U     | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 0.19 U     | 0.19 U           | 0.19 U             | 0.19 U        | 0.19 U 0.19                | U 0.11        | 9 U N/               | A NA        | A N                 | NA <b>0.4</b>      | J 0.2           | U 0.2 U    | 0.2 U          | 0.2 U 0.2              | U 0.2 U               | 0.2 U                    | 0.21 U                    | 0.19 U           | 0.2 U            | 0.19 U           | 0.19 U              | 0.19 UJ           | NA                     | 9.1 U               | 10 U         | NA N        | IA NA            | NA                   |
|               | BENZO(A)PYRENE                | 0         | 0.2       | 0.2 0.39           | ug/L 0.2          | U         | 0.2 U 0.               | ).2 U      | 0.2 U            | 0.2 U           | 0.2 U         | 0.2 U    | 0.2 U         | 0.2 U     | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 0.19 U     | 0.19 U           | 0.19 U             | 0.19 U        | 0.19 U 0.19                | U 0.19        | 9 U N/               | A NA        | A N                 | NA 0.2             | U 0.2           | U 0.2 U    | 0.2 U          | 0.2 U 0.2              | U 0.2 U               | 0.2 U                    | 0.21 U                    | 0.19 U           | 0.2 U            | 0.19 U           | 0.19 U              | 0.19 UJ           | NA                     | 9.1 U               | 10 U         | NA N        | IA NA            | NA                   |
|               | BENZO(B)FLUORANTI-            |           | 0.2       | 0.2 0.65           | _                 |           | 0.2 U 0.               | ).2 U      | 0.2 U            |                 | 0.2 U         | 0.2 U    | 0.2 U         | 0.2 U     |                | 0.2 U          | 0.2 U          | 0.2 U          | 0.19 U     | 0.19 U           | 0.19 U             | 0.19 U        | 0.19 U 0.19                | U 0.19        | 9 U N/               | A NA        | _                   |                    | _               | _          | 0.2 U          | 0.2 U 0.2              |                       | 0.2 U                    | 0.21 U                    | 0.19 U           | 0.2 U            | 0.19 U           | 0.19 U              | 0.19 UJ           | NA                     | 9.1 U               | 10 U         | NA N        |                  | NA                   |
|               | BENZO(G,H,I)PERYLE            |           |           |                    | ug/L 0.5          |           | NA N                   | NA         | NA               |                 | NA            | NA       | NA            | 0.2 U     | <b>.</b>       |                | 0.2 U          | 0.2 U          | 0.19 U     | 0.19 U           | 0.19 U             | 0.19 U        | 0.19 U 0.19                | U 0.11        | 9 U N/               | A NA        | _                   |                    |                 |            | 0.2 U          | 0.2 U 0.2              |                       | 0.2 U                    | 0.21 U                    | 0.19 U           | 0.2 W            | 0.19 U           | 0.19 U              | 0.19 UJ           | NA                     | 9.1 U               | 10 U         | NA N        |                  | NA                   |
|               | BENZO(K)FLUORANTI             |           |           |                    | ug/L 0.5          |           | NA N                   | NA         | NA               |                 | NA            | NA .     | NA            | 0.2 U     |                | 0.2 U          | 0.2 U          | 0.2 U          | 0.19 U     | 0.19 U           | 0.19 U             | 0.19 U        | 0.19 U 0.19                | U 0.11        | 9 U N/               | A NA        |                     |                    |                 |            | 0.2 U          | 0.2 U 0.2              |                       | 0.2 U                    | 0.21 U                    | 0.19 U           | 0.2 U            | 0.19 U           | 0.19 U              | 0.19 UJ           | NA                     | 9.1 U               | 10 U         | NA N        | IA NA            | NA                   |
| DAMO          | DIBENZO(A,H)ANTHRA            |           | 0.2       | 0.2 65             | ug/L 0.2          |           | 0.2 U 0.1              | ).2 U      | 0.2 U            | 0.2 U<br>NA     | 0.2 U<br>NA   | 0.2 U    | 0.2 U<br>NA   | 0.2 U     |                | 0.2 U<br>0.2 U | 0.2 U<br>0.2 U | 0.2 U<br>0.2 U | 0.19 U     | 0.19 U<br>0.19 U | 0.19 U<br>0.19 U   | 0.19 U        | 0.19 U 0.19<br>0.19 U 0.19 | U 0.11        | 9 U N/               | A NA        | _                   |                    |                 | _          | 0.2 U<br>0.2 U | 0.2 U 0.2<br>0.2 U 0.4 |                       | 0.2 U                    | 0.21 U<br>0.21 II         | 0.19 U           | 0.2 U            | 0.19 U           | 0.19 U              | 0.19 UJ           | NA NA                  | 9.1 U<br>9.1 U      | 10 U         | NA N        | IA NA            | NA NA                |
| FARS          | FLUORANTHENE                  |           | 0.5       | 1000               | ug/L 0.5          |           | 0511 0                 | .5 U       | 0.5.11           |                 | 0.5 U         | 0.511    | 0.5 U         | 0.20      |                | 0.2 U          | 0.24           | 0.2 U          | 0.19 0     | 0.19 U           | 0.19 0             | 0.19 0        | 0.19 U 0.19                | U 0.11        | 90 10                | A NA        |                     | NA 0.5             | _               |            | 0.2 U          | 0.2 U 0.2              |                       | 0.20                     | 0.21 0                    | 0.19 0           | 0.20             | 0.19 0           | 0.19 0              | 0.19 03           | NA<br>NA               | 9.1 U               | 10.11        | NA N        | IA NA            | NA<br>NA             |
|               | FLUORENE                      |           | 0.5       | 1000               | ug/L 0.5          |           |                        |            | 0.5 U            |                 | 0.5 U         | 0.5 U    | 0.5 U         | 0.2 U     |                | 0.2 U          | 0.2 U          | 0.2 U          | 0.19 U     | 0.19 U           | 0.19 U             | 0.19 U        | 0.19 U 0.19                | U 0.1         | 9U N/                | A NA        |                     |                    |                 |            | 0.2 U          | 0.2 U 0.2              |                       | 0.2 U                    | 0.21 U                    | 0.19 U           | 0.2 U            | 0.19 U           | 0.19 U              | 0.19 UJ           | NA NA                  | 9.1 U               | 10 U         | NA N        | IA NA            | NA NA                |
|               | INDENO(1,2,3-CD)PYR           |           |           | 0.4                | ug/L 0.5          | iU        | NA N                   | NA.        | NA.              | NA              | NA            | NA.      | NA .          | 0.2 U     | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 0.19 U     | 0.19 U           | 0.19 U             | 0.19 U        | 0.19 U 0.19                | U 0.11        | 9 U N/               | A NA        | A N                 | NA NA              |                 |            | 0.2 U          | 0.2 U 0.2              |                       | 0.2 U                    | 0.21 U                    | 0.19 U           | 0.2 U            | 0.19 U           | 0.19 U              | 0.19 UJ           | NA                     | 9.1 U               | 10 U         | NA !        | IA NA            | NA                   |
|               | 1-METHYLNAPHTHALI             | ENE -     |           |                    | ug/L N            | A         | NA N                   | NA         | NA               | NA              | NA            | NA.      | NA            | 0.2 U     | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 0.19 U     | 0.19 U           | 0.19 U             | 0.19 U        | 0.76 U 0.76                | U 0.3         | 8U N/                | A NA        | A N                 | NA NA              | A NA            | A 0.34     | 0.2 U          | 0.2 U 0.2              |                       | 0.2 U                    | 0.21 U                    | 0.19 U           | 0.2 U            | 0.19 U           | 0.75 U              | 0.38 UJ           | NA                     | 9.1 U               | 10 U         | NA N        | IA NA            | NA                   |
|               | 2-METHYLNAPHTHALE             | ENE -     |           |                    | ug/L N            | A         | NA N                   | NA         | NA               | NA              | NA            | NA       | NA            | 0.2 U     | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 0.19 U     | 0.19 U           | 0.19 U             | 0.19 U        | 0.19 U 0.19                | U 0.19        | 9 U N/               | A NA        | A N                 | NA NA              | A NA            | A 0.24     | 0.2 U          | 0.2 U 0.2              | U 0.2 U               | 0.2 U                    | 0.21 U                    | 0.19 U           | 0.2 U            | 0.19 U           | 0.19 U              | 0.19 UJ           | NA                     | 9.1 U               | 10 U         | NA P        | IA NA            | NA                   |
|               | NAPHTHALENE                   |           | 1         | 20 20              | ug/L 1            | U         | 1 U 1                  | 1 U        | 1 U              | 1 U             | 1 U           | 1 U      | 1 U           | 0.2 U     | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 0.19 U     | 0.19 U           | 0.19 U             | 0.19 U        | 0.19 U 0.19                | U 0.11        | 9 U N/               | A NA        | A N                 | NA 1               | J 1 L           | U 4.1      | 0.2 U          | 0.2 U 0.2              | U 0.2 U               | 0.2 U                    | 0.21 U                    | 0.19 U           | 0.2 U            | 0.19 U           | 0.19 U              | 0.19 UJ           | NA                     | 9.1 U               | 10 U         | NA P        | IA NA            | NA                   |
|               | PHENANTHRENE                  | 0.        | .22       | 0.2 510            | ug/L 0.2          | U         | 0.2 U 0.               | ).2 U      | 0.2 U            | 0.2 U           | 0.2 U         | 0.2 U    | 0.2 U         | 0.2 U     | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 0.19 U     | 0.19 U           | 0.19 U             | 0.19 U        | 0.19 U 0.19                | U 0.1         | 9 U N/               | A NA        | A N                 | NA 0.2             | U 0.2           | U 0.2 U    | 0.2 U          | 0.2 U 0.2              | U 0.2 U               | 0.2 U                    | 0.21 U                    | 0.19 U           | 0.2 U            | 0.19 U           | 0.19 U              | 0.19 UJ           | NA                     | 9.1 U               | 10 U         | NA P        | IA NA            | NA                   |
|               | PYRENE                        | 0         | 0.5       | 1000               | ug/L 0.5          | U         | 0.5 U 0.               | ).5 U      | 0.5 U            | 0.5 U           | 0.5 U         | 0.5 U    | 0.5 U         | 0.2 U     | 0.22           | 0.2 U          | 0.29           | 0.2 U          | 0.19 U     | 0.24 J           | 0.19 U             | 0.19 U        | 0.19 U 0.19                | U 0.11        | 9 U N/               | A NA        | A N                 | NA 0.5             | U 0.5           | U 0.2 U    | 0.2 U          | 0.2 U 0.2              | U 0.2 U               | 0.2 U                    | 0.21 U                    | 0.19 U           | 0.2 U            | 0.19 U           | 0.19 U              | 0.19 UJ           | NA                     | 9.1 U               | 10 U         | NA N        | IA NA            | NA                   |
|               | TOTAL PAHs                    |           |           |                    | ug/L N            | D         | ND N                   | ND         | ND               | ND              | ND            | ND       | ND            | ND        | 0.81           | 0.42           | 1.01           | 0.47           | 0.61       | 0.69             | 0.46               | 0.72          | 0.8 0.8                    | 3 0.4         | 45 N/                | A NA        | A N                 | NA 0.4             | 4 NE            | D 5.32     | ND             | ND N                   | ) ND                  | ND                       | ND                        | ND               | ND               | ND               | ND                  | ND                | NA                     | ND                  | ND           | NA N        | IA NA            | NA                   |
|               | BENZENE                       |           | 1         | 5 31.2             | ug/L 1            | U         | 1 U 1                  | 1 U        | 1 U              | 1 U             | 1 U           | 1 U      | 1 U           | 1 U       | 1 U            | 1 U            | 1 U            | 1 U            | 1 U        | 1 U              | 1 U                | 1 U           | 1U 1U                      | J 1           | U N/                 | A NA        |                     | NA 1 I             | J 1l            | U 1 U      | 1 U            | 1 U 1                  | J 1 U                 | NA                       | 1 U                       | 1 U              | 1 U              | 1 U              | 1 U                 | 1 UJ              | NA                     | 1 U                 | 1 U          | NA N        | IA NA            | NA                   |
|               | ETHYLBENZENE                  |           | 1         | 700                | ug/L 1            | U         | 1 U 1                  | 1 U        | 1 U              | 1 U             | 1 U           | 1 U      | 1 U           | 1 U       | 1 U            | 1 U            | 1 U            | 1 U            | 1 U        | 1 U              | 1 U                | 1 U           | 1U 1U                      | J 1           | U N/                 | A NA        |                     | NA 1               | J 1 L           |            | 1 U            | 1 U 1                  |                       | NA                       | 1 U                       | 1 U              | 1 U              | 1 U              | 1 U                 | 1 UJ              | NA                     | 1 U                 | 1 U          | NA N        | IA NA            |                      |
|               | p/m-XYLENE                    | -         |           |                    | ug/L N            | A         | 10 1                   | 1 U        | 1 U              | 1 U             | 1 U           | 1 U      | 1 U           | NA        | NA NA          | NA             | NA             | NA             | 1 U        | NA               | NA                 | NA            | NA NA                      | N N           | IA N/                |             |                     | NA N               | _               |            | NA             | NA N                   | NA NA                 | NA                       | 1 U                       | NA               | NA               | NA               | NA                  | NA                | NA                     | NA                  | NA           | NA N        |                  | _                    |
| 1100-         | METHYLENE CHLORIE<br>o-XYLENE | IDE -     |           |                    | ug/L N            | Α .       | 5U N                   | NA         | NA<br>1 U        | NA<br>1 U       | NA            | NA       | NA            | NA NA     | NA<br>NA       | NA<br>NA       | NA<br>NA       | NA<br>NA       | NA<br>10 U | NA<br>NA         | NA<br>NA           | NA<br>NA      | NA NA                      | N N           | IA NA                | A NA        |                     | NA NA              | A NA            |            | NA<br>NA       | NA N                   | NA NA                 | NA<br>NA                 | NA<br>10 U                | NA<br>NA         | NA<br>NA         | NA<br>NA         | NA NA               | NA<br>NA          | NA<br>NA               | 5 U<br>NA           | 5 U<br>NA    | NA N        |                  |                      |
| VOCS          | TOLUENE                       |           | 1         | 1000 1900          | ug/L N            |           | 111 1                  | 111        | 10               | 10              | 111           | 111      | 111           | 111       | 111            | 1 U            | 111            | 111            | 111        | 1 U              | 1 U                | 1.II          | 10 10                      | 1 1           | II N                 | A NA        |                     | NA 1               |                 |            | 111            | 1U 1                   | _                     | NA<br>NA                 | 100                       | 111              | 111              | 111              | 111                 | 1111              | NA<br>NA               | 1 U                 | 111          | NA N        |                  |                      |
|               | XYLENES (TOTAL)               |           | 2         | 10000              | ug/L 2            | U         | 10 1                   | 1 U        | 10               | 10              | 1 U           | 10       | 1 U           | 2 U       | 2 U            | 2 U            | 2 U            | 2 U            | 2 U        | 2 U              | 2 U                | 2 U           | 2U 21                      | , .<br>J 2    | U N/                 | A NA        |                     | NA 21              |                 |            | 2 U            | 2U 2                   | J 2 U                 | NA NA                    | 2 U                       | 2 U              | 2 U              | 2 U              | 2 U                 | 2 UJ              | NA NA                  | 2 U                 | 2 U          | NA N        |                  |                      |
|               | METHYL TERT BUTYL             | LETHER -  |           |                    | ug/L N            | A         | NA N                   | NA         | NA               | NA              | NA            | NA.      | NA            | NA        | NA NA          | NA             | NA             | NA.            | 10 U       | 10 U             | 10 U               | NA            | NA NA                      | 10            | U N                  | A NA        | A N                 | NA NA              | A NA            | A NA       | NA             | NA N                   | NA NA                 | NA.                      | 10 U                      | 10 U             | 10 U             | NA               | NA NA               | 10 UJ             | NA.                    | 10 U                | 10 U         | 1 AN        | IA NA            | NA                   |
|               | TOTAL BTEX                    |           |           |                    | ug/L Ni           | D         | ND N                   | ND         | ND               | ND              | ND            | ND       | ND            | ND        | ND             | ND             | ND             | ND             | ND         | ND               | ND                 | ND            | ND NE                      | ) N           | ID N/                | A NA        | A N                 | NA NE              | O NE            | D ND       | ND             | ND N                   | ) ND                  | NA                       | ND                        | ND               | ND               | ND               | ND                  | ND                | NA                     | ND                  | ND           | NA N        | IA NA            | NA                   |
|               | ARSENIC                       | 0.0       | 018       | 0.018 0.018        | mg/L <b>0.0</b>   | 02        | 0.078 0.               | 0.039      | 0.024            | 0.016           | 0.038         | 0.028    | 0.018         | 0.04      | 0.044          | 0.024          | 0.02           | 0.01 U         | 0.01 U     | 0.01 U           | 0.01 U             | 0.01 U        | 0.02 U 0.02                | U 0.00        | 2 U 0.03             | 6 U 0.02    | 2 U 0.0             | 02 U 0.01          | U 0.01          | I U 0.014  | 0.01 U         | 0.01 U 0.0             | U 0.01                | 0.01 U                   | 0.01 U                    | 0.01 U           | 0.01 U           | 0.01 U           | 0.02 U              | 0.02 U            | NA                     | 0.0076              | 0.02 U       | 0.02 U 0.00 | 2 U 0.02 I       | U 0.02 U             |
|               | BERYLLIUM                     |           |           | 0.004              | mg/L 0.00         | 15 U      | NA N                   | NA         | NA               | NA              | NA            | NA       | NA            | NA        | NA             | NA             | NA             | NA             | NA         | NA               | NA                 | NA            | NA NA                      | N N           | IA N/                | A NA        | A N                 | NA N               | A NA            | A NA       | NA             | NA N                   | NA NA                 | NA                       | NA                        | NA               | NA               | NA               | NA                  | NA                | NA                     | NA                  | NA           | NA N        | IA NA            | NA                   |
|               | BORON                         |           |           |                    | mg/L N            | A         | NA N                   | NA         | NA               | NA              | NA            | NA       | NA            | NA        | NA             | NA             | NA             | NA             | NA         | NA               | NA                 | NA            | NA NA                      | N N           | IA N/                | A NA        | A N                 | NA NA              | A NA            | A NA       | NA             | NA N                   | NA NA                 | NA                       | NA                        | NA               | NA               | NA               | NA                  | NA                | NA                     | NA                  | NA           | NA N        | IA NA            | NA                   |
|               | CADMIUM                       |           |           | 0.005              | mg/L 0.00         | 15 U      | NA N                   | NA         | NA               | NA              | NA            | NA       | NA            | NA        | NA NA          | NA             | NA             | NA             | NA         | NA               | NA                 | NA            | NA NA                      | N N           | IA N/                | A NA        | _                   | NA NA              | A NA            |            | NA             | NA N                   | NA NA                 | NA                       | NA                        | NA               | NA               | NA               | NA                  | NA                | NA                     | NA                  | NA           | NA N        | IA NA            | NA                   |
|               | CALCIUM METAL                 |           |           |                    | mg/L N            | A         | NA N                   | NA         | NA               |                 | NA            | NA       | NA            | NA        |                | NA             | NA             | NA             | NA         | NA               | NA                 | NA            | NA NA                      | N N           |                      | A NA        |                     | NA NA              |                 |            | NA             | NA N                   | NA NA                 | NA                       | NA                        | NA               | NA               | NA               | NA                  | NA                | NA                     | NA                  | NA           | NA N        | IA NA            | NA                   |
|               | CHROMIUM                      |           | 013       | 0.1                | mg/L 0.01         |           |                        |            | 0.01 U           |                 | 0.01 U        | 0.01 U   | 0.01 U        | 0.01 U    | <b></b>        | 0.01 U         | 0.01 U         |                | 0.01 U     | 0.01 U           | 0.01 U             | 0.01 U        | 0.01 U 0.01                |               |                      | A NA        |                     | NA 0.01            |                 |            | 0.01 U         | 0.01 U 0.0             |                       | 0.01 U                   | 0.01 U                    | 0.019            | 0.011            | 0.01 U           | 0.01 U              | 0.01 U            | NA                     | 0.0042              | 0.01 U       | NA N        | IA NA            | NA                   |
| Metals, Total | MAGNESIUM                     | 0.1       | 007       | 0.015 0.015        | mg/L 0.00         |           | 0.005 U 0.00           | 005 U (    | 0.005 U          | 0.005 U         | 0.005 U<br>NA | 0.005 U  | 0.005 U<br>NA | 0.005 U   | 0.005 U 0      | 0.005 U        | 0.005 U        | 0.005 U<br>NA  | 0.005 U    | 0.005 U<br>NA    | 0.005 U            | 0.005 U<br>NA | 0.01 U 0.01                | U 0.0         |                      | A 0.01      |                     |                    |                 |            | 0.005 U        | 0.005 U 0.00           | 5 U 0.012             | 0.005 U                  | 0.005 U<br>NA             | 0.01             | 0.005 U          | 0.005 U          | 0.01 U              | 0.01 U            | NA<br>NA               | 0.01 U<br>NA        | 0.01 U       | 0.01 U 0.0  | 0.01 0           | U 0.01               |
|               | MERCURY                       |           |           | 0.002              | mo/L 0.000        | 1211      | NA N                   | NA.        | NA NA            | NA NA           | NA NA         | NA NA    | NA NA         | NA NA     | NA.            | NA NA          | NA.            | NA.            | NA NA      | NA.              | NA NA              | NA NA         | NA NA                      | N N           | IA N                 | A NA        |                     | NA NA              | A N/            |            | NA NA          | NA N                   | NA NA                 | NA NA                    | NA NA                     | NA NA            | NA NA            | NA NA            | NA NA               | NA.               | NA NA                  | NA NA               | NA NA        | NA I        | IA NA            | NA NA                |
|               | NICKEL                        | 0.        | .13       | 0.1 2              | mg/L 0.04         | 4 U (     | 0.04 U 0.0             | .04 U      | 0.04 U           | 0.04 U          | 0.04 U        | 0.04 U   | 0.04 U        | 0.04 U    | 0.04 U         | 0.04 U         | 0.04 U         | 0.04 U         | 0.04 U     | 0.04 U           | 0.04 U             | 0.04 U        | 0.04 U 0.04                | U 0.0         | 4 U N/               | A NA        |                     | NA 0.04            |                 | _          | 0.04 U         | 0.04 U 0.0             | U 0.04 U              | 0.04 U                   | 0.04 U                    | 0.04 U           | 0.04 U           | 0.04 U           | 0.04 U              | 0.04 U            | NA .                   | 0.0097              | 0.04 U       | 0.04 U 0.4  | 4 U 0.04 I       | U 0.04 U             |
|               | POTASSIUM                     |           |           |                    | mg/L N            | A         | NA N                   | NA         | NA               | NA              | NA            | NA       | NA            | NA        | NA NA          | NA             | NA             | NA .           | NA         | NA               | NA                 | NA            | NA NA                      | N N           | IA N/                | A NA        | A N                 | NA N               | A NA            | A NA       | NA             | NA N                   | . NA                  | NA                       | NA                        | NA               | NA               | NA               | NA                  | NA                | NA                     | NA                  | NA           | NA 1        | IA NA            | NA                   |
|               | SODIUM                        |           |           |                    | mg/L N            | A         | NA N                   | NA         | NA               | NA              | NA            | NA       | NA            | NA        | NA .           | NA             | NA             | NA             | NA         | NA               | NA                 | NA            | NA NA                      | N N           | IA N                 | A NA        | A N                 | NA NA              | A NA            | A NA       | NA             | NA N                   | NA NA                 | NA                       | NA                        | NA               | NA               | NA               | NA                  | NA                | NA                     | NA                  | NA           | NA N        | IA NA            | NA                   |
|               | ZINC                          | 0.        | .96       | 2 31               | mg/L 0.00         | 2 U (     | 0.02 U 0.0             | 021 U      | 0.02 U           | 0.02 U          | 0.02 U        | 0.02 U   | 0.046         | 0.02 U    | 0.02 U         | 0.02 U         | 0.02 U         | 0.02 U         | 0.02 U     | 0.02 U           | 0.02 U             | 0.02 U        | 0.02 U 0.02                | U 0.00        | 2U N/                | A NA        | A N                 | NA 0.02            | 2 U 0.02        | 21 0.041   | 0.02 U         | 0.02 U 0.0             | U 0.043               | 0.02 U                   | 0.02 U                    | 0.026            | 0.02 U           | 0.02 U           | 0.02 U              | 0.02 U            | NA                     | 0.01                | 0.02 U       | 0.02 U 0.00 | 2 U 0.089        | 9 0.035              |
|               | ARSENIC                       | 0.1       | 018       | 0.018 0.018        | mg/L N            | A         | NA 0.0                 | .01 U      | 0.01 U           | 0.01 U          | 0.01 U        | 0.01 U   | 0.01 U        | NA        | NA             | NA             | NA             | NA             | NA         | NA               | 0.01 U             | NA            | NA NA                      | N N           | IA N/                | A NA        | A N                 | NA NA              | A NA            | A NA       | NA             | NA N                   | NA NA                 | 0.01 U                   | NA                        | 0.01 U           | 0.01 U           | 0.01 U           | 0.02 U              | 0.01 U            | NA                     | NA                  | NA           | NA N        | IA NA            | NA                   |
|               | BERYLLIUM                     |           | [         | 0.004              | mg/L N            |           | NA N                   | NA         | NA               |                 | NA            | NA       | NA            | NA        |                | NA             | NA             | NA             | NA         | NA               | NA                 | NA            | NA NA                      |               | IA N/                |             |                     | NA NA              |                 |            |                | NA N                   |                       | NA                       | NA                        | NA               | NA               | NA               | NA                  | NA                | NA                     | NA                  | NA           | NA N        |                  | NA                   |
|               | CADMIUM                       | -         |           | 0.005              | mg/L N            |           |                        | NA         | NA               |                 | NA            | NA       | NA            | NA        |                | NA             | NA             | NA             | NA         | NA               | NA                 | NA            | NA NA                      |               |                      |             |                     | NA NA              |                 |            | NA             | NA N                   | _                     | NA                       | NA                        | NA               | NA               | NA               | NA                  | NA                | NA                     | NA                  | NA           | NA N        |                  |                      |
| Metals, Diss  | CHROMIUM                      |           | _         | 0.1                | mg/L N            |           |                        |            | 0.01 U           |                 | NA            | NA       | NA            | NA        |                | NA             | NA             |                | NA         | NA               | 0.01 U             | NA            | NA NA                      | _             | IA N/                | _           | _                   | NA NA              | _               | _          | _              |                        | . NA                  | 0.01 U                   | NA .                      | 0.01 U           | 0.01 U           | 0.01 U           | _                   | 0.01 U            | NA                     | NA                  |              | NA N        | _                |                      |
|               | LEAD                          | 0.0       | 007       | 0.015 0.015        |                   |           |                        |            | 0.005 U          |                 | NA            | NA       | NA<br>NA      | NA NA     |                | NA NA          | NA             |                | NA         | NA               | 0.005 U            | NA NA         | NA NA                      | _             | IA N/                | _           | _                   | NA NA              | _               | _          |                |                        | NA NA                 | 0.005 U                  | NA NA                     | 0.005 U          | 0.005 U          | 0.005 U          | _                   | 0.04 U            | NA                     | NA NA               |              | NA 0.0      |                  |                      |
|               | MERCURY                       | -         | .13       | 0.002              | mg/L N            |           |                        |            | NA<br>0.04 U     |                 | NA<br>NA      | NA<br>NA | NA<br>NA      | NA<br>NA  |                | NA<br>NA       | NA<br>NA       | -              | NA<br>NA   | NA<br>NA         | NA O O A LI        | NA<br>NA      | NA NA                      |               | IA N/                |             | _                   | NA NA              |                 |            |                |                        | NA NA                 | NA OATI                  | NA<br>NA                  | NA O O O O O     | NA<br>0.04 U     | NA O O O O O     | NA O O A LL         | NA<br>0.00E II    | NA<br>NA               | NA<br>NA            | NA<br>NA     | NA N        |                  |                      |
|               | ZINC                          |           | .96       | 2 31               |                   | _         |                        |            | 0.04 U<br>0.02 U |                 | NA<br>NA      | NA<br>NA | 0.02 U        | NA<br>NA  |                | NA<br>NA       | NA<br>NA       |                | NA<br>NA   | NA<br>NA         | 0.04 U<br>0.02 U   | NA<br>NA      | NA NA                      |               | IA N/                | _           |                     | NA NA              |                 |            |                |                        | NA NA                 | 0.04 U<br>0.02 U         | NA<br>NA                  | 0.04 U<br>0.02 U | 0.04 U<br>0.02 U | 0.04 U<br>0.02 U |                     | 0.005 U<br>0.02 U | NA<br>NA               | NA<br>NA            |              | NA N        |                  |                      |
| -             | ALKALINITY                    |           |           |                    | mg/L N            |           |                        | _          | NA NA            |                 | NA NA         | NA NA    | NA            | NA NA     |                | NA NA          | NA.            | -              | NA NA      | NA NA            | NA NA              | NA NA         | NA NA                      | _             | IA N                 |             | _                   | NA NA              | _               |            | _              |                        | NA NA                 | NA                       | NA NA                     | 0.02 G           | NA NA            | NA               | NA NA               | NA NA             | NA NA                  | NA NA               | NA NA        | NA N        |                  |                      |
|               | ALKALINITY, TOTAL (A          | AS CACO3) |           |                    | mg/L N            |           |                        | -          | NA               |                 | NA            | NA.      | NA NA         | NA NA     |                | NA             | NA.            |                | NA NA      | NA.              | NA                 | NA NA         | NA NA                      |               | IA N/                |             | _                   | NA NA              |                 |            | _              |                        | . NA                  | NA NA                    | NA NA                     | NA               | NA               | NA               | NA NA               | NA                | NA                     | NA NA               |              | NA N        |                  |                      |
|               | AMMONIA AS N                  |           | 15        | 30 30              |                   |           | 29 1                   |            | 23               |                 | 19            | 20       | 20            | 27        |                | 18             | 19             | 19             | 6          | 7.1              | 7.1                | 6.3           | 4.7 4.8                    | _             | 8 15                 | _           |                     | 13 3.3             |                 |            | 7.8            |                        | 7.3                   | NA                       | 1.8                       | 0.8              | 0.95             | 0.87             | 1                   | 0.092 J           | 1.1                    | 2.6                 | 3.9          | 6.5 2.      |                  |                      |
|               | BICARBONATE                   |           |           |                    | mg/L N            | A         | NA N                   | NA         | NA               | NA              | NA            | NA       | NA            | NA        | NA .           | NA             | NA             | NA.            | NA         | NA               | NA                 | NA            | NA NA                      | N N           | IA N/                | A NA        | A N                 | NA NA              | A NA            | A NA       | NA             | NA N                   | . NA                  | NA                       | NA                        | NA               | NA               | NA               | NA                  | NA                | NA                     | NA                  | NA           | NA N        | IA NA            | NA NA                |
| Manetter      | CARBONATE                     |           |           |                    | mg/L N            | A         | NA N                   | NA         | NA               | NA              | NA            | NA       | NA            | NA        | NA             | NA             | NA             | NA             | NA         | NA               | NA                 | NA            | NA NA                      | N N           | IA N/                | A NA        | A N                 | NA NA              | A NA            | A NA       | NA             | NA N                   | . NA                  | NA                       | NA                        | NA               | NA               | NA               | NA                  | NA                | NA                     | NA                  | NA           | NA N        | IA NA            | NA                   |
| Miscellaneou  | CONDUCTIVITY                  |           |           |                    | umhos/<br>cm N    | A         | NA N                   | NA         | NA               | NA              | NA            | NA       | NA            | NA        | NA             | NA             | NA             | NA             | NA         | NA               | NA                 | NA            | NA NA                      | N N           | IA N                 | A NA        | A N                 | NA NA              | A NA            | A NA       | NA             |                        | . NA                  | NA                       | NA                        | NA               | NA               | NA               | NA                  | NA                | NA                     | NA                  | NA           | NA N        | IA NA            | NA                   |
|               | NITRATE (AS N)                |           |           | 10                 | mg/L N            | A         | NA N                   | NA         | NA               | NA              | NA            | NA       | NA            | NA        | NA             | NA             | NA             | NA             | NA         | NA               | NA                 | NA            | NA NA                      | N N           | IA N/                | A 0.05      | 5 U 0.0             | 05 U N/            | A NA            | A NA       | NA             | NA N                   | . NA                  | NA                       | NA                        | NA               | NA               | NA               | NA                  | NA                | NA                     | 0.05 U              | 0.05 U       | 0.05 U 0.0  | 5 U 0.05 I       | U 0.056              |
|               | NITRITE (AS N)                |           | [         |                    | mg/l N            |           |                        |            | NA               |                 | NA            | NA       | NA            | NA        |                | NA             | NA             |                | NA         | NA               | NA                 | NA            | NA NA                      | _             | IA N/                | _           | A 0.                |                    | _               | _          |                |                        | NA NA                 | NA                       | NA                        | NA               | NA               | NA               | NA                  | NA                | NA                     | NA                  |              | NA N        |                  |                      |
|               | SULFATE                       | -         |           |                    |                   |           |                        | -          | NA               | -               | NA            | NA       | NA            | NA        |                | NA             | NA             | -              | NA         | NA               | NA                 | NA            | NA NA                      |               | IA N/                |             |                     | NA NA              |                 |            | _              |                        | NA NA                 | NA                       | NA                        | NA               | NA               | NA               | NA                  | NA                | NA                     | NA                  |              | NA N        |                  |                      |
| 01/22         | SOLIDS, TOTAL DISSO           |           |           |                    |                   |           |                        |            | NA NA            |                 | NA            | NA NA    | NA<br>NA      | NA NA     |                | NA             | NA NA          |                | NA NA      | NA NA            | NA NA              | NA NA         | NA NA                      | _             | IA N                 |             |                     | NA NA              | _               |            | _              |                        | NA NA                 | NA NA                    | NA NA                     | NA NA            | NA NA            | NA NA            | NA NA               | NA NA             | NA NA                  | NA                  |              | NA N        |                  |                      |
| SVOCs         | 1,4-DICHLOROBENZE             | :NE       |           |                    | ug/L N            | A         | NA N                   | NA         | NA               | NA              | NA            | NA       | NA            | NA        | NA             | NA             | NA             | NA             | NA         | NA               | NA                 | NA            | NA NA                      | N N           | IA N/                | n NA        | A N                 | NA NA              | N/              | A NA       | NA             | NA N                   | NA NA                 | NA                       | NA                        | NA               | NA               | NA               | NA                  | NA                | NA                     | 1 U                 | 1 U          | NA N        | IA NA            | NA                   |
|               |                               |           |           |                    |                   |           |                        |            |                  |                 |               |          |               |           |                |                |                |                |            |                  |                    |               |                            |               |                      |             |                     |                    |                 |            |                |                        |                       |                          |                           |                  |                  |                  |                     |                   |                        |                     |              |             |                  |                      |

Notes:

Shaded cell indicates comparison standard used in data evaluation.

"gligified cell indicates analytical result exceeds comparison criteria.

Rold and Rolk test indicates analytical result exceeds background value.

In Narac comparison standard backe on the Maximum Containmant Leve (MCL) established by the USEPA National Primary C

No. No constituents detected above the laboratory minimum detection limit.

It indicates constituent was not detected above value shown.

It indicates constituent was not detected at an estimated value.

Us indicates constituent was not detected at an estimated value.

Nonlineing sells MN 31, PDANY 32, PDANY 310, PDANY 128, PDANY 137, PDANY 318, PDA

|                   |                                         |            |            | Locatio         | n:                 |              |              |             |                |                | MW        | V-4               |             |                |                |                |                |                    |                |                    |                |                |                | MW-5           |                |                |                |                |                |                |                    |                    |                    |                    |                    |                    | MW-201             |           |                   |                    |              |                      |              |
|-------------------|-----------------------------------------|------------|------------|-----------------|--------------------|--------------|--------------|-------------|----------------|----------------|-----------|-------------------|-------------|----------------|----------------|----------------|----------------|--------------------|----------------|--------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|-----------|-------------------|--------------------|--------------|----------------------|--------------|
|                   |                                         |            |            | Sample Da       | e: 10/16/19        | 997 8/9/1999 | 11/17/       | 1999 2/23/2 | 5/15/200       | 00 8/21/2000   | 1/9/2     | 2001 7/10/2001    | 9/11/2002   | 2/3/2003       | 6/25/2003      | 1/29/2004      | 7/23/2004      | 10/16/1997         | 8/9/1999       | 11/18/1999         | 2/23/2000      | 5/16/2000      | 8/22/2000      | 1/10/2001      | 7/11/2001      | 9/10/2002      | 2/4/2003       | 6/25/2003      | 1/27/2004      | 7/21/2004      | 3/8/2006           | 4/1/2008           | 7/18/2008          | 10/9/2008          | 12/3/2009          | 6/19/2010          | 12/16/2010         | 6/14/2011 | 12/6/2011         | 12/11/2013         | 6/4/2014 5   | 5/20/2015            | 5/20/2015    |
|                   |                                         |            |            | Sample Typ      | e: Norma           | al Normal    | Norn         | nal Norm    | nal Norma      | l Normal       | Nori      | mal Normal        | Normal      | Normal         | Normal         | Normal         | Normal         | Normal             | Normal         | Normal             | Normal         | Normal         | Normal         | Normal         | Normal         | Normal         | Normal         | Normal         | Normal         | Normal         | Normal             | Normal             | Normal             | Normal             | Normal             | Normal             | Normal             | Normal    | Normal            | Normal             | Normal       | Dup                  | Normal       |
|                   |                                         |            |            | Sample          | MW-<br>D: 4_10/16/ | 100 MW-      | MW<br>4_11/1 |             |                |                | M         |                   | MW-         | MW-            | MW-            | MW-            | MW-            | MW-<br>5_10/16/199 | MW-            | MW-<br>5_11/18/199 | MW-            | MW-<br>201_3/8/200 | MW-<br>201_4/1/200 | MW-<br>201_7/18/20 | MW-<br>201_10/9/20 | MW-<br>201_12/3/20 | MW-<br>201_6/19/20 | MW-<br>201_12/16/2 | MW-201-   | MW-<br>201_120620 | MW-<br>201_12/11/2 | MW-          | DUP-<br>3_0520201 20 | MW-          |
|                   |                                         |            |            | Comple          | 7                  | 4_8/9/199    | 9 4-177      | 4_2/23/     | 2000 4_5/15/20 | 000 4_8/21/200 | 00 4_1/9/ | /2001 4_7/10/2001 | 4_9/11/2002 | 4_2/3/2003     | 4_6/25/2003    | 4_1/29/2004    | 4_7/23/2004    | 7                  | 5_8/9/1999     | 9                  | 5_2/23/2000    | 5_5/16/2000    | 5_8/22/2000    | 5_1/10/2001    | 5_7/11/2001    | 5_9/10/2002    | 5_2/4/2003     | 5_6/25/2003    | 5_1/27/2004    | 5_7/21/2004    | 6                  | 8                  | 08                 | 08                 | 09                 | 10                 | 010                | 061411    | 11                | 013                | 14           | 5                    | 15           |
| Method Group      | Analyte                                 | Background | Type 3 RRS | Type 4 RRS Unit | s Resul            | t Result     | Resi         | ult Resu    | ult Result     | t Result       | Res       | sult Result       | Result      | Result         | Result         | Result         | Result         | Result             | Result         | Result             | Result         | Result         | Result         | Result         | Result         | Result         | Result         | Result         | Result         | Result         | Result             | Result             | Result             | Result             | Result             | Result             | Result             | Result    | Result            | Result             | Result       | Result               | Result       |
|                   | ACENAPHTHENE                            | 1          | 2000       | ug/l            | . 1 U              | 1 U          | 11           |             | J 1U           | 1 U            | 1         | U 1 U             | 0.2 U       | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 1 U                | 1 U            | 1 U                | 1 U            | 1 U            | 1 U            | 1 U            | 1 U            | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 0.19 U             | 0.19 U             | 0.2 U              | 0.19 U             | 0.2 U              | 0.19 W             | NA                 | NA        | NA                | 10 U               | 10 U         | NA                   | NA           |
|                   | ACENAPHTHYLENE                          | 1.4        | 1          | 510 ug/l        | . 1 U              | 1 U          | 11           |             |                |                | 1         |                   | 0.2 U       | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 1 U                | 1 U            | 1 U                | 1 U            | 1 U            | 1 U            | 1 U            | 1 U            | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 0.19 U             | 0.19 U             | 0.2 U              | 0.19 U             | 0.2 U              | 0.19 W             | NA                 | NA.       | NA                | 10 U               | 10 U         | NA                   | NA           |
|                   | ANTHRACENE                              | 0.2        | 0.2        | 5100 ug/l       | . 0.2 U            | _            | 0.2          |             |                |                | 0.2       |                   | 0.2 U       | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U              | 0.2 U          | 0.2 U              | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 0.19 U             | 0.19 U             | 0.2 U              | 0.19 U             | 0.2 U              | 0.19 W<br>0.19 W   | NA<br>NA           | NA        | NA                | 10 U               | 10 U         | NA<br>NA             | NA           |
|                   | BENZO(A)ANTHRACENE<br>BENZO(A)PYRENE    | 0.2        | 0.1        | 0.39 ug/l       | . 0.2 U            |              | 0.2          |             |                |                | 0.2       |                   | 0.2 U       | 0.2 U<br>0.2 U | 0.2 U<br>0.2 U | 0.2 U<br>0.2 U | 0.2 U<br>0.2 U | 0.2 U<br>0.2 U     | 0.2 U<br>0.2 U | 0.2 U<br>0.2 U     | 0.2 U<br>0.2 U | 0.2 U<br>0.2 U | 0.2 U<br>0.2 U | 0.2 U<br>0.2 U | 0.2 U<br>0.2 U | 0.2 U<br>0.2 U | 0.2 U<br>0.2 U | 0.2 U<br>0.2 U | 0.2 U          | 0.2 U<br>0.2 U | 0.19 U<br>0.19 U   | 0.19 U<br>0.19 U   | 0.2 U<br>0.2 U     | 0.19 U<br>0.19 U   | 0.2 U<br>0.2 U     | 0.19 W<br>0.19 W   | NA<br>NA           | NA<br>NA  | NA<br>NA          | 10 U               | 10 U         | NA<br>NA             | NA<br>NA     |
|                   | BENZO(B)FLUORANTHENE                    | 0.2        | 0.2        | 0.65 ug/l       | 0.2 U              | _            | 0.2          |             |                | _              | 0.2       |                   | 0.2 U       | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U              | 0.2 U          | 0.2 U              | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 0.19 U             | 0.19 U             | 0.2 U              | 0.19 U             | 0.2 U              | 0.19 LU            | NA.                | NA.       | NA NA             | 10 U               | 10 U         | NA NA                | NA.          |
|                   | BENZO(G,H,I)PERYLENE                    |            |            | ug/l            | . 0.5 U            | _            | NA NA        |             | _              | NA.            | N.        | _                 | 0.2 U       | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 0.5 U              | NA             | NA.                | NA.            | NA             | NA             | NA.            | NA             | 0.2 U          | 0.19 U             | 0.19 U             | 0.2 U              | 0.19 U             | 0.2 U              | 0.19 W             | NA.                | NA.       | NA                | 10 U               | 10 U         | NA.                  | NA.          |
|                   | BENZO(K)FLUORANTHENE                    |            |            | ug/l            | . 0.5 U            | NA           | NA           | NA NA       | NA NA          | NA             | N/        | IA NA             | 0.2 U       | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 0.5 U              | NA             | NA                 | NA             | NA             | NA             | NA             | NA             | 0.2 U          | 0.19 U             | 0.19 U             | 0.2 U              | 0.19 U             | 0.2 U              | 0.19 UJ            | NA                 | NA        | NA                | 10 U               | 10 U         | NA                   | NA           |
|                   | CHRYSENE                                | 0.2        | 0.2        | 65 ug/l         | . 0.2 U            | 0.2 U        | 0.2          | U 0.2 l     | U 0.2 U        | 0.2 U          | 0.2       | 2 U 0.2 U         | 0.2 U       | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U              | 0.2 U          | 0.2 U              | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 0.19 U             | 0.19 U             | 0.2 U              | 0.19 U             | 0.2 U              | 0.19 UJ            | NA                 | NA        | NA                | 10 U               | 10 U         | NA                   | NA           |
| PAHs              | DIBENZO(A,H)ANTHRACENE                  |            | 0.3        | ug/l            | . 1 U              | NA           | NA           | NA NA       | NA NA          | NA.            | N/        | IA NA             | 0.2 U       | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 1 U                | NA             | NA                 | NA             | NA             | NA             | NA             | NA             | 0.2 U          | 0.19 U             | 0.19 U             | 0.2 U              | 0.19 U             | 0.2 U              | 0.19 W             | NA                 | NA        | NA                | 10 U               | 10 U         | NA                   | NA           |
|                   | FLUORANTHENE                            | 0.5        | 1000       | ug/l            | . 0.5 U            | 0.5 U        | 0.5          | U 0.5 L     | U 0.5 U        | 0.5 U          | 0.5       | 5 U 0.5 U         | 0.2 U       | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 0.5 U              | 0.5 U          | 0.5 U              | 0.5 U          | 0.5 U          | 0.5 U          | 0.5 U          | 0.5 U          | 0.2 U          | 0.19 U             | 0.19 U             | 0.2 U              | 0.19 U             | 0.2 U              | 0.19 LU            | NA                 | NA        | NA                | 10 U               | 10 U         | NA                   | NA           |
|                   | FLUORENE                                | 0.5        | 1000       | ug/l            | . 0.5 U            | 0.5 U        | 0.5          | U 0.5 L     | U 0.5 U        | 0.5 U          | 0.5       | 5 U 0.5 U         | 0.2 U       | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 0.5 U              | 0.5 U          | 0.5 U              | 0.5 U          | 0.5 U          | 0.5 U          | 0.5 U          | 0.5 U          | 0.2 U          | 0.19 U             | 0.19 U             | 0.2 U              | 0.19 U             | 0.2 U*             | 0.19 UJ            | NA                 | NA        | NA                | 10 U               | 10 U         | NA                   | NA           |
|                   | INDENO(1,2,3-CD)PYRENE                  |            | 0.4        | ug/l            | . 0.5 U            |              | NA           |             |                | NA.            | N/        |                   | 0.2 U       | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 0.5 U              | NA             | NA                 | NA             | NA             | NA             | NA             | NA             | 0.2 U          | 0.19 U             | 0.19 U             | 0.2 U              | 0.19 U             | 0.2 U              | 0.19 W             | NA                 | NA        | NA                | 10 U               | 10 U         | NA                   | NA           |
|                   | 1-METHYLNAPHTHALENE                     |            |            | ug/l            | . NA               | NA<br>NA     | NA<br>NA     |             | NA NA          | NA<br>NA       | N/        | _                 | 0.2 U       | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | NA<br>NA           | NA<br>NA       | NA<br>NA           | NA<br>NA       | NA<br>NA       | NA<br>NA       | NA<br>NA       | NA<br>NA       | 0.2 U          | 0.19 U             | 0.19 U<br>0.19 U   | 0.2 U              | 0.19 U             | 0.8 U              | 0.39 LU            | NA                 | NA<br>NA  | NA<br>NA          | 10 U               |              | NA<br>NA             | NA<br>NA     |
|                   | 2-METHYLNAPHTHALENE<br>NAPHTHALENE      |            | 20         | 20 ug/l         | . NA               | _            | 1 L          |             |                | _              | 11        |                   | 0.2 U       | 0.2 U<br>0.2 U | 0.2 U<br>0.2 U | 0.2 U<br>0.2 U | 0.2 U          | 1 U                | NA<br>1 U      | 1 U                | NA<br>1 U      | NA<br>1 U      | 1 U            | NA<br>1 U      | NA<br>1 U      | 0.2 U          | 0.2 U<br>0.2 U | 0.2 U<br>0.2 U | 0.2 U<br>0.2 U | 0.2 U<br>0.2 U | 0.19 U<br>0.19 U   | 0.19 U<br>0.19 U   | 0.2 U<br>0.2 U     | 0.19 U<br>0.19 U   | 0.2 U<br>0.2 U     | 0.19 W<br>0.19 W   | NA<br>NA           | NA<br>NA  | NA<br>NA          | 10 U               | 10 U         | NA<br>NA             | NA<br>NA     |
|                   | PHENANTHRENE                            | 0.22       | 0.2        | 510 ug/l        | . 0.2 U            |              | 0.2          |             |                |                | 0.2       |                   | 0.2 U       | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U              | 0.2 U          | 0.2 U              | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 0.19 U             | 0.19 U             | 0.2 U              | 0.19 U             | 0.2 U              | 0.19 LU            | NA NA              | NA NA     | NA NA             | 10 U               | 10 U         | NA NA                | NA NA        |
|                   | PYRENE                                  | 0.5        | 1000       | ug/l            | . 0.5 U            | _            | 0.5          |             |                |                | 0.5       |                   | 0.2 U       | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U          | 0.5 U              | 0.5 U          | 0.5 U              | 0.5 U          | 0.5 U          | 0.5 U          | 0.5 U          | 0.5 U          | 0.2 U          | 0.19 U             | 0.19 U             | 0.2 U              | 0.19 U             | 0.2 U              | 0.19 W             | NA.                | NA.       | NA                | 10 U               |              | NA.                  | NA.          |
|                   | TOTAL PAHs                              |            |            | ug/l            | . ND               | ND           | NE           | _           | ) ND           | ND             | NI        | ID ND             | ND          | ND             | ND             | ND             | ND             | ND                 | ND             | ND                 | ND             | ND             | ND             | ND             | ND             | ND             | ND             | ND             | ND             | ND             | ND                 | ND                 | ND                 | ND                 | ND                 | ND                 | NA                 | NA        | NA                | ND                 | ND           | NA                   | NA .         |
|                   | BENZENE                                 | 1          | 5          | 31.2 ug/l       | . 1 U              | 1 U          | 1 (          | J 1 U       | J 1 U          | 1 U            | 1         | U 1 U             | 1 U         | 1 U            | 1 U            | 1 U            | 1 U            | 1 U                | 1 U            | 1 U                | 1 U            | 1 U            | 1 U            | 1 U            | 1 U            | 1 U            | 1 U            | 1 U            | 1 U            | 1 U            | 1 U                | 1 U                | 1 U                | 1 U                | 1 U                | 1 UJ               | NA                 | NA.       | NA                | 1 U                | 1 U          | NA                   | NA           |
|                   | ETHYLBENZENE                            | 1          | 700        | ug/l            | . 1 U              | 1 U          | 11           | J 1 U       | J 1U           | 1 U            | 11        | U 1U              | 1 U         | 1 U            | 1 U            | 1 U            | 1 U            | 1 U                | 1 U            | 1 U                | 1 U            | 1 U            | 1 U            | 1 U            | 1 U            | 1 U            | 1 U            | 1 U            | 1 U            | 1 U            | 1 U                | 1 U                | 1 U                | 1 U                | 1 U                | 1 UJ               | NA                 | NA        | NA                | 1 U                | 1 U          | NA                   | NA           |
|                   | p/m-XYLENE                              |            |            | ug/l            | . NA               | 1 U          | 1 (          | J 1 U       | J 1U           | 1 U            | 11        | U 1 U             | NA          | NA             | NA             | NA             | NA             | NA                 | 1 U            | 1 U                | 1 U            | 1 U            | 1 U            | 1 U            | 1 U            | NA             | NA             | NA             | NA             | NA             | NA                 | NA                 | NA                 | NA                 | NA                 | NA                 | NA                 | NA        | NA                | NA                 | NA           | NA                   | NA           |
|                   | METHYLENE CHLORIDE                      |            |            | ug/l            | . NA               | 5 U          | NA           | NA NA       | NA NA          | NA.            | N/        | IA NA             | NA          | NA             | NA             | NA             | NA             | NA                 | 5 U            | NA                 | NA             | NA             | NA             | NA             | NA             | NA             | NA             | NA             | NA             | NA             | NA                 | NA                 | NA                 | NA                 | NA                 | NA                 | NA                 | NA        | NA                | 5 U                | NA           | NA                   | NA           |
| VOCs              | o-XYLENE                                |            |            | ug/l            | . NA               | 1 U          | 1 (          |             |                | 1 U            | 11        |                   | NA          | NA             | NA             | NA             | NA             | NA                 | 1 U            | 1 U                | 1 U            | 1 U            | 1 U            | 1 U            | 1 U            | NA             | NA             | NA             | NA             | NA             | NA                 | NA                 | NA                 | NA                 | NA                 | NA                 | NA                 | NA        | NA                | NA                 | NA           | NA                   | NA           |
|                   | TOLUENE                                 | 1          | 1000       | 1900 ug/l       | . 10               | 1 U          | 11           |             |                |                | 11        |                   | 1 U         | 10             | 10             | 1 U            | 1 U            | 1 U                | 1 U            | 1 U                | 1 U            | 1 U            | 1 U            | 1 U            | 10             | 10             | 10             | 1 U            | 1 U            | 1 U            | 10                 | 1 U                | 1 U                | 1 U                | 1 U                | 1 UJ               | NA                 | NA        | NA                | 1 U                | 1 U          | NA                   | NA           |
|                   | XYLENES (TOTAL) METHYL TERT BUTYL ETHER | 2          | 10000      | ug/l            | . 2 U              | 1 U<br>NA    | 1 L          |             |                | 1 U<br>NA      | 1 I       |                   | 2 U<br>NA   | 2 U<br>NA      | 2 U<br>NA      | 2 U<br>NA      | 2 U<br>NA      | 2 U<br>NA          | 1 U<br>NA      | 1 U<br>NA          | 1 U<br>NA      | 1 U<br>NA      | 1 U<br>NA      | 1 U<br>NA      | 1 U<br>NA      | 2 U                | 2 U<br>10 U        | 2 U<br>10 U        | 2 U                | 2 U<br>NA          | 2 UJ<br>10 UJ      | NA<br>NA           | NA<br>NA  | NA<br>NA          | 2 U<br>10 U        | 2 U<br>NA    | NA<br>NA             | NA<br>NA     |
|                   | TOTAL BTEX                              |            |            | ug/l            | . ND               | ND ND        | NE.          |             |                | ND ND          | NI        | _                 | ND          | ND             | ND ND          | ND ND          | ND             | ND ND              | ND             | ND ND              | ND ND          | ND             | ND ND          | ND ND          | ND             | ND ND          | ND ND          | ND ND          | ND             | ND ND          | ND                 | ND ND              | ND                 | ND                 | ND                 | ND ND              | NA.                | NA.       | NA NA             | ND ND              | ND ND        | NA.                  | NA NA        |
|                   | ARSENIC                                 | 0.018      | 0.018      | 0.018 mg/       | L 0.01 L           | J 0.01 U     | 0.01         | U 0.01      | U 0.01 U       | 0.01 U         | 0.01      |                   | 0.01 U      | 0.01 U         | 0.01 U         | 0.01 U         | 0.01 U         | 0.01 U             | 0.01 U         | 0.01 U             | 0.01 U         | 0.01 U         | 0.01 U         | 0.01 U         | 0.01 U         | 0.01 U         | 0.01 U         | 0.01 U         | 0.01 U         | 0.01 U         | 0.01 U             | 0.01 U             | 0.01 U             | 0.01 U             | 0.02 U             | 0.02 U             | NA.                | NA.       | NA                | 0.02 U             |              | 0.02 U               | 0.02 U       |
|                   | BERYLLIUM                               |            | 0.004      | mg/             | L 0.005 I          | J NA         | NA           | NA NA       | NA NA          | NA.            | N/        | IA NA             | NA          | NA             | NA             | NA             | NA             | 0.005 U            | NA             | NA                 | NA             | NA             | NA             | NA             | NA             | NA             | NA             | NA.            | NA             | NA             | NA                 | NA                 | NA                 | NA                 | NA                 | NA                 | NA                 | NA        | NA                | NA                 | NA           | NA                   | NA           |
|                   | BORON                                   |            |            | mg/             | L NA               | NA           | NA           | NA NA       | NA NA          | NA             | N/        | IA NA             | NA          | NA             | NA             | NA             | NA             | NA                 | NA             | NA                 | NA             | NA             | NA             | NA             | NA             | NA             | NA             | NA             | NA             | NA             | NA                 | NA                 | NA                 | NA                 | NA                 | NA                 | NA                 | NA        | NA                | NA                 | NA           | NA                   | NA           |
|                   | CADMIUM                                 |            | 0.005      | mg/             | L 0.005 I          | J NA         | NA           | NA NA       | NA NA          | NA.            | N/        | IA NA             | NA          | NA             | NA             | NA             | NA             | 0.005 U            | NA             | NA                 | NA             | NA             | NA             | NA             | NA             | NA             | NA             | NA             | NA             | NA             | NA                 | NA                 | NA                 | NA                 | NA                 | NA                 | NA                 | NA        | NA                | NA                 | NA           | NA                   | NA           |
|                   | CALCIUM METAL                           |            |            | mg/             | L NA               | NA           | NA           | NA NA       | NA NA          | NA.            | N/        | IA NA             | NA          | NA             | NA             | NA             | NA             | NA                 | NA             | NA                 | NA             | NA             | NA             | NA             | NA             | NA             | NA             | NA             | NA             | NA             | NA                 | NA                 | NA                 | NA                 | NA                 | NA                 | NA                 | NA        | NA                | NA                 | NA           | NA                   | NA           |
|                   | CHROMIUM                                | 0.013      | 0.1        | mg/             | L 0.01 L           |              | 0.01         |             |                |                | 0.01      | _                 | 0.01 U      | 0.01 U         | 0.01 U         | 0.01 U         | 0.01 U         | 0.01 U             | 0.01 U         | 0.01 U             | 0.01 U         | 0.01 U         | 0.01 U         | 0.01 U         | 0.01 U         | 0.01 U         | 0.01 U         | 0.01 U         | 0.01 U         | 0.01 U         | 0.01 U             | 0.01 U             | 0.01 U             | 0.01 U             | 0.01 U             | 0.01 U             | NA                 | NA        | NA                | 0.01 U             | 0.01 U       | NA                   | NA           |
| Metals, Total     | LEAD                                    | 0.007      | 0.015      | 0.015 mg/       | 0.0051             |              | 0.005        |             |                |                | _         |                   | 0.005 U     | 0.005 U<br>NA  | 0.005 U        | 0.005 U        | 0.005 U<br>NA  | 0.005 U            | 0.005 U        | 0.005 U            | 0.005 U        | 0.005 U        | 0.005 U        | 0.005 U<br>NA  | 0.005 U        | 0.005 U        | 0.005 U        | 0.005 U        | 0.005 U<br>NA  | 0.005 U        | 0.005 U            | 0.009              | 0.01               | 0.009              | 0.026              | 0.01 U<br>NA       | 0.01 U             | 0.01 U    | 0.01 U            | 0.013              | 0.01 U<br>NA | _                    | 0.01 U<br>NA |
|                   | MAGNESIUM<br>MERCURY                    |            | 0.002      | mg/             | L 0.0002           | NA<br>U NA   | NA<br>NA     |             |                | NA<br>NA       | N/        |                   | NA<br>NA    | NA<br>NA       | NA<br>NA       | NA<br>NA       | NA<br>NA       | 0.0002 U           | NA<br>NA       | NA<br>NA           | NA<br>NA       | NA<br>NA       | NA<br>NA       | NA<br>NA       | NA<br>NA       | NA<br>NA       | NA<br>NA       | NA<br>NA       | NA<br>NA       | NA<br>NA       | NA<br>NA           | NA<br>NA           | NA<br>NA           | NA<br>NA           | NA<br>NA           | NA<br>NA           | NA<br>NA           | NA<br>NA  | NA<br>NA          | NA<br>NA           | NA<br>NA     | NA<br>NA             | NA<br>NA     |
|                   | NCKFI                                   | 0.13       | 0.002      | 2 mg/           | L 0.0002           |              | 0.04         |             | _              | _              | 0.04      |                   | 0.04 U      | 0.04 U         | 0.04 U         | 0.04 U         | 0.04 U         | 0.0002 U           | 0.04 U         | 0.04 U             | 0.04 U         | 0.04 U         | 0.04 U         | 0.04 U         | 0.04 U         | 0.04 U         | 0.04 U         | 0.04 U         | 0.04 U         | 0.04 U         | 0.04 U             | 0.04 U             | 0.04 U             | 0.04 U             | 0.04 U             | 0.04 U             | NA NA              | NA.       | NA NA             | 0.0039             |              |                      | 0.04 U       |
|                   | POTASSIUM                               |            |            | mg/             | L NA               | NA.          | NA NA        | _           |                | _              | N/        | IA NA             | NA .        | NA             | NA             | NA             | NA             | NA                 | NA             | NA.                | NA.            | NA             | NA             | NA             | NA             | NA.            | NA             | NA.            | NA.            | NA             | NA                 | NA NA              | NA                 | NA                 | NA                 | NA.                | NA.                | NA.       | NA                | NA NA              | NA NA        | NA.                  | NA           |
|                   | SODIUM                                  |            |            | mg/             | L NA               | NA           | NA           | NA NA       | NA NA          | NA             | N/        | IA NA             | NA          | NA             | NA             | NA             | NA             | NA                 | NA             | NA                 | NA             | NA             | NA             | NA             | NA             | NA             | NA             | NA.            | NA             | NA             | NA                 | NA                 | NA                 | NA                 | NA                 | NA                 | NA                 | NA.       | NA                | NA                 | NA           | NA                   | NA           |
|                   | ZINC                                    | 0.96       | 2          | 31 mg/          | L 0.02 L           | J 0.02 U     | 0.02         | U 0.02      | U 0.02 U       | 0.02 U         | 0.02      | 2 U 0.02 U        | 0.02 U      | 0.02 U         | 0.02 U         | 0.02 U         | 0.02 U         | 0.02 U             | 0.02 U         | 0.02 U             | 0.02 U         | 0.02 U         | 0.02 U         | 0.02 U         | 0.02 U         | 0.02 U         | 0.02 U         | 0.02 U         | 0.02 U         | 0.02 U         | 0.02 U             | 0.036              | 0.039              | 0.045              | 0.033              | 0.044              | NA                 | NA        | NA                | 0.033              | 0.02 U       | 0.02 U               | 0.02 U       |
|                   | ARSENIC                                 | 0.018      | 0.018      | 0.018 mg/       | L NA               | NA           | 0.01         | U 0.01      | U NA           | NA             | N/        | IA NA             | NA          | NA             | NA             | NA             | NA             | NA                 | NA             | 0.01 U             | 0.01 U         | NA                 | NA        | NA                | NA                 | NA           | NA                   | NA           |
|                   | BERYLLIUM                               |            | 0.004      | mg/             | L NA               | NA           | NA           | NA NA       | NA NA          | NA.            | N/        |                   | NA          | NA             | NA             | NA             | NA             | NA                 | NA             | NA                 | NA             | NA             | NA             | NA             | NA             | NA             | NA             | NA             | NA             | NA             | NA                 | NA                 | NA                 | NA                 | NA                 | NA                 | NA                 | NA        | NA                | NA                 | NA           | NA.                  | NA           |
|                   | CADMIUM                                 |            | 0.005      | mg/             | L NA               | NA           | NA           |             |                | NA             | N/        |                   | NA          | NA             | NA             | NA             | NA             | NA                 | NA             | NA                 | NA .           | NA                 | NA        | NA                | NA                 |              | NA .                 | NA           |
| Metals, Dissolved | CHROMIUM                                | 0.013      | 0.1        | mg/             | L NA               |              | 0.01         |             | _              | _              | N/        |                   | NA NA       | NA NA          | NA NA          | NA NA          | NA             | NA                 | NA             | 0.01 U             | 0.01 U         | NA NA          | NA NA          | NA NA          | NA             | NA             | NA             | NA NA          | NA             | NA NA          | NA NA              | NA NA              | NA NA              | NA                 | NA NA              | NA<br>NA           | NA NA              | NA        | NA NA             | NA NA              |              |                      | NA NA        |
|                   | MERCURY                                 | 0.007      | 0.015      | 0.015 mg/       |                    |              | 0.005<br>NA  |             | _              | _              | N/        | _                 | NA<br>NA    | NA<br>NA       | NA<br>NA       | NA<br>NA       | NA<br>NA       | NA<br>NA           | NA<br>NA       | 0.005 U<br>NA      | 0.005 U<br>NA  | NA<br>NA           | NA<br>NA  | NA<br>NA          | NA<br>NA           |              |                      | NA<br>NA     |
|                   | NICKEL                                  | 0.13       | 0.002      | 2 mg/           | +                  | _            |              |             | _              | _              | N/        | _                 | NA NA       | NA NA          | NA NA          | NA NA          | NA.            | NA.                | NA.            | 0.04 U             | 0.04 U         | NA NA          | NA.            | NA NA          | NA NA          | NA NA          | NA NA              | NA NA              | NA NA              | NA.                | NA.                | NA NA              | NA NA              | NA NA     | NA NA             | NA NA              |              |                      | NA.          |
|                   | ZINC                                    | 0.96       | 2          | 31 mg/          | +                  | _            | 0.02         | _           |                | -              | N/        |                   | NA NA       | NA NA          | NA NA          | NA NA          | NA NA          | NA.                | NA.            | 0.02 U             | 0.02 U         | NA NA          | NA NA          | NA NA          | NA NA          | NA.            | NA.            | NA.            | NA NA          | NA NA          | NA NA              | NA NA              | NA NA              | NA NA              | NA NA              | NA NA              | NA NA              | NA.       | NA NA             | NA NA              |              | NA.                  | NA.          |
|                   | ALKALINITY                              |            |            | mg/             | L NA               | NA           |              |             | _              | _              | N/        | IA NA             | NA          | NA             | NA             | NA             | NA             | NA                 | NA             | NA                 | NA             | NA             | NA             | NA             | NA             | NA             | NA             | NA.            | NA             | NA             | NA                 | NA                 | NA                 | NA                 | NA                 | NA                 | NA                 | NA        | NA                | NA                 | NA           | NA                   | NA           |
|                   | ALKALINITY, TOTAL (AS CACO3)            |            |            | mg/             | L NA               |              | NA.          |             | _              | _              | N/        |                   | NA          | NA             | NA             | NA             | NA             | NA                 | NA             | NA                 | NA             | NA             | NA             | NA             | NA             | NA             | NA             | NA             | NA             | NA             | NA                 | NA                 | NA                 | NA                 | NA                 | NA                 | NA                 | NA        | NA                | NA                 |              | NA                   | NA           |
|                   | AMMONIA AS N                            | 15         | 30         | 30 mg/          | L NA               | 11           | 10           | 9           | 9.3            | 11             | 14        | 4 14              | 13          | 14             | 10             | 11             | 12             | NA                 | 6.1            | 7.9                | 5.1            | 5.6            | 4.8            | 5.4            | 6.2            | 6.1            | 4.7            | 2.3            | 2.7            | 4.2            | 25                 | 4.5                | 3.3                | 1.2                | 6                  | 10 J               | NA                 | 23        | NA                | 3.8                | 15           | 1.1                  | 1.1          |
|                   | BICARBONATE                             |            |            | mg/             | L NA               | NA           | NA           | NA NA       | NA NA          | NA             | N/        | IA NA             | NA          | NA             | NA             | NA             | NA             | NA                 | NA             | NA                 | NA             | NA             | NA             | NA             | NA             | NA             | NA             | NA             | NA             | NA             | NA                 | NA                 | NA                 | NA                 | NA                 | NA                 | NA                 | NA        | NA                | NA                 | NA           | NA                   | NA           |
| Miscellaneous     | CARBONATE                               |            |            | mg/             | L NA               | _            | NA           |             | _              | _              | N/        |                   | NA          | NA             | NA             | NA             | NA             | NA                 | NA             | NA                 | NA             | NA             | NA             | NA             | NA             | NA             | NA             | NA             | NA             | NA             | NA                 | NA                 | NA                 | NA                 | NA                 | NA                 | NA                 | NA        | NA                | NA                 |              | NA                   | NA           |
|                   | CONDUCTIVITY                            |            |            | umhc<br>em      | s/ NA              | _            | NA           |             |                |                | N/        |                   | NA          | NA             | NA             | NA             | NA             | NA                 | NA             | NA                 | NA             | NA             | NA             | NA             | NA             | NA             | NA             | NA             | NA             | NA             | NA                 | NA                 | NA                 | NA                 | NA                 | NA                 | NA                 | NA        | NA                | NA                 |              |                      | NA           |
|                   | NITRATE (AS N)                          |            | 10         | mg/             | +                  |              |              |             | _              | _              | _         | IA NA             | NA          | NA             | NA             | NA             | NA             | NA                 | NA             | NA .               | NA             |                | NA             | NA             | NA                 | NA                 | NA                 | NA                 | NA                 | NA                 | NA                 | NA        | NA                | 0.15               |              |                      | 0.05 U       |
|                   | NITRITE (AS N) SULFATE                  |            |            | mg/             |                    |              | NA<br>NA     |             |                |                | N/        |                   | NA<br>NA    | NA<br>NA       | NA<br>NA       | NA<br>NA       | NA<br>NA       | NA<br>NA           | NA<br>NA       | NA<br>NA           | NA<br>NA       | NA<br>NA       | NA<br>NA       | NA<br>NA       | NA<br>NA       | NA<br>NA       | NA<br>NA       | NA<br>NA       | NA<br>NA       | NA<br>NA       | NA<br>NA           | NA<br>NA           | NA<br>NA           | NA<br>NA           | NA<br>NA           | NA<br>NA           | NA<br>NA           | NA<br>NA  | NA<br>NA          | NA<br>NA           |              |                      | 0.05 U<br>NA |
|                   | SOLIDS, TOTAL DISSOLVED                 | 1          |            | mg/             | L NA               | _            | NA<br>NA     |             |                |                | N.        |                   | NA<br>NA    | NA<br>NA       | NA<br>NA       | NA<br>NA       | NA<br>NA       | NA<br>NA           | NA<br>NA       | NA<br>NA           | NA<br>NA       | NA<br>NA       | NA<br>NA       | NA<br>NA       | NA<br>NA       | NA<br>NA       | NA<br>NA       | NA<br>NA       | NA<br>NA       | NA<br>NA       | NA<br>NA           | NA<br>NA           | NA<br>NA           | NA<br>NA           | NA<br>NA           | NA<br>NA           | NA<br>NA           | NA<br>NA  | NA<br>NA          | NA<br>NA           |              | NA<br>NA             | NA<br>NA     |
| SVOCs             | 1,4-DICHLOROBENZENE                     |            |            | mg/             | _                  | _            | _            | _           |                |                |           | IA NA             | NA NA       | NA<br>NA       | NA<br>NA       | NA<br>NA       | NA NA          | NA<br>NA           | NA<br>NA       | NA NA              | NA<br>NA       | NA NA          | NA<br>NA       | NA<br>NA           | NA<br>NA           | NA<br>NA           | NA<br>NA           | NA NA              | NA<br>NA           | NA NA              | NA NA     | NA<br>NA          | 1 U                |              |                      | NA.          |
| <u> </u>          |                                         | •          |            |                 |                    | •            | -            | •           |                | •              |           | •                 |             | •              | •              |                |                | •                  |                | •                  |                |                |                |                | •              |                |                | •              |                |                |                    |                    |                    |                    |                    |                    |                    | •         | •                 |                    |              |                      |              |

Note:

| Daded cell indicates comparison standard used in data evaluation.
| Mighlighted cell indicates analytical result exceeds comparison criteria.
| Bold and Role cert indicates analytical result exceeds background value.
| Finitizate comparison instandard based on the Maximum Contaminant Level (MCL) established by the USEPA National Primary C
| NO - No constituents detected above the Indocratory minimum detection limit.
| Lindicates constituent was not detected above value shown.
| Lindicates constituent was not detected above value shown.
| Lindicates constituent was not detected at an estimated value.
| Lindicates constituent was not detected at an estimated value.
| Lindicates constituent was not detected at an estimated value.
| Lindicates constituent was not detected at an estimated value.
| Lindicates constituent was not detected at an estimated value.
| Lindicates constituent was not detected at an estimated value.
| Lindicates constituent was not detected at an estimated value.
| Lindicates constituent was not detected at an estimated value.
| Lindicates constituent was not detected at an estimated value.
| Lindicates constituent was not detected at an estimated value.
| Lindicates constituent was not detected at an estimated value.
| Lindicates constituent was not detected at an estimated value.
| Lindicates constituent was not detected at an estimated value.
| Lindicates constituent was not detected at an estimated value.
| Lindicates constituent was not detected at an estimated value.
| Lindicates constituent was not detected at an estimated value.
| Lindicates constituent was not detected at an estimated value.
| Lindicates constituent was not detected at an estimated value.
| Lindicates constituent was not detected at an estimated value.
| Lindicates constituent was not detected at an estimated value.
| Lindicates constituent was not detected at an estimated value.
| Lindicates constituent was not detected at an estimated value.
| Lindicates constituent was not detected at an estimated value.

|                   |                                              |            |            |             | Location:    |                         |                         |                          | MW-202                   |                          |                          |                         |                         |                         |                            | MW                       | -203                     |                          |                          |                             |                         |                          |                          |                              |                          |                          | MW-204                   |                             |                          |                           |                   |                         |                         |
|-------------------|----------------------------------------------|------------|------------|-------------|--------------|-------------------------|-------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------------------------|-------------------------|-------------------------|----------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-----------------------------|-------------------------|--------------------------|--------------------------|------------------------------|--------------------------|--------------------------|--------------------------|-----------------------------|--------------------------|---------------------------|-------------------|-------------------------|-------------------------|
|                   |                                              |            |            |             | ple Date:    | 3/8/2006                | 4/1/2008                | 7/19/2008                | 10/9/2008                | 12/1/2009                | 6/18/2010                | 11/4/2014               | 3/8/2006                | 4/2/                    | 2008                       | 7/19/2008                | 10/8/2008                | 12/1/2009                | 6/18                     | /2010                       | 4/3/2008                | 7/20/2008                | 10/7/                    | 2008                         | 12/1/2009                | 3/23/2010                | 6/16                     | 5/2010                      | 9/14/2010                | 12/15/2010                | 6/15/2011         | 12/6/2011               | 11/5/2014               |
|                   |                                              |            |            | Sam         | ple Type:    | Normal                  | Normal                  | Normal                   | Normal                   | Normal                   | Normal                   | Normal                  | Normal                  | Normal                  | Dup                        | Normal                   | Normal                   | Normal                   | Normal                   | Dup                         | Normal                  | Normal                   | Normal                   | Dup                          | Normal                   | Normal                   | Normal                   | Dup                         | Normal                   | Normal                    | Normal            | Normal                  | Normal                  |
|                   |                                              |            |            | Si          | iample ID:   | MW-<br>202_3/8/200<br>6 | MW-<br>202_4/1/200<br>8 | MW-<br>202_7/19/20<br>08 | MW-<br>202_10/9/20<br>08 | MW-<br>202_12/1/20<br>09 | MW-<br>202_6/18/20<br>10 | MW-<br>202_110420<br>14 | MW-<br>203_3/8/200<br>6 | MW-<br>203_4/2/200<br>8 | MW-203<br>DUP_4/2/200<br>8 | MW-<br>203_7/19/20<br>08 | MW-<br>203_10/8/20<br>08 | MW-<br>203_12/1/20<br>09 | MW-<br>203_6/18/20<br>10 | MW-<br>203DUP_6/1<br>8/2010 | MW-<br>204_4/3/200<br>8 | MW-<br>204_7/20/20<br>08 | MW-<br>204_10/7/20<br>08 | MW-204-<br>DUP_10/7/20<br>08 | MW-<br>204_12/1/20<br>09 | MW-<br>204_3/23/20<br>10 | MW-<br>204_6/16/20<br>10 | MW-204<br>DUP_6/16/20<br>10 | MW-<br>204_9/14/20<br>10 | MW-<br>204_12/15/2<br>010 | MW-<br>204_061511 | MW-<br>204_120620<br>11 | MW-<br>204_110520<br>14 |
| Method Group      | Analyte                                      | Background | Type 3 RRS | Type 4 RRS  | S Units      | Result                  | Result                  | Result                   | Result                   | Result                   | Result                   | Result                  | Result                  | Result                  | Result                     | Result                   | Result                   | Result                   | Result                   | Result                      | Result                  | Result                   | Result                   | Result                       | Result                   | Result                   | Result                   | Result                      | Result                   | Result                    | Result            | Result                  | Result                  |
|                   | ACENAPHTHENE                                 | 1          | 2000       |             | ug/L         | 0.19 U                  | 0.19 U                  | 0.19 U                   | 0.19 U                   | 0.19 U                   | 0.19 W                   | NA                      | 0.19 U                  | 0.19 U                  | 0.19 U                     | 0.19 U                   | 0.2 U                    | 0.19 U                   | 0.2 UJ                   | 0.2 UJ                      | 0.32                    | 0.27                     | 19 U                     | 19 U                         | 0.3                      | 0.42 J                   | 0.24                     | 0.22                        | 0.19 U                   | 0.19                      | 0.2 U             | 0.24                    | 10 U                    |
|                   | ACENAPHTHYLENE                               | 1.4        | 1          | 510         | ug/L         | 0.19 U                  | 0.19 U                  | 0.19 U                   | 0.19 U                   | 0.19 U                   | 0.19 U                   | NA                      | 0.19 U                  | 0.19 U                  | 0.19 U                     | 0.19 U                   | 0.2 U                    | 0.19 U                   | 0.2 U                    | 0.19 U                      | 0.2 U                   | 0.24                     | 19 U                     | 19 U                         | 0.19 U                   | 0.2 U                    | 0.19 U                   | 0.19 U                      | 0.19 U                   | 0.19 U                    | 0.2 U             | 0.19 U                  | 10 U                    |
|                   | ANTHRACENE<br>BENZO(A)ANTHRACENE             | 0.2        | 0.2        | 5100<br>3.9 | ug/L         | 0.19 U<br>0.19 U        | 0.19 U<br>0.19 U        | 0.19 U<br>0.19 U         | 0.19 U<br>0.19 U         | 0.19 U<br>0.19 U         | 0.19 U<br>0.19 U         | NA<br>NA                | 0.19 U<br>0.19 U        | 0.19 U<br>0.19 U        | 0.19 U<br>0.19 U           | 0.19 U<br>0.19 U         | 0.2 U<br>0.2 U           | 0.19 U<br>0.19 U         | 0.2 U<br>0.2 U           | 0.19 U<br>0.19 U            | 0.2 U<br>0.2 U          | 0.27                     | 19 U                     | 19 U                         | 0.19 U<br>0.19 U         | 0.2 U<br>0.2 U           | 0.19 U<br>0.19 U         | 0.19 U<br>0.19 U            | 0.19 U<br>0.19 U         | 0.19 U<br>0.19 U          | 0.2 U<br>0.2 U    | 0.19 U<br>0.19 U        | 10 U                    |
|                   | BENZO(A)PYRENE                               | 0.2        | 0.1        | 0.39        | ug/L<br>ug/l | 0.19 U                  | 0.19 U<br>0.19 U        | 0.19 U<br>0.19 U         | 0.19 U<br>0.19 U         | 0.19 U                   | 0.19 U                   | NA<br>NA                | 0.19 U                  | 0.19 U                  | 0.19 U                     | 0.19 U                   | 0.2 U                    | 0.19 U                   | 0.2 U                    | 0.19 U                      | 0.2 U                   | 0.29<br>0.19 U           | 19 U                     | 19 U                         | 0.19 U                   | 0.2 U                    | 0.19 U                   | 0.19 U                      | 0.19 U                   | 0.19 U                    | 0.2 U             | 0.19 U<br>0.19 U        | 10 U                    |
|                   | BENZO(B)FLUORANTHENE                         | 0.2        | 0.2        | 0.65        | ug/L         | 0.19 U                  | 0.19 U                  | 0.19 U                   | 0.19 U                   | 0.19 U                   | 0.19 U                   | NA.                     | 0.19 U                  | 0.19 U                  | 0.19 U                     | 0.19 U                   | 0.2 U                    | 0.19 U                   | 0.2 U                    | 0.19 U                      | 0.2 U                   | 0.3                      | 19 U                     | 19 U                         | 0.19 U                   | 0.2 U                    | 0.19 U                   | 0.19 U                      | 0.19 U                   | 0.19 U                    | 0.2 U             | 0.19 U                  | 10 U                    |
|                   | BENZO(G,H,I)PERYLENE                         |            |            |             | ug/L         | 0.19 U                  | 0.19 U                  | 0.19 UJ                  | 0.19 U                   | 0.19 U                   | 0.19 U                   | NA                      | 0.19 U                  | 0.19 U                  | 0.19 U                     | 0.19 U                   | 0.2 U                    | 0.19 U                   | 0.2 U                    | 0.19 U                      | 0.2 U                   | 0.19 U                   | 19 U                     | 19 U                         | 0.19 U                   | 0.2 U                    | 0.19 U                   | 0.19 U                      | 0.19 U                   | 0.19 U                    | 0.2 UJ            | 0.19 U                  | 10 U                    |
|                   | BENZO(K)FLUORANTHENE                         |            |            |             | ug/L         | 0.19 U                  | 0.19 U                  | 0.19 U                   | 0.19 U                   | 0.19 U                   | 0.19 U                   | NA                      | 0.19 U                  | 0.19 U                  | 0.19 U                     | 0.19 U                   | 0.2 U                    | 0.19 U                   | 0.2 U                    | 0.19 U                      | 0.2 U                   | 0.19 U                   | 19 U                     | 19 U                         | 0.19 U                   | 0.2 U                    | 0.19 U                   | 0.19 U                      | 0.19 U                   | 0.19 U                    | 0.2 U             | 0.19 U                  | 10 U                    |
|                   | CHRYSENE                                     | 0.2        | 0.2        | 65          | ug/L         | 0.19 U                  | 0.19 U                  | 0.19 U                   | 0.19 U                   | 0.19 U                   | 0.19 U                   | NA                      | 0.19 U                  | 0.19 U                  | 0.19 U                     | 0.19 U                   | 0.2 U                    | 0.19 U                   | 0.2 U                    | 0.19 U                      | 0.2 U                   | 0.29                     | 19 U                     | 19 U                         | 0.19 U                   | 0.2 U                    | 0.19 U                   | 0.19 U                      | 0.19 U                   | 0.19 U                    | 0.2 U             | 0.19 U                  | 10 U                    |
| PAHs              | DIBENZO(A,H)ANTHRACENE                       |            | 0.3        |             | ug/L         | 0.19 U                  | 0.19 U                  | 0.19 UJ                  | 0.19 U                   | 0.19 U                   | 0.19 U                   | NA                      | 0.19 U                  | 0.19 U                  | 0.19 U                     | 0.19 U                   | 0.2 U                    | 0.19 U                   | 0.2 U                    | 0.19 U                      | 0.2 U                   | 0.19 U                   | 19 U                     | 19 U                         | 0.19 U                   | 0.2 U                    | 0.19 U                   | 0.19 U                      | 0.19 U                   | 0.19 U                    | 0.2 UJ            | 0.19 U                  | 10 U                    |
|                   | FLUORANTHENE                                 | 0.5        | 1000       |             | ug/L         | 0.19 U                  | 0.19 U                  | 0.19 U                   | 0.19 U                   | 0.19 U                   | 0.19 U                   | NA                      | 0.19 U                  | 0.19 U                  | 0.19 U                     | 0.19 U                   | 0.2 U                    | 0.19 U                   | 0.2 U                    | 0.19 U                      | 0.2 U                   | 0.53                     | 19 U                     | 19 U                         | 0.19 U                   | 0.2 U                    | 0.19 U                   | 0.19 U                      | 0.19 U                   | 0.19 U                    | 0.2 U             | 0.19 U                  | 10 U                    |
|                   | FLUORENE                                     | 0.5        | 1000       |             | ug/L         | 0.19 U                  | 0.19 U                  | 0.19 U                   | 0.19 U                   | 0.19 U                   | 0.19 U                   | NA                      | 0.19 U                  | 0.19 U                  | 0.19 U                     | 0.19 U                   | 0.2 U                    | 0.19 U                   | 0.2 U                    | 0.19 U                      | 0.37                    | 0.42                     | 19 U                     | 19 U                         | 0.19 U                   | 0.42 J                   | 0.28                     | 0.34                        | 0.19 U                   | 0.19 U                    | 0.2 U             | 0.19 U                  | 10 U                    |
|                   | INDENO(1,2,3-CD)PYRENE  1-METHYLNAPHTHALENE  |            | 0.4        |             | ug/L<br>ug/L | 0.19 U<br>0.19 U        | 0.19 U<br>0.19 U        | 0.19 U<br>0.19 U         | 0.19 U<br>0.19 U         | 0.19 U<br>0.78 U         | 0.19 U<br>0.38 UJ        | NA<br>NA                | 0.19 U<br>0.19 U        | 0.19 U<br>0.19 U        | 0.19 U<br>0.19 U           | 0.19 U<br>0.19 U         | 0.2 U<br>0.2 U           | 0.19 U<br>0.78 U         | 0.2 U<br>0.4 UJ          | 0.19 U<br>0.38 UJ           | 0.2 U<br>7.1            | 0.19 U                   | 19 U                     | 19 U                         | 0.19 U<br>1.3            | 0.2 U<br>1.6 J           | 0.19 U<br>0.67           | 0.19 U<br>0.57              | 0.19 U<br>0.38 U         | 0.19 U<br>0.38 U          | 0.2 U<br>0.39 U   | 0.19 U<br>0.38 U        | 10 U                    |
|                   | 2-METHYLNAPHTHALENE                          |            |            |             | ug/L<br>ug/L | 0.19 U                  | 0.19 U<br>0.19 U        | 0.19 U                   | 0.19 U                   | 0.78 U<br>0.19 U         | 0.38 UJ<br>0.19 UJ       | NA<br>NA                | 0.19 U                  | 0.19 U                  | 0.19 U                     | 0.19 U                   | 0.2 U                    | 0.78 U<br>0.19 U         | 0.4 UJ<br>0.2 UJ         | 0.38 UJ<br>0.19 UJ          | 0.39                    | 0.19 U                   | 19 U                     | 19 U                         | 0.19 U                   | 0.2 U                    | 0.67<br>0.19 U           | 0.57<br>0.19 U              | 0.38 U<br>0.19 U         | 0.38 U<br>0.19 U          | 0.39 U            | 0.38 U<br>0.19 U        | 10 U                    |
|                   | NAPHTHALENE                                  | 1          | 20         | 20          | ug/L         | 0.19 U                  | 0.19 U                  | 0.19 U                   | 0.19 U                   | 0.19 U                   | 0.19 LU                  | NA NA                   | 0.34                    | 0.19 U                  | 0.19 U                     | 0.19 U                   | 0.2 U                    | 0.19 U                   | 0.2 UJ                   | 0.19 LU                     | 0.2 U                   | 0.37                     | 100                      | 76                           | 0.19 U                   | 0.2 U                    | 0.19 U                   | 0.19 U                      | 0.19 U                   | 0.19 U                    | 0.2 U             | 0.19 U                  | 10 U                    |
|                   | PHENANTHRENE                                 | 0.22       | 0.2        | 510         | ug/L         | 0.19 U                  | 0.19 U                  | 0.19 U                   | 0.19 U                   | 0.19 U                   | 0.19 U                   | NA.                     | 0.19 U                  | 0.19 U                  | 0.19 U                     | 0.19 U                   | 0.2 U                    | 0.19 U                   | 0.2 U                    | 0.19 U                      | 0.2 U                   | 0.77                     | 32                       | 34                           | 0.19 U                   | 0.2 U                    | 0.19 U                   | 0.19 U                      | 0.19 U                   | 0.19 U                    | 0.2 U             | 0.19 U                  | 10 U                    |
|                   | PYRENE                                       | 0.5        | 1000       |             | ug/L         | 0.19 U                  | 0.19 U                  | 0.19 U                   | 0.19 U                   | 0.19 U                   | 0.19 U                   | NA                      | 0.19 U                  | 0.19 U                  | 0.19 U                     | 0.19 U                   | 0.2 U                    | 0.19 U                   | 0.2 U                    | 0.19 U                      | 0.2 U                   | 0.69                     | 19 U                     | 19 U                         | 0.19 U                   | 0.2 U                    | 0.19 U                   | 0.19 U                      | 0.19 U                   | 0.19 U                    | 0.2 U             | 0.19 U                  | 10 U                    |
|                   | TOTAL PAHs                                   |            |            |             | ug/L         | ND                      | ND                      | ND                       | ND                       | ND                       | ND                       | NA                      | 0.34                    | ND                      | ND                         | ND                       | ND                       | ND                       | ND                       | ND                          | 8.18                    | 5.54                     | 155                      | 130                          | 1.6                      | 2.44                     | 1.19                     | 1.13                        | ND                       | 0.19                      | ND                | 0.24                    | ND                      |
|                   | BENZENE                                      | 1          | 5          | 31.2        | ug/L         | 1 U                     | 1 U                     | 1 U                      | 1 U                      | 1 U                      | 1 U                      | NA                      | 1 U                     | 1 U                     | 1 U                        | 1 U                      | 1 U                      | 1 U                      | 1 U                      | 1 U                         | 32                      | 28                       | 9.5                      | 9.9                          | 16                       | NA                       | 12                       | 14                          | NA                       | 1 U                       | 1 U               | NA                      | NA                      |
|                   | ETHYLBENZENE                                 | 1          | 700        |             | ug/L         | 1 U                     | 1 U                     | 1 U                      | 1 U                      | 1 U                      | 1 U                      | NA                      | 1 U                     | 1 U                     | 1 U                        | 1 U                      | 1 U                      | 1 U                      | 1 U                      | 1 U                         | 1 U                     | 1 U                      | 1 U                      | 1 U                          | 1 U                      | NA                       | 1 U                      | 1 U                         | NA                       | 1 U                       | 1 U               | NA                      | NA                      |
|                   | p/m-XYLENE                                   |            | **         |             | ug/L         | NA<br>NA                | NA                      | NA                       | NA                       | NA                       | NA                       | NA                      | NA                      | NA                      | NA                         | NA                       | NA                       | NA                       | NA                       | NA                          | NA                      | NA                       | NA                       | NA                           | NA                       | NA                       | NA                       | NA                          | NA                       | NA                        | NA                | NA                      | NA                      |
| VOCs              | METHYLENE CHLORIDE<br>o-XYLENE               |            |            |             | ug/L<br>ug/L | NA<br>NA                | NA<br>NA                | NA<br>NA                 | NA<br>NA                 | NA<br>NA                 | NA<br>NA                 | NA<br>NA                | NA<br>NA                | NA<br>NA                | NA<br>NA                   | NA<br>NA                 | NA<br>NA                 | NA<br>NA                 | NA<br>NA                 | NA<br>NA                    | NA<br>NA                | NA<br>NA                 | NA<br>NA                 | NA<br>NA                     | NA<br>NA                 | NA<br>NA                 | NA<br>NA                 | NA<br>NA                    | NA<br>NA                 | NA<br>NA                  | NA<br>NA          | NA<br>NA                | NA<br>NA                |
|                   | TOLUENE                                      | 1          | 1000       | 1900        | ug/L         | 1 U                     | 1 U                     | 1 U                      | 1 U                      | 10                       | 10                       | NA.                     | 1 U                     | 1 U                     | 1 U                        | 1 U                      | 1 U                      | 1 U                      | 1 U                      | 1 U                         | 1 U                     | 1 U                      | 1 U                      | 1 U                          | 1 U                      | NA.                      | 1 U                      | 1 U                         | NA.                      | 1 U                       | 1 U               | NA NA                   | NA NA                   |
|                   | XYLENES (TOTAL)                              | 2          | 10000      |             | ug/L         | 2 U                     | 2 U                     | 2 U                      | 2 U                      | 2 U                      | 2 U                      | NA                      | 2 U                     | 2 U                     | 2 U                        | 2 U                      | 2 U                      | 2 U                      | 2 U                      | 2 U                         | 2 U                     | 2 U                      | 2 U                      | 2 U                          | 2 U                      | NA                       | 2 U                      | 2 U                         | NA                       | 2 U                       | 2 U               | NA NA                   | NA                      |
|                   | METHYL TERT BUTYL ETHER                      |            |            |             | ug/L         | 10 U                    | 10 U                    | 10 U                     | NA                       | NA                       | 10 U                     | NA                      | 10 U                    | 10 U                    | 10 U                       | 10 U                     | NA                       | NA                       | 10 U                     | 10 U                        | 10 U                    | 10 U                     | NA                       | NA                           | NA                       | NA                       | 10 U                     | 10 U                        | NA                       | NA                        | NA                | NA                      | NA                      |
|                   | TOTAL BTEX                                   |            |            |             | ug/L         | ND                      | ND                      | ND                       | ND                       | ND                       | ND                       | NA                      | ND                      | ND                      | ND                         | ND                       | ND                       | ND                       | ND                       | ND                          | 32                      | 28                       | 9.5                      | 9.9                          | 16                       | NA                       | 12                       | 14                          | NA                       | ND                        | ND                | NA                      | NA                      |
|                   | ARSENIC                                      | 0.018      | 0.018      | 0.018       | mg/L         | 0.01 U                  | 0.01 U                  | 0.01 U                   | 0.01 U                   | 0.02 U                   | 0.02 U                   | 0.02 U                  | 0.01 U                  | 0.01 U                  | 0.01 U                     | 0.01 U                   | 0.01 U                   | 0.02 U                   | 0.02 U                   | 0.02 U                      | 0.01 U                  | 0.01 U                   | 0.01 U                   | 0.01 U                       | 0.02 U                   | NA                       | 0.02 U                   | 0.02 U                      | NA                       | NA                        | NA                | NA                      | NA                      |
|                   | BERYLLIUM                                    |            | 0.004      |             | mg/L         | NA                      | NA                      | NA                       | NA                       | NA                       | NA                       | NA                      | NA                      | NA                      | NA                         | NA                       | NA                       | NA                       | NA                       | NA                          | NA                      | NA                       | NA                       | NA                           | NA                       | NA                       | NA                       | NA                          | NA                       | NA                        | NA                | NA                      | NA                      |
|                   | BORON                                        |            | 0.005      |             | mg/L         | NA<br>NA                | NA<br>NA                | NA<br>NA                 | NA<br>NA                 | NA<br>NA                 | NA<br>NA                 | NA<br>NA                | NA<br>NA                | NA<br>NA                | NA<br>NA                   | NA<br>NA                 | NA<br>NA                 | NA<br>NA                 | NA<br>NA                 | NA<br>NA                    | NA<br>NA                | NA<br>NA                 | NA<br>NA                 | NA<br>NA                     | NA<br>NA                 | NA<br>NA                 | NA<br>NA                 | NA<br>NA                    | NA<br>NA                 | NA<br>NA                  | NA<br>NA          | NA<br>NA                | NA<br>NA                |
|                   | CALCIUM METAL                                |            | 0.005      |             | mg/L         | NA<br>NA                | NA<br>NA                | NA<br>NA                 | NA<br>NA                 | NA<br>NA                 | NA<br>NA                 | NA NA                   | NA<br>NA                | NA<br>NA                | NA<br>NA                   | NA<br>NA                 | NA NA                    | NA<br>NA                 | NA<br>NA                 | NA<br>NA                    | NA<br>NA                | NA<br>NA                 | NA<br>NA                 | NA<br>NA                     | NA<br>NA                 | NA<br>NA                 | NA<br>NA                 | NA<br>NA                    | NA<br>NA                 | NA<br>NA                  | NA<br>NA          | NA<br>NA                | NA<br>NA                |
|                   | CHROMIUM                                     | 0.013      | 0.1        |             | mg/L         | 0.01 U                  | 0.01 U                  | 0.01 U                   | 0.01 U                   | 0.01 U                   | 0.01 U                   | NA.                     | 0.01 U                  | 0.01 U                  | 0.01 U                     | 0.01 U                   | 0.01 U                   | 0.01 U                   | 0.01 U                   | 0.01 U                      | 0.01 U                  | 0.01 U                   | 0.01 U                   | 0.01 U                       | 0.01 U                   | NA.                      | 0.01 U                   | 0.01 U                      | NA.                      | NA NA                     | NA NA             | NA NA                   | NA NA                   |
| Metals, Total     | LEAD                                         | 0.007      | 0.015      | 0.015       | mg/L         | 0.005 U                 | 0.005 U                 | 0.005 U                  | 0.005 U                  | 0.01 U                   | 0.01 U                   | 0.01 U                  | 0.005 U                 | 0.005 U                 | 0.005 U                    | 0.005 U                  | 0.005 U                  | 0.01 U                   | 0.01 U                   | 0.01 U                      | 0.005 U                 | 0.005 U                  | 0.005 U                  | 0.005 U                      | 0.01 U                   | NA                       | 0.01 U                   | 0.01 U                      | NA                       | NA                        | NA                | NA                      | NA                      |
|                   | MAGNESIUM                                    |            |            |             | mg/L         | NA                      | NA                      | NA                       | NA                       | NA                       | NA                       | NA                      | NA                      | NA                      | NA                         | NA                       | NA                       | NA                       | NA                       | NA                          | NA                      | NA                       | NA                       | NA                           | NA                       | NA                       | NA                       | NA                          | NA                       | NA                        | NA                | NA                      | NA                      |
|                   | MERCURY                                      |            | 0.002      |             | mg/L         | NA                      | NA                      | NA                       | NA                       | NA                       | NA                       | NA                      | NA                      | NA                      | NA                         | NA                       | NA                       | NA                       | NA                       | NA                          | NA                      | NA                       | NA                       | NA                           | NA                       | NA                       | NA                       | NA                          | NA                       | NA                        | NA                | NA                      | NA                      |
|                   | NICKEL                                       | 0.13       | 0.1        | 2           | mg/L         | 0.04 U                  | 0.04 U                  | 0.04 U                   | 0.04 U                   | 0.04 U                   | 0.04 U                   | 0.04 U                  | 0.04 U                  | 0.04 U                  | 0.04 U                     | 0.04 U                   | 0.04 U                   | 0.04 U                   | 0.04 U                   | 0.04 U                      | 0.04 U                  | 0.04 U                   | 0.04 U                   | 0.04 U                       | 0.04 U                   | NA                       | 0.04 U                   | 0.04 U                      | NA                       | NA                        | NA                | NA                      | NA                      |
|                   | POTASSIUM                                    |            | **         |             | mg/L         | NA                      | NA                      | NA                       | NA                       | NA                       | NA                       | NA                      | NA                      | NA                      | NA                         | NA                       | NA                       | NA                       | NA                       | NA                          | NA                      | NA                       | NA                       | NA                           | NA                       | NA                       | NA                       | NA                          | NA                       | NA                        | NA                | NA                      | NA                      |
|                   | SODIUM                                       | 0.96       | 2          | 31          | mg/L<br>mg/L | NA<br>0.02 U            | NA<br>0.021             | NA<br>0.036              | NA<br>0.064              | NA<br>0.02 U             | NA<br>0.02 U             | NA<br>0.02 U            | 0.02 U                  | NA<br>0.025             | NA<br>0.033                | NA<br>0.046              | NA<br>0.02 U             | NA<br>0.02 U             | NA<br>0.02 U             | NA<br>0.02 U                | NA<br>0.02 U            | NA<br>0.02 U             | NA<br>0.02 U             | NA<br>0.02 U                 | NA<br>0.02 U             | NA<br>NA                 | NA<br>0.02 U             | NA<br>0.02 U                | NA<br>NA                 | NA<br>NA                  | NA<br>NA          | NA<br>NA                | NA<br>NA                |
| <b>—</b>          | ARSENIC                                      | 0.018      | 0.018      | 0.018       | mg/L         | NA                      | NA                      | NA NA                    | NA                       | NA                       | NA                       | NA                      | NA                      | NA NA                   | NA NA                      | NA                       | NA NA                    | NA NA                    | 0.02 U                   | NA                          | NA.                     | NA                       | NA NA                    | NA NA                        | NA                       | NA.                      | 0.02 U                   | 0.02 U                      | NA NA                    | NA NA                     | NA NA             | NA NA                   | NA NA                   |
|                   | BERYLLIUM                                    |            | 0.004      |             | mg/L         | NA                      | NA                      | NA                       | NA                       | NA                       | NA                       | NA                      | NA                      | NA                      | NA                         | NA                       | NA.                      | NA                       | NA                       | NA                          | NA                      | NA                       | NA                       | NA                           | NA                       | NA                       | NA                       | NA                          | NA                       | NA                        | NA                | NA                      | NA                      |
|                   | CADMIUM                                      |            | 0.005      |             | mg/L         | NA                      | NA                      | NA                       | NA                       | NA                       | NA                       | NA                      | NA                      | NA                      | NA                         | NA                       | NA                       | NA                       | NA                       | NA                          | NA                      | NA                       | NA                       | NA                           | NA                       | NA                       | NA                       | NA                          | NA                       | NA                        | NA                | NA                      | NA                      |
| Metals, Dissolved | CHROMIUM                                     | 0.013      | 0.1        |             | mg/L         | NA                      | NA                      | NA                       | NA                       | NA                       | NA                       | NA                      | NA                      | NA                      | NA                         | NA                       | NA                       | NA                       | 0.01 U                   | NA                          | NA                      | NA                       | NA                       | NA                           | NA                       | NA                       | 0.01 U                   | 0.01 U                      | NA                       | NA                        | NA                | NA                      | NA                      |
|                   | LEAD                                         | 0.007      | 0.015      | 0.015       | mg/L         | NA                      | NA                      | NA                       | NA                       | NA                       | NA                       | NA                      | NA                      | NA                      | NA                         | NA                       | NA                       | NA                       | 0.01 U                   | NA                          | NA                      | NA                       | NA                       | NA                           | NA                       | NA                       | 0.01 U                   | 0.01 U                      | NA                       | NA                        | NA                | NA                      | NA                      |
|                   | MERCURY                                      |            | 0.002      |             | mg/L         | NA                      | NA                      | NA                       | NA                       | NA                       | NA .                     | NA                      | NA                      | NA                      | NA                         | NA                       | NA                       | NA                       | NA                       | NA                          | NA                      | NA                       | NA                       | NA                           | NA                       | NA                       | NA                       | NA                          | NA                       | NA                        | NA                | NA                      | NA                      |
|                   | NICKEL                                       | 0.13       | 0.1        | 2           | mg/L         | NA<br>NA                | NA<br>NA                | NA<br>NA                 | NA<br>NA                 | NA<br>NA                 | NA<br>NA                 | NA<br>NA                | NA<br>NA                | NA<br>NA                | NA<br>NA                   | NA<br>NA                 | NA<br>NA                 | NA<br>NA                 | 0.04 U                   | NA<br>NA                    | NA<br>NA                | NA<br>NA                 | NA<br>NA                 | NA<br>NA                     | NA<br>NA                 | NA<br>NA                 | 0.04 U                   | 0.04 U                      | NA<br>NA                 | NA<br>NA                  | NA<br>NA          | NA<br>NA                | NA<br>NA                |
| <u> </u>          | ZINC ALKALINITY                              | 0.96       | 2          | 31          | mg/L<br>mg/L | NA<br>NA                | NA<br>NA                | NA<br>NA                 | NA<br>NA                 | NA<br>NA                 | NA<br>NA                 | NA<br>NA                | NA<br>NA                | NA<br>NA                | NA<br>NA                   | NA<br>NA                 | NA<br>NA                 | NA<br>NA                 | 0.02 U<br>NA             | NA<br>NA                    | NA<br>NA                | NA<br>NA                 | NA<br>NA                 | NA<br>NA                     | NA<br>NA                 | NA<br>NA                 | 0.02 U<br>NA             | 0.02 U<br>NA                | NA<br>NA                 | NA<br>NA                  | NA<br>NA          | NA<br>NA                | NA<br>NA                |
|                   | ALKALINITY, TOTAL (AS CACO3)                 |            |            |             | mg/L         | NA NA                   | NA NA                   | NA NA                    | NA NA                    | NA NA                    | NA NA                    | NA NA                   | NA NA                   | NA NA                   | NA NA                      | NA NA                    | NA NA                    | NA NA                    | NA NA                    | NA NA                       | NA NA                   | NA NA                    | NA NA                    | NA NA                        | NA NA                    | NA NA                    | NA.                      | NA.                         | NA NA                    | NA NA                     | NA NA             | NA NA                   | NA NA                   |
|                   | AMMONIA AS N                                 | 15         | 30         | 30          | mg/L         | 0.64                    | 0.28 U                  | 0.79                     | 0.51                     | 0.59                     | 0.74                     | 1                       | 1.3                     | 1.2                     | 1.1                        | 0.53                     | 3                        | 0.95                     | 1 J                      | 0.96                        | 520                     | 520                      | 430                      | 440                          | 340                      | NA                       | 290                      | 300                         | NA                       | 300                       | 290               | 370                     | 340                     |
|                   | BICARBONATE                                  |            |            |             | mg/L         | NA                      | NA                      | NA                       | NA                       | NA                       | NA                       | NA                      | NA                      | NA                      | NA                         | NA                       | NA                       | NA                       | NA                       | NA                          | NA                      | NA                       | NA                       | NA                           | NA                       | NA                       | NA                       | NA.                         | NA                       | NA                        | NA                | NA                      | NA                      |
| Miscellaneous     | CARBONATE                                    |            |            |             | mg/L         | NA                      | NA                      | NA                       | NA                       | NA                       | NA                       | NA                      | NA                      | NA                      | NA                         | NA                       | NA                       | NA                       | NA                       | NA                          | NA                      | NA                       | NA                       | NA                           | NA                       | NA                       | NA                       | NA                          | NA                       | NA                        | NA                | NA                      | NA                      |
| Journalious       | CONDUCTIVITY                                 |            |            |             | umhos/<br>cm | NA                      | NA                      | NA                       | NA                       | NA                       | NA                       | NA                      | NA                      | NA                      | NA                         | NA                       | NA                       | NA                       | NA                       | NA                          | NA                      | NA                       | NA                       | NA                           | NA                       | NA                       | NA                       | NA                          | NA                       | NA                        | NA                | NA                      | NA                      |
|                   | NITRATE (AS N)                               |            | 10         |             | mg/L         | NA                      | NA                      | NA                       | NA                       | NA                       | NA                       | 0.05 U                  | NA                      | NA                      | NA                         | NA                       | NA                       | NA                       | NA                       | NA                          | NA                      | NA                       | NA                       | NA                           | NA                       | NA                       | NA                       | NA                          | NA                       | NA                        | NA                | NA                      | 0.05 U                  |
|                   | NITRITE (AS N)                               |            |            |             | mg/l         | NA                      | NA                      | NA                       | NA                       | NA                       | NA                       | NA                      | NA                      | NA                      | NA                         | NA                       | NA                       | NA                       | NA                       | NA                          | NA                      | NA                       | NA                       | NA                           | NA                       | NA                       | NA                       | NA                          | NA                       | NA                        | NA                | NA                      | NA                      |
|                   | SULFATE                                      |            |            |             | mg/L         | NA<br>NA                | NA<br>NA                | NA<br>NA                 | NA<br>NA                 | NA<br>NA                 | NA<br>NA                 | NA<br>NA                | NA<br>NA                | NA<br>NA                | NA<br>NA                   | NA<br>NA                 | NA<br>NA                 | NA<br>NA                 | NA<br>NA                 | NA<br>NA                    | NA<br>NA                | NA<br>NA                 | NA<br>NA                 | NA<br>NA                     | NA<br>NA                 | NA<br>NA                 | NA<br>NA                 | NA<br>NA                    | NA<br>NA                 | NA<br>NA                  | NA<br>NA          | NA<br>NA                | NA<br>NA                |
| SVOCs             | SOLIDS, TOTAL DISSOLVED  1,4-DICHLOROBENZENE |            |            |             | mg/L<br>ug/L | NA<br>NA                | NA<br>NA                | NA<br>NA                 | NA<br>NA                 | NA<br>NA                 | NA<br>NA                 | NA<br>NA                | NA<br>NA                | NA<br>NA                | NA<br>NA                   | NA<br>NA                 | NA<br>NA                 | NA<br>NA                 | NA<br>NA                 | NA<br>NA                    | NA<br>NA                | NA<br>NA                 | NA<br>NA                 | NA<br>NA                     | NA<br>NA                 | NA<br>NA                 | NA<br>NA                 | NA<br>NA                    | NA<br>NA                 | NA<br>NA                  | NA<br>NA          | NA<br>NA                | NA<br>NA                |
| L                 | ı                                            | 1          | 1          | ·           | , ,          | <u> </u>                | <u> </u>                |                          | <u> </u>                 | l                        | l                        | ·                       |                         | 1                       | l                          | l                        |                          |                          | l                        |                             | l                       | 1                        |                          |                              |                          | l                        | ·                        |                             | ·                        | 1                         | ·                 |                         |                         |

Notes:

Shaded cell indicates comparison standard used in data evaluation.

Highlighted cell indicates analytical result exceeds comparison criteria.

Bold and Rolls tent indicates analytical result exceeds background value.

In Narias comparison standard base on the Maximum Containmant Level (MCL) established by the USEPA National Primary C

NO - No constituents detected above their laboratory minimum detection limit.

J. Indicates constituent was not detected above value shown.

J. Indicates constituent was not detected at an estimated value.

Monitoring will a Mov 3P, PDAMW 4B, PDAMW 4B, PDAMW 4BP, PDAMW 4BP, PDAMW 4BP, PDAMW 3BP, PDAMW 4BP, PDAMW 4

|                  |                                    |            |                   | Locatio         | n:                   |                  |                   |                  |                  |                  |                  |                         |             | PDMV        | /-1T    |                       |                  |                |                  |                  |                       |                            |           |                   |              |                      |                              |                    |                  |                           |                 | PDMW-2T        |              |                    |                                                  |                       |                    |                       |               |                      |
|------------------|------------------------------------|------------|-------------------|-----------------|----------------------|------------------|-------------------|------------------|------------------|------------------|------------------|-------------------------|-------------|-------------|---------|-----------------------|------------------|----------------|------------------|------------------|-----------------------|----------------------------|-----------|-------------------|--------------|----------------------|------------------------------|--------------------|------------------|---------------------------|-----------------|----------------|--------------|--------------------|--------------------------------------------------|-----------------------|--------------------|-----------------------|---------------|----------------------|
|                  |                                    |            |                   | Sample Date     | e: 10/30/1997        | 8/10/1999        | 11/16/1999        | 2/23/2000        | 5/16/2000        | 8/22/2000        | 1/10/2001        | 7/16/2001 2/6/2         | 002 9/12/   | 2002 2/6/20 | 103 6/2 | 5/2003 1/29/2004      | 7/20/2004        | 3/8/2006       | 4/3/2008         | 7/21/2008        | 10/7/2008 12/         | /5/2009 6/17/2010          | 6/13/2011 | 10/29/1997        | 8/9/1999     | 11/16/1999 2         | //24/2000 5/16/2000          | 8/22/2000          | 1/10/2001        | 7/16/2001 9/10/2          | 2/6/2003        | 6/26/2003      | 1/27/2004    | 7/21/2004          | 3/6/2006 4/2                                     | 2008 7/19/200         | 8 10/5/2008        | 8 12/1/2009           | 6/18/2010 6/1 | 5/15/2011 12/21/2011 |
|                  |                                    |            |                   | Sample Type     | e: Normal            | Normal           | Normal            | Normal           | Normal           | Normal           | Normal           | Normal Norm             | mal Nor     | mal Norn    | nal N   | ormal Normal          | Normal           | Normal         | Normal           | Normal           | Normal No             | ormal Normal               | Normal    | Normal            | Normal       | Normal               | Normal Normal                | Normal             | Normal           | Normal Norm               | nal Normal      | Normal         | Normal       | Normal             | Normal No                                        | rmal Normal           | Normal             | Normal                | Normal N      | Normal Normal        |
|                  |                                    |            |                   |                 | PDMW-                | PDMW-            | PDMW-             | PDMW-            | PDMW-            | PDMW-            | PDMW-            | PDMW- PDN               | IW- PDI     | IW-<br>PDM  | w- P    | DMW- PDMW-            | PDMW-            | PDMW-          | PDMW-            | PDMW-            | PDMW- PI              | DMW- PDMW-                 | PDMW-1T-  | PDMW-             | PDMW-        | PDMW-                | PDMW- PDMW-                  | PDMW-              | PDMW-            | PDMW- PDM                 | W- PDMW-        | PDMW-          | PDMW-        | PDMW-              | PDMW- PD                                         | MW- PDMW-             | PDMW-              | PDMW-                 | PDMW- PD      | DMW-2T-              |
|                  |                                    |            |                   | Sample II       | D: 1T_10/30/19<br>97 | 1T_8/10/199<br>9 | 1T_11/16/19<br>99 | 1T_2/23/200<br>0 | 1T_5/16/200<br>0 | 1T_8/22/200<br>0 | 1T_1/10/200<br>1 | 1T_7/16/200<br>1 1T_2/6 | /2002 1T_9/ | 1T_2/6/     | 2002    | 3 1T_1/29/200<br>3 4  | 1T_7/20/200<br>4 | 1T_3/8/2006    | 1T_4/3/2008      | 1T_7/21/200<br>8 | 1T_10/7/200 1T_1<br>8 | 12/5/200 1T_6/17/20<br>9 0 | 061311    | 2T_10/29/19<br>97 | 2T_8/9/1999  | 2T_11/16/19 2T<br>99 | 7_2/24/200 2T_5/16/20<br>0 0 | 0 2T_8/22/200<br>0 | 2T_1/10/200<br>1 | 2T_7/16/200 2T_9/1<br>1 2 | 0/200 OT 0/0/00 | 2T_6/26/200    | 2T_1/27/200  | 0 2T_7/21/200<br>4 | 2T_3/6/2006 2T_4                                 | 2/2008 2T_7/19/2<br>8 | 00 2T_10/5/20<br>8 | 00 2T_12/1/200 2<br>9 | 2T_6/18/201 0 | 061511 2T_1221201    |
| Method Gro       | p Analyte                          | Background | Type 3 RRS Type 4 | RRS Unit        | s Result             | Result           | Result            | Result           | Result           | Result           | Result           | Result Res              | ult Res     | ult Resi    | ult B   | esult Result          | Result           | Result         | Result           | Result           | Result R              | lesult Result              | Result    | Result            | Result       | Result               | Result Result                | Result             | Result           | Result Res                | ult Result      | Result         | Result       | Result             | Result Re                                        | sult Result           | Result             | Result                | Result R      | Result Result        |
|                  | ACENAPHTHENE                       | 1          | 2000              | - ua/l          | 111                  | 111              | 1.0               | 1 U              | 111              | 111              | 111              | 111 1                   | U 0.2       |             |         | 1.2 U 0.2 U           | 0.2 U            | 0.2 U          | 0.19 U           | 0.19 U           |                       | 1.9 U 0.19 U               | NA.       | 111               | 111          | 111                  | 111 111                      | 10                 | 10               | 1 U 0.2                   |                 | 0.2 U          | 0.2 U        | 0.2 U              |                                                  | 19 U 0.19 U           | 0.19 U             | 0.1911                |               | NA NA                |
|                  | ACENAPHTHYLENE                     | 1.4        | 1 51              | 0 ug/L          | . 10                 | 10               | 1 U               | 1 U              | 1 U              | 1 U              | 1 U              | 10 1                    |             | U 0.2       | _       | 1.2 U 0.2 U           | 0.2 U            | 0.2 U          | 0.19 U           | 0.19 U           |                       | 1.9 U 0.19 U               | NA.       | 1 U               | 1 U          | 10                   | 10 10                        | 10                 | 10               | 1 U 0.2                   |                 | 0.2 U          | 0.2 U        | 0.2 U              |                                                  | 19 U 0.19 U           |                    | 0.19 U                |               | NA NA                |
|                  | ANTHRACENE                         | 0.2        | 0.2 51            | 00 ug/L         | . 0.32               | 0.2 U            | 0.2 U             | 0.2 U            | 0.2 U            | 0.2 U            | 0.2 U            | 0.2 U 0.2               | U 0.2       | U 0.2       | J       | 1.2 U 0.2 U           | 0.2 U            | 0.2 U          | 0.19 U           | 0.19 U           | 0.19 U 1              | 1.9 U 0.19 U               | NA        | 0.2 U             | 0.2 U        | 0.2 U                | 0.2 U 0.2 U                  | 0.2 U              | 0.2 U            | 0.2 U 0.2                 | U 0.2 U         | 0.2 U          | 0.2 U        | 0.2 U              | 0.19 U 0.                                        | 19 U 0.19 U           | 0.19 U             | 0.19 U                | 0.19 U        | NA NA                |
|                  | BENZO(A)ANTHRACENE                 | 0.2        | 0.1 3.            | 9 ug/L          | 0.31                 | 0.2 U            | 0.2 U             | 0.2 U            | 0.2 U            | 0.2 U            | 0.2 U            | 0.2 U 0.2               | U 0.2       | U 0.2       | J       | 1.2 U 0.2 U           | 0.2 U            | 0.2 U          | 0.19 U           | 0.19 U           | 0.19 U 1              | 1.9 U 0.19 U               | NA        | 0.2 U             | 0.2 U        | 0.2 U                | 0.2 U 0.2 U                  | 0.2 U              | 0.2 U            | 0.2 U 0.2                 | U 0.2 U         | 0.2 U          | 0.2 U        | 0.2 U              | 0.19 U 0.                                        | 19 U 0.19 U           | 0.19 U             | 0.19 U                | 0.19 U        | NA NA                |
|                  | BENZO(A)PYRENE                     | 0.2        | 0.2 0.0           | 39 ug/L         | . 0.26               | 0.2 U            | 0.2 U             | 0.2 U            | 0.2 U            | 0.2 U            | 0.2 U            | 0.2 U 0.2               | U 0.2       | U 0.2       | J       | 1.2 U 0.2 U           | 0.2 U            | 0.2 U          | 0.19 U           | 0.19 U           | 0.19 U 1              | 1.9 U 0.19 U               | NA        | 0.2 U             | 0.2 U        | 0.2 U                | 0.2 U 0.2 U                  | 0.2 U              | 0.2 U            | 0.2 U 0.2                 | U 0.2 U         | 0.2 U          | 0.2 U        | 0.2 U              | 0.19 U 0.                                        | 19 U 0.19 U           | 0.19 U             | 0.19 U                | 0.19 U        | NA NA                |
|                  | BENZO(B)FLUORANTHENE               | 0.2        | 0.2 0.6           | 35 ug/L         | 0.26                 | 0.2 U            | 0.2 U             | 0.2 U            | 0.2 U            | 0.2 U            | 0.2 U            | 0.2 U 0.2               | U 0.2       | U 0.2       | J       | 1.2 U 0.2 U           | 0.2 U            | 0.2 U          | 0.19 U           | 0.19 U           | 0.19 U 1              | 1.9 U 0.19 U               | NA        | 0.2 U             | 0.2 U        | 0.2 U                | 0.2 U 0.2 U                  | 0.2 U              | 0.2 U            | 0.2 U 0.2                 | U 0.2 U         | 0.2 U          | 0.2 U        | 0.2 U              | 0.19 U 0.                                        | 19 U 0.19 U           | 0.19 U             | 0.19 U                | 0.19 U        | NA NA                |
|                  | BENZO(G,H,I)PERYLENE               |            |                   | - ug/L          | . 0.5 U              | NA               | 0.5 U             | NA               | NA               | NA               | NA               | NA N                    | A 0.2       | U 0.2       | J       | 1.2 U 0.2 U           | 0.2 U            | 0.2 U          | 0.19 U           | 0.19 U           | 0.19 U 1              | 1.9 U 0.19 U               | NA        | 0.5 U             | NA           | 0.5 U                | NA NA                        | NA                 | NA               | NA 0.2                    | U 0.2 U         | 0.2 U          | 0.2 U        | 0.2 U              | 0.19 U 0.                                        | 19 U 0.19 U           | 0.19 U             | 0.19 U                | 0.19 U        | NA NA                |
|                  | BENZO(K)FLUORANTHENE               |            |                   | - ug/L          | . 0.5 U              | NA               | 0.2 U             | NA               | NA               | NA               | NA               | NA N                    | A 0.2       | U 0.2       | J       | 1.2 U 0.2 U           | 0.2 U            | 0.2 U          | 0.19 U           | 0.19 U           | 0.19 U 1              | 1.9 U 0.19 U               | NA        | 0.5 U             | NA           | 0.2 U                | NA NA                        | NA                 | NA               | NA 0.2                    | U 0.2 U         | 0.2 U          | 0.2 U        | 0.2 U              | 0.19 U 0.                                        | 19 U 0.19 U           | 0.19 U             | 0.19 U                | 0.19 U        | NA NA                |
|                  | CHRYSENE                           | 0.2        | 0.2 6             | 5 ug/L          | . 0.44               | 0.2 U            | 0.2 U             | 0.2 U            | 0.2 U            | 0.2 U            | 0.2 U            | 0.2 U 0.2               | U 0.2       | U 0.2       | J       | 0.2 U                 | 0.2 U            | 0.2 U          | 0.19 U           | 0.19 U           | 0.19 U 1              | 1.9 U 0.19 U               | NA        | 0.2 U             | 0.2 U        | 0.2 U                | 0.2 U 0.2 U                  | 0.2 U              | 0.2 U            | 0.2 U 0.2                 | U 0.2 U         | 0.2 U          | 0.2 U        | 0.2 U              | 0.19 U 0.                                        | 19 U 0.19 U           | 0.19 U             | 0.19 U                | 0.19 U        | NA NA                |
| PAHs             | DIBENZO(A,H)ANTHRACENE             |            | 0.3               | - ug/L          | . 10                 | NA               | 0.2 U             | NA               | NA               | NA               | NA               | NA N                    | A 0.2       | U 0.2       | _       | 0.2 U                 | 0.2 U            | 0.2 U          | 0.19 U           | 0.19 U           | 0.19 U 1              | 1.9 U 0.19 U               | NA        | 1 U               | NA           | 0.2 U                | NA NA                        | NA                 | NA               | NA 0.2                    | _               | 0.2 U          | 0.2 U        | 0.2 U              | 0.19 U 0.                                        | 19 U 0.19 U           | 0.19 U             | 0.19 U                | 0.19 U        | NA NA                |
|                  | FLUORANTHENE                       | 0.5        | 1000 -            | - ug/L          | . 0.5 U              | 0.5 U            | 0.5 U             | 0.5 U            | 0.5 U            | 0.5 U            | 0.5 U            | 0.5 U 0.5               | U 0.2       | U 0.2       | J       | 1.2 U 0.2 U           | 0.2 U            | 0.2 U          | 0.19 U           | 0.19 U           | 0.19 U 1              | 1.9 U 0.19 U               | NA        | 0.5 U             | 0.5 U        | 0.5 U                | 0.5 U 0.5 U                  | 0.5 U              | 0.5 U            | 0.5 U 0.2                 |                 | 0.2 U          | 0.2 U        | 0.2 U              | 0.19 U 0.                                        | 19 U 0.19 U           | 0.19 U             | 0.19 U                |               | NA NA                |
|                  | FLUORENE                           | 0.5        | 1000 -            | - ug/L          | 0.5 U                | 0.5 U            | 0.5 U             | 0.5 U            | 0.5 U            | 0.5 U            | 0.5 U            | 0.5 U 0.5               |             |             | _       | 1.2 U 0.2 U           | 0.2 U            | 0.2 U          | 0.19 U           | 0.19 U           |                       | 1.9 U 0.19 U               | NA        | 0.5 U             | 0.5 U        |                      | 0.5 U 0.5 U                  | 0.5 U              | 0.5 U            | 0.5 U 0.2                 |                 | 0.2 U          | 0.2 U        | 0.2 U              | <del>                                     </del> | 19 U 0.19 U           | 0.19 U             | 0.19 U                |               | NA NA                |
|                  | INDENO(1,2,3-CD)PYRENE             |            | 0.4 -             | - ug/L          | . 0.5 U              | NA               | 0.2 U             | NA               | NA               | NA               | NA               | NA N                    |             |             |         | 1.2 U 0.2 U           | 0.2 U            | 0.2 U          | 0.19 U           | 0.19 U           |                       | 1.9 U 0.19 U               | NA        | 0.5 U             | NA           | 0.2 U                | NA NA                        | NA                 | NA               | NA 0.2                    |                 | 0.2 U          | 0.2 U        | 0.2 U              |                                                  | 19 U 0.19 U           | 0.19 U             | 0.19 U                |               | NA NA                |
|                  | 1-METHYLNAPHTHALENE                |            |                   | - ug/L          | . NA                 | NA NA            | 10                | NA               | NA<br>NA         | NA<br>           | NA NA            | NA N                    |             | U 0.2       |         | 1.2 U 0.2 U           | 0.2 U<br>0.2 U   | 0.2 U<br>0.2 U | 0.19 U<br>0.19 U | 0.19 U<br>0.19 U |                       | 7.5 U 0.38 U               | NA NA     | NA<br>NA          | NA<br>NA     | 10                   | NA NA                        | NA<br>NA           | NA<br>NA         | NA 0.2                    |                 | 0.2 U          | 0.2 U        | 0.2 U<br>0.2 U     | 0.19 U 0.                                        | 19 U 0.19 U           | 0.19 U<br>0.19 U   | 0.76 U                |               | NA NA                |
|                  | 2-METHYLNAPHTHALENE<br>NAPHTHALENE | ,          | 20 2              | - ug/L          | . NA                 | INA<br>111       | 111               | NA<br>1 U        | NA<br>111        | NA 111           | NA<br>1.11       | THA N                   |             | U 0.2       | _       | 1.2 U 0.2 U           | 0.2 U            | 0.2 U<br>0.2 U | 0.19 U<br>0.19 U | 0.19 U<br>0.19 U |                       | 1.9 U 0.19 U               | NA<br>NA  | ruA<br>111        | NA<br>1 U    | 111                  | NA NA                        | NA<br>1 U          | NA<br>1 U        | NA 0.2                    |                 | 0.2 U<br>0.2 U | 0.2 U        | 0.2 U              | <del>                                     </del> | 19 U 0.19 U           | 0.19 U             | 0.19 U                |               | NA NA                |
|                  | PHENANTHRENE                       | 0.22       | 0.2 51            | 0 ug/L          | . 10                 | 0.2 U            | 0.2 U             | 0.2 U            | 0.2 U            | 0.2 U            | 0.2 U            | 0.2 U 0.2               |             |             |         | 1.2 U 0.2 U           | 0.2 U            | 0.2 U          | 0.19 U           | 0.19 U           |                       | 1.9U 0.19U                 | NA<br>NA  | 0.2 U             | 0.2 U        | 0.2 U                | 0.2 U 0.2 U                  | 0.2 U              | 0.2 U            | 0.2 U 0.2                 |                 | 0.2 U          | 0.2 U        | 0.2 U              |                                                  | 19 U 0.19 U           | 0.19 U             | 0.19 U                |               | NA NA                |
|                  | PYRENE                             | 0.5        | 1000 -            | - ua/L          | . 0.5 U              | 0.5 U            | 0.5 U             | 0.5 U            | 0.5 U            | 0.5 U            | 0.5 U            | 0.5 U 0.5               |             | _           | _       | 1.2 U 0.2 U           | 0.2 U            | 0.2 U          | 0.19 U           | 0.19 U           |                       | 1.9 U 0.19 U               | NA.       | 0.5 U             | 0.5 U        |                      | 0.5 U 0.5 U                  | 0.5 U              | 0.5 U            | 0.5 U 0.2                 |                 | 0.2 U          | 0.2 U        | 0.2 U              | 0.19 U 0.                                        | 19 U 0.19 U           | 0.19 U             | 0.19 U                | 0.19 U        | NA NA                |
|                  | TOTAL PAHs                         |            |                   | - ug/L          | 1.59                 | ND               | ND                | ND               | ND               | ND               | ND               | ND N                    |             | D ND        | _       | ND ND                 | ND               | ND             | ND               | ND               |                       | ND ND                      | NA        | ND                | ND           | ND                   | ND ND                        | ND                 | ND               | ND NI                     |                 | ND             | ND           | ND                 | ND I                                             | ND ND                 | ND                 | ND                    | ND            | NA NA                |
|                  | BENZENE                            | 1          | 5 31              | .2 ug/L         | . 1 U                | 1 U              | 1 U               | 1 U              | 1 U              | 1 U              | 1 U              | 1 U 1                   | U 1         | U 1 L       |         | 10 10                 | 1 U              | 1 U            | 1 U              | 1 U              | 1 U                   | 10 10                      | NA        | 1 U               | 1 U          | 1 U                  | 10 10                        | 1 U                | 1 U              | 1 U 1                     | J 1 U           | 1 U            | 1 U          | 1 U                | 10 1                                             | U 1U                  | 1 U                | 1 U                   | 1 U           | NA NA                |
|                  | ETHYLBENZENE                       | 1          | 700 -             | - ug/L          | . 1 U                | 1 U              | 1 U               | 1 U              | 1 U              | 1 U              | 1 U              | 1 U 1                   | U 1         | U 1 L       |         | 1 U 1 U               | 1 U              | 1 U            | 1 U              | 1 U              | 1 U                   | 10 10                      | NA        | 1 U               | 1 U          | 1 U                  | 10 10                        | 1 U                | 1 U              | 1 U 1                     | J 1U            | 1 U            | 1 U          | 1 U                | 1 U                                              | U 1 U                 | 1 U                | 1 U                   | 1 U           | NA NA                |
|                  | p/m-XYLENE                         |            |                   | - ug/L          | . NA                 | 1 U              | 1 U               | 1 U              | 1 U              | 1 U              | 1 U              | 1 U N                   | A N         | A NA        |         | NA NA                 | NA               | 1 U            | NA               | NA               | NA                    | NA NA                      | NA        | NA                | 1 U          | 1 U                  | 10 10                        | 1 U                | 1 U              | 1 U N                     | . NA            | NA             | NA           | NA                 | 1 U I                                            | NA NA                 | NA                 | NA                    | NA            | NA NA                |
|                  | METHYLENE CHLORIDE                 |            |                   | - ug/L          | . NA                 | 5 U              | NA                | NA               | NA               | NA               | NA               | NA N                    | A N         | A NA        |         | NA NA                 | NA               | NA             | NA               | NA               | NA                    | NA NA                      | NA        | NA                | 5 U          | NA                   | NA NA                        | NA                 | NA               | NA N                      | . NA            | NA             | NA           | NA                 | NA I                                             | NA NA                 | NA                 | NA                    | NA            | NA NA                |
| VOCs             | o-XYLENE                           |            |                   | - ug/L          | . NA                 | 1 U              | 1 U               | 1 U              | 1 U              | 1 U              | 1 U              | 1 U N                   | A N         | A NA        |         | NA NA                 | NA.              | 10 U           | NA               | NA               | NA                    | NA NA                      | NA        | NA                | 1 U          | 1 U                  | 10 10                        | 1 U                | 1 U              | 1 U N                     | . NA            | NA             | NA           | NA                 | 10 U                                             | NA NA                 | NA                 | NA                    | NA            | NA NA                |
|                  | TOLUENE                            | 1          |                   | 00 ug/L         | . 1 U                | 1 U              | 1 U               | 1 U              | 1 U              | 1 U              | 1 U              | 1 U 1                   | U 1         | U 1 L       |         | 1 U 1 U               | 1 U              | 1 U            | 1 U              | 1 U              | 1 U                   | 1 U 1 U                    | NA        | 1 U               | 1 U          | 1 U                  | 1U 1U                        | 1 U                | 1 U              | 1 U 1                     | J 1 U           | 1 U            | 1 U          | 1 U                | 1 U                                              | U 1 U                 | 1 U                | 1 U                   | 1 U           | NA NA                |
|                  | XYLENES (TOTAL)                    | 2          | 10000 -           | - ug/L          | . 2U                 | 1 U              | 1 U               | 1 U              | 1 U              | 1 U              | 1 U              | 1 U 2                   |             |             | _       | 2 U 2 U               | 2 U              | 2 U            | 2 U              | 2 U              |                       | 2 U 2 U                    | NA        | 2 U               | 1 U          | 1 U                  | 10 10                        | 1 U                | 10               | 1 U 2                     | _               | 2 U            | 2 U          | 2 U                |                                                  | ! U 2 U               | 2 U                | 2 U                   |               | NA NA                |
|                  | METHYL TERT BUTYL ETHER            |            |                   | - ug/L          | . NA                 | NA<br>ND         | NA                | NA<br>ND         | NA               | NA               | NA               | NA N                    |             | A NA        | _       | NA NA                 | NA<br>ND         | 10 U<br>ND     | 10 U<br>ND       | 10 U             |                       | NA 10 U                    | NA<br>NA  | NA<br>ND          | NA<br>ND     | NA<br>ND             | NA NA                        | NA<br>ND           | NA<br>ND         | NA N                      |                 | NA             | NA<br>ND     | NA                 | 10 U 1                                           | 0 U 10 U              | NA                 | NA                    |               | NA NA                |
|                  | TOTAL BTEX  ARSENIC                | 0.018      | 0.018 0.0         | - ug/L          | . ND<br>. 0.01 U     | ND<br>0.012      | 0.01 U            | 0.01 U           | 0.01 U           | 0.01 U           | ND<br>0.011      | 0.01 U 0.0              |             | 11 0.01     | _       | .01 U 0.01 U          | 0.015            | 0.01 U         | 0.01 U           | 0.01 U           |                       | ND ND<br>0.02 U 0.02 U     | NA<br>NA  | 0.0193            | 0.023        |                      | ND ND<br>0.01 U 0.01 U       | 0.011              | 0.01 U           | 0.01 U 0.01               |                 | 0.01 U         | 0.01 U       | 0.01 U             | 0.01 U 0.                                        | ND ND                 | 0.01 U             | 0.02 U                |               | NA 0.018 U           |
|                  | BERYLLIUM                          | 0.010      | 0.004 -           | - mg/L          | 0.005 U              | NA.              | NA.               | NA.              | NA.              | NA.              | NA.              | NA N                    | A N         | A NA        | _       | NA NA                 | NA.              | NA NA          | NA NA            | NA NA            | NA V                  | NA NA                      | NA.       | 0.005 U           | NA           | NA NA                | NA NA                        | NA.                | NA NA            | NA N                      |                 | NA.            | NA.          | NA NA              | NA I                                             | NA NA                 | NA.                | NA.                   | NA NA         | NA NA                |
|                  | BORON                              |            |                   | - mg/L          | . NA                 | NA.              | NA.               | NA.              | NA NA            | NA .             | NA NA            | NA N                    | A N         |             | _       | NA NA                 | NA.              | NA NA          | NA NA            | NA NA            |                       | NA NA                      | NA.       | NA                | NA           | NA NA                | NA NA                        | NA.                | NA NA            | NA N                      |                 | NA             | NA NA        | NA NA              | NA I                                             | NA NA                 | NA.                | NA NA                 | NA            | NA NA                |
|                  | CADMIUM                            |            | 0.005 -           | - mg/L          | 0.005 U              | NA NA            | NA                | NA               | NA.              | NA               | NA               | NA N                    | A N         | A NA        | _       | NA NA                 | NA.              | NA             | NA               | NA               |                       | NA NA                      | NA        | 0.01 U            | NA           | NA NA                | NA NA                        | NA.                | NA NA            | NA N                      |                 | NA             | NA           | NA NA              | NA I                                             | NA NA                 | NA.                | NA NA                 | NA NA         | NA NA                |
|                  | CALCIUM METAL                      |            |                   | - mg/L          | . NA                 | NA               | NA                | NA               | NA               | NA               | NA               | NA N                    | A N         | A NA        |         | NA NA                 | NA               | NA             | NA               | NA               | NA                    | NA NA                      | NA        | NA                | NA           | NA                   | NA NA                        | NA                 | NA               | NA N                      | . NA            | NA             | NA           | NA                 | NA I                                             | NA NA                 | NA                 | NA NA                 | NA            | NA NA                |
|                  | CHROMIUM                           | 0.013      | 0.1               | - mg/L          | 0.01 U               | 0.01 U           | 0.01 U            | 0.01 U           | 0.01 U           | 0.01 U           | 0.01 U           | 0.01 U 0.01             | I U 0.0     | 1 U 0.01    | U C     | .01 U 0.01 U          | 0.01 U           | 0.01 U         | 0.01 U           | 0.01 U           | 0.01 U 0              | 0.01 U 0.01 U              | NA        | 0.01 U            | 0.01 U       | 0.01 U               | 0.01 U 0.01 U                | 0.01 U             | 0.01 U           | 0.01 U 0.01               | U 0.01 U        | 0.01 U         | 0.01 U       | 0.01 U             | 0.01 U 0.                                        | 0.01 U                | 0.01 U             | 0.01 U                | 0.01 U        | NA NA                |
| Metals, Total    | LEAD                               | 0.007      | 0.015 0.0         | 15 mg/L         | 0.005 U              | 0.005 U          | 0.005 U           | 0.005 U          | 0.005 U          | 0.005 U          | 0.005 U          | 0.005 U 0.00            | 5 U 0.00    | 6 U 0.005   | U 0.    | 0.005 U 0.005 U       | 0.005 U          | 0.005 U        | 0.005 U          | 0.005 U          | 0.005 U 0             | 0.01 U 0.01 U              | NA        | 0.005 U           | 0.005 U      | 0.005 U              | 0.005 U 0.005 U              | 0.005 U            | 0.005 U          | 0.005 U 0.00              | 5 U 0.005 U     | 0.005 U        | 0.005 U      | 0.005 U            | 0.005 U 0.0                                      | 05 U 0.005 U          | 0.005 U            | 0.01 U                | 0.01 U        | NA NA                |
|                  | MAGNESIUM                          |            |                   | - mg/L          | _ NA                 | NA               | NA                | NA               | NA               | NA               | NA               | NA N                    | A N         | A NA        |         | NA NA                 | NA               | NA             | NA               | NA               | NA                    | NA NA                      | NA        | NA                | NA           | NA                   | NA NA                        | NA                 | NA               | NA N                      | . NA            | NA             | NA           | NA                 | NA I                                             | NA NA                 | NA                 | NA                    | NA            | NA NA                |
|                  | MERCURY                            |            | 0.002 -           | - mg/L          | 0.0002 U             | NA.              | NA                | NA               | NA               | NA               | NA               | NA N                    | A N         | A NA        |         | NA NA                 | NA.              | NA             | NA               | NA               | NA                    | NA NA                      | NA        | 0.0002 U          | NA           | NA                   | NA NA                        | NA                 | NA               | NA N                      | . NA            | NA             | NA           | NA                 | NA I                                             | NA NA                 | NA                 | NA                    |               | NA NA                |
|                  | NICKEL                             | 0.13       | 0.1 2             | t mg/L          | 0.04 U               | 0.04 U           | 0.04 U            | 0.04 U           | 0.04 U           | 0.04 U           | 0.04 U           | 0.04 U 0.04             |             |             | _       | .04 U 0.04 U          | 0.04 U           | 0.04 U         | 0.04 U           | 0.04 U           |                       | 0.04 U 0.04 U              | NA        | 0.04 U            | 0.04 U       |                      | 0.04 U 0.04 U                | 0.04 U             | 0.04 U           | 0.04 U 0.04               |                 | 0.04 U         | 0.04 U       | 0.04 U             |                                                  | 0.04 U                | 0.04 U             | 0.04 U                |               | NA NA                |
|                  | POTASSIUM                          |            |                   | - mg/L          | - NA                 | NA               | NA                | NA               | NA               | NA               | NA               | NA N                    |             |             | _       | NA NA                 | NA NA            | NA NA          | NA               | NA               |                       | NA NA                      | NA        | NA                | NA           | NA                   | NA NA                        | NA                 | NA               | NA N                      |                 | NA             | NA           | NA                 | NA I                                             | NA NA                 | NA                 | NA                    |               | NA NA                |
|                  | SUDIUM                             | 0.00       |                   | mg/L            | NA NA                | NA<br>0.02 U     | NA<br>0.062       | NA O O O O O     | NA 0.027         | NA O CO LL       | NA<br>0.02 U     | NA N.                   | A N         |             | _       | NA NA<br>.02 U 0.02 U | NA<br>0.033      | NA 0.03 II     | NA<br>0.02 U     | NA<br>0.02 U     |                       | NA NA                      | NA<br>NA  | NA<br>0.02 U      | NA<br>0.02 U | NA<br>0.02.U         | NA NA 0.02 U 0.02 U          | NA O O O O O       | NA 0.022         | NA N                      |                 | NA<br>0.02 U   | NA           | NA<br>0.02.U       | NA I                                             | NA NA                 | NA<br>0.02 U       | NA<br>0.02 U          |               | NA NA                |
| -                | ARSENIC                            | 0.96       | 0.018 0.0         | 18 mg/L         | 0.02 U               | 0.02 U<br>NA     | 0.063<br>0.01 U   | 0.02 U<br>0.01 U | U.U2/<br>NA      | 0.02 U<br>NA     | 0.02 U<br>0.01 U | 0.02 U 0.00             | 2 U 0.0     |             |         | .02 U 0.02 U<br>NA NA | 0.023<br>NA      | 0.02 U<br>NA   | 0.02 U<br>NA     | 0.02 U<br>NA     |                       | 0.02 U 0.02 U              | NA<br>NA  | 0.02 U<br>NA      | 0.02 U<br>NA |                      | 0.02 U 0.02 U<br>0.01 U NA   | 0.02 U<br>0.01 U   | 0.023<br>NA      | 0.02 U 0.02<br>NA N       | _               | 0.02 U<br>NA   | 0.02 U<br>NA | 0.02 U<br>NA       | 0.02 U 0.                                        | 12 U 0.02 U           | 0.02 U<br>NA       | U.U2 U<br>NA          |               | NA NA                |
|                  | BERYLLIUM                          |            | 0.004 -           | - mg/L          | . NA                 | NA NA            | NA NA             | NA.              | NA NA            | NA.              | NA .             | NA N                    | A N         | A NA        | _       | NA NA                 | NA NA            | NA NA          | NA NA            | NA NA            | NA NA                 | NA NA                      | NA.       | NA NA             | NA           | NA                   | NA NA                        | NA.                | NA NA            | NA N                      | . NA            | NA NA          | NA NA        | NA NA              | NA I                                             | va NA                 | NA.                | NA NA                 | NA NA         | NA NA                |
|                  | CADMIUM                            |            | 0.005 -           | - mg/L          | . NA                 | NA.              | NA                | NA.              | NA NA            | NA               | NA               | NA N                    | A N         |             | _       | NA NA                 | NA NA            | NA NA          | NA NA            | NA               |                       | NA NA                      | NA.       | NA NA             | NA NA        | NA NA                | NA NA                        | NA.                | NA NA            | NA N                      | . NA            | NA NA          | NA NA        | NA NA              | NA I                                             | NA NA                 | NA.                | NA.                   | NA NA         | NA NA                |
|                  | CHROMIUM                           | 0.013      | 0.1 -             | - mg/L          | . NA                 | NA               | 0.01 U            | 0.01 U           | NA               | NA               | NA               | NA N                    |             | A NA        |         | NA NA                 | NA               | NA             | NA               | NA               |                       | NA NA                      | NA        | NA                | NA           | 0.01 U               | 0.01 U NA                    | NA.                | NA               | NA N                      |                 | NA             | NA           | NA                 | NA I                                             | NA NA                 | NA                 | NA                    |               | NA NA                |
| Metals, Dissolve | LEAD                               | 0.007      | 0.015 0.0         | 15 mg/L         | . NA                 | NA               | 0.005 U           | 0.005 U          | NA               | NA               | NA               | NA N                    | A N         | A NA        | _       | NA NA                 | NA               | NA             | NA               | NA               |                       | NA NA                      | NA        | NA                | NA           |                      | 0.005 U NA                   | NA                 | NA               | NA N                      |                 | NA             | NA           | NA                 | NA I                                             | NA NA                 | NA                 | NA.                   | NA            | NA NA                |
|                  | MERCURY                            |            | 0.002 -           | - mg/L          | _ NA                 | NA               | NA                | NA               | NA               | NA               | NA               | NA N                    | A N         | A NA        |         | NA NA                 | NA               | NA             | NA               | NA               | NA                    | NA NA                      | NA        | NA                | NA           | NA                   | NA NA                        | NA                 | NA               | NA N                      | . NA            | NA             | NA           | NA                 | NA I                                             | NA NA                 | NA                 | NA                    | NA            | NA NA                |
|                  | NICKEL                             | 0.13       | 0.1 2             | t mg/L          | . NA                 | NA               | 0.04 U            | 0.04 U           | NA               | NA               | NA               | NA N                    | A N         | A NA        |         | NA NA                 | NA               | NA             | NA               | NA               | NA                    | NA NA                      | NA        | NA                | NA           | 0.04 U               | 0.04 U NA                    | NA.                | NA               | NA N                      | . NA            | NA             | NA           | NA                 | NA I                                             | NA NA                 | NA                 | NA.                   | NA            | NA NA                |
|                  | ZINC                               | 0.96       | 2 3               | 1 mg/L          | . NA                 | NA               | 0.02 U            | 0.02 U           | 0.02 U           | NA               | NA               | NA N                    | A N         | A NA        |         | NA NA                 | NA               | NA             | NA               | NA               | NA                    | NA NA                      | NA        | NA                | NA           | 0.02 U               | 0.02 U NA                    | NA                 | 0.02 U           | NA N                      | . NA            | NA             | NA           | NA                 | NA I                                             | NA NA                 | NA                 | NA                    | NA            | NA NA                |
|                  | ALKALINITY                         |            |                   | - mg/L          | _                    | NA.              | NA                | NA               | NA               | NA               | NA               | NA N                    |             | A NA        |         | NA NA                 | NA               | NA             | NA               | NA               |                       | NA NA                      | NA        | NA                | NA           | _                    | NA NA                        | NA                 | NA               | NA N                      |                 | NA             | NA           | NA                 |                                                  | NA NA                 | NA                 | NA                    |               | NA NA                |
|                  | ALKALINITY, TOTAL (AS CACO3)       |            |                   | - mg/L          | _                    | NA               | NA                | NA               | NA               | NA               | NA               | NA N                    |             | A NA        |         | NA NA                 | NA               | NA             | NA               | NA               |                       | NA NA                      | NA        | NA                | NA           | NA                   | NA NA                        | NA                 | NA               | NA N                      | _               | NA             | NA           | NA                 |                                                  | NA NA                 | NA.                | NA                    |               | NA NA                |
|                  | AMMONIA AS N                       | 15         | 30 3              |                 |                      | 5                | 8.2               | 13               | 17               | 22               | 16               | 24 1                    |             | 9 18        |         | 12 1.9                | 0.038            | 25             | 17               | 14               |                       | 9.6 12                     | 34        | 29                | 19           |                      | 26 24                        | 22                 | 25               | 18 37                     |                 |                | 0.59         | 27                 |                                                  | 2.8 0.85              |                    | 7.7                   |               | 120 NA               |
|                  | BICARBONATE                        |            |                   | - mg/L          | _                    | NA               | NA                | NA               | NA               | NA               | NA               | NA N                    |             | A NA        | _       | NA NA                 | NA               | NA             | NA               | NA               |                       | NA NA                      | NA        | NA                | NA           | _                    | NA NA                        | NA                 | NA               | NA N                      |                 | NA             | NA           | NA                 |                                                  | NA NA                 |                    | NA                    |               | NA NA                |
| Miscellaneous    | CARBONATE                          |            |                   | - mg/L<br>umhos | NA NA                | NA NA            | NA                | NA               | NA NA            | NA NA            | NA NA            | NA N                    |             | A NA        | _       | NA NA                 | NA NA            | NA<br>NA       | NA NA            | NA NA            |                       | NA NA                      | NA        | NA NA             | NA           | NA                   | NA NA                        | NA NA              | NA<br>NA         | NA N                      |                 | NA NA          | NA NA        | NA NA              | <del>                                     </del> | NA NA                 | _                  | NA NA                 |               | NA NA                |
|                  | CONDUCTIVITY NITRATE (AS N)        |            | 10 -              | - umho:<br>- cm |                      | NA<br>NA         | NA<br>NA          | NA<br>NA         | NA<br>NA         | NA<br>NA         | NA<br>NA         | NA N                    |             | A NA        | _       | NA NA                 | NA<br>NA         | NA<br>NA       | NA<br>NA         | NA<br>NA         |                       | NA NA                      | NA<br>NA  | NA<br>NA          | NA<br>NA     | NA<br>NA             | NA NA                        | NA<br>NA           | NA<br>NA         | NA N                      |                 | NA<br>NA       | NA<br>NA     | NA<br>NA           |                                                  | NA NA                 | NA<br>NA           | NA<br>NA              |               | NA NA                |
|                  | NITRATE (AS N) NITRITE (AS N)      |            | - 10              | - mg/L          | -                    | NA<br>NA         | NA<br>NA          | NA<br>NA         | NA<br>NA         | NA<br>NA         | NA<br>NA         | NA N                    |             | A NA        | _       | NA NA                 | NA<br>NA         | NA<br>NA       | NA<br>NA         | NA<br>NA         |                       | NA NA                      | NA<br>NA  | NA<br>NA          | NA<br>NA     | NA<br>NA             | NA NA                        | NA<br>NA           | NA<br>NA         | NA N                      |                 | NA<br>NA       | NA<br>NA     | NA<br>NA           | <del>                                     </del> | NA NA                 | NA<br>NA           | NA<br>NA              |               | NA NA                |
|                  | SULFATE                            |            |                   | - mg/L          |                      | NA NA            | NA<br>NA          | NA.              | NA<br>NA         | NA NA            | NA<br>NA         | NA N                    |             | A NA        |         | NA NA                 | NA NA            | NA<br>NA       | NA<br>NA         | NA NA            |                       | NA NA                      | NA<br>NA  | NA<br>NA          | NA NA        | NA<br>NA             | NA NA                        | NA.                | NA<br>NA         | NA N                      |                 | NA<br>NA       | NA<br>NA     | NA<br>NA           |                                                  | VA NA                 | _                  | NA NA                 |               | NA NA                |
|                  | SOLIDS, TOTAL DISSOLVED            |            |                   | - mg/L          |                      | NA.              | NA                | NA.              | NA NA            | NA               | NA               | NA N                    |             | A NA        |         | NA NA                 | NA NA            | NA NA          | NA NA            | NA               |                       | NA NA                      | NA.       | NA NA             | NA NA        | NA NA                | NA NA                        | NA.                | NA NA            | NA N                      |                 | NA NA          | NA NA        | NA NA              |                                                  | NA NA                 |                    | NA.                   |               | NA NA                |
| SVOCs            | 1,4-DICHLOROBENZENE                |            |                   | - ug/L          |                      | NA NA            | NA                | NA               | NA               | NA               | NA               | NA N                    |             | A NA        | _       | NA NA                 | NA               | NA             | NA               | NA               |                       | NA NA                      | NA        | NA                | NA           |                      | NA NA                        | NA                 | NA               | NA N                      |                 | NA             | NA           | NA                 |                                                  | NA NA                 |                    | NA.                   |               | NA NA                |
| Notes:           |                                    |            |                   |                 |                      |                  |                   |                  |                  |                  |                  |                         |             |             |         |                       |                  |                |                  |                  |                       |                            |           |                   |              |                      |                              |                    |                  |                           |                 |                |              |                    |                                                  |                       |                    |                       |               |                      |

Notes:

Shaded cell indicates comparison standard used in data evaluation.

In splitighted cell indicates analytical result exceeds comparison criteria.

Bodd and Rolls feet indicates analytical result exceeds background value.

In Nivra to comparison so sandard back on the Maximum Containance Level (MCL) established by the USEPA National Primary (
NO. No constituents detected above the laboratory informal detection lines.

I indicates constituent was not detected above value shown.

I indicates constituent was not detected at an estimated value.

Uniformation constituent was not detected at an estimated value.

Uniformation constituent was not detected at an estimated value.

Monitoring wells, MMV-38, POAMW-48P, POAMW-18P, POAMW-18TP, POAMW-23P, POAMW-23P, POAMW-33P, PO

|                   |                                         |            |            | L           | Location:      | :                          |                           |                            |                           |                           |                           |                           |                      |                           |                      |                           |                      | PDM                       | W-3T                      |                           |                                  |                                  |                      |                           |                           |                           |                           |                            |                    |                          |                          |
|-------------------|-----------------------------------------|------------|------------|-------------|----------------|----------------------------|---------------------------|----------------------------|---------------------------|---------------------------|---------------------------|---------------------------|----------------------|---------------------------|----------------------|---------------------------|----------------------|---------------------------|---------------------------|---------------------------|----------------------------------|----------------------------------|----------------------|---------------------------|---------------------------|---------------------------|---------------------------|----------------------------|--------------------|--------------------------|--------------------------|
|                   |                                         |            |            | Samp        | ple Date:      | 10/29/1997                 | 8/11/1999                 | 11/16/1999                 | 2/23/2000                 | 2/24/2000                 | 5/16/2000                 | 8/21/2000                 | 1/9/2001             | 7/11/2001                 | 2/4/2002             | 9/10/2002                 | 2/6/2003             | 6/26/2003                 | 1/27/2004                 | 7/21/2004                 | 3/6/3                            | 2006                             | 4/2/2008             | 7/19/2008                 | 10/4/2008                 | 12/1/2009                 | 6/16/2010                 | 12/15/2010                 | 6/15               | 2011                     | 12/8/2011                |
|                   |                                         |            |            | Samp        | ple Type:      | Normal                     | Normal                    | Normal                     | Normal                    | Normal                    | Normal                    | Normal                    | Normal               | Normal                    | Normal               | Normal                    | Normal               | Normal                    | Normal                    | Normal                    | Nor                              | mal                              | Normal               | Normal                    | Normal                    | Normal                    | Normal                    | Normal                     | No                 | mal                      | Normal                   |
|                   |                                         |            |            | Sa          | ample ID:      | PDMW-<br>3T_10/29/19<br>97 | PDMW-<br>3T_8/11/199<br>9 | PDMW-<br>3T_11/16/19<br>99 | PDMW-<br>3T_2/23/200<br>0 | PDMW-<br>3T_2/24/200<br>0 | PDMW-<br>3T_5/16/200<br>0 | PDMW-<br>3T_8/21/200<br>0 | PDMW-<br>3T_1/9/2001 | PDMW-<br>3T_7/11/200<br>1 | PDMW-<br>3T_2/4/2002 | PDMW-<br>3T_9/10/200<br>2 | PDMW-<br>3T_2/6/2003 | PDMW-<br>3T_6/26/200<br>3 | PDMW-<br>3T_1/27/200<br>4 | PDMW-<br>3T_7/21/200<br>4 | MW-3T<br>Unfiltered<br>_3/6/2006 | PDMW-3T<br>Filtered_3/6<br>/2006 | PDMW-<br>3T_4/2/2008 | PDMW-<br>3T_7/19/200<br>8 | PDMW-<br>3T_10/4/200<br>8 | PDMW-<br>3T_12/1/200<br>9 | PDMW-<br>3T_6/16/201<br>0 | PDMW-<br>3T_12/15/20<br>10 | PDMW-<br>3T_061511 | PDMW-<br>3T_061511F<br>F | PDMW-<br>3T_1208201<br>1 |
| Method Group      | Analyte                                 | Background | Type 3 RRS | Type 4 RRS  | Units          | Result                     | Result                    | Result                     | Result                    | Result                    | Result                    | Result                    | Result               | Result                    | Result               | Result                    | Result               | Result                    | Result                    | Result                    | Result                           | Result                           | Result               | Result                    | Result                    | Result                    | Result                    | Result                     | Result             | Result                   | Result                   |
|                   | ACENAPHTHENE                            | 1          | 2000       |             | ug/L           | 1 U                        | 1 U                       | 1 U                        | 1 U                       | NA                        | 1 U                       | 1 U                       | 1 U                  | 1 U                       | 1 U                  | 0.2 U                     | 0.2 U                | 0.2 U                     | 0.2 U                     | 0.2 U                     | 0.19 U                           | 0.19 U                           | 0.19 U               | 0.2 U                     | 0.19 U                    | 0.2 U                     | 0.19 U                    | NA                         | NA                 | NA                       | NA                       |
|                   | ACENAPHTHYLENE<br>ANTHRACENE            | 1.4        | 0.2        | 510<br>5100 | ug/L<br>ug/L   | 1 U                        | 1 U                       | 1 U<br>0.2 U               | 1 U                       | NA<br>NA                  | 1 U                       | 1 U                       | 1 U<br>0.2 U         | 1 U                       | 1 U                  | 0.2 U<br>0.2 U            | 0.2 U<br>0.2 U       | 0.2 U<br>0.2 U            | 0.2 U<br>0.2 U            | 0.2 U                     | 0.19 U<br>0.19 U                 | 0.19 U<br>0.19 U                 | 0.19 U<br>0.19 U     | 0.2 U<br>0.2 U            | 0.19 U<br>0.19 U          | 0.2 U<br>0.2 U            | 0.19 U<br>0.19 U          | NA<br>NA                   | NA<br>NA           | NA<br>NA                 | NA<br>NA                 |
|                   | BENZO(A)ANTHRACENE                      | 0.2        | 0.1        | 3.9         | ug/L           | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                     | NA NA                     | 0.2 U                     | 0.2 U                     | 0.2 U                | 0.2 U                     | 0.2 U                | 0.2 U                     | 0.2 U                | 0.2 U                     | 0.2 U                     | 0.2 U                     | 0.19 U                           | 0.19 U                           | 0.19 U               | 0.2 U                     | 0.19 U                    | 0.2 U                     | 0.19 U                    | NA NA                      | NA NA              | NA NA                    | NA NA                    |
|                   | BENZO(A)PYRENE                          | 0.2        | 0.2        | 0.39        | ug/L           | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                     | NA                        | 0.2 U                     | 0.2 U                     | 0.2 U                | 0.2 U                     | 0.2 U                | 0.2 U                     | 0.2 U                | 0.2 U                     | 0.2 U                     | 0.2 U                     | 0.19 U                           | 0.19 U                           | 0.19 U               | 0.2 U                     | 0.19 U                    | 0.2 U                     | 0.19 U                    | NA                         | NA                 | NA                       | NA                       |
|                   | BENZO(B)FLUORANTHENE                    | 0.2        | 0.2        | 0.65        | ug/L           | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                     | NA                        | 0.2 U                     | 0.2 U                     | 0.2 U                | 0.2 U                     | 0.2 U                | 0.2 U                     | 0.2 U                | 0.2 U                     | 0.2 U                     | 0.2 U                     | 0.19 U                           | 0.19 U                           | 0.19 U               | 0.2 U                     | 0.19 U                    | 0.2 U                     | 0.19 U                    | NA                         | NA                 | NA                       | NA                       |
|                   | BENZO(G,H,I)PERYLENE                    |            |            |             | ug/L           | 0.5 U                      | NA                        | 0.5 U                      | NA                        | NA                        | NA                        | NA                        | NA                   | NA                        | NA                   | 0.2 U                     | 0.2 U                | 0.2 U                     | 0.2 U                     | 0.2 U                     | 0.19 U                           | 0.19 U                           | 0.19 U               | 0.2 U                     | 0.19 U                    | 0.2 U                     | 0.19 U                    | NA                         | NA                 | NA                       | NA                       |
|                   | BENZO(K)FLUORANTHENE<br>CHRYSENE        | 0.2        | 0.2        | 65          | ug/L<br>ug/L   | 0.5 U<br>0.2 U             | NA<br>0.2 U               | 0.2 U<br>0.2 U             | NA<br>0.2 U               | NA<br>NA                  | NA<br>0.2 U               | NA<br>0.2 U               | NA<br>0.2 U          | NA<br>0.2 U               | NA<br>0.2 U          | 0.2 U<br>0.2 U            | 0.2 U                | 0.2 U<br>0.2 U            | 0.2 U<br>0.2 U            | 0.2 U<br>0.2 U            | 0.19 U<br>0.19 U                 | 0.19 U<br>0.19 U                 | 0.19 U<br>0.19 U     | 0.2 U<br>0.2 U            | 0.19 U<br>0.19 U          | 0.2 U<br>0.2 U            | 0.19 U<br>0.19 U          | NA<br>NA                   | NA<br>NA           | NA<br>NA                 | NA<br>NA                 |
| PAHs              | DIBENZO(A,H)ANTHRACENE                  |            | 0.3        |             | ug/L           | 1 U                        | NA NA                     | 0.2 U                      | NA.                       | NA NA                     | NA NA                     | NA NA                     | NA NA                | NA NA                     | NA NA                | 0.2 U                     | 0.2 U                | 0.2 U                     | 0.2 U                     | 0.2 U                     | 0.19 U                           | 0.19 U                           | 0.19 U               | 0.2 U                     | 0.19 U                    | 0.2 U                     | 0.19 U                    | NA NA                      | NA NA              | NA NA                    | NA                       |
|                   | FLUORANTHENE                            | 0.5        | 1000       |             | ug/L           | 0.5 U                      | 0.5 U                     | 0.5 U                      | 0.5 U                     | NA                        | 0.5 U                     | 0.5 U                     | 0.5 U                | 0.5 U                     | 0.5 U                | 0.2 U                     | 0.2 U                | 0.2 U                     | 0.2 U                     | 0.2 U                     | 0.19 U                           | 0.19 U                           | 0.19 U               | 0.2 U                     | 0.19 U                    | 0.2 U                     | 0.19 U                    | NA                         | NA                 | NA                       | NA                       |
|                   | FLUORENE                                | 0.5        | 1000       |             | ug/L           | 0.5 U                      | 0.5 U                     | 0.5 U                      | 0.5 U                     | NA                        | 0.5 U                     | 0.5 U                     | 0.5 U                | 0.5 U                     | 0.5 U                | 0.2 U                     | 0.2 U                | 0.2 U                     | 0.2 U                     | 0.2 U                     | 0.19 U                           | 0.19 U                           | 0.19 U               | 0.2 U                     | 0.19 U                    | 0.2 U                     | 0.19 U                    | NA                         | NA                 | NA                       | NA                       |
|                   | INDENO(1,2,3-CD)PYRENE                  |            | 0.4        |             | ug/L           | 0.5 U                      | NA                        | 0.2 U                      | NA                        | NA                        | NA                        | NA                        | NA                   | NA                        | NA                   | 0.2 U                     | 0.2 U                | 0.2 U                     | 0.2 U                     | 0.2 U                     | 0.19 U                           | 0.19 U                           | 0.19 U               | 0.2 U                     | 0.19 U                    | 0.2 U                     | 0.19 U                    | NA                         | NA                 | NA                       | NA                       |
|                   | 1-METHYLNAPHTHALENE 2-METHYLNAPHTHALENE |            |            |             | ug/L<br>ug/L   | NA<br>NA                   | NA<br>NA                  | 1 U                        | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  | NA<br>NA             | NA<br>NA                  | NA<br>NA             | 0.2 U<br>0.2 U            | 0.2 U                | 0.2 U<br>0.2 U            | 0.2 U<br>0.2 U            | 0.2 U                     | 0.19 U<br>0.19 U                 | 0.19 U<br>0.19 U                 | 0.19 U<br>0.19 U     | 0.2 U<br>0.2 U            | 0.19 U<br>0.19 U          | 0.8 U<br>0.2 U            | 0.39 U<br>0.19 U          | NA<br>NA                   | NA<br>NA           | NA<br>NA                 | NA<br>NA                 |
|                   | NAPHTHALENE                             | 1          | 20         | 20          | ug/L<br>ug/L   | NA<br>1 U                  | 1 U                       | 10                         | 1 U                       | NA<br>NA                  | 1 U                       | NA<br>1 U                 | NA<br>1 U            | 1 U                       | 1 U                  | 0.2 U                     | 0.2 U                | 0.2 U                     | 0.2 U                     | 0.2 U                     | 0.19 U                           | 0.19 U                           | 0.19 U               | 0.2 U                     | 0.19 U                    | 0.2 U                     | 0.19 U                    | NA<br>NA                   | NA<br>NA           | NA<br>NA                 | NA<br>NA                 |
|                   | PHENANTHRENE                            | 0.22       | 0.2        | 510         | ug/L           | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                     | NA                        | 0.2 U                     | 0.2 U                     | 0.2 U                | 0.2 U                     | 0.2 U                | 0.2 U                     | 0.2 U                | 0.2 U                     | 0.2 U                     | 0.2 U                     | 0.19 U                           | 0.19 U                           | 0.19 U               | 0.2 U                     | 0.19 U                    | 0.2 U                     | 0.19 U                    | NA                         | NA                 | NA                       | NA                       |
|                   | PYRENE                                  | 0.5        | 1000       |             | ug/L           | 0.5 U                      | 0.5 U                     | 0.5 U                      | 0.5 U                     | NA                        | 0.5 U                     | 0.5 U                     | 0.5 U                | 0.5 U                     | 0.5 U                | 0.2 U                     | 0.2 U                | 0.2 U                     | 0.2 U                     | 0.2 U                     | 0.19 U                           | 0.19 U                           | 0.19 U               | 0.2 U                     | 0.19 U                    | 0.2 U                     | 0.19 U                    | NA                         | NA                 | NA                       | NA                       |
|                   | TOTAL PAHs                              |            |            |             | ug/L           | ND                         | ND                        | ND                         | ND                        | NA                        | ND                        | ND                        | ND                   | ND                        | ND                   | ND                        | ND                   | ND                        | ND                        | ND                        | ND                               | ND                               | ND                   | ND                        | ND                        | ND                        | ND                        | NA                         | NA                 | NA                       | NA                       |
|                   | BENZENE                                 | 1          | 5          | 31.2        | ug/L           | 1 U                        | 1 U                       | 1 U                        | 1 U                       | NA                        | 1 U                       | 1 U                       | 1 U                  | 1 U                       | 1 U                  | 1 U                       | 1 U                  | 1 U                       | 1 U                       | 1 U                       | 1 U                              | NA                               | 1 U                  | 1 U                       | 1 U                       | 1 U                       | 1 U                       | NA                         | NA                 | NA                       | NA                       |
|                   | ETHYLBENZENE<br>p/m-XYLENE              | 1          | 700        |             | ug/L<br>ug/L   | 1 U<br>NA                  | 1 U                       | 1 U                        | 1 U                       | NA<br>NA                  | 1 U                       | 1 U                       | 1 U                  | 1 U                       | 1 U<br>NA            | 1 U<br>NA                 | 1 U<br>NA            | 1 U<br>NA                 | 1 U<br>NA                 | 1 U<br>NA                 | 1 U<br>NA                        | NA<br>NA                         | 1 U<br>NA            | 1 U<br>NA                 | 1 U<br>NA                 | 1 U<br>NA                 | 1 U<br>NA                 | NA<br>NA                   | NA<br>NA           | NA<br>NA                 | NA<br>NA                 |
|                   | METHYLENE CHLORIDE                      |            |            |             | ug/L           | NA<br>NA                   | 5 U                       | NA.                        | NA.                       | NA<br>NA                  | NA NA                     | NA.                       | NA NA                | NA NA                     | NA<br>NA             | NA NA                     | NA NA                | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  | NA<br>NA                         | NA<br>NA                         | NA<br>NA             | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  | NA NA                     | NA<br>NA                   | NA<br>NA           | NA<br>NA                 | NA NA                    |
| VOCs              | o-XYLENE                                |            |            |             | ug/L           | NA                         | 1 U                       | 1 U                        | 1 U                       | NA                        | 1 U                       | 1 U                       | 1 U                  | 1 U                       | NA                   | NA                        | NA                   | NA                        | NA                        | NA                        | NA                               | NA                               | NA                   | NA                        | NA                        | NA                        | NA                        | NA                         | NA                 | NA                       | NA                       |
|                   | TOLUENE                                 | 1          | 1000       | 1900        | ug/L           | 1 U                        | 1 U                       | 1 U                        | 1 U                       | NA                        | 1 U                       | 1 U                       | 1 U                  | 1 U                       | 1 U                  | 1 U                       | 1 U                  | 1 U                       | 1 U                       | 1 U                       | 1 U                              | NA                               | 1 U                  | 1 U                       | 1 U                       | 1 U                       | 1 U                       | NA                         | NA                 | NA                       | NA                       |
|                   | XYLENES (TOTAL)                         | 2          | 10000      |             | ug/L           | 3.3                        | 1 U                       | 1 U                        | 1 U                       | NA                        | 1 U                       | 1 U                       | 1 U                  | 1 U                       | 2 U                  | 2 U                       | 2 U                  | 2 U                       | 2 U                       | 2 U                       | 2 U                              | NA                               | 2 U                  | 2 U                       | 2 U                       | 2 U                       | 2 U                       | NA                         | NA                 | NA                       | NA                       |
|                   | METHYL TERT BUTYL ETHER                 |            |            |             | ug/L           | NA                         | NA                        | NA                         | NA                        | NA                        | NA                        | NA                        | NA                   | NA                        | NA                   | NA                        | NA                   | NA                        | NA                        | NA                        | 10 U                             | NA                               | 10 U                 | 10 U                      | NA                        | NA                        | 10 U                      | NA                         | NA                 | NA                       | NA                       |
|                   | TOTAL BTEX ARSENIC                      | 0.018      | 0.018      | 0.018       | ug/L<br>mg/L   | 3.3<br>0.01 U              | ND<br>0.01 U              | ND<br>0.01 U               | ND<br>NA                  | NA<br>0.017               | ND<br>0.049               | ND<br>0.058               | ND<br>0.01 U         | ND<br>0.043               | ND<br>0.02           | ND<br>0.012               | ND<br>0.031          | ND<br>0.029               | ND<br>0.01 U              | ND<br>0.034               | ND<br>0.02                       | NA<br>0.021                      | ND<br>0.035          | ND<br>0.036               | ND<br>0.046               | ND<br>0.02 U              | ND<br>0.02 U              | NA<br>0.018                | 0.035              | NA<br>NA                 | NA<br>0.018 U            |
|                   | BERYLLIUM                               | 0.018      | 0.018      | 0.018       | mg/L           | 0.01 U                     | NA                        | NA NA                      | NA<br>NA                  | NA                        | NA                        | NA                        | NA NA                | 0.043<br>NA               | NA                   | 0.012<br>NA               | NA                   | NA                        | NA.                       | 0.034<br>NA               | NA                               | NA                               | NA                   | NA                        | 0.046<br>NA               | 0.02 U                    | 0.02 U                    | NA NA                      | NA                 | NA<br>NA                 | 0.018 U                  |
|                   | BORON                                   |            |            |             | mg/L           | NA                         | NA                        | NA                         | NA                        | NA                        | NA                        | NA                        | NA                   | NA                        | NA                   | NA                        | NA                   | NA                        | NA                        | NA                        | NA                               | NA                               | NA                   | NA                        | NA                        | NA                        | NA                        | NA                         | NA                 | NA                       | NA                       |
|                   | CADMIUM                                 |            | 0.005      |             | mg/L           | 0.005 U                    | NA                        | NA                         | NA                        | NA                        | NA                        | NA                        | NA                   | NA                        | NA                   | NA                        | NA                   | NA                        | NA                        | NA                        | NA                               | NA                               | NA                   | NA                        | NA                        | NA                        | NA                        | NA                         | NA                 | NA                       | NA                       |
|                   | CALCIUM METAL                           |            |            |             | mg/L           | NA                         | NA                        | NA                         | NA                        | NA                        | NA                        | NA                        | NA                   | NA                        | NA                   | NA                        | NA                   | NA                        | NA                        | NA                        | NA                               | NA                               | NA                   | NA                        | NA                        | NA                        | NA                        | NA                         | NA                 | NA                       | NA                       |
|                   | CHROMIUM                                | 0.013      | 0.1        |             | mg/L           | 0.01 U                     | 0.01 U                    | 0.01 U                     | NA                        | 0.01 U                    | 0.01 U                    | 0.01 U                    | 0.01 U               | 0.01 U                    | 0.01 U               | 0.01 U                    | 0.01 U               | 0.01 U                    | 0.01 U                    | 0.01 U                    | 0.01 U                           | 0.01 U                           | 0.01 U               | 0.03                      | 0.01 U                    | 0.01 U                    | 0.01 U                    | NA                         | NA                 | NA                       | NA                       |
| Metals, Total     | LEAD<br>MAGNESIUM                       | 0.007      | 0.015      | 0.015       | mg/L<br>mg/L   | 0.0082<br>NA               | 0.016<br>NA               | 0.02<br>NA                 | NA<br>NA                  | 0.036<br>NA               | 0.025<br>NA               | 0.005 U<br>NA             | 0.014<br>NA          | 0.0092<br>NA              | 0.005 U<br>NA        | 0.005 U<br>NA             | 0.01<br>NA           | 0.015<br>NA               | 0.0057<br>NA              | 0.02<br>NA                | 0.0094<br>NA                     | 0.005 U<br>NA                    | 0.028<br>NA          | 0.17<br>NA                | 0.013<br>NA               | 0.01 U<br>NA              | 0.01 U<br>NA              | 0.01<br>NA                 | 0.014<br>NA        | NA<br>NA                 | 0.01 U<br>NA             |
|                   | MERCURY                                 |            | 0.002      |             | mg/L           | 0.0002 U                   | NA NA                     | NA NA                      | NA.                       | NA NA                     | NA NA                     | NA.                       | NA NA                | NA NA                     | NA NA                | NA NA                     | NA NA                | NA.                       | NA.                       | NA NA                     | NA NA                            | NA NA                            | NA NA                | NA NA                     | NA.                       | NA NA                     | NA NA                     | NA NA                      | NA.                | NA NA                    | NA NA                    |
|                   | NICKEL                                  | 0.13       | 0.1        | 2           | mg/L           | 0.04 U                     | 0.04 U                    | 0.04 U                     | NA                        | 0.04 U                    | 0.04 U                    | 0.04 U                    | 0.04 U               | 0.04 U                    | 0.04 U               | 0.04 U                    | 0.04 U               | 0.04 U                    | 0.04 U                    | 0.04 U                    | 0.04 U                           | 0.04 U                           | 0.04 U               | 0.04 U                    | 0.04 U                    | 0.04 U                    | 0.04 U                    | NA                         | NA                 | NA                       | NA                       |
|                   | POTASSIUM                               |            |            |             | mg/L           | NA                         | NA                        | NA                         | NA                        | NA                        | NA                        | NA                        | NA                   | NA                        | NA                   | NA                        | NA                   | NA                        | NA                        | NA                        | NA                               | NA                               | NA                   | NA                        | NA                        | NA                        | NA                        | NA                         | NA                 | NA                       | NA                       |
|                   | SODIUM                                  |            |            |             | mg/L           | NA                         | NA                        | NA                         | NA                        | NA                        | NA                        | NA                        | NA                   | NA                        | NA                   | NA                        | NA                   | NA                        | NA                        | NA                        | NA                               | NA                               | NA                   | NA                        | NA                        | NA                        | NA                        | NA                         | NA                 | NA                       | NA                       |
|                   | ZINC<br>ARSENIC                         | 0.96       | 0.018      | 0.018       | mg/L<br>mg/L   | 0.02 U<br>0.01 U           | 0.1<br>NA                 | 0.056<br>0.01 U            | NA<br>NA                  | 0.074<br>0.01 U           | 0.046                     | 0.02 U<br>0.01 U          | 0.062<br>NA          | 0.037<br>0.01 U           | 0.42<br>0.01 U       | 0.12<br>NA                | 0.042<br>NA          | 0.02 U<br>NA              | 0.089<br>NA               | 0.029<br>NA               | 0.037<br>NA                      | 0.02                             | 0.031                | 0.18<br>0.01 U            | 0.026<br>NA               | 0.02 U<br>NA              | 0.059<br>0.02 U           | NA<br>NA                   | NA<br>NA           | NA<br>0.032              | NA<br>0.018 U            |
|                   | BERYLLIUM                               | 0.018      | 0.018      | 0.018       | mg/L           | 0.01 U                     | NA<br>NA                  | 0.01 U                     | NA<br>NA                  | 0.01 U                    | 0.013<br>NA               | 0.01 U<br>NA              | NA<br>NA             | 0.01 U                    | 0.01 U<br>NA         | NA<br>NA                  | NA<br>NA             | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  | NA<br>NA                         | 0.021<br>NA                      | NA                   | 0.01 U<br>NA              | NA<br>NA                  | NA<br>NA                  | 0.02 U<br>NA              | NA<br>NA                   | NA<br>NA           | 0.032<br>NA              | 0.018 U<br>NA            |
|                   | CADMIUM                                 |            | 0.005      |             | mg/L           | 0.005 U                    | NA                        | NA NA                      | NA                        | NA                        | NA                        | NA NA                     | NA NA                | NA                        | NA                   | NA .                      | NA.                  | NA                        | NA.                       | NA                        | NA                               | NA                               | NA                   | NA NA                     | NA.                       | NA NA                     | NA .                      | NA NA                      | NA                 | NA                       | NA                       |
| Metals, Dissolved | CHROMIUM                                | 0.013      | 0.1        |             | mg/L           | 0.01 U                     | NA                        | 0.01 U                     | NA                        | 0.01 U                    | NA                        | NA                        | NA                   | NA                        | NA                   | NA                        | NA                   | NA                        | NA                        | NA                        | NA                               | 0.01 U                           | 0.01 U               | 0.01 U                    | NA                        | NA                        | 0.01 U                    | NA                         | NA                 | NA                       | NA                       |
|                   | LEAD                                    | 0.007      | 0.015      | 0.015       | mg/L           | 0.005 U                    | NA                        | 0.016                      | NA                        | 0.016                     | 0.0069                    | NA                        | 0.0074               | 0.005 U                   | NA                   | NA                        | NA                   | NA                        | NA                        | NA                        | NA                               | 0.005 U                          | 0.005 U              | 0.005 U                   | NA                        | NA                        | 0.01 U                    | NA                         | NA                 | 0.01 U                   | 0.0015 U                 |
|                   | MERCURY                                 |            | 0.002      |             | mg/L           | 0.0002 U                   | NA                        | NA                         | NA                        | NA                        | NA                        | NA                        | NA                   | NA                        | NA                   | NA                        | NA                   | NA                        | NA                        | NA                        | NA                               | NA                               | NA                   | NA                        | NA                        | NA                        | NA                        | NA                         | NA                 | NA                       | NA                       |
|                   | NICKEL<br>ZINC                          | 0.13       | 0.1        | 2           | mg/L<br>mg/L   | 0.04 U<br>0.02 U           | NA<br>NA                  | 0.04 U<br>0.042            | NA<br>NA                  | 0.04 U<br>0.049           | NA<br>0.03                | NA<br>NA                  | NA<br>0.047          | NA<br>0.075               | NA<br>0.44           | NA<br>NA                  | NA<br>NA             | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  | NA<br>NA                         | 0.04 U<br>0.02                   | 0.04 U<br>0.02 U     | 0.04 U<br>0.039           | NA<br>NA                  | NA<br>NA                  | 0.04 U<br>0.02 U          | NA<br>NA                   | NA<br>NA           | NA<br>NA                 | NA<br>NA                 |
| <b>—</b>          | ALKALINITY                              | 0.96       |            |             | mg/L           | NA                         | NA<br>NA                  | 0.042<br>NA                | NA<br>NA                  | 0.049<br>NA               | NA NA                     | NA<br>NA                  | 0.047<br>NA          | NA                        | NA                   | NA NA                     | NA NA                | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  | NA<br>NA                         | NA                               | 0.02 U               | 0.039<br>NA               | NA NA                     | NA<br>NA                  | 0.02 U                    | NA<br>NA                   | NA<br>NA           | NA<br>NA                 | NA NA                    |
|                   | ALKALINITY, TOTAL (AS CACO3)            |            |            |             | mg/L           | NA                         | NA                        | NA                         | NA                        | NA                        | NA                        | NA                        | NA                   | NA                        | NA                   | NA                        | NA                   | NA                        | NA                        | NA                        | NA                               | NA                               | NA                   | NA                        | NA                        | NA                        | NA                        | NA.                        | NA                 | NA                       | NA                       |
|                   | AMMONIA AS N                            | 15         | 30         | 30          | mg/L           | 1.4                        | 6600                      | 0.84                       | 0.81                      | NA                        | 1.8                       | 2.9                       | 0.54                 | 3.2                       | 2                    | 1.2                       | 0.75                 | 1.6                       | 0.31                      | 4.3                       | 0.67                             | NA                               | 2.5                  | 0.72                      | 4.3                       | 0.62                      | 2.5                       | NA                         | 2.7                | NA                       | 1.3                      |
|                   | BICARBONATE                             |            |            |             | mg/L           | NA                         | NA                        | NA                         | NA                        | NA                        | NA                        | NA                        | NA                   | NA                        | NA                   | NA                        | NA                   | NA                        | NA                        | NA                        | NA                               | NA                               | NA                   | NA                        | NA                        | NA                        | NA                        | NA                         | NA                 | NA                       | NA                       |
| Miscellaneous     | CARBONATE                               |            |            |             | mg/L<br>umhos/ | NA                         | NA                        | NA                         | NA                        | NA                        | NA                        | NA                        | NA                   | NA                        | NA                   | NA                        | NA                   | NA                        | NA                        | NA                        | NA                               | NA                               | NA                   | NA                        | NA                        | NA                        | NA                        | NA                         | NA                 | NA                       | NA                       |
|                   | CONDUCTIVITY  NITRATE (AS N)            |            | 10         |             | cm             | NA<br>NA                   | NA<br>NA                  | NA<br>NA                   | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  | NA<br>NA             | NA<br>NA                  | NA<br>NA             | NA<br>NA                  | NA<br>NA             | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  | NA<br>NA                         | NA<br>NA                         | NA<br>NA             | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  | NA<br>NA                   | NA<br>NA           | NA<br>NA                 | NA<br>NA                 |
|                   | NITRATE (AS N) NITRITE (AS N)           |            | 10         |             | mg/L<br>mg/l   | NA<br>NA                   | NA<br>NA                  | NA<br>NA                   | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  | NA<br>NA             | NA<br>NA                  | NA<br>NA             | NA<br>NA                  | NA<br>NA             | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  | NA<br>NA                         | NA<br>NA                         | NA<br>NA             | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  | NA<br>NA                   | NA<br>NA           | NA<br>NA                 | NA<br>NA                 |
|                   | SULFATE                                 |            |            |             | mg/L           | NA NA                      | NA NA                     | NA NA                      | NA.                       | NA NA                     | NA NA                     | NA NA                     | NA NA                | NA NA                     | NA NA                | NA NA                     | NA NA                | NA NA                     | NA NA                     | NA NA                     | NA NA                            | NA NA                            | NA NA                | NA NA                     | NA NA                     | NA NA                     | NA NA                     | NA NA                      | NA NA              | NA NA                    | NA NA                    |
|                   | SOLIDS, TOTAL DISSOLVED                 |            |            |             | mg/L           | NA                         | NA                        | NA                         | NA                        | NA                        | NA                        | NA                        | NA                   | NA                        | NA                   | NA                        | NA                   | NA                        | NA                        | NA                        | NA                               | NA                               | NA                   | NA                        | NA                        | NA                        | NA                        | NA                         | NA                 | NA                       | NA                       |
| SVOCs             | 1,4-DICHLOROBENZENE                     |            |            |             | ug/L           | NA                         | NA                        | NA                         | NA                        | NA                        | NA                        | NA                        | NA                   | NA                        | NA                   | NA                        | NA                   | NA                        | NA                        | NA                        | NA                               | NA                               | NA                   | NA                        | NA                        | NA                        | NA                        | NA                         | NA                 | NA                       | NA                       |
| Notes:            |                                         |            |            |             |                |                            |                           |                            |                           |                           |                           |                           |                      |                           |                      |                           |                      |                           |                           |                           |                                  |                                  |                      |                           |                           |                           |                           |                            |                    |                          |                          |

Note:

Shaded cell indicates comparison standard used in data evaluation.

Inglighted cell indicates analytical result exceeds comparison criteria.

Bold and Ralk test indicates analytical result exceeds background value.

In Nitrate comparison standard based on the Maximum Containant Level (MCL) stabilished by the USEPA National Primary (

100 - No constituents detected above the laboratory infinum detection limit.

1. Indicates constituent was not detected above value show.

1. Indicates constituent was not detected at an estimated value.

1. Indicates constituent was not extend at an estimated value.

1. Indicates constituent was not extend at an estimated value.

1. Indicates constituent was not extend at an estimated value.

1. Indicates constituent was not extend at an estimated value show.

1. Indicates constituent was not detected at an estimated value show.

1. Indicates constituent was not extend at an estimated value show.

1. Indicates constituent was not extend at an estimated value show.

1. Indicates constituent was not extend at an estimated value show.

1. Indicates constituent was not extend at an estimated value.

1. Indicates constituent was not extend at an estimated value.

1. Indicates constituent was not extend at an estimated value.

1. Indicates constituent was not extend at an estimated value.

1. Indicates constituent was not extend at an estimated value.

1. Indicates constituent was not extend at an estimated value.

1. Indicates constituent was not extend at an estimated value.

1. Indicates constituent was not extend at a restimated value.

1. Indicates constituent was not extend at a restimated value.

1. Indicates constituent was not extend at a restimated value.

1. Indicates constituent was not extend at a restimated value.

1. Indicates constituent was not extend at a restimated value.

1. Indicates constituent was not extend at a restimated value.

1. Indicates constituent was not extend at a restimated value.

1. Indicates constituent was not extend at a restimated value.

|                   |                                            |            |            | L           | ocation:       |                            |                      |                            |                           |                           |                           |                           |                           |                      |                           |                      | PDN                       | IW-4T                     |                           |                      |                      |                           |                           |                           |                               |                           |                            |                    |                          |
|-------------------|--------------------------------------------|------------|------------|-------------|----------------|----------------------------|----------------------|----------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|----------------------|---------------------------|----------------------|---------------------------|---------------------------|---------------------------|----------------------|----------------------|---------------------------|---------------------------|---------------------------|-------------------------------|---------------------------|----------------------------|--------------------|--------------------------|
|                   |                                            |            |            | Samp        | le Date:       | 10/23/1997                 | 8/9/1999             | 11/17/1999                 | 2/24/2000                 | 5/16/2000                 | 8/22/2000                 | 1/10/2001                 | 7/12/2001                 | 2/5/2002             | 9/11/2002                 | 2/7/2003             | 6/25/2003                 | 1/29/2004                 | 7/23/2004                 | 3/6/2006             | 4/3/2008             | 7/20/2008                 | 10/6/2008                 | 12/4                      | /2009                         | 6/19/2010                 | 12/15/2010                 | 6/16/2011          | 12/7/2011                |
|                   |                                            |            |            | Samp        | le Type:       | Normal                     | Normal               | Normal                     | Normal                    | Normal                    | Normal                    | Normal                    | Normal                    | Normal               | Normal                    | Normal               | Normal                    | Normal                    | Normal                    | Normal               | Normal               | Normal                    | Normal                    | Normal                    | Dup                           | Normal                    | Normal                     | Normal             | Normal                   |
|                   |                                            |            |            | Sar         | mple ID:       | PDMW-<br>4T_10/23/19<br>97 | PDMW-<br>4T_8/9/1999 | PDMW-<br>4T_11/17/19<br>99 | PDMW-<br>4T_2/24/200<br>0 | PDMW-<br>4T_5/16/200<br>0 | PDMW-<br>4T_8/22/200<br>0 | PDMW-<br>4T_1/10/200<br>1 | PDMW-<br>4T_7/12/200<br>1 | PDMW-<br>4T_2/5/2002 | PDMW-<br>4T_9/11/200<br>2 | PDMW-<br>4T_2/7/2003 | PDMW-<br>4T_6/25/200<br>3 | PDMW-<br>4T_1/29/200<br>4 | PDMW-<br>4T_7/23/200<br>4 | PDMW-<br>4T_3/6/2006 | PDMW-<br>4T_4/3/2008 | PDMW-<br>4T_7/20/200<br>8 | PDMW-<br>4T_10/6/200<br>8 | PDMW-<br>4T_12/4/200<br>9 | PDMW-4T-<br>DUP_12/4/20<br>09 | PDMW-<br>4T_6/19/201<br>0 | PDMW-<br>4T_12/15/20<br>10 | PDMW-<br>4T_061611 | PDMW-<br>4T_1207201<br>1 |
| Method Group      | Analyte                                    | Background | Type 3 RRS | Type 4 RRS  | Units          | Result                     | Result               | Result                     | Result                    | Result                    | Result                    | Result                    | Result                    | Result               | Result                    | Result               | Result                    | Result                    | Result                    | Result               | Result               | Result                    | Result                    | Result                    | Result                        | Result                    | Result                     | Result             | Result                   |
|                   | ACENAPHTHENE                               | 1          | 2000       |             | ug/L           | 1 U                        | 1 U                  | 1 U                        | 1 U                       | 1 U                       | 1 U                       | 1 U                       | 1 U                       | NA                   | 0.2 U                     | 0.2 U                | 0.2 U                     | 0.2 U                     | 0.2 U                     | 0.97 U               | 0.19 U               | 0.19 U                    | 0.19 U                    | 0.19 U                    | 0.19 U                        | 0.19 UJ                   | NA                         | NA                 | NA                       |
|                   | ACENAPHTHYLENE<br>ANTHRACENE               | 1.4<br>0.2 | 0.2        | 510<br>5100 | ug/L<br>ug/L   | 1 U                        | 1 U<br>0.2 U         | 1 U                        | 1 U                       | 1 U<br>0.2 U              | 1 U                       | 1 U                       | 1 U                       | NA<br>NA             | 0.2 U<br>0.2 U            | 0.2 U                | 0.2 U<br>0.2 U            | 0.2 U<br>0.2 U            | 0.2 U<br>0.2 U            | 0.97 U<br>0.97 U     | 0.19 U<br>0.19 U     | 0.19 U<br>0.19 U          | 0.19 U<br>0.19 U          | 0.19 U<br>0.19 U          | 0.19 U<br>0.19 U              | 0.19 LU<br>0.19 LU        | NA<br>NA                   | NA<br>NA           | NA<br>NA                 |
|                   | BENZO(A)ANTHRACENE                         | 0.2        | 0.2        | 3.9         | ug/L           | 0.2 U                      | 0.2 U                | 0.2 U                      | 0.2 U                     | 0.2 U                     | 0.2 U                     | 0.2 U                     | 0.2 U                     | NA<br>NA             | 0.2 U                     | 0.2 U                | 0.2 U                     | 0.2 U                     | 0.2 U                     | 0.97 U               | 0.19 U               | 0.19 U                    | 0.19 U                    | 0.19 U                    | 0.19 U                        | 0.19 tJJ                  | NA<br>NA                   | NA<br>NA           | NA<br>NA                 |
|                   | BENZO(A)PYRENE                             | 0.2        | 0.2        | 0.39        | ug/L           | 0.2 U                      | 0.2 U                | 0.2 U                      | 0.2 U                     | 0.2 U                     | 0.2 U                     | 0.2 U                     | 0.2 U                     | NA                   | 0.2 U                     | 0.2 U                | 0.2 U                     | 0.2 U                     | 0.2 U                     | 0.97 U               | 0.19 U               | 0.19 UJ                   | 0.19 U                    | 0.19 U                    | 0.19 U                        | 0.19 W                    | NA                         | NA                 | NA                       |
|                   | BENZO(B)FLUORANTHENE                       | 0.2        | 0.2        | 0.65        | ug/L           | 0.2 U                      | 0.2 U                | 0.2 U                      | 0.2 U                     | 0.2 U                     | 0.2 U                     | 0.2 U                     | 0.2 U                     | NA                   | 0.2 U                     | 0.2 U                | 0.2 U                     | 0.2 U                     | 0.2 U                     | 0.97 U               | 0.19 U               | 0.19 U                    | 0.19 U                    | 0.19 U                    | 0.19 U                        | 0.19 W                    | NA                         | NA                 | NA                       |
|                   | BENZO(G,H,I)PERYLENE                       |            |            |             | ug/L           | 0.5 U                      | NA                   | NA                         | NA                        | NA                        | NA                        | NA                        | NA                        | NA                   | 0.2 U                     | 0.2 U                | 0.2 U                     | 0.2 U                     | 0.2 U                     | 0.97 U               | 0.19 U               | 0.19 UJ                   | 0.19 U                    | 0.19 U                    | 0.19 U                        | 0.19 W                    | NA                         | NA                 | NA                       |
|                   | BENZO(K)FLUORANTHENE CHRYSENE              | 0.2        | 0.2        | 65          | ug/L<br>ug/L   | 0.5 U<br>0.2 U             | NA<br>0.2 U          | NA<br>0.2 U                | NA<br>0.2 U               | NA<br>0.2 U               | NA<br>0.2 U               | NA<br>0.2 U               | NA<br>0.2 U               | NA<br>NA             | 0.2 U<br>0.2 U            | 0.2 U<br>0.2 U       | 0.2 U<br>0.2 U            | 0.2 U<br>0.2 U            | 0.2 U<br>0.2 U            | 0.97 U<br>0.97 U     | 0.19 U<br>0.19 U     | 0.19 UJ<br>0.19 U         | 0.19 U<br>0.19 U          | 0.19 U<br>0.19 U          | 0.19 U<br>0.19 U              | 0.19 W<br>0.19 W          | NA<br>NA                   | NA<br>NA           | NA<br>NA                 |
| PAHs              | DIBENZO(A,H)ANTHRACENE                     | 0.2        | 0.3        |             | ug/L           | 1 U                        | NA                   | NA.                        | NA                        | NA                        | NA NA                     | NA NA                     | NA NA                     | NA NA                | 0.2 U                     | 0.2 U                | 0.2 U                     | 0.2 U                     | 0.2 U                     | 0.97 U               | 0.19 U               | 0.19 UJ                   | 0.19 U                    | 0.19 U                    | 0.19 U                        | 0.19 W                    | NA NA                      | NA NA              | NA NA                    |
|                   | FLUORANTHENE                               | 0.5        | 1000       |             | ug/L           | 0.5 U                      | 0.5 U                | 0.5 U                      | 0.5 U                     | 0.5 U                     | 0.5 U                     | 0.5 U                     | 0.5 U                     | NA                   | 0.2 U                     | 0.2 U                | 0.2 U                     | 0.2 U                     | 0.2 U                     | 0.97 U               | 0.19 U               | 0.19 U                    | 0.19 U                    | 0.19 U                    | 0.19 U                        | 0.19 LU                   | NA                         | NA                 | NA                       |
|                   | FLUORENE                                   | 0.5        | 1000       |             | ug/L           | 0.5 U                      | 0.5 U                | 0.5 U                      | 0.5 U                     | 0.5 U                     | 0.5 U                     | 0.5 U                     | 0.5 U                     | NA                   | 0.2 U                     | 0.2 U                | 0.2 U                     | 0.2 U                     | 0.2 U                     | 0.97 U               | 0.19 U               | 0.19 U                    | 0.19 U                    | 0.19 U                    | 0.19 U                        | 0.19 W                    | NA                         | NA                 | NA                       |
|                   | INDENO(1,2,3-CD)PYRENE                     |            | 0.4        |             | ug/L           | 0.5 U                      | NA                   | NA                         | NA                        | NA                        | NA                        | NA                        | NA                        | NA                   | 0.2 U                     | 0.2 U                | 0.2 U                     | 0.2 U                     | 0.2 U                     | 0.97 U               | 0.19 U               | 0.19 UJ                   | 0.19 U                    | 0.19 U                    | 0.19 U                        | 0.19 W                    | NA                         | NA                 | NA                       |
|                   | 1-METHYLNAPHTHALENE<br>2-METHYLNAPHTHALENE |            |            |             | ug/L<br>ug/L   | NA<br>NA                   | NA<br>NA             | NA<br>NA                   | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  | NA<br>NA             | 0.2 U<br>0.2 U            | 0.2 U<br>0.2 U       | 0.2 U<br>0.2 U            | 0.2 U<br>0.2 U            | 0.2 U<br>0.2 U            | 0.97 U<br>0.97 U     | 0.19 U<br>0.19 U     | 0.19 U<br>0.19 U          | 0.19 U<br>0.19 U          | 0.76 U<br>0.19 U          | 0.76 U<br>0.19 U              | 0.38 LU<br>0.19 LU        | NA<br>NA                   | NA<br>NA           | NA<br>NA                 |
|                   | NAPHTHALENE                                | 1          | 20         | 20          | ug/L           | 10                         | 1 U                  | 1 U                        | 1 U                       | 1 U                       | 1 U                       | 1 U                       | 1 U                       | NA NA                | 0.2 U                     | 0.2 U                | 0.2 U                     | 0.2 U                     | 0.2 U                     | 0.97 U               | 0.19 U               | 0.19 U                    | 0.19 U                    | 0.19 U                    | 0.19 U                        | 0.19 W                    | NA NA                      | NA NA              | NA NA                    |
|                   | PHENANTHRENE                               | 0.22       | 0.2        | 510         | ug/L           | 0.2 U                      | 0.2 U                | 0.2 U                      | 0.2 U                     | 0.2 U                     | 0.2 U                     | 0.2 U                     | 0.2 U                     | NA                   | 0.2 U                     | 0.2 U                | 0.2 U                     | 0.2 U                     | 0.2 U                     | 0.97 U               | 0.19 U               | 0.19 U                    | 0.19 U                    | 0.19 U                    | 0.19 U                        | 0.19 W                    | NA                         | NA                 | NA                       |
|                   | PYRENE                                     | 0.5        | 1000       |             | ug/L           | 0.5 U                      | 0.5 U                | 0.5 U                      | 0.5 U                     | 0.5 U                     | 0.5 U                     | 0.5 U                     | 0.5 U                     | NA                   | 0.2 U                     | 0.2 U                | 0.2 U                     | 0.2 U                     | 0.2 U                     | 0.97 U               | 0.19 U               | 0.19 U                    | 0.19 U                    | 0.19 U                    | 0.19 U                        | 0.19 W                    | NA                         | NA                 | NA                       |
|                   | TOTAL PAHS                                 |            |            |             | ug/L           | ND                         | ND                   | ND                         | ND                        | ND                        | ND                        | ND                        | ND                        | NA                   | ND                        | ND                   | ND                        | ND                        | ND                        | ND                   | ND                   | ND                        | ND                        | ND                        | ND                            | ND                        | NA                         | NA                 | NA                       |
|                   | BENZENE<br>ETHYLBENZENE                    | 1          | 700        | 31.2        | ug/L<br>ug/L   | 1 U                        | 1 U                  | 10                         | 1 U                       | 1 U                       | 1 U                       | 1 U                       | 1 U                       | NA<br>NA             | 1 U                       | 1 U                  | 1 U                       | 1 U                       | 1 U                       | 1 U                  | 1 U                  | 1 U                       | 1 U                       | 1 U                       | 1 U                           | 1 UJ                      | NA<br>NA                   | NA<br>NA           | NA<br>NA                 |
|                   | p/m-XYLENE                                 |            |            |             | ug/L           | NA NA                      | 1 U                  | 1 U                        | 1 U                       | 1 U                       | 1 U                       | 1 U                       | 1 U                       | NA NA                | NA NA                     | NA NA                | NA NA                     | NA.                       | NA NA                     | NA NA                | NA NA                | NA NA                     | NA NA                     | NA.                       | NA NA                         | NA NA                     | NA NA                      | NA NA              | NA NA                    |
|                   | METHYLENE CHLORIDE                         |            |            |             | ug/L           | NA                         | 5 U                  | NA                         | NA                        | NA                        | NA                        | NA                        | NA                        | NA                   | NA                        | NA                   | NA                        | NA                        | NA                        | NA                   | NA                   | NA                        | NA                        | NA.                       | NA                            | NA                        | NA                         | NA                 | NA                       |
| VOCs              | o-XYLENE                                   |            |            |             | ug/L           | NA                         | 1 U                  | 1 U                        | 1 U                       | 1 U                       | 1 U                       | 1 U                       | 1 U                       | NA                   | NA                        | NA                   | NA                        | NA                        | NA                        | NA                   | NA                   | NA                        | NA                        | NA                        | NA                            | NA                        | NA                         | NA                 | NA                       |
|                   | TOLUENE                                    | 1          | 1000       | 1900        | ug/L           | 1 U                        | 1 U                  | 1 U                        | 1 U                       | 1 U                       | 1 U                       | 1 U                       | 1 U                       | NA                   | 1 U                       | 1 U                  | 1 U                       | 1 U                       | 1 U                       | 1 U                  | 1 U                  | 1 U                       | 1 U                       | 1 U                       | 1 U                           | 1 UJ                      | NA                         | NA                 | NA                       |
|                   | XYLENES (TOTAL) METHYL TERT BUTYL ETHER    | 2          | 10000      |             | ug/L<br>ug/L   | 2 U<br>NA                  | 1 U<br>NA            | 1 U<br>NA                  | 1 U<br>NA                 | 1 U<br>NA                 | 1 U<br>NA                 | 1 U<br>NA                 | 1 U<br>NA                 | NA<br>NA             | 2 U<br>NA                 | 2 U<br>NA            | 2 U<br>NA                 | 2 U<br>NA                 | 2 U<br>NA                 | 2 U<br>10 U          | 2 U<br>10 U          | 2 U<br>10 U               | 2 U<br>NA                 | 2 U<br>NA                 | 2 U<br>NA                     | 2 UJ<br>10 UJ             | NA<br>NA                   | NA<br>NA           | NA<br>NA                 |
|                   | TOTAL BTEX                                 |            |            |             | ug/L           | ND                         | ND                   | ND                         | ND                        | ND                        | ND                        | ND                        | ND                        | NA                   | ND                        | ND                   | ND                        | ND                        | ND                        | ND                   | ND                   | ND                        | ND                        | ND                        | ND                            | ND                        | NA                         | NA                 | NA                       |
|                   | ARSENIC                                    | 0.018      | 0.018      | 0.018       | mg/L           | 0.01 U                     | 0.017                | 0.01 U                     | 0.01 U                    | 0.01 U                    | 0.023                     | 0.01 U                    | 0.018                     | NA                   | 0.01 U                    | 0.01 U               | 0.014                     | 0.011                     | 0.02                      | 0.022                | 0.036                | 0.02                      | 0.033                     | 0.02 U                    | 0.02 U                        | 0.039                     | 0.019                      | 0.027              | 0.018 U                  |
|                   | BERYLLIUM                                  |            | 0.004      |             | mg/L           | 0.005 U                    | NA                   | NA                         | NA                        | NA                        | NA                        | NA                        | NA                        | NA                   | NA                        | NA                   | NA                        | NA                        | NA                        | NA                   | NA                   | NA                        | NA                        | NA                        | NA                            | NA                        | NA                         | NA                 | NA                       |
|                   | BORON<br>CADMIUM                           |            | 0.005      |             | mg/L<br>mg/L   | NA<br>0.005 U              | NA<br>NA             | NA<br>NA                   | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  | NA<br>NA             | NA<br>NA                  | NA<br>NA             | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  | NA<br>NA             | NA<br>NA             | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  | NA<br>NA                      | NA<br>NA                  | NA<br>NA                   | NA<br>NA           | NA<br>NA                 |
|                   | CALCIUM METAL                              |            | 0.005      |             | mg/L           | 0.005 U                    | NA<br>NA             | NA<br>NA                   | NA NA                     | NA NA                     | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  | NA<br>NA             | NA<br>NA                  | NA<br>NA             | NA<br>NA                  | NA NA                     | NA NA                     | NA<br>NA             | NA<br>NA             | NA<br>NA                  | NA NA                     | NA.                       | NA<br>NA                      | NA<br>NA                  | NA<br>NA                   | NA<br>NA           | NA<br>NA                 |
|                   | CHROMIUM                                   | 0.013      | 0.1        |             | mg/L           | 0.01 U                     | 0.01 U               | 0.01 U                     | 0.01 U                    | 0.01 U                    | 0.01 U                    | 0.01 U                    | 0.01 U                    | NA                   | 0.01 U                    | 0.01 U               | 0.01 U                    | 0.01 U                    | 0.01 U                    | 0.01 U               | 0.01 U               | 0.01 U                    | 0.01 U                    | 0.01 U                    | 0.01 U                        | 0.01 U                    | NA                         | NA                 | NA                       |
| Metals, Total     | LEAD                                       | 0.007      | 0.015      | 0.015       | mg/L           | 0.005 U                    | 0.005 U              | 0.005 U                    | 0.005 U                   | 0.005 U                   | 0.005 U                   | 0.005 U                   | 0.005 U                   | NA                   | 0.005 U                   | 0.005 U              | 0.005 U                   | 0.005 U                   | 0.005 U                   | 0.005 U              | 0.005 U              | 0.005 U                   | 0.005 U                   | 0.01 U                    | 0.01 U                        | 0.01 U                    | NA                         | NA                 | NA                       |
|                   | MAGNESIUM                                  |            |            |             | mg/L           | NA                         | NA                   | NA                         | NA                        | NA                        | NA                        | NA                        | NA                        | NA                   | NA                        | NA                   | NA                        | NA                        | NA                        | NA                   | NA                   | NA                        | NA                        | NA                        | NA                            | NA                        | NA                         | NA                 | NA                       |
|                   | MERCURY<br>NICKEL                          | 0.13       | 0.002      | 2           | mg/L<br>mg/L   | 0.0002 U<br>0.04 U         | 0.04 U               | NA<br>0.04 U               | 0.04 U                    | 0.04 U                    | NA<br>0.04 U              | NA<br>0.04 U              | 0.04 U                    | NA<br>NA             | 0.04 U                    | 0.04 U               | NA<br>0.04 U              | 0.04 U                    | 0.04 U                    | NA<br>0.04 U         | 0.04 U               | 0.04 U                    | 0.04 U                    | 0.04 U                    | NA<br>0.04 U                  | 0.04 U                    | NA<br>NA                   | NA<br>NA           | NA<br>NA                 |
|                   | POTASSIUM                                  |            |            |             | mg/L           | NA NA                      | NA NA                | NA.                        | NA                        | NA.                       | NA                        | NA NA                     | NA                        | NA NA                | NA NA                     | NA.                  | NA.                       | NA NA                     | NA.                       | NA NA                | NA NA                | NA                        | NA NA                     | NA.                       | NA                            | NA.                       | NA NA                      | NA NA              | NA NA                    |
|                   | SODIUM                                     |            |            |             | mg/L           | NA                         | NA                   | NA                         | NA                        | NA                        | NA                        | NA                        | NA                        | NA                   | NA                        | NA                   | NA                        | NA                        | NA                        | NA                   | NA                   | NA                        | NA                        | NA                        | NA                            | NA                        | NA                         | NA                 | NA                       |
|                   | ZINC                                       | 0.96       | 2          | 31          | mg/L           | 0.102                      | 0.14                 | 0.056                      | 0.17                      | 0.11                      | 0.02 U                    | 0.26                      | 0.19                      | NA                   | 0.24                      | 0.12                 | 0.039                     | 0.096                     | 0.051                     | 0.08                 | 0.02 U               | 0.02 U                    | 0.02 U                    | 0.02 U                    | 0.02 U                        | 0.02 U                    | NA                         | NA                 | NA                       |
|                   | ARSENIC<br>BERYLLIUM                       | 0.018      | 0.018      | 0.018       | mg/L<br>mg/L   | NA<br>NA                   | NA<br>NA             | 0.01 U<br>NA               | 0.01 U<br>NA              | NA<br>NA                  | 0.01 U<br>NA              | NA<br>NA                  | 0.01 U<br>NA              | 0.01 U               | NA<br>NA                  | NA<br>NA             | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  | NA<br>NA             | NA<br>NA             | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  | NA<br>NA                      | NA<br>NA                  | NA<br>NA                   | NA<br>NA           | NA<br>NA                 |
|                   | CADMIUM                                    |            | 0.004      |             | mg/L<br>mg/L   | NA<br>NA                   | NA<br>NA             | NA<br>NA                   | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  | NA<br>NA             | NA<br>NA                  | NA<br>NA             | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  | NA<br>NA             | NA<br>NA             | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  | NA<br>NA                      | NA<br>NA                  | NA<br>NA                   | NA<br>NA           | NA<br>NA                 |
| Motolo Pro-       | CHROMIUM                                   | 0.013      | 0.1        |             | mg/L           | NA                         | NA                   | 0.01 U                     | 0.01 U                    | NA                        | NA                        | NA                        | NA                        | NA                   | NA                        | NA                   | NA.                       | NA                        | NA                        | NA                   | NA                   | NA                        | NA                        | NA.                       | NA                            | NA                        | NA                         | NA                 | NA                       |
| Metals, Dissolved | LEAD                                       | 0.007      | 0.015      | 0.015       | mg/L           | NA                         | NA                   | 0.005 U                    | 0.005 U                   | NA                        | NA                        | NA                        | NA                        | NA                   | NA                        | NA                   | NA                        | NA                        | NA                        | NA                   | NA                   | NA                        | NA                        | NA                        | NA                            | NA                        | NA                         | NA                 | NA                       |
|                   | MERCURY                                    |            | 0.002      |             | mg/L           | NA                         | NA                   | NA                         | NA                        | NA                        | NA                        | NA                        | NA                        | NA                   | NA                        | NA                   | NA                        | NA                        | NA                        | NA                   | NA                   | NA                        | NA                        | NA                        | NA                            | NA                        | NA                         | NA                 | NA                       |
|                   | NICKEL<br>ZINC                             | 0.13       | 0.1        | 2 31        | mg/L<br>mg/L   | NA<br>NA                   | NA<br>NA             | 0.04 U<br>0.057            | 0.04 U<br>0.16            | NA<br>0.087               | NA<br>NA                  | NA<br>0.24                | NA<br>0.14                | NA<br>0.11           | NA<br>NA                  | NA<br>NA             | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  | NA<br>NA             | NA<br>NA             | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  | NA<br>NA                      | NA<br>NA                  | NA<br>NA                   | NA<br>NA           | NA<br>NA                 |
|                   | ALKALINITY                                 | 0.50       |            |             | mg/L           | NA NA                      | NA NA                | NA.                        | NA.                       | NA                        | NA NA                     | NA                        | NA NA                     | NA NA                | NA NA                     | NA NA                | NA NA                     | NA NA                     | NA NA                     | NA NA                | NA NA                | NA NA                     | NA NA                     | NA.                       | NA NA                         | NA NA                     | NA NA                      | NA NA              | NA NA                    |
|                   | ALKALINITY, TOTAL (AS CACO3)               |            |            |             | mg/L           | NA                         | NA                   | NA                         | NA                        | NA                        | NA                        | NA                        | NA                        | NA                   | NA                        | NA                   | NA                        | NA                        | NA                        | NA                   | NA                   | NA                        | NA                        | NA                        | NA                            | NA                        | NA                         | NA                 | NA                       |
|                   | AMMONIA AS N                               | 15         | 30         | 30          | mg/L           | 90                         | 410                  | 220                        | 200                       | 300                       | 1000                      | 100                       | 370                       | NA                   | 280                       | 46                   | 280                       | 440                       | 530                       | 410                  | 810                  | 200                       | 550                       | 140                       | 140                           | 330 J                     | 220                        | 150                | 120                      |
|                   | BICARBONATE                                |            |            |             | mg/L           | NA                         | NA                   | NA                         | NA                        | NA                        | NA                        | NA                        | NA                        | NA                   | NA                        | NA                   | NA                        | NA                        | NA                        | NA                   | NA                   | NA                        | NA                        | NA                        | NA                            | NA                        | NA                         | NA                 | NA                       |
| Miscellaneous     | CARBONATE<br>CONDUCTIVITY                  |            |            |             | mg/L<br>umhos/ | NA<br>NA                   | NA<br>NA             | NA<br>NA                   | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  | NA<br>NA             | NA<br>NA                  | NA<br>NA             | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  | NA<br>NA             | NA<br>NA             | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  | NA<br>NA                      | NA<br>NA                  | NA<br>NA                   | NA<br>NA           | NA<br>NA                 |
|                   | NITRATE (AS N)                             |            | 10         |             | cm<br>mg/L     | NA<br>NA                   | NA<br>NA             | NA<br>NA                   | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  | NA<br>NA             | NA<br>NA                  | NA<br>NA             | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  | NA<br>NA             | NA<br>NA             | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  | NA<br>NA                      | NA<br>NA                  | NA<br>NA                   | NA<br>NA           | NA<br>NA                 |
|                   | NITRITE (AS N)                             |            |            |             | mg/l           | NA                         | NA                   | NA                         | NA                        | NA                        | NA                        | NA                        | NA                        | NA                   | NA                        | NA                   | NA                        | NA                        | NA                        | NA                   | NA                   | NA                        | NA                        | NA                        | NA                            | NA                        | NA                         | NA                 | NA                       |
|                   | SULFATE                                    |            |            |             | mg/L           | NA                         | NA                   | NA.                        | NA                        | NA                        | NA                        | NA                        | NA                        | NA                   | NA                        | NA                   | NA.                       | NA.                       | NA                        | NA                   | NA                   | NA                        | NA                        | NA.                       | NA                            | NA                        | NA                         | NA                 | NA                       |
|                   | SOLIDS, TOTAL DISSOLVED                    |            |            |             | mg/L           | NA                         | NA                   | NA                         | NA                        | NA                        | NA                        | NA                        | NA                        | NA                   | NA                        | NA                   | NA                        | NA                        | NA                        | NA                   | NA                   | NA                        | NA                        | NA                        | NA                            | NA                        | NA                         | NA                 | NA                       |
| SVOCs             | 1,4-DICHLOROBENZENE                        |            |            | **          | ug/L           | NA                         | NA                   | NA                         | NA                        | NA                        | NA                        | NA                        | NA                        | NA                   | NA                        | NA                   | NA                        | NA                        | NA                        | NA                   | NA                   | NA                        | NA                        | NA                        | NA                            | NA                        | NA                         | NA                 | NA                       |

Notes:

| Shaded cell indicates comparison standard used in data evaluation.
| Highlighted cell indicates analytical result receeds comparison criteria.
| Boble and Relix feet indicates analytical result exceeds background value.
| Sharts comparison standard backer on the Maximum Containment set (MCL) established by the USEPA National Primary C
NO - No constituent detected above the laboratory indirum detection limit.
| Indicates constituent was not detected above whise Johnson.
| In Indicates constituent was not detected at an estimated value.
| Undicates constituent was not detected at an estimated value.
| Undicates constituent was not detected at an estimated value.
| Undicates constituent was not detected at an estimated value.
| Undicates constituent was not detected at an estimated value.
| Undicates constituent was not detected at an estimated value in the properties of the propert of the properties of the properties of the properties of the pr

| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                              |            |            | L          | Location:    |             |          |             |             |             |             |                           |                           |             |             |          |             | PDMW-5T     |                           |          |          |           |           |             |             |             |            |        |        |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------|------------|------------|------------|--------------|-------------|----------|-------------|-------------|-------------|-------------|---------------------------|---------------------------|-------------|-------------|----------|-------------|-------------|---------------------------|----------|----------|-----------|-----------|-------------|-------------|-------------|------------|--------|--------|-----------|
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                              |            |            |            |              | 10/30/1997  | 8/9/1999 | 11/17/1999  | 2/24/2000   | 5/16/2000   | 8/22/2000   | 1/10/2001                 | 7/12/2001                 | 9/12/       | 2002        | 2/6/2003 | 6/27/2003   | 1/29/2004   | 7/23/2004                 | 3/6/2006 | 4/4/2008 | 7/21/2008 | 10/6/2008 | 12/5/2009   | 6/17/2010   | 12/1        | 6/2010     | 6/16/  | 2011   | 12/7/2011 |
| Professor   Prof   |                   |                              |            |            | Samp       | ple Type:    | Normal      | Normal   | Normal      | Normal      | Normal      | Normal      | Normal                    | Normal                    | Normal      | Dup         | Normal   | Normal      | Normal      | Normal                    | Normal   | Normal   | Normal    | Normal    | Normal      | Normal      | Normal      | Dup        | Nor    | mal    | Normal    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                              |            |            | Se         | ample ID:    | 5T_10/30/19 |          | 5T_11/17/19 | 5T_2/24/200 | 5T_5/16/200 | 5T_8/22/200 | PDMW-<br>5T_1/10/200<br>1 | PDMW-<br>5T_7/12/200<br>1 | 5T_9/12/200 | (DUP)_9/12/ |          | 5T_6/27/200 | 5T_1/29/200 | PDMW-<br>5T_7/23/200<br>4 |          |          |           |           | 5T_12/5/200 | 5T_6/17/201 | 5T_12/16/20 | 5TDUP3_12/ |        |        |           |
| Profession   Pro   | Method Group      | Analyte                      | Background | Type 3 RRS | Type 4 RRS | Units        | Result      | Result   | Result      | Result      | Result      | Result      | Result                    | Result                    | Result      | Result      | Result   | Result      | Result      | Result                    | Result   | Result   | Result    | Result    | Result      | Result      | Result      | Result     | Result | Result | Result    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                              |            | 2000       |            | ug/L         |             |          |             |             |             |             |                           |                           |             |             |          |             | <b>!</b>    | <b>!</b>                  |          | <b>!</b> |           |           |             |             |             |            |        |        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | -                            |            |            |            | ÷            |             |          |             |             |             |             |                           |                           |             |             |          |             | <b>!</b>    | <b>!</b>                  |          | <b>!</b> |           |           |             |             |             |            |        |        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                              |            |            |            | -            |             |          |             |             |             |             |                           |                           |             |             |          |             | -           | -                         |          | -        |           |           |             |             |             |            |        |        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                              |            |            |            | -            |             |          |             |             |             |             |                           |                           |             |             |          |             | <b>!</b>    |                           |          |          |           |           |             |             |             | 1          |        |        | 1         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                              |            |            |            |              |             |          |             |             |             |             |                           |                           |             |             |          |             | -           |                           |          | -        |           |           |             |             |             |            |        |        | -         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                              |            |            |            | _            |             |          |             |             |             |             |                           |                           |             |             |          |             | -           |                           |          | <b>-</b> |           |           |             |             |             |            |        |        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                              |            |            |            | +            |             | NA       |             | NA          | NA          | NA          | NA                        | NA                        |             |             | 0.2 U    | 0.2 U       | -           |                           | 0.19 U   | 0.19 U   |           |           | 0.19 U      | 0.19 U      | NA          | NA         | NA     | NA     |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | CHRYSENE                     | 0.2        | 0.2        | 65         | ug/L         | 0.2 U       | 0.2 U    | 0.2 U       | 0.2 U       | 0.2 U       | 0.2 U       | 0.2 U                     | 0.2 U                     | 0.2 U       | 0.2 U       | 0.2 U    | 0.2 U       | 0.2 U       | 0.2 U                     | 0.19 U   | 0.19 U   | 0.19 U    | 0.19 U    | 0.19 U      | 0.19 U      | NA          | NA         | NA     | NA     | NA        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PAHs              | DIBENZO(A,H)ANTHRACENE       |            | 0.3        |            | ug/L         | 1 U         | NA       | NA          | NA          | NA          | NA          | NA                        | NA                        | 0.2 U       | 0.2 U       | 0.2 U    | 0.2 U       | 0.2 U       | 0.2 U                     | 0.19 U   | 0.19 U   | 0.19 U    | 0.19 U    | 0.19 U      | 0.19 U      | NA          | NA         | NA     | NA     | NA        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | FLUORANTHENE                 | 0.5        | 1000       |            | ug/L         | 0.5 U       | 0.5 U    | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U                     | 0.5 U                     | 0.2 U       | 0.2 U       | 0.2 U    | 0.2 U       | 0.2 U       | 0.2 U                     | 0.19 U   | 0.19 U   | 0.19 U    | 0.19 U    | 0.19 U      | 0.19 U      | NA          | NA         | NA     | NA     | NA        |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | FLUORENE                     | 0.5        | 1000       |            | ug/L         | 0.5 U       | 0.5 U    | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U                     | 0.5 U                     | 0.2 U       | 0.2 U       | 0.2 U    | 0.2 U       | 0.2 U       | 0.2 U                     | 0.19 U   | 0.19 U   | 0.19 U    | 0.19 U    | 0.19 U      | 0.19 U      | NA          | NA         | NA     | NA     | NA        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                              |            | 0.4        |            | +            |             |          |             |             |             |             |                           |                           |             |             |          |             | <b>-</b>    | <b>!</b>                  |          |          |           |           |             |             |             | 1          |        |        | 1         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                              |            |            |            | +-           |             |          |             |             |             |             |                           |                           |             |             |          |             | <b>-</b>    |                           |          | <b>-</b> |           |           |             |             |             | 1          |        |        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                              |            |            |            | +-           |             |          |             |             |             |             |                           |                           |             |             |          |             | <b>-</b>    |                           |          | <b>-</b> |           |           |             |             |             |            |        |        |           |
| Minical Region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                              |            |            |            | ÷            |             |          |             |             |             |             |                           |                           |             |             |          |             | <b>!</b>    | <b>!</b>                  | -        | <b>!</b> |           |           |             |             |             | 1          |        |        | 1         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | -                            |            |            | 510        | _            |             |          |             |             |             |             |                           |                           |             |             |          |             | -           |                           |          | <b>-</b> |           |           |             |             |             |            |        |        | -         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                              |            |            |            | +            |             |          |             |             |             |             |                           |                           |             |             |          |             | <b>-</b>    |                           |          | <b>-</b> |           |           |             |             |             |            |        |        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                              | 1          | 5          | 31.2       | _            |             |          |             |             |             |             |                           |                           |             |             |          |             | <b>!</b>    | <b>!</b>                  | -        | <b>!</b> |           |           |             |             |             | 1          |        |        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | ETHYLBENZENE                 | 1          | 700        |            | _            |             |          |             |             |             |             |                           |                           |             |             | 1 U      |             | -           |                           |          | -        |           |           | 1 U         |             |             |            |        | NA.    |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | p/m-XYLENE                   |            |            |            | ug/L         | NA          | 1 U      | 1 U         | 1 U         | 1 U         | 1 U         | 1 U                       | 1 U                       | NA          | NA          | NA       | NA          | NA          | NA                        | NA       | NA       | NA        | NA        | NA          | NA          | NA          | NA         | NA     | NA     | NA        |
| Mathematical Region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   | METHYLENE CHLORIDE           |            |            |            | ug/L         | NA          | 5 U      | NA          | NA          | NA          | NA.         | NA                        | NA                        | NA          | NA          | NA       | NA          | NA          | NA                        | NA       | NA       | NA.       | NA.       | NA          | NA          | NA          | NA         | NA     | NA.    | NA        |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VOCs              | o-XYLENE                     |            |            |            | ug/L         | NA          | 1 U      | 1 U         | 1 U         | 1 U         | 1 U         | 1 U                       | 1 U                       | NA          | NA          | NA       | NA          | NA          | NA                        | NA       | NA       | NA        | NA        | NA          | NA          | NA          | NA         | NA     | NA     | NA        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | TOLUENE                      | 1          | 1000       | 1900       | ug/L         | 1 U         | 1 U      | 1 U         | 1 U         | 1 U         | 1 U         | 1 U                       | 1 U                       | 1 U         | 1 U         | 1 U      | 1 U         | 1 U         | 1 U                       | 1 U      | 1 U      | 1 U       | 1 U       | 1 U         | 1 U         | NA          | NA         | NA     | NA     | NA        |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | XYLENES (TOTAL)              | 2          | 10000      |            | ug/L         | 2 U         | 1 U      | 1 U         | 1 U         | 1 U         | 1 U         | 1 U                       | 1 U                       | 2 U         | 2 U         | 2 U      | 2 U         | 2 U         | 2 U                       | 2 U      | 2 U      | 2 U       | 2 U       | 2 U         | 2 U         | NA          | NA         | NA     | NA     | NA        |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                              |            |            |            | ug/L         |             |          | NA          | NA          |             |             | NA                        | NA                        | NA          |             | NA       | NA          |             | -                         | 10 U     | 10 U     | 10 U      |           | NA          | 10 U        |             | NA         | NA     | NA     |           |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                              |            |            |            | ug/L         |             |          |             |             |             |             |                           |                           |             |             |          |             |             |                           |          | <b>!</b> |           |           |             |             |             | 1          |        |        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                              | 0.018      |            | 0.018      | +-           |             |          |             |             |             |             |                           |                           |             |             |          |             |             |                           |          |          |           |           |             |             |             |            |        |        | 1         |
| Marchane    |                   |                              |            | 0.004      |            | +            |             |          |             |             |             |             |                           |                           |             |             |          |             | -           |                           |          | <b>-</b> |           |           |             |             |             |            |        |        | -         |
| Maria Mari   |                   |                              |            | 0.005      |            | +            |             |          |             |             |             |             |                           |                           |             |             |          |             | <b>-</b>    |                           |          | <b>-</b> |           |           |             |             |             |            |        |        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                              |            | 0.005      |            | +            |             |          |             |             |             |             |                           |                           |             |             |          |             | <b>!</b>    | <b>!</b>                  | -        | <b>-</b> |           |           |             |             |             | 1          |        |        |           |
| Marche   M   |                   |                              | 0.013      | 0.1        |            | +            |             |          |             |             |             |             |                           |                           |             |             | -        |             | -           |                           |          | <b>-</b> |           |           |             |             |             |            |        |        |           |
| House Heading And And Antique Heading Antique Heading And Antique Heading And Antique Heading Antique  | Metals, Total     | LEAD                         |            | 0.015      | 0.015      | +            |             |          | 0.005 U     |             |             |             | 0.005 U                   |                           |             |             | 0.005 U  |             | -           |                           | 0.005 U  | 0.005 U  |           |           | 0.01 U      |             |             |            | NA.    | NA.    |           |
| March   Marc   |                   | MAGNESIUM                    |            |            |            | mg/L         | NA          | NA       | NA          | NA          | NA          | NA          | NA                        | NA                        | NA          | NA          | NA       | NA          | NA          | NA                        | NA       | NA       | NA        | NA        | NA          | NA          | NA          |            | NA     | NA     | NA        |
| - Marie Probabilist Probabilis |                   | MERCURY                      |            | 0.002      |            | mg/L         | 0.0002 U    | NA       | NA          | NA          | NA          | NA.         | NA.                       | NA                        | NA          | NA          | NA       | NA          | NA          | NA                        | NA       | NA       | NA        | NA        | NA          | NA          | NA          | NA         | NA     | NA.    | NA        |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | NICKEL                       | 0.13       | 0.1        | 2          | mg/L         | 0.04 U      | 0.04 U   | 0.04 U      | 0.04 U      | 0.04 U      | 0.04 U      | 0.04 U                    | 0.04 U                    | 0.04 U      | 0.04 U      | 0.04 U   | 0.04 U      | 0.04 U      | 0.04 U                    | 0.04 U   | 0.04 U   | 0.04 U    | 0.04 U    | 0.04 U      | 0.04 U      | NA          | NA         | NA     | NA     | NA        |
| 28 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | POTASSIUM                    |            |            |            | mg/L         | NA          | NA       | NA          | NA          | NA          | NA          | NA                        | NA                        | NA          | NA          | NA       | NA          | NA          | NA                        | NA       | NA       | NA        | NA        | NA          | NA          | NA          | NA         | NA     | NA     | NA        |
| APPENISH RESISTED OF THE RESIS |                   | SODIUM                       |            |            |            | mg/L         | NA          | NA       | NA          | NA          | NA          | NA          | NA                        | NA                        | NA          | NA          | NA       | NA          | NA          | NA                        | NA       | NA       | NA        | NA        | NA          | NA          | NA          | NA         | NA     | NA     | NA        |
| Fertilish   Fert   |                   |                              |            |            |            | <u> </u>     |             |          |             |             |             |             |                           |                           |             |             |          |             |             |                           |          | <b>!</b> |           |           |             |             |             |            |        |        | 1         |
| ACMINISHMENT OF THE CONTINUENCE  |                   | -                            | 0.018      |            |            | +            |             |          |             |             |             |             |                           |                           |             |             |          |             |             | -                         |          | <b>!</b> |           |           |             |             |             |            |        |        |           |
| HERMARIAN D. CO.TS |                   |                              |            |            |            | +            |             |          |             |             |             |             |                           |                           |             |             |          |             |             | -                         |          |          |           |           |             |             |             |            |        |        |           |
| ## ACALINITY  ## |                   |                              |            |            |            | +            |             |          |             |             |             |             |                           |                           |             |             |          |             |             | <b>!</b>                  |          |          |           |           |             |             |             |            |        |        |           |
| MERCURY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Metals, Dissolved |                              |            |            |            | +            |             |          |             |             |             |             |                           |                           |             |             |          |             | -           |                           |          | <b>-</b> |           |           |             |             |             |            |        |        |           |
| Microbial District No. 13 0.1 2 mg. NA NA 0.04 U 0.04 U NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                              |            |            |            | _            |             |          |             |             |             |             |                           |                           |             |             |          |             | -           |                           |          | -        |           |           |             |             |             |            |        |        |           |
| 2NC 0.96 2 31 mg/L NA NA 0.02 0.02 0.02 0.02 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                              | 0.13       |            |            |              |             |          |             |             |             |             |                           |                           |             |             |          |             | -           |                           |          | -        |           |           |             |             |             |            |        |        |           |
| ALFALINITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | ZINC                         |            |            |            |              |             |          |             |             |             |             |                           |                           |             |             |          |             | 1           | 1                         |          | 1        |           |           |             |             |             | 1          |        |        | _         |
| AMMONA AS N 15 30 30 mg L 2.6 6.1 14 4 5 6.7 4 6.6 4.5 4.6 3.8 4.6 0.03 U 5.4 1.3 1.4 1.2 1.3 1 3.1 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | ALKALINITY                   |            |            |            | _            | NA          | NA       | NA          | NA          | NA          | NA          | NA                        | NA                        | NA          | NA          | NA       | NA          | NA          | NA                        | NA       | NA       | NA        | NA        | NA          | NA          | NA          | NA         | NA     | NA     | NA        |
| BICARBONATE mgl NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | ALKALINITY, TOTAL (AS CACO3) |            |            |            | mg/L         | NA          | NA       | NA          | NA          | NA          | NA          | NA                        | NA                        | NA          | NA          | NA       | NA          | NA          | NA                        | NA       | NA       | NA.       | NA.       | NA          | NA          | NA          | NA         | NA     | NA     | NA        |
| ARBONATE mgl NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   | AMMONIA AS N                 | 15         | 30         | 30         | mg/L         | 2.6         | 6.1      | 14          | 4           | 5           | 6.7         | 4                         | 6.6                       | 4.5         | 4.6         | 3.8      | 4.6         | 0.03 U      | 5.4                       | 1.3      | 1.4      | 1.2       | 1.3       | 1           | 3.1         | NA          | NA         | 1.1    | NA     | NA        |
| CARDUCTIVITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | BICARBONATE                  |            |            |            | mg/L         | NA          | NA       | NA          | NA          | NA          | NA          | NA                        | NA                        | NA          | NA          | NA       | NA          | NA          | NA                        | NA       | NA       | NA        | NA        | NA          | NA          | NA          | NA         | NA     | NA     | NA        |
| CORDICITIVITY Unificidity NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Miscellaneous     | CARBONATE                    |            |            |            |              | NA          | NA       | NA          | NA          | NA          | NA          | NA                        | NA                        | NA          | NA          | NA       | NA          | NA          | NA                        | NA       | NA       | NA        | NA        | NA          | NA          | NA          | NA         | NA     | NA     | NA        |
| NITRITE (AS N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   | CONDUCTIVITY                 |            |            |            | umhos/<br>cm | NA          | NA       | NA          | NA          | NA          | NA          | NA                        | NA                        | NA          | NA          | NA       | NA          | NA          | NA                        | NA       | NA       | NA        | NA        | NA          | NA          | NA          | NA         | NA     | NA     | NA        |
| SULFATE mg/L NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   | NITRATE (AS N)               |            | 10         |            | mg/L         |             | NA       | NA          | NA          | NA          | NA          | NA                        | NA                        | NA          | NA          | NA       | NA          | NA          | NA                        | NA       | NA       | NA        | NA        | NA          | NA          | NA          | NA         | NA     | NA     |           |
| SCLIDS, TOTAL DISSOLVED mgL NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                              |            |            |            | _            |             |          |             |             |             |             |                           |                           |             |             |          |             |             |                           |          |          |           |           |             |             |             |            |        |        | 1         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                              |            |            | -          | +-           |             |          |             |             |             |             |                           |                           |             |             |          |             |             | -                         |          |          |           |           |             |             |             |            |        |        | 1         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | evoc.             |                              |            |            |            | _            |             |          |             |             |             |             |                           |                           |             |             |          |             |             |                           | 1        |          |           |           |             |             |             | 1          |        |        | 1         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SVUCS             | 1,4-DICHLOHOBENZENE          |            |            | 1          | ug/L         | NA.         | NA       | NA          | NA          | NA          | NA          | NA                        | NA.                       | NA.         | NA          | NA       | NA          | NA          | NA                        | NA       | NA       | NA        | NA        | NA          | NA          | NA          | NA         | NA     | NA     | NA.       |

Note:

| Shaded cell indicates comparison standard used in data evaluation.
| Indignighted cell indicates analytical result exceeds comparison criteria.
| Bold and Risk feet indicates analytical result exceeds background value.
| Bold and Risk feet indicates analytical result exceeds background value.
| No -Re constituents os standard back on the Maximum Containmant Level (MCL) established by the USEPA National Primary C
| NO -Re constituents detected above the laboratory minimum detection limit.
| J. Indicates constituent was not detected above value shown.
| J. Indicates constituent was not detected at an estimated value.
| W. Indicates constituent was not detected at an estimated value.
| W. Indicates constituent was not detected at an estimated value.
| Monitoring wells MM-38, PDMM-88, PDMM-38, PDMM-318, PDMM-3

|                   |                                            |            |            | L          | ocation:     |                      |                      |                      |                      |                      |                      |                   |                      |              |                      |                | PDM                  | IW-6P                |                      |                        |                   |                   |                      |                      |                      |                      |                      |           |                     |
|-------------------|--------------------------------------------|------------|------------|------------|--------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-------------------|----------------------|--------------|----------------------|----------------|----------------------|----------------------|----------------------|------------------------|-------------------|-------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-----------|---------------------|
|                   |                                            |            |            | Samp       | ple Date:    | 10/30/1997           | 8/11/1999            | 11/16/1999           | 2/23/2000            | 5/15/2000            | 8/21/2000            | 1/9/2001          | 7/12/2001            | 2/5/2002     | 9/12/2002            | 2/7/2003       | 6/25/2003            | 1/29/2004            | 7/23                 | /2004                  | 3/6/2006          | 4/3/2008          | 7/20/2008            | 10/6/2008            | 12/3/2009            | 6/17/2010            | 12/15/2010           | 6/16/2011 | 12/7/2011           |
|                   |                                            |            |            | Samp       | ole Type:    | Normal               | Normal               | Normal               | Normal               | Normal               | Normal               | Normal            | Normal               | Normal       | Normal               | Normal         | Normal               | Normal               | Normal               | Dup                    | Normal            | Normal            | Normal               | Normal               | Normal               | Normal               | Normal               | Normal    | Normal              |
|                   |                                            |            |            | Sa         | imple ID:    | PDMW-<br>6P_10/30/19 | PDMW-<br>6P 8/11/199 | PDMW-<br>6P_11/16/19 | PDMW-<br>6P_2/23/200 | PDMW-<br>6P_5/15/200 | PDMW-<br>6P_8/21/200 | PDMW-             | PDMW-<br>6P_7/12/200 | PDMW-        | PDMW-<br>6P_9/12/200 | PDMW-          | PDMW-<br>6P_6/25/200 | PDMW-<br>6P_1/29/200 | PDMW-<br>6P_7/23/200 | PDMW-6P<br>(DUP)_7/23/ | PDMW-             | PDMW-             | PDMW-<br>6P 7/20/200 | PDMW-<br>6P 10/6/200 | PDMW-<br>6P_12/3/200 | PDMW-<br>6P 6/17/201 | PDMW-<br>6P_12/15/20 | PDMW-     | PDMW-<br>6P_1207201 |
|                   |                                            |            |            |            |              | 97                   | 9                    | 99                   | - 0                  | - 0                  | - 0                  | 6P_1/9/2001       | 1                    | 6P_2/5/2002  | 2                    | 6P_2/7/2003    | 3                    | - 4                  | - 4                  | 2004                   | 6P_3/6/2006       | 6P_4/3/2008       | - 8                  | - 8                  | 9                    | - 0                  | 10                   | 6P_061611 | 1                   |
| Method Group      | Analyte                                    | Background | Type 3 RRS | Type 4 RRS | Units        | Result               | Result               | Result               | Result               | Result               | Result               | Result            | Result               | Result       | Result               | Result         | Result               | Result               | Result               | Result                 | Result            | Result            | Result               | Result               | Result               | Result               | Result               | Result    | Result              |
|                   | ACENAPHTHENE<br>ACENAPHTHYLENE             | 1.4        | 2000       | 510        | ug/L<br>ug/L | 1 U                  | 1 U                  | 1 U                  | 1 U                  | 1 U                  | 1 U                  | 1 U               | 1 U                  | NA<br>NA     | 0.2 U<br>0.2 U       | 0.2 U<br>0.2 U | 0.2 U<br>0.2 U       | 0.2 U<br>0.2 U       | 0.2 U<br>0.2 U       | 0.2 U<br>0.2 U         | 0.2 U<br>0.2 U    | 0.19 U<br>0.19 U  | 0.19 U<br>0.19 U     | 0.19 U<br>0.19 U     | 0.19 U<br>0.19 U     | 0.76<br>0.2 U        | NA<br>NA             | NA<br>NA  | NA<br>NA            |
|                   | ANTHRACENE                                 | 0.2        | 0.2        | 5100       | ug/L         | 0.2 U                | 0.2 U             | 0.2 U                | NA<br>NA     | 0.2 U                | 0.2 U          | 0.2 U                | 0.2 U                | 0.2 U                | 0.2 U                  | 0.2 U             | 0.19 U            | 0.19 U               | 0.19 U               | 0.19 U               | 0.2 U                | NA<br>NA             | NA<br>NA  | NA NA               |
|                   | BENZO(A)ANTHRACENE                         | 0.2        | 0.1        | 3.9        | ug/L         | 0.2 U                | 0.2 U             | 0.2 U                | NA           | 0.2 U                | 0.2 U          | 0.2 U                | 0.2 U                | 0.2 U                | 0.2 U                  | 0.2 U             | 0.19 U            | 0.19 U               | 0.19 U               | 0.19 U               | 0.2 U                | NA                   | NA        | NA                  |
|                   | BENZO(A)PYRENE                             | 0.2        | 0.2        | 0.39       | ug/L         | 0.2 U                | 0.2 U             | 0.2 U                | NA           | 0.2 U                | 0.2 U          | 0.2 U                | 0.2 U                | 0.2 U                | 0.2 U                  | 0.2 U             | 0.19 U            | 0.19 U               | 0.19 U               | 0.19 U               | 0.2 U                | NA                   | NA        | NA                  |
|                   | BENZO(B)FLUORANTHENE                       | 0.2        | 0.2        | 0.65       | ug/L         | 0.2 U                | 0.2 U             | 0.2 U                | NA           | 0.2 U                | 0.2 U          | 0.2 U                | 0.2 U                | 0.2 U                | 0.2 U                  | 0.2 U             | 0.19 U            | 0.19 U               | 0.19 U               | 0.19 U               | 0.2 U                | NA                   | NA        | NA                  |
|                   | BENZO(G,H,I)PERYLENE BENZO(K)FLUORANTHENE  |            |            |            | ug/L<br>ug/L | 0.5 U<br>0.5 U       | NA<br>NA             | 0.5 U<br>0.2 U       | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA          | NA<br>NA             | NA<br>NA     | 0.2 U<br>0.2 U       | 0.2 U<br>0.2 U | 0.2 U<br>0.2 U       | 0.2 U                | 0.2 U<br>0.2 U       | 0.2 U<br>0.2 U         | 0.2 U<br>0.2 U    | 0.19 U<br>0.19 U  | 0.19 U<br>0.19 U     | 0.19 U<br>0.19 U     | 0.19 U<br>0.19 U     | 0.2 UJ<br>0.2 U      | NA<br>NA             | NA<br>NA  | NA<br>NA            |
|                   | CHRYSENE                                   | 0.2        | 0.2        | 65         | ug/L         | 0.2 U                | 0.2 U             | 0.2 U                | NA NA        | 0.2 U                | 0.2 U          | 0.2 U                | 0.2 U                | 0.2 U                | 0.2 U                  | 0.2 U             | 0.19 U            | 0.19 U               | 0.19 U               | 0.19 U               | 0.2 U                | NA NA                | NA NA     | NA NA               |
| PAHs              | DIBENZO(A,H)ANTHRACENE                     |            | 0.3        |            | ug/L         | 1 U                  | NA                   | 0.2 U                | NA                   | NA                   | NA                   | NA                | NA                   | NA           | 0.2 U                | 0.2 U          | 0.2 U                | 0.2 U                | 0.2 U                | 0.2 U                  | 0.2 U             | 0.19 U            | 0.19 U               | 0.19 U               | 0.19 U               | 0.2 UJ               | NA                   | NA        | NA                  |
|                   | FLUORANTHENE                               | 0.5        | 1000       |            | ug/L         | 0.5 U                | 0.5 U             | 0.5 U                | NA           | 0.2 U                | 0.2 U          | 0.2 U                | 0.2 U                | 0.2 U                | 0.2 U                  | 0.2 U             | 0.19 U            | 0.19 U               | 0.19 U               | 0.19 U               | 0.2 U                | NA                   | NA        | NA                  |
|                   | FLUORENE                                   | 0.5        | 1000       |            | ug/L         | 0.5 U                | 0.5 U             | 0.5 U                | NA           | 0.2 U                | 0.2 U          | 0.2 U                | 0.2 U                | 0.2 U                | 0.2 U                  | 0.2 U             | 0.19 U            | 0.19 U               | 0.19 U               | 0.19 U               | 0.47                 | NA                   | NA        | NA                  |
|                   | NDENO(1,2,3-CD)PYRENE  1-METHYLNAPHTHALENE |            | 0.4        |            | ug/L         | 0.5 U<br>NA          | NA<br>NA             | 0.2 U<br>1 U         | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA          | NA<br>NA             | NA<br>NA     | 0.2 U<br>0.2 U       | 0.2 U<br>0.2 U | 0.2 U<br>0.2 U       | 0.2 U<br>0.2 U       | 0.2 U<br>0.2 U       | 0.2 U<br>0.2 U         | 0.2 U<br>0.2 U    | 0.19 U<br>0.19 U  | 0.19 U<br>0.19 U     | 0.19 U<br>0.19 U     | 0.19 U<br>0.76 U     | 0.2 UJ<br>0.4 U      | NA<br>NA             | NA<br>NA  | NA<br>NA            |
|                   | 2-METHYLNAPHTHALENE                        |            |            |            | ug/L<br>ug/L | NA<br>NA             | NA NA                | 10                   | NA<br>NA             | NA NA                | NA<br>NA             | NA<br>NA          | NA<br>NA             | NA<br>NA     | 0.2 U                | 0.2 U          | 0.2 U                | 0.2 U                | 0.2 U                | 0.2 U                  | 0.2 U             | 0.19 U            | 0.19 U               | 0.19 U               | 0.76 U               | 0.4 U                | NA<br>NA             | NA<br>NA  | NA NA               |
|                   | NAPHTHALENE                                | 1          | 20         | 20         | ug/L         | 1 U                  | 1 U                  | 1 U                  | 1 U                  | 1 U                  | 1 U                  | 1 U               | 1 U                  | NA NA        | 0.2 U                | 0.2 U          | 0.2 U                | 0.2 U                | 0.2 U                | 0.2 U                  | 0.23              | 0.19 U            | 0.19 U               | 0.19 U               | 0.19 U               | 0.2 U                | NA NA                | NA NA     | NA NA               |
|                   | PHENANTHRENE                               | 0.22       | 0.2        | 510        | ug/L         | 0.2 U                | 0.2 U             | 0.2 U                | NA           | 0.2 U                | 0.2 U          | 0.2 U                | 0.2 U                | 0.2 U                | 0.2 U                  | 0.2 U             | 0.19 U            | 0.19 U               | 0.19 U               | 0.19 U               | 0.2 U                | NA                   | NA        | NA                  |
|                   | PYRENE                                     | 0.5        | 1000       |            | ug/L         | 0.5 U                | 0.5 U             | 0.5 U                | NA           | 0.2 U                | 0.2 U          | 0.2 U                | 0.2 U                | 0.2 U                | 0.2 U                  | 0.2 U             | 0.19 U            | 0.19 U               | 0.19 U               | 0.19 U               | 0.2 U                | NA                   | NA        | NA                  |
|                   | TOTAL PAHS                                 |            |            |            | ug/L         | ND                   | ND                   | ND                   | ND                   | ND                   | ND                   | ND                | ND                   | NA           | ND                   | ND             | ND                   | ND                   | ND                   | ND                     | 0.23              | ND                | ND                   | ND                   | ND                   | 1.23                 | NA                   | NA        | NA                  |
|                   | BENZENE<br>ETHYLBENZENE                    | 1          | 700        | 31.2       | ug/L         | 1 U                  | 10                   | 10                   | 1 U                  | 1 U                  | 1 U                  | 1 U               | 10                   | NA NA        | 1 U                  | 10             | 10                   | 1 U                  | 1 U                  | 10                     | 1 U               | 10                | 10                   | 1 U                  | 10                   | 10                   | NA<br>NA             | NA<br>NA  | NA NA               |
|                   | p/m-XYLENE                                 |            | 700        |            | ug/L<br>ug/L | NA.                  | 1 U                  | 1 U                  | 10                   | 1 U                  | 1 U                  | 10                | 1 U                  | NA<br>NA     | NA.                  | 1 U<br>NA      | 1 U<br>NA            | NA.                  | 1 U<br>NA            | 1 U<br>NA              | NA NA             | 1 U<br>NA         | 1 U<br>NA            | NA NA                | 1 U<br>NA            | 1 U<br>NA            | NA<br>NA             | NA<br>NA  | NA<br>NA            |
|                   | METHYLENE CHLORIDE                         |            |            |            | ug/L         | NA                   | 5 U                  | NA                   | NA                   | NA                   | NA.                  | NA                | NA.                  | NA           | NA                   | NA             | NA                   | NA                   | NA                   | NA                     | NA                | NA                | NA                   | NA                   | NA                   | NA                   | NA                   | NA        | NA NA               |
| VOCs              | o-XYLENE                                   |            |            |            | ug/L         | NA                   | 1 U                  | 1 U                  | 1 U                  | 1 U                  | 1 U                  | 1 U               | 1 U                  | NA           | NA.                  | NA             | NA                   | NA.                  | NA.                  | NA                     | NA                | NA                | NA                   | NA                   | NA                   | NA                   | NA                   | NA        | NA                  |
|                   | TOLUENE                                    | 1          | 1000       | 1900       | ug/L         | 1.1                  | 1 U                  | 1 U                  | 1 U                  | 1 U                  | 1 U                  | 1 U               | 1 U                  | NA           | 1 U                  | 1 U            | 1 U                  | 1 U                  | 1 U                  | 1 U                    | 1 U               | 1 U               | 1 U                  | 1 U                  | 1 U                  | 1 U                  | NA                   | NA        | NA                  |
|                   | XYLENES (TOTAL)                            | 2          | 10000      |            | ug/L         | 2 U                  | 1 U                  | 1 U                  | 1 U                  | 1 U                  | 1 U                  | 1 U               | 1 U                  | NA           | 2 U                  | 2 U            | 2 U                  | 2 U                  | 2 U                  | 2 U                    | 2 U               | 2 U               | 2 U                  | 2 U                  | 2 U                  | 2 U                  | NA                   | NA        | NA                  |
|                   | METHYL TERT BUTYL ETHER TOTAL BTEX         |            |            |            | ug/L<br>ug/L | NA<br>1.1            | NA<br>ND             | NA<br>ND             | NA<br>ND             | NA<br>ND             | NA<br>ND             | NA<br>ND          | NA<br>ND             | NA<br>NA     | NA<br>ND             | NA<br>ND       | NA<br>ND             | NA<br>ND             | NA<br>ND             | NA<br>ND               | 10 U<br>ND        | 10 U<br>ND        | 10 U<br>ND           | NA<br>ND             | NA<br>ND             | 10 U<br>ND           | NA<br>NA             | NA<br>NA  | NA<br>NA            |
|                   | ARSENIC                                    | 0.018      | 0.018      | 0.018      | mg/L         | 0.01 U               | 0.01 U            | 0.016                | NA<br>NA     | 0.017                | 0.01 U         | 0.01 U               | 0.01 U               | 0.01 U               | 0.01 U                 | 0.01 U            | 0.01 U            | 0.014                | 0.037                | 0.02 U               | 0.024                | 0.043                | 0.018 U   | 0.018 U             |
|                   | BERYLLIUM                                  |            | 0.004      |            | mg/L         | 0.005 U              | NA                   | NA.                  | NA                   | NA.                  | NA                   | NA                | NA                   | NA           | NA                   | NA             | NA                   | NA                   | NA                   | NA                     | NA                | NA                | NA                   | NA .                 | NA                   | NA                   | NA                   | NA NA     | NA                  |
|                   | BORON                                      |            |            |            | mg/L         | NA                   | NA                   | NA.                  | NA                   | NA                   | NA                   | NA                | NA                   | NA           | NA                   | NA             | NA                   | NA                   | NA                   | NA                     | NA                | NA                | NA                   | NA                   | NA                   | NA                   | NA                   | NA        | NA                  |
|                   | CADMIUM                                    |            | 0.005      |            | mg/L         | 0.005 U              | NA                   | NA                   | NA                   | NA                   | NA                   | NA                | NA                   | NA           | NA                   | NA             | NA                   | NA                   | NA                   | NA                     | NA                | NA                | NA                   | NA                   | NA                   | NA                   | NA                   | NA        | NA                  |
|                   | CALCIUM METAL                              |            |            |            | mg/L         | NA                   | NA                   | NA.                  | NA                   | NA                   | NA                   | NA                | NA                   | NA           | NA                   | NA             | NA                   | NA                   | NA                   | NA                     | NA                | NA                | NA                   | NA                   | NA                   | NA                   | NA                   | NA        | NA                  |
| Metals, Total     | CHROMIUM                                   | 0.013      | 0.1        |            | mg/L         | 0.01 U<br>0.005 U    | 0.01 U<br>0.005 U    | 0.01 U<br>0.005 U    | 0.01 U<br>0.005 U    | 0.01 U               | 0.01 U               | 0.01 U<br>0.005 U | 0.01 U<br>0.005 U    | NA NA        | 0.01 U               | 0.01 U         | 0.01 U               | 0.01 U<br>0.005 U    | 0.01 U<br>0.005 U    | 0.01 U<br>0.005 U      | 0.01 U<br>0.005 U | 0.01 U<br>0.005 U | 0.01 U               | 0.01 U<br>0.005 U    | 0.01 U<br>0.01 U     | 0.01 U<br>0.01 U     | NA<br>NA             | NA<br>NA  | NA NA               |
| iwetais, rotai    | MAGNESIUM                                  | 0.007      | 0.015      | 0.015      | mg/L<br>mg/L | 0.005 U              | 0.005 U              | 0.005 U              | 0.005 U              | 0.005 U<br>NA        | 0.005 U<br>NA        | 0.005 U           | 0.005 U              | NA<br>NA     | 0.005 U<br>NA        | 0.005 U<br>NA  | 0.005 U<br>NA        | 0.005 U              | 0.005 U              | 0.005 U                | 0.005 U           | 0.005 U           | 0.005 U<br>NA        | 0.005 U              | NA.                  | NA.                  | NA<br>NA             | NA<br>NA  | NA<br>NA            |
|                   | MERCURY                                    |            | 0.002      |            | mg/L         | 0.0002 U             | NA.                  | NA.                  | NA.                  | NA NA                | NA NA                | NA NA             | NA NA                | NA NA        | NA.                  | NA NA          | NA.                  | NA.                  | NA.                  | NA NA                  | NA NA             | NA NA             | NA NA                | NA NA                | NA.                  | NA NA                | NA NA                | NA NA     | NA NA               |
|                   | NICKEL                                     | 0.13       | 0.1        | 2          | mg/L         | 0.04 U               | 0.04 U            | 0.04 U               | NA           | 0.04 U               | 0.04 U         | 0.04 U               | 0.04 U               | 0.04 U               | 0.04 U                 | 0.04 U            | 0.04 U            | 0.04 U               | 0.04 U               | 0.04 U               | 0.04 U               | NA                   | NA        | NA                  |
|                   | POTASSIUM                                  |            |            |            | mg/L         | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                | NA                   | NA           | NA                   | NA             | NA                   | NA                   | NA                   | NA                     | NA                | NA                | NA                   | NA                   | NA                   | NA                   | NA                   | NA        | NA                  |
|                   | SODIUM                                     |            |            |            | mg/L         | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                | NA                   | NA           | NA                   | NA             | NA                   | NA                   | NA                   | NA                     | NA                | NA                | NA                   | NA                   | NA                   | NA                   | NA                   | NA        | NA                  |
|                   | ZINC<br>ARSENIC                            | 0.96       | 0.018      | 31         | mg/L         | 0.02 U<br>NA         | 0.037<br>NA          | 0.02 U<br>0.01 U     | 0.02 U<br>0.01 U     | 0.02 U               | 0.02 U<br>NA         | 0.02 U<br>NA      | 0.02 U<br>0.01 U     | NA<br>0.01 U | 0.023<br>NA          | 0.034<br>NA    | 0.02 U<br>NA         | 0.036<br>NA          | 0.02 U<br>NA         | 0.02 U<br>NA           | 0.02 U<br>NA      | 0.02 U<br>NA      | 0.02 U<br>0.018      | 0.02 U<br>NA         | 0.02 U<br>NA         | 0.02 U<br>NA         | NA<br>NA             | NA<br>NA  | NA<br>NA            |
|                   | BERYLLIUM                                  | 0.018      | 0.018      | 0.018      | mg/L<br>mg/L | NA<br>NA             | NA<br>NA             | 0.01 U<br>NA         | 0.01 U<br>NA         | NA<br>NA             | NA<br>NA             | NA<br>NA          | 0.01 U               | 0.01 U<br>NA | NA<br>NA             | NA<br>NA       | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA          | NA<br>NA          | 0.018<br>NA          | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA  | NA<br>NA            |
|                   | CADMIUM                                    |            | 0.005      |            | mg/L         | NA NA                | NA NA                | NA.                  | NA.                  | NA NA                | NA.                  | NA NA             | NA NA                | NA NA        | NA NA                | NA NA          | NA.                  | NA NA                | NA NA                | NA NA                  | NA NA             | NA NA             | NA NA                | NA NA                | NA NA                | NA NA                | NA NA                | NA NA     | NA NA               |
| Metals, Dissolved | CHROMIUM                                   | 0.013      | 0.1        |            | mg/L         | NA                   | NA                   | 0.01 U               | 0.01 U               | NA                   | NA                   | NA                | NA                   | NA           | NA                   | NA             | NA                   | NA                   | NA                   | NA                     | NA                | NA                | 0.01 U               | NA                   | NA                   | NA                   | NA                   | NA        | NA                  |
| wetas, ussalved   | LEAD                                       | 0.007      | 0.015      | 0.015      | mg/L         | NA                   | NA                   | 0.005 U              | 0.005 U              | NA                   | NA                   | NA                | NA                   | NA           | NA                   | NA             | NA                   | NA                   | NA                   | NA                     | NA                | NA                | 0.005 U              | NA                   | NA                   | NA                   | NA                   | NA        | NA                  |
|                   | MERCURY                                    |            | 0.002      |            | mg/L         | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                | NA                   | NA           | NA                   | NA             | NA                   | NA                   | NA                   | NA                     | NA                | NA                | NA                   | NA                   | NA                   | NA                   | NA                   | NA        | NA                  |
|                   | NICKEL                                     | 0.13       | 0.1        | 2          | mg/L         | NA                   | NA                   | 0.04 U               | 0.04 U               | NA                   | NA                   | NA                | NA                   | NA           | NA                   | NA             | NA                   | NA                   | NA                   | NA                     | NA                | NA                | 0.04 U               | NA                   | NA                   | NA                   | NA                   | NA        | NA                  |
|                   | ZINC<br>ALKALINITY                         | 0.96       | 2          | 31         | mg/L<br>mg/L | NA<br>NA             | NA<br>NA             | 0.02 U<br>NA         | 0.02 U<br>NA         | NA<br>NA             | NA<br>NA             | NA<br>NA          | NA<br>NA             | NA<br>NA     | NA<br>NA             | NA<br>NA       | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA          | NA<br>NA          | 0.039<br>NA          | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA  | NA<br>NA            |
|                   | ALKALINITY, TOTAL (AS CACO3)               |            |            |            | mg/L         | NA NA                | NA.                  | NA.                  | NA.                  | NA NA                | NA NA                | NA NA             | NA NA                | NA NA        | NA.                  | NA NA          | NA NA                | NA NA                | NA NA                | NA NA                  | NA NA             | NA NA             | NA NA                | NA NA                | NA NA                | NA NA                | NA NA                | NA NA     | NA NA               |
| 1                 | AMMONIA AS N                               | 15         | 30         | 30         | mg/L         | 10                   | 12                   | 8.4                  | 7.2                  | 22                   | 9                    | 7.7               | 10                   | NA           | 6.3                  | 5.8            | 2.3                  | 0.043                | 5.9                  | 6.9                    | 5.8               | 25                | 38                   | 18                   | 38                   | 95                   | 31                   | 38        | 39                  |
|                   | BICARBONATE                                |            |            |            | mg/L         | NA                   | NA                   | NA.                  | NA                   | NA                   | NA                   | NA                | NA                   | NA           | NA                   | NA             | NA                   | NA                   | NA                   | NA                     | NA                | NA                | NA                   | NA                   | NA                   | NA                   | NA                   | NA        | NA                  |
| Miscellaneous     | CARBONATE                                  |            |            |            | mg/L         | NA                   | NA                   | NA.                  | NA                   | NA                   | NA                   | NA                | NA                   | NA           | NA                   | NA             | NA                   | NA                   | NA                   | NA                     | NA                | NA                | NA                   | NA                   | NA                   | NA                   | NA                   | NA        | NA                  |
|                   | CONDUCTIVITY                               |            |            |            | umhos/<br>cm | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                | NA                   | NA           | NA                   | NA             | NA                   | NA                   | NA                   | NA                     | NA                | NA                | NA                   | NA                   | NA                   | NA                   | NA                   | NA        | NA                  |
|                   | NITRATE (AS N)                             |            | 10         |            | mg/L         | NA NA                | NA NA                | NA NA                | NA                   | NA NA                | NA NA                | NA NA             | NA NA                | NA NA        | NA NA                | NA             | NA                   | NA NA                | NA NA                | NA NA                  | NA NA             | NA NA             | NA                   | NA NA                | NA                   | NA                   | NA NA                | NA NA     | NA<br>NA            |
|                   | NITRITE (AS N) SULFATE                     |            |            |            | mg/l<br>mg/L | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA          | NA<br>NA             | NA<br>NA     | NA<br>NA             | NA<br>NA       | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA          | NA<br>NA          | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA  | NA<br>NA            |
|                   | SOLIDS, TOTAL DISSOLVED                    |            |            |            | mg/L         | NA NA                | NA.                  | NA.                  | NA.                  | NA NA                | NA NA                | NA NA             | NA NA                | NA NA        | NA.                  | NA NA          | NA NA                | NA NA                | NA NA                | NA NA                  | NA NA             | NA NA             | NA NA                | NA NA                | NA NA                | NA NA                | NA NA                | NA NA     | NA NA               |
| SVOCs             | 1,4-DICHLOROBENZENE                        |            |            |            | ug/L         | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                | NA                   | NA           | NA                   | NA             | NA                   | NA                   | NA                   | NA                     | NA                | NA                | NA                   | NA                   | NA                   | NA                   | NA                   | NA        | NA                  |
| -                 | •                                          |            |            |            | •            | •                    | -                    |                      |                      |                      |                      |                   |                      | •            |                      | •              |                      |                      |                      |                        |                   |                   | •                    |                      |                      | •                    |                      |           |                     |

Notes:

| Shaded cell indicates comparison standard used in data evaluation.
| Highlighted cell indicates analytical result receeds comparison criteria.
| Boble and Relix feet indicates analytical result exceeds background value.
| Sharts comparison standard backer on the Maximum Containment set (MCL) established by the USEPA National Primary C
NO - No constituent detected above the laboratory indirum detection limit.
| Indicates constituent was not detected above whise Johnson.
| In Indicates constituent was not detected at an estimated value.
| Undicates constituent was not detected at an estimated value.
| Undicates constituent was not detected at an estimated value.
| Undicates constituent was not detected at an estimated value.
| Undicates constituent was not detected at an estimated value.
| Undicates constituent was not detected at an estimated value in the properties of the propert of the properties of the properties of the properties of the pr

|                   |                                        |                       | Lo         | ocation:                |                      |                          |               |                             |             |                         |                                       |              |                                 |                 |                      | PDMW-7P              |                       |             |                       |                       |                      |                                                   |                  |                        |                      |                     |                     |              |                     |                                 |                     |                             |               | PDMW      | V-8R                 |                      |                                                     |                   |                            |
|-------------------|----------------------------------------|-----------------------|------------|-------------------------|----------------------|--------------------------|---------------|-----------------------------|-------------|-------------------------|---------------------------------------|--------------|---------------------------------|-----------------|----------------------|----------------------|-----------------------|-------------|-----------------------|-----------------------|----------------------|---------------------------------------------------|------------------|------------------------|----------------------|---------------------|---------------------|--------------|---------------------|---------------------------------|---------------------|-----------------------------|---------------|-----------|----------------------|----------------------|-----------------------------------------------------|-------------------|----------------------------|
|                   |                                        |                       | Sampl      | le Date: 10/30/1        | 1997 8/10            | 0/1999 11/17/19          | 999 2/25/20   | 5/15/200                    | 00 8/21/2   | 000 1/9/2001            | 7/11/2001 2/4/20                      | 02 9/11/2    | 002 2/7/2003                    | 6/27/2003       | 1/30/2004            | 7/22/2004            | 3/9/2006              | 4/2/2008 7/ | 21/2008 1             | 10/8/2008             | 12/4/2009            | 6/16/2010 12/14/201                               | 0 6/16/201       | 1 12/7/2011            | 12/12/2013           | 6/4/2014            | 11/4/2014           | 5/19/2015    | 1/3/2008            | 21/2008 10/5/20                 | 12/                 | 4/2009 6/17/2010            | 12/15/2010    | 6/15/2011 | 12/5/2011            | 12/12/2013           | 6/3/2014                                            | 11/5/2014 5/20    | 0/2015 11/12/2015          |
|                   |                                        |                       | Sampl      | le Type: Norn           | mal No               | ormal Norma              | al Norma      | al Norma                    | l Norn      | nal Normal              | Normal Norm                           | al Norm      | al Normal                       | Normal          | Normal               | Normal               | Normal                | Normal N    | Normal                | Normal                | Normal               | Normal Normal                                     | Normal           | Normal                 | Normal               | Normal              | Normal              | Normal       | Normal              | Normal Norm                     | nal No              | ormal Normal                | Normal        | Normal    | Normal               | Normal               | Normal Dup                                          | Normal No         | rmal Normal                |
|                   |                                        |                       | San        | PDM<br>nple ID: 7P_10/3 | IW- PE<br>30/19 7P_8 | DMW-<br>B/10/199 7P_11/1 | 7/19 7P_2/25/ | V- PDM W-<br>/200 7P_5/15/2 | 200 7P_8/21 | W- PDMW-<br>7P 1/9/2001 | PDMW-<br>7P_7/11/200 PDMV<br>7P_2/4/2 | 0002 /P_9/11 | W-<br>/200 PDMW-<br>7P 2/7/2003 | /P_0/2//200     | PDMW-<br>7P_1/30/200 | PDMW-<br>7P_7/22/200 | PDMW-<br>P_3/9/2006 7 |             | PDMW-<br>_7/21/200 7P | PDMW-<br>P_10/8/200 7 | PDMW-<br>7P_12/4/200 | PDMW-<br>7P_6/16/201 7P_12/14/2                   | PDMW-7<br>061611 | P. PDMW-<br>7P_1207201 | PDMW-<br>7P_12/12/20 | PDMW-<br>07P_060420 | PDMW-<br>7P_1104201 | 7P_0519201   | PDMW-<br>8 4/3/2008 | PDMW- PDMV<br>_7/21/200 8R_10/5 | W- PE<br>5/200 8R_1 | DMW-<br>12/4/200 8R_6/17/20 |               |           | PDMW-8R-<br>12052011 | PDMW-<br>8R_12/12/20 | PDMW- DUP-<br>02_0603201                            | 1 8R_1105201 8R_0 | DMW-<br>0520201 8R_1112201 |
|                   |                                        |                       |            | 97                      | <u> </u>             | 9 99                     |               | 0                           | 0           |                         | <u> </u>                              |              |                                 | 3               | 4                    | •                    |                       |             | 8                     | 8                     | 9                    | 0 10                                              |                  |                        | 13                   | 14                  | 4                   | 5            |                     | 8 8                             | _                   | 9 0                         | 10            |           |                      | 13                   | 4 4                                                 |                   | 5 5                        |
| Method Grou       | Analyte  ACENAPHTHENE                  | Background Type 3 RRS | Type 4 RRS | Units Resu              |                      | esult Resul              |               |                             | Resi        |                         | Result Resu                           | It Resu      |                                 | Result<br>0.2 U | Result<br>0.2 U      | Result<br>0.2 U      | Result<br>0.2 U       |             |                       | Result<br>0.19 U      | Result<br>0.19 U     | Result         Result           0.19 U         NA | Result           | Result                 | Result<br>9.9 U      | Result<br>9.9 U     | Result              |              | Result<br>0.2 U     | 0.19 U 0.23                     |                     | esult Result                | Result        | Result    | Result               | Result<br>9.1 U      | Result         Result           9.9 U         9.9 U |                   | esult Result               |
|                   | ACENAPHTHYLENE                         | 1.4 1                 | 510        | ug/L 1 L                |                      | 10 10                    |               | _                           | 11          |                         | 10 10                                 | 0.2 (        |                                 | 0.2 U           | 0.2 U                | 0.2 U                | 0.2 U                 |             |                       | 0.19 U                | 0.19 U               | 0.19 U NA                                         | NA NA            | NA NA                  | 9.9 U                | 9.9 U               | NA.                 |              | 0.2 U               | 0.19 U 0.19                     |                     | .19 U 0.19 U                | NA NA         | NA NA     | NA NA                | 9.1 U                | 9.9 U 9.9 U                                         |                   | NA NA                      |
|                   | ANTHRACENE                             | 0.2 0.2               | 5100       | ug/L 0.2                | U 0                  | 0.2 U 0.2 U              |               |                             | 0.2         | J 0.2 U                 | 0.2 U 0.2 L                           |              |                                 | 0.2 U           | 0.2 U                | 0.2 U                | 0.2 U                 |             | 0.19 U                | 0.19 U                | 0.19 U               | 0.19 U NA                                         | NA               | NA.                    | 9.9 U                | 9.9 U               | NA                  | NA NA        | 0.2 U               | 0.19 U 0.19                     | -                   | .19 U 0.19 U                | NA NA         | NA        | NA                   | 9.1 U                | 9.9 U 9.9 U                                         | NA 1              | NA NA                      |
|                   | BENZO(A)ANTHRACENE                     | 0.2 0.1               | 3.9        | ug/L 0.2                | U 0                  | 0.2 U 0.2 U              | 0.2 U         | J 0.2 U                     | 0.2         | J 0.2 U                 | 0.2 U 0.2 L                           | 0.21         | J 0.2 U                         | 0.2 U           | 0.2 U                | 0.2 U                | 0.2 U                 | 0.19 U      | 0.19 U                | 0.19 U                | 0.19 U               | 0.19 U NA                                         | NA               | NA                     | 9.9 U                | 9.9 U               | NA                  | NA           | 0.2 U               | 0.19 U 0.19                     | U 0                 | .19 U 0.19 U                | NA            | NA        | NA                   | 9.1 U                | 9.9 U 9.9 U                                         | NA 1              | NA NA                      |
|                   | BENZO(A)PYRENE                         | 0.2 0.2               | 0.39       | ug/L 0.2                | U 0                  | 0.2 U 0.2 U              | 0.2 U         | J 0.2 U                     | 0.2         | J 0.2 U                 | 0.2 U 0.2 L                           | 0.2 (        | J 0.2 U                         | 0.2 U           | 0.2 U                | 0.2 U                | 0.2 U                 | 0.19 U      | 0.19 U                | 0.19 U                | 0.19 U               | 0.19 U NA                                         | NA               | NA                     | 9.9 U                | 9.9 U               | NA                  | NA           | 0.2 U               | 0.19 U 0.19                     | U 0                 | .19 U 0.19 U                | NA            | NA        | NA                   | 9.1 U                | 9.9 U 9.9 U                                         | NA 1              | NA NA                      |
|                   | BENZO(B)FLUORANTHENE                   | 0.2 0.2               | 0.65       | ug/L 0.2                | U 0                  | 0.2 U 0.2 U              | 0.2 U         | J 0.2 U                     | 0.2         | J 0.2 U                 | 0.2 U 0.2 L                           | 0.2 (        | J 0.2 U                         | 0.2 U           | 0.2 U                | 0.2 U                | 0.2 U                 | 0.19 U      | 0.19 U                | 0.19 U                | 0.19 U               | 0.19 U NA                                         | NA               | NA                     | 9.9 U                | 9.9 U               | NA                  | NA           | 0.2 U               | 0.19 U 0.19                     | U 0                 | .19 U 0.19 U                | NA            | NA        | NA                   | 9.1 U                | 9.9 U 9.9 U                                         | NA I              | NA NA                      |
|                   | BENZO(G,H,I)PERYLENE                   |                       |            | ug/L 0.5                |                      | NA NA                    | NA            | _                           | NA          |                         | NA NA                                 | 0.2 (        |                                 | 0.2 U           | 0.2 U                | 0.2 U                | 0.2 U                 | 0.19 U      | 0.19 U                | 0.19 U                | 0.19 U               | 0.19 U NA                                         | NA               | NA                     | 9.9 U                | 9.9 U               | NA                  | NA           | 0.2 U               | 0.19 UJ 0.19                    |                     | .19 U 0.19 U                | NA            | NA        | NA                   | 9.1 U                | 9.9 U 9.9 U                                         | NA I              | NA NA                      |
|                   | BENZO(K)FLUORANTHENE                   |                       |            | ug/L 0.5                |                      | NA NA                    |               |                             | NA          |                         | NA NA                                 |              | _                               | 0.2 U           | 0.2 U                | 0.2 U                | 0.2 U                 |             | 0.19 U                | 0.19 U                | 0.19 U               | 0.19 U NA                                         | NA               | NA                     | 9.9 U                | 9.9 U               | NA                  |              | 0.2 U               | 0.19 UJ 0.19                    |                     | .19 U 0.19 U                | NA            | NA        | NA                   | 9.1 U                | 9.9 U 9.9 U                                         | +                 | NA NA                      |
|                   | CHRYSENE                               | 0.2 0.2               | 65         | ug/L 0.2                |                      | 0.2 U 0.2 U              |               |                             |             |                         | 0.2 U 0.2 L                           | _            |                                 | 0.2 U           | 0.2 U                | 0.2 U                | 0.2 U                 |             | 0.19 U                | 0.19 U<br>0.19 U      | 0.19 U               | 0.19 U NA                                         | NA<br>NA         | NA<br>NA               | 9.9 U                | 9.9 U               | NA.                 |              | 0.2 U               | 0.19 U 0.19                     |                     | .19 U 0.19 U                | NA            | NA        | NA                   | 9.1 U                | 9.9 U 9.9 U                                         |                   | NA NA                      |
| PAHS              | DIBENZO(A,H)ANTHRACENE<br>FLUORANTHENE | 0.5 1000              |            | ug/L 1 L                |                      | NA NA<br>0.5 U 0.5 U     | _             |                             | NA<br>0.5   |                         | NA NA 0.5 U 0.5 L                     |              |                                 | 0.2 U<br>0.2 U  | 0.2 U<br>0.2 U       | 0.2 U                | 0.2 U                 |             | 0.19 U<br>0.19 U      | 0.19 U                | 0.19 U<br>0.19 U     | 0.19 U NA<br>0.19 U NA                            | NA<br>NA         | NA<br>NA               | 9.9 U<br>9.9 U       | 9.9 U<br>9.9 U      | NA<br>NA            | NA<br>NA     | 0.2 U<br>0.2 U      | 0.19 UJ 0.19<br>0.19 U 0.19     |                     | .19 U 0.19 U                | NA<br>NA      | NA<br>NA  | NA<br>NA             | 9.1 U<br>9.1 U       | 9.9 U 9.9 U<br>9.9 U 9.9 U                          |                   | NA NA                      |
|                   | FLUORENE                               | 0.5 1000              |            | ug/L 0.5                |                      | 0.5 U 0.5 U              |               |                             |             |                         | 0.5 U 0.5 L                           |              |                                 | 0.2 U           | 0.2 U                | 0.2 U                | 0.2 U                 |             | 0.19 U                | 0.19 U                | 0.19 U               | 0.19 U NA                                         | NA NA            | NA NA                  | 9.9 U                | 9.9 U               | NA.                 |              | 0.2 U               | 0.19 U 0.19                     |                     | .19 U 0.19 U                | NA.           | NA.       | NA NA                | 9.1 U                | 9.9 U 9.9 U                                         |                   | NA NA                      |
|                   | INDENO(1,2,3-CD)PYRENE                 | 0.4                   |            | ug/L 0.5                | _                    | NA NA                    | -             | _                           | NA NA       | _                       | NA NA                                 |              | _                               | 0.2 U           | 0.2 U                | 0.2 U                | 0.2 U                 | 0.19 U      | 0.19 U                | 0.19 U                | 0.19 U               | 0.19 U NA                                         | NA               | NA.                    | 9.9 U                | 9.9 U               | NA.                 | -            | 0.2 U               | 0.19 UJ 0.19                    | U 0                 | .19 U 0.19 U                | NA            | NA        | NA                   | 9.1 U                | 9.9 U 9.9 U                                         | NA 1              | NA NA                      |
|                   | 1-METHYLNAPHTHALENE                    |                       |            | ug/L NA                 | A                    | NA NA                    | NA            | NA                          | NA          | NA                      | NA NA                                 | 0.2 (        | J 0.2 U                         | 0.2 U           | 0.2 U                | 0.2 U                | 0.2 U                 | 0.19 U      | 0.19 U                | 0.19 U                | 0.75 U               | 0.19 U NA                                         | NA               | NA                     | 9.9 U                | 9.9 U               | NA                  | NA           | 0.2 U               | 0.19 U 0.19                     | U 0                 | .75 U 0.38 U                | NA            | NA        | NA                   | 9.1 U                | 9.9 U 9.9 U                                         | NA 1              | NA NA                      |
|                   | 2-METHYLNAPHTHALENE                    |                       |            | ug/L NA                 | A                    | NA NA                    | NA            | NA                          | NA          | NA                      | NA NA                                 | 0.2 (        | J 0.2 U                         | 0.2 U           | 0.2 U                | 0.2 U                | 0.2 U                 | 0.19 U      | 0.19 U                | 0.19 U                | 0.19 U               | 0.19 U NA                                         | NA               | NA                     | 9.9 U                | 9.9 U               | NA                  | NA           | 0.2 U               | 0.19 U 0.19                     | U 0                 | .19 U 0.19 U                | NA            | NA        | NA                   | 9.1 U                | 9.9 U 9.9 U                                         | NA I              | NA NA                      |
|                   | NAPHTHALENE                            | 1 20                  | 20         | ug/L 1 L                | U                    | 1U 1U                    | 1 U           | 1 U                         | 1 L         | 1 U                     | 1 U 1 U                               | 0.2 (        | J 0.2 U                         | 0.2 U           | 0.2 U                | 0.2 U                | 0.2 U                 | 0.19 U      | 0.19 U                | 0.19 U                | 0.19 U               | 0.19 U NA                                         | NA               | NA                     | 9.9 U                | 9.9 U               | NA                  | NA           | 0.2 U               | 0.19 U 0.19                     | U 0                 | .19 U 0.19 U                | NA            | NA        | NA                   | 9.1 U                | 9.9 U 9.9 U                                         | NA I              | NA NA                      |
|                   | PHENANTHRENE                           | 0.22 0.2              | 510        | ug/L 0.2                |                      | 0.2 U 0.2 U              |               | _                           | 0.2         |                         | 0.2 U 0.2 L                           |              |                                 | 0.2 U           | 0.2 U                | 0.2 U                | 0.2 U                 |             | 0.19 U                | 0.19 U                | 0.19 U               | 0.19 U NA                                         | NA               | NA                     | 9.9 U                | 9.9 U               | NA                  |              | 0.2 U               | 0.19 U 0.19                     | -                   | .19 U 0.19 U                | NA            | NA        | NA                   | 9.1 U                | 9.9 U 9.9 U                                         | +                 | NA NA                      |
|                   | PYRENE                                 | 0.5 1000              |            | ug/L 0.5                | _                    | 0.5 U 0.5 U              | -             | J 0.5 U                     | _           | _                       | 0.5 U 0.5 L                           | -            |                                 | 0.2 U           | 0.2 U                | 0.2 U                | 0.2 U                 |             | 0.19 U                | 0.19 U                | 0.19 U               | 0.19 U NA                                         | NA               | NA                     | 9.9 U                | 9.9 U               | NA                  |              |                     | 0.19 U 0.19                     | -                   | .19 U 0.19 U                | NA            | NA        | NA                   | 9.1 U                | 9.9 U 9.9 U                                         | +                 | NA NA                      |
|                   | TOTAL PAHs BENZENE                     |                       | 31.2       | ug/L ND                 |                      | ND ND                    | ND            | ND                          | NE          |                         | ND ND                                 | ND<br>1 U    |                                 | ND<br>1 U       | ND                   | 0.2                  | ND                    | ND<br>1 U   | ND<br>1 U             | ND<br>1 U             | ND                   | ND NA                                             | NA<br>NA         | NA<br>NA               | ND<br>1 II           | ND<br>1 U           | NA<br>NA            | NA<br>NA     | ND<br>1 U           | ND 0.23                         | -                   | ND ND                       | NA<br>NA      | NA<br>NA  | NA<br>NA             | ND                   | ND ND                                               | +                 | NA NA                      |
|                   | ETHYLBENZENE                           | 1 700                 | 31.2       | ug/L 1 L                |                      | 10 10                    | _             | _                           |             | _                       | 10 10                                 | _            | _                               | 10              | 1 U                  | 1 U                  | 10                    |             | 1 U                   | 10                    | 1 U                  | 1 U NA                                            | NA<br>NA         | NA NA                  | 111                  | 111                 | NA.                 | NA<br>NA     | 10                  | 10 10                           | _                   | 10 10                       | NA<br>NA      | NA<br>NA  | NA<br>NA             | 1 U                  | 10 10                                               | +                 | NA NA                      |
|                   | p/m-XYLENE                             | . , ,,,               |            | ug/L NA                 |                      | 10 10                    | -             |                             | _           | _                       | 1U NA                                 | NA.          | NA NA                           | NA.             | NA.                  | NA.                  | NA.                   | NA NA       | NA NA                 | NA NA                 | NA NA                | NA NA                                             | NA.              | NA.                    | NA.                  | NA NA               | NA.                 | NA NA        | NA NA               | NA NA                           | _                   | NA NA                       | NA.           | NA.       | NA NA                | NA.                  | NA NA                                               | +                 | NA NA                      |
|                   | METHYLENE CHLORIDE                     |                       |            | ug/L NA                 | _                    | 5U NA                    | NA.           | _                           | NA NA       |                         | NA NA                                 | NA.          | NA NA                           | NA              | NA                   | NA .                 | NA.                   | NA .        | NA                    | NA                    | NA                   | NA NA                                             | NA               | NA.                    | 5 U                  | NA                  | NA.                 | NA           | NA                  | NA NA                           |                     | NA NA                       | NA            | NA        | NA                   | 5 U                  | NA NA                                               | NA 1              | NA NA                      |
| VOCs              | o-XYLENE                               |                       |            | ug/L NA                 | A                    | 10 10                    | 1 U           | 1 U                         | 1 L         | 1.0                     | 1 U NA                                | NA           | NA                              | NA              | NA                   | NA                   | NA                    | NA          | NA                    | NA                    | NA                   | NA NA                                             | NA               | NA                     | NA                   | NA                  | NA                  | NA           | NA                  | NA NA                           | ١                   | NA NA                       | NA            | NA        | NA                   | NA                   | NA NA                                               | NA 1              | NA NA                      |
|                   | TOLUENE                                | 1 1000                | 1900       | ug/L 1 U                | U                    | 1 U 1 U                  | 1 U           | 1 U                         | 1 L         | 1.3                     | 1 U 1 U                               | 1 U          | 1 U                             | 1 U             | 1 U                  | 1 U                  | 1 U                   | 1 U         | 1 U                   | 1 U                   | 1 U                  | 1 U NA                                            | NA               | NA                     | 1 U                  | 1 U                 | NA                  | NA           | 1 U                 | 10 10                           | J                   | 10 10                       | NA            | NA        | NA                   | 1 U                  | 10 10                                               | NA 1              | NA NA                      |
|                   | XYLENES (TOTAL)                        | 2 10000               |            | ug/L 2 U                | U                    | 1 U 1 U                  | 1 U           | 1 U                         | 1 L         | 1 U                     | 1 U 2 U                               | 2 U          | 2 U                             | 2 U             | 2 U                  | 2 U                  | 2 U                   | 2 U         | 2 U                   | 2 U                   | 2 U                  | 2 U NA                                            | NA               | NA                     | 2 U                  | 2 U                 | NA                  | NA           | 2 U                 | 2 U 2 U                         | J                   | 2 U 2 U                     | NA            | NA        | NA                   | 2 U                  | 2 U 2 U                                             | NA I              | NA NA                      |
|                   | METHYL TERT BUTYL ETHER                |                       |            | ug/L NA                 | _                    | NA NA                    |               |                             | NA          |                         | NA NA                                 | NA           | NA                              | NA              | NA                   | NA                   | 10 U                  | 10 U        | 10 U                  | NA                    | NA                   | 10 U NA                                           | NA               | NA                     | 10 U                 | NA                  | NA                  | NA           | 10 U                | 10 U NA                         | ١.                  | NA 10 U                     | NA            | NA        | NA                   | 10 U                 | NA NA                                               |                   | NA NA                      |
|                   | TOTAL BTEX                             |                       |            | ug/L ND                 |                      | ND ND                    | _             | _                           | NE          |                         | ND ND                                 | ND           |                                 | ND              | ND                   | ND                   | ND                    | ND          | ND                    | ND                    | ND                   | ND NA                                             | NA               | NA .                   | ND                   | ND                  | NA                  | NA           | ND                  | ND ND                           |                     | ND ND                       | NA NA         | NA .      | NA                   | ND                   | ND ND                                               |                   | NA NA                      |
|                   | ARSENIC                                | 0.018 0.018           | 0.018      | mg/L 0.020              |                      | NA NA                    | J 0.01 L      |                             | 0.02<br>NA  |                         | 0.023 0.024<br>NA NA                  | 0.01         | U 0.047                         | 0.01 U<br>NA    | 0.015                | 0.018                | 0.01 U                | 0.01 U      | 0.023                 | 0.043                 | 0.091<br>NA          | 0.026 0.023                                       | 0.038            | 0.018 U                | 0.0097               | 0.02 U              | 0.02 U              | 0.02 U<br>NA | 0.053               | 0.08 0.09                       |                     | .02 U <b>0.08</b><br>NA NA  | 0.036 U<br>NA | 0.04      | 0.018 U<br>NA        | 0.01                 | 0.029 0.028<br>NA NA                                |                   | .02 U 0.02 U<br>NA NA      |
|                   | BERYLLIUM<br>BOBON                     | 0.004                 |            | mg/L 0.005              |                      | NA NA                    |               |                             | NA<br>NA    |                         | NA NA                                 | NA<br>NA     | NA<br>NA                        | NA NA           | NA<br>NA             | NA<br>NA             | NA.                   | NA<br>NA    | NA NA                 | NA NA                 | NA<br>NA             | NA NA                                             | NA<br>NA         | NA NA                  | NA<br>NA             | NA NA               | NA.                 | NA<br>NA     | NA<br>NA            | NA NA                           | _                   | NA NA                       | NA<br>NA      | NA<br>NA  | NA NA                | NA<br>NA             | NA NA                                               |                   | NA NA                      |
|                   | CADMIUM                                | 0.005                 |            | mg/L 0.005              |                      | NA NA                    |               |                             | NA NA       |                         | NA NA                                 | NA.          | _                               | NA NA           | NA NA                | NA NA                | NA NA                 | NA NA       | NA NA                 | NA NA                 | NA NA                | NA NA                                             | NA.              | NA NA                  | NA.                  | NA NA               | NA NA               | NA NA        | NA NA               | NA NA                           | _                   | NA NA                       | NA NA         | NA NA     | NA NA                | NA NA                | NA NA                                               |                   | NA NA                      |
|                   | CALCIUM METAL                          |                       |            | mg/L NA                 | A                    | NA NA                    |               |                             | NA          | NA                      | NA NA                                 | NA           | NA                              | NA              | NA                   | NA                   | NA                    | NA          | NA                    | NA                    | NA                   | NA NA                                             | NA               | NA NA                  | NA.                  | NA                  | NA                  | NA           | NA                  | NA NA                           |                     | NA NA                       | NA            | NA        | NA                   | NA                   | NA NA                                               | NA 1              | NA NA                      |
|                   | CHROMIUM                               | 0.013 0.1             |            | mg/L 0.01               | 1 U 0.               | I.01 U 0.01 L            | J 0.01 L      | U 0.01 U                    | 0.01        | U 0.01 U                | 0.01 U 0.01 I                         | J 0.01       | U 0.01 U                        | 0.01 U          | 0.01 U               | 0.01 U               | 0.01 U                | 0.01 U      | 0.01 U                | 0.01 U                | 0.01 U               | 0.01 U NA                                         | NA               | NA                     | 0.01 U               | 0.01 U              | NA.                 | NA           | 0.01 U              | 0.01 U 0.01                     | U 0                 | .01 U 0.01 U                | NA            | NA        | NA                   | 0.01 U               | 0.01 U 0.01 U                                       | NA I              | NA NA                      |
| Metals, Total     | LEAD                                   | 0.007 0.015           | 0.015      | mg/L 0.005              | 5 U 0.0              | 005 U 0.005              | U 0.005       | U 0.005 U                   | 0.005       | U 0.005 U               | 0.005 U 0.005                         | U 0.005      | U 0.005 U                       | 0.005 U         | 0.005 U              | 0.005 U              | 0.005 U               | 0.005 U     | 0.005 U               | 0.005 U               | 0.01 U               | 0.01 U NA                                         | NA               | NA                     | 0.01 U               | 0.01 U              | 0.01 U              | 0.01 U       | 0.005 U             | 0.005 U 0.005                   | 5 U 0               | .01 U 0.01 U                | NA            | NA        | NA                   | 0.01 U               | 0.01 U 0.01 U                                       | 0.01 U 0.0        | .01 U 0.01 U               |
|                   | MAGNESIUM                              |                       |            | mg/L NA                 | A                    | NA NA                    | _             |                             | NA          | NA                      | NA NA                                 | NA           | NA                              | NA              | NA                   | NA                   | NA                    | NA          | NA                    | NA                    | NA                   | NA NA                                             | NA               | NA                     | NA                   | NA                  | NA                  | NA           | NA                  | NA NA                           | ١.                  | NA NA                       | NA            | NA        | NA                   | NA                   | NA NA                                               | NA I              | NA NA                      |
|                   | MERCURY                                | 0.002                 |            | mg/L 0.000              |                      | NA NA                    |               |                             | NA          |                         | NA NA                                 |              | _                               | NA              | NA                   | NA                   | NA                    | NA          | NA                    | NA                    | NA                   | NA NA                                             | NA               | NA                     | NA.                  | NA                  | NA                  | NA           | NA                  | NA NA                           | _                   | NA NA                       | NA            | NA        | NA                   | NA                   | NA NA                                               |                   | NA NA                      |
|                   | NICKEL<br>POTASSIUM                    | 0.13 0.1              | 2          | mg/L 0.04               |                      | NA NA                    |               |                             | 0.04<br>NA  |                         | 0.04 U 0.04 I                         |              |                                 | 0.04 U<br>NA    | 0.04 U<br>NA         | 0.04 U<br>NA         | 0.04 U<br>NA          |             | 0.04 U<br>NA          | 0.04 U<br>NA          | 0.04 U<br>NA         | 0.04 U NA<br>NA NA                                | NA<br>NA         | NA<br>NA               | 0.0053<br>NA         | 0.04 U<br>NA        | NA<br>NA            | NA<br>NA     | 0.04 U<br>NA        | 0.04 U 0.04<br>NA NA            |                     | .04 U 0.04 U<br>NA NA       | NA<br>NA      | NA<br>NA  | NA<br>NA             | 0.0036<br>NA         | 0.04 U 0.04 U<br>NA NA                              |                   | .04 U 0.04 U<br>NA NA      |
|                   | SODIIM                                 |                       |            | mg/L NA                 |                      | NA NA                    | NA<br>NA      |                             | NA<br>NA    |                         | NA NA                                 | NA<br>NA     | _                               | NA<br>NA        | NA<br>NA             | NA NA                | NA.                   | NA<br>NA    | NA NA                 | NA<br>NA              | NA<br>NA             | NA NA                                             | NA<br>NA         | NA NA                  | NA.                  | NA NA               | NA.                 | NA<br>NA     | NA<br>NA            | NA NA                           | _                   | NA NA                       | NA<br>NA      | NA NA     | NA<br>NA             | NA<br>NA             | NA NA                                               |                   | NA NA                      |
|                   | ZINC                                   | 0.96 2                | 31         | mg/L 0.02               | _                    | I.02 U 0.02 L            |               | _                           | _           |                         | 0.02 U 0.02 I                         |              |                                 | 0.02 U          | 0.02 U               | 0.02 U               | 0.02 U                | 0.02 U      | 0.02 U                | 0.02 U                | 0.02 U               | 0.02 U NA                                         | NA.              | NA.                    | 0.02 U               | 0.02 U              | NA.                 |              | 0.02 U              | 0.02 U 0.02                     | _                   | .02 U 0.02 U                | NA NA         | NA .      | NA NA                | 0.02 U               | 0.02 U 0.02 U                                       |                   | NA NA                      |
|                   | ARSENIC                                | 0.018 0.018           | 0.018      | mg/L NA                 |                      | NA 0.01 L                |               |                             |             |                         | 0.01 U 0.01 I                         |              |                                 | NA              | NA                   | NA                   | NA                    |             | NA                    | NA                    | NA                   | NA NA                                             | NA               | NA                     | NA                   | NA                  | NA.                 | NA           | NA                  | NA NA                           |                     | NA NA                       | NA            | NA        | NA                   | NA                   | NA NA                                               | NA I              | NA NA                      |
|                   | BERYLLIUM                              | 0.004                 |            | mg/L NA                 | A                    | NA NA                    | NA            | NA                          | NA          | NA                      | NA NA                                 | NA           | NA                              | NA              | NA                   | NA                   | NA                    | NA          | NA                    | NA                    | NA                   | NA NA                                             | NA               | NA                     | NA                   | NA                  | NA                  | NA           | NA                  | NA NA                           |                     | NA NA                       | NA            | NA        | NA                   | NA                   | NA NA                                               | NA I              | NA NA                      |
|                   | CADMIUM                                | 0.005                 |            | mg/L NA                 | A                    | NA NA                    | NA            | NA                          | NA          | NA                      | NA NA                                 | NA           | NA                              | NA              | NA                   | NA                   | NA                    | NA          | NA                    | NA                    | NA                   | NA NA                                             | NA               | NA                     | NA                   | NA                  | NA                  | NA           | NA                  | NA NA                           |                     | NA NA                       | NA            | NA        | NA                   | NA                   | NA NA                                               | NA I              | NA NA                      |
| Metals, Dissolved | CHROMIUM                               | 0.013 0.1             |            | mg/L NA                 |                      | NA 0.01 L                | _             | _                           | NA          |                         | NA NA                                 |              |                                 | NA              | NA                   | NA                   | NA                    |             | NA                    | NA                    | NA                   | NA NA                                             | NA               | NA                     | NA                   | NA                  | NA                  | NA           | NA                  | NA NA                           |                     | NA NA                       | NA            | NA        | NA                   | NA                   | NA NA                                               |                   | NA NA                      |
|                   | LEAD                                   | 0.007 0.015           |            | mg/L NA                 |                      | NA 0.005                 | _             | _                           |             |                         | NA NA                                 |              | _                               | NA              | NA                   | NA                   | NA                    |             |                       | NA                    | NA                   | NA NA                                             | NA               |                        | NA                   | NA                  | NA                  | NA           | NA                  | NA NA                           |                     | NA NA                       | NA            | NA        | NA                   | NA                   | NA NA                                               |                   | NA NA                      |
|                   | MERCURY                                | 0.002                 |            | mg/L NA                 |                      | NA NA                    |               |                             |             |                         | NA NA                                 | _            | _                               | NA              | NA                   | NA                   | NA                    |             |                       | NA                    | NA                   | NA NA                                             |                  |                        | NA                   | NA                  | NA                  | NA           | NA                  | NA NA                           | _                   | NA NA                       | NA            | NA        | NA                   | NA                   | NA NA                                               |                   | NA NA                      |
|                   | NICKEL<br>ZINC                         | 0.13 0.1<br>0.96 2    | 2          | mg/L NA                 | _                    | NA 0.04 L                | _             |                             | _           | _                       | NA NA                                 |              | _                               | NA<br>NA        | NA<br>NA             | NA<br>NA             | NA<br>NA              |             |                       | NA<br>NA              | NA<br>NA             | NA NA                                             | NA<br>NA         |                        | NA<br>NA             | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA            | NA NA                           |                     | NA NA                       | NA<br>NA      | NA<br>NA  | NA<br>NA             | NA<br>NA             | NA NA                                               |                   | NA NA                      |
|                   | ALKALINITY                             |                       |            | mg/L NA                 |                      | NA NA                    |               |                             |             |                         | NA NA                                 |              |                                 | NA NA           | NA NA                | NA NA                | NA.                   |             |                       | NA NA                 | NA NA                | NA NA                                             |                  |                        | NA.                  | NA NA               | NA.                 | NA NA        | NA NA               | NA NA                           | _                   | NA NA                       | NA NA         | NA NA     | NA NA                | NA NA                | NA NA                                               | +                 | NA NA                      |
|                   | ALKALINITY, TOTAL (AS CACO3)           |                       |            | mg/L NA                 |                      | NA NA                    | _             |                             |             | _                       | NA NA                                 |              |                                 | NA              | NA                   | NA                   | NA                    |             | NA                    | NA                    | NA                   | NA NA                                             |                  |                        | NA.                  | NA                  | NA                  | NA           | NA                  | NA NA                           |                     | NA NA                       | NA            | NA        | NA                   | NA                   | NA NA                                               |                   | NA NA                      |
|                   | AMMONIA AS N                           | 15 30                 | 30         |                         |                      | <b>35</b> 30             |               |                             |             |                         | 26 20                                 | _            |                                 | 36              | 0.14                 | 23                   | 15                    | 12          | 15                    | 9.2                   | 7.8                  | 6.4 NA                                            | 12               |                        | 13                   | 12                  | 16                  | 16           | 31                  |                                 |                     | 41 63                       |               | 60        | 68                   | 39                   | 62 63                                               |                   | 64 60                      |
|                   | BICARBONATE                            |                       |            | mg/L NA                 | A                    | NA NA                    | NA            | NA                          | NA          | NA.                     | NA NA                                 | NA           | NA                              | NA              | NA                   | NA                   | NA                    | NA          | NA                    | NA                    | NA                   | NA NA                                             | NA               | NA                     | NA.                  | NA                  | NA                  | NA           | NA                  | NA NA                           |                     | NA NA                       | NA            | NA        | NA                   | NA                   | NA NA                                               | NA I              | NA NA                      |
| Miscellaneous     | CARBONATE                              |                       |            | mg/L NA                 | A                    | NA NA                    | NA            | NA                          | NA          | NA                      | NA NA                                 | NA           | NA                              | NA              | NA                   | NA                   | NA                    |             |                       | NA                    | NA                   | NA NA                                             | NA               | _                      | NA                   | NA                  | NA                  | NA           | NA                  | NA NA                           |                     | NA NA                       | NA            | NA        | NA                   | NA                   | NA NA                                               | +                 | NA NA                      |
|                   | CONDUCTIVITY                           |                       |            | umhos/<br>cm NA         |                      | NA NA                    |               |                             |             |                         | NA NA                                 |              |                                 | NA              | NA                   | NA                   | NA                    |             | NA                    | NA                    | NA                   | NA NA                                             | _                | _                      | NA                   | NA                  | NA                  | NA           | NA                  | NA NA                           |                     | NA NA                       | NA            | NA        | NA                   | NA                   | NA NA                                               |                   | NA NA                      |
|                   | NITRATE (AS N)                         | 10                    |            | mg/L NA                 |                      | NA NA                    |               | _                           |             | _                       | NA NA                                 |              |                                 | NA              | NA                   | NA                   | NA                    |             |                       | NA                    | NA                   | NA NA                                             | _                | _                      | 0.095                | 0.05 U              | 0.05 U              | 0.05 U       | NA                  | NA NA                           | -                   | NA NA                       | NA            | NA        | NA                   | 0.05 U               | 0.05 U 0.05 U                                       | +                 | .05 U 0.05 U               |
|                   | NITRITE (AS N) SULFATE                 |                       |            | mg/L NA                 |                      | NA NA                    | _             | _                           | _           |                         | NA NA                                 | _            |                                 | NA<br>NA        | NA<br>NA             | NA<br>NA             | NA<br>NA              |             |                       | NA<br>NA              | NA<br>NA             | NA NA                                             | _                | _                      | NA<br>NA             | NA<br>NA            | NA<br>NA            | 0.11<br>NA   | NA<br>NA            | NA NA                           | _                   | NA NA                       | NA<br>NA      | NA<br>NA  | NA<br>NA             | NA<br>NA             | NA NA                                               |                   | 0.05 0.05 U<br>NA NA       |
|                   | SOLIDS, TOTAL DISSOLVED                |                       |            | mg/L NA                 |                      | NA NA                    |               |                             |             |                         | NA NA                                 |              |                                 | NA<br>NA        | NA<br>NA             | NA<br>NA             | NA<br>NA              |             | NA<br>NA              | NA<br>NA              | NA<br>NA             | NA NA                                             | NA<br>NA         | _                      | NA<br>NA             | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA            | NA NA                           |                     | NA NA                       | NA<br>NA      | NA<br>NA  | NA<br>NA             | NA<br>NA             | NA NA                                               | +                 | NA NA                      |
| SVOCs             | 1,4-DICHLOROBENZENE                    |                       |            | ug/L NA                 |                      | NA NA                    | _             | _                           |             |                         | NA NA                                 | _            |                                 | NA NA           | NA NA                | NA NA                | NA.                   |             |                       | NA NA                 | NA NA                | NA NA                                             | _                | _                      |                      | NA NA               | NA.                 |              | NA NA               | NA NA                           | _                   | NA NA                       |               | NA NA     | NA NA                | 1 U                  | NA NA                                               |                   | NA NA                      |
| -                 |                                        |                       |            |                         |                      |                          |               |                             |             |                         |                                       |              |                                 | •               | •                    | I                    |                       |             |                       |                       | 1                    |                                                   | •                | •                      | •                    |                     |                     |              |                     | ı                               |                     |                             |               |           |                      |                      |                                                     |                   |                            |

Notes:

| Shaded cell indicates comparison standard used in data evaluation.
| "gligified cell indicates analytical result exceeds comparison criteria.
| Boald and fasile tear inclination analytical result exceeds background value.
| In Nata comparison standard based on the Maximum Containant Level (MCL) stabilished by the USEPA National Primary C
| No- No constituents detected above the laboratory minimum detection limit.
| Undidates constituent was not detected above value shown.
| Indicates constituent was not detected above value shown.
| Undicates constituent was not detected at an estimated value.
| Undicates constituent was not detected at an estimated value.
| Undicates constituent was not detected at an estimated value.
| Undicates constituent was not detected at an estimated value shown.
| Nonlining sells MM 38, POMM 49, POMM 49, POMM 101, POMM 118, POMM 218, POMM 218, POMM 318, POMM 318, POMM 318, POMM 418, POMM

|                   |                                            |            |            | Locati        | on:                   |                     |                     |                     |                |                  |                  | PDMW-8T          |                |                                   |                    |                  |                  |                  |                   |                |                   |                  |                  |                       |                          |                |                  |                      |                  | PDMW-9T          |                  |                         |                  |                |                  |                  |                     |                      |            |                |            |           |
|-------------------|--------------------------------------------|------------|------------|---------------|-----------------------|---------------------|---------------------|---------------------|----------------|------------------|------------------|------------------|----------------|-----------------------------------|--------------------|------------------|------------------|------------------|-------------------|----------------|-------------------|------------------|------------------|-----------------------|--------------------------|----------------|------------------|----------------------|------------------|------------------|------------------|-------------------------|------------------|----------------|------------------|------------------|---------------------|----------------------|------------|----------------|------------|-----------|
|                   |                                            |            |            | Sample Da     |                       | 97 8/10/1999        | 11/17/199           | 9 2/25/2000         | 5/16/200       | 00 8/21/2000     | 1/10/2001        | 7/11/2001        | 2/6/2002       | 9/12/2002 2/6/20                  | 13 6/25/200        | 3 1/29/2004      | 7/20/2004        | 3/6/2006         | 10/30/1997        | 8/9/1999       | 11/16/1999        | 2/24/2000        | 5/16/2000        | 8/21/2000 1/10        | 0/2001 7/12/200          | 1 2/6/2002     | 9/11/2002        | 2/3/2003             | 6/25/2003        | 1/29/2004        | 7/22/2004        | 3/8/20                  | 06               | 4/3/2008       | 7/21/2008        | 10/5/2008        | 12/3/2009           | 6/17/2010 12/1       | 14/2010 6/ | 15/2011 12/5/2 | 5/2011 12/ | 2/21/2011 |
|                   |                                            |            |            | Sample Ty     | pe: Normal            | I Normal            | Normal              | Normal              | Normal         | l Normal         | Normal           | Normal           | Normal         | Normal Norm                       | I Norma            | Normal           | Normal           | Normal           | Normal            | Normal         | Normal            | Normal           | Normal           | Normal No             | rmal Norma               | Normal         | Normal           | Normal               | Normal           | Normal           | Normal           | Norm                    | al               | Normal         | Normal           | Normal           | Normal              | Normal No            | ormal N    | ormal Nor      | rmal N     | Normal    |
|                   |                                            |            |            |               | PDMW-                 | - PDMW-             | PDMW-               | PDMW-               | PDMW-          | - PDMW-          | PDMW-            | PDMW-            | PDMW-          | PDMW-PDMV                         | , PDMW             | PDMW-            | PDMW-            | PDMW-            | PDMW-             | PDMW-          | PDMW-             | PDMW-            | PDMW-            | PDMW- PD              | MW- PDMW                 | PDMW-          | PDMW-            | PDMW-                | PDMW-            | PDMW-            | PDMW-            | PDMW-9T                 | PDMW-9T          | PDMW-          | PDMW-            | PDMW-            | PDMW-               | PDMW- PD             | DMW- PD    | MW-9T- PDMV    | W-9T-      | PDMW-     |
|                   |                                            |            |            | Sample        | ID: 8T_10/29/<br>97   | /19 8T_8/10/19<br>9 | 99 8T_11/17/1<br>99 | 19 8T_2/25/200<br>0 | 8T_5/16/2<br>0 | 8T_8/21/200<br>0 | 8T_1/10/200<br>1 | 8T_7/11/200<br>1 | 8T_2/6/2002    | 8T_9/12/200<br>2 PDMV<br>8T_2/6/2 | 003 8T_6/25/2<br>3 | 8T_1/29/200<br>4 | 8T_7/20/200<br>4 | 8T_3/6/2006      | 9T_10/30/19<br>97 | 9T_8/9/1999    | 9T_11/16/19<br>99 | 9T_2/24/200<br>0 | 9T_5/16/200<br>0 | 9T_8/21/200 9T_1<br>0 | /10/200 9T_7/12/2<br>1 1 | 9T_2/6/200     | 9T_9/11/200<br>2 | PDMW-<br>9T_2/3/2003 | 9T_6/25/200<br>3 | 9T_1/29/200<br>4 | 9T_7/22/200<br>4 | Filtered_3/8 U<br>/2006 | /8/2006          | 9T_4/3/2008    | 9T_7/21/200<br>8 | 9T_10/5/200<br>8 | 9T_12/3/200 9T<br>9 | 7_6/17/201 9T_1<br>0 |            | 61511 12052    |            | 1 1221201 |
| Method Grou       | Analyte                                    | Background | Type 3 RRS | Type 4 RRS Un | its Result            | Result              | Result              | Result              | Result         | Result           | Result           | Result           | Result         | Result Resu                       | t Result           | Result           | Result           | Result           | Result            | Result         | Result            | Result           | Result           | Result Re             | sult Result              | Result         | Result           | Result               | Result           | Result           | Result           | Result                  | Result           | Result         | Result           | Result           | Result              | Result Re            | esult F    | Result Res     | esult F    | Result    |
|                   | ACENAPHTHENE                               | 1          | 2000       | ug            | /L 1 U                | 1 U                 | 1 U                 | 1 U                 | 1 U            | 1 U              | 1 U              | 1 U              | 1 U            | 0.2 U 0.2 L                       | 0.2 U              | 0.2 U            | 0.2 U            | 0.96 U           | 1 U               | 1 U            | 1 U               | 1 U              | 1 U              | 1 U                   | 10 10                    | 1 U            | 0.2 U            | 0.2 U                | 0.2 U            | 0.2 U            | 0.2              | 0.19 U                  | 0.23             | 0.23           | 0.47             | 0.37             | 0.43                | 0.51                 | NA         | NA N           | NA A       | NA        |
|                   | ACENAPHTHYLENE                             | 1.4        | 1          | 510 ug        | /L 1 U                | 1 U                 | 1 U                 | 1 U                 | 1 U            | 1 U              | 1 U              | 1 U              | 1 U            | 0.2 U 0.2 L                       | 0.2 U              | 0.2 U            | 0.2 U            | 0.96 U           | 1 U               | 1 U            | 1 U               | 1 U              | 1 U              | 1 U                   | 10 10                    | 1.6            | 0.22             | 0.2 U                | 0.2 U            | 0.2 U            | 0.2 U            | 0.19 U                  | 0.19 U           | 0.2 U          | 0.19 U           | 0.19 U           | 0.19 U              | 0.19 U               | NA         | NA N           | NA         | NA        |
|                   | ANTHRACENE                                 | 0.2        | 0.2        | 5100 ug       | /L 0.2 U              | 0.2 U               | 0.2 U               | 0.2 U               | 0.2 U          |                  | 0.2 U            | 0.2 U            | 0.2 U          | 0.2 U 0.2 L                       |                    |                  | 0.2 U            | 0.96 U           | 0.2 U             | 0.2 U          | 0.2 U             | 0.2 U            | 0.2 U            | _                     | 2 U 0.2 U                | 0.2 U          | 0.2 U            | 0.2 U                | 0.2 U            | 0.2 U            | 0.2 U            | 0.19 U                  | 0.19 U           | 0.2 U          | 0.19 U           | 0.19 U           |                     |                      |            |                |            | NA        |
|                   | BENZO(A)ANTHRACENE                         | 0.2        | 0.1        | 3.9 ug        | /L 0.2 U              |                     | 0.2 U               | 0.2 U               | 0.2 U          | _                | 0.2 U            | 0.2 U            | 0.2 U          | 0.2 U 0.2 L                       |                    |                  | 0.2 U            | 0.96 U           | 0.2 U             | 0.2 U          | 0.2 U             | 0.2 U            | 0.2 U            |                       | 2 U 0.2 U                | 0.2 U          | 0.2 U            | 0.2 U                | 0.2 U            | 0.2 U            | 0.2 U            | 0.19 U                  | 0.19 U           | 0.2 U          | 0.19 U           | 0.19 U           |                     |                      |            |                |            | NA        |
|                   | BENZO(A)PYRENE BENZO(B)FLUORANTHENE        | 0.2        | 0.2        | 0.39 ug       | /L 0.2 U              |                     | 0.2 U<br>0.2 U      | 0.2 U<br>0.2 U      | 0.2 U<br>0.2 U |                  | 0.2 U<br>0.2 U   | 0.2 U<br>0.2 U   | 0.2 U<br>0.2 U | 0.2 U 0.2 L                       |                    |                  | 0.2 U            | 0.96 U<br>0.96 U | 0.2 U<br>0.2 U    | 0.2 U<br>0.2 U | 0.2 U<br>0.2 U    | 0.2 U<br>0.2 U   | 0.2 U<br>0.2 U   | _                     | 2U 0.2U                  | 0.2 U<br>0.2 U | 0.2 U<br>0.2 U   | 0.2 U<br>0.2 U       | 0.2 U<br>0.2 U   | 0.2 U            | 0.2 U            | 0.19 U<br>0.19 U        | 0.19 U<br>0.19 U | 0.2 U<br>0.2 U | 0.19 U<br>0.19 U | 0.19 U<br>0.19 U |                     |                      |            |                |            | NA<br>NA  |
|                   | BENZO(G,H,I)PERYLENE                       |            |            | ua            | /L 0.5 U              |                     | NA.                 | NA.                 | NA.            | NA.              | NA NA            | NA NA            | NA NA          | 0.2 U 0.2 L                       |                    |                  | 0.2 U            | 0.96 U           | 0.5 U             | NA NA          | 0.5 U             | NA.              | NA NA            | _                     | NA NA                    | NA NA          | 0.2 U            | 0.2 U                | 0.2 U            | 0.2 U            | 0.2 U            | 0.19 U                  | 0.19 U           | 0.2 U          | 0.19 U           | 0.19 U           | -                   |                      |            |                | NA .       | NA.       |
|                   | BENZO(K)FLUORANTHENE                       |            |            | ug            | /L 0.5 U              |                     | NA                  | NA.                 | NA             | NA NA            | NA NA            | NA               | NA             | 0.2 U 0.2 L                       |                    |                  | 0.2 U            | 0.96 U           | 0.5 U             | NA             | 0.2 U             | NA               | NA               |                       | NA NA                    | NA NA          | 0.2 U            | 0.2 U                | 0.2 U            | 0.2 U            | 0.2 U            | 0.19 U                  | 0.19 U           | 0.2 U          | 0.19 U           | 0.19 U           |                     |                      |            | NA NA          |            | NA        |
|                   | CHRYSENE                                   | 0.2        | 0.2        | 65 ug         | /L 0.2 U              | 0.2 U               | 0.2 U               | 0.2 U               | 0.2 U          | 0.2 U            | 0.2 U            | 0.2 U            | 0.2 U          | 0.2 U 0.2 L                       | 0.2 U              | 0.2 U            | 0.2 U            | 0.96 U           | 0.2 U             | 0.2 U          | 0.2 U             | 0.2 U            | 0.2 U            | 0.2 U 0               | .2 U 0.2 U               | 0.2 U          | 0.2 U            | 0.2 U                | 0.2 U            | 0.2 U            | 0.2 U            | 0.19 U                  | 0.19 U           | 0.2 U          | 0.19 U           | 0.19 U           | 0.19 U              | 0.19 U               | NA         | NA N           | NA         | NA        |
| PAHs              | DIBENZO(A,H)ANTHRACENE                     |            | 0.3        | ug            | /L 1 U                | NA                  | NA                  | NA                  | NA             | NA               | NA               | NA               | NA             | 0.2 U 0.2 U                       | 0.2 U              | 0.2 U            | 0.2 U            | 0.96 U           | 1 U               | NA             | 0.2 U             | NA               | NA               | NA                    | NA NA                    | NA             | 0.2 U            | 0.2 U                | 0.2 U            | 0.2 U            | 0.2 U            | 0.19 U                  | 0.19 U           | 0.2 U          | 0.19 U           | 0.19 U           | 0.19 U              | 0.19 U               | NA         | NA N           | NA         | NA        |
|                   | FLUORANTHENE                               | 0.5        | 1000       | ug            | /L 0.5 U              | 0.5 U               | 0.5 U               | 0.5 U               | 0.5 U          | 0.5 U            | 0.5 U            | 0.5 U            | 0.5 U          | 0.2 U 0.2 U                       | 0.2 U              | 0.2 U            | 0.2 U            | 0.96 U           | 0.5 U             | 0.5 U          | 0.5 U             | 0.5 U            | 0.5 U            | 0.5 U 0               | .5 U 0.5 U               | 0.5 U          | 0.2 U            | 0.2 U                | 0.2 U            | 0.2 U            | 0.2 U            | 0.19 U                  | 0.19 U           | 0.2 U          | 0.19 U           | 0.19 U           | 0.19 U              | 0.19 U               | NA         | NA N           | IA.        | NA        |
|                   | FLUORENE                                   | 0.5        | 1000       | ug            | /L 0.5 U              |                     | 0.5 U               | 0.5 U               | 0.5 U          | _                | 0.5 U            | 0.5 U            | 0.5 U          | 0.2 U 0.2 L                       | _                  | _                | 0.2 U            | 0.96 U           | 0.5 U             | 0.5 U          | 0.5 U             | 0.5 U            | 0.5 U            | 0.5 U 0               | .5 U 0.5 U               |                | 0.2 U            | 0.2 U                | 0.2 U            | 0.2 U            | 0.2 U            | 0.19 U                  | 0.19 U           | 0.2 U          | 0.19 U           | 0.19 U           |                     |                      | NA         |                |            | NA        |
|                   | INDENO(1,2,3-CD)PYRENE                     |            | 0.4        | ug            | /L 0.5 U              |                     | NA                  | NA                  | NA             | NA               | NA               | NA               | NA             | 0.2 U 0.2 L                       |                    |                  | 0.2 U            | 0.96 U           | 0.5 U             | NA             | 0.2 U             | NA               | NA               |                       | NA NA                    | NA             | 0.2 U            | 0.2 U                | 0.2 U            | 0.2 U            | 0.2 U            | 0.19 U                  | 0.19 U           | 0.2 U          | 0.19 U           | 0.19 U           |                     | *****                |            | NA N           |            | NA        |
|                   | 1-METHYLNAPHTHALENE<br>2-METHYLNAPHTHALENE |            |            | ug            | /L NA                 | NA<br>NA            | NA<br>NA            | NA<br>NA            | NA<br>NA       | NA<br>NA         | NA<br>NA         | NA<br>NA         | NA<br>NA       | 0.2 U 0.2 L                       |                    |                  | 0.2 U            | 0.96 U<br>0.96 U | NA<br>NA          | NA<br>NA       | 1 U               | NA<br>NA         | NA<br>NA         | _                     | NA NA                    | NA<br>NA       | 0.2 U<br>0.2 U   | 0.2 U<br>0.2 U       | 0.21<br>0.2 U    | 0.2 U<br>0.2 U   | 0.2 U            | 0.19 U<br>0.19 U        | 0.19 U<br>0.19 U | 0.2 U<br>0.2 U | 0.4<br>0.19 U    | 0.19 U<br>0.19 U |                     |                      |            |                | NA<br>NA   | NA<br>NA  |
|                   | NAPHTHALENE                                | 1          | 20         | 20 ug         | /L 1U                 |                     | 1 U                 | 1 U                 | 1 U            | _                | 1 U              | 1 U              | 1 U            | 0.2 U 0.2 L                       |                    |                  | 0.2 U            | 0.96 U           | 1 U               | 1 U            | 10                | 1 U              | 1 U              |                       | 10 10                    | 1 U            | 0.2 U            | 0.2 U                | 0.2 U            | 0.2 U            | 0.2 U            | 0.19 U                  | 0.19 U           | 0.2 U          | 0.19 U           | 0.19 U           |                     |                      |            |                |            | NA NA     |
|                   | PHENANTHRENE                               | 0.22       | 0.2        | 510 ug        | /L 0.2 U              |                     | 0.2 U               | 0.2 U               | 0.2 U          | _                | 0.2 U            | 0.2 U            | 0.2 U          | 0.2 U 0.2 L                       |                    |                  | 0.2 U            | 0.96 U           | 0.2 U             | 0.2 U          | 0.2 U             | 0.2 U            | 0.2 U            |                       | 2U 0.2U                  | 0.2 U          | 0.2 U            | 0.2 U                | 0.2 U            | 0.2 U            | 0.2 U            | 0.19 U                  | 0.19 U           | 0.2 U          | 0.19 U           | 0.19 U           |                     |                      |            |                |            | NA        |
|                   | PYRENE                                     | 0.5        | 1000       | ug            | /L 0.5 U              | 0.5 U               | 0.5 U               | 0.5 U               | 0.5 U          | 0.5 U            | 0.5 U            | 0.5 U            | 0.5 U          | 0.2 U 0.2 L                       | 0.2 U              | 0.2 U            | 0.2 U            | 0.96 U           | 0.5 U             | 0.5 U          | 0.5 U             | 0.5 U            | 0.5 U            | 0.5 U 0               | .5 U 0.5 U               | 0.5 U          | 0.2 U            | 0.2 U                | 0.2 U            | 0.2 U            | 0.2 U            | 0.19 U                  | 0.19 U           | 0.2 U          | 0.19 U           | 0.19 U           | 0.19 U              | 0.19 U               | NA         | NA N           | NA         | NA        |
|                   | TOTAL PAHs                                 |            |            | ug            | /L ND                 | ND                  | ND                  | ND                  | ND             | ND               | ND               | ND               | ND             | ND ND                             | ND                 | ND               | ND               | ND               | ND                | ND             | ND                | ND               | ND               | ND                    | ND ND                    | 1.6            | 0.22             | ND                   | 0.21             | ND               | 0.2              | ND                      | 0.23             | 0.23           | 0.87             | 0.37             | 0.43                | 0.7                  | NA         | NA N           | NA         | NA        |
|                   | BENZENE                                    | 1          | 5          | 31.2 ug       | /L 1 U                | 1 U                 | 1 U                 | 1 U                 | 1 U            | 1 U              | 1 U              | 1 U              | 1 U            | 10 10                             | 1 U                | 1 U              | 1 U              | 1 U              | 1.8               | 1 U            | 1 U               | 1 U              | 1 U              | 1 U                   | 10 10                    | 1 U            | 1 U              | 1 U                  | 1 U              | 1 U              | 1 U              | NA                      | 1 U              | 1 U            | 1 U              | 1 U              | 1 U                 | 1 U                  | NA         | NA N           | NA         | NA        |
|                   | ETHYLBENZENE                               | 1          | 700        | ug            | /L 1 U                | -                   | 1 U                 | 1 U                 | 1 U            | _                | 1 U              | 1 U              | 1 U            | 10 10                             |                    |                  | 1 U              | 1 U              | 1 U               | 1 U            | 1 U               | 1 U              | 1.4              | _                     | 10 10                    | 1 U            | 1 U              | 1 U                  | 1 U              | 1 U              | 1 U              | NA                      | 1 U              | 1 U            | 1 U              | 1 U              | 1 U                 |                      |            |                |            | NA        |
|                   | p/m-XYLENE                                 |            |            | ug            | /L NA                 | 1 U                 | 1 U                 | 1 U                 | 1 U            | 1 U              | 1 U              | 1 U              | NA             | NA NA                             | NA                 | NA               | NA               | NA               | NA                | 1 U            | 1 U               | 1 U              | 1 U              |                       | 10 10                    | NA             | NA               | NA                   | NA               | NA               | NA               | NA                      | NA               | NA             | NA               | NA               | NA                  |                      |            |                |            | NA        |
| VOC.              | METHYLENE CHLORIDE<br>o-XYLENE             |            |            | ug            | /L NA                 | 5 U                 | NA<br>1 U           | NA<br>1 U           | NA<br>1 U      | NA<br>1 U        | NA<br>1 U        | NA<br>1 U        | NA<br>NA       | NA NA                             | NA<br>NA           | NA<br>NA         | NA<br>NA         | NA<br>NA         | NA<br>NA          | 5 U            | NA<br>1 U         | NA<br>1 U        | NA<br>1 U        |                       | NA NA                    | NA<br>NA       | NA<br>NA         | NA<br>NA             | NA<br>NA         | NA<br>NA         | NA<br>NA         | NA<br>NA                | NA<br>NA         | NA<br>NA       | NA<br>NA         | NA<br>NA         | NA<br>NA            |                      |            | NA N           |            | NA<br>NA  |
| 1003              | TOLUENE                                    | 1          | 1000       | 1900 ug       | /L 1U                 |                     | 1 U                 | 1 U                 | 1 U            |                  | 10               | 10               | 1 U            | 10 10                             | 1 U                | 1 U              | 1 U              | 1 U              | 1 U               | 1 U            | 10                | 1 U              | 1                |                       | 10 10                    | 1 U            | 1 U              | 1 U                  | 1 U              | 1 U              | 1 U              | NA NA                   | 1 U              | 1 U            | 1 U              | 1 U              | 1 U                 |                      |            | NA N           |            | NA NA     |
|                   | XYLENES (TOTAL)                            | 2          | 10000      | ug            | /L 2 U                | _                   | 1 U                 | 1 U                 | 1 U            | 1 U              | 1 U              | 1 U              | 2 U            | 2 U 2 U                           | 2 U                |                  | 2 U              | 2 U              | 2 U               | 1 U            | 1 U               | 1 U              | 1 U              |                       | 10 10                    | 2 U            | 2 U              | 2 U                  | 2 U              | 2 U              | 2 U              | NA                      | 2 U              | 2 U            | 2 U              | 2 U              | 2 U                 | 2 U                  | NA .       | NA NA          | NA         | NA        |
|                   | METHYL TERT BUTYL ETHER                    |            |            | ug            | /L NA                 | NA.                 | NA                  | NA                  | NA             | NA               | NA               | NA               | NA             | NA NA                             | NA.                | NA               | NA               | 10 U             | NA                | NA             | NA                | NA               | NA               | NA.                   | NA NA                    | NA             | NA               | NA                   | NA               | NA               | NA.              | NA                      | 10 U             | 10 U           | 10 U             | NA               | NA                  | 10 U                 | NA         | NA N           | NA         | NA        |
|                   | TOTAL BTEX                                 |            |            | ug            | /L ND                 | ND                  | ND                  | ND                  | ND             | ND               | ND               | ND               | ND             | ND ND                             | ND                 | ND               | ND               | ND               | 1.8               | ND             | ND                | ND               | 2.4              | ND                    | ND ND                    | ND             | ND               | ND                   | ND               | ND               | ND               | NA                      | ND               | ND             | ND               | ND               | ND                  | ND                   | NA         | NA N           | NA         | NA        |
|                   | ARSENIC                                    | 0.018      | 0.018      | 0.018 mg      | y'L 0.01 U            |                     | 0.01 U              | 0.01 U              | 0.01 U         | _                | 0.01 U           | 0.01 U           | 0.01 U         | 0.011 0.01                        |                    |                  | 0.01 U           | 0.01 U           | 0.0134            | 0.067          | 0.04              | 0.016            | 0.035            |                       | .012 <b>0.037</b>        | 0.024          | 0.062            | 0.024                | 0.061            | 0.037            | 0.072            | 0.019                   | 0.018            | 0.019          | 0.02             | 0.017            |                     |                      |            |                |            | 0.018 U   |
|                   | BERYLLIUM                                  |            | 0.004      | mg            | /L 0.005 U            | -                   | NA                  | NA                  | NA             | NA               | NA               | NA               | NA             | NA NA                             | NA                 | NA               | NA               | NA               | 0.005 U           | NA             | NA                | NA               | NA               |                       | NA NA                    | NA             | NA .             | NA .                 | NA               | NA               | NA               | NA                      | NA               | NA             | NA               | NA               | NA                  |                      |            |                |            | NA        |
|                   | BORON                                      |            | 0.005      | mg            | y'L NA<br>y'L 0.005 U | NA<br>I NA          | NA<br>NA            | NA<br>NA            | NA<br>NA       | NA<br>NA         | NA<br>NA         | NA<br>NA         | NA<br>NA       | NA NA                             | NA<br>NA           | NA<br>NA         | NA<br>NA         | NA<br>NA         | NA<br>0.005 U     | NA<br>NA       | NA<br>NA          | NA<br>NA         | NA<br>NA         |                       | NA NA                    | NA<br>NA       | NA<br>NA         | NA<br>NA             | NA<br>NA         | NA<br>NA         | NA<br>NA         | NA<br>NA                | NA<br>NA         | NA<br>NA       | NA<br>NA         | NA<br>NA         | NA<br>NA            |                      |            |                |            | NA<br>NA  |
|                   | CALCIUM METAL                              |            |            | mg            | /L 0.005 0            | NA NA               | NA NA               | NA NA               | NA.            | _                | NA NA            | NA NA            | NA NA          | NA NA                             | NA NA              | NA NA            | NA NA            | NA NA            | NA NA             | NA NA          | NA.               | NA.              | NA NA            |                       | NA NA                    | NA NA          | NA NA            | NA NA                | NA NA            | NA.              | NA NA            | NA NA                   | NA NA            | NA NA          | NA NA            | NA NA            | NA NA               |                      |            |                |            | NA NA     |
|                   | CHROMIUM                                   | 0.013      | 0.1        | mg            | /L 0.01 U             | 0.01 U              | 0.01 U              | 0.01 U              | 0.01 U         |                  | 0.01 U           | 0.01 U           | 0.01 U         | 0.01 U 0.01                       | 0.01 U             | 0.01 U           | 0.01 U           | 0.01 U           | 0.01 U            | 0.01 U         | 0.01 U            | 0.01 U           | 0.01 U           | 0.01 U 0.             | 01 U 0.01 U              | 0.01 U         | 0.01 U           | 0.01 U               | 0.01 U           | 0.01 U           | 0.01 U           | 0.01 U                  | 0.01 U           | 0.01 U         | 0.01 U           | 0.01 U           | 0.01 U              | 0.01 U               | NA         |                |            | NA        |
| Metals, Total     | LEAD                                       | 0.007      | 0.015      | 0.015 mg      | y'L 0.005 U           | 0.005 U             | 0.005 U             | 0.005 U             | 0.005 U        | 0.005 U          | 0.005 U          | 0.005 U          | 0.005 U        | 0.005 U 0.005                     | J 0.005 U          | 0.005 U          | 0.005 U          | 0.005 U          | 0.0078            | 0.005 U        | 0.005 U           | 0.005 U          | 0.005 U          | 0.005 U 0.0           | 0.005 U                  | 0.005 U        | 0.005 U          | 0.005 U              | 0.005 U          | 0.005 U          | 0.005 U          | 0.005 U                 | 0.005 U          | 0.005 U        | 0.005 U          | 0.005 U          | 0.01 U              | 0.01 U               | NA         | NA N           | NA         | NA        |
|                   | MAGNESIUM                                  |            |            | mg            | y'L NA                | NA                  | NA                  | NA                  | NA             | NA               | NA               | NA               | NA             | NA NA                             | NA                 | NA               | NA               | NA               | NA                | NA             | NA                | NA               | NA               | NA .                  | NA NA                    | NA             | NA               | NA                   | NA               | NA               | NA               | NA                      | NA               | NA             | NA               | NA               | NA                  | NA                   | NA         | NA N           | ŧΑ         | NA        |
|                   | MERCURY                                    |            | 0.002      | mg            | y/L 0.0002 L          |                     | NA                  | NA                  | NA             | NA               | NA               | NA               | NA             | NA NA                             | NA.                | NA               | NA               | NA               | 0.0002 U          | NA             | NA                | NA               | NA               |                       | NA NA                    | NA             | NA               | NA                   | NA               | NA               | NA               | NA                      | NA               | NA             | NA               | NA               | NA                  | NA.                  | NA         |                |            | NA        |
|                   | NICKEL                                     | 0.13       | 0.1        | 2 mg          | y'L 0.04 U            |                     | 0.04 U              | 0.04 U              | 0.04 U         |                  | 0.04 U           | 0.04 U           | 0.04 U         | 0.04 U 0.04 I                     | _                  |                  | 0.04 U           | 0.04 U           | 0.04 U            | 0.04 U         | 0.04 U            | 0.04 U           | 0.04 U           |                       | 04 U 0.04 U              | 0.04 U         | 0.04 U           | 0.04 U               | 0.04 U           | 0.04 U           | 0.04 U           | 0.04 U                  | 0.04 U           | 0.04 U         | 0.04 U           | 0.04 U           |                     |                      |            | NA N           |            | NA        |
|                   | POTASSIUM                                  |            |            | mg            | y'L NA                | NA<br>NA            | NA<br>NA            | NA<br>NA            | NA<br>NA       | NA<br>NA         | NA<br>NA         | NA<br>NA         | NA<br>NA       | NA NA                             | NA<br>NA           | NA<br>NA         | NA<br>NA         | NA<br>NA         | NA<br>NA          | NA<br>NA       | NA<br>NA          | NA<br>NA         | NA<br>NA         | _                     | NA NA                    | NA<br>NA       | NA<br>NA         | NA<br>NA             | NA<br>NA         | NA<br>NA         | NA<br>NA         | NA<br>NA                | NA<br>NA         | NA<br>NA       | NA<br>NA         | NA<br>NA         | NA<br>NA            |                      |            |                |            | NA<br>NA  |
|                   | ZINC                                       | 0.96       | 2          | 31 mg         | /L 0.02 U             |                     | 0.02 U              | _                   | 0.02 U         | _                | 0.02 U           | 0.02 U           | 0.02 U         | 0.02 U 0.02                       |                    | _                | 0.02 U           | 0.02 U           | 0.02 U            | 0.02 U         | 0.02 U            | 0.02 U           | 0.02 U           |                       | 02 U 0.02 U              |                |                  | 0.02 U               | 0.02 U           | 0.02 U           | 0.02 U           | 0.02 U                  | 0.02 U           | 0.02 U         | 0.02 U           | 0.02 U           |                     |                      |            |                |            | NA NA     |
|                   | ARSENIC                                    | 0.018      | 0.018      | 0.018 mg      | /L NA                 |                     | 0.01 U              |                     | NA             | 0.01 U           | NA               | NA               | NA             | NA NA                             |                    | NA               | NA               | NA               | NA                | NA             | 0.01 U            | 0.01 U           | 0.01 U           |                       | 01 U 0.01 U              |                | _                | NA                   | NA               | NA               | NA               | 0.019                   | NA               | NA             | NA               | NA               | NA .                |                      | NA         |                | NA         | NA        |
|                   | BERYLLIUM                                  |            | 0.004      | mg            | /L NA                 | NA                  | NA                  | NA                  | NA             | NA               | NA               | NA               | NA             | NA NA                             | NA                 | NA               | NA               | NA               | NA                | NA             | NA                | NA               | NA               | NA                    | NA NA                    | NA             | NA               | NA                   | NA               | NA               | NA               | NA                      | NA               | NA             | NA               | NA               | NA                  | NA                   | NA         | NA N           | 4A         | NA        |
|                   | CADMIUM                                    |            | 0.005      | mg            | y'L NA                | NA                  | NA                  | NA                  | NA             | NA               | NA               | NA               | NA             | NA NA                             | NA                 | NA               | NA               | NA               | NA                | NA             | NA                | NA               | NA               | NA                    | NA NA                    | NA             | NA               | NA                   | NA               | NA               | NA               | NA                      | NA               | NA             | NA               | NA               | NA                  | NA                   | NA         | NA N           | NA         | NA        |
| Metals, Dissolved | CHROMIUM                                   | 0.013      | 0.1        | mg            | _                     |                     | 0.01 U              |                     | +              |                  | NA               | NA               | NA             | NA NA                             |                    | _                | NA               | NA               | NA                | NA             | 0.01 U            | 0.01 U           | NA               |                       | NA NA                    | NA             | NA               | NA                   | NA               | NA               | NA               | 0.01 U                  | NA               | NA             | NA               | NA               |                     |                      |            |                |            | NA        |
|                   | LEAD                                       | 0.007      | 0.015      | 0.015 mg      | _                     |                     |                     | -                   |                |                  | NA               | NA               | NA             | NA NA                             | _                  |                  | NA               | NA               | NA                | NA             | 0.005 U           | 0.005 U          | NA               |                       | NA NA                    | NA             | NA               | NA                   | NA               | NA               | NA               | 0.005 U                 | NA               | NA             | NA               | NA               | NA                  |                      |            |                |            | NA        |
|                   | MERCURY                                    |            | 0.002      | mg            | _                     |                     | NA OALL             |                     | NA<br>NA       |                  | NA NA            | NA NA            | NA NA          | NA NA                             | _                  | _                | NA<br>NA         | NA NA            | NA NA             | NA NA          | NA .              | NA .             | NA NA            |                       | NA NA                    | NA NA          | NA NA            | NA NA                | NA               | NA               | NA NA            | NA .                    | NA NA            | NA NA          | NA NA            | NA NA            | NA NA               |                      |            |                |            | NA        |
|                   | ZINC                                       | 0.13       | 0.1        | 2 mg          | y'L NA                |                     | 0.04 U<br>0.02 U    |                     | _              |                  | NA<br>NA         | NA<br>NA         | NA<br>NA       | NA NA                             |                    |                  | NA<br>NA         | NA<br>NA         | NA<br>NA          | NA<br>NA       | 0.04 U<br>0.02 U  | 0.04 U<br>0.02 U | NA<br>NA         |                       | NA NA                    | NA<br>NA       | NA<br>NA         | NA<br>NA             | NA<br>NA         | NA<br>NA         | NA<br>NA         | 0.04 U<br>0.02 U        | NA<br>NA         | NA<br>NA       | NA<br>NA         | NA<br>NA         | NA<br>NA            |                      |            |                |            | NA<br>NA  |
| -                 | ALKALINITY                                 |            |            | mg            |                       |                     | NA                  |                     | NA NA          |                  | NA NA            | NA NA            | NA NA          | NA NA                             |                    |                  | NA NA            | NA NA            | NA NA             | NA NA          | NA NA             | NA NA            | NA NA            |                       | NA NA                    |                | _                | NA NA                | NA NA            | NA NA            | NA NA            | NA NA                   | NA NA            | NA NA          | NA NA            | NA NA            | NA NA               |                      |            |                |            | NA NA     |
|                   | ALKALINITY, TOTAL (AS CACO3)               |            |            | mg            | -                     |                     | NA                  |                     | NA             |                  | NA NA            | NA               | NA             | NA NA                             |                    |                  | NA               | NA               | NA                | NA             | NA                | NA               | NA               |                       | NA NA                    | NA             | NA               | NA                   | NA               | NA               | NA               | NA                      | NA               | NA             | NA               | NA               | NA                  |                      |            |                |            | NA        |
|                   | AMMONIA AS N                               | 15         | 30         | 30 mg         | y'L 60                | 52                  | 73                  | 56                  | 65             | 47               | 55               | 65               | 83             | 110 94                            | 62                 | 47               | 64               | 34               | 190               | 200            | 170               | 140              | 160              | 150                   | 58 120                   | 100            | 200              | 130                  | 44               | 170              | 180              | NA                      | 120              | 170            | 170              | 120              | 16                  | 93                   | 180        | 170 14         | 140        | NA        |
|                   | BICARBONATE                                |            |            | mg            |                       |                     | NA                  | NA                  | NA             | _                | NA               | NA               | NA             | NA NA                             |                    |                  | NA               | NA               | NA                | NA             | NA                | NA               | NA               |                       | NA NA                    | NA             | NA               | NA                   | NA               | NA               | NA               | NA                      | NA               | NA             | NA               | NA               | NA                  |                      |            |                |            | NA        |
| Miscellaneous     | CARBONATE                                  |            |            | mg            | y/L NA                |                     | NA                  | NA                  | NA             |                  | NA               | NA               | NA             | NA NA                             |                    |                  | NA               | NA               | NA                | NA             | NA                | NA               | NA               | _                     | NA NA                    | NA             | NA               | NA                   | NA               | NA               | NA               | NA                      | NA               | NA             | NA               | NA               | NA                  |                      |            |                |            | NA        |
|                   | CONDUCTIVITY                               |            |            | umh           |                       |                     | NA                  |                     | NA             |                  | NA               | NA               | NA             | NA NA                             |                    |                  | NA               | NA               | NA                | NA             | NA                | NA               | NA               |                       | NA NA                    | NA             | NA               | NA                   | NA               | NA               | NA               | NA                      | NA               | NA             | NA               | NA               | NA .                |                      |            |                |            | NA        |
|                   | NITRATE (AS N)  NITRITE (AS N)             |            | 10         | mg            |                       |                     | NA<br>NA            |                     | NA<br>NA       |                  | NA<br>NA         | NA<br>NA         | NA<br>NA       | NA NA                             |                    |                  | NA<br>NA         | NA<br>NA         | NA<br>NA          | NA<br>NA       | NA<br>NA          | NA<br>NA         | NA<br>NA         | _                     | NA NA                    | NA<br>NA       | NA<br>NA         | NA<br>NA             | NA<br>NA         | NA<br>NA         | NA<br>NA         | NA<br>NA                | NA<br>NA         | NA<br>NA       | NA<br>NA         | NA<br>NA         |                     |                      |            |                |            | NA NA     |
|                   | NITRITE (AS N) SULFATE                     |            |            | mg            |                       |                     |                     |                     | NA<br>NA       |                  | NA<br>NA         | NA<br>NA         | NA<br>NA       | NA NA                             | _                  | _                | NA<br>NA         | NA<br>NA         | NA<br>NA          | NA<br>NA       | NA<br>NA          | NA<br>NA         | NA<br>NA         |                       | NA NA                    | NA<br>NA       | _                | NA<br>NA             | NA<br>NA         | NA<br>NA         | NA<br>NA         | NA<br>NA                | NA<br>NA         | NA<br>NA       | NA<br>NA         | NA<br>NA         | NA<br>NA            |                      |            |                |            | NA<br>NA  |
|                   | SOLIDS, TOTAL DISSOLVED                    |            |            | mg            |                       |                     | NA NA               | NA.                 | NA NA          |                  | NA NA            | NA NA            | NA NA          | NA NA                             |                    |                  | NA NA            | NA NA            | NA NA             | NA NA          | NA NA             | NA NA            | NA NA            |                       | NA NA                    | NA NA          | NA NA            | NA NA                | NA NA            | NA NA            | NA NA            | NA NA                   | NA NA            | NA NA          | NA NA            | NA NA            | NA NA               |                      |            |                |            | NA NA     |
| SVOCs             | 1,4-DICHLOROBENZENE                        |            |            | ug            |                       | _                   |                     | _                   | NA             |                  | NA               | NA               | NA             | NA NA                             | _                  |                  | NA               | NA               | NA                | NA             | NA                | NA               | NA               |                       | NA NA                    | NA             |                  | NA                   | NA               | NA               | NA               | NA                      | NA               | NA             | NA               | NA               |                     |                      |            |                |            | NA        |
|                   |                                            |            |            |               |                       |                     |                     |                     |                |                  |                  |                  |                |                                   |                    |                  |                  |                  |                   |                |                   |                  |                  |                       |                          |                |                  |                      |                  |                  |                  |                         |                  |                |                  |                  |                     |                      |            |                |            | _         |

Notes:

Shaded cell indicates comparison standard used in data evaluation.

"ghi ghied cell indicates analytical result exceeds comparison criteria.

Bold and fails text indicates analytical result exceeds background value.

In Nirata comparison standard backe on the Maximum Containmant steet (MCL) stabilished by the USEPA National Primary C

NO - No constituents detected above the laboratory indirum detection limit.

Lindicates constituent was not detected above value shown.

Lindicates constituent was not detected above value shown.

Lindicates constituent was not extend at an estimated value.

Uninclates constituent was not detected at an estimated value.

Monitoring will s MW 3F, POMW 4F, POMW 10F, POMW 11F, POMW 11F, POMW 21F, POMW 32F, POMW 32F, POMW 32F, POMW 32F, POMW 42F, POMW 11F, POMW 11F, POMW 11F, POMW 11F, POMW 11F, POMW 21F, POMW 32F, POMW 32F, POMW 42F, POMW 42F, POMW 11F, POMW

| Sample Type: Normal Dup Normal | Normal   Normal   Normal   POMW-   P  |                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Policy   P   | PDMW- | PDMW- PDMW- PDMW- PDMW- PDMW- R DUP 2/ 11R 6/24/20 11R 1/29/20 11R 7/22/20 11R 3/7/200                                                                                     |
| Method Group   Analyte   Background   Type 3 RR   Type 4 RR   Unit   Type 4 RR   Unit   Type 3 RR   Type 4 RR   Unit   Type 4 RR   Unit   Type 3 RR   Type 4 RR   Unit   Type 4 Result      | 2 02 3 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PDMW-<br>R_DUP_2/ 11R_6/24/20 11R_1/29/20 11R_7/22/20 11R_3/7/200<br>5/2003 03 04 04 PDMW-<br>PDMW-<br>PDMW-<br>PDMW-<br>PDMW-<br>PDMW-<br>PDMW-<br>PDMW-<br>PDMW-<br>O4 6 |
| Method Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 02 3 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5/2003 03 04 04 6                                                                                                                                                          |
| ACEMPHITHEME 1 2000 UpL 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                            |
| ACEMAPHITMENE 1.4 1 510 Upl 0.19U 0. | 1 U 1 U 0.2 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Result Result Result Result                                                                                                                                                |
| ANTHFRACENE 02 02 5100 upl 0.19U 0.2U NA 8.2U 9.1U 9.8U NA NA NA NA 0.2U 0.2U 0.2U 0.2U 0.2U 0.2U 0.2U 0.2U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.2 U 0.2 U 0.2 U 0.19 U                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.2 U 0.2 U 0.2 U 0.19 U                                                                                                                                                   |
| BENZO/ANNTHRACENE 0.2 0.1 0.9 ugl 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.2 U 0.2 U 0.2 U 0.19 U                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.2 U 0.2 U 0.2 U 0.19 U                                                                                                                                                   |
| BENZO(A)PYRENE 02 0.2 0.39 ugl. 0.19U 0.19U 0.19U 0.19U 0.19U 0.19U 0.19U 0.2U NA 9.2U 9.1U 9.8U NA NA NA 0.2U 0.2U 0.2U 0.2U 0.2U 0.2U 0.2U 0.2U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.2 U 0.2 U 0.2 U 0.2 U 0.19 U 0.2 U 0.19 U                                                                                                                                |
| BENZOJG,HJPERYLEME ugl 0.19U 0.19U 0.19U 0.19U 0.19U 0.2U NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.2 U 0.2 U 0.2 U 0.2 U 0.19 U                                                                                                                                             |
| BENZOKIC/LUGRATNENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.2 U 0.2 U 0.2 U 0.19 U                                                                                                                                                   |
| CHRYSENE 0.2 0.2 65 UgL 0.19U 0.19U 0.19U 0.19U 0.19U 0.19U 0.19U 0.2U NA 9.2U 9.1U 9.8U NA NA NA NA 0.2U 0.2U 0.2U 0.2U 0.2U 0.2U 0.2U 0.2U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.2 U 1 U 0.2 U C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.2 U 0.2 U 0.2 U 0.19 U                                                                                                                                                   |
| PARS DESIGNADA, MATERIA CENE 63 19L 0.19L        | NA 1 U 0.2 U 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2 U 0.2 U 0.2 U 0.19 U                                                                                                                                                   |
| FLUGRANHERS 0.5 1000 Upt 0.19U 0.19U 0.19U 0.19U 0.19U 0.19U 0.19U 0.2U NA 9.2U 9.1U 9.8U NA NA NA NA 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.5 U 1 U 0.2 U C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.2U 0.2U 0.2U 0.19U                                                                                                                                                       |
| FLUCRENE 0.5 10000 ugl. 0.19U 0.22 0.19U 0.19U 1.4J NA 92U 9.1U 9.8U NA NA 0.5U 1.1J 0.98 0.5U 0.5U 0.5U 0.5U 0.5U 0.39 0.71 0.34 0.58 0.49 1.9U 0.5U 0.63 1 0.5U 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5 U 1 U 0.2 U C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.2 U 0.2 U 0.2 U 0.19 U                                                                                                                                                   |
| NDENCI1,23-COPPRENE 0.4 Upt 0.19U 0.19U 0.19U 0.19U 0.19U 0.19U 0.2U NA 92U 9.1U 9.8U NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.2 U 0.2 U 0.2 U 0.19 U                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.2 U 0.2 U 0.2 U 0.2 U 0.19 U 0.2 U 0.19 U                                                                                                                                |
| 2MEHYDAVHHALENE 1 20 20 UgL 0.19U 0. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.2 U 0.2 U 0.2 U 0.2 U 0.19 U                                                                                                                                             |
| PHENAITHRENE 0.22 0.2 510 UgL 0.19U 0.19U 0.19U 0.19U 0.19U 0.19U 0.19U 0.19U 0.2U NA 9.2U 9.1U 9.8U NA NA NA NA 0.79 0.2U 0.2U 0.2U 0.2U 0.2U 0.2U 0.2U 0.2U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.2U 0.2U 0.2U 0.2U 0.19U                                                                                                                                                  |
| PYRENE 0.5 1000 Up. 0.19U 0.19U 0.19U 0.19U 0.19U 0.19U 0.19U 0.19U 0.2U NA 9.2U 9.1U 9.8U NA NA NA 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.2 U 0.23 0.2 U 0.2 U 0.19 U                                                                                                                                              |
| TOTAL PAHS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.8 ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND 0.23 ND ND ND                                                                                                                                                           |
| BENZENE 1 5 312 UgL 1U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10 10 10 10 10                                                                                                                                                             |
| ETHYSBENZENE 1 700 ugL 1U 1U 1U 1U 1U 1U 10 NA 1U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10 10 10 10 10                                                                                                                                                             |
| PITESTATES USL NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA NA NA NA                                                                                                                                                                |
| METHYLENE CHLORIDE ugl NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA NA NA NA NA                                                                                                                                                             |
| TOLUENE 1 1000 1900 UpL 1U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1U 1U 1U 1U 1U                                                                                                                                                             |
| MILNES (TOTAL) 2 19000 up. 2 U 2U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2U 2U 2U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20 20 20 20 20                                                                                                                                                             |
| METHYL TERTE BUTYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA NA NA 10 U                                                                                                                                                              |
| TOTAL BTEX ugl ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND ND ND ND ND                                                                                                                                                             |
| ARSENCC 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.01 | 0.018 0.016 0.011 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.01 U 0.016 0.01 U 0.012 0.012                                                                                                                                            |
| BERYLIUM 0.0004 mgl NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA NA NA NA                                                                                                                                                                |
| 5050N mgt. NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA NA NA NA                                                                                                                                                                |
| CADMIUM 0.005 mgL NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA NA NA NA NA                                                                                                                                                             |
| CHROMIUM 0.013 0.1 mg/L 0.01U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U                                                                                                                                         |
| Medids, Total LEAD 0.007 0.015 0.015 0.015 0.015 0.005 U 0.005 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.005 U 0.005 U 0.005 U 0.005 U                                                                                                                                            |
| MACRISILIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA NA NA NA                                                                                                                                                                |
| MERICURY 0.002 mgL NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA NA NA NA                                                                                                                                                                |
| NOMEL 0.13 0.1 2 mg/L 0.04/U 0 | 0.04 U 0.04 U 0.04 U 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.04 U 0.04 U 0.04 U 0.04 U                                                                                                                                                |
| POTASSEMM mgit na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA NA NA NA                                                                                                                                                                |
| SCOUM mgL NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA NA NA NA NA                                                                                                                                                             |
| ZNC 0.96 2 31 mg/L 0.02 U 0.02 0.02 U 0.02 0.02 U 0 | 0.02 U 0.02 U 0.02 U 0<br>0.01 U NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.02 U 0.02 U 0.02 U 0.02 U 0.02 U NA NA NA NA NA                                                                                                                          |
| SERYLLUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | + + + + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA NA NA NA NA                                                                                                                                                             |
| CADMIUM 0.005 mgL NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NA NA NA NA                                                                                                                                                                |
| HIGHING TOPOLOGY    CHROMIUM   0.013   0.1     mgL   NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA NA NA NA                                                                                                                                                                |
| Metals, Dissolved LEAD 0.007 0.015 0.015 mg/L NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA NA NA NA                                                                                                                                                                |
| MERCURY 0.002 mgL NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | + + + + + + + + + + + + + + + + + + + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA NA NA NA                                                                                                                                                                |
| NICKEL 0.13 0.1 2 mg/L NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | + + + + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA NA NA NA                                                                                                                                                                |
| ZINC 0.96 2 31 mgL NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NA         NA         NA         NA           NA         NA         NA         NA                                                                                          |
| ALKALENITY mg/L NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NA NA NA NA NA                                                                                                                                                             |
| AMMONIA AS N 15 30 30 mg/L 13 15 18 9.9 13 16 11 11 13 12 7.3 7.9 NA 2.1 14 7.5 3.8 18 0.49 11 14 9.4 0.49 3.6 0.52 3.7 4.1 4.7 NA 8.6 13 12 2.4 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.4 0.61 0.035 0.85 0.41                                                                                                                                                   |
| BICARBONATE mgl na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NA NA NA NA                                                                                                                                                                |
| CARBONATE mgl NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA NA NA NA                                                                                                                                                                |
| Miscellineous CONDUCTIVITY umitosi na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA NA NA NA                                                                                                                                                                |
| NITRATE (AS N) 10 mg/L NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA NA NA NA                                                                                                                                                                |
| NTRITE (AS N) mg1 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NA NA NA NA                                                                                                                                                                |
| SULFATE mg/L NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NA NA NA NA NA                                                                                                                                                             |
| SOLDS, TOTAL DISSOLVED mg L NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NA         NA         NA         NA           NA         NA         NA         NA                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 104 1975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 197 195                                                                                                                                                                    |

Notes:

Shaded cell indicates comparison standard used in data evaluation.

In splitighted cell indicates analytical result exceeds comparison criteria.

Bodd and Rolls feet indicates analytical result exceeds background value.

In Nivra to comparison so sandard back on the Maximum Containance Level (MCL) established by the USEPA National Primary (
NO. No constituents detected above the laboratory informal detection lines.

I indicates constituent was not detected above value shown.

I indicates constituent was not detected at an estimated value.

Uniformation constituent was not detected at an estimated value.

Uniformation constituent was not detected at an estimated value.

Monitoring wells, MMV-38, POAMW-48P, POAMW-18P, POAMW-18TP, POAMW-23P, POAMW-23P, POAMW-33P, PO

|                   |                                  |            |            | L           | ocation:     |                             |                           |                             |                            |                            |                            |                           |                            |                           |                            | PDMW-12P                   |                            |                            |                            |                           |                           |                            |                            |                            |                            |                     |
|-------------------|----------------------------------|------------|------------|-------------|--------------|-----------------------------|---------------------------|-----------------------------|----------------------------|----------------------------|----------------------------|---------------------------|----------------------------|---------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|---------------------------|---------------------------|----------------------------|----------------------------|----------------------------|----------------------------|---------------------|
|                   |                                  |            |            | Samp        | ole Date:    | 10/28/1997                  | 8/9/1999                  | 11/17/1999                  | 2/23/2000                  | 5/15/2000                  | 8/22/2000                  | 1/9/2001                  | 7/12/2001                  | 2/5/2002                  | 9/12/2002                  | 2/5/2003                   | 6/27/2003                  | 1/29/2004                  | 7/23/2004                  | 3/7/2006                  | 4/1/2008                  | 7/19/2008                  | 10/9/2008                  | 12/3/2009                  | 6/18/2010                  | 6/16/2011           |
|                   |                                  |            |            | Samp        | le Type:     | Normal                      | Normal                    | Normal                      | Normal                     | Normal                     | Normal                     | Normal                    | Normal                     | Normal                    | Normal                     | Normal                     | Normal                     | Normal                     | Normal                     | Normal                    | Normal                    | Normal                     | Normal                     | Normal                     | Normal                     | Normal              |
|                   |                                  |            |            | Sa          | imple ID:    | PDMW-<br>12P_10/28/1<br>997 | PDMW-<br>12P_8/9/199<br>9 | PDMW-<br>12P_11/17/1<br>999 | PDMW-<br>12P_2/23/20<br>00 | PDMW-<br>12P_5/15/20<br>00 | PDMW-<br>12P_8/22/20<br>00 | PDMW-<br>12P_1/9/200<br>1 | PDMW-<br>12P_7/12/20<br>01 | PDMW-<br>12P_2/5/200<br>2 | PDMW-<br>12P_9/12/20<br>02 | PDM W-<br>12P_2/5/200<br>3 | PDMW-<br>12P_6/27/20<br>03 | PDMW-<br>12P_1/29/20<br>04 | PDMW-<br>12P_7/23/20<br>04 | PDMW-<br>12P_3/7/200<br>6 | PDMW-<br>12P_4/1/200<br>8 | PDMW-<br>12P_7/19/20<br>08 | PDMW-<br>12P_10/9/20<br>08 | PDMW-<br>12P_12/3/20<br>09 | PDMW-<br>12P_6/18/20<br>10 | PDMW-<br>12P_061611 |
| Method Group      | Analyte                          | Background | Type 3 RRS | Type 4 RRS  | Units        | Result                      | Result                    | Result                      | Result                     | Result                     | Result                     | Result                    | Result                     | Result                    | Result                     | Result                     | Result                     | Result                     | Result                     | Result                    | Result                    | Result                     | Result                     | Result                     | Result                     | Result              |
|                   | ACENAPHTHENE                     | 1          | 2000       |             | ug/L         | 1 U                         | 1 U                       | 1 U                         | 1 U                        | 1 U                        | 1 U                        | 1 U                       | 1 U                        | NA                        | 0.2 U                      | 0.19 U                    | 0.19 U                    | 0.19 U                     | 3.9 U                      | 0.19 U                     | 0.19 U                     | NA                  |
|                   | ACENAPHTHYLENE                   | 1.4        | 1          | 510         | ug/L         | 1 U                         | 10                        | 1 U                         | 10                         | 10                         | 1 U                        | 1 U                       | 1.4                        | NA                        | 0.2 U                      | 0.19 U                    | 0.19 U                    | 0.19 U                     | 3.9 U                      | 0.19 U                     | 0.19 U                     | NA                  |
|                   | ANTHRACENE<br>BENZO(A)ANTHRACENE | 0.2        | 0.2        | 5100<br>3.9 | ug/L<br>ug/L | 0.2 U<br>0.2 U              | 0.2 U<br>0.2 U            | 0.2 U<br>0.2 U              | 0.2 U<br>0.2 U             | 0.2 U<br>0.2 U             | 0.2 U<br>0.2 U             | 0.2 U<br>0.2 U            | 0.2 U<br>0.2 U             | NA<br>NA                  | 0.2 U<br>0.2 U             | 0.19 U<br>0.19 U          | 0.19 U<br>0.19 U          | 0.19 U<br>0.19 U           | 3.9 U<br>3.9 U             | 0.19 U<br>0.19 U           | 0.19 U<br>0.19 U           | NA<br>NA            |
|                   | BENZO(A)PYRENE                   | 0.2        | 0.1        | 0.39        | ug/L         | 0.2 U                       | 0.2 U                     | 0.2 U                       | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.2 U                     | 0.2 U                      | NA NA                     | 0.2 U                      | 0.19 U                    | 0.19 U                    | 0.19 U                     | 3.9 U                      | 0.19 U                     | 0.19 U                     | NA NA               |
|                   | BENZO(B)FLUORANTHENE             | 0.2        | 0.2        | 0.65        | ug/L         | 0.2 U                       | 0.2 U                     | 0.2 U                       | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.2 U                     | 0.2 U                      | NA                        | 0.2 U                      | 0.19 U                    | 0.19 U                    | 0.19 U                     | 3.9 U                      | 0.19 U                     | 0.19 U                     | NA                  |
|                   | BENZO(G,H,I)PERYLENE             |            |            |             | ug/L         | 0.5 U                       | NA                        | NA                          | NA                         | NA                         | NA                         | NA                        | NA                         | NA                        | 0.2 U                      | 0.19 U                    | 0.19 U                    | 0.19 U                     | 3.9 U                      | 0.19 U                     | 0.19 U                     | NA.                 |
|                   | BENZO(K)FLUORANTHENE             |            |            |             | ug/L         | 0.5 U                       | NA                        | NA                          | NA                         | NA                         | NA                         | NA                        | NA                         | NA                        | 0.2 U                      | 0.19 U                    | 0.19 U                    | 0.19 U                     | 3.9 U                      | 0.19 U                     | 0.19 U                     | NA                  |
|                   | CHRYSENE                         | 0.2        | 0.2        | 65          | ug/L         | 0.2 U                       | 0.2 U                     | 0.2 U                       | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.2 U                     | 0.2 U                      | NA                        | 0.2 U                      | 0.19 U                    | 0.19 U                    | 0.19 U                     | 3.9 U                      | 0.19 U                     | 0.19 U                     | NA                  |
| PAHs              | DIBENZO(A,H)ANTHRACENE           |            | 0.3        |             | ug/L         | 1 U                         | NA                        | NA                          | NA                         | NA                         | NA                         | NA                        | NA                         | NA                        | 0.2 U                      | 0.19 U                    | 0.19 U                    | 0.19 U                     | 3.9 U                      | 0.19 U                     | 0.19 U                     | NA.                 |
|                   | FLUORANTHENE<br>FLUORENE         | 0.5        | 1000       |             | ug/L<br>ug/L | 0.5 U                       | 0.5 U                     | 0.5 U                       | 0.5 U                      | 0.5 U                      | 0.5 U                      | 0.5 U                     | 0.5 U                      | NA<br>NA                  | 0.2 U                      | 0.2 U<br>0.2 U             | 0.2 U<br>0.2 U             | 0.2 U<br>0.2 U             | 0.2 U                      | 0.19 U<br>0.19 U          | 0.19 U<br>0.19 U          | 0.19 U<br>0.19 U           | 3.9 U                      | 0.19 U*                    | 0.19 U<br>0.19 U           | NA<br>NA            |
|                   | INDENO(1.2.3-CD)PYRENE           | 0.5        | 0.4        |             | ug/L         | 0.5 U                       | NA.                       | NA NA                       | NA NA                      | NA NA                      | NA.                        | NA NA                     | NA.                        | NA.                       | 0.2 U                      | 0.19 U                    | 0.19 U                    | 0.19 U                     | 3.9 U                      | 0.19 U                     | 0.19 U                     | NA NA               |
|                   | 1-METHYLNAPHTHALENE              |            |            |             | ug/L         | NA                          | NA                        | NA                          | NA                         | NA                         | NA                         | NA                        | NA                         | NA                        | 0.2 U                      | 0.19 U                    | 0.19 U                    | 0.19 U                     | 3.9 U                      | 0.76 U                     | 0.38 U                     | NA.                 |
|                   | 2-METHYLNAPHTHALENE              |            |            |             | ug/L         | NA                          | NA                        | NA                          | NA                         | NA                         | NA                         | NA                        | NA                         | NA                        | 0.2 U                      | 0.19 U                    | 0.19 U                    | 0.19 U                     | 3.9 U                      | 0.19 U                     | 0.19 U                     | NA.                 |
|                   | NAPHTHALENE                      | 1          | 20         | 20          | ug/L         | 1 U                         | 1 U                       | 1 U                         | 1 U                        | 1 U                        | 1 U                        | 1 U                       | 1 U                        | NA                        | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.24                       | 0.2 U                      | 0.19 U                    | 0.19 U                    | 0.19 U                     | 3.9 U                      | 0.19 U                     | 0.19 U                     | NA.                 |
|                   | PHENANTHRENE                     | 0.22       | 0.2        | 510         | ug/L         | 0.22                        | 0.2 U                     | 0.2 U                       | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.2 U                     | 0.2 U                      | NA                        | 0.2 U                      | 0.19 U                    | 0.19 U                    | 0.19 U                     | 3.9 U                      | 0.19 U                     | 0.19 U                     | NA.                 |
|                   | PYRENE                           | 0.5        | 1000       |             | ug/L         | 0.5 U                       | 0.5 U                     | 0.5 U                       | 0.5 U                      | 0.5 U                      | 0.5 U                      | 0.5 U                     | 0.5 U                      | NA                        | 0.2 U                      | 0.19 U                    | 0.19 U                    | 0.19 U                     | 3.9 U                      | 0.19 U                     | 0.19 U                     | NA.                 |
|                   | TOTAL PAHS<br>BENZENE            |            | 5          | 31.2        | ug/L<br>ug/L | 0.22<br>1 U                 | ND<br>1 U                 | ND<br>1 U                   | ND<br>1 U                  | ND<br>1 U                  | ND<br>1 U                  | ND<br>1 U                 | 1.4<br>1 U                 | NA<br>NA                  | ND<br>1 U                  | ND<br>1 U                  | ND<br>1 U                  | 0.24<br>1 U                | ND<br>1 U                  | ND<br>1 U                 | ND<br>1 U                 | ND<br>1 U                  | ND<br>1 U                  | ND<br>1 U                  | ND<br>1 U                  | NA<br>NA            |
|                   | ETHYLBENZENE                     | 1          | 700        | 31.2        | ug/L         | 10                          | 10                        | 10                          | 10                         | 10                         | 10                         | 10                        | 10                         | NA NA                     | 10                         | 1 U                        | 10                         | 10                         | 10                         | 1 U                       | 1 U                       | 10                         | 1 U                        | 10                         | 1 U                        | NA.                 |
|                   | p/m-XYLENE                       |            |            |             | ug/L         | NA NA                       | 1 U                       | 1 U                         | 1 U                        | 1 U                        | 1 U                        | 1 U                       | 1 U                        | NA.                       | NA.                        | NA NA                      | NA NA                      | NA NA                      | NA.                        | NA.                       | NA NA                     | NA.                        | NA NA                      | NA NA                      | NA NA                      | NA NA               |
|                   | METHYLENE CHLORIDE               |            |            |             | ug/L         | NA                          | 5 U                       | NA                          | NA                         | NA                         | NA                         | NA                        | NA                         | NA                        | NA .                       | NA                         | NA                         | NA                         | NA                         | NA                        | NA                        | NA                         | NA                         | NA                         | NA                         | NA                  |
| VOCs              | o-XYLENE                         |            |            |             | ug/L         | NA                          | 1 U                       | 1 U                         | 1 U                        | 1 U                        | 1 U                        | 1 U                       | 1 U                        | NA                        | NA                         | NA                         | NA                         | NA                         | NA                         | NA                        | NA                        | NA                         | NA                         | NA                         | NA                         | NA                  |
|                   | TOLUENE                          | 1          | 1000       | 1900        | ug/L         | 1 U                         | 1 U                       | 1 U                         | 1 U                        | 1 U                        | 1 U                        | 1 U                       | 1 U                        | NA                        | 1 U                        | 1 U                        | 1 U                        | 1 U                        | 1 U                        | 1 U                       | 1 U                       | 1 U                        | 1 U                        | 1 U                        | 1 U                        | NA                  |
|                   | XYLENES (TOTAL)                  | 2          | 10000      |             | ug/L         | 2 U                         | 1 U                       | 1 U                         | 1 U                        | 1 U                        | 1 U                        | 1 U                       | 1 U                        | NA                        | 2 U                        | 2 U                        | 2 U                        | 2 U                        | 2 U                        | 2 U                       | 2 U                       | 2 U                        | 2 U                        | 2 U                        | 2 U                        | NA                  |
|                   | METHYL TERT BUTYL ETHER          |            |            |             | ug/L         | NA<br>NB                    | NA NA                     | NA NA                       | NA NA                      | NA<br>NB                   | NA<br>NB                   | NA NA                     | NA<br>NB                   | NA NA                     | NA NA                      | NA NA                      | NA<br>ND                   | NA NE                      | NA<br>ND                   | 10 U                      | 10 U                      | 10 U                       | NA NA                      | NA<br>ND                   | 10 U                       | NA NA               |
| -                 | TOTAL BTEX ARSENIC               | 0.018      | 0.018      | 0.018       | ug/L<br>mg/L | ND<br>0.01 U                | ND<br>0.01 U              | ND<br>0.01 U                | ND<br>0.01 U               | ND<br>0.01 U               | ND<br>0.01 U               | ND<br>0.01 U              | ND<br>0.01 U               | NA<br>NA                  | ND<br>0.01 U               | ND<br>0.01 U               | 0.01 U                     | ND<br>0.018                | ND<br>0.01 U               | ND<br>0.01 U              | ND<br>0.01 U              | ND<br>0.01 U               | ND<br>0.01 U               | 0.02 U                     | ND<br>0.02 U               | NA<br>NA            |
|                   | BERYLLIUM                        |            | 0.004      |             | mg/L         | 0.005 U                     | NA NA                     | NA NA                       | NA.                        | NA NA                      | NA NA                      | NA NA                     | NA NA                      | NA.                       | NA NA                      | NA NA                      | NA NA                      | NA.                        | NA.                        | NA NA                     | NA NA                     | NA.                        | NA NA                      | NA NA                      | NA NA                      | NA NA               |
|                   | BORON                            |            |            |             | mg/L         | NA                          | NA                        | NA                          | NA                         | NA                         | NA                         | NA                        | NA                         | NA                        | NA                         | NA                         | NA                         | NA                         | NA                         | NA                        | NA                        | NA                         | NA                         | NA                         | NA                         | NA                  |
|                   | CADMIUM                          |            | 0.005      |             | mg/L         | 0.005 U                     | NA                        | NA                          | NA                         | NA                         | NA                         | NA                        | NA                         | NA                        | NA                         | NA                         | NA                         | NA                         | NA                         | NA                        | NA                        | NA                         | NA                         | NA                         | NA                         | NA                  |
|                   | CALCIUM METAL                    |            |            |             | mg/L         | NA                          | NA                        | NA                          | NA                         | NA                         | NA                         | NA                        | NA                         | NA                        | NA                         | NA                         | NA                         | NA                         | NA                         | NA                        | NA                        | NA                         | NA                         | NA                         | NA                         | NA                  |
|                   | CHROMIUM                         | 0.013      | 0.1        |             | mg/L         | 0.01 U                      | 0.01 U                    | 0.01 U                      | 0.01 U                     | 0.01 U                     | 0.01 U                     | 0.01 U                    | 0.01 U                     | NA                        | 0.01 U                     | 0.01 U                    | 0.01 U                    | 0.01 U                     | 0.01 U                     | 0.01 U                     | 0.01 U                     | NA                  |
| Metals, Total     | LEAD<br>MAGNESIUM                | 0.007      | 0.015      | 0.015       | mg/L         | 0.005 U<br>NA               | 0.005 U                   | 0.005 U                     | 0.005 U                    | 0.005 U                    | 0.005 U                    | 0.005 U                   | 0.005 U                    | NA                        | 0.005 U                    | 0.005 U                    | 0.005 U                    | 0.016                      | 0.005 U                    | 0.005 U                   | 0.005 U                   | 0.005 U                    | 0.005 U                    | 0.01 U                     | 0.01 U                     | 0.01 U              |
|                   | MERCURY                          |            | 0.002      |             | mg/L<br>mg/L | 0.0002 U                    | NA<br>NA                  | NA<br>NA                    | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                  | NA<br>NA                   | NA<br>NA                  | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                  | NA<br>NA                  | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA            |
|                   | NICKEL                           | 0.13       | 0.1        | 2           | mg/L         | 0.04 U                      | 0.04 U                    | 0.04 U                      | 0.04 U                     | 0.04 U                     | 0.04 U                     | 0.04 U                    | 0.04 U                     | NA.                       | 0.04 U                     | 0.04 U                    | 0.04 U                    | 0.04 U                     | 0.04 U                     | 0.04 U                     | 0.04 U                     | NA.                 |
|                   | POTASSIUM                        |            |            |             | mg/L         | NA                          | NA                        | NA                          | NA                         | NA                         | NA                         | NA                        | NA                         | NA                        | NA                         | NA                         | NA                         | NA                         | NA                         | NA                        | NA                        | NA.                        | NA                         | NA                         | NA                         | NA                  |
|                   | SODIUM                           |            |            |             | mg/L         | NA                          | NA                        | NA                          | NA                         | NA                         | NA                         | NA                        | NA                         | NA                        | NA                         | NA                         | NA                         | NA                         | NA                         | NA                        | NA                        | NA                         | NA                         | NA                         | NA                         | NA                  |
|                   | ZINC                             | 0.96       | 2          | 31          | mg/L         | 0.02 U                      | 0.02 U                    | 0.02 U                      | 0.02 U                     | 0.02 U                     | 0.02 U                     | 0.059                     | 0.02 U                     | NA                        | 0.02 U                     | 0.02 U                     | 0.02 U                     | 0.11                       | 0.053                      | 0.02 U                    | 0.02 U                    | 0.02 U                     | 0.02 U                     | 0.02 U                     | 0.02 U                     | NA.                 |
|                   | ARSENIC                          | 0.018      | 0.018      | 0.018       | mg/L         | NA                          | NA                        | 0.01 U                      | 0.01 U                     | NA                         | NA                         | NA                        | NA                         | NA                        | NA                         | NA                         | NA                         | NA                         | NA                         | NA                        | NA                        | NA                         | NA                         | NA                         | NA                         | NA.                 |
|                   | BERYLLIUM                        |            | 0.004      |             | mg/L         | NA<br>NA                    | NA<br>NA                  | NA<br>NA                    | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                  | NA<br>NA                   | NA<br>NA                  | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                  | NA<br>NA                  | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA NA               |
|                   | CADMIUM                          | 0.013      | 0.005      |             | mg/L<br>mg/L | NA<br>NA                    | NA<br>NA                  | NA<br>0.01 U                | NA<br>0.01 U               | NA<br>NA                   | NA<br>NA                   | NA<br>NA                  | NA<br>NA                   | NA<br>NA                  | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                  | NA<br>NA                  | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA            |
| Metals, Dissolved | LEAD                             | 0.007      | 0.015      | 0.015       | mg/L         | NA NA                       | NA NA                     | 0.005 U                     | 0.005 U                    | NA NA                      | NA NA                      | NA NA                     | NA NA                      | NA NA                     | NA NA                      | NA NA                      | NA NA                      | NA NA                      | NA NA                      | NA NA                     | NA NA                     | NA NA                      | NA NA                      | NA NA                      | NA NA                      | NA NA               |
|                   | MERCURY                          |            | 0.002      |             | mg/L         | NA                          | NA                        | NA                          | NA                         | NA                         | NA                         | NA                        | NA                         | NA                        | NA                         | NA                         | NA                         | NA                         | NA                         | NA                        | NA                        | NA                         | NA                         | NA                         | NA                         | NA.                 |
|                   | NICKEL                           | 0.13       | 0.1        | 2           | mg/L         | NA                          | NA                        | 0.04 U                      | 0.04 U                     | NA                         | NA                         | NA                        | NA                         | NA                        | NA                         | NA                         | NA                         | NA                         | NA                         | NA                        | NA                        | NA                         | NA                         | NA                         | NA                         | NA.                 |
|                   | ZINC                             | 0.96       | 2          | 31          | mg/L         | NA                          | NA                        | 0.02 U                      | 0.02 U                     | NA                         | NA                         | 0.065                     | NA                         | 0.26                      | NA                         | NA                         | NA                         | NA                         | NA                         | NA                        | NA                        | NA                         | NA                         | NA                         | NA                         | NA                  |
|                   | ALKALINITY                       |            |            |             | mg/L         | NA                          | NA                        | NA                          | NA                         | NA                         | NA                         | NA                        | NA                         | NA                        | NA                         | NA                         | NA                         | NA                         | NA                         | NA                        | NA                        | NA                         | NA                         | NA                         | NA                         | NA.                 |
|                   | ALKALINITY, TOTAL (AS CACO3)     |            | 20         |             | mg/L         | NA<br>NA                    | NA<br>2.2                 | NA<br>2.6                   | NA<br>0.66                 | NA<br>2.1                  | NA<br>o e                  | NA<br>0.15                | NA<br>1.7                  | NA<br>NA                  | NA<br>2.2                  | NA<br>0.92                 | NA<br>2.2                  | NA<br>0.5                  | NA<br>2.4                  | NA<br>0.22                | NA<br>0.22                | NA<br>0.7                  | NA<br>0.60                 | NA<br>0.14                 | NA                         | NA NA               |
|                   | AMMONIA AS N<br>BICARBONATE      | 15         | 30         | 30          | mg/L<br>mg/L | NA<br>NA                    | 3.2<br>NA                 | 3.6<br>NA                   | 0.66<br>NA                 | 2.1<br>NA                  | 8.6<br>NA                  | 0.15<br>NA                | 1.7<br>NA                  | NA<br>NA                  | 3.3<br>NA                  | 0.83<br>NA                 | 3.3<br>NA                  | 0.5<br>NA                  | 2.4<br>NA                  | 0.23<br>NA                | 0.22<br>NA                | 0.7<br>NA                  | 0.69<br>NA                 | 0.14<br>NA                 | 1.1<br>NA                  | NA<br>NA            |
|                   | CARBONATE                        |            |            |             | mg/L         | NA<br>NA                    | NA<br>NA                  | NA<br>NA                    | NA<br>NA                   | NA NA                      | NA<br>NA                   | NA<br>NA                  | NA NA                      | NA<br>NA                  | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                  | NA.                       | NA NA                      | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA.                 |
| Miscellaneous     | CONDUCTIVITY                     |            |            |             | umhos/       | NA                          | NA NA                     | NA                          | NA                         | NA                         | NA                         | NA NA                     | NA NA                      | NA                        | NA NA                      | NA NA                      | NA                         | NA                         | NA                         | NA.                       | NA.                       | NA.                        | NA NA                      | NA NA                      | NA                         | NA.                 |
|                   | NITRATE (AS N)                   |            | 10         |             | mg/L         | NA                          | NA                        | NA                          | NA                         | NA                         | NA                         | NA                        | NA                         | NA                        | NA                         | NA                         | NA                         | NA                         | NA                         | NA                        | NA                        | NA                         | NA                         | NA                         | NA                         | NA.                 |
|                   | NITRITE (AS N)                   |            |            |             | mg/I         | NA                          | NA                        | NA                          | NA                         | NA                         | NA                         | NA                        | NA                         | NA                        | NA                         | NA                         | NA                         | NA                         | NA                         | NA                        | NA                        | NA                         | NA                         | NA                         | NA                         | NA.                 |
|                   | SULFATE                          |            |            |             | mg/L         | NA                          | NA                        | NA                          | NA                         | NA                         | NA                         | NA                        | NA                         | NA                        | NA                         | NA                         | NA                         | NA                         | NA                         | NA                        | NA                        | NA                         | NA                         | NA                         | NA                         | NA.                 |
|                   | SOLIDS, TOTAL DISSOLVED          |            |            |             | mg/L         | NA                          | NA                        | NA                          | NA                         | NA                         | NA                         | NA                        | NA                         | NA                        | NA                         | NA                         | NA                         | NA                         | NA                         | NA                        | NA                        | NA                         | NA                         | NA                         | NA                         | NA                  |
| SVOCs             | 1,4-DICHLOROBENZENE              |            |            |             | ug/L         | NA                          | NA                        | NA                          | NA                         | NA                         | NA                         | NA                        | NA                         | NA                        | NA                         | NA                         | NA                         | NA                         | NA                         | NA                        | NA                        | NA                         | NA                         | NA                         | NA                         | NA                  |

Notes:

Shaded cell indicates comparison standard used in data evaluation.

Inglighted cell indicates analytical result exceeds comparison criteria.

Rod and Rollic for indicates analytical result exceeds background value.

In Nitra comparison standard back on the Maximum Containnate Level (MCL) established by the USEPA National Primary C

NO - No constituents detected above the laboratory infinium detection limit.

J: Indicates constituent was not detected above value shown.

J: Indicates constituent was not detected at an estimated value.

U: Indicates constituent was not detected at an estimated value shown.

Monitoring words NW-31, POMW 48, POMW-101, POMW-111, POMW-111, POMW-318, POMW-318, POMW-318, POMW-331, POM

|                   |                                              |            |            | L          | ocation:     |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                         |                      |                      |                      | PDMW-13P             |                      |                      |                      |                      |                      |                      |                      |                     |                       |                      |                     |                     |                     |                     |
|-------------------|----------------------------------------------|------------|------------|------------|--------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|---------------------|-----------------------|----------------------|---------------------|---------------------|---------------------|---------------------|
|                   |                                              |            |            | Samp       | ple Date:    | 10/28/1997           | 8/9/1999             | 11/18/1999           | 2/25/2000            | 5/16/2000            | 8/22/2000            | 1/9/2001             | 7/16/2001            | 2/5/2002             | 9/11                 | /2002                   | 2/5/2003             | 6/26/2003            | 1/29/2004            | 7/22/2004            | 3/5/2006             | 4/2/2008             | 7/19/2008            | 10/9/2008            | 12/1/2009            | 6/18/2010            | 12/16/2010           | 6/14/2011           | 12/5/2011             | 12/11/2013           | 6/5/2014            | 11/5/2014           | 5/19/2015           | 11/11/2015          |
|                   |                                              |            |            | Samp       | ole Type:    | Normal               | Dup                     | Normal               | Normal              | Normal                | Normal               | Normal              | Normal              | Normal              | Normal              |
|                   |                                              |            |            | Sa         | imple ID:    | PDMW-<br>13P_10/28/1 | PDMW-<br>13P_8/9/199 | PDMW-<br>13P_11/18/1 | PDMW-<br>13P_2/25/20 | PDMW-<br>13P_5/16/20 | PDMW-<br>13P_8/22/20 | PDMW-<br>13P_1/9/200 | PDMW-<br>13P_7/16/20 | PDMW-<br>13P_2/5/200 | PDMW-<br>13P_9/11/20 | PDMW-13P<br>(DUP)_9/11/ | PDMW-<br>13P_2/5/200 | PDMW-<br>13P_6/26/20 | PDMW-<br>13P_1/29/20 | PDMW-<br>13P_7/22/20 | PDMW-<br>13P_3/5/200 | PDMW-<br>13P_4/2/200 | PDMW-<br>13P_7/19/20 | PDMW-<br>13P_10/9/20 | PDMW-<br>13P_12/1/20 | PDMW-<br>13P_6/18/20 | PDMW-<br>13P_12/16/2 | PDMW-<br>13P 061411 | PDMW-13P-<br>12052011 | PDMW-<br>13P_12/11/2 | PDMW-<br>13P_060520 | PDMW-<br>13P_110520 | PDMW-<br>13P_051920 | PDMW-<br>13P_111120 |
|                   |                                              |            |            |            |              | 997                  | 9                    | 999                  | 00                   | 00                   | 00                   | 1                    | 01                   | 2                    | 02                   | 2002                    | 3                    | 03                   | 04                   | 04                   | 6                    | 8                    | 08                   | 80                   | 09                   | 10                   | 010                  | 13P_061411          | 12052011              | 013                  | 14                  | 14                  | 15                  | 15                  |
| Method Grou       |                                              | Background | Type 3 RRS | Type 4 RRS | Units        | Result                  | Result               | Result               | Result               | Result               | Result               | Result               | Result               | Result               | Result               | Result               | Result               | Result              | Result                | Result               | Result              | Result              | Result              | Result              |
|                   | ACENAPHTHENE<br>ACENAPHTHYLENE               | 1.4        | 2000       | 510        | ug/L<br>ug/L | 1 U                  | 1 U                  | 1 U                  | 1 U                  | 1 U                  | 1 U                  | 1 U                  | 1 U                  | NA<br>NA             | 0.2 U<br>0.2 U       | 0.2 U                   | 0.2 U<br>0.2 U       | 0.2 U<br>0.2 U       | 0.2 U<br>0.2 U       | 0.2 U<br>0.2 U       | 0.19 U<br>0.19 U     | 0.19 U<br>0.19 U     | 0.19 U<br>0.19 U     | 0.19 U<br>0.19 U     | 0.19 U<br>0.19 U     | 0.19 U<br>0.19 U     | NA<br>NA             | NA<br>NA            | NA<br>NA              | 9.2 U<br>9.2 U       | 9.7 U<br>9.7 U*     | NA<br>NA            | NA<br>NA            | NA<br>NA            |
|                   | ANTHRACENE                                   | 0.2        | 0.2        | 5100       | ug/L         | 0.2 U                | NA NA                | 0.2 U                | 0.2 U                   | 0.2 U                | 0.2 U                | 0.2 U                | 0.2 U                | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U               | NA NA                | NA NA               | NA NA                 | 9.2 U                | 9.7 U               | NA.                 | NA NA               | NA.                 |
|                   | BENZO(A)ANTHRACENE                           | 0.2        | 0.1        | 3.9        | ug/L         | 0.2 U                | NA                   | 0.2 U                | 0.2 U                   | 0.2 U                | 0.2 U                | 0.2 U                | 0.2 U                | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U               | NA                   | NA                  | NA                    | 9.2 U                | 9.7 U               | NA                  | NA                  | NA.                 |
|                   | BENZO(A)PYRENE                               | 0.2        | 0.2        | 0.39       | ug/L         | 0.2 U                | NA                   | 0.2 U                | 0.2 U                   | 0.2 U                | 0.2 U                | 0.2 U                | 0.2 U                | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U               | NA                   | NA                  | NA                    | 9.2 U                | 9.7 U               | NA                  | NA                  | NA                  |
|                   | BENZO(B)FLUORANTHENE                         | 0.2        | 0.2        | 0.65       | ug/L         | 0.2 U                | NA                   | 0.2 U                | 0.2 U                   | 0.2 U                | 0.2 U                | 0.2 U                | 0.2 U                | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U               | NA                   | NA                  | NA                    | 9.2 U                | 9.7 U               | NA                  | NA                  | NA                  |
|                   | BENZO(G,H,I)PERYLENE                         |            |            |            | ug/L         | 0.5 U                | NA                   | 0.2 U                | 0.2 U                   | 0.2 U                | 0.2 U                | 0.2 U                | 0.2 U                | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U               | NA                   | NA                  | NA                    | 9.2 U                | 9.7 U               | NA                  | NA                  | NA.                 |
|                   | BENZO(K)FLUORANTHENE<br>CHRYSENE             | 0.2        | 0.2        | 65         | ug/L<br>ug/L | 0.5 U<br>0.2 U       | NA<br>0.2 U          | NA<br>0.2 U          | NA<br>0.2 U          | NA<br>0.2 U          | NA<br>0.2 U          | NA<br>0.2 U          | NA<br>0.2 U          | NA<br>NA             | 0.2 U                | 0.2 U<br>0.2 U          | 0.2 U<br>0.2 U       | 0.2 U<br>0.2 U       | 0.2 U<br>0.2 U       | 0.2 U<br>0.2 U       | 0.19 U<br>0.19 U     | 0.19 U<br>0.19 U     | 0.19 U<br>0.19 U     | 0.19 U<br>0.19 U     | 0.19 U<br>0.19 U     | 0.19 U<br>0.19 U     | NA<br>NA             | NA<br>NA            | NA<br>NA              | 9.2 U<br>9.2 U       | 9.7 U<br>9.7 U      | NA<br>NA            | NA<br>NA            | NA<br>NA            |
| PAHs              | DIBENZO(A,H)ANTHRACENE                       |            | 0.3        |            | ug/L         | 1 U                  | NA.                  | NA NA                | NA.                  | NA NA                | 0.2 U                | 0.2 U                   | 0.2 U                | 0.2 U                | 0.2 U                | 0.2 U                | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U               | NA NA                | NA NA               | NA NA                 | 9.2 U                | 9.7 U               | NA NA               | NA NA               | NA NA               |
|                   | FLUORANTHENE                                 | 0.5        | 1000       |            | ug/L         | 0.5 U                | NA                   | 0.2 U                | 0.2 U                   | 0.2 U                | 0.2 U                | 0.2 U                | 0.2 U                | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U               | NA                   | NA                  | NA                    | 9.2 U                | 9.7 U               | NA                  | NA                  | NA                  |
|                   | FLUORENE                                     | 0.5        | 1000       |            | ug/L         | 0.5 U                | NA                   | 0.2 U                | 0.2 U                   | 0.2 U                | 0.2 U                | 0.2 U                | 0.2 U                | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U               | NA                   | NA                  | NA                    | 9.2 U                | 9.7 U               | NA                  | NA                  | NA                  |
|                   | INDENO(1,2,3-CD)PYRENE                       |            | 0.4        |            | ug/L         | 0.5 U                | NA                   | 0.2 U                | 0.2 U                   | 0.2 U                | 0.2 U                | 0.2 U                | 0.2 U                | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U               | NA                   | NA                  | NA                    | 9.2 U                | 9.7 U               | NA                  | NA                  | NA                  |
|                   | 1-METHYLNAPHTHALENE                          |            |            |            | ug/L         | NA                   | 0.2 U                | 0.2 U                   | 0.2 U                | 0.2 U                | 0.2 U                | 0.2 U                | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U               | 0.78 U               | 0.38 U               | NA                   | NA                  | NA                    | 9.2 U                | 9.7 U               | NA                  | NA                  | NA                  |
|                   | 2-METHYLNAPHTHALENE                          |            |            |            | ug/L         | NA                   | 0.2 U                | 0.2 U                   | 0.2 U                | 0.2 U                | 0.2 U                | 0.2 U                | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U               | NA                   | NA                  | NA                    | 9.2 U                | 9.7 U               | NA                  | NA                  | NA                  |
|                   | NAPHTHALENE<br>PHENANTHRENE                  | 0.22       | 0.2        | 20<br>510  | ug/L<br>ug/L | 1 U                  | 1 U                  | 1 U                  | 1 U                  | 1 U<br>0.2 U         | 1 U                  | 1 U                  | 1 U<br>0.2 U         | NA<br>NA             | 0.2 U<br>0.2 U       | 0.2 U                   | 0.2 U<br>0.2 U       | 0.2 U<br>0.2 U       | 0.2 U<br>0.2 U       | 0.2 U<br>0.2 U       | 0.19 U<br>0.19 U     | 0.19 U<br>0.19 U     | 0.19 U<br>0.19 U     | 0.19 U<br>0.19 U     | 0.19 U<br>0.19 U     | 0.19 U<br>0.19 U     | NA<br>NA             | NA<br>NA            | NA<br>NA              | 9.2 U<br>9.2 U       | 9.7 U<br>9.7 U      | NA<br>NA            | NA<br>NA            | NA<br>NA            |
|                   | PYRENE                                       | 0.5        | 1000       |            | ug/L         | 0.5 U                | NA NA                | 0.2 U                | 0.2 U                   | 0.2 U                | 0.2 U                | 0.2 U                | 0.2 U                | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U               | NA NA                | NA NA               | NA NA                 | 9.2 U                | 9.7 U               | NA NA               | NA NA               | NA.                 |
|                   | TOTAL PAHs                                   |            |            |            | ug/L         | ND                   | NA                   | ND                   | ND                      | ND                   | ND                   | ND                   | ND                   | ND                   | ND                   | ND                   | ND                   | ND                   | ND                   | NA                   | NA                  | NA                    | ND                   | ND                  | NA                  | NA                  | NA                  |
|                   | BENZENE                                      | 1          | 5          | 31.2       | ug/L         | 1 U                  | 1 U                  | 1 U                  | 1 U                  | 1 U                  | 1 U                  | 1 U                  | 1 U                  | NA                   | 1 U                  | 1 U                     | 1 U                  | 1 U                  | 1 U                  | 1 U                  | 1 U                  | 1 U                  | 1 U                  | 1 U                  | 1 U                  | 1 U                  | NA                   | NA                  | NA                    | 1 U                  | 1 U                 | NA                  | NA                  | NA                  |
|                   | ETHYLBENZENE                                 | 1          | 700        |            | ug/L         | 1 U                  | 1 U                  | 1 U                  | 1 U                  | 1 U                  | 1 U                  | 1 U                  | 1 U                  | NA                   | 1 U                  | 1 U                     | 1 U                  | 1 U                  | 1 U                  | 1 U                  | 1 U                  | 1 U                  | 1 U                  | 1 U                  | 1 U                  | 1 U                  | NA                   | NA                  | NA                    | 1 U                  | 1 U                 | NA                  | NA                  | NA                  |
|                   | p/m-XYLENE                                   |            |            |            | ug/L         | NA                   | 1 U                  | 1 U                  | 1 U                  | 1 U                  | 1 U                  | 1 U                  | 1 U                  | NA                   | NA                   | NA                      | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                  | NA                    | NA                   | NA                  | NA                  | NA                  | NA                  |
|                   | METHYLENE CHLORIDE                           |            |            |            | ug/L         | NA                   | 5 U                  | NA                      | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA.                  | NA                   | NA                   | NA .                 | NA                   | NA                  | NA                    | 5 U                  | 5 U                 | NA                  | NA                  | NA                  |
| VOCs              | o-XYLENE<br>TOLUENE                          | 1          | 1000       | 1900       | ug/L<br>ug/L | NA<br>1 U            | 1 U                  | 1 U                  | 1 U                  | 1 U                  | 1 U                  | 1 U                  | 1 U                  | NA<br>NA             | NA<br>1 U            | NA<br>1 U               | NA<br>1 U            | NA<br>1 U            | NA<br>1 U            | NA<br>1 U            | NA<br>1 U            | NA<br>1 U            | NA<br>1 U            | NA<br>1 U            | NA<br>1 U            | NA<br>1 U            | NA<br>NA             | NA<br>NA            | NA<br>NA              | NA<br>1 U            | NA<br>1 U           | NA<br>NA            | NA<br>NA            | NA<br>NA            |
|                   | XYLENES (TOTAL)                              | 2          | 10000      | 1500       | ug/L         | 2 U                  | 10                   | 10                   | 10                   | 10                   | 10                   | 10                   | 10                   | NA NA                | 2 U                  | 20                      | 2 U                  | 2 U                  | 2 U                  | 2 U                  | 2 U                  | 2 U                  | 2 U                  | 2 U                  | 2 U                  | 2 U                  | NA NA                | NA NA               | NA NA                 | 2 U                  | 2 U                 | NA.                 | NA NA               | NA NA               |
|                   | METHYL TERT BUTYL ETHER                      |            |            |            | ug/L         | NA                   | NA.                  | NA                   | NA .                 | NA                   | NA                   | NA.                  | NA                   | NA                   | NA                   | NA .                    | NA                   | NA .                 | NA                   | NA                   | 10 U                 | 10 U                 | 10 U                 | NA                   | NA                   | 10 U                 | NA                   | NA                  | NA                    | 10 U                 | 10 U                | NA                  | NA NA               | NA .                |
|                   | TOTAL BTEX                                   |            |            |            | ug/L         | ND                   | NA                   | ND                   | ND                      | ND                   | ND                   | ND                   | ND                   | ND                   | ND                   | ND                   | ND                   | ND                   | ND                   | NA                   | NA                  | NA                    | ND                   | ND                  | NA                  | NA                  | NA                  |
|                   | ARSENIC                                      | 0.018      | 0.018      | 0.018      | mg/L         | 0.0137               | 0.018                | 0.01 U               | 0.01 U               | 0.01 U               | 0.015                | 0.01 U               | 0.011                | NA                   | 0.015                | 0.015                   | 0.01                 | 0.011                | 0.016                | 0.01 U               | 0.02 U               | 0.02 U               | NA                   | NA                  | NA                    | 0.02 U               | 0.02 U              | 0.02 U              | 0.02 U              | 0.02 U              |
|                   | BERYLLIUM                                    |            | 0.004      |            | mg/L         | 0.005 U              | NA                      | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                  | NA                    | NA                   | NA                  | NA                  | NA                  | NA                  |
|                   | BORON                                        |            |            |            | mg/L         | NA                      | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                  | NA                    | NA                   | NA                  | NA                  | NA                  | NA                  |
|                   | GALCIUM METAL                                |            | 0.005      |            | mg/L         | 0.005 U<br>NA        | NA<br>NA                | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA            | NA<br>NA              | NA<br>NA             | NA<br>NA            | NA<br>NA            | NA<br>NA            | NA<br>NA            |
|                   | CHROMIUM                                     | 0.013      | 0.1        |            | mg/L         | 0.01 U               | NA NA                | 0.01 U               | 0.01 U                  | 0.01 U               | 0.01 U               | 0.01 U               | 0.01 U               | 0.01 U               | 0.01 U               | 0.01 U               | 0.01 U               | 0.01 U               | 0.01 U               | NA NA                | NA NA               | NA NA                 | 0.01 U               | 0.01 U              | NA.                 | NA NA               | NA NA               |
| Metals, Total     | LEAD                                         | 0.007      | 0.015      | 0.015      | mg/L         | 0.005 U              | 0.0071               | 0.0063 U             | 0.005 U              | 0.005 U              | 0.015                | 0.043                | 0.012                | NA                   | 0.005 U              | 0.005 U                 | 0.084                | 0.0085               | 0.21                 | 0.011                | 0.005 U              | 0.005 U              | 0.13                 | 0.014                | 0.01 U               | 0.01 U               | 0.013                | 0.28                | 0.013                 | 0.031                | 0.021               | 0.033               | 0.01 U              | 0.011               |
|                   | MAGNESIUM                                    |            |            |            | mg/L         | NA                      | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA.                  | NA                   | NA                   | NA                   | NA                   | NA                  | NA                    | NA                   | NA                  | NA                  | NA                  | NA                  |
|                   | MERCURY                                      |            | 0.002      |            | mg/L         | 0.0002 U             | NA                      | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                  | NA                    | NA                   | NA                  | NA                  | NA                  | NA                  |
|                   | NICKEL                                       | 0.13       | 0.1        | 2          | mg/L         | 0.04 U               | NA                   | 0.04 U               | 0.04 U                  | 0.04 U               | 0.04 U               | 0.04 U               | 0.04 U               | 0.04 U               | 0.04 U               | 0.04 U               | 0.04 U               | 0.04 U               | 0.04 U               | NA                   | NA                  | NA                    | 0.0063               | 0.04 U              | 0.04 U              | 0.04 U              | 0.04 U              |
|                   | POTASSIUM                                    |            |            |            | mg/L         | NA                      | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA .                 | NA                   | NA                  | NA                    | NA                   | NA                  | NA                  | NA                  | NA                  |
|                   | SODIUM                                       | 0.96       | 2          | 31         | mg/L<br>mg/L | NA<br>0.0429         | NA<br>0.021          | NA<br>0.02 U         | NA<br>0.02 U         | NA<br>0.02 U         | NA<br>0.02 U         | NA<br>0.054          | NA<br>0.02 U         | NA<br>NA             | NA<br>0.029          | NA<br>0.033             | NA<br>0.064          | NA<br>0.045          | NA<br>0.24           | NA<br>0.041          | NA<br>0.02 U         | NA<br>0.02 U         | NA<br>0.061          | NA<br>0.02 U         | NA<br>0.029          | NA<br>0.02 U         | NA<br>NA             | NA<br>NA            | NA<br>NA              | NA<br>0.047          | NA<br>0.02 U        | NA<br>0.02 U        | NA<br>0.02 U        | NA<br>0.02 U        |
|                   | ARSENIC                                      | 0.018      | 0.018      | 0.018      | mg/L         | NA NA                | NA NA                | 0.02 U               | 0.02 U               | NA                   | 0.02 U               | NA NA                | 0.02 U               | 0.01 U               | NA                   | NA NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA NA                | 0.001<br>0.01 U      | NA                   | NA NA                | NA NA                | NA NA                | NA NA               | NA NA                 | NA                   | NA                  | NA                  | NA NA               | NA NA               |
|                   | BERYLLIUM                                    |            | 0.004      |            | mg/L         | NA                   | NA .                 | NA                   | NA                      | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA.                  | NA                   | NA                  | NA                    | NA                   | NA                  | NA                  | NA                  | NA.                 |
|                   | CADMIUM                                      |            | 0.005      |            | mg/L         | NA                      | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                  | NA                    | NA                   | NA                  | NA                  | NA                  | NA                  |
| Metals, Dissolved | CHROMIUM                                     | 0.013      | 0.1        |            | mg/L         | NA                   | NA                   | 0.01 U               | 0.01 U               | NA                      | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | 0.01 U               | NA                   | NA                   | NA                   | NA                   | NA                  | NA                    | NA                   | NA                  | NA                  | NA                  | NA                  |
|                   | LEAD                                         | 0.007      | 0.015      | 0.015      | mg/L         | NA                   | NA                   | 0.005 U              | 0.005 U              | NA                   | 0.005 U              | 0.005 U              | 0.005 U              | 0.05                 | NA                   | NA                      | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | 0.04 U               | NA                   | NA                   | NA                   | NA                   | NA                  | NA                    | NA                   | NA                  | 0.01 U              | NA                  | NA                  |
|                   | MERCURY                                      |            | 0.002      |            | mg/L         | NA                      | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                  | NA                    | NA                   | NA                  | NA                  | NA                  | NA                  |
|                   | NICKEL                                       | 0.13       | 0.1        | 2          | mg/L         | NA                   | NA                   | 0.04 U               | 0.04 U               | NA                      | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | 0.005 U              | NA                   | NA                   | NA                   | NA                   | NA                  | NA                    | NA                   | NA                  | NA                  | NA                  | NA                  |
| -                 | ZINC<br>ALKALINITY                           | 0.96       | 2          | 31         | mg/L<br>mg/L | NA<br>NA             | NA<br>NA             | 0.021 U<br>NA        | 0.022 U<br>NA        | NA<br>NA             | NA<br>NA             | 0.051<br>NA          | NA<br>NA             | 0.11<br>NA           | NA<br>NA             | NA<br>NA                | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | 0.02 U<br>NA         | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA            | NA<br>NA              | NA<br>NA             | NA<br>NA            | NA<br>NA            | NA<br>NA            | NA<br>NA            |
|                   | ALKALINITY, TOTAL (AS CACO3)                 |            |            |            | mg/L         | NA<br>NA             | NA<br>NA             | NA NA                | NA NA                | NA<br>NA                | NA.                  | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA NA                | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA NA                | NA NA                | NA<br>NA            | NA<br>NA              | NA<br>NA             | NA NA               | NA<br>NA            | NA NA               | NA.                 |
|                   | AMMONIA AS N                                 | 15         | 30         | 30         | mg/L         | NA.                  | 5.5                  | 3.7                  | 5.9                  | 4.2                  | 4                    | 0.92                 | 5.6                  | NA NA                | 8.9                  | 8.9                     | 0.046                | 4.1                  | 0.18                 | 4.3                  | 1.8                  | 3.9                  | 1.8                  | 1.6                  | 1.4                  | 2.6                  | NA NA                | 1.1                 | 1.9                   | 1.7                  | 1.9                 | 2                   | 2.7                 | 2.7                 |
|                   | BICARBONATE                                  |            |            |            | mg/L         | NA                      | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                  | NA                    | NA                   | NA                  | NA                  | NA                  | NA .                |
| Miscellaneous     | CARBONATE                                    |            |            |            | mg/L         | NA                      | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                  | NA                    | NA                   | NA                  | NA                  | NA                  | NA                  |
| wiscellaneous     | CONDUCTIVITY                                 |            |            |            | umhos/<br>cm | NA                      | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                  | NA                    | NA                   | NA                  | NA                  | NA                  | NA                  |
|                   | NITRATE (AS N)                               |            | 10         |            | mg/L         | NA                      | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                  | NA                    | 0.21                 | 0.21                | 0.05 U              | 0.05 U              | 0.05 U              |
|                   | NITRITE (AS N)                               |            |            |            | mg/l         | NA                      | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                  | NA                    | NA                   | NA                  | NA                  | 0.05 U              | 0.05 U              |
|                   | SULFATE                                      |            |            |            | mg/L         | NA NA                | NA                   | NA NA                | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA NA                | NA NA                | NA NA                | NA                   | NA                      | NA NA                | NA<br>NA             | NA NA                | NA<br>NA             | NA NA                | NA                   | NA                   | NA                   | NA                   | NA NA                | NA NA                | NA NA               | NA<br>NA              | NA                   | NA NA               | NA<br>NA            | NA NA               | NA NA               |
| SVOCs             | SOLIDS, TOTAL DISSOLVED  1,4-DICHLOROBENZENE |            |            |            | mg/L<br>ug/L | NA<br>NA                | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA            | NA<br>NA              | NA<br>1 U            | NA<br>1 U           | NA<br>NA            | NA<br>NA            | NA<br>NA            |
|                   | 1                                            |            |            | 1          |              |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                         |                      |                      |                      |                      |                      |                      |                      |                      |                      | لــــــا             | •                    |                     |                       |                      |                     |                     |                     |                     |

Note:

Shaded cell indicates comparison standard used in data evaluation.

Inglighted cell indicates analytical result exceeds comparison criteria.

Bold and Rick tent indicates analytical result exceeds background value.

Bold and Rick tent indicates analytical result exceeds background value.

In Vitrate comparison standard based on the Maximum Containmant Level (MCL) stabilished by the USEPA National Primary C

No. No constituents detected above the laboratory infirmum detection limit.

J. Indicates constituent was not detected above value show.

J. Indicates constituent was not detected at an estimated value.

Maniforming with SMM-3B, PDMM-3B, PDMM-3B, PDMM-1TB, PDMM-1TB, PDMM-3TB, P

|                   |                                              |            |            |             | Location:    |                      |                      |                      |                      |                      |                      |                      | PDM\                 | /-14T                |                         |                      |                      |                      |                      |                      |                      |                      |                      |                   |                      |                      | PDMW                 | /-14TR               |                     |                      |                    |                     |                     |
|-------------------|----------------------------------------------|------------|------------|-------------|--------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-------------------|----------------------|----------------------|----------------------|----------------------|---------------------|----------------------|--------------------|---------------------|---------------------|
|                   |                                              |            | Sa         | imple Date: | 10/31/1997   | 8/10/1999            | 11/16/1999           | 2/24/2000            | 5/16/2000            | 8/22/2000            | 1/10/2001            | 7/10/2001            | 9/13                 | /2002                | 2/4/2003                | 6/24/2003            | 1/27/2004            | 7/23/2004            | 3/9/2006             | 10/7/2008            | 4/4/2008             | 7/20/                | 2008                 | 12/5/2009         | 3/23/2010            | 6/16/2010            | 9/14/                | 2010                 | 12/15               | 5/2010               | 6/17/2011          | 12/7/2011           |                     |
|                   |                                              |            |            | Sa          | mple Type:   | Normal               | Dup                     | Normal               | Dup               | Normal               | Normal               | Normal               | Normal               | Dup                 | Normal               | Dup                | Normal              | Normal              |
|                   |                                              |            |            |             | Sample ID:   | PDMW-<br>14T_10/31/1 | PDMW-<br>14T_8/10/19 | PDMW-<br>14T_11/16/1 | PDMW-<br>14T_2/24/20 | PDMW-<br>14T_5/16/20 | PDMW-<br>14T_8/22/20 | PDMW-<br>14T_1/10/20 | PDMW-<br>14T_7/10/20 | PDMW-<br>14T_9/13/20 | PDMW-14T<br>(DUP)_9/13/ | PDMW-<br>14T_2/4/200 | PDMW-<br>14T_6/24/20 | PDMW-<br>14T_1/27/20 | PDMW-<br>14T_7/23/20 | PDMW-<br>14T_3/9/200 | PDMW-<br>14T_10/7/20 | PDMW-<br>14TR_4/4/20 | PDMW-<br>14TR_7/20/2 | PDMW-<br>14TR-    | PDMW-<br>14TR_12/5/2 | PDMW-<br>14TR_3/23/2 | PDMW-<br>14TR_6/16/2 | PDMW-<br>14TR_9/14/2 | PDMW-<br>14TRDUP_9/ | PDMW-<br>14TR_12/15/ | PDMW-<br>14TRDUP2_ | PDMW-<br>14TR_06171 | PDMW-<br>14TR_12072 |
|                   |                                              |            |            |             |              | 997                  | 99                   | 999                  | 00                   | 00                   | 00                   | 01                   | 01                   | 02                   | 2002                    | 3                    | 03                   | 04                   | 04                   | 6                    | 08                   | 08                   | 008                  | DUP_7/20/20<br>08 | 009                  | 010                  | 010                  | 010                  | 14/2010             | 2010                 | 12/15/2010         | 1                   | 011                 |
| Method Group      | Analyte                                      | Background | Type 3 RRS | Type 4 R    | RS Units     | Result                  | Result               | Result               | Result               | Result               | Result               | Result               | Result               | Result               | Result            | Result               | Result               | Result               | Result               | Result              | Result               | Result             | Result              | Result              |
|                   | ACENAPHTHENE                                 | 1          | 2000       |             | ug/L         | 380                  | 270 D                | 330                  | 240                  | 210                  | 440                  | 520                  | 450 D                | 290                  | 220                     | 290                  | 310                  | 300                  | 130                  | 83                   | 93                   | 97                   | 110 J                | 67 J              | 58                   | 45                   | 24                   | 5.9                  | 7                   | 45                   | 93                 | 57                  | 110                 |
|                   | ACENAPHTHYLENE<br>ANTHRACENE                 | 0.2        | 0.2        | 510<br>5100 |              | 170<br>32            | 80 D<br>15 D         | 98<br>17             | 24<br>10             | 52<br>13             | 100<br>24            | 100<br>48            | 20<br>25             | 20 U                 | 20 U                    | 20 U                 | 20 U                 | 20 U                 | 8 U<br>40            | 2.9                  | 3<br>14              | 2.1                  | 2.6 J<br>19 J        | 1.9 U<br>8.8 J    | 1.2<br>2.6           | 1.9 U<br>3.4         | 0.95 U               | 4.5<br>0.2 U         | 1.9<br>0.19 U       | 1.9 U<br>3.9         | 9.5 U<br>9.5 U     | 1.9 U<br>5.6 J      | 20 U                |
|                   | BENZO(A)ANTHRACENE                           | 0.2        | 0.1        | 3.9         |              | 10 U                 | 0.21                 | 8 U                  | 2 U                  | 10 U                 | 2 U                  | 20 U                 | 2 U                  | 20 U                 | 20 U                    | 20 U                 | 20 U                 | 20 U                 | 8.1                  | 2.8                  | 1.9 U                | 1.9 U                | 4.5 J                | 1.9 U             | 0.97 U               | 1.9 U                | 0.95 U               | 0.57                 | 0.52                | 1.9 U                | 9.5 U              | 1.9 LU              | 20 U                |
|                   | BENZO(A)PYRENE                               | 0.2        | 0.2        | 0.39        |              | 10 U                 | 0.2 U                | 8 U                  | 2 U                  | 10 U                 | 2 U                  | 20 U                 | 2 U                  | 20 U                 | 20 U                    | 20 U                 | 20 U                 | 20 U                 | 8 U                  | 1 U                  | 1.9 U                | 1.9 U                | 2.6 J                | 1.9 U             | 0.97 U               | 1.9 U                | 0.95 U               | 0.2                  | 0.2                 | 1.9 U                | 9.5 U              | 1.9 W               | 20 U                |
|                   | BENZO(B)FLUORANTHENE                         | 0.2        | 0.2        | 0.65        | ug/L         | 10 U                 | 0.2 U                | 8 U                  | 2 U                  | 10 U                 | 2 U                  | 20 U                 | 2 U                  | 20 U                 | 20 U                    | 20 U                 | 20 U                 | 20 U                 | 8 U                  | 1 U                  | 1.9 U                | 1.9 U                | 2.5 J                | 1.9 U             | 0.97 U               | 1.9 U                | 0.95 U               | 0.29                 | 0.19                | 1.9 U                | 9.5 U              | 1.9 U               | 20 U                |
|                   | BENZO(G,H,I)PERYLENE                         |            |            |             | ug/L         | 25 U                 | NA                   | 20 U                 | NA                   | NA                   | NA                   | NA                   | NA                   | 20 U                 | 20 U                    | 20 U                 | 20 U                 | 20 U                 | 8 U                  | 1 U                  | 1.9 U                | 1.9 U                | 1.9 U                | 1.9 U             | 0.97 U               | 1.9 U                | 0.95 U               | 0.2 U                | 0.19 U              | 1.9 U                | 9.5 U              | 1.9 W               | 20 U                |
|                   | BENZO(K)FLUORANTHENE<br>CHRYSENE             |            |            |             | ug/L         | 25 U                 | NA                   | 8 U                  | NA                   | NA                   | NA                   | NA                   | NA                   | 20 U                 | 20 U                    | 20 U                 | 20 U                 | 20 U                 | 8 U                  | 1.3                  | 1.9 U                | 1.9 U                | 1.9 U                | 1.9 U             | 0.97 U               | 1.9 U                | 0.95 U               | 0.24                 | 0.19                | 1.9 U                | 9.5 U              | 1.9 W               | 20 U                |
| PAHs              | DIBENZO(A,H)ANTHRACENE                       | 0.2        | 0.2        | 65          | ug/L         | 10 U<br>50 U         | 0.31<br>NA           | 8 U                  | 2 U<br>NA            | 10 U<br>NA           | 2 U<br>NA            | 20 U<br>NA           | 2 U<br>NA            | 20 U                 | 20 U                    | 20 U                 | 20 U                 | 20 U                 | 8.6<br>8 U           | 2.7<br>1 U           | 1.9 U                | 1.9 U                | 5.5 J                | 1.9 U             | 1.1<br>0.97 U        | 1.9 U                | 0.95 U<br>0.95 U     | 0.65<br>0.2 U        | 0.62<br>0.19 U      | 1.9 U                | 9.5 U<br>9.5 U     | 1.9 W               | 20 U                |
|                   | FLUORANTHENE                                 | 0.5        | 1000       |             | ug/L         | 46                   | 12                   | 20 U                 | 11                   | 25 U                 | 17                   | 50 U                 | 14                   | 22                   | 20 U                    | 20 U                 | 20 U                 | 30                   | 59                   | 29                   | 32                   | 25                   | 56 J                 | 26 J              | 33                   | 26                   | 27                   | 15                   | 12                  | 28                   | 62                 | 28                  | 40                  |
|                   | FLUORENE                                     | 0.5        | 1000       |             | ug/L         | 260                  | 160 D                | 200                  | 110                  | 120                  | 210                  | 260                  | 270 D                | 180                  | 130                     | 170                  | 170                  | 170                  | 120                  | 68                   | 92                   | 85                   | 120 J                | 68 J              | 38                   | 40                   | 29                   | 0.31                 | 1.1                 | 49                   | 99                 | 49                  | 80                  |
|                   | INDENO(1,2,3-CD)PYRENE                       |            | 0.4        |             | ug/L         | 25 U                 | NA                   | 8 U                  | NA                   | NA                   | NA                   | NA                   | NA                   | 20 U                 | 20 U                    | 20 U                 | 20 U                 | 20 U                 | 8 U                  | 1 U                  | 1.9 U                | 1.9 U                | 1.9 U                | 1.9 U             | 0.97 U               | 1.9 U                | 0.95 U               | 0.2 U                | 0.19 U              | 1.9 U                | 9.5 U              | 1.9 W               | 20 U                |
|                   | 1-METHYLNAPHTHALENE                          |            |            |             | ug/L         | NA                   | NA                   | 250                  | NA                   | NA                   | NA                   | NA                   | NA                   | 170                  | 130                     | 180                  | 190                  | 200                  | 61                   | 34                   | 8.5                  | 6.5                  | 5.7 J                | 2.5 J             | 8.7                  | 8                    | 1.9 U                | 0.4 U                | 0.38 U              | 11                   | 23                 | 13                  | 46                  |
|                   | 2-METHYLNAPHTHALENE                          | 1          |            |             | ug/L         | NA<br>eann           | NA 2100 D            | 400                  | NA<br>2500 D         | NA 2100 D            | NA<br>2200           | NA<br>2000 D         | NA<br>2000 D         | 22<br>1500           | 20 U                    | 20 U                 | 20 U                 | 27                   | 100                  | 3.2                  | 6.3                  | 2.8                  | 4.6 J                | 1.9 U             | 0.97 U               | 1.9 U                | 0.95 U               | 0.2 U                | 0.19 U              | 3<br>160             | 9.7                | 3.2 J               | 39                  |
|                   | NAPHTHALENE<br>PHENANTHRENE                  | 0.22       | 0.2        | 20<br>510   | ug/L<br>ug/L | 6200<br>360          | 2100 D<br>160 D      | 4200<br>190          | 2500 D<br>120 D      | 2100 D<br>120        | 3200<br>230          | 2900 D<br>290        | 3000 D<br>280 D      | 200                  | 1400                    | 1600                 | 1500                 | 1000                 | 540 *X<br>230        | 97<br>67             | 170<br>8.1           | 74<br>15             | 5.4 J<br>42 J        | 11 J<br>9.1 J     | 17<br>3.3            | 28<br>4.8            | 0.95 U<br>0.95 U     | 0.2 U<br>0.2 U       | 0.19 U<br>0.19 U    | 160                  | 320<br>44          | 99                  | 670<br>74           |
|                   | PYRENE                                       | 0.5        | 1000       |             | ug/L         | 26                   | 5.8                  | 20 U                 | 5.2 J                | 25 U                 | 10                   | 50 U                 | 5 U                  | 20 U                 | 20 U                    | 20 U                 | 20 U                 | 20 U                 | 33                   | 14                   | 20                   | 17 J                 | 36 J                 | 14 J              | 16                   | 16                   | 9.8                  | 10                   | 8.2                 | 16                   | 33                 | 19                  | 25                  |
|                   | TOTAL PAHs                                   |            |            |             | ug/L         | 7474                 | 2803.32              | 5685                 | 3020.2               | 2615                 | 4231                 | 4118                 | 4059                 | 2384                 | 2020                    | 2380                 | 2340                 | 1928                 | 1329.7               | 419.9                | 446.9                | 335.4                | 416.4                | 206.4             | 178.9                | 171.2                | 91.4                 | 37.66                | 31.92               | 331.9                | 683.7              | 294.8               | 1084                |
|                   | BENZENE                                      | 1          | 5          | 31.2        | ug/L         | 120                  | 110                  | 69                   | 57                   | 44                   | 29                   | 86                   | 120                  | 35                   | 30                      | 49                   | 47 D                 | 110 D                | 7.1                  | 3.2                  | 3.4                  | 3.2                  | 1 U                  | 1 U               | 1                    | NA                   | 1 U                  | NA                   | NA                  | NA                   | NA                 | 2                   | NA                  |
|                   | ETHYLBENZENE                                 | 1          | 700        |             | ug/L         | 28                   | 33                   | 25                   | 20                   | 22                   | 19                   | 30                   | 29                   | 12                   | 9.4                     | 8.9                  | 9.4                  | 25                   | 5.2                  | 5                    | 1 U                  | 1 U                  | 1 U                  | 1 U               | 1 U                  | NA                   | 1 U                  | NA                   | NA                  | NA                   | NA                 | 1 U                 | NA                  |
|                   | p/m-XYLENE                                   |            |            |             | ug/L         | NA                   | 40                   | 15                   | 31                   | 34                   | 18                   | 37                   | 21                   | NA                   | NA                      | NA                   | NA                   | NA                   | NA                   | NA                   | NA .                 | NA                   | NA                   | NA                | NA                   | NA                   | NA                   | NA                   | NA .                | NA                   | NA                 | NA                  | NA                  |
| VOCs              | METHYLENE CHLORIDE<br>o-XYLENE               |            |            |             | ug/L<br>ug/L | NA<br>NA             | 25 U<br>30           | NA<br>35             | NA<br>56             | NA<br>50             | NA<br>14             | NA<br>34             | NA<br>33             | NA<br>NA             | NA<br>NA                | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA          | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA            | NA<br>NA             | NA<br>NA           | NA<br>NA            | NA<br>NA            |
|                   | TOLUENE                                      | 1          | 1000       | 1900        | _            | 24                   | 26                   | 12                   | 15                   | 11                   | 4.5                  | 23                   | 31                   | 6.8                  | 5.8                     | 5.6                  | 5.6                  | 20                   | 4.6                  | 1.2                  | 1 U                  | 1 U                  | 1 U                  | 1 U               | 1 U                  | NA NA                | 1 U                  | NA NA                | NA NA               | NA NA                | NA NA              | 1 U                 | NA                  |
|                   | XYLENES (TOTAL)                              | 2          | 10000      |             | ug/L         | 250                  | 70                   | 50                   | 87                   | 84                   | 32                   | 71                   | 54                   | 48                   | 40                      | 54                   | 43                   | 54                   | 12                   | 4.3                  | 3.6                  | 5.4                  | 2 U                  | 2 U               | 3.7                  | NA                   | 2 U                  | NA                   | NA                  | NA                   | NA                 | 4                   | NA                  |
|                   | METHYL TERT BUTYL ETHER                      |            |            |             | ug/L         | NA                   | NA                   | NA                   | NA                   | NA.                  | NA                   | NA                   | NA                   | NA                   | NA                      | NA                   | NA                   | NA                   | NA                   | 10 U                 | NA                   | 10 U                 | 10 U                 | 10 U              | NA                   | NA                   | 10 U                 | NA                   | NA                  | NA                   | NA                 | NA                  | NA                  |
|                   | TOTAL BTEX                                   |            |            |             | ug/L         | 422                  | 239                  | 156                  | 179                  | 161                  | 84.5                 | 210                  | 234                  | 101.8                | 85.2                    | 117.5                | 105                  | 209                  | 28.9                 | 13.7                 | 7                    | 8.6                  | ND                   | ND                | 4.7                  | NA                   | ND                   | NA                   | NA                  | NA                   | NA                 | 6                   | NA                  |
|                   | ARSENIC                                      | 0.018      | 0.018      | 0.018       | _            | 0.0108               | 0.013                | 0.01 U               | 0.01                 | 0.01 U               | 0.013                | 0.01 U               | 0.01 U               | 0.016                | 0.014                   | 0.01 U               | 0.01 U               | 0.01 U               | 0.01                 | 0.01 U               | 0.01 U               | 0.01 U               | 0.01 U               | 0.01 U            | 0.02 U               | NA                   | 0.02 U               | NA                   | NA                  | NA                   | NA                 | NA                  | NA                  |
|                   | BERYLLIUM<br>BORON                           |            | 0.004      |             | mg/L         | 0.005 U<br>NA        | NA<br>NA                | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA          | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA            | NA<br>NA             | NA<br>NA           | NA<br>NA            | NA<br>NA            |
|                   | CADMIUM                                      |            | 0.005      |             | mg/L         | 0.005 U              | NA NA                | NA NA                | NA.                  | NA.                  | NA NA                   | NA NA                | NA NA                | NA NA                | NA NA                | NA NA                | NA NA                | NA NA                | NA NA                | NA NA             | NA NA                | NA NA                | NA                   | NA NA                | NA NA               | NA NA                | NA NA              | NA NA               | NA                  |
|                   | CALCIUM METAL                                |            |            |             | mg/L         | NA                      | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                | NA                   | NA                   | NA                   | NA                   | NA                  | NA                   | NA                 | NA                  | NA                  |
|                   | CHROMIUM                                     | 0.013      | 0.1        |             | mg/L         | 0.01 U                  | 0.01 U               | 0.01 U               | 0.011                | 0.014                | 0.01 U               | 0.01 U               | 0.01 U               | 0.01 U               | 0.01 U            | 0.01 U               | NA                   | 0.01 U               | NA                   | NA                  | NA                   | NA                 | NA                  | NA                  |
| Metals, Total     | LEAD                                         | 0.007      | 0.015      | 0.015       | mg/L         | 0.0057               | 0.005 U                 | 0.005 U              | 0.005 U              | 0.0057               | 0.019                | 0.005 U              | 0.005 U              | 0.005 U              | 0.005 U              | 0.005 U           | 0.01 U               | NA                   | 0.01 U               | NA                   | NA                  | NA                   | NA                 | 0.01 U              | NA                  |
|                   | MAGNESIUM                                    |            |            |             | mg/L         | NA                      | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                | NA                   | NA                   | NA                   | NA                   | NA                  | NA                   | NA                 | NA                  | NA                  |
|                   | MERCURY<br>NICKEL                            | 0.13       | 0.002      | 2           | mg/L         | 0.0002 U<br>0.04 U   | 0.04 U               | 0.04 U               | 0.04 U               | 0.04 U               | 0.04 U               | 0.04 U               | NA<br>0.04 U         | 0.04 U               | 0.04 U                  | 0.04 U               | NA<br>0.04 U         | 0.04 U               | 0.04 U               | NA<br>0.04 U         | 0.04 U               | NA<br>0.04 U         | NA<br>0.04 U         | 0.04 U            | NA<br>0.04 U         | NA<br>NA             | 0.04 U               | NA<br>NA             | NA<br>NA            | NA<br>NA             | NA<br>NA           | NA<br>NA            | NA<br>NA            |
|                   | POTASSIUM                                    |            |            |             | mg/L         | NA NA                | NA .                 | NA NA                | NA.                  | NA.                  | NA NA                   | NA                   | NA.                  | NA NA                | NA                   | NA.                  | NA NA                | NA NA                | NA NA                | NA NA             | NA NA                | NA.                  | NA NA                | NA NA                | NA NA               | NA NA                | NA NA              | NA NA               | NA                  |
|                   | SODIUM                                       |            |            |             | mg/L         | NA                   | NA                   | NA                   | NA                   | NA.                  | NA                   | NA                   | NA                   | NA                   | NA                      | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                | NA                   | NA                   | NA                   | NA                   | NA                  | NA                   | NA                 | NA                  | NA                  |
|                   | ZINC                                         | 0.96       | 2          | 31          | mg/L         | 0.02 U               | 0.021                | 0.02 U               | 0.02 U               | 0.02 U                  | 0.02 U               | 0.02 U               | 0.023                | 0.064                | 0.02 U               | 0.02 U               | 0.02 U               | 0.02 U               | 0.02 U            | 0.02 U               | NA                   | 0.02 U               | NA                   | NA                  | NA                   | NA                 | NA                  | NA                  |
| 1                 | ARSENIC                                      | 0.018      | 0.018      | 0.018       |              | NA                   | NA                   | 0.01 U               | 0.01 U               | NA                   | 0.01 U               | NA                   | NA                   | NA                   | NA                      | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                | NA                   | NA                   | NA                   | NA                   | NA                  | NA                   | NA                 | NA                  | NA                  |
| 1                 | BERYLLIUM<br>CADMIUM                         |            | 0.004      |             | mg/L         | NA<br>NA                | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA          | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA            | NA<br>NA             | NA<br>NA           | NA<br>NA            | NA<br>NA            |
|                   | CHROMIUM                                     | 0.013      | 0.005      |             | mg/L<br>mg/L | NA<br>NA             | NA<br>NA             | 0.01 U               | 0.01 U               | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA                | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA          | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA            | NA<br>NA             | NA<br>NA           | NA<br>NA            | NA<br>NA            |
| Metals, Dissolved | LEAD                                         | 0.007      | 0.015      | 0.015       |              | NA NA                | NA NA                | 0.005 U              | 0.005 U              | NA.                  | NA.                  | NA NA                | NA NA                | NA NA                | NA NA                   | NA NA                | NA NA                | NA NA                | NA NA                | NA NA                | NA NA                | NA NA                | NA NA                | NA NA             | NA.                  | NA NA                | NA NA                | NA NA                | NA NA               | NA NA                | NA NA              | NA NA               | NA NA               |
|                   | MERCURY                                      |            | 0.002      |             | mg/L         | NA                      | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                | NA                   | NA                   | NA                   | NA                   | NA                  | NA                   | NA                 | NA                  | NA                  |
|                   | NICKEL                                       | 0.13       | 0.1        | 2           | mg/L         | NA                   | NA                   | 0.04 U               | 0.04 U               | NA                   | NA                   | NA                   | NA                   | NA                   | NA                      | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                | NA                   | NA                   | NA                   | NA                   | NA                  | NA                   | NA                 | NA                  | NA                  |
| <u> </u>          | ZINC                                         | 0.96       | 2          | 31          | mg/L         | NA                   | NA                   | 0.02 U               | 0.02 U               | NA                   | NA                   | 0.034                | NA                   | NA                   | NA                      | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                | NA                   | NA                   | NA                   | NA                   | NA                  | NA                   | NA                 | NA                  | NA                  |
|                   | ALKALINITY                                   |            |            |             | mg/L         | NA                      | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                | NA                   | NA                   | NA                   | NA                   | NA                  | NA                   | NA                 | NA                  | NA                  |
|                   | ALKALINITY, TOTAL (AS CACO3)  AMMONIA AS N   | 15         | 30         | 30          | mg/L<br>mg/L | NA<br>NA             | NA<br>200            | NA<br>240            | 140                  | NA<br>180            | NA<br>370            | NA<br>190            | NA<br>220            | NA<br>260            | NA<br>250               | NA<br>260            | NA<br>250            | NA<br>260            | NA<br>72             | NA<br>110            | NA<br>190            | NA<br>84             | NA<br>5.5            | NA<br>6.4         | NA<br>66             | NA<br>NA             | NA<br>56             | NA<br>NA             | NA<br>NA            | NA<br>67             | NA<br>61           | NA<br>41            | NA<br>5.9           |
|                   | BICARBONATE                                  |            | - 30       |             | mg/L         | NA<br>NA             | NA NA                | NA                   | NA                   | NA.                  | NA                   | NA NA                | NA                   | NA NA                | NA NA                   | NA NA                | NA NA                | NA NA                | NA                   | NA NA                | NA NA                | NA                   | NA                   | NA                | NA.                  | NA<br>NA             | NA NA                | NA<br>NA             | NA<br>NA            | NA                   | NA NA              | NA NA               | NA                  |
|                   | CARBONATE                                    |            |            |             | mg/L         | NA NA                | NA NA                | NA NA                | NA.                  | NA.                  | NA NA                   | NA NA                | NA NA                | NA.                  | NA                   | NA                   | NA NA                | NA                   | NA NA                | NA NA             | NA.                  | NA.                  | NA NA                | NA NA                | NA NA               | NA NA                | NA NA              | NA .                | NA                  |
| Miscellaneous     | CONDUCTIVITY                                 |            |            |             | umhos/<br>cm | NA                      | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                | NA                   | NA                   | NA                   | NA                   | NA                  | NA                   | NA                 | NA                  | NA                  |
|                   | NITRATE (AS N)                               |            | 10         |             | mg/L         | NA                      | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                | NA                   | NA                   | NA                   | NA                   | NA                  | NA                   | NA                 | NA                  | NA                  |
|                   | NITRITE (AS N)                               |            |            |             | mg/l         | NA                      | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                | NA                   | NA                   | NA                   | NA                   | NA                  | NA                   | NA                 | NA                  | NA                  |
|                   | SULFATE                                      |            |            |             | mg/L         | NA NA                | NA<br>NA             | NA NA                   | NA NA                | NA                   | NA NA                | NA NA                | NA NA                | NA NA                | NA NA                | NA NA                | NA NA             | NA NA                | NA NA                | NA NA                | NA NA                | NA NA               | NA NA                | NA NA              | NA NA               | NA NA               |
| SVOCs             | SOLIDS, TOTAL DISSOLVED  1,4-DICHLOROBENZENE |            |            |             | mg/L<br>ug/L | NA<br>NA                | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA          | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA            | NA<br>NA             | NA<br>NA           | NA<br>NA            | NA<br>NA            |
| L                 | 1                                            |            |            | 1           | 1            |                      | 1                    |                      | 1                    | 1                    |                      |                      |                      |                      |                         |                      |                      |                      |                      |                      |                      |                      |                      |                   |                      |                      |                      |                      |                     |                      |                    |                     |                     |

Notes:

Shaded cell indicates comparison standard used in data evaluation.

rightighted cell indicates analytical result exceeds comparison criteria.

Bold and fault tent indicates analytical result exceeds background value.

In Nara comparison standard back on the Maximum Containmant Level (MCL) established by the USEPA National Primary C

NO - No constituents detected above the laboratory minimum detection limit.

I. Indicates constituent was not detected above value shown.

I. Indicates constituent was not detected at an estimated value.

Monitoring will a MW 38, POMMY 48, POMMY 488, POMMY 118, POMMY 14TR, POMMY 23R, POMMY 318, POMMY 318, POMMY 318, POMMY 318, POMMY 318, POMMY 318, POMMY 319, POMMY 318, POMMY 318,

|                   |                                            |                 |          | Locat      | tion:      |                   |                   |                   |                     |                   |                       |                   |                   |                   |                   |                   | PDMW              | /-15T             |                          |                  |                   |                   |                   |                      |                  |                    |            |             |           |            |                    |                   |                     |                   |                   | PDM\              | W-16T             |                  |                   |                   |                   |                                  |
|-------------------|--------------------------------------------|-----------------|----------|------------|------------|-------------------|-------------------|-------------------|---------------------|-------------------|-----------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------------|------------------|-------------------|-------------------|-------------------|----------------------|------------------|--------------------|------------|-------------|-----------|------------|--------------------|-------------------|---------------------|-------------------|-------------------|-------------------|-------------------|------------------|-------------------|-------------------|-------------------|----------------------------------|
|                   |                                            |                 |          | Sample D   | )ate: 10   | 0/27/1997         | 8/9/1999          | 11/16/1999        | 9 2/25/2000         | 5/15/200          | 00 8/21/2000          | 1/9/2001          | 7/10/2001         | 9/12/2002         | 2/5/2003          | 6/24/2003         | 1/27/2004         | 7/20/2004         | 3/5/200                  | 6 4              | 1/3/2008          | 7/19/2008         | 10/7/2008         | 12/4/2009            | 6/16/2010        | 12/16/2010         | 6/15/2011  | 12/5/2011   | 10/3      | 1/1997 8   | 10/1999 1          | 1/16/1999         | 2/24/2000           | 5/16/2000         | 8/21/2000         | 1/9/2001          | 7/10/2001         | 2/5/2002         | 9/12/2002         | 2/4/2003          | 6/24/2003         | 1/27/2004 7/20/2004              |
|                   |                                            |                 |          | Sample T   | ype: I     | Normal            | Normal            | Normal            | Normal              | Normal            | al Normal             | Normal            | Normal            | Normal            | Normal            | Normal            | Normal            | Normal            | Norma                    | 1 1              | Normal            | Normal            | Normal            | Normal               | Normal           | Normal             | Normal     | Normal      | Dup No    | ormal I    | lormal             | Normal            | Normal              | Normal            | Normal            | Normal            | Normal            | Normal           | Normal            | Normal            | Normal            | Normal Normal                    |
|                   |                                            |                 |          |            |            | PDMW-             | PDMW-             | PDMW-             | PDMW-               | PDMW-             | /- PDMW-              | PDMW-             | PDMW-             | PDMW-             | PDMW-             | PDMW-             | PDMW-             | PDMW-             |                          | DMW-15T          | PDMW-             | PDMW-             | PDMW-             | PDMW-                | PDMW-            | PDMW-              | PDMW-      | PDMW-15T- D | UP-01- PI | MW- I      | PDMW-              | PDMW-             | PDMW-               | PDMW-             | PDMW-             | PDMW-             | PDMW-             | PDMW-            | PDMW-             | PDMW-             | PDMW-             | PDMW- PDMW-                      |
|                   |                                            |                 |          | Sample     | e ID: 15   | 997               | 15T_8/9/199<br>9  | 999<br>999        | 1 15T_2/25/20<br>00 | 0 15T_5/15/<br>00 | 5/20 15T_8/21/2<br>00 | 15T_1/9/200<br>1  | 15T_7/10/20<br>01 | 15T_9/12/20<br>02 | 15T_2/5/200 1     | 15T_6/24/20<br>03 | 15T_1/27/20<br>04 | 15T_7/20/20<br>04 | Filtered_3/5 Un<br>/2006 | /5/2006 15       | T_4/3/200 1       | 15T_7/19/20<br>08 | 15T_10/7/20<br>08 | 15T_12/4/20 15<br>09 | 5T_6/16/20<br>10 | 15T_12/16/2<br>010 | 15T_061511 | 12052011 12 | 000044    | 10/31/1 16 | 7_8/10/19 11<br>99 | 6T_11/16/1<br>999 | 16T_2/24/20 1<br>00 | 6T_5/16/20<br>00  | 16T_8/21/20<br>00 | 16T_1/9/200<br>1  | 16T_7/10/20<br>01 | 16T_2/5/200<br>2 | 16T_9/12/20<br>02 | 16T_2/4/200<br>3  | 16T_6/24/20<br>03 | 16T_1/27/20 16T_7/20/2<br>04 04  |
| Method Gro        | o Analyte                                  | Background Type | 3 RRS Ty | pe 4 RRS U | nits       | Result            | Result            | Result            | Result              | Result            | t Result              | Result            | Result            | Result            | Result            | Result            | Result            | Result            | Result                   | Result           | Result            | Result            | Result            | Result               | Result           | Result             | Result     | Result F    | lesult R  | sult       | Result             | Result            | Result              | Result            | Result            | Result            | Result            | Result           | Result            | Result            | Result            | Result Result                    |
|                   | ACENAPHTHENE                               | 1 2             | 2000     | u          | g/L        | 1 U               | 1 U               | 1 U               | 1 U                 | 1 U               | 1 U                   | 1 U               | 1 U               | 1 U               | 0.26              | 0.28              | 0.2 U             | 0.51              | 0.98 U                   | 0.96 U           | 16                | 5.5               | 19 U              | 2.1                  | 1.3              | NA                 | NA         | NA .        | NA        | 1 U        | 1 U                | 1 U               | 1 U                 | 1 U               | 1 U               | 1 U               | 1 U               | NA               | 1 U               | 0.38              | 0.2 U             | 0.32 0.71                        |
|                   | ACENAPHTHYLENE                             | 1.4             | 1        | 510 u      | g/L        | 1 U               | 1 U               | 1 U               | 1 U                 | 1 U               | 1 U                   | 1 U               | 1 U               | 1 U               | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U             | 0.98 U                   | 0.96 U           | 2 U               | 0.19 U            | 19 U              | 1.9 U                | 0.19 U           | NA                 | NA         | NA          | NA        | 1 U        | 1 U                | 1 U               | 1 U                 | 1 U               | 1 U               | 2.6               | 1 U               | NA               | 1 U               | 0.2 U             | 0.2 U             | 0.2 U 0.2 U                      |
|                   | ANTHRACENE                                 |                 | 0.2      | 5100 u     | _          | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U               | 0.2 U             |                       | 0.2 U             | 0.2 U             | 1 U               | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U             |                          | 0.96 U           | 2 U               | 0.19 U            | 19 U              |                      | 0.19 U           | NA                 | NA         |             |           |            | 0.2 U              | 0.2 U             | 0.2 U               | 0.2 U             | 0.2 U             | 0.25              | 0.2 U             | NA               | 1 U               | 0.2 U             | 0.2 U             | 0.2 U 0.2 U                      |
|                   | BENZO(A)ANTHRACENE                         | +               | 0.1      | 3.9 u      | _          | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U               | 0.2 U             |                       | 0.2 U             | 0.2 U             | 1 U               | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U             |                          |                  | 2 U               | 0.19 U            | 19 U              |                      | 0.19 U           | NA                 | NA         |             |           |            | 0.49 J             | 0.2 U             | 0.2 U               | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U             | NA               | 1 U               | 0.2 U             | 0.2 U             | 0.2 U 0.2 U                      |
|                   | BENZO(A)PYRENE                             | +               | 0.2      | 0.39 u     | _          | 0.2 U<br>0.2 U    | 0.2 U             | 0.2 U             | 0.2 U               | 0.2 U             |                       | 0.2 U             | 0.2 U             | 1 U               | 0.2 U<br>0.2 U    | 0.2 U<br>0.2 U    | 0.2 U             | 0.2 U             |                          | 0.96 U<br>0.96 U | 2 U               | 0.19 U<br>0.19 U  | 19 U              |                      | 0.19 U<br>0.19 U | NA<br>NA           | NA<br>NA   |             |           |            | 0.2 U              | 0.2 U             | 0.2 U               | 0.2 U             | 0.2 U             | 0.2 U<br>0.2 U    | 0.2 U             | NA<br>NA         | 1 U               | 0.2 U             | 0.2 U             | 0.2 U 0.2 U<br>0.2 U 0.2 U       |
|                   | BENZO(B)FLUORANTHENE BENZO(G,H,I)PERYLENE  | 0.2             | 0.2      | 0.65       | _          | 0.2 U             | NA                | 0.2 U<br>0.5 U    | 0.2 U<br>NA         | NA                | NA                    | 0.2 U<br>NA       | 0.2 U<br>NA       | 10                | 0.2 U             | 0.2 U             | 0.2 U<br>0.2 U    | 0.2 U<br>0.2 U    |                          |                  | 2 U               | 0.19 U            | 19 U              |                      | 0.19 U           | NA NA              | NA<br>NA   |             |           | .2 U       | 0.2 U<br>NA        | 0.2 U<br>NA       | 0.2 U<br>NA         | 0.2 U<br>NA       | 0.2 U<br>NA       | NA                | NA                | NA<br>NA         | 10                | 0.2 U             | 0.2 U             | 0.2 U 0.2 U                      |
|                   | BENZO(K)FLUORANTHENE                       |                 |          | u          | _          | 0.5 U             | NA NA             | 0.2 U             | NA.                 | NA NA             | NA NA                 | NA NA             | NA NA             | 1 U               | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U             |                          |                  | 2 U               | 0.19 U            | 19 U              |                      | 0.19 U           | NA NA              | NA NA      |             |           | .5 U       | NA NA              | NA NA             | NA NA               | NA NA             | NA NA             | NA NA             | NA NA             | NA NA            | 10                | 0.2 U             | 0.2 U             | 0.2 U 0.2 U                      |
|                   | CHRYSENE                                   | 0.2             | 0.2      | 65 u       | g/L        | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U               | 0.2 U             | 0.2 U                 | 0.2 U             | 0.2 U             | 1 U               | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U             | 0.98 U                   |                  | 2 U               | 0.19 U            | 19 U              |                      | 0.19 U           | NA                 | NA         |             |           |            | 0.78               | 0.2 U             | 0.2 U               | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U             | NA               | 1 U               | 0.2 U             | 0.2 U             | 0.2 U 0.2 U                      |
| PAHs              | DIBENZO(A,H)ANTHRACENE                     | **              | 0.3      | u          | g/L        | 1 U               | NA                | 0.2 U             | NA.                 | NA                | NA.                   | NA                | NA                | 1 U               | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U             | 0.98 U                   | 0.96 U           | 2 U               | 0.19 U            | 19 U              | 1.9 U                | 0.19 U           | NA                 | NA         | NA          | NA        | 1 U        | NA                 | NA                | NA                  | NA                | NA                | NA                | NA                | NA               | 1 U               | 0.2 U             | 0.2 U             | 0.2 U 0.2 U                      |
|                   | FLUORANTHENE                               | 0.5 1           | 1000     | u          | g/L        | 0.5 U             | 0.5 U             | 0.5 U             | 0.5 U               | 0.5 U             | 0.5 U                 | 0.5 U             | 0.5 U             | 1 U               | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U             | 0.98 U                   | 0.96 U           | 2 U               | 0.19 U            | 19 U              | 1.9 U                | 0.19 U           | NA                 | NA         | NA          | NA (      | .5 U       | 0.5 U              | 0.5 U             | 0.5 U               | 0.5 U             | 0.5 U             | 0.5 U             | 0.5 U             | NA               | 1 U               | 0.2 U             | 0.2 U             | 0.2 U 0.2 U                      |
|                   | FLUORENE                                   | 0.5 1           | 1000     | u          | g/L        | 0.5 U             | 0.5 U             | 0.5 U             | 0.5 U               | 0.5 U             | 0.5 U                 | 0.5 U             | 0.5 U             | 1 U               | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U             | 0.98 U                   | 0.96 U           | 8.7               | 3.1               | 19 U              | 1.9 U                | 0.7              | NA                 | NA         | NA          | NA (      | .5 U       | 0.5 U              | 0.5 U             | 0.5 U               | 0.5 U             | 0.5 U             | 0.5 U             | 0.5 U             | NA               | 1 U               | 0.2               | 0.2 U             | 0.25 0.2 U                       |
|                   | INDENO(1,2,3-CD)PYRENE                     |                 | 0.4      | u          | _          | 0.5 U             | NA                | 0.2 U             | NA                  | NA                | NA                    | NA                | NA                | 1 U               | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U             |                          |                  | 2 U               | 0.19 U            | 19 U              |                      | 0.19 U           | NA                 | NA         |             |           | .5 U       | NA                 | NA                | NA                  | NA                | NA                | NA                | NA                | NA               | 1 U               | 0.2 U             | 0.2 U             | 0.2 U 0.2 U                      |
|                   | 1-METHYLNAPHTHALENE                        |                 |          | u          | g/L        | NA                | NA NA             | 1 U               | NA NA               | NA<br>NA          |                       | NA NA             | NA<br>NA          | 10                | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U             |                          |                  | 2 U               | 0.19 U            | 19 U              |                      | 0.38 U           | NA NA              | NA NA      |             |           | NA         | NA NA              | NA NA             | NA                  | NA NA             | NA NA             | NA NA             | NA NA             | NA NA            | 3.2               | 0.78              | 0.3               | 2.4 0.2 U                        |
|                   | 2-METHYLNAPHTHALENE<br>NAPHTHALENE         | 1               | 20       | u          | g/L        | NA<br>1 U         | NA<br>1 U         | 1 U               | NA<br>1 U           | NA<br>1 U         | NA<br>1 U             | NA<br>1 U         | NA<br>1 U         | 1 U               | 0.2 U<br>0.2 U    | 0.2 U<br>0.2 U    | 0.2 U<br>0.2 U    | 0.2 U             |                          |                  | 2 U               | 0.19 U<br>0.19 U  | 19 U              |                      | 0.19 U<br>0.19 U | NA<br>NA           | NA<br>NA   |             |           | NA<br>1 U  | NA<br>1 U          | NA<br>1 U         | NA<br>1 U           | NA<br>1 U         | NA<br>1 U         | NA<br>1 U         | NA<br>1 U         | NA<br>NA         | 1 U               | 0.2 U<br>0.26     | 0.2 U             | 0.2 U 0.2 U<br>0.2 U 0.2 U       |
|                   | PHENANTHRENE                               |                 | 0.2      | 510 u      | g/L        | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U               | 0.2 U             | _                     | 0.2 U             | 0.2 U             | 10                | 0.2 U             | 0.2 U             | 0.2 0             | 0.2 U             |                          |                  | 2 U               | 0.19 U            | 19 U              |                      | 0.19 U           | NA<br>NA           | NA<br>NA   |             |           |            | 0.41 J             | 0.6               | 0.2 U               | 0.2 U             | 0.2 U             | 0.22              | 0.2 U             | NA<br>NA         | 10                | 0.26<br>0.2 U     | 0.2 U             | 0.2 U 0.2 U                      |
|                   | PYRENE                                     |                 | 1000     | u          | _          | 0.5 U             | 0.5 U             | 0.5 U             | 0.5 U               | 0.5 U             |                       | 0.5 U             | 0.5 U             | 1 U               | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U             |                          |                  | 2 U               | 0.19 U            | 19 U              |                      | 0.19 U           | NA NA              | NA NA      | -           |           |            | 0.5 U              | 0.5 U             | 0.5 U               | 0.5 U             | 0.5 U             | 0.5 U             | 0.5 U             | NA NA            | 1 U               | 0.2 U             | 0.2 U             | 0.21 0.2 U                       |
|                   | TOTAL PAHs                                 |                 |          | u          | g/L        | ND                | ND                | ND                | ND                  | ND                | ND                    | ND                | ND                | ND                | 0.26              | 0.28              | 0.21              | 0.51              | ND                       | ND               | 24.7              | 8.6               | ND                | 2.1                  | 2                | NA                 | NA         | NA          | NA        | ND         | 1.68               | 0.6               | ND                  | ND                | ND                | 3.07              | ND                | NA               | 3.2               | 1.62              | 0.3               | 3.66 0.71                        |
|                   | BENZENE                                    | 1               | 5        | 31.2 u     | g/L        | 1 U               | 1 U               | 1 U               | 1 U                 | 1 U               | 1 U                   | 1 U               | 1 U               | 1 U               | 1 U               | 1 U               | 1 U               | 1 U               | NA                       | 1 U              | 1 U               | 1 U               | 1 U               | 1 U                  | 1 U              | NA                 | NA         | NA          | NA        | 7.8        | 6.9                | 11                | 3.9                 | 1 U               | 8.4               | 8.8               | 8.2               | NA               | 9.1               | 1.6               | 15                | 10 10                            |
|                   | ETHYLBENZENE                               | 1 7             | 700      | u          | g/L        | 1 U               | 1 U               | 1 U               | 1 U                 | 1 U               | 1 U                   | 1 U               | 1 U               | 1 U               | 1 U               | 1 U               | 1 U               | 1 U               | NA                       | 1 U              | 1 U               | 1 U               | 1 U               | 1 U                  | 1 U              | NA                 | NA         | NA          | NA        | 1 U        | 1 U                | 1 U               | 1.8                 | 1 U               | 1 U               | 1 U               | 1 U               | NA               | 1 U               | 1 U               | 1 U               | 1U 1U                            |
|                   | p/m-XYLENE                                 |                 |          | u          | g/L        | NA                | 1 U               | 1 U               | 1 U                 | 1 U               | 1 U                   | 1 U               | 1 U               | NA                | NA                | NA                | NA                | NA                | NA                       | NA               | NA                | NA                | NA                | NA                   | NA               | NA                 | NA         | NA          | NA        | NA         | 1 U                | 1 U               | 1 U                 | 1 U               | 1 U               | 1 U               | 1 U               | NA               | NA                | NA                | NA                | NA NA                            |
|                   | METHYLENE CHLORIDE                         |                 |          | u          | g/L        | NA                | 5 U               | NA                | NA                  | NA                | NA                    | NA                | NA                | NA                | NA                | NA                | NA                | NA                | NA                       | NA               | NA                | NA                | NA                | NA                   | NA               | NA                 | NA         |             |           | NA         | 5 U                | NA                | NA                  | NA                | NA                | NA                | NA                | NA               | NA                | NA.               | NA                | NA NA                            |
| VOCs              | o-XYLENE                                   |                 |          | u          | g/L        | NA                | 1 U               | 10                | 1 U                 | 1 U               |                       | 1 U               | 10                | NA                | NA                | NA                | NA                | NA                | NA<br>NA                 | NA<br>1 U        | NA<br>1 U         | NA                | NA<br>1 U         | NA                   | NA               | NA<br>NA           | NA<br>NA   |             |           | NA .       | 1 U                | 1 U               | 1.2                 | 10                | 1 U               | 1 U               | 10                | NA<br>NA         | NA<br>1 U         | NA                | NA<br>1 U         | NA NA                            |
|                   | TOLUENE<br>XYLENES (TOTAL)                 |                 | 0000     | 1900 u     | g/L        | 1 U<br>2 U        | 1 U               | 1 U               | 1 U                 | 1 U               | 1 U                   | 1 U               | 1 U               | 1 U               | 1 U               | 1 U               | 1 U<br>2 U        | 1 U               | NA<br>NA                 |                  | 2 U               | 1 U<br>2 U        | 1 U               | 1 U<br>2 U           | 1 U<br>2 U       | NA<br>NA           | NA<br>NA   |             |           | 2.2        | 1 U                | 1 U               | 1.6                 | 10                | 1 U               | 1 U               | 1 U               | NA<br>NA         | 1 U               | 1 U               | 1 U<br>2 U        | 1 U 1 U 2 U                      |
|                   | METHYL TERT BUTYL ETHER                    |                 |          | u          | g/L<br>g/L | NA.               | NA NA             | NA.               | NA.                 | NA.               | _                     | NA NA                    | 10 U             | 10 U              | 10 U              | NA NA             | NA NA                | 10 U             | NA NA              | NA NA      |             |           | NA NA      | NA NA              | NA NA             | NA                  | NA NA             | NA NA             | NA NA             | NA NA             | NA NA            | NA NA             | NA NA             | NA NA             | NA NA                            |
|                   | TOTAL BTEX                                 |                 |          | u          | g/L        | ND                | ND                | ND                | ND                  | ND                | ND                    | ND                | ND                | ND                | ND                | ND                | ND                | ND                | NA                       | ND               | ND                | ND                | ND                | ND                   | ND               | NA                 | NA         | NA          | NA        | 22         | 6.9                | 11                | 8.5                 | ND                | 8.4               | 8.8               | 8.2               | NA               | 9.1               | 1.6               | 15                | ND ND                            |
|                   | ARSENIC                                    | 0.018 0.        | .018     | 0.018 m    | g/L        | 0.01 U            | 0.01 U            | 0.01 U            | 0.01 U              | 0.01 U            | J 0.01 U              | 0.01 U            | 0.01 U            | 0.01 U            | 0.01 U            | 0.01 U            | 0.01 U            | 0.01 U            | 0.01 U                   | 0.01 U           | 0.01 U            | 0.01 U            | 0.01 U            | 0.02 U               | 0.02 U           | NA                 | NA         | NA          | NA 0      | 01 U       | 0.011              | 0.01 U            | 0.01 U              | 0.01 U            | 0.013             | 0.01 U            | 0.023             | NA               | 0.014             | 0.01 U            | 0.011             | 0.01 U 0.01 U                    |
|                   | BERYLLIUM                                  | 0.              | 1.004    | m          | g/L        | 0.005 U           | NA                | NA                | NA                  | NA                | NA                    | NA                | NA                | NA                | NA                | NA                | NA                | NA                | NA                       | NA               | NA                | NA                | NA                | NA                   | NA               | NA                 | NA         | NA          | NA 0.     | 005 U      | NA                 | NA                | NA                  | NA                | NA                | NA                | NA                | NA               | NA                | NA                | NA                | NA NA                            |
|                   | BORON                                      | **              |          | m          | g/L        | NA                | NA                | NA                | NA                  | NA                | NA                    | NA                | NA                | NA                | NA                | NA                | NA                | NA                | NA                       | NA               | NA                | NA                | NA                | NA                   | NA               | NA                 | NA         | NA          | NA        | NA         | NA                 | NA                | NA                  | NA                | NA                | NA                | NA                | NA               | NA                | NA                | NA                | NA NA                            |
|                   | CADMIUM                                    | 0.              | 1.005    | m          | _          | 0.005 U           | NA                | NA                | NA                  | NA                | NA                    | NA                | NA                | NA                | NA                | NA                | NA                | NA                | NA                       | NA               | NA                | NA                | NA                | NA                   | NA               | NA                 | NA         |             |           | 005 U      | NA                 | NA                | NA                  | NA                | NA                | NA                | NA                | NA               | NA                | NA                | NA                | NA NA                            |
|                   | CALCIUM METAL                              |                 |          | m          |            | NA                | NA                | NA                | NA                  | NA                | NA .                  | NA                       |                  | NA                | NA                | NA                | NA                   | NA               | NA                 | NA         |             |           | NA         | NA                 | NA                | NA                  | NA                | NA                | NA                | NA                | NA               | NA                | NA                | NA                | NA NA                            |
| Metals, Total     | LEAD                                       |                 | 0.1      | 0.015 m    | _          | 0.01 U<br>0.005 U | 0.01 U<br>0.005 U | 0.01 U<br>0.005 U | 0.01 U<br>0.005 U   | 0.01 U<br>0.005 U |                       | 0.01 U<br>0.005 U | 0.01 U<br>0.011   |                          |                  | 0.01 U<br>0.005 U | 0.01 U<br>0.005 U | 0.01 U<br>0.005 U |                      | 0.01 U<br>0.01 U | NA<br>NA           | NA<br>NA   |             |           | _          | 0.01 U<br>0.005 U  | 0.01 U<br>0.005 U | 0.01 U<br>0.005 U   | 0.01 U<br>0.005 U | 0.01 U<br>0.005 U | 0.01 U<br>0.005 U | 0.01 U<br>0.016   | NA<br>NA         | 0.01 U<br>0.005 U | 0.01 U<br>0.005 U | 0.01 U<br>0.006   | 0.01 U 0.01 U<br>0.005 U 0.005 U |
|                   | MAGNESIUM                                  |                 |          | m          | g/L        | NA.               | NA                | NA.               | NA.                 | NA                | NA NA                 | NA                | NA                | NA.               | NA NA                    |                  | NA NA             | NA NA             | NA NA             | NA NA                | NA NA            | NA NA              | NA NA      |             |           | NA .       | NA NA              | NA NA             | NA NA               | NA NA             | NA NA             | NA NA             | NA NA             | NA NA            | NA.               | NA.               | NA NA             | NA NA                            |
|                   | MERCURY                                    | 0.              | 1.002    | m          | g/L (      | 0.0002 U          | NA                | NA                | NA                  | NA                | NA.                   | NA                       | NA               | NA                | NA                | NA                | NA                   | NA               | NA NA              | NA         | NA NA       | NA 0.0    | 1002 U     | NA                 | NA                | NA                  | NA                | NA                | NA                | NA                | NA               | NA                | NA                | NA                | NA NA                            |
|                   | NICKEL                                     | 0.13            | 0.1      | 2 m        | g/L        | 0.04 U            | 0.04 U            | 0.04 U            | 0.04 U              | 0.04 U            | J 0.04 U              | 0.04 U            | 0.04 U            | 0.04 U            | 0.04 U            | 0.04 U            | 0.04 U            | 0.04 U            | 0.04 U                   | 0.04 U           | 0.04 U            | 0.04 U            | 0.04 U            | 0.04 U               | 0.04 U           | NA                 | NA         | NA          | NA 0      | 04 U       | 0.04 U             | 0.04 U            | 0.04 U              | 0.04 U            | 0.04 U            | 0.04 U            | 0.04 U            | NA               | 0.04 U            | 0.04 U            | 0.04 U            | 0.04 U 0.04 U                    |
|                   | POTASSIUM                                  |                 |          | m          | g/L        | NA                | NA                | NA                | NA                  | NA                | NA                    | NA                | NA                | NA                | NA                | NA                | NA                | NA                | NA                       | NA               | NA                | NA                | NA                | NA                   | NA               | NA                 | NA         | NA          | NA        | NA         | NA                 | NA                | NA                  | NA                | NA                | NA                | NA                | NA               | NA                | NA                | NA                | NA NA                            |
|                   | SODIUM                                     |                 |          | m          | g/L        | NA                | NA                | NA                | NA                  | NA                | NA                    | NA                | NA                | NA                | NA                | NA                | NA                | NA                | NA .                     | NA               | NA                | NA                | NA                | NA                   | NA               | NA                 | NA         |             |           | NA         | NA                 | NA                | NA                  | NA                | NA                | NA                | NA                | NA               | NA                | NA                | NA                | NA NA                            |
| -                 | ZINC                                       | 0.96            | 2        | 31 m       | _          | 0.02 U            | 0.02 U            | 0.02 U            | 0.13                | 0.034             | _                     | 0.028             | 0.02 U            | 0.02 U            | 0.052             | 0.02 U            | 0.02 U            | 0.027             |                          |                  | 0.02 U            | 0.02 U            | 0.02 U            |                      | 0.02 U           | NA                 | NA         |             |           |            | 0.021              | 0.02 U            | 0.078               | 0.06              | 0.02 U            | 0.12              | 0.051             | NA               | 0.045             | 0.038             | 0.02 U            | 0.91 0.02 U                      |
|                   | ARSENIC<br>BERYLLIUM                       |                 | 1.018    | 0.018 m    | _          | NA<br>NA          | NA<br>NA          | 0.01 U<br>NA      | 0.01 U<br>NA        | NA<br>NA          |                       | NA<br>NA          | 0.01 U<br>NA             |                  | NA<br>NA          | NA<br>NA          | NA<br>NA          | NA<br>NA             | NA<br>NA         | NA<br>NA           | NA<br>NA   |             |           | NA<br>NA   | NA<br>NA           | 0.01 U<br>NA      | 0.01 U<br>NA        | NA<br>NA          | 0.01 U<br>NA      | NA<br>NA          | NA<br>NA          | NA<br>NA         | NA<br>NA          | NA<br>NA          | NA<br>NA          | NA NA                            |
|                   | GADMIUM                                    |                 | 1.004    | m          |            | NA<br>NA          | NA<br>NA          | NA<br>NA          | NA<br>NA            | NA<br>NA          | NA<br>NA              | NA<br>NA          | NA<br>NA          | NA<br>NA          | NA<br>NA          | NA<br>NA          | NA<br>NA          | NA<br>NA          | NA<br>NA                 | NA<br>NA         | NA<br>NA          | NA<br>NA          | NA<br>NA          | NA<br>NA             | NA<br>NA         | NA<br>NA           | NA<br>NA   | -           |           | NA<br>NA   | NA<br>NA           | NA<br>NA          | NA<br>NA            | NA<br>NA          | NA<br>NA          | NA<br>NA          | NA<br>NA          | NA<br>NA         | NA<br>NA          | NA<br>NA          | NA<br>NA          | NA NA                            |
|                   | CHROMIUM                                   |                 | 0.1      | m          | -          | NA.               | NA NA             | 0.01 U            |                     | NA NA             |                       | NA NA             | NA NA             | NA.               | NA NA             | NA NA             | NA NA             | NA NA             | 0.01 U                   |                  | NA NA             | NA NA             | NA NA             | NA NA                | NA NA            | NA NA              | NA NA      |             |           | NA .       | NA NA              | 0.01 U            | 0.01 U              | NA NA             | NA NA             | NA NA             | NA NA             | NA NA            | NA NA             | NA NA             | NA NA             | NA NA                            |
| Metals, Dissolved | LEAD                                       |                 |          | 0.015 m    | g/L        | NA                | NA                | 0.005 U           |                     |                   |                       | NA                | 0.005 U                  |                  | NA                | NA                | NA                | NA                   | NA               | NA                 | NA         |             |           |            |                    | 0.005 U           | 0.005 U             | NA                | NA                | NA                | NA                | NA               | NA                | NA                | NA                | NA NA                            |
|                   | MERCURY                                    | 0.              | 1.002    | m          | g/L        | NA                | NA                | NA                | NA                  | NA                | NA                    | NA                | NA                | NA                | NA                | NA                | NA                | NA                | NA                       | NA               | NA                | NA                | NA                | NA                   | NA               | NA                 | NA         | NA          | NA        | NA         | NA                 | NA                | NA                  | NA                | NA                | NA                | NA                | NA               | NA                | NA                | NA                | NA NA                            |
|                   | NICKEL                                     | 0.13            | 0.1      | 2 m        | g/L        | NA                | NA                | 0.04 U            | 0.04 U              | NA                | NA                    | NA                | NA                | NA                | NA                | NA                | NA                | NA                | 0.04 U                   | NA               | NA                | NA                | NA                | NA                   | NA               | NA                 | NA         | NA          | NA        | NA         | NA                 | 0.04 U            | 0.04 U              | NA                | NA                | NA                | NA                | NA               | NA                | NA                | NA                | NA NA                            |
|                   | ZING                                       | 0.96            | 2        | 31 m       | _          | NA                | NA                | 0.02 U            | _                   | 0.02 U            |                       | 0.02 U            | NA                | NA                | NA                | NA                | NA                | NA                | 0.02 U                   |                  | NA                | NA                | NA                | NA                   | NA               | NA                 | NA         |             |           |            | NA                 | 0.02 U            | 0.089               | 0.065             | NA                | 0.11              | NA                | 0.3              | NA                | NA                | NA                | NA NA                            |
|                   | ALKALINITY                                 |                 |          | m          | _          | NA                | NA                | NA                | NA                  | NA                | NA                    | NA                | NA                | NA                | NA                | NA                | NA                | NA                | NA .                     |                  | NA                | NA                | NA                | NA                   | NA               | NA                 | NA         |             |           |            | NA                 | NA                | NA                  | NA                | NA                | NA                | NA                | NA               | NA                | NA                | NA                | NA NA                            |
|                   | ALKALINITY, TOTAL (AS CACO3)  AMMONIA AS N | 15              | 30       |            | _          | NA<br>NA          | NA<br>61          | NA<br>60          | NA<br>7.2           | NA 71             |                       | NA<br>4.2         | NA<br>18          | NA<br>97          | NA<br>61          | NA<br>6.2         | NA<br>7           | NA<br>74          | NA<br>NA                 |                  | NA<br>84          | NA<br>85          | NA<br>76          | NA<br>39             | NA<br>40         | NA<br>51           | NA<br>33   |             |           |            | 710                | NA<br>0.88        | NA<br>110           | NA<br>440         | NA<br>3.7         | NA<br>130         | NA<br>560         | NA<br>NA         | NA<br>430         | NA<br>71          | NA<br>380         | NA NA<br>12 <b>100</b>           |
|                   | BICARBONATE                                |                 |          | m          | _          | NA<br>NA          | NA                | NA.               | NA                  | NA                | _                     | NA                | NA NA             | NA                | NA                | NA                | NA                | NA                | NA<br>NA                 |                  | NA                | NA                | NA                | NA NA                | NA               | NA NA              | NA         |             |           |            | NA NA              | 0.88<br>NA        | NA NA               | NA                | NA                | NA                | NA NA             | NA<br>NA         | NA                | NA NA             | NA                | 12 700<br>NA NA                  |
|                   | CARBONATE                                  |                 |          | m          | _          | NA NA             | NA NA             | NA.               | NA NA               | NA NA             |                       | NA NA             | NA NA             | NA.               | NA.               | NA NA             | NA NA             | NA NA             | NA NA                    |                  | NA NA             | NA.               | NA NA             | NA NA                | NA NA            | NA NA              | NA NA      |             |           |            | NA NA              | NA NA             | NA NA               | NA NA             | NA NA             | NA NA             | NA NA             | NA NA            | NA NA             | NA NA             | NA NA             | NA NA                            |
| Miscellaneous     | CONDUCTIVITY                               |                 |          | um         |            | NA                | NA                | NA                | NA                  | NA                |                       | NA                | NA NA                    |                  | NA                | NA                | NA                | NA                   | NA               | NA                 | NA         | -           |           |            | NA                 | NA                | NA                  | NA                | NA                | NA                | NA                | NA               | NA                | NA                | NA                | NA NA                            |
|                   | NITRATE (AS N)                             |                 | 10       | m          | g/L        | NA                | NA                | NA                | NA                  | NA                | NA.                   | NA                | NA NA                    | NA               | NA                | NA                | NA                | NA                   | NA               | NA                 | NA         | NA NA       | NA        | NA         | NA                 | NA                | NA                  | NA                | NA                | NA                | NA                | NA               | NA                | NA                | NA                | NA NA                            |
|                   | NITRITE (AS N)                             |                 |          | m          | ng/l       | NA                | NA                | NA                | NA                  | NA                | NA                    | NA                | NA                | NA                | NA                | NA                | NA                | NA                | NA                       | NA               | NA                | NA                | NA                | NA                   | NA               | NA                 | NA         | NA          | NA        | NA         | NA                 | NA                | NA                  | NA                | NA                | NA                | NA                | NA               | NA                | NA                | NA                | NA NA                            |
|                   | SULFATE                                    |                 | ]        | m          | _          | NA                | NA                | NA                | NA                  | NA                |                       | NA                       |                  | NA                | NA                | NA                | NA                   | NA               | NA                 | NA         |             |           |            | NA                 | NA                | NA                  | NA                | NA                | NA                | NA                | NA               | NA                | NA                | NA                | NA NA                            |
|                   | SOLIDS, TOTAL DISSOLVED                    |                 |          | m          | _          | NA                | NA                | NA                | NA                  | NA                | _                     | NA                       | NA               | NA                | NA                | NA                | NA                   | NA               | NA                 | NA         |             |           |            | NA                 | NA                | NA                  | NA                | NA                | NA                | NA                | NA               | NA                | NA                | NA                | NA NA                            |
| SVOCs             | 1,4-DICHLOROBENZENE                        |                 |          | u          | g/L        | NA                | NA                | NA                | NA                  | NA                | NA                    | NA                | NA                | NA                | NA                | NA                | NA                | NA                | NA                       | NA               | NA                | NA                | NA                | NA                   | NA               | NA                 | NA         | NA          | NA        | NA         | NA                 | NA                | NA                  | NA                | NA                | NA                | NA                | NA               | NA                | NA                | NA                | NA NA                            |
|                   |                                            |                 |          |            |            |                   |                   |                   |                     |                   |                       |                   |                   |                   |                   |                   |                   |                   |                          |                  |                   |                   |                   |                      |                  |                    |            |             |           |            |                    |                   |                     |                   |                   |                   |                   |                  |                   |                   |                   |                                  |

Note:

Shaded cell indicates comparison standard used in date evaluation.

"ghlighted cell indicates analytical result exceeds comparison criteria.

Bold and Rack test indicates analytical result exceeds background value.

For Nitrate comparison standard based on the Maximum Containant Level (MCL) established by the USEPA National Primary C

NO - No constituents detected above the laboratory minimum detection limit.

1. Indicates constituent was not detected above value shows.

1. Indicates constituent was not detected at an estimated value.

1. Indicates constituent was not detected at an estimated value.

1. Indicates constituent was not detected at an estimated value.

1. Indicates constituent was not detected at an estimated value.

1. Indicates constituent was not detected at an estimated value.

1. Indicates constituent was not detected at an estimated value.

1. Indicates constituent was not detected at an estimated value.

1. Indicates constituent was not detected at an estimated value.

1. Indicates constituent was not detected at an estimated value.

1. Indicates constituent was not detected at an estimated value.

1. Indicates constituent was not detected at an estimated value.

1. Indicates constituent was not detected at an estimated value.

1. Indicates constituent was not detected at an estimated value.

| Fig. 14   Fig. 14   Fig. 15   Fig.   |                   |                           |            |            | Lo         | ocation:   |                      |          |            |           |                                                  |                        |                                                  |                                                  |                      |          |                      | PDMW-17T  |           |          |                      |                      |                      |           |                      |                      |            |            |           |                      |                        |            |                     |                      |                      | PDM                  | W-18T               |          |           |          |                      |                      |                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------|------------|------------|------------|------------|----------------------|----------|------------|-----------|--------------------------------------------------|------------------------|--------------------------------------------------|--------------------------------------------------|----------------------|----------|----------------------|-----------|-----------|----------|----------------------|----------------------|----------------------|-----------|----------------------|----------------------|------------|------------|-----------|----------------------|------------------------|------------|---------------------|----------------------|----------------------|----------------------|---------------------|----------|-----------|----------|----------------------|----------------------|----------------------|
| The Note   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                           |            |            | Samp       | le Date:   | 10/29/1997           | 8/9/1999 | 11/18/1999 | 2/25/2000 | 5/15/2000                                        | 8/21/2000              | 1/9/2001                                         | 7/12/2001                                        | 9/13/2002            | 2/4/2003 | 6/24/2003            | 1/29/2004 | 7/20/2004 | 3/6/2006 | 4/3/2008             | 7/20/2008            | 10/6/                | 2008      | 12/4/2009            | 6/19/2010            | 12/14/2010 | 6/15/2011  | 12/7/2011 | 10/27/1997           | 8/9/1999               | 11/17/1999 | 2/25/2000           | 5/15/2000            | 8/21/2000            | 1/9/2001             | 7/10/2001           | 2/4/2002 | 9/12/2002 | 2/5/2003 | 6/25/2003            | 1/30/2004            | 7/21/2004            |
| Thi state   Thi    |                   |                           |            |            | Samp       | le Type:   | Normal               | Normal   | Normal     | Normal    | Normal                                           | Normal                 | Normal                                           | Normal                                           | Normal               | Normal   | Normal               | Normal    | Normal    | Normal   | Normal               | Normal               | Normal               | Dup       | Normal               | Normal               | Normal     | Normal     | Normal    | Normal               | Normal                 | Normal     | Normal              | Normal               | Normal               | Normal               | Normal              | Normal   | Normal    | Normal   | Normal               | Normal               | Normal               |
| The column                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                           |            |            | Sar        | mple ID: 1 | PDMW-<br>17T 10/29/1 | PDMW-    | PDMW-      | PDMW-     | PDMW-                                            | PDMW-<br>0 17T 8/21/20 | PDMW-<br>17T 1/9/200                             | PDMW-<br>17T 7/12/20                             | PDMW-<br>17T 9/13/20 | PDMW-    | PDMW-<br>17T 6/24/20 | PDMW-     | PDMW-     | PDMW-    | PDMW-<br>17T 4/3/200 | PDMW-<br>17T 7/20/20 | PDMW-<br>17T 10/6/20 | PDMW-17T- | PDMW-<br>17T 12/4/20 | PDMW-<br>17T 6/19/20 | PDMW-      |            |           | PDMW-<br>18T 10/27/1 | PDMW-<br>18T 8/9/199 1 | PDMW-      | PDMW-<br>8T 2/25/20 | PDMW-<br>18T 5/15/20 | PDMW-<br>18T 8/21/20 | PDMW-<br>18T 1/9/200 | PDMW-<br>18T 7/10/2 | PDMW-    | PDMW-     | PDMW-    | PDMW-<br>18T 6/25/20 | PDMW-<br>18T 1/30/20 | PDMW-<br>18T 7/21/20 |
| 94 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                           |            |            |            |            | 997                  | 9        |            | 00        | 00                                               | 00                     | 1                                                | 01                                               | 02                   | 3        | 03                   | 04        | 04        | 6        | 8                    | 08                   | 08                   | 08        | 09                   | 10                   | 010        | 17T_061511 | 11        | 997                  | 9                      | 999        | 00                  | 00                   | 00                   | 1                    | 01                  | 2        | 02        | 3        | 03                   | 04                   | 04                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Method Group      | Analyte                   | Background | Type 3 RRS | Type 4 RRS | Units      | Result               | Result   | Result     | Result    | Result                                           | Result                 | Result                                           | Result                                           | Result               | Result   | Result               | Result    | Result    | Result   | Result               | Result               | Result               | Result    | Result               | Result               | Result     | Result     | Result    | Result               | Result                 | Result     | Result              | Result               | Result               | Result               | Result              | Result   | Result    | Result   | Result               | Result               | Result               |
| Mathematical all all all all all all all all all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | ACENAPHTHENE              | 1          | 2000       |            | ug/L       | 1 U                  | 1 U      | 1 U        | 1 U       | 1 U                                              | 1 U                    | 1.3 U                                            | 1 U                                              | 0.2 U                | 0.2 U    | 0.2 U                | 0.2 U     | 0.2 U     | 0.19 U   | 0.19 U               |                      | 0.19 U               | 0.19 U    | 0.19 U               | 0.19 J               | NA         | NA         | NA        | 1 U                  | 1 U                    | 1 U        | 1 U                 | 1 U                  | 1 U                  | 1 U                  | 1 U                 | 1 U      | 1 U       | 0.2 U    | 0.2 U                | 0.2 U                | 0.2 U                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                           | +          | 1          |            | ug/L       |                      |          | +          |           |                                                  |                        |                                                  |                                                  |                      | -        |                      |           |           |          |                      |                      |                      |           |                      |                      |            |            |           |                      |                        |            |                     |                      |                      |                      |                     |          | _         |          |                      |                      | _                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                           | 1          |            |            | ug/L       |                      |          | -          | _         |                                                  |                        |                                                  |                                                  |                      |          |                      |           | 1         | 1        |                      |                      |                      |           |                      |                      |            |            |           |                      |                        |            |                     |                      |                      |                      |                     |          | _         |          |                      |                      |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                           | 1          |            |            | ug/L       |                      |          |            |           |                                                  |                        |                                                  |                                                  |                      |          |                      |           | 1         | 1        |                      |                      |                      |           |                      |                      |            |            |           |                      |                        |            |                     |                      |                      |                      |                     | +        | _         |          |                      |                      |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                           | +          |            |            | ug/L       |                      | _        | +          | _         | +                                                | _                      |                                                  | -                                                |                      | -        |                      |           |           |          | <b>!</b>             |                      | _                    |           |                      |                      |            |            |           |                      |                        |            |                     |                      |                      |                      | _                   |          | _         |          |                      | -                    | _                    |
| March   Marc   |                   | BENZO(G,H,I)PERYLENE      |            |            |            | ug/L       | 0.5 U                | NA       | NA         | NA        | NA                                               | NA                     | NA                                               | NA                                               | 0.2 U                | 0.2 U    | 0.2 U                | 0.2 U     | 0.2 U     | 0.19 U   | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U    | 0.19 U               | 0.19 UJ              | NA         | NA         | NA        | 0.5 U                | NA                     | NA         | NA                  | NA                   | NA                   | NA                   | NA                  | NA       | 1 U       | 0.2 U    | 0.2 U                | 0.2 U                | 0.2 U                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | BENZO(K)FLUORANTHENE      |            |            |            | ug/L       | 0.5 U                | NA       | NA         | NA        | NA                                               | NA                     | NA                                               | NA                                               | 0.2 U                | 0.2 U    | 0.2 U                | 0.2 U     | 0.2 U     | 0.19 U   | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U    | 0.19 U               | 0.19 UJ              | NA         | NA         | NA        | 0.5 U                | NA                     | NA         | NA                  | NA                   | NA                   | NA                   | NA                  | NA       | 1 U       | 0.2 U    | 0.2 U                | 0.2 U                | 0.2 U                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | CHRYSENE                  | 0.2        | 0.2        | 65         | ug/L       | 0.2 U                | 0.2 U    | 0.2 U      | 0.2 U     | 0.2 U                                            | 0.2 U                  | 0.26 U                                           | 0.2 U                                            | 0.2 U                | 0.2 U    | 0.2 U                | 0.2 U     | 0.2 U     | 0.19 U   | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U    | 0.19 U               | 0.19 UJ              | NA         |            | NA        | 0.2 U                | 0.2 U                  | 0.2 U      | 0.2 U               | 0.2 U                | 0.2 U                | 0.2 U                | 0.2 U               | 0.2 U    | 1 U       | 0.2 U    | 0.2 U                | 0.2 U                | 0.2 U                |
| Section   Sect   | PAHs              |                           |            |            |            | ug/L       |                      |          |            |           |                                                  |                        |                                                  | <b>!</b>                                         |                      |          | -                    |           |           |          |                      |                      |                      |           |                      |                      |            |            |           |                      |                        |            |                     |                      |                      |                      |                     |          | _         |          |                      | -                    | 1                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                           | 1          |            |            | ug/L       |                      | +        | -          | +         | +                                                | +                      |                                                  | <b>_</b>                                         |                      |          | -                    |           |           |          | 1                    |                      |                      |           | <b>-</b>             |                      |            |            |           |                      |                        |            |                     |                      |                      |                      |                     | +        | +         |          |                      | 1                    |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                           | 0.5        |            |            | ug/L       |                      | -        | +          | +         | +                                                |                        | <b>_</b>                                         | -                                                |                      |          |                      |           |           |          |                      |                      | _                    |           | -                    |                      |            |            |           |                      |                        |            |                     |                      |                      |                      |                     | +        | _         |          |                      |                      |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                           |            |            |            | ug/L       |                      |          |            |           |                                                  |                        |                                                  |                                                  |                      |          |                      |           |           |          | <b>!</b>             |                      |                      |           |                      |                      |            |            |           |                      |                        |            |                     |                      |                      |                      |                     | -        |           |          |                      |                      |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 2-METHYLNAPHTHALENE       |            |            |            | ug/L       | NA                   | NA       | NA         | NA.       | NA                                               | NA                     | NA                                               | NA                                               | 0.2 U                | 0.2 U    | 0.2 U                | 0.2 U     | 0.2 U     | 0.19 U   | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U    | 0.19 U               | 0.19 UJ              | NA         | NA         | NA        | NA                   | NA                     | NA         | NA                  | NA                   | NA                   | NA                   | NA                  | NA       | 1 U       | 0.2 U    | 0.2 U                | 0.2 U                | 0.2 U                |
| 94. 14. 14. 14. 14. 14. 14. 14. 14. 14. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   | NAPHTHALENE               | 1          | 20         | 20         | ug/L       | 1 U                  | 1 U      | 1 U        | 1 U       | 1 U                                              | 1 U                    | 1.3 U                                            | 1 U                                              | 0.2 U                | 0.2 U    | 0.2 U                | 0.2 U     | 0.2 U     | 0.19 U   | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U    | 0.19 U               | 0.19 UJ              | NA         | NA         | NA        | 1 U                  | 1 U                    | 1 U        | 1 U                 | 1 U                  | 1 U                  | 1 U                  | 1 U                 | 1 U      | 1 U       | 0.2 U    | 0.2 U                | 0.2 U                | 0.2 U                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                           | +          |            | 510        | ug/L       |                      |          | +          | _         | +                                                |                        |                                                  |                                                  |                      | -        |                      |           |           |          | <b>!</b>             |                      | _                    |           |                      |                      |            |            |           |                      |                        |            |                     |                      |                      |                      |                     |          | _         |          |                      |                      | _                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                           | 0.5        | 1000       |            | ug/L       |                      | +        | +          | -         | +                                                | +                      |                                                  | <b>-</b>                                         |                      | -        |                      |           |           |          |                      |                      | _                    |           |                      |                      |            |            |           |                      |                        |            |                     |                      |                      |                      |                     | +        | -         |          |                      | l                    |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                           |            |            | 31.2       | ug/L       |                      | -        | +          |           | +                                                |                        |                                                  | <b>!</b>                                         |                      | <b>!</b> | <b>!</b>             |           |           |          | <b>!</b>             |                      | _                    |           | <b>!</b>             |                      |            |            |           |                      |                        |            |                     |                      |                      |                      |                     | -        | _         |          |                      | 1                    |                      |
| Mathematical and the part of   |                   |                           | 1          |            | 31.2       | ug/L       |                      | -        | +          | -         | +                                                |                        | -                                                | -                                                |                      |          |                      |           |           |          | -                    |                      |                      |           | -                    |                      |            |            |           |                      |                        |            |                     |                      |                      |                      |                     | +        | _         | _        |                      |                      | -                    |
| Mathematical and the properties of the propert   |                   |                           |            |            |            | ug/L       |                      | -        | +          | +         | +                                                |                        | <b>_</b>                                         | -                                                |                      |          |                      |           |           |          | -                    |                      |                      |           | <b>-</b>             |                      |            |            |           |                      |                        |            |                     |                      |                      |                      |                     | +        | -         | +        |                      |                      |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | METHYLENE CHLORIDE        |            |            |            | ug/L       | NA                   | 5 U      | +          | -         | +                                                |                        | -                                                | -                                                | NA                   | NA       | NA                   | NA        | NA        | NA       | NA                   | NA                   | NA                   |           | NA                   | NA                   | NA         | NA         | NA        | NA                   |                        |            |                     |                      | NA                   |                      | _                   | NA       | NA        | NA       | NA                   | NA                   | NA                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VOCs              | o-XYLENE                  |            |            |            | ug/L       | NA                   | 1 U      | 1 U        | 1 U       | 1 U                                              | 1 U                    | 1 U                                              | 1 U                                              | NA                   | NA       | NA                   | NA        | NA        | NA       | NA                   | NA.                  | NA                   | NA        | NA                   | NA                   | NA         | NA         | NA        | NA.                  | 1 U                    | 1 U        | 1 U                 | 1 U                  | 1 U                  | 1 U                  | 1 U                 | NA       | NA        | NA       | NA                   | NA                   | NA                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | TOLUENE                   | 1          | 1000       | 1900       | ug/L       | 1 U                  | 1 U      | 1 U        | 1 U       | 1 U                                              | 1 U                    | 1 U                                              | 1 U                                              | 1 U                  | 1 U      | 1 U                  | 1 U       | 1 U       | 1 U      | 1 U                  | 1 U                  | 1 U                  | 1 U       | 1 U                  | 1 W                  | NA         | NA         | NA        | 1 U                  | 1 U                    | 1 U        | 1 U                 | 1 U                  | 1 U                  | 1 U                  | 1 U                 | 1 U      | 1 U       | 1 U      | 1 U                  | 1 U                  | 1 U                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                           | 2          | 10000      |            | ug/L       |                      |          |            |           |                                                  |                        |                                                  |                                                  |                      |          |                      |           |           | 1        |                      |                      |                      |           |                      |                      |            |            |           |                      |                        |            |                     |                      |                      |                      |                     |          |           |          |                      |                      |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                           |            |            |            | ug/L       |                      |          |            | +         | <del>                                     </del> |                        |                                                  |                                                  |                      | ļ        | <b>!</b>             |           |           |          |                      |                      | _                    |           |                      |                      |            |            |           |                      |                        | +          |                     |                      |                      |                      |                     |          | _         |          |                      |                      |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                           | 0.018      | 0.018      | 0.018      | mg/L       |                      |          |            | +         |                                                  |                        |                                                  |                                                  |                      |          |                      |           |           | 1        |                      |                      |                      |           |                      |                      |            |            |           |                      |                        |            |                     |                      |                      |                      |                     |          |           |          |                      |                      |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                           |            |            |            | mg/L       |                      |          |            | _         |                                                  |                        |                                                  |                                                  |                      | -        | -                    |           |           | 1        |                      |                      |                      |           |                      |                      |            |            |           |                      |                        |            |                     |                      |                      |                      |                     |          | _         |          |                      |                      | NA.                  |
| Marcha   M   |                   | BORON                     |            |            |            | mg/L       | NA                   | NA       | NA         | NA        | NA                                               | NA                     | NA                                               | NA                                               | NA                   | NA       | NA                   | NA        | NA        | NA       | NA.                  | NA                   | NA                   | NA        | NA                   | NA                   | NA         | NA         | NA        | NA                   | NA.                    | NA         | NA                  | NA                   | NA                   | NA                   | NA                  | NA       | NA        | NA       | NA                   | NA                   | NA.                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | CADMIUM                   |            | 0.005      |            | mg/L       | 0.005 U              | NA       | NA         | NA        | NA                                               | NA                     | NA.                                              | NA.                                              | NA                   | NA       | NA                   | NA        | NA        | NA       | NA                   | NA.                  | NA                   | NA        | NA                   | NA                   | NA         | NA         | NA        | 0.005 U              | NA                     | NA         | NA                  | NA                   | NA                   | NA                   | NA                  | NA       | NA        | NA       | NA                   | NA                   | NA                   |
| Final and transform    |                   | CALCIUM METAL             |            |            |            | mg/L       | NA                   | NA       | NA         | NA        | NA                                               | NA                     | NA                                               | NA                                               | NA                   | NA       | NA                   | NA        | NA        | NA       | NA                   | NA                   | NA                   | NA        | NA                   | NA                   | NA         | NA         | NA        | NA                   | NA                     | NA         | NA                  | NA                   | NA                   | NA                   | NA                  | NA       | NA        | NA       | NA                   | NA                   | NA                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                           |            |            |            | mg/L       |                      | -        | +          | +         | +                                                |                        | <b>_</b>                                         | <b>_</b>                                         |                      |          |                      |           |           |          | <b>-</b>             |                      | -                    |           | -                    |                      |            |            |           |                      |                        |            |                     |                      |                      |                      |                     |          | _         | +        |                      |                      |                      |
| Marcha   M   | Metals, Total     |                           | 0.007      | 0.015      | 0.015      | mg/L       |                      |          | +          |           |                                                  |                        | <b>!</b>                                         | <b>!</b>                                         |                      |          |                      |           |           |          |                      |                      |                      |           | <b>!</b>             |                      |            |            |           |                      |                        |            |                     |                      |                      |                      |                     | -        | _         |          |                      | -                    | 1                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                           |            | 0.002      |            | mg/L       |                      | -        | -          |           | +                                                |                        | <del>                                     </del> | <del>                                     </del> |                      |          |                      |           |           |          | <u> </u>             |                      |                      |           | <u> </u>             |                      |            |            |           |                      |                        |            |                     |                      |                      |                      |                     | -        | 1         |          |                      | 1                    |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                           | 0.13       |            | 2          | mg/L       |                      |          | -          | +         | <del>                                     </del> |                        | ļ                                                | <b>_</b>                                         |                      | 1        |                      |           |           |          | <b>-</b>             |                      |                      |           | <u> </u>             |                      |            |            |           |                      |                        |            |                     |                      |                      |                      |                     |          | 1         |          |                      |                      |                      |
| 日本                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | POTASSIUM                 |            |            |            | mg/L       | NA                   | NA       | NA         | NA        | NA                                               | NA                     | NA                                               | NA                                               | NA                   | NA       | NA                   | NA        | NA        | NA       | NA                   | NA                   | NA                   | NA        | NA                   | NA                   | NA         | NA         | NA        | NA                   | NA                     | NA         | NA                  | NA                   | NA                   | NA                   | NA                  | NA       | NA        | NA       | NA                   | NA                   | NA                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | SODIUM                    |            |            |            | mg/L       | NA                   | NA       | NA         | NA        | NA                                               | NA                     | NA                                               | NA                                               | NA                   | NA       | NA                   | NA        | NA        | NA       | NA                   | NA                   | NA                   | NA        | NA                   | NA                   | NA         | NA         | NA        | NA                   | NA                     | NA         | NA                  | NA                   | NA                   | NA                   | NA                  | NA       | NA        | NA       | NA                   | NA                   | NA                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | ZINC                      | +          |            | 31         | mg/L       |                      |          | +          | _         | +                                                |                        |                                                  |                                                  |                      | -        | -                    |           |           | 1        |                      |                      |                      |           |                      |                      |            |            |           |                      |                        |            |                     |                      |                      |                      |                     |          | _         |          |                      |                      | _                    |
| Maria   Mari   |                   |                           | 0.018      |            | 0.018      |            |                      |          | +          |           | <del>                                     </del> |                        |                                                  | <b>!</b>                                         |                      | <b>!</b> | <b>!</b>             |           | -         |          | <b>!</b>             |                      | _                    |           | <b>!</b>             |                      |            |            |           |                      |                        | +          |                     |                      |                      |                      |                     | -        | _         |          |                      | 1                    |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                           |            |            |            |            |                      | +        | +          | _         | +                                                | +                      |                                                  | <b>-</b>                                         |                      | -        | -                    |           |           |          |                      |                      | _                    |           |                      |                      |            |            |           |                      |                        |            |                     |                      |                      |                      |                     | +        | -         |          |                      |                      |                      |
| Marita   M   |                   |                           | 0.013      |            |            |            |                      |          | +          | _         | +                                                |                        |                                                  | -                                                |                      |          | <b>!</b>             |           |           |          |                      |                      |                      |           | <b>!</b>             |                      |            |            |           |                      |                        |            |                     |                      |                      |                      |                     | -        | _         |          |                      | -                    |                      |
| MICHINE   MICH   | Metals, Dissolved |                           | -          |            | 0.015      | -          |                      | -        | +          | _         | +                                                | _                      | -                                                | -                                                |                      |          |                      |           |           |          | -                    |                      |                      |           | -                    |                      |            |            |           | _                    |                        |            |                     |                      |                      |                      |                     | +        | _         | _        |                      |                      |                      |
| Section   Sect   |                   | MERCURY                   |            |            |            | -          | NA                   | NA       | -          | -         | +                                                | +                      | -                                                | -                                                |                      |          |                      |           |           |          | -                    |                      |                      |           | NA                   |                      | NA         |            |           |                      |                        |            |                     |                      |                      |                      |                     | +        | _         |          | NA                   | NA                   |                      |
| ALFALISITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | NICKEL                    | 0.13       | 0.1        | 2          | mg/L       | NA                   | NA       | 0.04 U     | 0.04 U    | NA                                               | NA                     | NA                                               | NA                                               | NA                   | NA       | NA                   | NA        | NA        | NA       | NA                   | NA                   | NA                   | NA        | NA                   | NA                   | NA         | NA         | NA        | NA                   | NA                     | 0.04 U     | 0.04 U              | NA                   | NA                   | NA                   | NA                  | NA       | NA        | NA       | NA                   | NA                   | NA                   |
| ALMARINTY, TOTAL (AS CACCO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                           | 0.96       | 2          | 31         | mg/L       | NA                   | NA       |            | 0.03      |                                                  | NA                     | -                                                | NA                                               | NA                   |          | NA                   |           | NA        | NA       |                      |                      |                      | NA        | NA                   | NA                   | NA         |            |           | NA                   | NA                     |            |                     | NA                   | 0.13                 | 0.037                | NA                  | 0.031    | NA        |          | NA                   | NA                   |                      |
| AMACHIA AS N 15 30 30 mgl 60 73 54 29 3.7 65 11 39 47 29 3.7 65 11 39 47 29 3.8 30 50 50 50 50 50 50 50 50 50 50 50 50 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                           |            |            |            | +-+        |                      | +        | +          | +         |                                                  |                        |                                                  |                                                  |                      | -        | -                    |           |           |          |                      |                      |                      |           |                      |                      |            |            |           |                      |                        |            |                     |                      |                      |                      |                     |          | -         |          |                      | l                    | _                    |
| BICARBONATE   III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | , , , , , , , , , , , , , |            |            |            |            |                      |          |            |           | _                                                | _                      |                                                  |                                                  |                      |          |                      |           |           |          |                      |                      |                      |           |                      |                      |            |            |           |                      |                        |            |                     |                      |                      |                      |                     | +        |           |          |                      | 1                    |                      |
| ABSCRIBATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                           | 15         | 30         | 30         | -          |                      |          |            |           |                                                  |                        | _                                                |                                                  |                      |          |                      |           |           | 1        |                      |                      |                      |           |                      |                      |            |            |           |                      |                        |            |                     |                      |                      |                      |                     |          | _         |          |                      | 1                    | _                    |
| CADICITITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                           |            |            |            |            |                      |          | +          | _         |                                                  |                        |                                                  |                                                  |                      | -        | -                    |           |           |          |                      |                      |                      |           |                      |                      |            |            |           |                      |                        |            |                     |                      |                      |                      |                     |          | _         |          |                      |                      | _                    |
| NITRATE (AS N) 10 mgL NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Miscellaneous     |                           |            |            |            | umhos/     |                      | +        | -          | +         | +                                                | +                      | <b>-</b>                                         | 1                                                |                      | -        | -                    |           |           |          |                      |                      | _                    |           | 1                    |                      |            |            |           |                      |                        |            |                     |                      |                      |                      |                     | +        | -         | +        |                      | 1                    |                      |
| SUBSTITUTE OF THE STREET OF TH |                   | NITRATE (AS N)            |            | 10         |            |            |                      | NA       | NA         | NA.       |                                                  |                        |                                                  | <b>!</b>                                         | NA                   | NA       | -                    |           |           | NA       |                      |                      |                      |           | NA                   |                      | NA         |            |           | NA                   |                        | NA         |                     |                      |                      | NA                   | NA                  |          | _         | NA       | NA                   | NA                   | NA                   |
| SCLIDS, TOTAL DISSOLVED mgL NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | NITRITE (AS N)            |            |            |            | -          | NA                   | NA       | NA         | NA.       | +                                                | NA                     | NA                                               | -                                                | NA                   | NA       |                      | NA        | NA        | NA       | -                    | NA                   | NA                   | NA        | NA                   | NA                   | NA         |            | NA        | NA                   | NA                     | NA         |                     |                      | NA                   | NA                   | NA                  |          | NA.       | NA       | NA                   | NA                   | NA                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | SULFATE                   |            |            |            | mg/L       | NA                   | NA       | NA         | NA        | NA                                               | NA                     | NA                                               | NA                                               | NA                   | NA       | NA                   | NA        | NA        | NA       | NA                   | NA                   | NA                   | NA        | NA                   | NA                   | NA         | NA         | NA        | NA                   | NA                     | NA         | NA                  | NA                   | NA                   | NA                   | NA                  | NA       | NA        | NA       | NA                   | NA                   | NA                   |
| EVOCS: [1,4-DICHLORGBER/ZENE]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |                           |            |            |            |            |                      |          |            |           |                                                  | _                      |                                                  |                                                  |                      |          |                      |           |           |          |                      |                      |                      |           |                      |                      |            |            |           |                      |                        |            |                     |                      |                      |                      |                     |          |           |          |                      |                      |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SVOCs             | 1,4-DICHLOROBENZENE       |            |            |            | ug/L       | NA                   | NA       | NA         | NA        | NA                                               | NA                     | NA                                               | NA                                               | NA                   | NA       | NA                   | NA        | NA        | NA       | NA                   | NA                   | NA                   | NA        | NA                   | NA                   | NA         | NA         | NA        | NA                   | NA                     | NA         | NA                  | NA                   | NA                   | NA                   | NA                  | NA       | NA        | NA       | NA                   | NA                   | NA                   |

Notes:

Shaded cell indicates comparison standard used in data evaluation.

wighlighted cell indicates analytical result exceeds comparison criteria.

Bold and fault test indicates analytical result exceeds background value.

Bold southeast indicates analytical result exceeds background value.

No - No constitutions to standard back on the Maximum Containmant Level (MCL) established by the USEPA National Primary C

No - No constitutes detected above the labora tory minimum detection limit.

J. Indicates constituent was not detected above value shown.

J. Indicates constituent was not detected at an estimated value.

U.I. Indicates constituent was not detected at an estimated value.

Monitoring wells, MMV-31, POMMV-81, POMMV-101, POMMV-111, POMMV-111, POMMV-313, POMMV-310, POMMV-313, POMMV-311, POMMV-3111, POMMV-3111, POMMV-311, POMMV-311, POMMV-3111, POMMV-3111, POMMV-3111, POMMV-3111, POM

|                   |                                            |            |            | Lo          | cation:        |                             |                           |                             |                            |                            |                            |                           |                            |                            |                           |                            |                            |                            | PDMW-19P                  |                           |                              |                            |                            |                            |                            |                     |                             |                          |                           |                           |                           |                           |
|-------------------|--------------------------------------------|------------|------------|-------------|----------------|-----------------------------|---------------------------|-----------------------------|----------------------------|----------------------------|----------------------------|---------------------------|----------------------------|----------------------------|---------------------------|----------------------------|----------------------------|----------------------------|---------------------------|---------------------------|------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|---------------------|-----------------------------|--------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
|                   |                                            |            |            | Sampl       | le Date:       | 10/27/1997                  | 8/9/1999                  | 11/17/1999                  | 2/25/2000                  | 5/15/2000                  | 8/21/2000                  | 1/9/2001                  | 7/12/2001                  | 9/13/2002                  | 2/5/2003                  | 6/24/2003                  | 1/29/2004                  | 7/21/2004                  | 3/7/2006                  | 4/4/                      | 2008                         | 7/19/2008                  | 10/8/2008                  | 12/5/2009                  | 6/19/2010                  | 6/17/2011           | 12/13                       | 3/2013                   | 6/4/2014                  | 11/3/2014                 | 5/20/2015                 | 11/12/2015                |
|                   |                                            |            |            | Sampl       | e Type:        | Normal                      | Normal                    | Normal                      | Normal                     | Normal                     | Normal                     | Normal                    | Normal                     | Normal                     | Normal                    | Normal                     | Normal                     | Normal                     | Normal                    | Normal                    | Dup                          | Normal                     | Normal                     | Normal                     | Normal                     | Normal              | Normal                      | Dup                      | Normal                    | Normal                    | Normal                    | Normal                    |
|                   |                                            |            |            | San         | nple ID:       | PDMW-<br>19P_10/27/1<br>997 | PDMW-<br>19P_8/9/199<br>9 | PDMW-<br>19P_11/17/1<br>999 | PDMW-<br>19P_2/25/20<br>00 | PDMW-<br>19P_5/15/20<br>00 | PDMW-<br>19P_8/21/20<br>00 | PDMW-<br>19P_1/9/200<br>1 | PDMW-<br>19P_7/12/20<br>01 | PDMW-<br>19P_9/13/20<br>02 | PDMW-<br>19P_2/5/200<br>3 | PDMW-<br>19P_6/24/20<br>03 | PDMW-<br>19P_1/29/20<br>04 | PDMW-<br>19P_7/21/20<br>04 | PDMW-<br>19P_3/7/200<br>6 | PDMW-<br>19P_4/4/200<br>8 | PDMW-19P<br>DUP_4/4/200<br>8 | PDMW-<br>19P_7/19/20<br>08 | PDMW-<br>19P_10/8/20<br>08 | PDMW-<br>19P_12/5/20<br>09 | PDMW-<br>19P_6/19/20<br>10 | PDMW-<br>19P_061711 | PDMW-<br>19P_12/13/2<br>013 | DUP-<br>3_12/13/201<br>3 | PDMW-<br>19P_060420<br>14 | PDMW-<br>19P_110320<br>14 | PDMW-<br>19P_052020<br>15 | PDMW-<br>19P_111220<br>15 |
| Method Group      | Analyte                                    | Background | Type 3 RRS | Type 4 RRS  | Units          | Result                      | Result                    | Result                      | Result                     | Result                     | Result                     | Result                    | Result                     | Result                     | Result                    | Result                     | Result                     | Result                     | Result                    | Result                    | Result                       | Result                     | Result                     | Result                     | Result                     | Result              | Result                      | Result                   | Result                    | Result                    | Result                    | Result                    |
|                   | ACENAPHTHENE                               | 1          | 2000       |             | ug/L           | 1 U                         | 1 U                       | 1 U                         | 1 U                        | 1 U                        | 1 U                        | 1 U                       | 1 U                        | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.19 U                    | 0.19 U                    | 0.19 U                       | 0.19 U                     | 0.19 U                     | 0.19 U                     | 0.19 LU                    | NA                  | 9.5 U                       | 9.6 U                    | 9.8 U                     | NA                        | NA                        | NA                        |
|                   | ACENAPHTHYLENE<br>ANTHRACENE               | 0.2        | 0.2        | 510<br>5100 | ug/L<br>ug/L   | 1 U<br>0.2 U                | 1 U                       | 1 U                         | 1 U<br>0.2 U               | 1 U                        | 1 U                        | 1 U<br>0.2 U              | 1 U                        | 0.2 U<br>0.2 U             | 0.2 U<br>0.2 U            | 0.2 U<br>0.2 U             | 0.2 U                      | 0.2 U<br>0.2 U             | 0.19 U<br>0.19 U          | 0.19 U<br>0.19 U          | 0.19 U<br>0.19 U             | 0.19 U<br>0.19 U           | 0.19 U<br>0.19 U           | 0.19 U<br>0.19 U           | 0.19 LU<br>0.19 LU         | NA<br>NA            | 9.5 U<br>9.5 U              | 9.6 U<br>9.6 U           | 9.8 U<br>9.8 U            | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  |
|                   | BENZO(A)ANTHRACENE                         | 0.2        | 0.1        | 3.9         | ug/L           | 0.2 U                       | 0.2 U                     | 0.2 U                       | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.19 U                    | 0.19 U                    | 0.19 U                       | 0.19 U                     | 0.19 U                     | 0.19 U                     | 0.19 UJ                    | NA NA               | 9.5 U                       | 9.6 U                    | 9.8 U                     | NA NA                     | NA.                       | NA NA                     |
|                   | BENZO(A)PYRENE                             | 0.2        | 0.2        | 0.39        | ug/L           | 0.2 U                       | 0.2 U                     | 0.2 U                       | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.19 U                    | 0.19 U                    | 0.19 U                       | 0.19 U                     | 0.19 U                     | 0.19 U                     | 0.19 LU                    | NA                  | 9.5 U                       | 9.6 U                    | 9.8 U                     | NA                        | NA                        | NA                        |
|                   | BENZO(B)FLUORANTHENE                       | 0.2        | 0.2        | 0.65        | ug/L           | 0.2 U                       | 0.2 U                     | 0.2 U                       | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.19 U                    | 0.19 U                    | 0.19 U                       | 0.19 U                     | 0.19 U                     | 0.19 U                     | 0.19 LU                    | NA                  | 9.5 U                       | 9.6 U                    | 9.8 U                     | NA                        | NA                        | NA                        |
|                   | BENZO(G,H,I)PERYLENE                       |            |            |             | ug/L           | 0.5 U                       | NA                        | NA                          | NA                         | NA                         | NA                         | NA                        | NA                         | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.19 U                    | 0.19 U                    | 0.19 U                       | 0.19 U                     | 0.19 U                     | 0.19 U                     | 0.19 LU                    | NA                  | 9.5 U                       | 9.6 U                    | 9.8 U                     | NA                        | NA                        | NA                        |
|                   | BENZO(K)FLUORANTHENE<br>CHRYSENE           | 0.2        | 0.2        | 65          | ug/L<br>ug/L   | 0.5 U<br>0.2 U              | NA<br>0.2 U               | NA<br>0.2 U                 | NA<br>0.2 U                | NA<br>0.2 U                | NA<br>0.2 U                | NA<br>0.2 U               | NA<br>0.2 U                | 0.2 U<br>0.2 U             | 0.2 U<br>0.2 U            | 0.2 U<br>0.2 U             | 0.2 U<br>0.2 U             | 0.2 U<br>0.2 U             | 0.19 U<br>0.19 U          | 0.19 U<br>0.19 U          | 0.19 U<br>0.19 U             | 0.19 U<br>0.19 U           | 0.19 U<br>0.19 U           | 0.19 U<br>0.19 U           | 0.19 W<br>0.19 W           | NA<br>NA            | 9.5 U<br>9.5 U              | 9.6 U<br>9.6 U           | 9.8 U<br>9.8 U            | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  |
| PAHs              | DIBENZO(A,H)ANTHRACENE                     |            | 0.3        |             | ug/L           | 1 U                         | NA NA                     | NA NA                       | NA NA                      | NA NA                      | NA NA                      | NA NA                     | NA.                        | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.19 U                    | 0.19 U                    | 0.19 U                       | 0.19 U                     | 0.19 U                     | 0.19 U                     | 0.19 UJ                    | NA NA               | 9.5 U                       | 9.6 U                    | 9.8 U                     | NA.                       | NA.                       | NA NA                     |
|                   | FLUORANTHENE                               | 0.5        | 1000       |             | ug/L           | 0.5 U                       | 0.5 U                     | 0.5 U                       | 0.5 U                      | 0.5 U                      | 0.5 U                      | 0.5 U                     | 0.5 U                      | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.19 U                    | 0.19 U                    | 0.19 U                       | 0.19 U                     | 0.19 U                     | 0.19 U                     | 0.19 LU                    | NA                  | 9.5 U                       | 9.6 U                    | 9.8 U                     | NA                        | NA                        | NA                        |
|                   | FLUORENE                                   | 0.5        | 1000       |             | ug/L           | 0.5 U                       | 0.5 U                     | 0.5 U                       | 0.5 U                      | 0.5 U                      | 0.5 U                      | 0.5 U                     | 0.5 U                      | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.19 U                    | 0.19 U                    | 0.19 U                       | 0.19 U                     | 0.19 U                     | 0.19 U                     | 0.19 UJ                    | NA                  | 9.5 U                       | 9.6 U                    | 9.8 U                     | NA                        | NA                        | NA                        |
|                   | INDENO(1,2,3-CD)PYRENE                     |            | 0.4        |             | ug/L           | 0.5 U                       | NA                        | NA                          | NA                         | NA                         | NA                         | NA                        | NA                         | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.19 U                    | 0.19 U                    | 0.19 U                       | 0.19 U                     | 0.19 U                     | 0.19 U                     | 0.19 LU                    | NA                  | 9.5 U                       | 9.6 U                    | 9.8 U                     | NA                        | NA                        | NA                        |
|                   | 1-METHYLNAPHTHALENE<br>2-METHYLNAPHTHALENE |            |            |             | ug/L           | NA<br>NA                    | NA<br>NA                  | NA<br>NA                    | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                  | NA<br>NA                   | 0.2 U<br>0.2 U             | 0.2 U<br>0.2 U            | 0.2 U<br>0.2 U             | 0.2 U<br>0.2 U             | 0.2 U<br>0.2 U             | 0.19 U<br>0.19 U          | 0.19 U<br>0.19 U          | 0.19 U<br>0.19 U             | 0.19 U<br>0.19 U           | 0.19 U<br>0.19 U           | 0.76 U<br>0.19 U           | 0.38 LU<br>0.19 LU         | NA<br>NA            | 9.5 U<br>9.5 U              | 9.6 U<br>9.6 U           | 9.8 U<br>9.8 U            | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  |
|                   | 2-METHYLNAPHTHALENE<br>NAPHTHALENE         | 1          | 20         | 20          | ug/L           | NA<br>1 U                   | NA<br>1 U                 | NA<br>1 U                   | NA<br>1 U                  | NA<br>1 U                  | NA<br>1 U                  | NA<br>1 U                 | NA<br>1 U                  | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.19 U<br>0.19 U          | 0.19 U<br>0.27            | 0.19 U<br>0.41               | 0.19 U<br>0.19 U           | 0.19 U<br>0.19 U           | 0.19 U<br>0.19 U           | 0.19 LU<br>0.19 LU         | NA<br>NA            | 9.5 U<br>9.5 U              | 9.6 U                    | 9.8 U<br>9.8 U            | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  |
|                   | PHENANTHRENE                               | 0.22       | 0.2        | 510         | ug/L           | 0.2 U                       | 0.2 U                     | 0.2 U                       | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.19 U                    | 0.19 U                    | 0.19 U                       | 0.19 U                     | 0.19 U                     | 0.19 U                     | 0.19 UJ                    | NA NA               | 9.5 U                       | 9.6 U                    | 9.8 U                     | NA NA                     | NA.                       | NA NA                     |
|                   | PYRENE                                     | 0.5        | 1000       |             | ug/L           | 0.5 U                       | 0.5 U                     | 0.5 U                       | 0.5 U                      | 0.5 U                      | 0.5 U                      | 0.5 U                     | 0.5 U                      | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.19 U                    | 0.19 U                    | 0.19 U                       | 0.19 U                     | 0.19 U                     | 0.19 U                     | 0.19 LU                    | NA                  | 9.5 U                       | 9.6 U                    | 9.8 U                     | NA                        | NA                        | NA                        |
|                   | TOTAL PAHs                                 |            |            |             | ug/L           | ND                          | ND                        | ND                          | ND                         | ND                         | ND                         | ND                        | ND                         | ND                         | ND                        | ND                         | ND                         | ND                         | ND                        | 0.27                      | 0.41                         | ND                         | ND                         | ND                         | ND                         | NA                  | ND                          | ND                       | ND                        | NA                        | NA                        | NA                        |
|                   | BENZENE                                    | 1          | 5          | 31.2        | ug/L           | 1 U                         | 1 U                       | 1 U                         | 1 U                        | 1 U                        | 1 U                        | 1 U                       | 1 U                        | 1 U                        | 1 U                       | 1 U                        | 1 U                        | 1 U                        | 1 U                       | 1 U                       | 1 U                          | 1 U                        | 1 U                        | 1 U                        | 1 U                        | NA                  | 1 U                         | 1 U                      | 1 U                       | NA                        | NA                        | NA                        |
|                   | ETHYLBENZENE<br>p/m-XYLENE                 |            | 700        |             | ug/L<br>ug/L   | 1 U                         | 1 U                       | 10                          | 10                         | 1 U                        | 10                         | 1 U                       | 10                         | 1 U<br>NA                  | 1 U<br>NA                 | 1 U                        | 1 U<br>NA                  | 1 U<br>NA                  | 1 U<br>NA                 | 1 U<br>NA                 | 1 U<br>NA                    | 1 U<br>NA                  | 1 U<br>NA                  | 1 U<br>NA                  | 1 U                        | NA<br>NA            | 1 U<br>NA                   | 1 U<br>NA                | 1 U<br>NA                 | NA<br>NA                  | NA<br>NA                  | NA NA                     |
|                   | METHYLENE CHLORIDE                         |            |            |             | ug/L           | NA<br>NA                    | 1 U                       | 1 U<br>NA                   | 1 U<br>NA                  | NA NA                      | 1 U<br>NA                  | NA NA                     | 1 U<br>NA                  | NA<br>NA                   | NA<br>NA                  | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                  | NA<br>NA                  | NA<br>NA                     | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA            | 5 U                         | 5 U                      | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  |
| VOCs              | o-XYLENE                                   |            |            |             | ug/L           | NA                          | 1 U                       | 1 U                         | 1 U                        | 1 U                        | 1 U                        | 1 U                       | 1 U                        | NA                         | NA                        | NA                         | NA                         | NA                         | NA                        | NA                        | NA                           | NA                         | NA                         | NA                         | NA                         | NA                  | NA                          | NA                       | NA                        | NA                        | NA                        | NA                        |
|                   | TOLUENE                                    | 1          | 1000       | 1900        | ug/L           | 1 U                         | 1 U                       | 1 U                         | 1 U                        | 1 U                        | 1 U                        | 1 U                       | 1 U                        | 1 U                        | 1 U                       | 1 U                        | 1 U                        | 1 U                        | 1 U                       | 1 U                       | 1 U                          | 1 U                        | 1 U                        | 1 U                        | 1 U                        | NA                  | 1 U                         | 1 U                      | 1 U                       | NA                        | NA                        | NA                        |
|                   | XYLENES (TOTAL)                            | 2          | 10000      |             | ug/L           | 2 U                         | 1 U                       | 1 U                         | 1 U                        | 1 U                        | 1 U                        | 1 U                       | 1 U                        | 2 U                        | 2 U                       | 2 U                        | 2 U                        | 2 U                        | 2 U                       | 2 U                       | 2 U                          | 2 U                        | 2 U                        | 2 U                        | 2 U                        | NA                  | 2 U                         | 2 U                      | 2 U                       | NA                        | NA                        | NA                        |
|                   | METHYL TERT BUTYL ETHER                    | **         |            |             | ug/L           | NA                          | NA                        | NA                          | NA                         | NA                         | NA                         | NA.                       | NA                         | NA                         | NA                        | NA                         | NA                         | NA                         | 10 U                      | 10 U                      | 10 U                         | 10 U                       | NA                         | NA                         | 10 U                       | NA                  | 10 U                        | 10 U                     | NA                        | NA                        | NA                        | NA                        |
|                   | TOTAL BTEX ARSENIC                         | 0.018      | 0.018      | 0.018       | ug/L<br>mg/L   | ND<br>0.01 U                | ND<br>0.01 U              | ND<br>0.01 U                | ND<br>0.01 U               | ND<br>0.01 U               | ND<br>0.01 U               | ND<br>0.01 U              | ND<br>0.01 U               | ND<br>0.01 U               | ND<br>0.01 U              | ND<br>0.01 U               | ND<br>0.01 U               | ND<br>0.01 U               | ND<br>0.01 U              | ND<br>0.01 U              | ND<br>0.01 U                 | ND<br>0.01 U               | ND<br>0.01 U               | ND<br>0.02 U               | ND<br>0.02 U               | NA<br>NA            | ND<br>0.02 U                | ND<br>0.02 U             | ND<br>0.02 U              | NA<br>0.02 U              | NA<br>0.02 U              | NA<br>0.02 U              |
|                   | BERYLLIUM                                  | 0.018      | 0.018      | 0.018       | mg/L           | 0.005 U                     | NA NA                     | NA NA                       | NA NA                      | NA NA                      | NA                         | NA NA                     | NA.                        | NA                         | NA NA                     | NA.                        | NA NA                      | NA NA                      | NA NA                     | NA NA                     | NA.                          | NA.                        | NA NA                      | 0.02 U                     | 0.02 U                     | NA NA               | NA                          | 0.02 U                   | NA                        | 0.02 U                    | NA NA                     | 0.02 U                    |
|                   | BORON                                      |            |            |             | mg/L           | NA                          | NA                        | NA                          | NA                         | NA                         | NA                         | NA                        | NA                         | NA                         | NA                        | NA                         | NA                         | NA                         | NA                        | NA                        | NA                           | NA                         | NA                         | NA                         | NA                         | NA                  | NA                          | NA                       | NA                        | NA                        | NA                        | NA                        |
|                   | CADMIUM                                    |            | 0.005      |             | mg/L           | 0.005 U                     | NA                        | NA                          | NA                         | NA                         | NA                         | NA                        | NA                         | NA                         | NA                        | NA                         | NA                         | NA                         | NA                        | NA                        | NA                           | NA                         | NA                         | NA                         | NA                         | NA                  | NA                          | NA                       | NA                        | NA                        | NA                        | NA                        |
|                   | CALCIUM METAL                              |            |            |             | mg/L           | NA                          | NA                        | NA                          | NA                         | NA                         | NA                         | NA.                       | NA                         | NA                         | NA                        | NA                         | NA                         | NA                         | NA                        | NA                        | NA                           | NA                         | NA                         | NA                         | NA                         | NA                  | NA                          | NA                       | NA                        | NA                        | NA                        | NA                        |
|                   | CHROMIUM                                   | 0.013      | 0.1        |             | mg/L           | 0.01 U                      | 0.01 U                    | 0.01 U                      | 0.01 U                     | 0.01 U                     | 0.01 U                     | 0.01 U                    | 0.01 U                     | 0.01 U                     | 0.01 U                    | 0.01 U                     | 0.01 U                     | 0.01 U                     | 0.01 U                    | 0.01 U                    | 0.01 U                       | 0.01 U                     | 0.01 U                     | 0.01 U                     | 0.01 U                     | NA                  | 0.01 U                      | 0.01 U                   | 0.01 U                    | NA                        | NA                        | NA .                      |
| Metals, Total     | LEAD<br>MAGNESIUM                          | 0.007      | 0.015      | 0.015       | mg/L<br>mg/L   | 0.005 U<br>NA               | 0.005 U<br>NA             | 0.005 U<br>NA               | 0.005 U<br>NA              | 0.005 U<br>NA              | 0.005 U<br>NA              | 0.005 U<br>NA             | 0.005 U<br>NA              | 0.005 U<br>NA              | 0.005 U<br>NA             | 0.005 U<br>NA              | 0.005 U<br>NA              | 0.005 U<br>NA              | 0.005 U<br>NA             | 0.005 U<br>NA             | 0.005 U<br>NA                | 0.005 U<br>NA              | 0.005 U<br>NA              | 0.01 U<br>NA               | 0.01 U<br>NA               | NA<br>NA            | 0.01 U<br>NA                | 0.01 U<br>NA             | 0.01 U<br>NA              | 0.01 U<br>NA              | 0.01 U<br>NA              | 0.01 U<br>NA              |
|                   | MERCURY                                    |            | 0.002      |             | mg/L           | 0.0002 U                    | NA NA                     | NA.                         | NA NA                      | NA NA                      | NA NA                      | NA.                       | NA.                        | NA NA                      | NA NA                     | NA NA                      | NA NA                      | NA NA                      | NA NA                     | NA NA                     | NA NA                        | NA.                        | NA NA                      | NA NA                      | NA NA                      | NA NA               | NA NA                       | NA NA                    | NA NA                     | NA NA                     | NA.                       | NA NA                     |
|                   | NICKEL                                     | 0.13       | 0.1        | 2           | mg/L           | 0.04 U                      | 0.04 U                    | 0.04 U                      | 0.04 U                     | 0.04 U                     | 0.04 U                     | 0.04 U                    | 0.04 U                     | 0.04 U                     | 0.04 U                    | 0.04 U                     | 0.04 U                     | 0.04 U                     | 0.04 U                    | 0.04 U                    | 0.04 U                       | 0.04 U                     | 0.04 U                     | 0.04 U                     | 0.04 U                     | NA                  | 0.04 U                      | 0.04 U                   | 0.04 U                    | 0.04 U                    | 0.04 U                    | 0.04 U                    |
|                   | POTASSIUM                                  |            |            |             | mg/L           | NA                          | NA                        | NA                          | NA                         | NA                         | NA                         | NA                        | NA                         | NA                         | NA                        | NA                         | NA                         | NA                         | NA                        | NA                        | NA                           | NA                         | NA                         | NA                         | NA                         | NA                  | NA                          | NA                       | NA                        | NA                        | NA                        | NA                        |
|                   | SODIUM                                     |            |            |             | mg/L           | NA                          | NA                        | NA                          | NA                         | NA                         | NA                         | NA                        | NA                         | NA                         | NA                        | NA                         | NA                         | NA                         | NA                        | NA                        | NA                           | NA                         | NA                         | NA                         | NA                         | NA                  | NA                          | NA                       | NA                        | NA                        | NA                        | NA                        |
|                   | ZINC<br>ARSENIC                            | 0.96       | 0.018      | 0.018       | mg/L<br>mg/L   | 0.02 U<br>NA                | 0.02 U<br>NA              | 0.02 U<br>0.01 U            | 0.02 U<br>0.01 U           | 0.14<br>NA                 | 0.02 U<br>NA               | 0.02 U<br>NA              | 0.02 U<br>NA               | 0.02 U<br>NA               | 0.02 U<br>NA              | 0.02 U<br>NA               | 0.028<br>NA                | 0.02 U<br>NA               | 0.02 U<br>NA              | 0.02 U<br>NA              | 0.02 U<br>NA                 | 0.02 U<br>NA               | 0.02 U<br>NA               | 0.02 U<br>NA               | 0.02 U<br>NA               | NA<br>NA            | 0.02 U<br>NA                | 0.02 U<br>NA             | 0.02 U<br>NA              | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  |
|                   | BERYLLIUM                                  |            | 0.018      |             | mg/L           | NA<br>NA                    | NA NA                     | NA NA                       | NA NA                      | NA<br>NA                   | NA<br>NA                   | NA NA                     | NA<br>NA                   | NA<br>NA                   | NA<br>NA                  | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                  | NA<br>NA                  | NA<br>NA                     | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA            | NA<br>NA                    | NA<br>NA                 | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  | NA NA                     |
|                   | CADMIUM                                    |            | 0.005      |             | mg/L           | NA                          | NA                        | NA.                         | NA                         | NA                         | NA                         | NA.                       | NA                         | NA                         | NA                        | NA                         | NA                         | NA                         | NA                        | NA                        | NA                           | NA                         | NA                         | NA                         | NA                         | NA NA               | NA NA                       | NA                       | NA                        | NA                        | NA                        | NA NA                     |
| Metals, Dissolved | CHROMIUM                                   | 0.013      | 0.1        |             | mg/L           | NA                          | NA                        | 0.01 U                      | 0.01 U                     | NA                         | NA                         | NA                        | NA                         | NA                         | NA                        | NA                         | NA                         | NA                         | NA                        | NA                        | NA                           | NA                         | NA                         | NA                         | NA                         | NA                  | NA                          | NA                       | NA                        | NA                        | NA                        | NA                        |
| motors, Dissolved | LEAD                                       | 0.007      | 0.015      | 0.015       | mg/L           | NA                          | NA                        | 0.005 U                     | 0.005 U                    | NA                         | NA                         | NA                        | NA                         | NA                         | NA                        | NA                         | NA                         | NA                         | NA                        | NA                        | NA                           | NA                         | NA                         | NA                         | NA                         | NA                  | NA                          | NA                       | NA                        | NA                        | NA                        | NA                        |
|                   | MERCURY                                    |            | 0.002      |             | mg/L           | NA                          | NA                        | NA                          | NA                         | NA                         | NA                         | NA                        | NA                         | NA                         | NA                        | NA                         | NA                         | NA                         | NA                        | NA                        | NA                           | NA                         | NA                         | NA                         | NA                         | NA                  | NA                          | NA                       | NA                        | NA                        | NA                        | NA                        |
|                   | NICKEL<br>ZINC                             | 0.13       | 0.1        | 2           | mg/L<br>mg/L   | NA<br>NA                    | NA<br>NA                  | 0.04 U<br>0.02 U            | 0.04 U<br>0.02 U           | 0.02 U                     | NA<br>NA                   | NA<br>NA                  | NA<br>NA                   | NA<br>NA                   | NA<br>NA                  | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                  | NA<br>NA                  | NA<br>NA                     | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA            | NA<br>NA                    | NA<br>NA                 | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  | NA<br>NA                  |
|                   | ALKALINITY                                 |            |            |             | mg/L           | NA NA                       | NA NA                     | NA                          | NA                         | NA                         | NA NA                      | NA NA                     | NA NA                      | NA NA                      | NA NA                     | NA.                        | NA NA                      | NA NA                      | NA NA                     | NA NA                     | NA NA                        | NA.                        | NA NA                      | NA NA                      | NA NA                      | NA NA               | NA NA                       | NA NA                    | NA NA                     | NA NA                     | NA NA                     | NA NA                     |
|                   | ALKALINITY, TOTAL (AS CACO3)               |            |            |             | mg/L           | NA                          | NA                        | NA                          | NA                         | NA                         | NA                         | NA                        | NA                         | NA                         | NA                        | NA                         | NA                         | NA                         | NA                        | NA                        | NA                           | NA                         | NA                         | NA                         | NA                         | NA                  | NA                          | NA                       | NA                        | NA                        | NA                        | NA                        |
|                   | AMMONIA AS N                               | 15         | 30         | 30          | mg/L           | NA                          | 5.3                       | 12                          | 2.4                        | 6                          | 9.6                        | 4.1                       | 5.9                        | 3.2                        | 3.6                       | 5.1                        | 1.9                        | 5                          | 3                         | 2.8 J                     | 1.7 J                        | 2.2                        | 5.8                        | 1.8                        | 4.9 J                      | 3.9                 | 4                           | 4                        | 5.6                       | 4.5                       | 4.7                       | 4.9                       |
|                   | BICARBONATE                                |            |            |             | mg/L           | NA                          | NA                        | NA                          | NA                         | NA                         | NA                         | NA                        | NA                         | NA                         | NA                        | NA                         | NA                         | NA                         | NA                        | NA                        | NA                           | NA                         | NA                         | NA                         | NA                         | NA                  | NA                          | NA                       | NA                        | NA                        | NA                        | NA                        |
| Miscellaneous     | CARBONATE                                  |            |            |             | mg/L<br>umhos/ | NA                          | NA                        | NA                          | NA                         | NA                         | NA                         | NA                        | NA                         | NA                         | NA                        | NA                         | NA                         | NA                         | NA                        | NA                        | NA                           | NA                         | NA                         | NA                         | NA                         | NA                  | NA                          | NA                       | NA                        | NA                        | NA                        | NA                        |
|                   | CONDUCTIVITY  NITRATE (AS N)               |            | 10         |             | cm             | NA<br>NA                    | NA<br>NA                  | NA<br>NA                    | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                  | NA<br>NA                   | NA<br>NA                   | NA<br>NA                  | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                  | NA<br>NA                  | NA<br>NA                     | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA            | NA<br>0.05 U                | NA<br>0.05 U             | NA<br>0.05 U              | NA<br>0.05 U              | NA<br>0.05 U              | NA 0.05.11                |
|                   | NITHATE (AS N) NITRITE (AS N)              |            |            |             | mg/L<br>mg/l   | NA<br>NA                    | NA<br>NA                  | NA<br>NA                    | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                  | NA<br>NA                   | NA<br>NA                   | NA<br>NA                  | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                  | NA<br>NA                  | NA<br>NA                     | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA            | 0.05 U                      | 0.05 U<br>NA             | 0.05 U<br>NA              | 0.05 U<br>NA              | 0.05 U                    | 0.05 U<br>0.05 U          |
|                   | SULFATE                                    |            |            |             | mg/L           | NA                          | NA                        | NA                          | NA                         | NA NA                      | NA                         | NA NA                     | NA.                        | NA                         | NA NA                     | NA                         | NA                         | NA NA                      | NA                        | NA                        | NA                           | NA.                        | NA NA                      | NA NA                      | NA NA                      | NA NA               | NA                          | NA                       | NA.                       | NA                        | NA.                       | NA NA                     |
|                   | SOLIDS, TOTAL DISSOLVED                    |            |            |             | mg/L           | NA                          | NA                        | NA                          | NA                         | NA                         | NA                         | NA                        | NA                         | NA                         | NA                        | NA                         | NA                         | NA                         | NA                        | NA                        | NA                           | NA                         | NA                         | NA                         | NA                         | NA                  | NA                          | NA                       | NA                        | NA                        | NA                        | NA                        |
| SVOCs             | 1,4-DICHLOROBENZENE                        |            |            |             | ug/L           | NA                          | NA                        | NA                          | NA                         | NA                         | NA                         | NA                        | NA                         | NA                         | NA                        | NA                         | NA                         | NA                         | NA                        | NA                        | NA                           | NA                         | NA                         | NA                         | NA                         | NA                  | 1 U                         | 1 U                      | NA                        | NA                        | NA                        | NA                        |
| Notes:            |                                            |            |            |             |                |                             |                           |                             |                            |                            |                            |                           |                            |                            |                           |                            |                            |                            |                           |                           |                              |                            |                            |                            |                            |                     |                             |                          |                           |                           |                           |                           |

Notes:

Shaded cell indicates comparison standard used in data evaluation.

Job and million of the cell indicates analytical result exceeds comparison criteria.

Bold and Rolls test indicates analytical result exceeds background value.

A Nitrate comparison standard based on the Maximum Containant state (MCL) established by the USEPA National Primary C
NO - No constituents detected above the laboratory indirum detection limit.

J: Indicates constituent was not detected above value below.

J: Indicates constituent was not detected at an estimated value.

Monitoring mills AMV 3R, PDMW 4R, PDMM 10R, PDMM 11R, PDMM 14TR, PDMM 2TR, PDMM 3TR, PDMM 3TR, PDMM 3TR, PDMM 3TR, PDMM 4TR, PDMM 11R, P

|                   |                                              |            |            | L           | ocation:     |                             |                            |                             |                            |                            |                            |                            |                            |                           |                            |                           | PDM                        | W-20T                      |                            |                           |                           |                            |                            |                                |                            |                            |                             |                     |                           |
|-------------------|----------------------------------------------|------------|------------|-------------|--------------|-----------------------------|----------------------------|-----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|---------------------------|----------------------------|---------------------------|----------------------------|----------------------------|----------------------------|---------------------------|---------------------------|----------------------------|----------------------------|--------------------------------|----------------------------|----------------------------|-----------------------------|---------------------|---------------------------|
|                   |                                              |            |            | Samp        | _            | 10/29/1997                  | 8/10/1999                  | 11/17/1999                  | 2/23/2000                  | 5/16/2000                  | 8/22/2000                  | 1/10/2001                  | 7/16/2001                  | 2/7/2002                  | 9/10/2002                  | 2/6/2003                  | 6/26/2003                  | 1/27/2004                  | 7/21/2004                  | 3/7/2006                  | 4/1/2008                  | 7/18/2008                  | 10/8                       | /2008                          | 12/7/2009                  | 6/19/2010                  | 12/16/2010                  | 6/16/2011           | 12/8/2011                 |
|                   |                                              |            |            | Samp        | le Type:     | Normal                      | Normal                     | Normal                      | Normal                     | Normal                     | Normal                     | Normal                     | Normal                     | Normal                    | Normal                     | Normal                    | Normal                     | Normal                     | Normal                     | Normal                    | Normal                    | Normal                     | Normal                     | Dup                            | Normal                     | Normal                     | Normal                      | Normal              | Normal                    |
|                   |                                              |            |            | Sai         | mple ID:     | PDMW-<br>20T_10/29/1<br>997 | PDMW-<br>20T_8/10/19<br>99 | PDMW-<br>20T_11/17/1<br>999 | PDMW-<br>20T_2/23/20<br>00 | PDMW-<br>20T_5/16/20<br>00 | PDMW-<br>20T_8/22/20<br>00 | PDMW-<br>20T_1/10/20<br>01 | PDMW-<br>20T_7/16/20<br>01 | PDMW-<br>20T_2/7/200<br>2 | PDMW-<br>20T_9/10/20<br>02 | PDMW-<br>20T_2/6/200<br>3 | PDMW-<br>20T_6/26/20<br>03 | PDMW-<br>20T_1/27/20<br>04 | PDMW-<br>20T_7/21/20<br>04 | PDMW-<br>20T_3/7/200<br>6 | PDMW-<br>20T_4/1/200<br>8 | PDMW-<br>20T_7/18/20<br>08 | PDMW-<br>20T_10/8/20<br>08 | PDWM-20T-<br>DUP_10/8/20<br>08 | PDMW-<br>20T_12/7/20<br>09 | PDMW-<br>20T_6/19/20<br>10 | PDMW-<br>20T_12/16/2<br>010 | PDMW-20T-<br>061611 | PDMW-<br>20T_120820<br>11 |
| Method Group      | Analyte                                      | Background | Type 3 RRS | Type 4 RRS  | Units        | Result                      | Result                     | Result                      | Result                     | Result                     | Result                     | Result                     | Result                     | Result                    | Result                     | Result                    | Result                     | Result                     | Result                     | Result                    | Result                    | Result                     | Result                     | Result                         | Result                     | Result                     | Result                      | Result              | Result                    |
|                   | ACENAPHTHENE                                 | 1          | 2000       |             | ug/L         | 1 U                         | 1 U                        | 1 U                         | 1 U                        | 1 U                        | 1 U                        | 1 U                        | 1 U                        | 1 U                       | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.19 U                    | 0.19 U                    | 0.19 U                     | 0.19 U                     | 0.19 U                         | 0.19 U                     | 0.19 UJ                    | NA                          | NA                  | NA                        |
|                   | ACENAPHTHYLENE<br>ANTHRACENE                 | 1.4        | 0.2        | 510<br>5100 | ug/L         | 1 U<br>0.2 U                | 1 U                        | 1 U                         | 1 U                        | 1 U<br>0.2 U               | 1 U                        | 1 U                        | 1 U<br>0.2 U               | 1 U                       | 0.2 U<br>0.2 U             | 0.2 U<br>0.2 U            | 0.2 U<br>0.2 U             | 0.2 U<br>0.2 U             | 0.2 U<br>0.2 U             | 0.19 U<br>0.19 U          | 0.19 U<br>0.19 U          | 0.19 U<br>0.19 U           | 0.19 U<br>0.19 U           | 0.19 U<br>0.19 U               | 0.19 U<br>0.19 U           | 0.19 U<br>0.19 U           | NA<br>NA                    | NA<br>NA            | NA<br>NA                  |
|                   | BENZO(A)ANTHRACENE                           | 0.2        | 0.2        | 3.9         | ug/L<br>ug/L | 0.2 U                       | 0.2 U                      | 0.2 U                       | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.19 U                    | 0.19 U                    | 0.19 U                     | 0.19 U                     | 0.19 U                         | 0.19 U                     | 0.19 U                     | NA<br>NA                    | NA<br>NA            | NA<br>NA                  |
|                   | BENZO(A)PYRENE                               | 0.2        | 0.2        | 0.39        | ug/L         | 0.2 U                       | 0.2 U                      | 0.2 U                       | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.19 U                    | 0.19 U                    | 0.19 U                     | 0.19 U                     | 0.19 U                         | 0.19 U                     | 0.19 U                     | NA.                         | NA NA               | NA NA                     |
|                   | BENZO(B)FLUORANTHENE                         | 0.2        | 0.2        | 0.65        | ug/L         | 0.2 U                       | 0.2 U                      | 0.2 U                       | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.19 U                    | 0.19 U                    | 0.19 U                     | 0.19 U                     | 0.19 U                         | 0.19 U                     | 0.19 U                     | NA                          | NA                  | NA                        |
|                   | BENZO(G,H,I)PERYLENE                         |            |            |             | ug/L         | 0.5 U                       | NA                         | NA                          | NA                         | NA                         | NA                         | NA                         | NA                         | NA                        | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.19 U                    | 0.19 U                    | 0.19 U                     | 0.19 U                     | 0.19 U                         | 0.19 U                     | 0.19 U                     | NA                          | NA                  | NA                        |
|                   | BENZO(K)FLUORANTHENE                         |            |            |             | ug/L         | 0.5 U                       | NA                         | NA                          | NA                         | NA                         | NA                         | NA                         | NA                         | NA                        | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.19 U                    | 0.19 U                    | 0.19 U                     | 0.19 U                     | 0.19 U                         | 0.19 U                     | 0.19 U                     | NA                          | NA                  | NA                        |
| L                 | CHRYSENE                                     | 0.2        | 0.2        | 65          | ug/L         | 0.2 U                       | 0.2 U                      | 0.2 U                       | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.19 U                    | 0.19 U                    | 0.19 U                     | 0.19 U                     | 0.19 U                         | 0.19 U                     | 0.19 U                     | NA                          | NA                  | NA                        |
| PAHs              | DIBENZO(A,H)ANTHRACENE<br>FLUORANTHENE       | 0.5        | 0.3        |             | ug/L<br>ug/L | 1 U<br>0.5 U                | NA<br>0.5 U                | NA<br>0.5 U                 | NA<br>0.5 U                | 0.5 U                      | NA<br>0.5 U                | NA<br>0.5 U                | 0.5 U                      | NA<br>0.5 U               | 0.2 U<br>0.2 U             | 0.2 U<br>0.2 U            | 0.2 U<br>0.2 U             | 0.2 U<br>0.2 U             | 0.2 U                      | 0.19 U<br>0.19 U          | 0.19 U<br>0.19 U          | 0.19 U<br>0.19 U           | 0.19 U<br>0.19 U           | 0.19 U<br>0.19 U               | 0.19 U<br>0.19 U           | 0.19 U<br>0.19 U           | NA<br>NA                    | NA<br>NA            | NA<br>NA                  |
|                   | FLUORENE                                     | 0.5        | 1000       |             | ug/L<br>ug/L | 0.5 U                       | 0.5 U                      | 0.5 U                       | 0.5 U                      | 0.5 U                      | 0.5 U                      | 0.5 U                      | 0.5 U                      | 0.5 U                     | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.19 U                    | 0.19 U                    | 0.19 U                     | 0.19 U                     | 0.19 U                         | 0.19 U                     | 0.19 U                     | NA<br>NA                    | NA<br>NA            | NA<br>NA                  |
|                   | INDENO(1,2,3-CD)PYRENE                       |            | 0.4        |             | ug/L         | 0.5 U                       | NA                         | NA                          | NA                         | NA                         | NA                         | NA                         | NA                         | NA                        | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.19 U                    | 0.19 U                    | 0.19 U                     | 0.19 U                     | 0.19 U                         | 0.19 U                     | 0.19 U                     | NA                          | NA                  | NA NA                     |
|                   | 1-METHYLNAPHTHALENE                          |            |            |             | ug/L         | NA.                         | NA                         | NA                          | NA                         | NA                         | NA                         | NA                         | NA                         | NA                        | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.19 U                    | 0.19 U                    | 0.19 U                     | 0.19 U                     | 0.19 U                         | 0.76 U                     | 0.38 UJ                    | NA                          | NA                  | NA                        |
|                   | 2-METHYLNAPHTHALENE                          |            |            |             | ug/L         | NA                          | NA                         | NA                          | NA                         | NA                         | NA                         | NA                         | NA                         | NA                        | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.19 U                    | 0.19 U                    | 0.19 U                     | 0.19 U                     | 0.19 U                         | 0.19 U                     | 0.19 W                     | NA                          | NA                  | NA                        |
|                   | NAPHTHALENE                                  | 1          | 20         | 20          | ug/L         | 1 U                         | 1 U                        | 1 U                         | 1 U                        | 1 U                        | 1 U                        | 1 U                        | 1 U                        | 1 U                       | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.19 U                    | 0.19 U                    | 0.19 U                     | 0.19 U                     | 0.19 U                         | 0.19 U                     | 0.19 W                     | NA                          | NA                  | NA                        |
|                   | PHENANTHRENE                                 | 0.22       | 0.2        | 510         | ug/L         | 0.2 U                       | 0.2 U                      | 0.2 U                       | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.19 U                    | 0.19 U                    | 0.19 U                     | 0.19 U                     | 0.19 U                         | 0.19 U                     | 0.19 U                     | NA                          | NA                  | NA                        |
|                   | PYRENE<br>TOTAL PAHs                         | 0.5        | 1000       |             | ug/L         | 0.5 U<br>ND                 | 0.5 U<br>ND                | 0.5 U<br>ND                 | 0.5 U<br>ND                | 0.5 U<br>ND                | 0.5 U<br>ND                | 0.5 U<br>ND                | 0.5 U<br>ND                | 0.5 U<br>ND               | 0.2 U<br>ND                | 0.2 U<br>ND               | 0.2 U<br>ND                | 0.2 U<br>ND                | 0.2 U<br>ND                | 0.19 U<br>ND              | 0.19 U<br>ND              | 0.19 U<br>ND               | 0.19 U<br>ND               | 0.19 U<br>ND                   | 0.19 U<br>ND               | 0.19 U<br>ND               | NA<br>NA                    | NA<br>NA            | NA<br>NA                  |
|                   | BENZENE                                      | 1          | 5          | 31.2        | ug/L<br>ug/L | 8.7                         | 1 U                        | 4                           | 1.1                        | 1 U                        | 1.3                        | 1 U                        | 1 U                        | 1.2                       | 1 U                        | 1 U                       | 1 U                        | 1 U                        | 1 U                        | 3.2                       | 2.3                       | 1 U                        | 1 U                        | 1 U                            | 1 U                        | 1 U                        | NA<br>NA                    | NA<br>NA            | NA<br>NA                  |
|                   | ETHYLBENZENE                                 | 1          | 700        |             | ug/L         | 1 U                         | 1 U                        | 1 U                         | 1 U                        | 1 U                        | 1 U                        | 1 U                        | 1 U                        | 1 U                       | 1 U                        | 1 U                       | 1 U                        | 1 U                        | 1 U                        | 1 U                       | 1 U                       | 1 U                        | 1 U                        | 1 U                            | 1 U                        | 1 U                        | NA.                         | NA                  | NA NA                     |
|                   | p/m-XYLENE                                   |            |            |             | ug/L         | NA                          | 1 U                        | 1 U                         | 1 U                        | 1 U                        | 1 U                        | 1 U                        | 1 U                        | NA                        | NA                         | NA                        | NA                         | NA                         | NA.                        | NA                        | NA                        | NA                         | NA                         | NA.                            | NA                         | NA                         | NA                          | NA                  | NA                        |
|                   | METHYLENE CHLORIDE                           |            |            |             | ug/L         | NA                          | 5 U                        | NA                          | NA                         | NA                         | NA                         | NA                         | NA                         | NA                        | NA                         | NA                        | NA                         | NA                         | NA                         | NA                        | NA                        | NA                         | NA                         | NA                             | NA                         | NA                         | NA                          | NA                  | NA                        |
| VOCs              | o-XYLENE                                     |            |            |             | ug/L         | NA                          | 1 U                        | 1 U                         | 1 U                        | 1 U                        | 1 U                        | 1 U                        | 1 U                        | NA                        | NA                         | NA                        | NA                         | NA                         | NA                         | NA                        | NA                        | NA                         | NA                         | NA                             | NA                         | NA                         | NA                          | NA                  | NA                        |
|                   | TOLUENE                                      | 1          | 1000       | 1900        | ug/L         | 1 U                         | 1 U                        | 1 U                         | 1 U                        | 1 U                        | 1 U                        | 1 U                        | 1 U                        | 1 U                       | 1 U                        | 1 U                       | 1 U                        | 1 U                        | 1 U                        | 1 U                       | 1 U                       | 1 U                        | 1 U                        | 1 U                            | 1 U                        | 1 U                        | NA                          | NA                  | NA                        |
|                   | XYLENES (TOTAL) METHYL TERT BUTYL ETHER      | 2          | 10000      |             | ug/L<br>ug/L | 2 U<br>NA                   | 1 U<br>NA                  | 1 U<br>NA                   | 1 U<br>NA                  | 1 U<br>NA                  | 1 U<br>NA                  | 1 U<br>NA                  | 1 U<br>NA                  | 2 U<br>NA                 | 2 U<br>NA                  | 2 U<br>NA                 | 2 U<br>NA                  | 2 U<br>NA                  | 2 U<br>NA                  | 2 U<br>10 U               | 2 U                       | 2 U<br>10 U                | 2 U<br>NA                  | 2 U<br>NA                      | 2 U<br>NA                  | 2 U<br>10 U                | NA<br>NA                    | NA<br>NA            | NA<br>NA                  |
|                   | TOTAL BTEX                                   |            |            |             | ug/L         | 8.7                         | ND ND                      | 4                           | 1.1                        | ND ND                      | 1.3                        | ND ND                      | ND ND                      | 1.2                       | ND ND                      | ND ND                     | ND ND                      | ND ND                      | ND ND                      | 3.2                       | 2.3                       | ND ND                      | ND ND                      | ND ND                          | ND ND                      | ND ND                      | NA NA                       | NA NA               | NA NA                     |
|                   | ARSENIC                                      | 0.018      | 0.018      | 0.018       | mg/L         | 0.0102                      | 0.024                      | 0.01 U                      | 0.013 U                    | 0.015                      | 0.013                      | 0.016                      | 0.026                      | 0.018                     | 0.028                      | 0.022                     | 0.03                       | 0.028                      | 0.01 U                     | 0.013                     | 0.014                     | 0.018                      | 0.025                      | 0.024                          | 0.02 U                     | 0.02                       | 0.019                       | 0.028               | 0.026                     |
|                   | BERYLLIUM                                    |            | 0.004      |             | mg/L         | 0.005 U                     | NA                         | NA                          | NA                         | NA                         | NA                         | NA                         | NA                         | NA                        | NA                         | NA                        | NA                         | NA.                        | NA                         | NA                        | NA                        | NA                         | NA.                        | NA                             | NA                         | NA                         | NA                          | NA                  | NA                        |
|                   | BORON                                        |            |            |             | mg/L         | NA                          | NA                         | NA                          | NA                         | NA                         | NA                         | NA                         | NA                         | NA                        | NA                         | NA                        | NA                         | NA                         | NA                         | NA                        | NA                        | NA                         | NA.                        | NA                             | NA                         | NA                         | NA                          | NA                  | NA                        |
|                   | CADMIUM                                      |            | 0.005      |             | mg/L         | 0.005 U                     | NA                         | NA                          | NA                         | NA                         | NA                         | NA                         | NA                         | NA                        | NA                         | NA                        | NA                         | NA                         | NA                         | NA                        | NA                        | NA                         | NA                         | NA                             | NA                         | NA                         | NA                          | NA                  | NA                        |
|                   | CALCIUM METAL                                |            |            |             | mg/L         | NA                          | NA                         | NA                          | NA                         | NA                         | NA                         | NA                         | NA                         | NA                        | NA                         | NA                        | NA                         | NA                         | NA                         | NA                        | NA                        | NA                         | NA                         | NA                             | NA                         | NA                         | NA                          | NA                  | NA                        |
| Metals, Total     | CHROMIUM                                     | 0.013      | 0.1        | 0.015       | mg/L<br>mg/L | 0.01 U<br>0.005 U           | 0.01 U<br>0.005 U          | 0.01 U<br>0.005 U           | 0.01 U<br>0.005 U          | 0.011<br>0.005 U           | 0.01 U<br>0.005 U          | 0.01 U<br>0.005 U          | 0.01 U<br>0.005 U          | 0.01 U<br>0.005 U         | 0.01 U<br>0.005 U          | 0.01 U<br>0.005 U         | 0.01 U<br>0.005 U          | 0.01 U<br>0.005 U          | 0.01 U<br>0.005 U          | 0.01 U<br>0.005 U         | 0.01 U<br>0.005 U         | 0.01 U<br>0.005 U          | 0.01 U<br>0.005 U          | 0.01 U<br>0.01 U               | 0.01 U<br>0.01 U           | 0.01 U<br>0.01 U           | NA<br>NA                    | NA<br>NA            | NA<br>NA                  |
| motus, rotal      | MAGNESIUM                                    | 0.007      | 0.015      | 0.015       | mg/L         | 0.000 U                     | NA.                        | NA                          | NA                         | NA NA                      | 0.005 G                    | 0.003 G                    | 0.003 U                    | NA                        | NA                         | NA                        | 0.003 U                    | 0.005 G                    | NA                         | NA                        | 0.000 G                   | 0.000 U                    | NA                         | NA.                            | NA NA                      | NA.                        | NA NA                       | NA NA               | NA NA                     |
|                   | MERCURY                                      |            | 0.002      |             | mg/L         | 0.0002 U                    | NA                         | NA                          | NA                         | NA.                        | NA                         | NA                         | NA                         | NA                        | NA                         | NA                        | NA                         | NA .                       | NA.                        | NA                        | NA                        | NA                         | NA.                        | NA                             | NA                         | NA                         | NA                          | NA                  | NA                        |
|                   | NICKEL                                       | 0.13       | 0.1        | 2           | mg/L         | 0.04 U                      | 0.04 U                     | 0.04 U                      | 0.04 U                     | 0.04 U                     | 0.04 U                     | 0.04 U                     | 0.04 U                     | 0.04 U                    | 0.04 U                     | 0.04 U                    | 0.04 U                     | 0.04 U                     | 0.04 U                     | 0.04 U                    | 0.04 U                    | 0.2                        | 0.078                      | 0.073                          | 0.12                       | 0.04 U                     | NA                          | NA                  | NA                        |
|                   | POTASSIUM                                    |            |            |             | mg/L         | NA                          | NA                         | NA                          | NA                         | NA                         | NA                         | NA                         | NA                         | NA                        | NA                         | NA                        | NA                         | NA                         | NA                         | NA                        | NA                        | NA                         | NA                         | NA                             | NA                         | NA                         | NA                          | NA                  | NA                        |
|                   | SODIUM                                       |            |            |             | mg/L         | NA                          | NA                         | NA                          | NA                         | NA.                        | NA                         | NA                         | NA                         | NA                        | NA                         | NA                        | NA                         | NA                         | NA                         | NA                        | NA                        | NA                         | NA                         | NA                             | NA                         | NA                         | NA                          | NA                  | NA                        |
| <u> </u>          | ZINC                                         | 0.96       | 2          | 31          | mg/L         | 0.0566                      | 0.18                       | 0.036                       | 0.099                      | 0.032                      | 0.034                      | 0.11                       | 0.14                       | 0.084                     | 0.13                       | 0.36                      | 0.23                       | 0.13                       | 0.24                       | 0.12                      | 0.21                      | 2.8                        | 0.66                       | 0.62                           | 1.4                        | 0.16                       | NA                          | NA NA               | NA NA                     |
|                   | ARSENIC<br>BERYLLIUM                         | 0.018      | 0.018      | 0.018       | mg/L<br>mg/L | NA<br>NA                    | NA<br>NA                   | 0.01 U<br>NA                | 0.01 U<br>NA               | 0.01<br>NA                 | 0.01 U<br>NA               | 0.01 U<br>NA               | 0.018<br>NA                | 0.01 U<br>NA              | NA<br>NA                   | NA<br>NA                  | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                  | NA<br>NA                  | NA<br>NA                   | NA<br>NA                   | NA<br>NA                       | NA<br>NA                   | NA<br>NA                   | 0.018<br>NA                 | NA<br>NA            | NA<br>NA                  |
|                   | CADMIUM                                      |            | 0.004      |             | mg/L         | NA.                         | NA NA                      | NA NA                       | NA NA                      | NA NA                      | NA NA                      | NA NA                      | NA NA                      | NA NA                     | NA NA                      | NA NA                     | NA NA                      | NA.                        | NA NA                      | NA NA                     | NA NA                     | NA NA                      | NA.                        | NA NA                          | NA NA                      | NA NA                      | NA NA                       | NA NA               | NA NA                     |
| Martin Pr         | CHROMIUM                                     | 0.013      | 0.1        |             | mg/L         | NA                          | NA                         | 0.01 U                      | 0.01 U                     | 0.01 U                     | NA                         | NA                         | NA                         | NA                        | NA                         | NA                        | NA                         | NA                         | NA                         | NA                        | NA                        | NA                         | NA                         | NA                             | NA                         | NA                         | NA                          | NA                  | NA                        |
| Metals, Dissolved | LEAD                                         | 0.007      | 0.015      | 0.015       | mg/L         | NA                          | NA                         | 0.005 U                     | 0.005 U                    | NA                         | NA                         | NA                         | NA                         | NA                        | NA                         | NA                        | NA                         | NA                         | NA                         | NA                        | NA                        | NA                         | NA                         | NA                             | NA                         | NA                         | NA                          | NA                  | NA                        |
|                   | MERCURY                                      |            | 0.002      |             | mg/L         | NA                          | NA                         | NA                          | NA                         | NA                         | NA                         | NA                         | NA                         | NA                        | NA                         | NA                        | NA                         | NA                         | NA                         | NA                        | NA                        | NA                         | NA                         | NA                             | NA                         | NA                         | NA                          | NA                  | NA                        |
|                   | NICKEL                                       | 0.13       | 0.1        | 2           | mg/L         | NA                          | NA                         | 0.04 U                      | 0.04 U                     | NA                         | NA                         | NA                         | NA                         | NA                        | NA                         | NA                        | NA                         | NA                         | NA                         | NA                        | NA                        | NA                         | NA                         | NA                             | NA                         | NA                         | NA                          | NA                  | NA                        |
| <u> </u>          | ZINC                                         | 0.96       | 2          | 31          | mg/L         | NA NA                       | NA                         | 0.02 U                      | 0.047                      | 0.02 U                     | 0.02 U                     | 0.035<br>NA                | 0.12                       | 0.039                     | NA NA                      | NA NA                     | NA NA                      | NA<br>NA                   | NA NA                      | NA NA                     | NA NA                     | NA NA                      | NA NA                      | NA                             | NA<br>NA                   | NA                         | NA                          | NA<br>NA            | NA NA                     |
|                   | ALKALINITY  ALKALINITY, TOTAL (AS CACO3)     |            |            |             | mg/L<br>mg/L | NA<br>NA                    | NA<br>NA                   | NA<br>NA                    | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                  | NA<br>NA                   | NA<br>NA                  | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                  | NA<br>NA                  | NA<br>NA                   | NA<br>NA                   | NA<br>NA                       | NA<br>NA                   | NA<br>NA                   | NA<br>NA                    | NA<br>NA            | NA<br>NA                  |
|                   | AMMONIA AS N                                 | 15         | 30         | 30          | mg/L         | 1100                        | 370                        | 340                         | 330                        | 430                        | 400                        | 6.9                        | 440                        | 1.3                       | 3.1                        | 340                       | 260                        | 250                        | 360                        | 760                       | 550                       | 220                        | 310                        | 310                            | 39                         | 230                        | 180                         | 260                 | 280                       |
|                   | BICARBONATE                                  |            |            |             | mg/L         | NA                          | NA                         | NA                          | NA                         | NA                         | NA                         | NA                         | NA                         | NA                        | NA                         | NA                        | NA                         | NA                         | NA                         | NA                        | NA                        | NA                         | NA                         | NA                             | NA                         | NA                         | NA.                         | NA                  | NA                        |
| Minoplan          | CARBONATE                                    |            |            |             | mg/L         | NA                          | NA                         | NA                          | NA                         | NA                         | NA                         | NA                         | NA                         | NA                        | NA                         | NA                        | NA                         | NA                         | NA                         | NA                        | NA                        | NA                         | NA.                        | NA                             | NA                         | NA                         | NA                          | NA                  | NA                        |
| Miscellaneous     | CONDUCTIVITY                                 |            |            |             | umhos/<br>cm | NA                          | NA                         | NA                          | NA                         | NA                         | NA                         | NA                         | NA                         | NA                        | NA                         | NA                        | NA                         | NA                         | NA                         | NA                        | NA                        | NA                         | NA                         | NA                             | NA                         | NA                         | NA                          | NA                  | NA                        |
|                   | NITRATE (AS N)                               |            | 10         |             | mg/L         | NA                          | NA                         | NA                          | NA                         | NA                         | NA                         | NA                         | NA                         | NA                        | NA                         | NA                        | NA                         | NA                         | NA                         | NA                        | NA                        | NA                         | NA                         | NA                             | NA                         | NA                         | NA                          | NA                  | NA                        |
|                   | NITRITE (AS N)                               |            |            |             | mg/l         | NA                          | NA                         | NA                          | NA                         | NA                         | NA                         | NA                         | NA                         | NA                        | NA                         | NA                        | NA                         | NA                         | NA                         | NA                        | NA                        | NA                         | NA                         | NA                             | NA                         | NA                         | NA                          | NA                  | NA                        |
|                   | SULFATE                                      |            |            |             | mg/L         | NA NA                       | NA                         | NA NA                       | NA NA                      | NA NA                      | NA NA                      | NA NA                      | NA NA                      | NA<br>NA                  | NA NA                      | NA NA                     | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA NA                     | NA NA                     | NA NA                      | NA NA                      | NA NA                          | NA NA                      | NA NA                      | NA NA                       | NA NA               | NA NA                     |
| SVOC8             | SOLIDS, TOTAL DISSOLVED  1,4-DICHLOROBENZENE |            |            |             | mg/L<br>ug/L | NA<br>NA                    | NA<br>NA                   | NA<br>NA                    | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                  | NA<br>NA                   | NA<br>NA                  | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                  | NA<br>NA                  | NA<br>NA                   | NA<br>NA                   | NA<br>NA                       | NA<br>NA                   | NA<br>NA                   | NA<br>NA                    | NA<br>NA            | NA<br>NA                  |
|                   | ,                                            | 1          | l          | l           | -9-          |                             |                            |                             |                            | 1                          |                            |                            |                            | 1                         |                            |                           |                            | 1                          | 1                          |                           |                           |                            | 1                          | 1                              | 1                          |                            |                             |                     |                           |

Notes:

| Shaded cell indicates comparison standard used in data evaluation.
| Highlighted cell indicates analytical result receeds comparison criteria.
| Boble and Relix feet indicates analytical result exceeds background value.
| Sharts comparison standard backer on the Maximum Containment set (MCL) established by the USEPA National Primary C
NO - No constituent detected above the laboratory indirum detection limit.
| Indicates constituent was not detected above whise Johnson.
| In Indicates constituent was not detected at an estimated value.
| Undicates constituent was not detected at an estimated value.
| Undicates constituent was not detected at an estimated value.
| Undicates constituent was not detected at an estimated value.
| Undicates constituent was not detected at an estimated value.
| Undicates constituent was not detected at an estimated value in the properties of the propert of the properties of the properties of the properties of the pr

| Paris                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                         |            |            | ı          | Location:    |             |          |             |             |             |             |                           |             |             |             |             |             | PDMW-21T    |             |                                                  |                           |             |             |             |             |            |             |          |        |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------|------------|------------|------------|--------------|-------------|----------|-------------|-------------|-------------|-------------|---------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------------------------------------------|---------------------------|-------------|-------------|-------------|-------------|------------|-------------|----------|--------|-----------|
| Profession   Pro   |                   |                         |            |            |            |              | 10/29/1997  | 8/9/1999 | 11/17/1999  | 2/24/2000   | 5/16/2000   | 8/21/2000   | 1/9/2001                  | 7/10/2001   | 2/4/2002    | 9/11/2002   | 2/6/2003    | 6/25/2003   | 1/27/2004   | 7/21/2004   | 3/6/2006                                         | 4/1/2008                  | 7/18/2008   | 10/6/2008   | 12/4/2009   | 6/19        | /2010      | 12/16/2010  | 6/16/    | 2011   | 12/5/2011 |
| Profession   Pro   |                   |                         |            |            | Samp       | ple Type:    | Normal      | Normal   | Normal      | Normal      | Normal      | Normal      | Normal                    | Normal      | Normal      | Normal      | Normal      | Normal      | Normal      | Normal      | Normal                                           | Normal                    | Normal      | Normal      | Normal      | Normal      | Dup        | Normal      | Normal   | Dup    | Normal    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                         |            |            | Se         | ample ID:    | 21T_10/29/1 |          | 21T_11/17/1 | 21T_2/24/20 | 21T_5/16/20 | 21T_8/21/20 | PDMW-<br>21T_1/9/200<br>1 | 21T_7/10/20 | 21T_2/4/200 | 21T_9/11/20 | 21T_2/6/200 | 21T_6/25/20 | 21T_1/27/20 | 21T_7/21/20 | PDMW-<br>21T_3/6/200<br>6                        | PDMW-<br>21T_4/1/200<br>8 | 21T_7/18/20 | 21T_10/6/20 | 21T_12/4/20 | 21T_6/19/20 | 21TDUP_6/1 | 21T_12/16/2 |          |        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Method Group      | Analyte                 | Background | Type 3 RRS | Type 4 RRS | Units        | Result      | Result   | Result      | Result      | Result      | Result      | Result                    | Result      | Result      | Result      | Result      | Result      | Result      | Result      | Result                                           | Result                    | Result      | Result      | Result      | Result      | Result     | Result      | Result   | Result | Result    |
| Marchanness      |                   |                         |            |            |            |              |             |          |             | 1           |             | <b>!</b>    |                           |             |             |             |             |             | <b>!</b>    |             | 1                                                | <b>!</b>                  |             |             |             |             |            |             |          |        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | -                       |            |            |            | ÷            |             |          |             | 1           |             | <b>!</b>    |                           |             |             |             |             |             | <b>!</b>    |             | -                                                | <b>!</b>                  |             |             |             |             | -          | +           |          |        | +         |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                         |            |            |            | -            |             |          |             |             |             | <b>-</b>    |                           |             |             |             |             |             | -           |             | -                                                |                           |             |             |             |             | -          | +           |          |        | +         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                         |            |            |            | -            | <b>!</b>    |          |             | 1           |             | <b>!</b>    |                           |             |             |             |             |             | <b>!</b>    | 1           | 1                                                |                           |             |             |             |             |            | +           | <b>!</b> |        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                         |            | 0.2        |            | _            | -           | 0.2 U    | 0.2 U       |             |             | -           | 0.2 U                     |             |             |             | 0.2 U       |             | -           |             | 0.96 U                                           |                           |             |             | 0.19 U      |             | -          | NA          | NA.      | NA     | _         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | BENZO(G,H,I)PERYLENE    |            |            |            | ug/L         | 0.5 U       | NA.      | NA          | NA          | NA          | NA          | NA                        | NA          | NA          | 0.2 U       | 0.96 U                                           | 0.19 U                    | 0.2 U       | 0.19 U      | 0.19 U      | 0.19 LU     | 0.19 U     | NA          | NA       | NA     | NA        |
| Methods   Meth   |                   | BENZO(K)FLUORANTHENE    |            |            |            | ug/L         | 0.5 U       | NA       | NA          | NA          | NA          | NA          | NA                        | NA          | NA          | 0.2 U       | 0.96 U                                           | 0.19 U                    | 0.2 U       | 0.19 U      | 0.19 U      | 0.19 W      | 0.19 U     | NA          | NA.      | NA     | NA        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | CHRYSENE                | 0.2        | 0.2        | 65         | ug/L         | 0.2 U       | 0.2 U    | 0.2 U       | 0.2 U       | 0.2 U       | 0.2 U       | 0.2 U                     | 0.2 U       | 0.2 U       | 0.2 U       | 0.2 U       | 0.2 U       | 0.2 U       | 0.2 U       | 0.96 U                                           | 0.19 U                    | 0.2 U       | 0.19 U      | 0.19 U      | 0.19 W      | 0.19 U     | NA          | NA       | NA     | NA        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PAHs              |                         |            |            |            | ug/L         | 1 U         |          | NA          | NA          | NA          | <b>!</b>    | NA                        | NA          | NA          | 0.2 U       | 0.96 U                                           | 0.19 U                    | 0.2 U       | _           | 0.19 U      | 0.19 W      | 0.19 U     | <u> </u>    | NA.      | NA     |           |
| Mathematical Registration      |                   |                         |            |            |            | +            | 1           |          |             |             |             | 1           |                           |             |             |             |             |             | 1           | -           |                                                  |                           | -           |             |             |             | 1          | +           |          |        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                         |            |            |            | +            | <b>-</b>    |          |             |             |             | <b>_</b>    |                           |             |             |             |             |             | 1           |             |                                                  |                           | -           |             |             |             | <b>!</b>   |             | <u> </u> |        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                         |            | 0.4        |            | +            | <b>!</b>    |          |             |             |             |             |                           |             |             |             |             |             | <b>-</b>    |             |                                                  |                           |             |             |             |             | -          | <u> </u>    |          |        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | -                       |            |            |            | +            | <b>!</b>    |          |             | 1           |             |             |                           |             |             |             |             |             | <b>-</b>    |             | -                                                | <b>-</b>                  | -           |             |             |             |            | <u> </u>    | <b>!</b> |        | +         |
| Profession   Pro   |                   | NAPHTHALENE             | 1          | 20         | 20         | ug/L         |             |          | 1 U         |             |             | <b>-</b>    | 1 U                       | 1 U         |             | 0.2 U       | 0.96 U                                           | 0.19 U                    | 0.2 U       | 0.19 U      | 0.19 U      | 0.19 LU     | 0.19 UJ    | +           | NA       | NA     | +         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | PHENANTHRENE            | 0.22       | 0.2        | 510        | ug/L         | 0.2 U       | 0.2 U    | 0.2 U       | 0.2 U       | 0.2 U       | 0.2 U       | 0.2 U                     | 0.2 U       | 0.2 U       | 0.2 U       | 0.2 U       | 0.2 U       | 0.2 U       | 0.2 U       | 0.96 U                                           | 0.19 U                    | 0.2 U       | 0.19 U      | 0.19 U      | 0.19 W      | 0.19 U     | NA          | NA       | NA     | NA        |
| Mathematical angle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | PYRENE                  | 0.5        | 1000       |            | ug/L         | 0.5 U       | 0.5 U    | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U                     | 0.5 U       | 0.5 U       | 0.2 U       | 0.96 U                                           | 0.19 U                    | 0.2 U       | 0.19 U      | 0.19 U      | 0.19 W      | 0.19 U     | NA          | NA       | NA     | NA        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                         |            |            |            | _            | <b>!</b>    |          |             | 1           |             | <b>!</b>    |                           |             |             |             |             |             | <b>!</b>    |             | 1                                                | <b>!</b>                  |             |             |             |             | <b>!</b>   | <u> </u>    | <b>!</b> |        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | -                       |            |            | 31.2       | _            | -           |          |             |             |             | -           |                           |             |             |             |             |             | -           |             | +                                                | -                         |             |             |             |             | -          | +           | -        |        | +         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                         |            | 700        |            | +            | -           |          |             |             |             | -           |                           |             |             |             |             |             | -           |             | -                                                | -                         |             |             |             |             | -          |             | <b>-</b> |        | +         |
| March   Marc   |                   |                         |            |            |            | +            | -           |          |             |             |             | -           |                           |             |             |             |             |             | -           |             | -                                                | <b>-</b>                  |             |             |             |             | -          |             | <b>-</b> |        | +         |
| March   Marc   | VOCs              | -                       |            |            | 1          | +            | _           |          |             |             |             | 1           |                           |             |             |             |             |             | 1           | 1           | +                                                | <b>†</b>                  |             |             |             |             | 1          | 1           | 1        |        | +-        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | TOLUENE                 | 1          | 1000       | 1900       |              |             | 1 U      | 1 U         | 1 U         | 1 U         | 1 U         | 1 U                       | 1 U         | 1 U         | 1 U         | 1 U         | 1 U         | 1 U         | 1 U         | 1 U                                              | 1 U                       | 1 U         | 1 U         | 1 U         | 1 U         | 1 U        | NA          | NA.      | NA     | +         |
| Process   Proc   |                   | XYLENES (TOTAL)         | 2          | 10000      |            | ug/L         | 2 U         | 1 U      | 1 U         | 1 U         | 1 U         | 1 U         | 1 U                       | 1 U         | 2 U         | 2 U         | 2 U         | 2 U         | 2 U         | 2 U         | 2 U                                              | 2 U                       | 2 U         | 2 U         | 2 U         | 2 U         | 2 U        | NA          | NA.      | NA     | NA        |
| Minical Region   Mini   |                   | METHYL TERT BUTYL ETHER |            |            |            | ug/L         | NA          | NA       | NA          | NA          | NA          | NA          | NA                        | NA          | NA          | NA          | NA          | NA          | NA          | NA          | 10 U                                             | 10 U                      | 10 U        | NA          | NA          | 10 U        | 10 U       | NA          | NA       | NA     | NA        |
| Final Proof 1 元                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | TOTAL BTEX              |            |            |            | ug/L         | ND          | ND       | ND          | ND          | ND          | ND          | ND                        | ND          | ND          | ND          | ND          | ND          | ND          | ND          | ND                                               | ND                        | ND          | ND          | ND          | ND          | ND         | NA          | NA       | NA     | NA        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                         | 0.018      |            | 0.018      | +            |             |          |             |             |             |             |                           |             |             |             |             |             |             |             | <del>                                     </del> |                           |             |             |             |             |            | +           |          |        |           |
| Marche   M   |                   |                         |            | 0.004      |            | 1 -          | -           |          |             |             |             | <b>!</b>    |                           |             |             |             |             |             | <b>-</b>    |             | -                                                | <b>-</b>                  |             |             |             |             | -          |             | <b>-</b> |        | _         |
| Marian   M   |                   | -                       |            | 0.005      |            | 1 -          | <b>!</b>    |          |             |             |             | <b>-</b>    |                           |             |             |             |             |             | <b>-</b>    |             | -                                                | <b>-</b>                  |             |             |             |             |            |             | <b>-</b> |        |           |
| - Martine Lange and the lange  |                   |                         |            |            |            | +            |             |          |             | 1           |             | <b>!</b>    |                           |             |             |             |             |             | <b>!</b>    |             | 1                                                | <b>-</b>                  |             |             |             |             | <b>!</b>   | <u> </u>    | <b>!</b> |        | +         |
| Ministry    |                   | CHROMIUM                | 0.013      | 0.1        |            | +            | 0.01 U      | 0.01 U   | 0.01 U      | 0.01 U      |             | -           | 0.01 U                    | 0.01 U      |             |             | 0.01 U      | 0.01 U      | -           |             | 0.01 U                                           | 0.01 U                    |             |             | 0.01 U      | 0.01 U      | -          | +           | NA.      | NA     | +         |
| Marchane    | Metals, Total     | LEAD                    | 0.007      | 0.015      | 0.015      | mg/L         | 0.005 U     | 0.005 U  | 0.005 U     | 0.005 U     | 0.0075      | 0.005 U     | 0.005 U                   | 0.005 U     | 0.005 U     | 0.005 U     | 0.005 U     | 0.005 U     | 0.005 U     | 0.005 U     | 0.005 U                                          | 0.005 U                   | 0.005 U     | 0.005 U     | 0.01 U      | 0.01 U      | 0.01 U     | NA          | NA.      | NA     | NA        |
| March   Marc   |                   | MAGNESIUM               |            |            |            | mg/L         | NA          | NA       | NA          | NA          | NA          | NA          | NA                        | NA          | NA          | NA          | NA          | NA          | NA          | NA          | NA                                               | NA.                       | NA          | NA          | NA          | NA          | NA         | NA          | NA.      | NA     | NA        |
| - Marie Probability of the proba |                   | MERCURY                 |            | 0.002      |            | mg/L         | 0.0002 U    | NA.      | NA          | NA          | NA          | NA          | NA                        | NA          | NA          | NA          | NA          | NA          | NA          | NA          | NA                                               | NA.                       | NA          | NA          | NA          | NA          | NA         | NA          | NA.      | NA     | NA        |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                         | 0.13       | 0.1        | 2          | _            | <b>!</b>    |          |             | 1           |             | <b>!</b>    |                           |             |             |             |             |             | <b>!</b>    |             | 1 1 1                                            | <b>-</b>                  |             |             |             |             | <b>!</b>   | <u> </u>    |          |        |           |
| 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | -                       |            |            |            | +-           | <b>!</b>    |          |             | 1           |             | <b>!</b>    |                           |             |             |             |             |             | <b>!</b>    |             | 1                                                |                           |             |             |             |             | <b>!</b>   | <u> </u>    | <b>!</b> |        |           |
| ARENCE OF CIRCULATION |                   | -                       | 0.96       | 2          |            | -            |             |          |             |             |             | <b>-</b>    |                           |             |             |             |             |             | -           |             | +                                                | <u> </u>                  |             |             |             |             | -          | 1           | <u> </u> |        | +         |
| Particular   Par   |                   |                         |            |            |            | <u> </u>     |             |          |             | 1           |             |             |                           |             |             |             |             |             |             |             |                                                  | <b>!</b>                  |             |             |             |             |            |             |          |        |           |
| PRINCIPALISA DE LOS SERSION SOUTH STATE SERSION SOUTH SERSION SOUTH STATE SERSION SOUTH SERSION SOUTH SERSION SOUTH SERSION SOUTH SEASON SOUTH SEAS |                   | -                       |            |            |            | +            |             |          |             | 1           |             |             |                           |             |             |             |             |             |             |             | +                                                | <b>!</b>                  |             |             |             |             | -          | +           | <b>!</b> |        | +         |
| ALALIENTY   |                   | CADMIUM                 |            | 0.005      |            | +            | NA          | NA       | NA          | NA          | NA          | NA          | NA                        | NA          | NA          | NA          | NA          | NA          | NA          | NA          | NA                                               | NA                        | NA          | NA          | NA          | NA          | NA         | NA          | NA       | NA     | NA        |
| EAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Metals, Disschart | CHROMIUM                | 0.013      | 0.1        |            | mg/L         | NA          | NA       | 0.01 U      | 0.01 U      | NA          | NA          | NA                        | NA          | NA          | NA          | NA          | NA          | NA          | NA          | NA                                               | NA                        | NA          | NA          | NA          | 0.01 U      | NA         | NA          | NA       | NA     | NA        |
| NICHEL 0.13 0.1 2 mgL NA NA 0.04 U 0.04 U NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                         | 0.007      |            | 0.015      | _            | -           |          |             |             |             | -           |                           |             |             |             |             |             | -           |             | +                                                | -                         |             |             |             |             | -          | +           | -        |        | +         |
| 2NC 0.96 2 31 mgL NA NA 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                         |            |            |            | _            | -           |          |             |             |             | -           |                           |             |             |             |             |             | -           |             | +                                                | -                         |             |             |             |             | -          | +           | -        |        | +         |
| ALFALINITY mgL NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                         |            |            |            |              | _           |          |             |             |             | <b>-</b>    |                           |             |             |             |             |             | 1           | 1           | 1                                                | 1                         |             |             |             |             | 1          | 1           |          |        | +-        |
| ALFALMITY TOTAL (AS CACCS) mg L NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                         |            |            |            | _            |             |          |             |             |             | <b>!</b>    |                           |             |             |             |             |             | <b>-</b>    |             | +                                                | <u> </u>                  |             |             |             |             |            | <u> </u>    | <u> </u> |        | +         |
| AMMCMA AS N 15 30 30 mg L 570 270 240 220 220 220 220 160 220 160 220 38 160 82 4.6 170 130 140 150 150 150 150 85 85 86 86 86 86 86 86 86 86 86 86 86 86 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                         |            |            |            | +            |             |          |             |             |             | <b>-</b>    |                           |             |             |             |             |             | <b>-</b>    |             | +                                                | 1                         |             |             |             |             |            | 1           | <u> </u> |        | +         |
| BICARBONATE mgt NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                         |            |            |            | _            |             |          |             |             |             |             |                           |             |             |             |             |             |             |             |                                                  |                           |             |             |             |             |            |             |          |        |           |
| CONDICTIVITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                         |            |            |            | mg/L         |             | NA       | NA          | NA          | NA          |             | NA.                       | NA          | NA          | NA          | NA          | NA          | NA          |             | NA                                               | NA                        | NA          | NA          | NA          | NA          | NA         | NA          | NA       | NA     | NA        |
| CONDUCTIVITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Minnelle          | CARBONATE               |            |            |            | mg/L         | NA          | NA       | NA          | NA          | NA          | NA          | NA                        | NA          | NA          | NA          | NA          | NA          | NA          | NA          | NA                                               | NA                        | NA          | NA          | NA          | NA          | NA         | NA          | NA       | NA     | NA        |
| NITRITE (AS N) mg I NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | misceráneous      | CONDUCTIVITY            |            |            |            | umhos/<br>cm | NA          | NA       | NA          | NA          | NA          | NA          | NA                        | NA          | NA          | NA          | NA          | NA          | NA          | NA          | NA                                               | NA                        | NA          | NA          | NA          | NA          | NA         | NA          | NA       | NA     | NA        |
| SULFATE mg L NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   | NITRATE (AS N)          |            | 10         |            | mg/L         | NA          | NA       | NA          | NA          | NA          | NA          | NA                        | NA          | NA          | NA          | NA          | NA          | NA          | NA          | NA                                               | NA                        | NA          | NA          | NA          | NA          | NA         | NA          | NA       | NA     | NA        |
| SOLIDS, TOTAL DISSOLVED mg/L NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   | ,                       |            |            |            | _            |             |          |             |             |             |             |                           |             |             |             |             |             |             |             |                                                  |                           |             |             |             |             |            | 1           |          |        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                         |            |            | -          | +            |             |          |             |             |             |             |                           |             |             |             |             |             |             |             | <del>                                     </del> |                           |             |             |             |             | -          | +           |          |        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | evoc.             |                         |            |            |            | _            |             |          |             | 1           |             |             |                           |             |             |             |             |             |             |             |                                                  |                           |             |             |             |             |            | 1           |          |        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SVULS             | 1,4-DIORLOHOBENZENE     |            |            |            | ug/L         | ΝA          | ΝA       | NΑ          | NA          | NΑ          | ΝA          | ΝA                        | ΝA          | NA.         | NA.         | NΑ          | NΑ          | ΝA          | NA          | NA                                               | ΝA                        | NA.         | NA.         | NA.         | NA.         | NA         | NA          | ΝA       | ΝA     | rvA.      |

Note:

| Shaded cell indicates comparison standard used in data evaluation.
| Indignighted cell indicates analytical result exceeds comparison criteria.
| Bold and Risk feet indicates analytical result exceeds background value.
| Bold and Risk feet indicates analytical result exceeds background value.
| No -Re constituents os standard back on the Maximum Containmant Level (MCL) established by the USEPA National Primary C
| NO -Re constituents detected above the laboratory minimum detection limit.
| J. Indicates constituent was not detected above value shown.
| J. Indicates constituent was not detected at an estimated value.
| W. Indicates constituent was not detected at an estimated value.
| W. Indicates constituent was not detected at an estimated value.
| Monitoring wells MM-38, PDMM-88, PDMM-38, PDMM-318, PDMM-3

|                   |                                            |            |            | Locatio         | n:                    |                         |                      |                    |                  |                            |                      |                      |                      |                      | PDM                  | W-22T                |                            |                           |                      |                      |                      |                        |                     |                      |                     |                       |                           |                      |                      |                      |                          |                      | PDMW-23R             |                    |                     |                             |                     |                     |                     |
|-------------------|--------------------------------------------|------------|------------|-----------------|-----------------------|-------------------------|----------------------|--------------------|------------------|----------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------------|---------------------------|----------------------|----------------------|----------------------|------------------------|---------------------|----------------------|---------------------|-----------------------|---------------------------|----------------------|----------------------|----------------------|--------------------------|----------------------|----------------------|--------------------|---------------------|-----------------------------|---------------------|---------------------|---------------------|
|                   |                                            |            |            | Sample Dat      | e: 10/23/199          | 97 8/10/1999            | 11/17/1999           | 2/24/200           | 00 5/16/2000     | 8/22/2000                  | 1/9/2001             | 7/16/2001            | 9/13/2002            | 2/5/2003             | 6/25/2003            | 1/27/2004            | 7/21/2004                  | 3/5/2006                  | 4/1/2008             | 7/18/2008            | 10/6/2008            | 12/2/2009              | 6/19/2010           | 12/16/2010           | 6/14/2011           | 12/5/2011             | 4/1/2008                  | 7/19/2008            | 10/8/2008            | 12/2/2               | 2009                     | 6/19/2010            | 12/15/2010           | 6/14/2011          | 12/7/2011           | 12/11/2013                  | 11/5/2014           | 5/19/2015           | 11/11/2015          |
|                   |                                            |            |            | Sample Typ      | e: Normal             | l Normal                | Normal               | Norma              | al Normal        | Normal                     | Normal               | Normal               | Normal               | Normal               | Normal               | Normal               | Normal                     | Normal                    | Normal               | Normal               | Normal               | Normal                 | Normal              | Normal               | Normal              | Normal                | Normal                    | Normal               | Normal               | Normal               | Dup                      | Normal               | Normal               | Normal             | Normal              | Normal                      | Normal              | Normal              | Normal              |
|                   |                                            |            |            | Sample I        | PDMW-<br>D: 22T_10/23 | PDMW-<br>3/1 22T_8/10/1 | PDMW-<br>22T_11/17/1 | PDMW<br>1 22T_2/24 | 1/20 22T_5/16/20 | PDMW-<br>22T_8/22/20<br>00 | PDMW-<br>22T_1/9/200 | PDMW-<br>22T_7/16/20 | PDMW-<br>22T_9/13/20 | PDMW-<br>22T_2/5/200 | PDMW-<br>22T_6/25/20 | PDMW-<br>22T_1/27/20 | PDMW-<br>22T_7/21/20<br>04 | PDMW-<br>22T_3/5/200<br>6 | PDMW-<br>22T_4/1/200 | PDMW-<br>22T_7/18/20 | PDMW-<br>22T_10/6/20 | PDMW-<br>22T_12/2/20 2 | PDMW-<br>2T_6/19/20 | PDMW-<br>22T_12/16/2 | PDMW-22T-<br>061411 | PDMW-22T-<br>12052011 | PDMW-<br>23R_4/1/200<br>8 | PDMW-<br>23R_7/19/20 | PDMW-<br>23R_10/8/20 | PDMW-<br>23R_12/2/20 | PDMW-23R-<br>DUP_12/2/20 | PDMW-<br>23R_6/19/20 | PDMW-<br>23R_12/15/2 | PDMW-23R<br>061411 | PDMW-<br>23R_120720 | PDMW-<br>23R_12/11/2<br>013 | PDMW-<br>23R_110520 | PDMW-<br>23R_051920 | PDMW-<br>23R_111120 |
| Method Group      | Analyte                                    | Background | Type 3 RRS | Type 4 RRS Unit | s Result              | Result                  | Result               | Result             | 00<br>it Result  | Result                     | Result               | 01<br>Result         | 02<br>Result         | 3<br>Result          | 03<br>Result         | 04<br>Result         | Result                     | Result                    | 8<br>Result          | 08<br>Result         | 08<br>Result         | 09<br>Result           | 10<br>Result        | 010<br>Result        | Result              | Result                | Result                    | 08<br>Result         | 08<br>Result         | 09<br>Result         | 09<br>Result             | Result               | 010<br>Result        | Result             | 11<br>Result        | Result                      | Result              | 15<br>Result        | 15<br>Result        |
|                   | ACENAPHTHENE                               | 1          | 2000       | ug/L            | 1 U                   | 1 U                     | 1 U                  | 1 U                |                  | 1 U                        | 1 U                  | 1 U                  | 0.2 U                | 1 U                  | 0.2 U                | 2 U                  | 1 U                        | 0.98 U                    | 1.9 U                | 19 U                 | 19 U                 | 0.19 U                 | 1.9 UJ              | NA                   | NA                  | NA.                   | 1.9 U                     | 1.9 U                | 19 U                 | 0.19 U               | 0.19 U                   | 1.9 W                | 1.9 U                | 0.2 U              | 0.19 U              | 9.2 U                       | NA                  | NA                  | NA NA               |
|                   | ACENAPHTHYLENE                             | 1.4        | 1          | 510 ug/L        | 1 U                   | 1 U                     | 1 U                  | 1 U                | 1 U              | 1 U                        | 1 U                  | 1 U                  | 0.2 U                | 1 U                  | 0.2 U                | 2 U                  | 1 U                        | 0.98 U                    | 1.9 U                | 19 U                 | 19 U                 | 0.19 U                 | 1.9 UJ              | NA                   | NA                  | NA                    | 1.9 U                     | 1.9 U                | 19 U                 | 0.19 U               | 0.19 U                   | 1.9 W                | 1.9 U                | 0.2 U              | 0.19 U              | 9.2 U                       | NA                  | NA                  | NA                  |
|                   | ANTHRACENE                                 | 0.2        | 0.2        | 5100 ug/L       | 0.2 U                 | 0.2 U                   | 0.2 U                | 0.2 U              | 0.2 U            | 0.2 U                      | 0.2 U                | 0.2 U                | 0.2 U                | 1 U                  | 0.2 U                | 2 U                  | 1 U                        | 0.98 U                    | 1.9 U                | 19 U                 | 19 U                 | 0.19 U                 | 1.9 UJ              | NA                   | NA                  | NA                    | 1.9 U                     | 1.9 U                | 19 U                 | 0.19 U               | 0.19 U                   | 1.9 W                | 1.9 U                | 0.2 U              | 0.19 U              | 9.2 U                       | NA                  | NA                  | NA                  |
|                   | BENZO(A)ANTHRACENE                         | 0.2        | 0.1        | 3.9 ug/L        | 0.2 U                 |                         | 0.2 U                | 0.2 U              |                  | 0.2 U                      | 0.2 U                | 0.2 U                | 0.2 U                | 1 U                  | 0.2 U                | 2 U                  | 1 U                        | 0.98 U                    | 1.9 U                | 19 U                 | 19 U                 | 0.19 U                 | 1.9 UJ              | NA                   | NA                  | NA                    | 1.9 U                     | 1.9 U                | 19 U                 | 0.19 U               | 0.19 U                   | 1.9 W                | 1.9 U                | 0.2 U              | 0.19 U              | 9.2 U                       | NA                  | NA                  | NA                  |
|                   | BENZO(A)PYRENE                             | 0.2        | 0.2        | 0.39 ug/L       | 0.2 U                 | 0.2 U                   | 0.2 U                | 0.2 U              |                  | 0.2 U                      | 0.2 U                | 0.2 U                | 0.2 U                | 1 U                  | 0.2 U                | 2 U                  | 1 U                        | 0.98 U                    | 1.9 U                | 19 U                 | 19 U                 | 0.19 U                 | 1.9 UJ              | NA                   | NA                  | NA                    | 1.9 U                     | 1.9 U                | 19 U                 | 0.19 U               | 0.19 U                   | 1.9 W                | 1.9 U                | 0.2 U              | 0.19 U              | 9.2 U                       | NA                  | NA                  | NA                  |
|                   | BENZO(B)FLUORANTHENE                       | 0.2        | 0.2        | 0.65 ug/L       | 0.2 U                 | _                       | 0.2 U                | 0.2 U              | -                | 0.2 U                      | 0.2 U                | 0.2 U                | 0.2 U                | 1 U                  | 0.2 U                | 2 U                  | 1 U                        | 0.98 U                    | 1.9 U                | 19 U                 | 19 U                 | 0.19 U                 | 1.9 UJ              | NA                   | NA                  | NA                    | 1.9 U                     | 1.9 U                | 19 U                 | 0.19 U               | 0.19 U                   | 1.9 W                | 1.9 U                | 0.2 U              | 0.19 U              | 9.2 U                       | NA                  | NA                  | NA                  |
|                   | BENZO(G,H,I)PERYLENE BENZO(K)FLUORANTHENE  |            |            | ug/L            | 0.5 U                 | NA<br>NA                | NA<br>NA             | NA<br>NA           | NA<br>NA         | NA<br>NA                   | NA<br>NA             | NA<br>NA             | 0.2 U<br>0.2 U       | 1 U                  | 0.2 U<br>0.2 U       | 2 U                  | 1 U                        | 0.98 U<br>0.98 U          | 1.9 U                | 19 U                 | 19 U                 | 0.19 U<br>0.19 U       | 1.9 UJ<br>1.9 UJ    | NA<br>NA             | NA<br>NA            | NA<br>NA              | 1.9 U                     | 1.9 U                | 19 U                 | 0.19 U<br>0.19 U     | 0.19 U<br>0.19 U         | 1.9 W<br>1.9 W       | 1.9 U                | 0.2 U              | 0.19 U<br>0.19 U    | 9.2 U<br>9.2 U              | NA<br>NA            | NA<br>NA            | NA<br>NA            |
|                   | CHRYSENE                                   | 0.2        | 0.2        | 65 ug/L         | 0.5 U                 | _                       | 0.2 U                | 0.2 U              |                  | 0.2 U                      | 0.2 U                | 0.2 U                | 0.2 U                | 10                   | 0.2 U                | 2 U                  | 10                         | 0.98 U                    | 1.9 U                | 19 U                 | 19 U                 | 0.19 U                 | 1.9 UJ              | NA NA                | NA NA               | NA NA                 | 1.9 U                     | 1.9 U                | 19 U                 | 0.19 U               | 0.19 U                   | 1.9 W                | 1.9 U                | 0.2 U              | 0.19 U              | 9.2 U                       | NA NA               | NA NA               | NA NA               |
| PAHs              | DIBENZO(A,H)ANTHRACENE                     |            | 0.3        | ug/L            | 1 U                   | NA NA                   | NA.                  | NA.                | NA NA            | NA.                        | NA                   | NA NA                | 0.2 U                | 10                   | 0.2 U                | 2 U                  | 10                         | 0.98 U                    | 1.9 U                | 19 U                 | 19 U                 | 0.19 U                 | 1.9 UJ              | NA                   | NA.                 | NA.                   | 1.9 U                     | 1.9 U                | 19 U                 | 0.19 U               | 0.19 U                   | 1.9 W                | 1.9 U                | 0.2 U              | 0.19 U              | 9.2 U                       | NA NA               | NA NA               | NA NA               |
|                   | FLUORANTHENE                               | 0.5        | 1000       | ug/L            | 0.5 U                 | 0.5 U                   | 0.5 U                | 0.5 U              | 0.5 U            | 0.5 U                      | 0.5 U                | 0.5 U                | 0.2 U                | 1 U                  | 0.2 U                | 2 U                  | 1 U                        | 0.98 U                    | 1.9 U                | 19 U                 | 19 U                 | 0.19 U                 | 1.9 W               | NA                   | NA.                 | NA.                   | 1.9 U                     | 1.9 U                | 19 U                 | 0.19 U               | 0.19 U                   | 1.9 W                | 1.9 U                | 0.2 U              | 0.19 U              | 9.2 U                       | NA                  | NA.                 | NA                  |
|                   | FLUORENE                                   | 0.5        | 1000       | ug/L            | 0.5 U                 | 0.5 U                   | 0.5 U                | 0.5 U              | 0.5 U            | 0.5 U                      | 0.5 U                | 0.5 U                | 0.2 U                | 1 U                  | 0.2 U                | 2 U                  | 1 U                        | 0.98 U                    | 1.9 U                | 19 U                 | 19 U                 | 0.19 U                 | 1.9 UJ              | NA                   | NA                  | NA                    | 1.9 U                     | 1.9 U                | 19 U                 | 0.19 U               | 0.19 U                   | 1.9 UJ               | 1.9 U                | 0.2 U              | 0.19 U              | 9.2 U                       | NA                  | NA                  | NA                  |
|                   | INDENO(1,2,3-CD)PYRENE                     |            | 0.4        | ug/L            | 0.5 U                 | NA                      | NA                   | NA                 | NA               | NA                         | NA                   | NA                   | 0.2 U                | 1 U                  | 0.2 U                | 2 U                  | 1 U                        | 0.98 U                    | 1.9 U                | 19 U                 | 19 U                 | 0.19 U                 | 1.9 UJ              | NA                   | NA                  | NA                    | 1.9 U                     | 1.9 U                | 19 U                 | 0.19 U               | 0.19 U                   | 1.9 W                | 1.9 U                | 0.2 U              | 0.19 U              | 9.2 U                       | NA                  | NA                  | NA                  |
|                   | 1-METHYLNAPHTHALENE                        |            |            | ug/L            | NA                    | NA                      | NA                   | NA                 | NA               | NA                         | NA                   | NA                   | 0.8                  | 17                   | 2                    | 27                   | 6.9                        | 16                        | 11                   | 94                   | 37                   | 16                     | 3.8 UJ              | NA                   | NA                  | NA                    | 1.9 U                     | 1.9 U                | 19 U                 | 0.76 U               | 0.76 U                   | 3.8 LU               | 3.8 U                | 0.4 U              | 0.38 U              | 9.2 U                       | NA                  | NA                  | NA                  |
|                   | 2-METHYLNAPHTHALENE                        |            |            | ug/L            | NA                    | NA                      | NA                   | NA                 | NA               | NA                         | NA                   | NA                   | 0.2 U                | 1 U                  | 0.2 U                | 2 U                  | 1 U                        | 0.98 U                    | 1.9 U                | 19 U                 | 19 U                 | 0.19 U                 | 1.9 UJ              | NA                   | NA                  | NA                    | 1.9 U                     | 1.9 U                | 19 U                 | 0.19 U               | 0.19 U                   | 1.9 W                | 1.9 U                | 0.2 U              | 0.19 U              | 9.2 U                       | NA                  | NA                  | NA                  |
|                   | NAPHTHALENE                                | 1          | 20         | 20 ug/L         | 17                    | 1 U                     | 1 U                  | 1 U                |                  | 1 U                        | 1 U                  | 1 U                  | 0.2 U                | 1 U                  | 0.2 U                | 2 U                  | 1 U                        | 0.98 U                    | 1.9 U                | 19 U                 | 19 U                 | 0.19 U                 | 1.9 UJ              | NA                   | NA                  | NA                    | 1.9 U                     | 1.9 U                | 30                   | 0.19 U               | 0.19 U                   | 1.9 W                | 1.9 U                | 0.2 U              | 0.19 U              | 9.2 U                       | NA                  | NA                  | NA                  |
|                   | PHENANTHRENE                               | 0.22       | 0.2        | 510 ug/L        | 0.23                  | _                       | 0.2 U                | 0.2 U              |                  | 0.2 U                      | 0.2 U                | 0.2 U                | 0.2 U                | 1 U                  | 0.2 U                | 2 U                  | 10                         | 0.98 U                    | 1.9 U                | 19 U                 | 19 U                 | 0.19 U                 | 1.9 UJ              | NA                   | NA                  | NA                    | 1.9 U                     | 1.9 U                | 19 U                 | 0.19 U               | 0.19 U                   | 1.9 W                | 1.9 U                | 0.2 U              | 0.19 U              | 9.2 U                       | NA                  | NA                  | NA                  |
|                   | PYRENE<br>TOTAL PAHs                       | 0.5        | 1000       | ug/L            | 0.5 U<br>17.23        |                         | 0.5 U<br>ND          | 0.5 U<br>ND        |                  | 0.5 U<br>ND                | 0.5 U<br>ND          | 0.5 U<br>ND          | 0.2 U<br>0.8         | 1 U                  | 0.2 U<br>2           | 2 U<br>27            | 1 U<br>6.9                 | 0.98 U<br>16              | 1.9 U                | 19 U<br>94           | 19 U<br>37           | 0.19 U<br>16           | 1.9 UJ<br>ND        | NA<br>NA             | NA<br>NA            | NA<br>NA              | 1.9 U<br>ND               | 1.9 U<br>ND          | 19 U<br>30           | 0.19 U<br>ND         | 0.19 U<br>ND             | 1.9 LU<br>ND         | 1.9 U<br>ND          | 0.2 U<br>ND        | 0.19 U<br>ND        | 9.2 U<br>ND                 | NA<br>NA            | NA<br>NA            | NA<br>NA            |
|                   | BENZENE                                    | 1          | 5          | 31.2 ug/L       | 17.23                 | 1 U                     | 1 U                  | 1 U                |                  | 1 U                        | 1 U                  | 1 U                  | 1 U                  | 1 U                  | 1 U                  | 1 U                  | 1 U                        | 1 U                       | 1 U                  | 94<br>1 U            | 1 U                  | 1 U                    | 1 W                 | NA<br>NA             | NA<br>NA            | NA<br>NA              | 1 U                       | 1 U                  | 30<br>1 U            | 1 U                  | 1 U                      | 1 UJ                 | NA.                  | NA NA              | NA NA               | 1 U                         | NA<br>NA            | NA<br>NA            | NA NA               |
|                   | ETHYLBENZENE                               | 1          | 700        | ug/L            | 1.7                   | 1 U                     | 1 U                  | 1 U                | _                | 1 U                        | 1 U                  | 1 U                  | 1 U                  | 10                   | 1 U                  | 1 U                  | 10                         | 1 U                       | 1 U                  | 1 U                  | 1 U                  | 1 U                    | 1 W                 | NA                   | NA.                 | NA.                   | 1 U                       | 1 U                  | 1 U                  | 10                   | 1 U                      | 1 UJ                 | NA.                  | NA.                | NA.                 | 10                          | NA NA               | NA NA               | NA NA               |
|                   | p/m-XYLENE                                 |            |            | ug/L            | NA                    | 1 U                     | 1 U                  | 1 U                | _                | 1 U                        | 1 U                  | 1 U                  | NA                   | NA                   | NA                   | NA NA                | NA                         | NA.                       | NA                   | NA                   | NA                   | NA NA                  | NA                  | NA                   | NA.                 | NA.                   | NA                        | NA                   | NA                   | NA                   | NA                       | NA                   | NA .                 | NA                 | NA.                 | NA                          | NA                  | NA                  | NA                  |
|                   | METHYLENE CHLORIDE                         |            |            | ug/L            | NA                    | 5 U                     | NA                   | NA                 | _                | NA                         | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                         | NA                        | NA                   | NA                   | NA                   | NA                     | NA                  | NA                   | NA                  | NA                    | NA                        | NA                   | NA                   | NA                   | NA                       | NA                   | NA                   | NA                 | NA                  | 5 U                         | NA                  | NA                  | NA                  |
| VOCs              | o-XYLENE                                   |            |            | ug/L            | NA                    | 1 U                     | 1 U                  | 1 U                | 1 U              | 1 U                        | 1 U                  | 1 U                  | NA                   | NA                   | NA                   | NA                   | NA                         | NA                        | NA                   | NA                   | NA                   | NA                     | NA                  | NA                   | NA                  | NA                    | NA                        | NA                   | NA                   | NA                   | NA                       | NA                   | NA                   | NA                 | NA                  | NA                          | NA                  | NA                  | NA                  |
|                   | TOLUENE                                    | 1          | 1000       | 1900 ug/L       | 1                     | 1 U                     | 1 U                  | 1 U                | 1 U              | 1 U                        | 1 U                  | 1 U                  | 1 U                  | 1 U                  | 1 U                  | 1 U                  | 1 U                        | 1 U                       | 1 U                  | 1 U                  | 1 U                  | 1 U                    | 1 W                 | NA                   | NA                  | NA                    | 1 U                       | 1 U                  | 1 U                  | 1 U                  | 1 U                      | 1 UJ                 | NA                   | NA                 | NA                  | 1 U                         | NA                  | NA                  | NA                  |
|                   | XYLENES (TOTAL)                            | 2          | 10000      | ug/L            | 4                     | 1 U                     | 1 U                  | 1 U                | 1 U              | 1 U                        | 1 U                  | 1 U                  | 2 U                  | 2 U                  | 2 U                  | 2 U                  | 2 U                        | 2 U                       | 2 U                  | 2 U                  | 2 U                  | 2 U                    | 2 W                 | NA                   | NA                  | NA                    | 2 U                       | 2 U                  | 2 U                  | 2 U                  | 2 U                      | 2 UJ                 | NA                   | NA                 | NA                  | 2 U                         | NA                  | NA                  | NA                  |
|                   | METHYL TERT BUTYL ETHER                    |            |            | ug/L            | NA                    | NA                      | NA                   | NA                 |                  | NA                         | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                         | 10 U                      | 10 U                 | 10 U                 | NA                   | NA                     | 10 UJ               | NA                   | NA                  | NA                    | 10 U                      | 10 U                 | NA                   | NA                   | NA                       | 10 UJ                | NA                   | NA                 | NA                  | 10 U                        | NA                  | NA                  | NA                  |
|                   | TOTAL BTEX                                 |            |            | ug/L            | 6.7                   | ND                      | ND                   | ND                 | ND               | ND                         | ND                   | ND                   | ND                   | ND                   | ND                   | ND                   | ND                         | ND                        | ND                   | ND                   | ND                   | ND                     | ND                  | NA                   | NA                  | NA                    | ND                        | ND                   | ND                   | ND                   | ND                       | ND                   | NA                   | NA                 | NA                  | ND                          | NA                  | NA                  | NA                  |
|                   | ARSENIC<br>BERYLLIUM                       | 0.018      | 0.018      | 0.018 mg/L      | 0.01 U                |                         | 0.01 U<br>NA         | 0.01 U<br>NA       | J 0.01 U         | 0.01 U<br>NA               | 0.01 U<br>NA         | 0.01 U<br>NA         | 0.01 U<br>NA         | 0.01 U<br>NA         | 0.01 U<br>NA         | 0.01 U<br>NA         | 0.01 U<br>NA               | 0.01 U<br>NA              | 0.01 U<br>NA         | 0.01 U<br>NA         | 0.01 U<br>NA         | 0.02 U<br>NA           | 0.02 U<br>NA        | NA<br>NA             | NA<br>NA            | NA<br>NA              | 0.018<br>NA               | 0.03<br>NA           | 0.038<br>NA          | 0.034<br>NA          | 0.03<br>NA               | 0.042<br>NA          | 0.025<br>NA          | 0.03<br>NA         | 0.02<br>NA          | 0.0092<br>NA                | 0.02 U              | 0.02 U<br>NA        | 0.02 U<br>NA        |
|                   | BORON                                      |            | 0.004      | mg/t            | . NA                  | NA NA                   | NA NA                | NA.                | NA NA            | NA NA                      | NA NA                | NA NA                | NA NA                | NA NA                | NA NA                | NA NA                | NA NA                      | NA NA                     | NA NA                | NA NA                | NA NA                | NA NA                  | NA NA               | NA NA                | NA NA               | NA NA                 | NA NA                     | NA NA                | NA NA                | NA NA                | NA NA                    | NA.                  | NA.                  | NA.                | NA NA               | NA NA                       | NA NA               | NA NA               | NA NA               |
|                   | CADMIUM                                    |            | 0.005      | ·· mg/L         | 0.005 U               |                         | NA.                  | NA.                | NA NA            | NA NA                      | NA NA                | NA NA                | NA NA                | NA NA                | NA NA                | NA NA                | NA NA                      | NA.                       | NA.                  | NA NA                | NA NA                | NA NA                  | NA NA               | NA NA                | NA.                 | NA.                   | NA NA                     | NA NA                | NA NA                | NA NA                | NA NA                    | NA.                  | NA.                  | NA.                | NA NA               | NA.                         | NA.                 | NA NA               | NA NA               |
|                   | CALCIUM METAL                              |            |            | mg/L            | . NA                  | NA                      | NA.                  | NA                 | NA.              | NA.                        | NA                         | NA.                       | NA                   | NA                   | NA                   | NA NA                  | NA                  | NA                   | NA                  | NA                    | NA                        | NA                   | NA                   | NA                   | NA                       | NA                   | NA.                  | NA                 | NA                  | NA                          | NA                  | NA                  | NA                  |
|                   | CHROMIUM                                   | 0.013      | 0.1        | mg/L            | 0.01 U                | 0.01 U                  | 0.01 U               | 0.01 U             | J 0.01 U         | 0.01 U                     | 0.01 U               | 0.01 U               | 0.01 U               | 0.01 U               | 0.01 U               | 0.01 U               | 0.01 U                     | 0.01 U                    | 0.01 U               | 0.01 U               | 0.01 U               | 0.01 U                 | 0.01 U              | NA                   | NA                  | NA                    | 0.012                     | 0.01 U               | 0.01 U               | 0.01 U               | 0.01 U                   | 0.01 U               | NA.                  | NA                 | NA                  | 0.0019                      | NA                  | NA                  | NA                  |
| Metals, Total     | LEAD                                       | 0.007      | 0.015      | 0.015 mg/L      | 0.005 U               | 0.005 U                 | 0.005 U              | 0.005 L            | U 0.005 U        | 0.005 U                    | 0.005 U              | 0.005 U              | 0.005 U              | 0.005 U              | 0.005 U              | 0.005 U              | 0.005 U                    | 0.005 U                   | 0.005 U              | 0.005 U              | 0.005 U              | 0.01 U                 | 0.01 U              | NA                   | NA                  | NA                    | 0.005 U                   | 0.005 U              | 0.005 U              | 0.01 U               | 0.01 U                   | 0.01 U               | NA                   | NA                 | NA                  | 0.01 U                      | 0.01 U              | 0.01 U              | 0.01 U              |
|                   | MAGNESIUM                                  |            |            | mg/l            | . NA                  | NA                      | NA                   | NA                 | NA               | NA                         | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                         | NA                        | NA                   | NA                   | NA                   | NA                     | NA                  | NA                   | NA                  | NA                    | NA                        | NA                   | NA                   | NA                   | NA                       | NA                   | NA                   | NA                 | NA                  | NA                          | NA                  | NA                  | NA                  |
|                   | MERCURY                                    |            | 0.002      | mg/L            | 0.0002 L              | _                       | NA                   | NA                 | NA               | NA                         | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                         | NA                        | NA                   | NA                   | NA                   | NA                     | NA                  | NA                   | NA                  | NA                    | NA                        | NA                   | NA                   | NA                   | NA                       | NA                   | NA                   | NA                 | NA                  | NA                          | NA                  | NA                  | NA                  |
|                   | NICKEL                                     | 0.13       | 0.1        | 2 mg/L          | 0.04 U                | 0.04 U                  | 0.04 U               | 0.04 U             |                  | 0.04 U                     | 0.04 U               | 0.04 U               | 0.04 U               | 0.04 U               | 0.04 U               | 0.04 U               | 0.04 U                     | 0.04 U                    | 0.04 U               | 0.04 U               | 0.04 U               | 0.04 U                 | 0.04 U              | NA                   | NA                  | NA                    | 0.04 U                    | 0.04 U               | 0.04 U               | 0.04 U               | 0.04 U                   | 0.04 U               | NA                   | NA                 | NA                  | 0.04 U                      | NA                  | NA                  | NA                  |
|                   | POTASSIUM                                  |            |            | mg/L            | . NA                  | NA<br>NA                | NA<br>NA             | NA<br>NA           | NA<br>NA         | NA<br>NA                   | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA                   | NA<br>NA                  | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA            | NA<br>NA             | NA                  | NA<br>NA              | NA<br>NA                  | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA                 | NA<br>NA             | NA<br>NA             | NA                 | NA<br>NA            | NA<br>NA                    | NA<br>NA            | NA                  | NA<br>NA            |
|                   | SODIUM                                     | 0.96       | 2          | mg/L<br>31 mg/L | . NA<br>. 0.02 U      | 0.02 U                  | 0.02 U               | 0.02 U             |                  | 0.02 U                     | 0.02 U               | 0.02 U               | 0.02 U               | 0.02 U               | 0.02 U               | 0.02 U               | 0.02 U                     | 0.02 U                    | 0.02 U               | 0.02 U               | 0.02 U               | 0.02 U                 | 0.02 U              | NA<br>NA             | NA<br>NA            | NA<br>NA              | 0.041                     | 0.075                | NA<br>0.037          | NA<br>0.025          | 0.02 U                   | 0.02 U               | NA<br>NA             | NA<br>NA           | NA<br>NA            | 0.02 U                      | NA<br>NA            | NA<br>NA            | NA<br>NA            |
|                   | ARSENIC                                    | 0.018      | 0.018      | 0.018 mg/L      | . NA                  | NA                      | 0.02 U               | 0.02 U             |                  | NA                         | NA NA                | NA NA                | NA NA                | NA                   | NA                   | NA NA                | NA                         | NA                        | NA                   | NA                   | NA NA                | NA NA                  | NA                  | NA NA                | NA NA               | NA NA                 | NA NA                     | NA NA                | NA NA                | NA NA                | NA                       | NA NA                | NA.                  | NA.                | 0.02                | NA                          | NA NA               | NA NA               | NA NA               |
|                   | BERYLLIUM                                  |            | 0.004      | mg/L            | . NA                  | NA                      | NA                   | NA                 |                  | NA                         | NA NA                | NA                   | NA                   | NA                   | NA                   | NA                   | NA                         | NA                        | NA                   | NA                   | NA                   | NA NA                  | NA                  | NA                   | NA                  | NA                    | NA                        | NA                   | NA                   | NA                   | NA                       | NA                   | NA.                  | NA                 | NA                  | NA                          | NA                  | NA                  | NA                  |
|                   | CADMIUM                                    |            | 0.005      | mg/L            | . NA                  | NA                      | NA                   | NA                 | NA.              | NA                         | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                         | NA                        | NA                   | NA                   | NA                   | NA .                   | NA                  | NA                   | NA                  | NA                    | NA                        | NA                   | NA                   | NA                   | NA                       | NA                   | NA                   | NA                 | NA                  | NA                          | NA                  | NA                  | NA                  |
| Metals, Dissolved | CHROMIUM                                   | 0.013      | 0.1        | mg/l            | . NA                  | NA                      | 0.01 U               | 0.01 U             | J NA             | NA                         | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                         | NA                        | NA                   | NA                   | NA                   | NA                     | NA                  | NA                   | NA                  | NA                    | NA                        | NA                   | NA                   | NA                   | NA                       | NA                   | NA                   | NA                 | NA                  | NA                          | NA                  | NA                  | NA                  |
| metals, DISSOIVED | LEAD                                       | 0.007      | 0.015      | 0.015 mg/L      | . NA                  | NA                      | 0.005 U              | 0.005 L            | J NA             | NA                         | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                         | NA                        | NA                   | NA                   | NA                   | NA                     | NA                  | NA                   | NA                  | NA                    | NA                        | NA                   | NA                   | NA                   | NA                       | NA                   | NA                   | NA                 | NA                  | NA                          | NA                  | NA                  | NA                  |
|                   | MERCURY                                    |            | 0.002      | mg/L            | . NA                  | NA                      | NA                   | NA                 |                  | NA                         | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                         | NA                        | NA                   | NA                   | NA                   | NA                     | NA                  | NA                   | NA                  | NA                    | NA                        | NA                   | NA                   | NA                   | NA                       | NA                   | NA.                  | NA                 | NA                  | NA                          | NA                  | NA                  | NA                  |
|                   | NICKEL                                     | 0.13       | 0.1        | 2 mg/L          |                       | NA                      | 0.04 U               | 0.04 U             |                  | NA                         | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                         | NA                        | NA                   | NA                   | NA                   | NA                     | NA                  | NA                   | NA                  | NA                    | NA                        | NA                   | NA                   | NA                   | NA                       | NA                   | NA                   | NA                 | NA                  | NA                          | NA                  | NA                  | NA                  |
| -                 | ZINC                                       | 0.96       | 2          | 31 mg/L         |                       | NA                      | 0.02 U               | 0.02 U             | _                | NA                         | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                         | NA                        | NA                   | NA                   | NA                   | NA                     | NA                  | NA                   | NA                  | NA                    | NA                        | NA                   | NA                   | NA                   | NA                       | NA                   | NA                   | NA                 | NA                  | NA                          | NA                  | NA                  | NA                  |
|                   | ALKALINITY  ALKALINITY, TOTAL (AS CACO3)   |            |            | mg/L            | NA NA                 | NA<br>NA                | NA<br>NA             | NA<br>NA           |                  | NA<br>NA                   | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA                   | NA<br>NA                  | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA            | NA<br>NA             | NA<br>NA            | NA<br>NA              | NA<br>NA                  | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA                 | NA<br>NA             | NA<br>NA             | NA<br>NA           | NA<br>NA            | NA<br>NA                    | NA<br>NA            | NA<br>NA            | NA<br>NA            |
| 1                 | ALKALINITY, TOTAL (AS CACO3)  AMMONIA AS N | 15         | 30         | mg/L<br>30 mg/L | . NA                  | NA<br>46                | NA<br>48             | NA<br>25           | _                | NA<br>32                   | NA<br>15             | NA<br>39             | NA<br>29             | NA<br>17             | NA<br>31             | NA<br>13             | NA<br>39                   | NA<br>34                  | NA<br>30             | NA<br>13             | NA<br>21             | NA<br>28               | NA<br>29 J          | NA<br>31             | NA<br>32            | NA<br>18              | NA<br>0.96                | 0.65                 | NA<br>0.53           | NA<br>2.2            | NA<br>2.2                | NA<br>2.2 J          | NA<br>NA             | NA<br>1.5          | NA<br>NA            | NA<br>1.1                   | NA<br>2.3           | NA<br>1.5           | NA<br>2.8           |
|                   | BICARBONATE                                |            |            | mg/L            | . NA                  | NA NA                   | NA NA                | NA.                | _                | NA NA                      | NA NA                | NA NA                | NA NA                | NA NA                | NA NA                | NA NA                | NA NA                      | NA NA                     | NA NA                | NA NA                | NA NA                | NA NA                  | NA NA               | NA NA                | NA NA               | NA NA                 | NA NA                     | NA NA                | NA NA                | NA NA                | NA NA                    | NA NA                | NA.                  | NA.                | NA NA               | NA NA                       | NA NA               | NA NA               | NA NA               |
|                   | CARBONATE                                  |            |            | mg/L            | . NA                  | NA                      | NA                   | NA                 |                  | NA                         | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                         | NA                        | NA                   | NA                   | NA                   | NA NA                  | NA                  | NA                   | NA                  | NA                    | NA                        | NA                   | NA                   | NA                   | NA                       | NA                   | NA.                  | NA                 | NA                  | NA                          | NA                  | NA                  | NA NA               |
| Miscellaneous     | CONDUCTIVITY                               |            |            | umho cm         | NA NA                 | NA                      | NA                   | NA                 | NA               | NA                         | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                         | NA                        | NA                   | NA                   | NA                   | NA                     | NA                  | NA                   | NA                  | NA                    | NA.                       | NA                   | NA                   | NA                   | NA                       | NA                   | NA.                  | NA                 | NA                  | NA                          | NA                  | NA                  | NA                  |
|                   | NITRATE (AS N)                             |            | 10         | mg/L            | . NA                  | NA                      | NA                   | NA                 | NA.              | NA                         | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                         | NA                        | NA                   | NA                   | NA                   | NA .                   | NA                  | NA                   | NA                  | NA                    | NA                        | NA                   | NA                   | NA                   | NA                       | NA                   | NA                   | NA                 | NA                  | 0.05 U                      | 0.05 U              | 0.05 U              | 0.05 U              |
|                   | NITRITE (AS N)                             |            |            | mg/l            | NA                    | NA                      | NA                   | NA                 | NA               | NA                         | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                         | NA                        | NA                   | NA                   | NA                   | NA                     | NA                  | NA                   | NA                  | NA                    | NA                        | NA                   | NA                   | NA                   | NA                       | NA                   | NA.                  | NA                 | NA                  | NA                          | NA                  | 0.05 U              | 0.05 U              |
|                   | SULFATE                                    |            |            | mg/L            | . NA                  | NA                      | NA                   | NA                 | NA.              | NA                         | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                         | NA                        | NA                   | NA                   | NA                   | NA                     | NA                  | NA                   | NA                  | NA                    | NA                        | NA                   | NA                   | NA                   | NA                       | NA                   | NA.                  | NA                 | NA                  | NA                          | NA                  | NA                  | NA                  |
|                   | SOLIDS, TOTAL DISSOLVED                    |            |            | mg/l            | . NA                  | NA                      | NA                   | NA                 | NA               | NA                         | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                         | NA                        | NA                   | NA                   | NA                   | NA                     | NA                  | NA                   | NA                  | NA                    | NA                        | NA                   | NA                   | NA                   | NA                       | NA                   | NA                   | NA                 | NA                  | NA                          | NA                  | NA                  | NA                  |
| SVOCs             | 1,4-DICHLOROBENZENE                        | **         |            | ug/L            | NA                    | NA                      | NA                   | NA                 | NA               | NA                         | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                         | NA                        | NA                   | NA                   | NA                   | NA                     | NA                  | NA                   | NA                  | NA                    | NA                        | NA                   | NA                   | NA                   | NA                       | NA                   | NA.                  | NA                 | NA                  | 1 U                         | NA                  | NA                  | NA                  |
|                   |                                            |            |            |                 |                       |                         |                      |                    |                  |                            |                      |                      |                      |                      |                      |                      |                            |                           |                      |                      |                      |                        |                     |                      |                     |                       |                           |                      |                      |                      |                          |                      |                      |                    |                     |                             |                     |                     |                     |

Note:

Shaded cell indicates comparison standard used in data enaluation.

Inglighted cell indicates analytical result exceeds comparison criteria.

Bold and Balk foot indicates analytical result exceeds background value.

In Nizate comparison standard base on the Maximum Containant Level (MCL) stabilished by the USEPA National Primary E

NO -No constituents detected above the shows value shows.

1. Indicates constituent was not detected above value shows.

1. Indicates constituent was not detected at an estimated value.

1. Indicates constituent was not detected at an estimated value.

1. Indicates constituent was not detected at an estimated value.

Monitoring wells MMV-38, POMW-88, POMW-108, POMW-118, POMW-118, POMW-218, POMW-318, POMW-328, POMW-331, PO

|                   |                                      |            |            | Location              | 1:                   |             |                |                        |                |                |                | PDMV                 | V-23T      |                |                      |                |                |           |                  |           |                        |                |                      |                  |                      |                      |             |                |                      |                | PDMW-24T             |                      |                |                  |                  |                      |                  |                      |                   |                  |                     |
|-------------------|--------------------------------------|------------|------------|-----------------------|----------------------|-------------|----------------|------------------------|----------------|----------------|----------------|----------------------|------------|----------------|----------------------|----------------|----------------|-----------|------------------|-----------|------------------------|----------------|----------------------|------------------|----------------------|----------------------|-------------|----------------|----------------------|----------------|----------------------|----------------------|----------------|------------------|------------------|----------------------|------------------|----------------------|-------------------|------------------|---------------------|
|                   |                                      |            |            | Sample Date           | : 10/23/1997         | 8/9/1999    | 11/17/1999     | 2/24/2000              | 5/16/2000      | 8/22/2000      | 1/10/2001      | 7/16/2001            | 2/5/2002   | 9/11/2002      | 2/5/2003             | 6/27/2003      | 1/29/2004      | 7/21/2004 | 3/7/2006         | 6/4/2014  | 10/23/1997             | 8/8/1999       | 11/18/1999           | 2/25/2000        | 5/16/2000            | 8/22/2000            | 1/9/2001    | 7/16/2001      | 9/11/2002            | 2/5/2003       | 6/26/2003            | 1/29/2004            | 7/21/2004      | 3/5/2006         | 4/1/2008         | 7/19                 | /2008            | 10/9/2008            | 12/3/2009         | 6/18/2010        | 11/5/2014           |
|                   |                                      |            |            | Sample Type           | : Normal             | Normal      | Normal         | Normal                 | Normal         | Normal         | Normal         | Normal               | Normal     | Normal         | Normal               | Normal         | Normal         | Normal    | Normal           | Normal    | Normal                 | Normal         | Normal               | Normal           | Normal               | Normal               | Normal      | Normal         | Normal               | Normal         | Normal               | Normal               | Normal         | Normal           | Normal           | Normal               | Dup              | Normal               | Normal            | Normal           | Normal              |
|                   |                                      |            |            | Sample ID             | PDMW-<br>23T_10/23/1 | PDMW-       | PDMW-          | PDMW-<br>1 23T_2/24/20 | PDMW-          | PDMW-          | PDMW-          | PDMW-<br>23T 7/16/20 | PDMW-      | PDMW-          | PDMW-<br>23T 2/5/200 | PDMW-          | PDMW-          | PDMW-     | PDMW-            | PDMW-     | PDMW-<br>24T_10/23/1 2 | PDMW-          | PDMW-<br>24T_11/18/1 | PDMW-            | PDMW-<br>24T 5/16/20 | PDMW-<br>24T 8/22/20 | PDMW-       | PDMW-          | PDMW-<br>24T 9/11/20 | PDMW-          | PDMW-<br>24T_6/26/20 | PDMW-<br>24T 1/29/20 | PDMW-          | PDMW-            | PDMW-            | PDMW-<br>24T 7/19/20 | PDMW-24T-        | PDMW-<br>24T_10/9/20 | PDMW-             | PDMW-            | PDMW-<br>24T_110520 |
|                   |                                      |            |            | Sample ID             | 997                  | 9           | 999            | 00                     | 00             | 00             | 01             | 01                   | 2          | 02             | 3                    | 03             | 04             | 04        | 6                | 14        | 997                    | 9              | 999                  | 00               | 00                   | 00                   | 1           | 01             | 02                   | 3              | 03                   | 04                   | 04             | 6                | 8                | 08                   | 08               | 08                   | 09                | 10               | 14                  |
| Method Group      | Analyte                              | Background | Type 3 RRS | Type 4 RRS Units      | Result               | Result      | Result         | Result                 | Result         | Result         | Result         | Result               | Result     | Result         | Result               | Result         | Result         | Result    | Result           | Result    | Result                 | Result         | Result               | Result           | Result               | Result               | Result      | Result         | Result               | Result         | Result               | Result               | Result         | Result           | Result           | Result               | Result           | Result               | Result            | Result           | Result              |
|                   | ACENAPHTHENE                         | 1          | 2000       | ug/L                  | 1 U                  | 1 U         | 1 U            | 1 U                    | 1 U            | 1 U            | 1 U            | 1 U                  | NA         | 0.2 U          | 0.2 U                | 0.2 U          | 0.2 U          | 0.2 U     | 0.19 U           | 10 U      | 1 U                    | 1 U            | 1 U                  | 1 U              | 1 U                  | 1 U                  | 1 U         | 1 U            | 0.2 U                | 0.2 U          | 0.2 U                | 0.2 U                | 0.2 U          | 0.19 U           | 0.19 U           | 0.19 U               | 0.19 U           | 0.2 U                | 0.19 U            | 0.19 U           | NA                  |
|                   | ACENAPHTHYLENE                       | 1.4        | 1          | 510 ug/L              | 1 U                  | 1 U         | 1 U            | 1 U                    | 1 U            | 1 U            | 1 U            | 1 U                  | NA         | 0.2 U          | 0.2 U                | 0.2 U          | 0.2 U          | 0.2 U     | 0.19 U           | 10 U      | 1 U                    | 1 U            | 1 U                  | 1 U              | 1 U                  | 1 U                  | 1 U         | 1 U            | 0.2 U                | 0.2 U          | 0.2 U                | 0.2 U                | 0.2 U          | 0.19 U           | 0.19 U           | 0.19 U               | 0.19 U           | 0.2 U                | 0.19 U            | 0.19 U           | NA                  |
|                   | ANTHRACENE                           | 0.2        | 0.2        | 5100 ug/L             | 0.2 U                | 0.2 U       | 0.2 U          | 0.2 U                  | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U                | NA<br>NA   | 0.2 U          | 0.2 U                | 0.2 U          | 0.2 U          | 0.2 U     | 0.19 U           | 10 U      | 0.2 U                  | 0.2 U          | 0.2 U                | 0.2 U            | 0.2 U                | 0.2 U                | 0.2 U       | 0.2 U          | 0.2 U                | 0.2 U          | 0.2 U                | 0.2 U                | 0.2 U          | 0.19 U           | 0.19 U           | 0.19 U               | 0.19 U           | 0.2 U                | 0.19 U            | 0.19 U           | NA<br>NA            |
|                   | BENZO(A)ANTHRACENE<br>BENZO(A)PYRENE | 0.2        | 0.1        | 3.9 ug/L<br>0.39 ug/L | 0.2 U<br>0.2 U       | 0.2 U       | 0.2 U          | 0.2 U<br>0.2 U         | 0.2 U<br>0.2 U | 0.2 U<br>0.2 U | 0.2 U<br>0.2 U | 0.2 U<br>0.2 U       | NA<br>NA   | 0.2 U<br>0.2 U | 0.2 U<br>0.2 U       | 0.2 U<br>0.2 U | 0.2 U<br>0.2 U | 0.2 U     | 0.19 U<br>0.19 U | 10 U      | 0.2 U<br>0.2 U         | 0.2 U<br>0.2 U | 0.2 U<br>0.2 U       | 0.2 U<br>0.2 U   | 0.2 U<br>0.2 U       | 0.2 U<br>0.2 U       | 0.2 U       | 0.2 U<br>0.2 U | 0.2 U<br>0.2 U       | 0.2 U<br>0.2 U | 0.2 U<br>0.2 U       | 0.2 U                | 0.2 U<br>0.2 U | 0.19 U<br>0.19 U | 0.19 U<br>0.19 U | 0.19 U<br>0.19 U     | 0.19 U<br>0.19 U | 0.2 U<br>0.2 U       | 0.19 U<br>0.19 U  | 0.19 U<br>0.19 U | NA<br>NA            |
|                   | BENZO(B)FLUORANTHENE                 | 0.2        | 0.2        | 0.65 ug/L             | 0.2 U                | 0.2 U       | 0.2 U          | 0.2 U                  | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U                | NA NA      | 0.2 U          | 0.2 U                | 0.2 U          | 0.2 U          | 0.2 U     | 0.19 U           | 10 U      | 0.2 U                  | 0.2 U          | 0.2 U                | 0.2 U            | 0.2 U                | 0.2 U                | 0.2 U       | 0.2 U          | 0.2 U                | 0.2 U          | 0.2 U                | 0.2 U                | 0.2 U          | 0.19 U           | 0.19 U           | 0.19 U               | 0.19 U           | 0.2 U                | 0.19 U            | 0.19 U           | NA                  |
|                   | BENZO(G,H,I)PERYLENE                 |            |            | ug/L                  | 0.5 U                | NA          | NA             | NA                     | NA             | NA             | NA             | NA                   | NA         | 0.2 U          | 0.2 U                | 0.2 U          | 0.2 U          | 0.2 U     | 0.19 U           | 10 U      | 0.5 U                  | NA             | NA                   | NA               | NA                   | NA                   | NA.         | NA             | 0.2 U                | 0.2 U          | 0.2 U                | 0.2 U                | 0.2 U          | 0.19 U           | 0.19 U           | 0.19 U               | 0.19 U           | 0.2 U                | 0.19 U            | 0.19 U           | NA                  |
|                   | BENZO(K)FLUORANTHENE                 |            |            | ug/L                  | 0.5 U                | NA          | NA             | NA                     | NA             | NA             | NA             | NA                   | NA         | 0.2 U          | 0.2 U                | 0.2 U          | 0.2 U          | 0.2 U     | 0.19 U           | 10 U      | 0.5 U                  | NA             | NA                   | NA               | NA                   | NA                   | NA          | NA             | 0.2 U                | 0.2 U          | 0.2 U                | 0.2 U                | 0.2 U          | 0.19 U           | 0.19 U           | 0.19 U               | 0.19 U           | 0.2 U                | 0.19 U            | 0.19 U           | NA                  |
|                   | CHRYSENE                             | 0.2        | 0.2        | 65 ug/L               | 0.2 U                | 0.2 U       | 0.2 U          | 0.2 U                  | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U                | NA         | 0.2 U          | 0.2 U                | 0.2 U          | 0.2 U          | 0.2 U     | 0.19 U           | 10 U      | 0.2 U                  | 0.2 U          | 0.2 U                | 0.2 U            | 0.2 U                | 0.2 U                | 0.2 U       | 0.2 U          | 0.2 U                | 0.2 U          | 0.2 U                | 0.2 U                | 0.2 U          | 0.19 U           | 0.19 U           | 0.19 U               | 0.19 U           | 0.2 U                | 0.19 U            | 0.19 U           | NA                  |
| PAHs              | DIBENZO(A,H)ANTHRACENE               |            | 0.3        | ug/L                  | 1 U                  | NA          | NA             | NA                     | NA             | NA             | NA             | NA                   | NA         | 0.2 U          | 0.2 U                | 0.2 U          | 0.2 U          | 0.2 U     | 0.19 U           | 10 U      | 1 U                    | NA             | NA                   | NA               | NA                   | NA                   | NA          | NA             | 0.2 U                | 0.2 U          | 0.2 U                | 0.2 U                | 0.2 U          | 0.19 U           | 0.19 U           | 0.19 U               | 0.19 U           | 0.2 U                | 0.19 U            | 0.19 U           | NA                  |
|                   | FLUORANTHENE                         | 0.5        | 1000       | ug/L                  | 0.5 U                | 0.5 U       | 0.5 U          | 0.5 U                  | 0.5 U          | 0.5 U          | 0.5 U          | 0.5 U                | NA         | 0.2 U          | 0.2 U                | 0.2 U          | 0.2 U          | 0.2 U     | 0.19 U           | 10 U      | 0.5 U                  | 0.5 U          | 0.5 U                | 0.5 U            | 0.5 U                | 0.5 U                | 0.5 U       | 0.5 U          | 0.2 U                | 0.2 U          | 0.2 U                | 0.2 U                | 0.2 U          | 0.19 U           | 0.19 U           | 0.19 U               | 0.19 U           | 0.2 U                | 0.19 U            | 0.19 U           | NA                  |
|                   | FLUORENE<br>INDENO(1.2.3-CD)PYRENE   | 0.5        | 1000       | ug/L                  | 0.5 U                | 0.5 U<br>NA | 0.5 U<br>NA    | 0.5 U<br>NA            | 0.5 U<br>NA    | 0.5 U<br>NA    | 0.5 U<br>NA    | 0.5 U<br>NA          | NA<br>NA   | 0.2 U<br>0.2 U | 0.2 U<br>0.2 U       | 0.2 U<br>0.2 U | 0.2 U<br>0.2 U | 0.2 U     | 0.19 U<br>0.19 U | 10 U      | 0.5 U<br>0.5 U         | 0.5 U<br>NA    | 0.5 U<br>NA          | 0.5 U<br>NA      | 0.5 U<br>NA          | 0.5 U<br>NA          | 0.5 U<br>NA | 0.5 U<br>NA    | 0.2 U<br>0.2 U       | 0.2 U<br>0.2 U | 0.2 U<br>0.2 U       | 0.2 U<br>0.2 U       | 0.2 U<br>0.2 U | 0.19 U<br>0.19 U | 0.19 U<br>0.19 U | 0.19 U<br>0.19 U     | 0.19 U<br>0.19 U | 0.2 U<br>0.2 U       | 0.19 U*<br>0.19 U | 0.19 U<br>0.19 U | NA<br>NA            |
|                   | 1-METHYLNAPHTHALENE                  |            |            | ug/L                  | NA.                  | NA NA       | NA NA          | NA.                    | NA.            | NA.            | NA NA          | NA NA                | NA NA      | 0.2 U          | 0.2 U                | 0.2 U          | 0.2 U          | 0.2 U     | 0.19 U           | 10 U      | NA NA                  | NA NA          | NA NA                | NA.              | NA.                  | NA NA                | NA NA       | NA.            | 0.2 U                | 0.2 U          | 0.2 U                | 0.2 U                | 0.2 U          | 0.19 U           | 0.19 U           | 0.19 U               | 0.19 U           | 0.2 U                | 0.76 U            | 0.38 U           | NA NA               |
|                   | 2-METHYLNAPHTHALENE                  |            |            | ug/L                  | NA.                  | NA          | NA             | NA                     | NA             | NA             | NA             | NA                   | NA         | 0.2 U          | 0.2 U                | 0.2 U          | 0.2 U          | 0.2 U     | 0.19 U           | 10 U      | NA                     | NA             | NA                   | NA               | NA                   | NA                   | NA .        | NA             | 0.2 U                | 0.2 U          | 0.2 U                | 0.2 U                | 0.2 U          | 0.19 U           | 0.19 U           | 0.19 U               | 0.19 U           | 0.2 U                | 0.19 U            | 0.19 U           | NA                  |
|                   | NAPHTHALENE                          | 1          | 20         | 20 ug/L               | 1 U                  | 1 U         | 1 U            | 1 U                    | 1 U            | 1 U            | 1 U            | 1 U                  | NA         | 0.2 U          | 0.2 U                | 0.2 U          | 0.2 U          | 0.2 U     | 0.19 U           | 10 U      | 1 U                    | 1 U            | 1 U                  | 1 U              | 1 U                  | 1 U                  | 1 U         | 1 U            | 0.2 U                | 0.2 U          | 0.2 U                | 0.2 U                | 0.2 U          | 0.19 U           | 0.19 U           | 0.19 U               | 0.19 U           | 0.2 U                | 0.19 U            | 0.19 U           | NA                  |
|                   | PHENANTHRENE                         | 0.22       | 0.2        | 510 ug/L              | 0.2 U                | 0.2 U       | 0.2 U          | 0.2 U                  | 0.2 U          | 0.2 U          | 0.2 U          | 0.2 U                | NA         | 0.2 U          | 0.2 U                | 0.2 U          | 0.2 U          | 0.2 U     | 0.19 U           | 10 U      | 0.2 U                  | 0.2 U          | 0.2 U                | 0.2 U            | 0.2 U                | 0.2 U                | 0.2 U       | 0.2 U          | 0.2 U                | 0.2 U          | 0.2 U                | 0.2 U                | 0.2 U          | 0.19 U           | 0.19 U           | 0.19 U               | 0.19 U           | 0.2 U                | 0.19 U            | 0.19 U           | NA                  |
|                   | PYRENE                               | 0.5        | 1000       | ug/L                  | 0.5 U                | 0.5 U       | 0.5 U          | 0.5 U                  | 0.5 U          | 0.5 U          | 0.5 U          | 0.5 U                | NA         | 0.2 U          | 0.2 U                | 0.2 U          | 0.2 U          | 0.2 U     | 0.19 U           | 10 U      | 0.5 U                  | 0.5 U          | 0.5 U                | 0.5 U            | 0.5 U                | 0.5 U                | 0.5 U       | 0.5 U          | 0.2 U                | 0.2 U          | 0.2 U                | 0.2 U                | 0.2 U          | 0.19 U           | 0.19 U           | 0.19 U               | 0.19 U           | 0.2 U                | 0.19 U            | 0.19 U           | NA                  |
|                   | TOTAL PAHs                           |            |            | ug/L                  | ND                   | ND          | ND             | ND                     | ND             | ND             | ND             | ND                   | NA         | ND             | ND                   | ND             | ND             | ND        | ND               | ND        | ND                     | ND             | ND                   | ND               | ND                   | ND                   | ND          | ND             | ND                   | ND             | ND                   | ND                   | ND             | ND               | ND               | ND                   | ND               | ND                   | ND                | ND               | NA                  |
|                   | BENZENE                              | 1          | 5          | 31.2 ug/L             | 1 U                  | 1 U         | 1 U            | 10                     | 10             | 10             | 10             | 1 U                  | NA NA      | 10             | 10                   | 10             | 10             | 10        | 10               | 10        | 1 U                    | 10             | 1 U                  | 10               | 10                   | 10                   | 1 U         | 10             | 1 U                  | 1 U            | 10                   | 1 U                  | 10             | 1 U              | 1 U              | 10                   | 1 U              | 10                   | 10                | 10               | NA NA               |
|                   | ETHYLBENZENE<br>p/m-XYLENE           | 1          | 700        | ug/L                  | NA NA                | 1 U         | 1 U            | 1 U                    | 1 U            | 1 U            | 1 U            | 1 U                  | NA<br>NA   | 1 U<br>NA      | 1 U<br>NA            | 1 U<br>NA      | 1 U<br>NA      | 1 U<br>NA | 1 U<br>NA        | 1 U<br>NA | 1 U<br>NA              | 1 U            | 1 U                  | 1 U              | 1 U                  | 1 U                  | 1 U         | 1 U            | 1 U<br>NA            | 1 U<br>NA      | 1 U<br>NA            | 1 U<br>NA            | 1 U<br>NA      | NA NA            | 1 U<br>NA        | 1 U<br>NA            | NA NA            | 1 U<br>NA            | 1 U<br>NA         | 1 U<br>NA        | NA<br>NA            |
|                   | METHYLENE CHLORIDE                   |            |            | ug/L                  | NA NA                | 5 U         | NA NA          | NA.                    | NA NA          | NA NA          | NA NA          | NA NA                | NA NA      | NA NA          | NA.                  | NA NA          | NA NA          | NA NA     | NA NA            | NA NA     | NA NA                  | 5 U            | NA.                  | NA.              | NA NA                | NA NA                | NA NA       | NA.            | NA NA                | NA NA          | NA NA                | NA NA                | NA.            | NA NA            | NA.              | NA NA                | NA NA            | NA.                  | NA NA             | NA NA            | NA NA               |
| VOCs              | o-XYLENE                             |            |            | ug/L                  | NA                   | 1 U         | 1 U            | 1 U                    | 1 U            | 1 U            | 1 U            | 1 U                  | NA         | NA             | NA                   | NA             | NA             | NA        | NA               | NA        | NA                     | 1 U            | 1 U                  | 1 U              | 1 U                  | 1 U                  | 1 U         | 1 U            | NA                   | NA             | NA                   | NA                   | NA             | NA               | NA               | NA                   | NA               | NA                   | NA                | NA NA            | NA                  |
|                   | TOLUENE                              | 1          | 1000       | 1900 ug/L             | 1 U                  | 1 U         | 1 U            | 1 U                    | 1 U            | 1 U            | 1 U            | 1 U                  | NA         | 1 U            | 1 U                  | 1 U            | 1 U            | 1 U       | 1 U              | 1 U       | 1 U                    | 1 U            | 1 U                  | 1 U              | 1 U                  | 1 U                  | 1 U         | 1 U            | 1 U                  | 1 U            | 1 U                  | 1 U                  | 1 U            | 1 U              | 1 U              | 1 U                  | 1 U              | 1 U                  | 1 U               | 1 U              | NA                  |
|                   | XYLENES (TOTAL)                      | 2          | 10000      | ug/L                  | 2 U                  | 1 U         | 1 U            | 1 U                    | 1 U            | 1 U            | 1 U            | 1 U                  | NA         | 2 U            | 2 U                  | 2 U            | 2 U            | 2 U       | 2 U              | 2 U       | 2 U                    | 1 U            | 1 U                  | 1 U              | 1 U                  | 1 U                  | 1 U         | 1 U            | 2 U                  | 2 U            | 2 U                  | 2 U                  | 2 U            | 2 U              | 2 U              | 2 U                  | 2 U              | 2 U                  | 2 U               | 2 U              | NA                  |
|                   | METHYL TERT BUTYL ETHER              |            |            | ug/L                  | NA                   | NA          | NA             | NA                     | NA             | NA             | NA             | NA                   | NA         | NA             | NA                   | NA             | NA             | NA        | 10 U             | NA        | NA                     | NA             | NA                   | NA               | NA                   | NA                   | NA          | NA             | NA                   | NA             | NA                   | NA                   | NA             | 10 U             | 10 U             | 10 U                 | 10 U             | NA                   | NA                | 10 U             | NA                  |
|                   | TOTAL BTEX                           |            |            | ug/L                  | ND                   | ND          | ND             | ND                     | ND             | ND             | ND             | ND                   | NA         | ND             | ND                   | ND             | ND             | ND        | ND               | ND        | ND                     | ND             | ND                   | ND               | ND                   | ND                   | ND          | ND             | ND                   | ND             | ND                   | ND                   | ND             | ND               | ND               | ND                   | ND               | ND                   | ND                | ND               | NA                  |
|                   | ARSENIC                              | 0.018      | 0.018      | 0.018 mg/L            | 0.0157               | 0.013       | 0.01 U         | 0.01 U                 | 0.01 U         | 0.01 U         | 0.01 U         | 0.01 U               | NA         | 0.025          | 0.013                | 0.013          | 0.01 U         | 0.01 U    | 0.01 U           | 0.02 U    | 0.01 U                 | 0.01 U         | 0.01 U               | 0.01 U           | 0.01 U               | 0.01 U               | 0.01 U      | 0.01 U         | 0.01 U               | 0.01 U         | 0.01 U               | 0.01 U               | 0.01 U         | 0.01 U           | 0.01 U           | 0.01 U               | 0.01 U           | 0.01 U               | 0.02 U            | 0.02 U           | NA                  |
|                   | BERYLLIUM<br>BORON                   |            | 0.004      | mg/L                  | 0.005 U<br>NA        | NA<br>NA    | NA<br>NA       | NA<br>NA               | NA<br>NA       | NA<br>NA       | NA<br>NA       | NA<br>NA             | NA<br>NA   | NA<br>NA       | NA<br>NA             | NA<br>NA       | NA<br>NA       | NA<br>NA  | NA<br>NA         | NA<br>NA  | 0.005 U<br>NA          | NA<br>NA       | NA<br>NA             | NA<br>NA         | NA<br>NA             | NA<br>NA             | NA<br>NA    | NA<br>NA       | NA<br>NA             | NA<br>NA       | NA<br>NA             | NA<br>NA             | NA<br>NA       | NA<br>NA         | NA<br>NA         | NA<br>NA             | NA<br>NA         | NA<br>NA             | NA<br>NA          | NA<br>NA         | NA<br>NA            |
|                   | CADMIUM                              |            | 0.005      | · mg/L                | 0.005 U              | NA NA       | NA NA          | NA NA                  | NA NA          | NA.            | NA NA          | NA NA                | NA NA      | NA NA          | NA NA                | NA NA          | NA NA          | NA NA     | NA NA            | NA NA     | 0.005 U                | NA NA          | NA NA                | NA NA            | NA NA                | NA NA                | NA NA       | NA NA          | NA NA                | NA NA          | NA NA                | NA NA                | NA.            | NA NA            | NA.              | NA NA                | NA NA            | NA NA                | NA NA             | NA NA            | NA NA               |
|                   | CALCIUM METAL                        |            |            | mg/L                  | NA                   | NA          | NA             | NA.                    | NA             | NA             | NA             | NA                   | NA         | NA             | NA                   | NA             | NA             | NA        | NA NA            | NA        | NA                     | NA             | NA                   | NA               | NA.                  | NA                   | NA          | NA             | NA                   | NA             | NA                   | NA                   | NA             | NA               | NA               | NA                   | NA               | NA                   | NA                | NA NA            | NA                  |
|                   | CHROMIUM                             | 0.013      | 0.1        | mg/L                  | 0.01 U               | 0.01 U      | 0.01 U         | 0.01 U                 | 0.01 U         | 0.012          | 0.01 U         | 0.01 U               | NA         | 0.01 U         | 0.01 U               | 0.01 U         | 0.01 U         | 0.01 U    | 0.01 U           | 0.01 U    | 0.01 U                 | 0.01 U         | 0.01 U               | 0.01 U           | 0.01 U               | 0.01 U               | 0.01 U      | 0.01 U         | 0.01 U               | 0.01 U         | 0.01 U               | 0.01 U               | 0.01 U         | 0.01 U           | 0.01 U           | 0.01 U               | 0.01 U           | 0.01 U               | 0.01 U            | 0.01 U           | NA                  |
| Metals, Total     | LEAD                                 | 0.007      | 0.015      | 0.015 mg/L            | 0.0051               | 0.006       | 0.005 U        | 0.0062                 | 0.012          | 0.0091         | 0.005 U        | 0.005                | NA         | 0.005 U        | 0.005 U              | 0.005 U        | 0.005 U        | 0.005 U   | 0.005 U          | 0.01 U    | 0.005 U                | 0.005 U        | 0.005 U              | 0.005 U          | 0.005 U              | 0.005 U              | 0.005 U     | 0.005 U        | 0.005 U              | 0.005 U        | 0.005 U              | 0.005 U              | 0.005 U        | 0.005 U          | 0.005 U          | 0.005 U              | 0.005 U          | 0.005 U              | 0.01 U            | 0.01 U           | 0.01 U              |
|                   | MAGNESIUM                            |            |            | mg/L                  | NA                   | NA          | NA             | NA                     | NA             | NA             | NA             | NA                   | NA         | NA             | NA                   | NA             | NA             | NA        | NA               | NA        | NA                     | NA             | NA                   | NA               | NA                   | NA                   | NA          | NA             | NA                   | NA             | NA                   | NA                   | NA             | NA               | NA               | NA                   | NA               | NA                   | NA                | NA               | NA                  |
|                   | MERCURY                              |            | 0.002      | mg/L                  | 0.0002 U             | NA          | NA             | NA                     | NA             | NA             | NA             | NA                   | NA         | NA             | NA                   | NA             | NA             | NA        | NA               | NA        | 0.0002 U               | NA             | NA                   | NA               | NA                   | NA                   | NA          | NA             | NA                   | NA             | NA                   | NA                   | NA             | NA               | NA               | NA                   | NA               | NA                   | NA                | NA               | NA                  |
|                   | NICKEL                               | 0.13       | 0.1        | 2 mg/L                | 0.0519               | 0.04 U      | 0.04 U         | 0.04 U                 | 0.04 U         | 0.04 U         | 0.04 U         | 0.04 U               | NA         | 0.04 U         | 0.04 U               | 0.04 U         | 0.04 U         | 0.04 U    | 0.04 U           | 0.04 U    | 0.04 U                 | 0.04 U         | 0.04 U               | 0.04 U           | 0.04 U               | 0.04 U               | 0.04 U      | 0.04 U<br>NA   | 0.04 U               | 0.04 U         | 0.04 U               | 0.04 U               | 0.04 U         | 0.04 U           | 0.04 U           | 0.04 U<br>NA         | 0.04 U           | 0.04 U               | 0.04 U            | 0.04 U           | NA                  |
|                   | POTASSIUM                            |            |            | mg/L                  | NA<br>NA             | NA<br>NA    | NA<br>NA       | NA<br>NA               | NA<br>NA       | NA<br>NA       | NA<br>NA       | NA<br>NA             | NA<br>NA   | NA<br>NA       | NA<br>NA             | NA<br>NA       | NA<br>NA       | NA<br>NA  | NA<br>NA         | NA<br>NA  | NA<br>NA               | NA<br>NA       | NA<br>NA             | NA<br>NA         | NA<br>NA             | NA<br>NA             | NA<br>NA    | NA<br>NA       | NA<br>NA             | NA<br>NA       | NA<br>NA             | NA<br>NA             | NA<br>NA       | NA<br>NA         | NA<br>NA         | NA<br>NA             | NA<br>NA         | NA<br>NA             | NA<br>NA          | NA<br>NA         | NA<br>NA            |
|                   | ZINC                                 | 0.96       | 2          | 31 mg/L               | 0.341                | 0.27        | 0.27           | 0.27                   | 0.29           | 0.17           | 0.15           | 0.12                 | NA NA      | 0.02 U         | 0.03                 | 0.1            | 0.021          | 0.02 U    | 0.14             | 0.02 U    | 0.02 U                 | 0.02 U         | 0.02 U               | 0.02 U           | 0.02 U               | 0.02 U               | 0.02 U      | 0.02 U         | 0.02 U               | 0.02 U         | 0.02 U               | 0.02 U               | 0.02 U         | 0.02 U           | 0.02 U           | 0.02 U               | 0.02 U           | 0.02 U               | 0.02 U            | 0.02 U           | NA NA               |
|                   | ARSENIC                              | 0.018      | 0.018      | 0.018 mg/L            | NA                   | NA          | 0.01 U         | 0.01 U                 | NA             | NA             | NA             | NA                   | 0.01 U     | NA             | NA                   | NA             | NA             | NA        | NA               | NA        | NA                     | NA             | 0.01 U               | 0.01 U           | NA                   | NA                   | NA          | NA.            | NA                   | NA             | NA                   | NA                   | NA             | NA               | NA               | NA                   | NA               | NA                   | NA                | NA               | NA                  |
|                   | BERYLLIUM                            |            | 0.004      | mg/L                  | NA                   | NA          | NA             | NA                     | NA             | NA             | NA             | NA                   | NA         | NA             | NA                   | NA             | NA             | NA        | NA               | NA        | NA                     | NA             | NA                   | NA               | NA                   | NA                   | NA          | NA             | NA                   | NA             | NA                   | NA                   | NA             | NA               | NA               | NA                   | NA               | NA                   | NA                | NA               | NA                  |
|                   | CADMIUM                              |            | 0.005      | mg/L                  | NA                   | NA          | NA             | NA                     | NA             | NA             | NA             | NA                   | NA         | NA             | NA                   | NA             | NA             | NA        | NA               | NA        | NA                     | NA             | NA                   | NA               | NA                   | NA                   | NA          | NA             | NA                   | NA             | NA                   | NA                   | NA             | NA               | NA               | NA                   | NA               | NA                   | NA                | NA               | NA                  |
| Metals, Dissolved | CHROMIUM                             | 0.013      | 0.1        | mg/L                  | NA                   | NA          | 0.01 U         | 0.01 U                 | NA             | 0.01 U         | NA             | NA                   | NA         | NA             | NA                   | NA             | NA             | NA        | NA               | NA        | NA                     | NA             | 0.01 U               | 0.01 U           | NA                   | NA                   | NA          | NA             | NA                   | NA             | NA                   | NA                   | NA             | NA               | NA               | NA                   | NA               | NA                   | NA                | NA               | NA                  |
|                   | LEAD                                 | 0.007      | 0.015      | 0.015 mg/L            | NA                   | NA          | 0.005 U        | 0.0068                 | 0.0076         | 0.0086         | NA             | 0.005 U              | NA         | NA             | NA                   | NA             | NA             | NA        | NA               | NA        | NA                     | NA             | 0.005 U              | 0.005 U          | NA                   | NA                   | NA          | NA             | NA                   | NA             | NA                   | NA                   | NA             | NA               | NA               | NA                   | NA               | NA                   | NA                | NA               | 0.01 U              |
|                   | MERCURY                              |            | 0.002      | mg/L                  | NA<br>NA             | NA NA       | NA .           | NA .                   | NA NA          | NA<br>NA       | NA             | NA                   | NA NA      | NA NA          | NA NA                | NA             | NA NA          | NA NA     | NA NA            | NA<br>NA  | NA<br>NA               | NA NA          | NA OALL              | NA               | NA                   | NA NA                | NA NA       | NA             | NA NA                | NA NA          | NA NA                | NA NA                | NA             | NA<br>NA         | NA               | NA<br>NA             | NA NA            | NA NA                | NA NA             | NA NA            | NA NA               |
|                   | NICKEL                               | 0.13       | 0.1        | 2 mg/L<br>31 mg/L     | NA<br>NA             | NA<br>NA    | 0.04 U<br>0.28 | 0.04 U<br>0.3          | NA<br>0.29     | NA<br>0.17     | NA<br>0.13     | NA<br>0.12           | NA<br>0.18 | NA<br>NA       | NA<br>NA             | NA<br>NA       | NA<br>NA       | NA<br>NA  | NA<br>NA         | NA<br>NA  | NA<br>NA               | NA<br>NA       | 0.04 U<br>0.02 U     | 0.04 U<br>0.02 U | NA<br>NA             | NA<br>NA             | NA<br>NA    | NA<br>NA       | NA<br>NA             | NA<br>NA       | NA<br>NA             | NA<br>NA             | NA<br>NA       | NA<br>NA         | NA<br>NA         | NA<br>NA             | NA<br>NA         | NA<br>NA             | NA<br>NA          | NA<br>NA         | NA<br>NA            |
|                   | ALKALINITY                           |            | -          | mg/L                  | NA NA                | NA NA       | NA             | NA NA                  | NA             | NA.            | NA NA          | NA NA                | NA NA      | NA NA          | NA NA                | NA NA          | NA NA          | NA NA     | NA NA            | NA NA     | NA NA                  | NA NA          | NA NA                | NA               | NA NA                | NA NA                | NA NA       | NA NA          | NA NA                | NA NA          | NA NA                | NA NA                | NA.            | NA NA            | NA.              | NA NA                | NA NA            | NA NA                | NA NA             | NA NA            | NA NA               |
|                   | ALKALINITY, TOTAL (AS CACO3)         |            |            | mg/L                  | NA                   | NA          | NA             | NA                     | NA             | NA             | NA             | NA                   | NA         | NA             | NA                   | NA             | NA             | NA        | NA NA            | NA        | NA                     | NA             | NA                   | NA               | NA                   | NA                   | NA.         | NA             | NA                   | NA             | NA                   | NA                   | NA             | NA               | NA               | NA                   | NA.              | NA                   | NA                | NA               | NA                  |
|                   | AMMONIA AS N                         | 15         | 30         | 30 mg/L               | NA                   | 0.43        | 22             | 6.7                    | 2              | 0.92           | 3.8            | 0.54                 | NA         | 1.2            | 2.8                  | 0.14           | 0.34           | 0.93      | 0.2              | 3.6       | NA                     | 3.1            | 15                   | 3.9              | 3.1                  | 3.5                  | 3.6         | 3.8            | 5.8                  | 4.2            | 4.1                  | 3.4                  | 3.9            | 0.65             | 1.7              | 1.7                  | 1.8              | 1.4                  | 1.3               | 1.5              | NA                  |
|                   | BICARBONATE                          |            |            | mg/L                  | NA                   | NA          | NA             | NA                     | NA             | NA             | NA             | NA                   | NA         | NA             | NA                   | NA             | NA             | NA        | NA               | NA        | NA                     | NA             | NA                   | NA               | NA                   | NA                   | NA          | NA             | NA                   | NA             | NA                   | NA                   | NA             | NA               | NA               | NA                   | NA               | NA                   | NA                | NA               | NA                  |
| Miscellaneous     | CARBONATE                            |            |            | mg/L                  | NA                   | NA          | NA             | NA                     | NA             | NA             | NA             | NA                   | NA         | NA             | NA                   | NA             | NA             | NA        | NA               | NA        | NA                     | NA             | NA                   | NA               | NA                   | NA                   | NA          | NA             | NA                   | NA             | NA                   | NA                   | NA             | NA               | NA               | NA                   | NA               | NA                   | NA                | NA               | NA                  |
|                   | CONDUCTIVITY                         |            |            | umhos/                | _                    | NA          | NA             | NA                     | NA             | NA             | NA             | NA                   | NA         | NA             | NA                   | NA             | NA             | NA        | NA               | NA        | NA                     | NA             | NA                   | NA               | NA                   | NA                   | NA          | NA             | NA                   | NA             | NA                   | NA                   | NA             | NA               | NA               | NA                   | NA               | NA                   | NA                | NA               | NA                  |
|                   | NITRATE (AS N)                       |            | 10         | mg/L                  | NA                   | NA          | NA             | NA                     | NA             | NA             | NA             | NA                   | NA         | NA             | NA                   | NA             | NA             | NA        | NA .             | 0.11      | NA                     | NA             | NA                   | NA               | NA                   | NA                   | NA          | NA             | NA                   | NA             | NA                   | NA                   | NA             | NA               | NA               | NA                   | NA               | NA                   | NA                | NA               | NA                  |
| 1                 | NITRITE (AS N)                       |            |            | mg/l                  | NA<br>NA             | NA<br>NA    | NA<br>NA       | NA<br>NA               | NA<br>NA       | NA<br>NA       | NA<br>NA       | NA<br>NA             | NA<br>NA   | NA<br>NA       | NA<br>NA             | NA<br>NA       | NA<br>NA       | NA<br>NA  | NA<br>NA         | NA<br>NA  | NA<br>NA               | NA<br>NA       | NA<br>NA             | NA<br>NA         | NA<br>NA             | NA<br>NA             | NA<br>NA    | NA<br>NA       | NA<br>NA             | NA<br>NA       | NA<br>NA             | NA<br>NA             | NA<br>NA       | NA<br>NA         | NA<br>NA         | NA<br>NA             | NA<br>NA         | NA<br>NA             | NA<br>NA          | NA<br>NA         | NA<br>NA            |
|                   | SULFATE SOLIDS, TOTAL DISSOLVED      | 1          |            | mg/L                  | NA<br>NA             | NA<br>NA    | NA<br>NA       | NA<br>NA               | NA<br>NA       | NA<br>NA       | NA<br>NA       | NA<br>NA             | NA<br>NA   | NA<br>NA       | NA<br>NA             | NA<br>NA       | NA<br>NA       | NA<br>NA  | NA<br>NA         | NA<br>NA  | NA<br>NA               | NA<br>NA       | NA<br>NA             | NA<br>NA         | NA<br>NA             | NA<br>NA             | NA<br>NA    | NA<br>NA       | NA<br>NA             | NA<br>NA       | NA<br>NA             | NA<br>NA             | NA<br>NA       | NA<br>NA         | NA<br>NA         | NA<br>NA             | NA<br>NA         | NA<br>NA             | NA<br>NA          | NA<br>NA         | NA<br>NA            |
| SVOCs             | 1,4-DICHLOROBENZENE                  |            |            | mg/L                  | 1                    | NA<br>NA    | NA<br>NA       | NA<br>NA               | NA<br>NA       | NA<br>NA       | NA<br>NA       | NA<br>NA             | NA<br>NA   | NA<br>NA       | NA<br>NA             | NA<br>NA       | NA<br>NA       | NA<br>NA  | NA<br>NA         | NA<br>NA  | NA<br>NA               | NA<br>NA       | NA<br>NA             | NA<br>NA         | NA<br>NA             | NA<br>NA             | NA<br>NA    | NA<br>NA       | NA<br>NA             | NA<br>NA       | NA<br>NA             | NA<br>NA             | NA<br>NA       | NA<br>NA         | NA<br>NA         | NA<br>NA             | NA<br>NA         | NA<br>NA             | NA<br>NA          | NA<br>NA         | NA<br>NA            |
|                   | 1                                    | 1 1        |            |                       |                      | -           |                |                        |                |                |                |                      |            |                |                      |                |                |           |                  |           |                        |                |                      |                  |                      |                      |             |                |                      |                | 1                    |                      |                |                  |                  |                      |                  |                      |                   |                  |                     |

Notes:

Shaded cell indicates comparison standard used in data evaluation.

wighlighted cell indicates analytical result exceeds comparison criteria.

Bold and fault test indicates analytical result exceeds background value.

In Nata comparison standard back on the Maximum Containmant Level (MCL) established by the USEPA National Primary C

No - No constituents detected above the labora tory minimum detection limit.

J. Indicates constituent was not detected above value shown.

J. Indicates constituent was not detected at an estimated value.

Monitoring wells (MV-2) P, POMM-48, POMM-48, POMM-11P, POMM-14T, POMM-31R, POMM-31D, POMM-32R, POMM-33D, POMM-43D, PO

|                   |                                            |            |            | L          | ocation:     |                             |                            |                             |                            |                            |                            |                           |                            |                            | PDMW-25T                   |                             |                            |                            |                                 |                           |                           |                            |                            |                             |
|-------------------|--------------------------------------------|------------|------------|------------|--------------|-----------------------------|----------------------------|-----------------------------|----------------------------|----------------------------|----------------------------|---------------------------|----------------------------|----------------------------|----------------------------|-----------------------------|----------------------------|----------------------------|---------------------------------|---------------------------|---------------------------|----------------------------|----------------------------|-----------------------------|
|                   |                                            |            |            | Samp       | ole Date:    | 10/23/1997                  | 8/8/1999                   | 11/17/1999                  | 2/24/2000                  | 5/15/2000                  | 8/21/2000                  | 1/9/2001                  | 7/12/2001                  | 9/12/2002                  | 2/5/2003                   | 6/26/2003                   | 1/29/2004                  | 7/22                       | 2/2004                          | 3/7/2006                  | 4/4/2008                  | 7/19/2008                  | 10/9/2008                  | 12/5/2009                   |
|                   |                                            |            |            | Samp       | le Type:     | Normal                      | Normal                     | Normal                      | Normal                     | Normal                     | Normal                     | Normal                    | Normal                     | Normal                     | Normal                     | Normal                      | Normal                     | Normal                     | Dup                             | Normal                    | Normal                    | Normal                     | Normal                     | Normal                      |
|                   |                                            |            |            | Sai        | mple ID:     | PDMW-<br>25T_10/23/1<br>997 | PDM W-<br>25T_8/8/199<br>9 | PDMW-<br>25T_11/17/1<br>999 | PDMW-<br>25T_2/24/20<br>00 | PDMW-<br>25T_5/15/20<br>00 | PDMW-<br>25T_8/21/20<br>00 | PDMW-<br>25T_1/9/200<br>1 | PDMW-<br>25T_7/12/20<br>01 | PDMW-<br>25T_9/12/20<br>02 | PDM W-<br>25T_2/5/200<br>3 | PDM W-<br>25T_6/26/20<br>03 | PDMW-<br>25T_1/29/20<br>04 | PDMW-<br>25T_7/22/20<br>04 | PDMW-25T<br>(DUP)_7/22/<br>2004 | PDMW-<br>25T_3/7/200<br>6 | PDMW-<br>25T_4/4/200<br>8 | PDMW-<br>25T_7/19/20<br>08 | PDMW-<br>25T_10/9/20<br>08 | PDM W-<br>25T_12/5/20<br>09 |
| Method Group      | Analyte                                    | Background | Type 3 RRS | Type 4 RRS | Units        | Result                      | Result                     | Result                      | Result                     | Result                     | Result                     | Result                    | Result                     | Result                     | Result                     | Result                      | Result                     | Result                     | Result                          | Result                    | Result                    | Result                     | Result                     | Result                      |
|                   | ACENAPHTHENE                               | 1          | 2000       |            | ug/L         | 1 U                         | 1 U                        | 1 U                         | 1 U                        | 1 U                        | 1 U                        | 1 U                       | 1 U                        | 0.2 U                      | 0.2 U                      | 0.2 U                       | 0.2 U                      | 0.2 U                      | 0.2 U                           | 0.19 U                    | 0.19 U                    | 0.19 U                     | 0.19 U                     | 0.19 U                      |
|                   | ACENAPHTHYLENE                             | 1.4        | 1          | 510        | ug/L         | 1 U                         | 1 U                        | 1 U                         | 1 U                        | 1 U                        | 1 U                        | 1 U                       | 1 U                        | 0.2 U                      | 0.2 U                      | 0.2 U                       | 0.2 U                      | 0.2 U                      | 0.2 U                           | 0.19 U                    | 0.19 U                    | 0.19 U                     | 0.19 U                     | 0.19 U                      |
|                   | ANTHRACENE                                 | 0.2        | 0.2        | 5100       | ug/L         | 0.2 U                       | 0.2 U                      | 0.2 U                       | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.2 U                       | 0.2 U                      | 0.2 U                      | 0.2 U                           | 0.19 U                    | 0.19 U                    | 0.19 U                     | 0.19 U                     | 0.19 U                      |
|                   | BENZO(A)ANTHRACENE                         | 0.2        | 0.1        | 3.9        | ug/L         | 0.2 U                       | 0.2 U                      | 0.2 U                       | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.2 U                       | 0.2 U                      | 0.2 U                      | 0.2 U                           | 0.19 U                    | 0.19 U                    | 0.19 U                     | 0.19 U                     | 0.19 U                      |
|                   | BENZO(A)PYRENE                             | 0.2        | 0.2        | 0.39       | ug/L         | 0.2 U                       | 0.2 U                      | 0.2 U                       | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.2 U                       | 0.2 U                      | 0.2 U                      | 0.2 U                           | 0.19 U                    | 0.19 U                    | 0.19 U                     | 0.19 U                     | 0.19 U                      |
|                   | BENZO(B)FLUORANTHENE                       | 0.2        | 0.2        | 0.65       | ug/L         | 0.2 U                       | 0.2 U                      | 0.2 U                       | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.2 U                       | 0.2 U                      | 0.2 U                      | 0.2 U                           | 0.19 U                    | 0.19 U                    | 0.19 U                     | 0.19 U                     | 0.19 U                      |
|                   | BENZO(G,H,I)PERYLENE BENZO(K)FLUORANTHENE  |            |            |            | ug/L<br>ug/L | 0.5 U                       | NA<br>NA                   | NA<br>NA                    | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                  | NA<br>NA                   | 0.2 U<br>0.2 U             | 0.2 U<br>0.2 U             | 0.2 U<br>0.2 U              | 0.2 U<br>0.2 U             | 0.2 U<br>0.2 U             | 0.2 U<br>0.2 U                  | 0.19 U<br>0.19 U          | 0.19 U<br>0.19 U          | 0.19 U<br>0.19 U           | 0.19 U<br>0.19 U           | 0.19 U<br>0.19 U            |
|                   | CHRYSENE                                   | 0.2        | 0.2        | 65         | ug/L         | 0.2 U                       | 0.2 U                      | 0.2 U                       | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.2 U                       | 0.2 U                      | 0.2 U                      | 0.2 U                           | 0.19 U                    | 0.19 U                    | 0.19 U                     | 0.19 U                     | 0.19 U                      |
| PAHs              | DIBENZO(A,H)ANTHRACENE                     |            | 0.3        |            | ug/L         | 10                          | NA .                       | NA.                         | NA.                        | NA .                       | NA.                        | NA.                       | NA NA                      | 0.2 U                      | 0.2 U                      | 0.2 U                       | 0.2 U                      | 0.2 U                      | 0.2 U                           | 0.19 U                    | 0.19 U                    | 0.19 U                     | 0.19 U                     | 0.19 U                      |
|                   | FLUORANTHENE                               | 0.5        | 1000       |            | ug/L         | 0.5 U                       | 0.5 U                      | 0.5 U                       | 0.5 U                      | 0.5 U                      | 0.5 U                      | 0.5 U                     | 0.5 U                      | 0.2 U                      | 0.2 U                      | 0.2 U                       | 0.2 U                      | 0.2 U                      | 0.2 U                           | 0.19 U                    | 0.19 U                    | 0.19 U                     | 0.19 U                     | 0.19 U                      |
|                   | FLUORENE                                   | 0.5        | 1000       |            | ug/L         | 0.5 U                       | 0.5 U                      | 0.5 U                       | 0.5 U                      | 0.5 U                      | 0.5 U                      | 0.5 U                     | 0.5 U                      | 0.2 U                      | 0.2 U                      | 0.2 U                       | 0.2 U                      | 0.2 U                      | 0.2 U                           | 0.19 U                    | 0.19 U                    | 0.19 U                     | 0.19 U                     | 0.19 U                      |
|                   | INDENO(1,2,3-CD)PYRENE                     |            | 0.4        |            | ug/L         | 0.5 U                       | NA                         | NA                          | NA.                        | NA                         | NA.                        | NA                        | NA                         | 0.2 U                      | 0.2 U                      | 0.2 U                       | 0.2 U                      | 0.2 U                      | 0.2 U                           | 0.19 U                    | 0.19 U                    | 0.19 U                     | 0.19 U                     | 0.19 U                      |
|                   | 1-METHYLNAPHTHALENE                        |            |            |            | ug/L         | NA                          | NA                         | NA                          | NA.                        | NA                         | NA                         | NA                        | NA                         | 0.2 U                      | 0.2 U                      | 0.2 U                       | 0.2 U                      | 0.2 U                      | 0.2 U                           | 0.19 U                    | 0.19 U                    | 0.19 U                     | 0.19 U                     | 0.76 U                      |
|                   | 2-METHYLNAPHTHALENE                        |            |            |            | ug/L         | NA                          | NA                         | NA                          | NA                         | NA                         | NA                         | NA                        | NA                         | 0.2 U                      | 0.2 U                      | 0.2 U                       | 0.2 U                      | 0.2 U                      | 0.2 U                           | 0.19 U                    | 0.19 U                    | 0.19 U                     | 0.19 U                     | 0.19 U                      |
|                   | NAPHTHALENE                                | 1          | 20         | 20         | ug/L         | 1 U                         | 1 U                        | 1 U                         | 1 U                        | 1 U                        | 1 U                        | 1 U                       | 1 U                        | 0.2 U                      | 0.2 U                      | 0.2 U                       | 0.2 U                      | 0.2 U                      | 0.2 U                           | 0.19 U                    | 0.19 U                    | 0.19 U                     | 0.19 U                     | 0.19 U                      |
|                   | PHENANTHRENE                               | 0.22       | 0.2        | 510        | ug/L         | 0.2 U                       | 0.2 U                      | 0.2 U                       | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.2 U                       | 0.2 U                      | 0.2 U                      | 0.2 U                           | 0.19 U                    | 0.19 U                    | 0.19 U                     | 0.19 U                     | 0.19 U                      |
|                   | PYRENE                                     | 0.5        | 1000       |            | ug/L         | 0.5 U                       | 0.5 U                      | 0.5 U                       | 0.5 U                      | 0.5 U                      | 0.5 U                      | 0.5 U                     | 0.5 U                      | 0.2 U                      | 0.2 U                      | 0.2 U                       | 0.2 U                      | 0.2 U                      | 0.2 U                           | 0.19 U                    | 0.19 U                    | 0.19 U                     | 0.19 U                     | 0.19 U                      |
|                   | PYRENE<br>TOTAL PAHs                       |            |            |            | ug/L         | ND                          | ND                         | ND                          | ND                         | ND                         | ND                         | ND                        | ND                         | ND                         | ND                         | ND                          | ND                         | ND                         | ND                              | ND                        | ND                        | ND                         | ND                         | ND                          |
|                   |                                            | 1 .        | 5          | 31.2       | ug/L         | 1 U                         | 1 U                        | 10                          | 1 U                        | 1 U                        | 1 U                        | 1 U                       | 10                         | 10                         | 1 U                        | 10                          | 10                         | 10                         | 1 U                             | 10                        | 1 U                       | 1 U                        | 10                         | 1 U                         |
|                   | ETHYLBENZENE                               | 1          | 700        |            | ug/L         | 1 U                         | 1 U                        | 10                          | 1 U                        | 1 U                        | 1 U                        | 1 U                       | 1 U                        | 1 U                        | 1 U                        | 10                          | 10                         | 1 U                        | 1 U                             | 1 U                       | 1 U                       | 1 U                        | 1 U                        | 1 U                         |
|                   | p/m-XYLENE METHYLENE CHLORIDE              |            |            |            | ug/L         | NA NA                       | 10                         | 10                          | 1 U                        | 1 U                        | 1 U                        | 10                        | 1 U                        | NA NA                      | NA<br>NA                   | NA NA                       | NA                         | NA NA                      | NA NA                           | NA<br>NA                  | NA NA                     | NA NA                      | NA NA                      | NA NA                       |
| VOCs              | o-XYLENE CALCAIDE                          |            |            |            | ug/L<br>ug/L | NA<br>NA                    | 5 U                        | NA<br>1 U                   | NA<br>1 U                  | NA<br>1 U                  | NA<br>1 U                  | NA<br>1 U                 | NA<br>1 U                  | NA<br>NA                   | NA<br>NA                   | NA<br>NA                    | NA<br>NA                   | NA<br>NA                   | NA<br>NA                        | NA<br>NA                  | NA<br>NA                  | NA<br>NA                   | NA<br>NA                   | NA<br>NA                    |
| 1003              | TOLUENE                                    | 1          | 1000       | 1900       | ug/L         | 1 U                         | 10                         | 10                          | 10                         | 10                         | 10                         | 10                        | 10                         | 10                         | 1 U                        | 1 U                         | 1 U                        | 10                         | 10                              | 10                        | 1 U                       | 1 U                        | 10                         | 1 U                         |
|                   | XYLENES (TOTAL)                            | 2          | 10000      |            | ug/L         | 2 U                         | 1 U                        | 10                          | 1 U                        | 1 U                        | 1 U                        | 1 U                       | 10                         | 2 U                        | 2 U                        | 2 U                         | 2 U                        | 2 U                        | 2 U                             | 2 U                       | 2 U                       | 2 U                        | 2 U                        | 2 U                         |
|                   | METHYL TERT BUTYL ETHER                    |            |            |            | ug/L         | NA                          | NA                         | NA                          | NA.                        | NA                         | NA.                        | NA                        | NA                         | NA                         | NA                         | NA                          | NA                         | NA                         | NA                              | 10 U                      | 10 U                      | 10 U                       | NA                         | NA                          |
|                   | TOTAL BTEX                                 |            |            |            | ug/L         | ND                          | ND                         | ND                          | ND                         | ND                         | ND                         | ND                        | ND                         | ND                         | ND                         | ND                          | ND                         | ND                         | ND                              | ND                        | ND                        | ND                         | ND                         | ND                          |
|                   | ARSENIC                                    | 0.018      | 0.018      | 0.018      | mg/L         | 0.01 U                      | 0.01 U                     | 0.01 U                      | 0.01 U                     | 0.01 U                     | 0.01 U                     | 0.01 U                    | 0.01 U                     | 0.01 U                     | 0.01 U                     | 0.01 U                      | 0.01 U                     | 0.01 U                     | 0.01 U                          | 0.01 U                    | 0.01 U                    | 0.01 U                     | 0.01 U                     | 0.02 U                      |
|                   | BERYLLIUM                                  |            | 0.004      |            | mg/L         | 0.005 U                     | NA                         | NA                          | NA                         | NA                         | NA                         | NA                        | NA                         | NA                         | NA                         | NA                          | NA                         | NA                         | NA                              | NA                        | NA                        | NA                         | NA                         | NA                          |
|                   | BORON                                      |            |            |            | mg/L         | NA                          | NA                         | NA                          | NA                         | NA                         | NA                         | NA                        | NA                         | NA                         | NA                         | NA                          | NA                         | NA                         | NA                              | NA                        | NA                        | NA                         | NA                         | NA                          |
|                   | CADMIUM                                    |            | 0.005      |            | mg/L         | 0.005 U                     | NA                         | NA                          | NA                         | NA                         | NA                         | NA                        | NA                         | NA                         | NA                         | NA                          | NA                         | NA                         | NA                              | NA                        | NA                        | NA                         | NA                         | NA                          |
|                   | CALCIUM METAL                              |            |            |            | mg/L         | NA                          | NA                         | NA                          | NA.                        | NA                         | NA                         | NA                        | NA                         | NA                         | NA                         | NA                          | NA                         | NA                         | NA                              | NA                        | NA                        | NA                         | NA                         | NA                          |
|                   | CHROMIUM                                   | 0.013      | 0.1        |            | mg/L         | 0.01 U                      | 0.01 U                     | 0.01 U                      | 0.01 U                     | 0.01 U                     | 0.01 U                     | 0.01 U                    | 0.01 U                     | 0.01 U                     | 0.01 U                     | 0.01 U                      | 0.01 U                     | 0.01 U                     | 0.01 U                          | 0.01 U                    | 0.01 U                    | 0.01 U                     | 0.01 U                     | 0.01 U                      |
| Metals, Total     | LEAD<br>MAGNESIUM                          | 0.007      | 0.015      | 0.015      | mg/L         | 0.005 U<br>NA               | 0.005 U<br>NA              | 0.005 U                     | 0.005 U                    | 0.005 U                    | 0.005 U                    | 0.005 U<br>NA             | 0.005 U                    | 0.005 U                    | 0.005 U<br>NA              | 0.005 U<br>NA               | 0.005 U<br>NA              | 0.005 U<br>NA              | 0.005 U<br>NA                   | 0.005 U<br>NA             | 0.005 U                   | 0.005 U                    | 0.005 U<br>NA              | 0.01 U                      |
|                   | MAGNESIUM<br>MERCURY                       |            | 0.002      |            | mg/L         | 0.0002 U                    | NA<br>NA                   | NA<br>NA                    | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                  | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                    | NA<br>NA                   | NA<br>NA                   | NA<br>NA                        | NA<br>NA                  | NA<br>NA                  | NA<br>NA                   | NA<br>NA                   | NA<br>NA                    |
|                   | NICKEL                                     | 0.13       | 0.002      | 2          | mg/L         | 0.0002 U                    | 0.04 U                     | 0.04 U                      | 0.04 U                     | 0.04 U                     | 0.04 U                     | 0.04 U                    | 0.04 U                     | 0.04 U                     | 0.04 U                     | 0.04 U                      | 0.04 U                     | 0.04 U                     | 0.04 U                          | 0.04 U                    | 0.04 U                    | 0.04 U                     | 0.04 U                     | 0.04 U                      |
|                   | POTASSIUM                                  | 0.13       | 0.1        |            | mg/L         | 0.04 U                      | 0.04 U                     | 0.04 U                      | 0.04 U                     | 0.04 U                     | 0.04 U                     | 0.04 U                    | 0.04 U                     | 0.04 U                     | 0.04 U                     | 0.04 U                      | 0.04 U                     | 0.04 U                     | 0.04 U                          | 0.04 U                    | 0.04 U                    | 0.04 U                     | 0.04 U                     | 0.04 U                      |
|                   | SODIUM                                     |            |            |            | mg/L         | NA NA                       | NA NA                      | NA.                         | NA.                        | NA.                        | NA NA                      | NA NA                     | NA                         | NA NA                      | NA NA                      | NA NA                       | NA.                        | NA.                        | NA.                             | NA NA                     | NA NA                     | NA NA                      | NA NA                      | NA NA                       |
|                   | ZINC                                       | 0.96       | 2          | 31         | mg/L         | 0.02 U                      | 0.02 U                     | 0.02 U                      | 0.035                      | 0.02 U                     | 0.02 U                     | 0.02 U                    | 0.02 U                     | 0.02 U                     | 0.02 U                     | 0.02 U                      | 0.02 U                     | 0.02 U                     | 0.02 U                          | 0.02 U                    | 0.02 U                    | 0.02 U                     | 0.02 U                     | 0.02 U                      |
|                   | ARSENIC                                    | 0.018      | 0.018      | 0.018      | mg/L         | NA                          | NA                         | 0.01 U                      | 0.01 U                     | NA                         | NA                         | NA                        | NA                         | NA                         | NA                         | NA                          | NA                         | NA                         | NA                              | NA                        | NA                        | NA                         | NA                         | NA                          |
|                   | BERYLLIUM                                  |            | 0.004      |            | mg/L         | NA                          | NA                         | NA                          | NA                         | NA                         | NA                         | NA                        | NA                         | NA                         | NA                         | NA                          | NA                         | NA                         | NA                              | NA                        | NA                        | NA                         | NA                         | NA                          |
|                   | CADMIUM                                    |            | 0.005      |            | mg/L         | NA                          | NA                         | NA                          | NA                         | NA                         | NA                         | NA                        | NA                         | NA                         | NA                         | NA                          | NA                         | NA                         | NA.                             | NA                        | NA                        | NA                         | NA                         | NA                          |
| Metals, Dissolved | CHROMIUM                                   | 0.013      | 0.1        |            | mg/L         | NA                          | NA                         | 0.01 U                      | 0.01 U                     | NA                         | NA                         | NA                        | NA                         | NA                         | NA                         | NA                          | NA                         | NA                         | NA                              | NA                        | NA                        | NA                         | NA                         | NA                          |
|                   | LEAD                                       | 0.007      | 0.015      | 0.015      | mg/L         | NA                          | NA                         | 0.005 U                     | 0.005 U                    | NA                         | NA                         | NA                        | NA                         | NA                         | NA                         | NA                          | NA                         | NA                         | NA                              | NA                        | NA                        | NA                         | NA                         | NA                          |
|                   | MERCURY                                    |            | 0.002      |            | mg/L         | NA                          | NA                         | NA                          | NA                         | NA                         | NA                         | NA                        | NA                         | NA                         | NA                         | NA                          | NA                         | NA                         | NA                              | NA                        | NA                        | NA                         | NA                         | NA                          |
|                   | NICKEL                                     | 0.13       | 0.1        | 2          | mg/L         | NA                          | NA                         | 0.04 U                      | 0.04 U                     | NA                         | NA                         | NA                        | NA                         | NA                         | NA                         | NA                          | NA                         | NA                         | NA .                            | NA                        | NA                        | NA                         | NA                         | NA                          |
| -                 | ZINC                                       | 0.96       | 2          | 31         | mg/L         | NA                          | NA                         | 0.02 U                      | 0.021                      | NA                         | NA                         | NA                        | NA                         | NA                         | NA                         | NA                          | NA                         | NA                         | NA                              | NA                        | NA                        | NA                         | NA                         | NA                          |
|                   | ALKALINITY TOTAL (AS CACOS)                |            |            |            | mg/L         | NA<br>NA                    | NA<br>NA                   | NA<br>NA                    | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                  | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                    | NA<br>NA                   | NA<br>NA                   | NA<br>NA                        | NA<br>NA                  | NA<br>NA                  | NA<br>NA                   | NA<br>NA                   | NA<br>NA                    |
|                   | ALKALINITY, TOTAL (AS CACO3)  AMMONIA AS N | 15         | 30         | 30         | mg/L         | NA<br>NA                    | NA<br>3.2                  | NA<br>14                    | NA<br>3.2                  | NA<br>1.8                  | NA<br>4                    | NA<br>0.66                | NA<br>3.3                  | NA<br>2.8                  | NA<br>5.6                  | NA<br>2.6                   | 0.035                      | NA<br>3.7                  | NA<br>3.6                       | NA<br>1.6                 | NA<br>3.5                 | NA<br>3.6                  | NA<br>5.4                  | NA<br>6.1                   |
|                   | BICARBONATE                                |            |            |            | mg/L         | NA NA                       | NA                         | NA.                         | NA NA                      | NA.                        | NA NA                      | NA                        | NA NA                      | NA NA                      | NA NA                      | NA NA                       | NA NA                      | NA                         | NA                              | NA.                       | NA NA                     | NA NA                      | NA                         | NA NA                       |
|                   | CARBONATE                                  |            |            |            | mg/L         | NA NA                       | NA NA                      | NA NA                       | NA.                        | NA.                        | NA NA                      | NA NA                     | NA NA                      | NA NA                      | NA NA                      | NA NA                       | NA NA                      | NA NA                      | NA NA                           | NA NA                     | NA NA                     | NA NA                      | NA NA                      | NA NA                       |
| Miscellaneous     | CONDUCTIVITY                               |            |            |            | umhos/       | NA NA                       | NA NA                      | NA.                         | NA.                        | NA.                        | NA.                        | NA NA                     | NA NA                      | NA NA                      | NA NA                      | NA NA                       | NA.                        | NA.                        | NA.                             | NA.                       | NA NA                     | NA NA                      | NA NA                      | NA NA                       |
|                   | NITRATE (AS N)                             |            | 10         |            | mg/L         | NA NA                       | NA NA                      | NA                          | NA.                        | NA.                        | NA                         | NA NA                     | NA                         | NA NA                      | NA NA                      | NA                          | NA                         | NA.                        | NA NA                           | NA.                       | NA                        | NA NA                      | NA NA                      | NA                          |
|                   | NITRITE (AS N)                             |            |            |            | mg/l         | NA                          | NA                         | NA                          | NA                         | NA                         | NA                         | NA                        | NA                         | NA                         | NA                         | NA                          | NA                         | NA                         | NA.                             | NA                        | NA                        | NA                         | NA                         | NA                          |
|                   | SULFATE                                    |            |            |            | mg/L         | NA                          | NA                         | NA                          | NA.                        | NA                         | NA                         | NA                        | NA                         | NA                         | NA                         | NA                          | NA                         | NA                         | NA                              | NA                        | NA                        | NA                         | NA                         | NA                          |
| I                 | SOLIDS, TOTAL DISSOLVED                    |            |            |            | mg/L         | NA                          | NA                         | NA                          | NA                         | NA                         | NA                         | NA                        | NA                         | NA                         | NA                         | NA                          | NA                         | NA                         | NA                              | NA                        | NA                        | NA                         | NA                         | NA                          |
|                   |                                            |            |            |            |              |                             |                            |                             |                            |                            |                            |                           |                            |                            |                            |                             |                            |                            |                                 |                           |                           |                            |                            |                             |

Notes:

Shaded cell indicates comparison standard used in date evaluation.

Inight glied cell indicates analytical result exceeds comparison criteria.

Bold and Balk test indicates analytical result exceeds background value.

Bold and Balk test indicates analytical result exceeds background value.

In Nate comparison standard base on the Maximum Containant Level (MCL) established by the USEPA National Primary C

No -No constituents detected above the shown of the containant Level (MCL) established by the USEPA National Primary C

Li Indicates constituent was not detected above value shown.

Li Indicates constituent was not detected at an estimated value.

Unit Indicates constituent was not detected at an estimated value.

Monitoring entils MM-38, PDMM-88, PDMM-108, PDMM-118, PDMM-118, PDMM-218, PDMM-218, PDMM-318, PDMM-318,

|                   |                                              |            |           | Loc                                                | ation:                |           |                 |              |              |                   |                   |                   |                   |                  |                   |                  |                   |                     |                |                   | PDMV             | V-26T            |                |           |                   |                   |                      |                    |                     |                  |                    |                  |                  |            |                  |              |                  |
|-------------------|----------------------------------------------|------------|-----------|----------------------------------------------------|-----------------------|-----------|-----------------|--------------|--------------|-------------------|-------------------|-------------------|-------------------|------------------|-------------------|------------------|-------------------|---------------------|----------------|-------------------|------------------|------------------|----------------|-----------|-------------------|-------------------|----------------------|--------------------|---------------------|------------------|--------------------|------------------|------------------|------------|------------------|--------------|------------------|
|                   |                                              |            |           | Sample                                             | _                     | 997 8/9   | 9/1999 1        | 11/18/1999   | 2/25/2000    | 5/17/2000         | 8/22/2000         | 1/10/2001         | 7/16/2001         | 2/5/2002         | 9/10/2002         | 2/5/2003         | 6/26/             | 2003                | 1/27/2004      | 7/20/2004         | 3/8/2006         | 4/2/2008         | 7/18/2008      | 10/5/2008 | 12/5/2009         | 6/18/             | 2010                 | 12/16/2010         | 6/16/2011           | 12/8/2011        | 12/11/2013         | 6/5/2014         | 11/6/            | 2014       | 5/21/2015        | 11/12/2015   | 11/12/2015       |
|                   |                                              |            |           | Sample                                             | Type: Norm            | al No     | ormal           | Normal       | Normal       | Normal            | Normal            | Normal            | Normal            | Normal           | Normal            | Normal           | Normal            | Dup                 | Normal         | Normal            | Normal           | Normal           | Normal         | Normal    | Normal            | Normal            | Dup                  | Normal             | Normal              | Normal           | Normal             | Normal           | Normal           | Dup        | Normal           | Dup          | Normal           |
|                   |                                              |            |           |                                                    | PDM\                  | v. pr     | OMW-            | PDMW-        | PDMW-        | PDMW-             | PDMW-             | PDMW-             | PDMW-             | PDMW-            | PDMW-             | PDMW-            | PDMW-             | PDMW-26T            | PDMW-          | PDMW-             | PDMW-            | PDMW-            | PDMW-          | PDMW-     | PDMW-             | PDMW-             | PDMW-                | PDMW-              |                     | PDMW-            | PDMW-              | PDMW-            | PDMW-            | DUP-       | PDMW-            | DUP-         | PDMW-            |
|                   |                                              |            |           | Samp                                               | le ID: 26T_10/<br>997 | 30/1 26T_ | 8/9/199 20<br>9 | 999          |              | 26T_5/17/20<br>00 | 26T_8/22/20<br>00 | 26T_1/10/20<br>01 | 26T_7/16/20<br>01 | 26T_2/5/200<br>2 | 26T_9/10/20<br>02 | 26T_2/5/200<br>3 | 26T_6/26/20<br>03 | (DUP)_6/26/<br>2003 |                | 26T_7/20/20<br>04 | 26T_3/8/200<br>6 | 26T_4/2/200<br>8 |                |           | 26T_12/5/20<br>09 | 26T_6/18/20<br>10 | 26TDUP_6/1<br>8/2010 | 26T_12/16/2<br>010 | PDMW-26T-<br>061611 | 26T_120820<br>11 | 26T_12/11/2<br>013 | 26T_060520<br>14 | 26T_110620<br>14 | 03_1106201 | 26T_052120<br>15 | 01_1112201   | 26T_111220<br>15 |
| Method Group      | Analyte                                      | Background | Type 3 RR | IS Type 4 RRS                                      | Inits Resu            | lt Re     | esult           | Result       | Result       | Result            | Result            | Result            | Result            | Result           | Result            | Result           | Result            | Result              | Result         | Result            | Result           | Result           | Result         | Result    | Result            | Result            | Result               | Result             | Result              | Result           | Result             | Result           | Result           | Result     | Result           | Result       | Result           |
|                   | ACENAPHTHENE                                 | 1          | 2000      | _                                                  | ug/L 1 U              |           | 1 U             | 1 U          | 1 U          | 1 U               | 1 U               | 1 U               | 1 U               | NA               | 0.2 U             | 0.2 U            | 0.2 U             | 0.2 U               | 0.2 U          | 0.2 U             | 0.19 U           | 0.19 U           | 0.2 U          | 1.9 U     | 0.2 U             | 0.19 U            | 0.19 U               | NA                 | NA                  | NA               | 9.1 U              | 9.8 U            | NA               | NA         | NA               | NA           | NA               |
|                   | ACENAPHTHYLENE                               | 1.4        | 1         | _                                                  | ug/L 1 U              | _         | 1 U             | 1 U          | 1 U          | 1 U               | 1 U               | 1 U               | 1 U               | NA               | 0.2 U             | 0.2 U            | 0.2 U             | 0.2 U               | 0.2 U          | 0.2 U             | 0.19 U           | 0.19 U           | 0.2 U          | 1.9 U     | 0.2 U             | 0.19 U            | 0.19 U               | NA                 | NA                  | NA               | 9.1 U              | 9.8 U*           | NA               | NA         | NA               | NA           | NA               |
|                   | ANTHRACENE                                   | 0.2        | 0.2       | 5100                                               | ug/L 0.2 l            | _         | ).2 U           | 0.2 U        | 0.2 U        | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U             | NA               | 0.2 U             | 0.2 U            | 0.2 U             | 0.2 U               | 0.2 U          | 0.2 U             | 0.19 U           | 0.19 U           | 0.2 U          | 1.9 U     | 0.2 U             | 0.19 U            | 0.19 U               | NA                 | NA                  | NA               | 9.1 U              | 9.8 U            | NA               | NA         | NA               | NA           | NA               |
|                   | BENZO(A)ANTHRACENE                           | 0.2        | 0.1       | 3.9                                                | ug/L 0.2 l            |           | 0.2 U           | 0.2 U        | 0.2 U        | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U             | NA               | 0.2 U             | 0.2 U            | 0.2 U             | 0.2 U               | 0.2 U          | 0.2 U             | 0.19 U           | 0.19 U           | 0.2 U          | 1.9 U     | 0.2 U             | 0.19 U            | 0.19 U               | NA                 | NA                  | NA               | 9.1 U              | 9.8 U            | NA               | NA         | NA               | NA           | NA               |
|                   | BENZO(A)PYRENE                               | 0.2        | 0.2       | 0.39                                               | ug/L 0.2 l            | _         | 0.2 U           | 0.2 U        | 0.2 U        | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U             | NA               | 0.2 U             | 0.2 U            | 0.2 U             | 0.2 U               | 0.2 U          | 0.2 U             | 0.19 U           | 0.19 U           | 0.2 U          | 1.9 U     | 0.2 U             | 0.19 U            | 0.19 U               | NA                 | NA                  | NA               | 9.1 U              | 9.8 U            | NA               | NA         | NA               | NA           | NA               |
|                   | BENZO(B)FLUORANTHENE<br>BENZO(G,H,I)PERYLENE | 0.2        | 0.2       | 0.65                                               | ug/L 0.2 l            | _         | 0.2 U<br>NA     | 0.2 U<br>NA  | 0.2 U<br>NA  | 0.2 U<br>NA       | 0.2 U<br>NA       | 0.2 U<br>NA       | 0.2 U<br>NA       | NA<br>NA         | 0.2 U<br>0.2 U    | 0.2 U            | 0.2 U             | 0.2 U<br>0.2 U      | 0.2 U<br>0.2 U | 0.2 U<br>0.2 U    | 0.19 U<br>0.19 U | 0.19 U<br>0.19 U | 0.2 U<br>0.2 U | 1.9 U     | 0.2 U<br>0.2 U    | 0.19 U<br>0.19 U  | 0.19 U<br>0.19 U     | NA<br>NA           | NA<br>NA            | NA<br>NA         | 9.1 U<br>9.1 U     | 9.8 U<br>9.8 U   | NA<br>NA         | NA<br>NA   | NA<br>NA         | NA<br>NA     | NA<br>NA         |
|                   | BENZO(K)FLUORANTHENE                         |            |           |                                                    | ug/L 0.5 t            | _         | NA NA           | NA NA        | NA NA        | NA NA             | NA NA             | NA NA             | NA NA             | NA NA            | 0.2 U             | 0.2 U            | 0.2 U             | 0.2 U               | 0.2 U          | 0.2 U             | 0.19 U           | 0.19 U           | 0.2 U          | 1.9 U     | 0.2 U             | 0.19 U            | 0.19 U               | NA NA              | NA NA               | NA NA            | 9.1 U              | 9.8 U            | NA NA            | NA NA      | NA NA            | NA NA        | NA NA            |
|                   | CHRYSENE                                     | 0.2        | 0.2       | 65                                                 | ug/L 0.2 l            | _         | ).2 U           | 0.2 U        | 0.2 U        | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U             | NA.              | 0.2 U             | 0.2 U            | 0.2 U             | 0.2 U               | 0.2 U          | 0.2 U             | 0.19 U           | 0.19 U           | 0.2 U          | 1.9 U     | 0.2 U             | 0.19 U            | 0.19 U               | NA.                | NA                  | NA               | 9.1 U              | 9.8 U            | NA               | NA         | NA NA            | NA.          | NA .             |
| PAHs              | DIBENZO(A,H)ANTHRACENE                       |            | 0.3       |                                                    | ug/L 1 U              | _         | NA              | NA           | NA.          | NA                | NA                | NA                | NA.               | NA.              | 0.2 U             | 0.2 U            | 0.2 U             | 0.2 U               | 0.2 U          | 0.2 U             | 0.19 U           | 0.19 U           | 0.2 U          | 1.9 U     | 0.2 U             | 0.19 U            | 0.19 U               | NA NA              | NA                  | NA               | 9.1 U              | 9.8 U            | NA NA            | NA NA      | NA               | NA           | NA .             |
|                   | FLUORANTHENE                                 | 0.5        | 1000      |                                                    | ug/L 0.5 L            | _         | 0.5 U           | 0.5 U        | 0.5 U        | 0.5 U             | 0.5 U             | 0.5 U             | 0.5 U             | NA               | 0.2 U             | 0.2 U            | 0.2 U             | 0.2 U               | 0.2 U          | 0.2 U             | 0.19 U           | 0.19 U           | 0.2 U          | 1.9 U     | 0.2 U             | 0.19 U            | 0.19 U               | NA                 | NA                  | NA               | 9.1 U              | 9.8 U            | NA               | NA         | NA               | NA           | NA               |
|                   | FLUORENE                                     | 0.5        | 1000      |                                                    | ug/L 0.5 L            | 0.        | ).5 U           | 0.5 U        | 0.5 U        | 0.5 U             | 0.5 U             | 0.5 U             | 0.5 U             | NA               | 0.2 U             | 0.2 U            | 0.2 U             | 0.2 U               | 0.2 U          | 0.2 U             | 0.19 U           | 0.19 U           | 0.2 U          | 1.9 U     | 0.2 U             | 0.19 U            | 0.19 U               | NA                 | NA                  | NA               | 9.1 U              | 9.8 U            | NA               | NA         | NA               | NA           | NA               |
|                   | INDENO(1,2,3-CD)PYRENE                       |            | 0.4       |                                                    | ug/L 0.5 l            |           | NA              | NA           | NA           | NA                | NA                | NA                | NA                | NA               | 0.2 U             | 0.2 U            | 0.2 U             | 0.2 U               | 0.2 U          | 0.2 U             | 0.19 U           | 0.19 U           | 0.2 U          | 1.9 U     | 0.2 U             | 0.19 U            | 0.19 U               | NA                 | NA                  | NA               | 9.1 U              | 9.8 U            | NA               | NA         | NA               | NA           | NA               |
|                   | 1-METHYLNAPHTHALENE                          |            |           |                                                    | ug/L NA               |           | NA              | NA           | NA           | NA                | NA                | NA                | NA                | NA               | 0.2 U             | 0.2 U            | 0.2 U             | 0.2 U               | 0.2 U          | 0.2 U             | 0.19 U           | 0.19 U           | 0.2 U          | 1.9 U     | 0.8 U             | 0.38 U            | 0.38 U               | NA                 | NA                  | NA               | 9.1 U              | 9.8 U            | NA               | NA         | NA               | NA           | NA               |
|                   | 2-METHYLNAPHTHALENE                          |            |           |                                                    | ug/L NA               |           | NA              | NA           | NA           | NA                | NA                | NA                | NA                | NA               | 0.2 U             | 0.2 U            | 0.2 U             | 0.2 U               | 0.2 U          | 0.2 U             | 0.19 U           | 0.19 U           | 0.2 U          | 1.9 U     | 0.2 U             | 0.19 U            | 0.19 U               | NA                 | NA                  | NA               | 9.1 U              | 9.8 U            | NA               | NA         | NA               | NA           | NA               |
|                   | NAPHTHALENE                                  | 1          | 20        | _                                                  | ug/L 1 U              |           | 1 U             | 1 U          | 1 U          | 1 U               | 1 U               | 1 U               | 1 U               | NA               | 0.2 U             | 0.2 U            | 0.2 U             | 0.2 U               | 0.2 U          | 0.2 U             | 0.19 U           | 0.19 U           | 0.2 U          | 1.9 U     | 0.2 U             | 0.19 U            | 0.19 U               | NA                 | NA                  | NA               | 9.1 U              | 9.8 U            | NA               | NA         | NA               | NA           | NA               |
|                   | PHENANTHRENE                                 | 0.22       | 0.2       |                                                    | ug/L 0.2 l            | _         | ).2 U           | 0.2 U        | 0.2 U        | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U             | NA .             | 0.2 U             | 0.2 U            | 0.2 U             | 0.2 U               | 0.2 U          | 0.2 U             | 0.19 U           | 0.19 U           | 0.2 U          | 1.9 U     | 0.2 U             | 0.19 U            | 0.19 U               | NA                 | NA                  | NA               | 9.1 U              | 9.8 U            | NA               | NA         | NA               | NA           | NA               |
|                   | PYRENE                                       | 0.5        | 1000      | _                                                  | ug/L 0.5 L            | _         | 0.5 U           | 0.5 U        | 0.5 U        | 0.5 U             | 0.5 U             | 0.5 U             | 0.5 U             | NA               | 0.2 U             | 0.2 U            | 0.2 U             | 0.2 U               | 0.2 U          | 0.2 U             | 0.19 U           | 0.19 U           | 0.2 U          | 1.9 U     | 0.2 U             | 0.19 U            | 0.19 U               | NA                 | NA                  | NA               | 9.1 U              | 9.8 U            | NA               | NA         | NA               | NA           | NA               |
| <del></del>       | TOTAL PAHS<br>BENZENE                        | 1          |           | -                                                  | ug/L ND               | _         | ND<br>1 U       | ND<br>1 U    | ND<br>1 U    | ND<br>1 U         | ND<br>1 U         | ND<br>1 U         | ND<br>1 U         | NA<br>NA         | ND<br>1 U         | ND<br>1 U        | ND<br>1 U         | ND<br>1 U           | ND<br>1 U      | ND<br>1 U         | ND<br>1.2        | ND<br>3          | ND<br>1.5      | ND<br>1 U | ND<br>1.7         | ND<br>2.3         | ND<br>2.3            | NA<br>NA           | NA<br>NA            | NA<br>NA         | ND<br>1 U          | ND<br>1 U        | NA<br>NA         | NA<br>NA   | NA<br>NA         | NA<br>NA     | NA<br>NA         |
|                   | ETHYLBENZENE                                 | 1          | 700       |                                                    | ug/L 1 U              | _         | 1 U             | 10           | 10           | 10                | 10                | 10                | 10                | NA<br>NA         | 10                | 10               | 10                | 10                  | 10             | 1 U               | 1.2<br>1 U       | 1 U              | 1.5<br>1 U     | 10        | 1.7<br>1 U        | 1 U               | 2.3<br>1 U           | NA<br>NA           | NA<br>NA            | NA<br>NA         | 1 U                | 1 U              | NA<br>NA         | NA<br>NA   | NA<br>NA         | NA<br>NA     | NA<br>NA         |
|                   | p/m-XYLENE                                   |            |           | _                                                  | ug/L NA               | _         | 1 U             | 10           | 1 U          | 1 U               | 1 U               | 1 U               | 1 U               | NA NA            | NA NA             | NA NA            | NA NA             | NA NA               | NA.            | NA NA             | NA NA            | NA NA            | NA NA          | NA NA     | NA NA             | NA NA             | NA.                  | NA NA              | NA NA               | NA NA            | NA NA              | NA.              | NA NA            | NA NA      | NA NA            | NA NA        | NA NA            |
|                   | METHYLENE CHLORIDE                           |            |           | +                                                  | ug/L NA               |           | 5 U             | NA NA        | NA NA        | NA NA             | NA.               | NA.               | NA NA             | NA.              | NA NA             | NA NA            | NA NA             | NA NA               | NA.            | NA.               | NA               | NA NA            | NA.            | NA NA     | NA NA             | NA NA             | NA.                  | NA NA              | NA NA               | NA NA            | 5 U                | 5 U              | NA NA            | NA NA      | NA NA            | NA.          | NA .             |
| VOCs              | o-XYLENE                                     |            |           | <del>-   -   -   -   -   -   -   -   -   -  </del> | ug/L NA               | _         | 1 U             | 1 U          | 1 U          | 1 U               | 1 U               | 1 U               | 1 U               | NA               | NA                | NA               | NA                | NA                  | NA.            | NA                | NA               | NA               | NA             | NA        | NA                | NA                | NA                   | NA                 | NA                  | NA               | NA                 | NA               | NA               | NA         | NA               | NA           | NA               |
|                   | TOLUENE                                      | 1          | 1000      | 1900                                               | ug/L 1 U              |           | 1 U             | 1 U          | 1 U          | 1 U               | 1 U               | 1 U               | 1 U               | NA.              | 1 U               | 1 U              | 1 U               | 1 U                 | 1 U            | 1 U               | 1 U              | 1 U              | 1 U            | 1 U       | 1 U               | 1 U               | 1 U                  | NA                 | NA                  | NA               | 1 U                | 1 U              | NA               | NA         | NA               | NA           | NA               |
|                   | XYLENES (TOTAL)                              | 2          | 10000     |                                                    | ug/L 2 U              |           | 1 U             | 1 U          | 1 U          | 1 U               | 1 U               | 1 U               | 1 U               | NA               | 2 U               | 2 U              | 2 U               | 2 U                 | 2 U            | 2 U               | 2 U              | 2 U              | 2 U            | 2 U       | 2 U               | 2 U               | 2 U                  | NA                 | NA                  | NA               | 2 U                | 2 U              | NA               | NA         | NA               | NA           | NA               |
|                   | METHYL TERT BUTYL ETHER                      |            |           |                                                    | ug/L NA               |           | NA              | NA           | NA           | NA                | NA                | NA                | NA                | NA               | NA                | NA               | NA                | NA                  | NA.            | NA                | 10 U             | 10 U             | 10 U           | NA        | NA                | 10 U              | 10 U                 | NA                 | NA                  | NA               | 10 U               | 10 U             | NA               | NA         | NA               | NA           | NA               |
|                   | TOTAL BTEX                                   |            |           |                                                    | ug/L ND               |           | ND              | ND           | ND           | ND                | ND                | ND                | ND                | NA               | ND                | ND               | ND                | ND                  | ND             | ND                | 1.2              | 3                | 1.5            | ND        | 1.7               | 2.3               | 2.3                  | NA                 | NA                  | NA               | ND                 | ND               | NA               | NA         | NA               | NA           | NA               |
|                   | ARSENIC                                      | 0.018      | 0.018     | 0.018                                              | ng/L 0.01             |           | 0.016           | 0.016        | 0.013        | 0.02              | 0.022             | 0.026             | 0.017             | NA               | 0.017             | 0.019            | 0.021             | 0.019               | 0.017          | 0.018             | 0.02             | 0.029            | 0.027          | 0.024     | 0.034             | 0.045             | 0.047                | 0.025              | 0.034               | 0.025            | 0.021              | 0.025            | 0.02 U           | 0.02 U     | 0.025            | 0.02 U       | 0.02 U           |
|                   | BERYLLIUM                                    |            | 0.004     |                                                    | ng/L 0.005            | _         | NA              | NA           | NA           | NA                | NA                | NA                | NA                | NA               | NA                | NA               | NA                | NA                  | NA.            | NA                | NA               | NA               | NA             | NA        | NA                | NA                | NA                   | NA                 | NA                  | NA               | NA                 | NA               | NA               | NA         | NA               | NA           | NA               |
|                   | BORON                                        |            |           |                                                    | ng/L NA               | _         | NA              | NA           | NA           | NA                | NA                | NA                | NA                | NA               | NA                | NA               | NA                | NA                  | NA             | NA                | NA               | NA               | NA             | NA        | NA                | NA                | NA                   | NA                 | NA                  | NA               | NA                 | NA               | NA               | NA         | NA               | NA           | NA               |
|                   | CADMIUM<br>CALCIUM METAL                     |            | 0.005     |                                                    | ng/L 0.005            | _         | NA<br>NA        | NA<br>NA     | NA<br>NA     | NA<br>NA          | NA<br>NA          | NA<br>NA          | NA<br>NA          | NA<br>NA         | NA<br>NA          | NA<br>NA         | NA<br>NA          | NA<br>NA            | NA<br>NA       | NA<br>NA          | NA<br>NA         | NA<br>NA         | NA<br>NA       | NA<br>NA  | NA<br>NA          | NA<br>NA          | NA<br>NA             | NA<br>NA           | NA<br>NA            | NA<br>NA         | NA<br>NA           | NA<br>NA         | NA<br>NA         | NA<br>NA   | NA<br>NA         | NA<br>NA     | NA<br>NA         |
|                   | CHROMILIM                                    | 0.013      | 0.1       |                                                    | ng/L 0.01             | _         | .01 U           | 0.01 U       | 0.01 U       | 0.01 U            | 0.01 U            | 0.01 U            | 0.01 U            | NA NA            | 0.01 U            | 0.01 U           | 0.01 U            | 0.01 U              | 0.01 U         | 0.01 U            | 0.01 U           | 0.01 U           | 0.01 U         | 0.01 U    | 0.01 U            | 0.01 U            | 0.01 U               | NA NA              | NA NA               | NA.              | 0.0022             | 0.01 U           | NA NA            | NA NA      | NA NA            | NA NA        | NA NA            |
| Metals, Total     | LEAD                                         | 0.007      | 0.015     | 0.015                                              | ng/L 0.005            | _         |                 | 0.005 U      | 0.005 U      | 0.005 U           | 0.005 U           | 0.005 U           | 0.005 U           | NA.              | 0.005 U           | 0.005 U          | 0.005 U           | 0.005 U             | 0.005 U        | 0.005 U           | 0.005 U          | 0.005 U          | 0.005 U        | 0.005 U   | 0.01 U            | 0.01 U            | 0.01 U               | NA                 | NA                  | NA               | 0.01 U             | 0.01 U           | 0.01 U           | 0.01 U     | 0.01 U           | 0.01 U       | 0.01 U           |
|                   | MAGNESIUM                                    |            |           |                                                    | ng/L NA               |           | NA              | NA           | NA           | NA                | NA                | NA                | NA                | NA               | NA                | NA               | NA                | NA                  | NA             | NA                | NA               | NA               | NA             | NA        | NA                | NA                | NA.                  | NA                 | NA                  | NA               | NA                 | NA               | NA               | NA         | NA               | NA           | NA               |
|                   | MERCURY                                      |            | 0.002     |                                                    | ng/L 0.0002           | U         | NA              | NA           | NA           | NA                | NA                | NA                | NA                | NA.              | NA                | NA               | NA                | NA                  | NA.            | NA                | NA               | NA               | NA             | NA        | NA                | NA                | NA                   | NA                 | NA                  | NA               | NA                 | NA               | NA               | NA         | NA               | NA           | NA               |
|                   | NICKEL                                       | 0.13       | 0.1       | 2                                                  | ng/L 0.04             | J 0.      | .04 U           | 0.04 U       | 0.04 U       | 0.04 U            | 0.04 U            | 0.04 U            | 0.04 U            | NA               | 0.04 U            | 0.04 U           | 0.04 U            | 0.04 U              | 0.04 U         | 0.04 U            | 0.04 U           | 0.04 U           | 0.04 U         | 0.04 U    | 0.04 U            | 0.04 U            | 0.04 U               | NA                 | NA                  | NA               | 0.0043             | 0.04 U           | NA               | NA         | NA               | NA           | NA               |
|                   | POTASSIUM                                    |            |           |                                                    | ng/L NA               |           | NA              | NA           | NA           | NA                | NA                | NA                | NA                | NA               | NA                | NA               | NA                | NA                  | NA             | NA                | NA               | NA               | NA             | NA        | NA                | NA                | NA                   | NA                 | NA                  | NA               | NA                 | NA               | NA               | NA         | NA               | NA           | NA               |
|                   | SODIUM                                       |            |           |                                                    | ng/L NA               | _         | NA              | NA           | NA           | NA                | NA                | NA                | NA                | NA               | NA                | NA               | NA                | NA                  | NA             | NA                | NA               | NA               | NA             | NA        | NA                | NA                | NA                   | NA                 | NA                  | NA               | NA                 | NA               | NA               | NA         | NA               | NA           | NA               |
|                   | ZINC                                         | 0.96       | 2         |                                                    | ng/L 0.02             |           | .02 U           | 0.02 U       | 0.02 U       | 0.1               | 0.02 U            | 0.02 U            | 0.02 U            | NA               | 0.02 U            | 0.02 U           | 0.02 U            | 0.02 U              | 0.02 U         | 0.02 U            | 0.02 U           | 0.02 U           | 0.02 U         | 0.02 U    | 0.02 U            | 0.02 U            | 0.02 U               | NA                 | NA                  | NA               | 0.02 U             | 0.02 U           | NA               | NA         | NA               | NA           | NA               |
|                   | ARSENIC                                      | 0.018      | 0.018     | _                                                  | ng/L NA               | _         | NA              | 0.01 U       | 0.01 U       | 0.01 U            | 0.01 U            | NA                | 0.01 U            | 0.01 U           | NA                | NA               | NA                | NA                  | NA             | NA                | NA               | 0.025            | NA             | NA        | NA                | NA                | NA                   | NA                 | NA                  | NA               | NA                 | NA               | NA               | NA         | NA               | NA           | NA               |
|                   | BERYLLIUM                                    |            | 0.004     |                                                    | ng/L NA               | _         | NA<br>NA        | NA<br>NA     | NA<br>NA     | NA<br>NA          | NA<br>NA          | NA<br>NA          | NA<br>NA          | NA<br>NA         | NA<br>NA          | NA<br>NA         | NA<br>NA          | NA<br>NA            | NA<br>NA       | NA<br>NA          | NA<br>NA         | NA<br>NA         | NA<br>NA       | NA<br>NA  | NA<br>NA          | NA<br>NA          | NA<br>NA             | NA<br>NA           | NA<br>NA            | NA<br>NA         | NA<br>NA           | NA<br>NA         | NA<br>NA         | NA<br>NA   | NA<br>NA         | NA<br>NA     | NA NA            |
| 1                 | CADMIUM                                      | 0.013      | 0.005     | _                                                  | ng/L NA               | _         | NA<br>NA        | NA<br>0.01 U | NA<br>0.01 U | NA<br>NA          | NA<br>NA          | NA<br>NA          | NA<br>NA          | NA<br>NA         | NA<br>NA          | NA<br>NA         | NA<br>NA          | NA<br>NA            | NA<br>NA       | NA<br>NA          | NA<br>NA         | NA<br>0.01 U     | NA<br>NA       | NA<br>NA  | NA<br>NA          | NA<br>NA          | NA<br>NA             | NA<br>NA           | NA<br>NA            | NA<br>NA         | NA<br>NA           | NA<br>NA         | NA<br>NA         | NA<br>NA   | NA<br>NA         | NA<br>NA     | NA<br>NA         |
| Metals, Dissolved | LEAD                                         | 0.013      | 0.015     |                                                    | ng/L NA               | _         |                 | 0.01 U       | 0.005 U      | NA<br>NA          | NA<br>NA          | NA.               | NA NA             | NA<br>NA         | NA<br>NA          | NA NA            | NA<br>NA          | NA<br>NA            | NA NA          | NA NA             | NA<br>NA         | 0.01 U           | NA<br>NA       | NA<br>NA  | NA<br>NA          | NA<br>NA          | NA<br>NA             | NA NA              | NA<br>NA            | NA NA            | NA<br>NA           | NA<br>NA         | NA<br>NA         | NA<br>NA   | NA<br>NA         | NA NA        | NA NA            |
|                   | MERCURY                                      |            | 0.002     | _                                                  | ng/L NA               | _         | NA NA           | NA NA        | NA NA        | NA NA             | NA NA             | NA.               | NA NA             | NA NA            | NA NA             | NA NA            | NA NA             | NA NA               | NA NA          | NA NA             | NA NA            | NA NA            | NA NA          | NA NA     | NA NA             | NA NA             | NA.                  | NA NA              | NA NA               | NA NA            | NA NA              | NA NA            | NA NA            | NA NA      | NA NA            | NA.          | NA NA            |
|                   | NICKEL                                       | 0.13       | 0.1       |                                                    | ng/L NA               | _         | NA              | 0.04 U       | 0.04 U       | NA                | NA .              | NA                | NA                | NA NA            | NA                | NA NA            | NA                | NA                  | NA.            | NA                | NA               | 0.04 U           | NA             | NA NA     | NA NA             | NA                | NA.                  | NA NA              | NA NA               | NA               | NA NA              | NA NA            | NA NA            | NA NA      | NA NA            | NA.          | NA .             |
|                   | ZINC                                         | 0.96       | 2         |                                                    | ng/L NA               | _         | NA              | 0.02 U       | 0.02 U       | 0.02 U            | NA                | NA                | NA                | NA               | NA                | NA               | NA                | NA                  | NA             | NA                | NA               | 0.02 U           | NA             | NA        | NA                | NA                | NA                   | NA.                | NA                  | NA               | NA                 | NA               | NA               | NA         | NA               | NA.          | NA               |
|                   | ALKALINITY                                   |            |           |                                                    | ng/L NA               |           | NA              | NA           | NA           | NA                | NA                | NA                | NA                | NA               | NA                | NA               | NA                | NA                  | NA             | NA                | NA               | NA               | NA             | NA        | NA                | NA                | NA                   | NA                 | NA                  | NA               | NA                 | NA               | NA               | NA         | NA               | NA           | NA               |
|                   | ALKALINITY, TOTAL (AS CACO3)                 |            |           |                                                    | ng/L NA               |           | NA              | NA           | NA           | NA                | NA                | NA                | NA                | NA               | NA                | NA               | NA                | NA                  | NA             | NA                | NA               | NA               | NA             | NA        | NA                | NA                | NA                   | NA                 | NA                  | NA               | NA                 | NA               | NA               | NA         | NA               | NA           | NA               |
|                   | AMMONIA AS N                                 | 15         | 30        | 30                                                 | ng/L <b>380</b>       | :         | 350             | 440          | 34           | 550               | 740               | 900               | 490               | NA               | 540               | 580              | 510               | 320                 | 610            | 650               | 710              | 570              | 580            | 560       | 570               | 500               | 500                  | 520                | 570                 | 550              | 530                | 600              | 470              | 490        | 550              | 600          | 600              |
|                   | BICARBONATE                                  |            |           |                                                    | ng/L NA               |           | NA              | NA           | NA           | NA                | NA                | NA                | NA                | NA               | NA                | NA               | NA                | NA                  | NA             | NA                | NA               | NA               | NA             | NA        | NA                | NA                | NA                   | NA                 | NA                  | NA               | NA                 | NA               | NA               | NA         | NA               | NA           | NA               |
| Miscellaneous     | CARBONATE                                    |            |           |                                                    | ng/L NA               | _         | NA              | NA           | NA           | NA                | NA                | NA                | NA                | NA               | NA                | NA               | NA                | NA                  | NA             | NA                | NA               | NA               | NA             | NA        | NA                | NA                | NA                   | NA                 | NA                  | NA               | NA                 | NA               | NA               | NA         | NA               | NA           | NA               |
|                   | CONDUCTIVITY                                 |            |           |                                                    | nhos/<br>cm NA        | _         | NA              | NA           | NA           | NA                | NA                | NA                | NA                | NA               | NA                | NA               | NA                | NA                  | NA             | NA                | NA               | NA               | NA             | NA        | NA                | NA                | NA                   | NA                 | NA                  | NA               | NA                 | NA               | NA               | NA         | NA               | NA           | NA               |
|                   | NITRATE (AS N)                               |            | 10        |                                                    | ng/L NA               | _         | NA              | NA           | NA           | NA                | NA                | NA                | NA                | NA               | NA                | NA               | NA                | NA                  | NA             | NA                | NA               | NA               | NA             | NA        | NA                | NA                | NA                   | NA                 | NA                  | NA               | 0.41               | 1.1              | 0.051            | 0.07       | 0.26             | 0.05 U       | 0.05 U           |
|                   | NITRITE (AS N)                               |            |           |                                                    | mg/I NA               | _         | NA<br>NA        | NA<br>NA     | NA<br>NA     | NA<br>NA          | NA<br>NA          | NA<br>NA          | NA<br>NA          | NA<br>NA         | NA<br>NA          | NA<br>NA         | NA<br>NA          | NA<br>NA            | NA<br>NA       | NA<br>NA          | NA<br>NA         | NA<br>NA         | NA<br>NA       | NA<br>NA  | NA<br>NA          | NA<br>NA          | NA<br>NA             | NA<br>NA           | NA<br>NA            | NA<br>NA         | NA<br>NA           | NA<br>NA         | NA<br>NA         | NA<br>NA   | 0.05 U           | 0.05 U<br>NA | 0.05 U           |
|                   | SULFATE SOLIDS, TOTAL DISSOLVED              |            |           | <del>-   -   -   -   -   -   -   -   -   -  </del> |                       | _         | NA<br>NA        | NA<br>NA     | NA<br>NA     | NA<br>NA          | NA<br>NA          | NA<br>NA          | NA<br>NA          | NA<br>NA         | NA<br>NA          | NA<br>NA         | NA<br>NA          | NA<br>NA            | NA<br>NA       | NA<br>NA          | NA<br>NA         | NA<br>NA         | NA<br>NA       | NA<br>NA  | NA<br>NA          | NA<br>NA          | NA<br>NA             | NA<br>NA           | NA<br>NA            | NA<br>NA         | NA<br>NA           | NA<br>NA         | NA<br>NA         | NA<br>NA   | NA<br>NA         | NA<br>NA     | NA<br>NA         |
| SVOCs             | 1,4-DICHLOROBENZENE                          |            |           |                                                    | ng/L NA               | _         | NA<br>NA        | NA<br>NA     | NA<br>NA     | NA<br>NA          | NA<br>NA          | NA<br>NA          | NA<br>NA          | NA<br>NA         | NA<br>NA          | NA<br>NA         | NA<br>NA          | NA<br>NA            | NA<br>NA       | NA<br>NA          | NA<br>NA         | NA<br>NA         | NA<br>NA       | NA<br>NA  | NA<br>NA          | NA<br>NA          | NA<br>NA             | NA<br>NA           | NA<br>NA            | NA<br>NA         | NA<br>1 U          | 1 U              | NA<br>NA         | NA<br>NA   | NA<br>NA         | NA<br>NA     | NA<br>NA         |
|                   | ı                                            | <u> </u>   |           |                                                    |                       |           |                 | l l          |              |                   | 1                 |                   | 1                 |                  |                   |                  |                   |                     |                |                   |                  |                  |                |           |                   |                   |                      |                    |                     | 1                |                    | ·                |                  |            |                  |              |                  |

Note:

Shaded cell indicates comparison standard used in data evaluation.

Ingolighted cell indicates analytical result exceeds comparison criteria.

Bold and Rolk feet indicates analytical result exceeds background value.

F. Nitrate comparison standard based on the Maximum Centralinant Intel MCUI established by the USEPA National Primary C

NO: No constituents detected above the shoratory minimum detection limit.

D. Indicates constituents was not detected above value shown.

2. Indicates constituent was not detected at an estimated value.

Usi indicates constituent was not detected at an estimated value.

Usi indicates constituent was not detected at an estimated value.

Monitoring wells NW-3R, POMW-8R, POMW-3R, POMW-3R

|                   |                                        |            |            | L           | ocation:     |                            |                            |                             |                            |                            |                            |                            | PDMV                       | V-27P                     |                            |                           |                            |                            |                            |                                   |                                     |                           |                            |                            |                            | PDMV                       | V-27R                       |                     |                  |                           |                         |
|-------------------|----------------------------------------|------------|------------|-------------|--------------|----------------------------|----------------------------|-----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|---------------------------|----------------------------|---------------------------|----------------------------|----------------------------|----------------------------|-----------------------------------|-------------------------------------|---------------------------|----------------------------|----------------------------|----------------------------|----------------------------|-----------------------------|---------------------|------------------|---------------------------|-------------------------|
|                   |                                        |            |            | Samp        | ole Date:    | 11/4/1997                  | 8/11/1999                  | 11/16/1999                  | 2/23/2000                  | 5/16/2000                  | 8/22/2000                  | 1/10/2001                  | 7/16/2001                  | 2/6/2002                  | 9/12/2002                  | 2/4/2003                  | 6/26/2003                  | 1/29/2004                  | 7/20/2004                  | 3/6/2                             | 2006                                | 4/3/2008                  | 7/20/2008                  | 10/6/2008                  | 12/4/2009                  | 6/18/2010                  | 12/16/2010                  | 6/15/               | 2011             | 12/8                      | 2011                    |
|                   |                                        |            |            | Samp        | ole Type:    | Normal                     | Normal                     | Normal                      | Normal                     | Normal                     | Normal                     | Normal                     | Normal                     | Normal                    | Normal                     | Normal                    | Normal                     | Normal                     | Normal                     | Nor                               | mal                                 | Normal                    | Normal                     | Normal                     | Normal                     | Normal                     | Normal                      | Normal              | Dup              | Normal                    | Dup                     |
|                   |                                        |            |            | Sa          | mple ID:     | PDMW-<br>27P_11/4/19<br>97 | PDMW-<br>27P_8/11/19<br>99 | PDMW-<br>27P_11/16/1<br>999 | PDMW-<br>27P_2/23/20<br>00 | PDMW-<br>27P_5/16/20<br>00 | PDMW-<br>27P_8/22/20<br>00 | PDMW-<br>27P_1/10/20<br>01 | PDMW-<br>27P_7/16/20<br>01 | PDMW-<br>27P_2/6/200<br>2 | PDMW-<br>27P_9/12/20<br>02 | PDMW-<br>27P_2/4/200<br>3 | PDMW-<br>27P_6/26/20<br>03 | PDMW-<br>27P_1/29/20<br>04 | PDMW-<br>27P_7/20/20<br>04 | PDMW-27P<br>Filtered_3/6<br>/2006 | PDMW-27P<br>Unfiltered_3<br>/6/2006 | PDMW-<br>27R_4/3/200<br>8 | PDMW-<br>27R_7/20/20<br>08 | PDMW-<br>27R_10/6/20<br>08 | PDMW-<br>27R_12/4/20<br>09 | PDMW-<br>27R_6/18/20<br>10 | PDMW-<br>27R_12/16/2<br>010 | PDMW-<br>27R_061511 | DUP-<br>3_061511 | PDMW-<br>27R_120820<br>11 | DUP-<br>03_1208201<br>1 |
| Method Group      | Analyte                                | Background | Type 3 RRS | Type 4 RRS  | Units        | Result                     | Result                     | Result                      | Result                     | Result                     | Result                     | Result                     | Result                     | Result                    | Result                     | Result                    | Result                     | Result                     | Result                     | Result                            | Result                              | Result                    | Result                     | Result                     | Result                     | Result                     | Result                      | Result              | Result           | Result                    | Result                  |
|                   | ACENAPHTHENE                           | 1          | 2000       |             | ug/L         | 1 U                        | 1.4                        | 1 U                         | 1.2 J                      | 1.9                        | 1.5                        | 1 U                        | 1 U                        | 1 U                       | 1.1                        | 0.83                      | 0.54                       | 0.52                       | 0.2 U                      | 0.19 U                            | 0.53                                | 0.74                      | 0.67                       | 0.84                       | 0.72                       | 0.64 J                     | NA                          | NA                  | NA               | NA                        | NA                      |
|                   | ACENAPHTHYLENE<br>ANTHRACENE           | 1.4        | 0.2        | 510<br>5100 | ug/L<br>ug/L | 1 U                        | 5.5<br>0.2 U               | 3.9<br>0.2 U                | 4.6<br>0.34                | 1 U                        | 2.1<br>0.37                | 0.2 U                      | 1.7<br>0.2 U               | 2.6<br>0.38               | 0.2 U<br>0.2 U             | 0.2 U<br>0.2 U            | 0.2 U                      | 0.2 U<br>0.2 U             | 0.2 U<br>0.2 U             | 0.19 U<br>0.19 U                  | 0.19 U<br>0.19 U                    | 0.19 U<br>0.19 U          | 0.19 U<br>0.19 U           | 0.28<br>0.19 U             | 0.19 U<br>0.19 U           | 0.19 U<br>0.19 U           | NA<br>NA                    | NA<br>NA            | NA<br>NA         | NA<br>NA                  | NA<br>NA                |
|                   | BENZO(A)ANTHRACENE                     | 0.2        | 0.1        | 3.9         | ug/L         | 0.2 U                      | 0.2 U                      | 0.2 U                       | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.19 U                            | 0.19 U                              | 0.19 U                    | 0.19 U                     | 0.19 U                     | 0.19 U                     | 0.19 U                     | NA NA                       | NA NA               | NA.              | NA NA                     | NA NA                   |
|                   | BENZO(A)PYRENE                         | 0.2        | 0.2        | 0.39        | ug/L         | 0.2 U                      | 0.2 U                      | 0.2 U                       | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.19 U                            | 0.19 U                              | 0.19 U                    | 0.19 U                     | 0.19 U                     | 0.19 U                     | 0.19 U                     | NA                          | NA                  | NA               | NA                        | NA                      |
|                   | BENZO(B)FLUORANTHENE                   | 0.2        | 0.2        | 0.65        | ug/L         | 0.2 U                      | 0.2 U                      | 0.2 U                       | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.19 U                            | 0.19 U                              | 0.19 U                    | 0.19 U                     | 0.19 U                     | 0.19 U                     | 0.19 U                     | NA                          | NA                  | NA               | NA                        | NA                      |
|                   | BENZO(G,H,I)PERYLENE                   |            |            |             | ug/L         | 0.5 U                      | NA                         | 0.5 U                       | NA                         | NA                         | NA                         | NA                         | NA                         | NA                        | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.19 U                            | 0.19 U                              | 0.19 U                    | 0.19 U                     | 0.19 U                     | 0.19 U                     | 0.19 U                     | NA                          | NA                  | NA               | NA                        | NA                      |
|                   | BENZO(K)FLUORANTHENE                   |            |            |             | ug/L         | 0.5 U                      | NA                         | 0.2 U                       | NA                         | NA                         | NA                         | NA                         | NA                         | NA                        | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.19 U                            | 0.19 U                              | 0.19 U                    | 0.19 U                     | 0.19 U                     | 0.19 U                     | 0.19 U                     | NA                          | NA                  | NA               | NA                        | NA                      |
| L                 | CHRYSENE                               | 0.2        | 0.2        | 65          | ug/L         | 0.2 U                      | 0.2 U                      | 0.2 U                       | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.19 U                            | 0.19 U                              | 0.19 U                    | 0.19 U                     | 0.19 U                     | 0.19 U                     | 0.19 U                     | NA .                        | NA                  | NA               | NA                        | NA                      |
| PAHs              | DIBENZO(A,H)ANTHRACENE<br>FLUORANTHENE | 0.5        | 1000       |             | ug/L<br>ug/L | 1 U<br>0.5 U               | 0.5 U                      | 0.2 U<br>0.5 U              | NA<br>0.5 U                | NA<br>0.5 U                | NA<br>0.5 U                | NA<br>0.5 U                | NA<br>0.5 U                | NA<br>0.5 U               | 0.2 U<br>0.2 U             | 0.2 U<br>0.2 U            | 0.2 U<br>0.2 U             | 0.2 U                      | 0.2 U<br>0.2 U             | 0.19 U<br>0.19 U                  | 0.19 U<br>0.19 U                    | 0.19 U<br>0.19 U          | 0.19 U<br>0.19 U           | 0.19 U<br>0.19 U           | 0.19 U<br>0.19 U           | 0.19 U<br>0.19 U           | NA<br>NA                    | NA<br>NA            | NA<br>NA         | NA<br>NA                  | NA<br>NA                |
|                   | FLUORENE                               | 0.5        | 1000       |             | ug/L         | 1.6                        | 1.3                        | 0.85                        | 0.58 J                     | 0.5 U                      | 0.59                       | 0.5 U                      | 0.5 U                      | 0.5 U                     | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.19 U                            | 0.19 U                              | 0.190                     | 0.19 0                     | 0.19 0                     | 0.19 0                     | 0.46                       | NA.                         | NA.                 | NA NA            | NA.                       | NA NA                   |
|                   | INDENO(1,2,3-CD)PYRENE                 |            | 0.4        |             | ug/L         | 0.5 U                      | NA .                       | 0.2 U                       | NA                         | NA                         | NA                         | NA                         | NA                         | NA                        | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.19 U                            | 0.19 U                              | 0.19 U                    | 0.19 U                     | 0.19 U                     | 0.19 U                     | 0.19 U                     | NA.                         | NA                  | NA               | NA.                       | NA                      |
|                   | 1-METHYLNAPHTHALENE                    |            |            |             | ug/L         | NA                         | NA                         | 1.8 J                       | NA                         | NA                         | NA                         | NA                         | NA                         | NA                        | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.19 U                            | 0.19 U                              | 0.19 U                    | 0.19 U                     | 0.19 U                     | 0.76 U                     | 0.38 UJ                    | NA                          | NA                  | NA               | NA                        | NA                      |
|                   | 2-METHYLNAPHTHALENE                    |            |            |             | ug/L         | NA                         | NA                         | 1 U                         | NA                         | NA                         | NA                         | NA                         | NA                         | NA                        | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.19 U                            | 0.19 U                              | 0.19 U                    | 0.19 U                     | 0.19 U                     | 0.19 U                     | 0.19 UJ                    | NA                          | NA                  | NA               | NA                        | NA                      |
|                   | NAPHTHALENE                            | 1          | 20         | 20          | ug/L         | 1 U                        | 1 U                        | 1 U                         | 1 U                        | 1 U                        | 1 U                        | 1 U                        | 1 U                        | 1 U                       | 0.2 U                      | 0.54                      | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.19 U                            | 0.19 U                              | 0.19 U                    | 0.19 U                     | 0.22                       | 0.19 U                     | 0.19 UJ                    | NA                          | NA                  | NA               | NA                        | NA                      |
|                   | PHENANTHRENE                           | 0.22       | 0.2        | 510         | ug/L         | 0.78                       | 0.2 U                      | 0.2 U                       | 0.28 J                     | 0.2 U                      | 0.31                       | 0.2 U                      | 0.2 U                      | 0.22 J                    | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.19 U                            | 0.19 U                              | 0.19 U                    | 0.19 U                     | 0.19 U                     | 0.19 U                     | 0.19 U                     | NA                          | NA                  | NA               | NA                        | NA                      |
|                   | PYRENE                                 | 0.5        | 1000       |             | ug/L         | 0.5 U                      | 0.5 U                      | 0.5 U                       | 0.5 U                      | 0.5 U                      | 0.5 U                      | 0.5 U                      | 0.5 U                      | 0.5 U                     | 0.2 U                      | 0.2 U                     | 0.2 U                      | 0.2 U                      | 0.2 U                      | 0.19 U                            | 0.19 U                              | 0.19 U                    | 0.19 U                     | 0.19 U                     | 0.19 U                     | 0.19 U                     | NA                          | NA                  | NA               | NA .                      | NA                      |
|                   | TOTAL PAHS BENZENE                     | 1          | 5          | 31.2        | ug/L<br>ug/L | 2.38<br>1 U                | 8.2<br>1 U                 | 6.55<br>1 U                 | 7                          | 1.9<br>1 U                 | 4.87<br>1 U                | 5<br>1 U                   | 1.7<br>1 U                 | 3.2<br>1 U                | 1.1<br>1 U                 | 1.37<br>1 U               | 0.54<br>1 U                | 0.52<br>1 U                | ND<br>6.7                  | ND<br>NA                          | 0.53<br>1 U                         | 1.15<br>1 U               | 1.09<br>1 U                | 1.84<br>1 U                | 1.09<br>1 U                | 1.1<br>1 U                 | NA<br>NA                    | NA<br>NA            | NA<br>NA         | NA<br>NA                  | NA<br>NA                |
|                   | ETHYLBENZENE                           | 1          | 700        | 31.2        | ug/L         | 10                         | 1 U                        | 10                          | 1.2                        | 10                         | 1 U                        | 10                         | 10                         | 1 U                       | 1 U                        | 10                        | 10                         | 10                         | 1 U                        | NA NA                             | 10                                  | 1 U                       | 10                         | 1 U                        | 10                         | 10                         | NA NA                       | NA NA               | NA NA            | NA NA                     | NA NA                   |
|                   | p/m-XYLENE                             |            |            |             | ug/L         | NA NA                      | 1 U                        | 1 U                         | 1 U                        | 1 U                        | 1 U                        | 1 U                        | 1 U                        | NA NA                     | NA NA                      | NA NA                     | NA.                        | NA NA                      | NA NA                      | NA.                               | NA NA                               | NA NA                     | NA NA                      | NA.                        | NA NA                      | NA NA                      | NA NA                       | NA NA               | NA.              | NA.                       | NA NA                   |
|                   | METHYLENE CHLORIDE                     |            |            |             | ug/L         | NA                         | 5 U                        | NA                          | NA                         | NA                         | NA                         | NA                         | NA                         | NA                        | NA                         | NA                        | NA                         | NA                         | NA                         | NA                                | NA                                  | NA                        | NA                         | NA                         | NA                         | NA                         | NA                          | NA                  | NA               | NA                        | NA                      |
| VOCs              | o-XYLENE                               |            |            |             | ug/L         | NA                         | 1 U                        | 1 U                         | 1.5                        | 1 U                        | 1 U                        | 1.2                        | 1 U                        | NA                        | NA                         | NA                        | NA.                        | NA                         | NA                         | NA                                | NA                                  | NA                        | NA                         | NA                         | NA                         | NA                         | NA                          | NA                  | NA               | NA                        | NA                      |
|                   | TOLUENE                                | 1          | 1000       | 1900        | ug/L         | 1 U                        | 1 U                        | 1.1                         | 1 U                        | 1 U                        | 1 U                        | 1 U                        | 1 U                        | 1 U                       | 1 U                        | 1 U                       | 1 U                        | 1 U                        | 1.2                        | NA                                | 1 U                                 | 1 U                       | 1 U                        | 1 U                        | 1 U                        | 1 U                        | NA                          | NA                  | NA               | NA                        | NA                      |
|                   | XYLENES (TOTAL)                        | 2          | 10000      |             | ug/L         | 4                          | 1 U                        | 1 U                         | 1.5                        | 1 U                        | 1 U                        | 1.2                        | 1 U                        | 2 U                       | 2 U                        | 2 U                       | 2 U                        | 2 U                        | 2 U                        | NA                                | 2 U                                 | 2 U                       | 2 U                        | 2 U                        | 2 U                        | 2 U                        | NA                          | NA                  | NA               | NA                        | NA                      |
|                   | METHYL TERT BUTYL ETHER                |            |            |             | ug/L         | NA                         | NA                         | NA                          | NA                         | NA                         | NA                         | NA                         | NA                         | NA                        | NA                         | NA                        | NA.                        | NA                         | NA                         | NA                                | 10 U                                | 10 U                      | 10 U                       | NA                         | NA                         | 10 U                       | NA                          | NA                  | NA               | NA                        | NA                      |
|                   | TOTAL BTEX                             |            |            |             | ug/L         | 4                          | ND                         | 1.1                         | 3.8                        | ND                         | ND                         | 1.2                        | ND                         | ND                        | ND                         | ND                        | ND                         | ND                         | 7.9                        | NA                                | ND                                  | ND                        | ND                         | ND                         | ND                         | ND                         | NA                          | NA                  | NA               | NA                        | NA                      |
|                   | ARSENIC<br>BERYLLIUM                   | 0.018      | 0.018      | 0.018       | mg/L<br>mg/L | 0.01<br>0.005 U            | 0.01 U<br>NA               | 0.01 U<br>NA                | 0.01 U<br>NA               | 0.01 U<br>NA               | 0.01 U<br>NA               | 0.01 U<br>NA               | 0.01 U<br>NA               | 0.01 U<br>NA              | 0.01 U<br>NA               | 0.01 U<br>NA              | 0.01 U<br>NA               | 0.01 U<br>NA               | 0.013<br>NA                | 0.01 U<br>NA                      | 0.01 U<br>NA                        | 0.01 U<br>NA              | 0.01 U<br>NA               | 0.01 U<br>NA               | 0.02 U<br>NA               | 0.024<br>NA                | 0.018 U<br>NA               | 0.018 U<br>NA       | 0.018 U<br>NA    | 0.018 U<br>NA             | 0.018 U<br>NA           |
|                   | BORON                                  |            |            |             | mg/L         | NA NA                      | NA NA                      | NA NA                       | NA NA                      | NA NA                      | NA NA                      | NA NA                      | NA NA                      | NA NA                     | NA NA                      | NA NA                     | NA NA                      | NA NA                      | NA.                        | NA NA                             | NA NA                               | NA NA                     | NA NA                      | NA.                        | NA.                        | NA NA                      | NA.                         | NA NA               | NA.              | NA NA                     | NA NA                   |
|                   | CADMIUM                                |            | 0.005      |             | mg/L         | 0.005 U                    | NA                         | NA                          | NA                         | NA                         | NA                         | NA                         | NA                         | NA                        | NA                         | NA                        | NA.                        | NA                         | NA                         | NA.                               | NA                                  | NA                        | NA                         | NA                         | NA                         | NA.                        | NA.                         | NA                  | NA               | NA.                       | NA                      |
|                   | CALCIUM METAL                          |            |            |             | mg/L         | NA                         | NA                         | NA                          | NA                         | NA                         | NA                         | NA                         | NA                         | NA                        | NA                         | NA                        | NA                         | NA                         | NA                         | NA                                | NA                                  | NA                        | NA                         | NA                         | NA                         | NA                         | NA                          | NA                  | NA               | NA                        | NA                      |
|                   | CHROMIUM                               | 0.013      | 0.1        |             | mg/L         | 0.01 U                     | 0.01 U                     | 0.01 U                      | 0.01 U                     | 0.01 U                     | 0.01 U                     | 0.01 U                     | 0.01 U                     | 0.01 U                    | 0.01 U                     | 0.01 U                    | 0.01 U                     | 0.01 U                     | 0.01 U                     | 0.01 U                            | 0.01 U                              | 0.01 U                    | 0.01 U                     | 0.01 U                     | 0.01 U                     | 0.01 U                     | NA                          | NA                  | NA               | NA                        | NA                      |
| Metals, Total     | LEAD                                   | 0.007      | 0.015      | 0.015       | mg/L         | 0.005 U                    | 0.031                      | 0.005 U                     | 0.005 U                    | 0.005 U                    | 0.005 U                    | 0.005 U                    | 0.005 U                    | 0.005 U                   | 0.005 U                    | 0.005 U                   | 0.005 U                    | 0.005 U                    | 0.005 U                    | 0.005 U                           | 0.005 U                             | 0.005 U                   | 0.005 U                    | 0.005 U                    | 0.01 U                     | 0.01 U                     | NA                          | 0.01 U              | 0.01 U           | NA                        | NA                      |
|                   | MAGNESIUM                              |            |            |             | mg/L         | NA                         | NA                         | NA                          | NA                         | NA                         | NA                         | NA                         | NA                         | NA                        | NA                         | NA                        | NA                         | NA                         | NA                         | NA                                | NA                                  | NA                        | NA                         | NA                         | NA                         | NA                         | NA                          | NA                  | NA               | NA                        | NA                      |
|                   | MERCURY                                |            | 0.002      |             | mg/L         | 0.0002 U                   | NA                         | NA                          | NA                         | NA                         | NA                         | NA                         | NA                         | NA                        | NA                         | NA                        | NA                         | NA                         | NA                         | NA                                | NA                                  | NA                        | NA                         | NA                         | NA                         | NA                         | NA .                        | NA                  | NA               | NA                        | NA                      |
|                   | NICKEL<br>POTASSIUM                    | 0.13       | 0.1        | 2           | mg/L<br>mg/L | 0.04 U<br>NA               | 0.04 U<br>NA               | 0.04 U<br>NA                | 0.04 U<br>NA               | 0.04 U<br>NA               | 0.04 U<br>NA               | 0.04 U<br>NA               | 0.04 U<br>NA               | 0.04 U<br>NA              | 0.04 U<br>NA               | 0.04 U<br>NA              | 0.04 U<br>NA               | 0.04 U<br>NA               | 0.04 U<br>NA               | 0.04 U<br>NA                      | 0.04 U<br>NA                        | 0.04 U<br>NA              | 0.04 U<br>NA               | 0.04 U<br>NA               | 0.04 U<br>NA               | 0.04 U<br>NA               | NA<br>NA                    | NA<br>NA            | NA<br>NA         | NA<br>NA                  | NA<br>NA                |
|                   | SODIUM                                 |            |            |             | mg/L         | NA NA                      | NA NA                      | NA NA                       | NA NA                      | NA NA                      | NA NA                      | NA NA                      | NA.                        | NA NA                     | NA NA                      | NA NA                     | NA.                        | NA.                        | NA.                        | NA NA                             | NA NA                               | NA NA                     | NA NA                      | NA.                        | NA.                        | NA NA                      | NA NA                       | NA NA               | NA.              | NA NA                     | NA NA                   |
|                   | ZINC                                   | 0.96       | 2          | 31          | mg/L         | 0.02 U                     | 0.02 U                     | 0.022 U                     | 0.02 U                     | 0.02 U                     | 0.02 U                     | 0.06                       | 0.02 U                     | 0.02 U                    | 0.02 U                     | 0.02 U                    | 0.02 U                     | 0.02 U                     | 0.047                      | 0.02 U                            | 0.02 U                              | 0.02 U                    | 0.02 U                     | 0.02 U                     | 0.02 U                     | 0.02 U                     | NA                          | NA .                | NA               | NA NA                     | NA NA                   |
|                   | ARSENIC                                | 0.018      | 0.018      | 0.018       | mg/L         | NA                         | NA                         | 0.01 U                      | 0.01 U                     | NA                         | NA                         | NA                         | NA                         | NA                        | NA                         | NA                        | NA                         | NA                         | NA                         | 0.01 U                            | NA                                  | NA                        | NA                         | NA                         | NA                         | NA                         | NA                          | NA                  | NA               | NA                        | NA                      |
|                   | BERYLLIUM                              |            | 0.004      |             | mg/L         | NA                         | NA                         | NA                          | NA                         | NA                         | NA                         | NA                         | NA                         | NA                        | NA                         | NA                        | NA                         | NA                         | NA                         | NA                                | NA                                  | NA                        | NA                         | NA                         | NA                         | NA                         | NA                          | NA                  | NA               | NA                        | NA                      |
|                   | CADMIUM                                |            | 0.005      |             | mg/L         | NA                         | NA                         | NA                          | NA                         | NA                         | NA                         | NA                         | NA                         | NA                        | NA                         | NA                        | NA                         | NA                         | NA                         | NA                                | NA                                  | NA                        | NA                         | NA                         | NA                         | NA                         | NA                          | NA                  | NA               | NA                        | NA                      |
| Metals, Dissolved | CHROMIUM                               | 0.013      | 0.1        |             | mg/L         | NA                         | NA                         | 0.01 U                      | 0.01 U                     | NA .                       | NA .                       | NA                         | NA                         | NA                        | NA                         | NA                        | NA                         | NA                         | NA                         | 0.01 U                            | NA                                  | NA                        | NA                         | NA                         | NA                         | NA                         | NA                          | NA                  | NA               | NA                        | NA                      |
|                   | LEAD                                   | 0.007      | 0.015      | 0.015       | mg/L         | NA NA                      | NA<br>NA                   | 0.005 U                     | 0.005 U                    | NA NA                      | NA NA                      | NA NA                      | NA NA                      | NA NA                     | NA NA                      | NA NA                     | NA NA                      | NA NA                      | NA NA                      | 0.005 U                           | NA NA                               | NA NA                     | NA NA                      | NA                         | NA NA                      | NA NA                      | NA                          | NA NA               | NA NA            | NA NA                     | NA NA                   |
|                   | MERCURY<br>NICKEL                      | 0.13       | 0.002      | 2           | mg/L<br>mg/L | NA<br>NA                   | NA<br>NA                   | NA<br>0.04 U                | NA<br>0.04 U               | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                  | NA<br>NA                   | NA<br>NA                  | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>0.04 U                      | NA<br>NA                            | NA<br>NA                  | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                    | NA<br>NA            | NA<br>NA         | NA<br>NA                  | NA<br>NA                |
|                   | ZINC                                   | 0.13       | 0.1        | 31          | mg/L<br>mg/L | NA<br>NA                   | NA<br>NA                   | 0.04 U                      | 0.04 U                     | NA<br>NA                   | NA<br>NA                   | 0.02 U                     | NA<br>NA                   | NA<br>NA                  | NA<br>NA                   | NA<br>NA                  | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | 0.04 U                            | NA<br>NA                            | NA<br>NA                  | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                    | NA<br>NA            | NA<br>NA         | NA<br>NA                  | NA<br>NA                |
|                   | ALKALINITY                             |            |            |             | mg/L         | NA NA                      | NA NA                      | NA NA                       | NA NA                      | NA NA                      | NA NA                      | NA NA                      | NA NA                      | NA NA                     | NA NA                      | NA NA                     | NA NA                      | NA NA                      | NA NA                      | NA NA                             | NA NA                               | NA NA                     | NA NA                      | NA.                        | NA.                        | NA NA                      | NA NA                       | NA NA               | NA NA            | NA NA                     | NA NA                   |
|                   | ALKALINITY, TOTAL (AS CACO3)           |            |            |             | mg/L         | NA                         | NA                         | NA                          | NA                         | NA                         | NA                         | NA                         | NA                         | NA                        | NA                         | NA                        | NA                         | NA                         | NA                         | NA                                | NA                                  | NA                        | NA                         | NA                         | NA                         | NA                         | NA                          | NA                  | NA               | NA                        | NA                      |
|                   | AMMONIA AS N                           | 15         | 30         | 30          | mg/L         | 91                         | 14                         | 89                          | 73                         | 98                         | 110                        | 56                         | 89                         | 67                        | 92                         | 26                        | 21                         | 0.03 U                     | 400                        | NA                                | 28                                  | 170                       | 160                        | 140                        | 150                        | 96                         | 98                          | 170                 | 160              | 150                       | 140                     |
|                   | BICARBONATE                            |            |            |             | mg/L         | NA                         | NA                         | NA                          | NA                         | NA                         | NA                         | NA                         | NA                         | NA                        | NA                         | NA                        | NA                         | NA                         | NA                         | NA                                | NA                                  | NA                        | NA                         | NA                         | NA                         | NA                         | NA                          | NA                  | NA               | NA                        | NA                      |
| Miscellaneous     | CARBONATE                              |            |            |             | mg/L         | NA                         | NA                         | NA                          | NA                         | NA                         | NA                         | NA                         | NA                         | NA                        | NA                         | NA                        | NA                         | NA                         | NA                         | NA                                | NA                                  | NA                        | NA                         | NA                         | NA                         | NA                         | NA                          | NA                  | NA               | NA                        | NA                      |
|                   | CONDUCTIVITY                           |            |            |             | umhos/<br>cm | NA                         | NA                         | NA                          | NA                         | NA                         | NA                         | NA                         | NA                         | NA                        | NA                         | NA                        | NA                         | NA                         | NA                         | NA                                | NA                                  | NA                        | NA                         | NA                         | NA                         | NA                         | NA                          | NA                  | NA               | NA                        | NA                      |
|                   | NITRATE (AS N)                         |            | 10         |             | mg/L         | NA                         | NA                         | NA                          | NA                         | NA .                       | NA .                       | NA                         | NA                         | NA                        | NA                         | NA                        | NA                         | NA                         | NA                         | NA                                | NA                                  | NA                        | NA                         | NA                         | NA                         | NA                         | NA                          | NA                  | NA               | NA                        | NA                      |
|                   | NITRITE (AS N)                         |            |            |             | mg/l         | NA<br>NA                   | NA<br>NA                   | NA<br>NA                    | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                  | NA<br>NA                   | NA<br>NA                  | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                          | NA<br>NA                            | NA<br>NA                  | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                    | NA<br>NA            | NA<br>NA         | NA<br>NA                  | NA<br>NA                |
|                   | SULFATE SOLIDS, TOTAL DISSOLVED        |            |            |             | mg/L<br>mg/L | NA<br>NA                   | NA<br>NA                   | NA<br>NA                    | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                  | NA<br>NA                   | NA<br>NA                  | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                          | NA<br>NA                            | NA<br>NA                  | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                    | NA<br>NA            | NA<br>NA         | NA<br>NA                  | NA<br>NA                |
| SVOCs             | 1,4-DICHLOROBENZENE                    |            |            |             | ug/L         | NA<br>NA                   | NA<br>NA                   | NA NA                       | NA NA                      | NA NA                      | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                  | NA<br>NA                   | NA NA                     | NA NA                      | NA<br>NA                   | NA<br>NA                   | NA<br>NA                          | NA<br>NA                            | NA<br>NA                  | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA<br>NA                   | NA NA                       | NA NA               | NA<br>NA         | NA<br>NA                  | NA NA                   |
|                   |                                        |            |            |             |              |                            |                            |                             | 1                          |                            |                            |                            |                            | ·                         |                            |                           |                            |                            |                            |                                   |                                     |                           |                            |                            |                            |                            |                             |                     |                  |                           |                         |

Note:

Shaded cell indicates comparison standard used in data evaluation.

Inglighted cell indicates analytical result exceeds comparison criteria.

Bold and Ralk test indicates analytical result exceeds background value.

In Nitrate comparison standard base on the Maximum Containant Level (MCL) stabilished by the USEPA National Primary (

100 - No constituents detected above the laboratory infinum detection limit.

1. Indicates constituent was not detected above value show.

1. Indicates constituent was not detected at an estimated value.

1. Indicates constituent was not detected at an estimated value.

1. Indicates constituent was not detected at an estimated value.

1. Indicates constituent was not detected at an estimated value.

1. Indicates constituent was not detected at an estimated value show.

1. Indicates constituent was not detected at an estimated value show.

1. Indicates constituent was not detected at an estimated value show.

1. Indicates constituent was not detected at an estimated value.

1. Indicates constituent was not detected at an estimated value show.

1. Indicates constituent was not detected at an estimated value.

1. Indicates constituent was not detected at an estimated value.

1. Indicates constituent was not detected at an estimated value.

1. Indicates constituent was not detected at an estimated value.

1. Indicates constituent was not detected at an estimated value.

1. Indicates constituent was not detected at an estimated value.

1. Indicates constituent was not detected at an estimated value.

1. Indicates constituent was not detected at an estimated value.

1. Indicates constituent was not detected at an estimated value.

1. Indicates constituent was not detected at an estimated value.

1. Indicates constituent was not detected at a estimated value.

1. Indicates constituent was not detected at a estimated value.

1. Indicates constituent was not detected at a estimated value.

1. Indicates constituent was not detected at a estimated value.

1. Indicates constituent was no

| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                         |            |            |            | Location:    |           |             |             |             |             |             |          |                                                   |             |             |        |             |             | PDM                                              | W-29D       |          |                                                  |             |             |             |             |             |           |           |             |            |            |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------|------------|------------|------------|--------------|-----------|-------------|-------------|-------------|-------------|-------------|----------|---------------------------------------------------|-------------|-------------|--------|-------------|-------------|--------------------------------------------------|-------------|----------|--------------------------------------------------|-------------|-------------|-------------|-------------|-------------|-----------|-----------|-------------|------------|------------|------------|
| Thi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                         |            |            |            |              | 11/2/1997 | 8/10/1999   | 11/17/1999  | 2/23/2000   | 5/16/2000   | 8/21/2000   | 1/9/2001 | 7/11/2001                                         | 2/6/2002    | 9/10/2002   | 2/6    | /2003       | 6/26/2003   |                                                  |             | 3/8/2006 | 4/2/2008                                         | 7/18/2008   | 10/5/2008   | 12/5/2009   | 6/18/2010   | 12/16/2010  | 6/15/2011 | 12/6/2011 | 12/11/2013  | 6/3/2014   | 11/6/2014  | 5/21/2015  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                         |            |            | Samp       | ple Type:    | Normal    | Normal      | Normal      | Normal      | Normal      | Normal      | Normal   | Normal                                            | Normal      | Normal      | Normal | Dup         | Normal      | Normal                                           | Normal      | Normal   | Normal                                           | Normal      | Normal      | Normal      | Normal      | Normal      | Normal    | Normal    | Normal      | Normal     | Normal     | Normal     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                         |            |            | Se         | ample ID:    |           | 29D_8/10/19 | 29D_11/17/1 | 29D_2/23/20 | 29D_5/16/20 | 29D_8/21/20 |          | 29D_7/11/20                                       | 29D_2/6/200 | 29D_9/10/20 |        | (DUP)_2/6/2 | 29D_6/26/20 | 29D_1/27/20                                      | 29D_7/20/20 |          |                                                  | 29D_7/18/20 | 29D_10/5/20 | 29D_12/5/20 | 29D_6/18/20 | 29D_12/16/2 |           |           | 29D_12/11/2 | 29D_060320 | 29D_110620 | 29D_052120 |
| 神性性性性性性性性性性性性性性性性性性性性性性性性性性性性性性性性性性                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Method Group      | Analyte                                 | Background | Type 3 RRS | Type 4 RRS | S Units      | Result    | Result      | Result      | Result      | Result      | Result      | Result   | Result                                            | Result      | Result      | Result | Result      | Result      | Result                                           | Result      | Result   | Result                                           | Result      | Result      | Result      | Result      | Result      | Result    | Result    | Result      | Result     | Result     | Result     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                         |            | 2000       |            | ug/L         | 1 U       | 1 U         | 1 U         | 1 U         | 1 U         | 1 U         | 1 U      | 1 U                                               | 1 U         | 0.2 U       | 0.2 U  | 0.2 U       | 0.2 U       | 0.2 U                                            | 0.2 U       | 0.2 U    | 0.19 U                                           | 0.19 U      | 0.19 U      | 0.19 U      |             | NA          | NA        | NA        | 9.1 U       |            |            |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                         |            | 1          |            | -            |           | <b>_</b>    | <b>!</b>    |             |             |             |          |                                                   |             |             |        |             |             | <b>!</b>                                         |             |          | <b>!</b>                                         |             |             |             |             |             |           |           |             |            | -          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                         |            |            |            | -            |           | <b>_</b>    |             |             |             |             |          |                                                   |             |             |        |             |             |                                                  |             |          | <b>-</b>                                         |             |             |             |             |             |           |           |             |            | -          |            |
| **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                                         |            | 1          |            | ,            |           | <b>!</b>    |             |             |             |             |          | <u> </u>                                          |             |             |        |             |             |                                                  |             |          | <b>!</b>                                         |             |             |             |             |             |           |           |             |            |            |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | BENZO(B)FLUORANTHENE                    | 0.2        | 0.2        | 0.65       | ug/L         | 0.2 U     | 0.2 U       | 0.2 U       | 0.2 U       | 0.2 U       | 0.2 U       | 0.2 U    | 0.2 U                                             | 0.2 U       | 0.2 U       | 0.2 U  | 0.2 U       | 0.2 U       | 0.2 U                                            | 0.2 U       | 0.2 U    | 0.19 U                                           | 0.19 U      | 0.19 U      | 0.19 U      | 0.19 U      | NA          | NA        | NA        | 9.1 U       | 9.7 U      | NA NA      | NA .       |
| ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | BENZO(G,H,I)PERYLENE                    |            |            |            | ug/L         | 0.5 U     | NA          | NA          | NA          | NA          | NA          | NA       | NA                                                | NA          | 0.2 U       | 0.2 U  | 0.2 U       | 0.2 U       | 0.2 U                                            | 0.2 U       | 0.2 U    | 0.19 U                                           | 0.19 U      | 0.19 U      | 0.19 U      | 0.19 U      | NA          | NA        | NA        | 9.1 U       | 9.7 U      | NA         | NA         |
| Mathematical Registration      |                   |                                         |            |            |            | _            |           | -           | -           |             |             |             |          | +                                                 |             |             |        |             |             | -                                                |             |          | -                                                |             |             |             |             |             |           |           |             |            | l          |            |
| Seminone   Marchine    | DAMo              |                                         | 0.2        |            | 65         | _            |           | <b>_</b>    | <b>-</b>    |             |             |             |          | +                                                 |             |             |        |             |             | -                                                |             |          | -                                                |             |             |             |             |             |           |           |             |            | l          |            |
| Section   Sect   | PANS              |                                         | 0.5        |            |            | + -          |           | <b>_</b>    | <b>!</b>    |             |             |             |          | <u> </u>                                          |             |             |        |             |             | -                                                |             |          | <b>_</b>                                         |             |             |             |             |             |           |           |             |            |            |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | FLUORENE                                | -          | 1000       |            | + -          |           | <b>_</b>    | <b>!</b>    |             |             |             |          | +                                                 |             |             |        |             |             | <b>_</b>                                         |             |          | <b>_</b>                                         | 0.19 U      | 0.19 U      | 0.19 U      |             | NA          |           |           |             |            |            |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | INDENO(1,2,3-CD)PYRENE                  |            | 0.4        |            | ug/L         | 0.5 U     | NA          | NA.         | NA          | NA          | NA          | NA       | NA                                                | NA          | 0.2 U       | 0.2 U  | 0.2 U       | 0.2 U       | 0.2 U                                            | 0.2 U       | 0.2 U    | 0.19 U                                           | 0.19 U      | 0.19 U      | 0.19 U      | 0.19 U      | NA          | NA        | NA        | 9.1 U       | 9.7 U      | NA         | NA.        |
| Minimate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   | 1-METHYLNAPHTHALENE                     |            |            |            | ug/L         | NA        | NA          | NA          | NA          | NA          | NA          | NA       | NA                                                | NA          | 0.2 U       | 0.2 U  | 0.2 U       | 0.2 U       | 0.2 U                                            | 0.2 U       | 0.2 U    | 0.19 U                                           | 0.19 U      | 0.19 U      | 0.75 U      | 0.38 U      | NA          | NA        | NA        | 9.1 U       | 9.7 U      | NA         | NA         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                         |            |            |            | ug/L         |           |             | <b>!</b>    |             |             |             |          | +                                                 |             |             |        |             |             |                                                  |             |          | <b>!</b>                                         |             |             |             |             |             |           |           |             |            | -          |            |
| 一性   一性   一性   一性   一性   一性   一性   一性                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                                         |            |            |            | ug/L         |           |             |             |             |             |             |          |                                                   |             |             |        |             |             |                                                  |             |          |                                                  |             |             |             |             |             |           |           |             |            |            |            |
| Marche   M   |                   |                                         |            |            | - 310      |              |           | <b>_</b>    | -           |             |             |             |          | +                                                 |             |             |        |             |             | -                                                |             |          | <b>_</b>                                         |             |             |             |             |             |           |           |             |            | -          |            |
| Section   Sect   |                   |                                         |            |            |            | ug/L         |           | ND          | ND          |             | ND          |             | ND       | +                                                 |             |             |        |             |             | -                                                |             |          | ND                                               | ND          | ND          | ND          | ND          | NA          | NA        | NA        | ND          | ND         | -          |            |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | BENZENE                                 | 1          | 5          | 31.2       | ug/L         | 1 U       | 1 U         | 1 U         | 1 U         | 1 U         | 1 U         | 1 U      | 1 U                                               | 1 U         | 1 U         | 1 U    | 1 U         | 1 U         | 1 U                                              | 1 U         | 1 U      | 1 U                                              | 1 U         | 1 U         | 1 U         | 1 U         | NA          | NA        | NA        | 1 U         | 1 U        | NA         | NA.        |
| Secrit Condition   Part   Pa   |                   | ETHYLBENZENE                            | 1          | 700        |            | ug/L         | 1 U       | 1 U         | 1 U         | 1 U         | 1 U         | 1 U         | 1 U      | 1 U                                               | 1 U         | 1 U         | 1 U    | 1 U         | 1 U         | 1 U                                              | 1 U         | 1 U      | 1 U                                              | 1 U         | 1 U         | 1 U         | 1 U         | NA          | NA        | NA        | 1 U         | 1 U        | NA         | NA.        |
| March   Marc   |                   |                                         |            |            |            | +-           |           | <b>_</b>    | -           |             |             |             |          | +                                                 |             |             |        |             |             | <b>_</b>                                         |             |          | <del>                                     </del> |             |             |             |             |             |           |           |             |            | l          |            |
| March   Marc   | 1/00%             |                                         |            |            |            | + -          |           | <b>-</b>    | 1           |             |             |             |          | 1                                                 |             |             |        |             |             | <b>-</b>                                         |             |          | 1                                                | -           |             |             |             |             |           |           |             |            | H          | -          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VOCS              |                                         | 1          | 1000       | 1900       | -            |           | <b>_</b>    | <b>-</b>    |             |             |             |          |                                                   | -           |             |        |             |             | <del>                                     </del> |             |          | <del>                                     </del> |             |             |             |             |             |           |           |             |            | l          |            |
| State   Stat   |                   | XYLENES (TOTAL)                         | 2          | 10000      |            | -            |           | 1 U         | 1           | 1 U         | 1 U         |             |          | +                                                 | 2 U         |             |        |             |             | 1                                                |             |          | 2 U                                              | 2 U         | 2 U         |             | 2 U         | NA          | NA.       | NA        |             | 2 U        | NA         |            |
| Member   M   |                   | METHYL TERT BUTYL ETHER                 |            |            |            | ug/L         | NA        | NA          | NA          | NA          | NA          | NA          | NA       | NA                                                | NA          | NA          | NA     | NA          | NA          | NA                                               | NA          | 10 U     | 10 U                                             | 10 U        | NA          | NA          | 10 U        | NA          | NA        | NA        | 10 U        | NA         | NA         | NA         |
| Perform   Perf   |                   | TOTAL BTEX                              |            |            |            | ug/L         | ND        | ND          | ND          | ND          | ND          | ND          | ND       | ND                                                | ND          | ND          | ND     | ND          | ND          | ND                                               | ND          | ND       | ND                                               | ND          | ND          | ND          | ND          | NA          | NA        | NA        | ND          | ND         | NA         | NA         |
| March   Marc   |                   |                                         | 0.018      |            | 0.018      | ,            |           |             |             |             |             |             |          |                                                   |             |             |        |             |             |                                                  | _           |          |                                                  |             |             |             |             |             |           |           |             |            |            |            |
| Section   Sect   |                   |                                         |            | 0.004      |            | +-           |           | <b>_</b>    | <b>-</b>    |             |             |             |          | 1                                                 |             |             |        |             |             |                                                  |             |          | <b>-</b>                                         |             |             |             |             |             |           |           |             |            | -          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                         |            | 0.005      |            | +-           |           | <b>_</b>    | <b>-</b>    |             |             |             |          |                                                   |             |             |        |             |             | <b>-</b>                                         |             |          | <b>_</b>                                         |             |             |             |             |             |           |           |             |            | -          |            |
| Marchan   Marc   |                   |                                         |            |            |            | mg/L         |           | NA          | NA          | NA          | NA          | NA          | NA       | NA                                                | NA          | NA          | NA     | NA          | NA          | NA                                               | NA          | NA       | NA                                               | NA          | NA          | NA          | NA          | NA          | NA        | NA        | NA          | NA         | -          |            |
| Maria   Mari   |                   | CHROMIUM                                | 0.013      | 0.1        |            | mg/L         | 0.01 U    | 0.01 U      | 0.01 U      | 0.01 U      | 0.01 U      | 0.01 U      | 0.01 U   | 0.01 U                                            | 0.01 U      | 0.01 U      | 0.01 U | 0.01 U      | 0.01 U      | 0.01 U                                           | 0.01 U      | 0.01 U   | 0.01 U                                           | 0.01 U      | 0.01 U      | 0.01 U      | 0.01 U      | NA          | NA        | NA        | 0.01 U      | 0.01 U     | NA         | NA         |
| March   Marc   | Metals, Total     |                                         | 0.007      | 0.015      | 0.015      | mg/L         |           |             | 0.005 U     | 0.005 U     | 0.005 U     | 0.005 U     |          | 0.005 U                                           |             |             |        | 0.005 U     | 0.005 U     | 0.005 U                                          | 0.005 U     |          | 0.005 U                                          | 0.005 U     |             | 0.01 U      | 0.01 U      | NA          |           | NA        |             |            |            |            |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                         |            |            |            | +-           |           | <b>!</b>    | <b>!</b>    |             |             |             |          |                                                   | -           |             |        |             |             | ļ                                                |             |          | <b>!</b>                                         |             |             |             |             |             |           |           |             |            |            |            |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                         |            |            | 2          |              |           |             | <u> </u>    |             |             |             |          |                                                   | -           |             |        |             |             | <del>                                     </del> |             |          |                                                  |             |             |             |             |             |           |           |             |            | <b>!</b>   |            |
| March   Marc   |                   |                                         |            |            |            | -            |           |             |             |             |             |             |          |                                                   |             |             |        |             |             |                                                  |             |          |                                                  |             |             |             |             |             |           |           |             |            |            |            |
| Marian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | SODIUM                                  |            |            |            | mg/L         | NA        | NA          | NA          | NA          | NA          | NA          | NA       | NA                                                | NA          | NA          | NA     | NA.         | NA          | NA                                               | NA          | NA       | NA                                               | NA          | NA          | NA          | NA          | NA          | NA        | NA        | NA          | NA         | NA NA      | NA NA      |
| Maria   Mari   |                   |                                         |            |            |            | mg/L         |           |             |             |             | 0.02 U      | 0.02 U      | 0.02 U   | 0.02 U                                            | 0.02 U      |             |        | 0.02 U      | 0.02 U      |                                                  |             |          |                                                  |             |             | 0.02 U      | 0.02 U      | NA          | NA        | NA        | 0.01        |            |            |            |
| Maria   Casima   Ca   |                   |                                         | 0.018      |            | 0.018      | mg/L         |           |             |             |             |             |             |          | <u> </u>                                          |             |             |        |             |             |                                                  | _           |          |                                                  |             |             |             |             |             |           |           |             |            | -          |            |
| *** Procedural Reality of the process of the proces |                   |                                         |            |            |            | mg/L         |           |             | ļ           |             |             |             |          | <u> </u>                                          |             |             |        |             |             |                                                  | _           |          |                                                  |             |             |             |             |             |           |           |             |            | -          |            |
| Maria   Mari   |                   |                                         | 0.013      |            |            | mg/L         |           | -           | -           |             | _           |             |          | +                                                 |             |             |        |             |             |                                                  | _           |          |                                                  |             |             | _           |             |             |           |           |             |            | -          |            |
| NOMEL 0.13 0.1 2 mg/s NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Metals, Dissolved | LEAD                                    | -          | 0.015      | 0.015      | mg/L         | NA        | -           | 0.005 U     |             |             |             |          | +                                                 |             |             |        |             |             | -                                                |             |          | -                                                | NA          |             |             |             |             |           |           |             |            | -          |            |
| 2NC 0.96 2 31 mpl NA NA 0.02 0.02 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   | MERCURY                                 |            | 0.002      |            | mg/L         | NA        | NA          | NA          | NA          | NA          | NA          | NA       | NA                                                | NA          | NA          | NA     | NA          | NA          | NA                                               | NA          | NA       | NA                                               | NA          | NA          | NA          | NA          | NA          | NA        | NA        | NA          | NA         | NA         | NA         |
| ALGALISTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   | -                                       | _          | 0.1        | 2          | mg/L         |           | NA          | 0.04 U      | 0.04 U      | NA          | NA          | NA       | NA                                                | NA          | NA          |        | NA          |             | NA                                               | NA          |          | NA                                               | NA          | NA          | NA          | NA          | NA          | NA        | NA        | NA          | NA         | NA         | -          |
| ALKALINITY, TOTAL (AS CACCOS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |                                         | 1          |            |            | _            |           | <b>!</b>    | <b>-</b>    |             |             |             |          |                                                   |             |             |        |             |             | <b>_</b>                                         |             |          | <b>!</b>                                         |             |             |             |             |             |           |           |             |            |            |            |
| AMMONA AS N 15 80 30 mgl 2 10 11 11 12 12 11 11 7.5 0.31 12 13 11 11 0.073 6.8 6.2 6.7 3.9 5.5 500 11 7.5 9.9 6.1 11 10 11 10 11 1 10 11 11 11 11 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                                         |            |            |            | +-           |           | <b>-</b>    | <b>-</b>    |             |             |             |          | +                                                 | -           |             |        |             |             | <b>_</b>                                         |             |          | <del>                                     </del> |             |             |             |             |             |           |           |             |            | <b>!</b>   |            |
| BEABBONATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | , , , , , , , , , , , , , , , , , , , , | 15         | 30         | 30         | +            |           | <b>!</b>    |             |             |             |             |          |                                                   |             |             |        | _           |             |                                                  |             |          |                                                  |             |             |             |             |             |           |           |             |            |            |            |
| CORDICTIVITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                                         | <b>-</b>   |            |            | _            |           | <b>!</b>    |             |             |             |             |          | +                                                 |             |             |        |             |             |                                                  | _           |          |                                                  |             |             |             |             |             |           |           |             |            | -          |            |
| CORDUSTIVITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Micrallanon       | CARBONATE                               |            |            |            |              | NA        | NA          | NA          | NA          | NA          | NA          | NA       | NA                                                | NA          | NA          | NA     | NA          | NA          | NA                                               | NA          | NA       | NA                                               | NA          | NA          | NA          | NA          | NA          | NA        | NA        | NA          | NA         | NA         | NA         |
| NTIFITE (AS N) mgl NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | wisconaleous      |                                         |            |            |            | umhos/<br>cm | NA        | NA          | NA          | NA          | NA          | NA          | NA       | NA                                                | NA          | NA          | NA     | NA          | NA          | NA                                               | NA NA       | NA       | NA                                               | NA          | NA          | NA          | NA          | NA          | NA        | NA NA     | NA          | NA         | NA         | NA         |
| SULFATE mg/L NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                         |            |            |            | +-           |           | <b>-</b>    | -           |             |             |             |          |                                                   | -           |             |        |             |             | <b>_</b>                                         |             |          | <del>                                     </del> |             |             |             |             |             |           |           |             |            | -          |            |
| SOLDS, TOTAL DISSOLVED mgL NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                         |            |            |            | -            |           |             |             |             |             |             |          | 1                                                 |             |             |        |             |             |                                                  |             |          | ļ                                                |             |             |             |             |             |           |           |             |            |            |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                         |            |            |            | +-           |           |             |             |             |             |             |          | <del>                                      </del> |             |             |        |             |             |                                                  | _           |          | <b>!</b>                                         |             |             |             |             |             |           |           |             |            | -          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SVOCs             |                                         |            |            |            |              |           |             |             |             |             |             |          |                                                   |             |             |        |             |             |                                                  |             |          |                                                  |             |             |             |             |             |           |           |             |            |            |            |

Notes:

Shaded cell indicates comparison standard used in data evaluation.

Highlighted cell indicates analytical result exceeds comparison criteria.

Bold and Rolls tent indicates analytical result exceeds background value.

In Narias comparison standard base on the Maximum Containmant Level (MCL) established by the USEPA National Primary C

NO - No constituents detected above their laboratory minimum detection limit.

J. Indicates constituent was not detected above value shown.

J. Indicates constituent was not detected at an estimated value.

Monitoring will a Mov 3P, PDAMW 4B, PDAMW 4B, PDAMW 4BP, PDAMW 4BP, PDAMW 4BP, PDAMW 3BP, PDAMW 4BP, PDAMW 4

|                   |                                           |            |            | Locat         | ion:                   |                      |                    |                       |                |                   |                      | PDM              | W-28D             |                              |                     |                |                   |                  |                         |                   |                   |                |                |                        |                          | PDMW-30P           |                  |                         |                    |               |                      |            |                 |                    |                   | PDMV      | W-30R        |              |                     |                   | PDMW-31P          |                   |
|-------------------|-------------------------------------------|------------|------------|---------------|------------------------|----------------------|--------------------|-----------------------|----------------|-------------------|----------------------|------------------|-------------------|------------------------------|---------------------|----------------|-------------------|------------------|-------------------------|-------------------|-------------------|----------------|----------------|------------------------|--------------------------|--------------------|------------------|-------------------------|--------------------|---------------|----------------------|------------|-----------------|--------------------|-------------------|-----------|--------------|--------------|---------------------|-------------------|-------------------|-------------------|
|                   |                                           |            |            | Sample D      | ate: 11/2/19           | 11/8/1997            | 7 8/10/1999        | 9 11/18/1999          | 2/23/200       | 5/15/2000         | 8/21/2000            | 1/9/2001         | 7/10/2001         | 9/13/2002 2/4/200            | 6/24/2003           | 1/26/2004      | 7/21/2004         | 3/9/20           | 006                     | 11/5/1997         | 5/16/2000         | 1/10/2001      | 9/12/2002      | 2/6/2003 6/26/         | 2003 1/30/2004           | 3/8/2006           | 4/4/2008         | 7/22/2008 10            | 9/2008 12/         | 1/2009 12/1   | 1/2013 11            | 3/2014 5/2 | 0/2015 6        | /15/2010 1         | 12/14/2010        | 6/14/2011 | 12/21/20     | 011          | 6/3/2014 1          | 11/6/1997         | 8/10/1999         | 11/18/1999        |
|                   |                                           |            |            | Sample T      | ype: Norma             | I Normal             | Normal             | Normal                | Normal         | Normal            | Normal               | Normal           | Normal            | Normal Norma                 | Normal              | Normal         | Normal            | Norm             | nal                     | Normal            | Normal            | Normal         | Normal         | Normal Nor             | mal Normal               | Normal             | Normal           | Normal N                | ormal No           | rmal No       | rmal N               | ormal N    | ormal           | Normal             | Normal            | Normal    | Normal       | Dup          | Normal              | Normal            | Normal            | Normal            |
|                   |                                           |            |            | CI-           | PDMW                   | - PDMW-              | PDMW-              | PDMW-                 | PDMW-          | PDMW-             | PDMW-                | PDMW-            | PDMW-             | PDMW- PDMW                   | PDMW-               | PDMW-          | PDMW-             | PDMW-28D         | PDMW-28D                | PDMW-             | PDMW-             | PDMW-          | PDMW-          | PDMW- PDI              | IW- PDMW-                | PDMW-              | PDMW-            | PDMW- P                 | MW- PE             | MW- PD        | MW- P                | OMW- P     | OMW-            | PDMW-              | PDMW-             | PDMW-30R- | PDMW-        | DUP-         | PDMW-               | PDMW-             | PDMW-             | PDMW-             |
|                   |                                           |            |            | Sample        | 97 PHID: 28D_11/2      | /19 28D_11/8/1<br>97 | 19 28D_8/10/<br>99 | 19 28D_11/18/1<br>999 | 00<br>00       | 28D_5/15/20<br>00 | 00 28D_8/21/20<br>00 | 28D_1/9/200<br>1 | 28D_7/10/20<br>01 | 28D_9/13/20 28D_2/4/<br>02 3 | 00 28D_6/24/2<br>03 | 04 28D_1/26/20 | 28D_7/21/20<br>04 | /2006            | Jnfiltered_3<br>/9/2006 | 0P_11/5/19<br>97  | 30P_5/16/20<br>00 | 01<br>01       | 02<br>02       | 0P_2/6/200 30P_6<br>3  | 26/20 30P_1/30/2<br>3 04 | 0 30P_3/8/200<br>6 | 30P_4/4/200<br>8 | 30P_7/22/20   30P<br>08 | 10/9/20 30P_<br>08 | 12/3/20 30P_0 | 12/11/2   30P<br>)13 | 110320 30P | 052020 30<br>15 | R_6/15/20 30<br>10 | 0R_12/14/2<br>010 | 061411    | 30R_122120 0 | 4_1221201 30 | 30R_060320 31<br>14 | P_11/6/19 3<br>97 | 31P_8/10/19<br>99 | 1P_11/18/1<br>999 |
| Method Grou       | n Analyte                                 | Background | Type 3 RRS | Type 4 RRS Ur | its Resul              | Result               | Result             | Result                | Result         | Result            | Result               | Result           | Result            | Result Result                | Result              | Result         | Result            | Result           | Result                  | Result            | Result            | Result         | Result         | Result Res             | ult Result               | Result             | Result           | Result F                | esult R            | sult Re       | sult F               | esult R    | esult           | Result             | Result            | Result    | Result       | Result       | Result              | Result            | Result            | Result            |
|                   | ACENAPHTHENE                              | 1          | 2000       | ug            | y/L 1 U                | NA                   | 1 U                | 1 U                   | 1 U            | 1 U               | 1 U                  | 1 U              | 1 U               | 0.2 U 0.2 U                  | 0.2 U               | 0.2 U          | 3.4               | 0.19 U           | 0.19 U                  | 1 U               | 1 U               | 1 U            | 0.2 U          | 0.2 U 0.2              | U 0.2 U                  | 0.2 U              | 0.19 U           | 0.2 U                   | .2 U 0             | 19 U 9.       | .5 U                 | NA         | NA              | 0.19 U             | NA                | NA        | NA NA        | NA           | 9.8 U               | 1 U               | 1 U               | 1 U               |
|                   | ACENAPHTHYLENE                            | 1.4        | 1          | 510 ug        | y/L 1 U                | NA                   | 1 U                | 1 U                   | 1 U            | 1 U               | 1 U                  | 1 U              | 1 U               | 0.2 U 0.2 U                  | 0.2 U               | 0.2 U          | 0.8 U             | 0.19 U           | 0.19 U                  | 1 U               | 1 U               | 1 U            | 0.2 U          | 0.2 U 0.2              | U 0.2 U                  | 0.2 U              | 0.19 U           | 0.2 U                   | .2 U 0             | 19 U 9.       | .5 U                 | NA         | NA              | 0.19 U             | NA                | NA        | NA NA        | NA           | 9.8 U               | 1 U               | 1 U               | 5                 |
|                   | ANTHRACENE                                | 0.2        | 0.2        | 5100 ug       | y/L 0.2 U              | NA.                  | 0.2 U              | 0.2 U                 | 0.2 U          | 0.2 U             | 0.2 U                | 0.2 U            | 0.2 U             | 0.2 U 0.2 U                  | 0.2 U               | 0.2 U          | 0.8 U             | 0.19 U           | 0.19 U                  | 0.2 U             | 0.2 U             | 0.2 U          | 0.2 U          | 0.2 U 0.2              | U 0.2 U                  | 0.2 U              | 0.19 U           | 0.2 U                   | .2 U 0             | 19 U 9.       | .5 U                 | NA         | NA              | 0.19 U             | NA                | NA        | NA .         | NA           | 9.8 U               | 0.2 U             | 0.2 U             | 0.2 U             |
|                   | BENZO(A)ANTHRACENE                        | 0.2        | 0.1        | 3.9 ug        | g/L 0.2 U              | NA                   | 0.2 U              | 0.2 U                 | 0.2 U          | 0.2 U             | 0.2 U                | 0.2 U            | 0.2 U             | 0.2 U 0.2 U                  | 0.2 U               | 0.2 U          | 0.8 U             | 0.19 U           | 0.19 U                  | 0.2 U             | 0.2 U             | 0.2 U          | 0.2 U          | 0.2 U 0.2              | U 0.2 U                  | 0.2 U              | 0.19 U           | 0.2 U                   | .2 U 0             | 19 U 9.       | .5 U                 | NA         | NA              | 0.19 U             | NA                | NA        | NA           | NA           | 9.8 U               | 0.2 U             | 0.2 U             | 0.2 U             |
|                   | BENZO(A)PYRENE                            | 0.2        | 0.2        | 0.39 ug       | y/L 0.2 U              |                      | 0.2 U              | 0.2 U                 | 0.2 U          | _                 | 0.2 U                | 0.2 U            | 0.2 U             | 0.2 U 0.2 U                  | 0.2 U               | 0.2 U          | 0.8 U             | 0.19 U           | 0.19 U                  | 0.2 U             | 0.2 U             | 0.2 U          | -              | 0.2 U 0.2              |                          | 0.2 U              | 0.19 U           |                         |                    |               |                      |            |                 | 0.19 U             | NA                | NA        | NA           |              |                     | 0.2 U             | 0.2 U             | 0.2 U             |
|                   | BENZO(B)FLUORANTHENE                      | 0.2        | 0.2        | 0.65 ug       | y/L 0.2 U              |                      | 0.2 U              | 0.2 U                 | 0.2 U          | _                 | 0.2 U                | 0.2 U            | 0.2 U             | 0.2 U 0.2 U                  | 0.2 U               | 0.2 U          | 0.8 U             | 0.19 U           | 0.19 U                  | 0.2 U             | 0.2 U             | 0.2 U          | -              | 0.2 U 0.2              |                          | 0.2 U              | 0.19 U           | -                       |                    |               |                      |            |                 | 0.19 U             | NA                | NA        | NA NA        |              | _                   | 0.2 U             | 0.2 U             | 0.2 U             |
|                   | BENZO(G,H,I)PERYLENE BENZO(K)FLUORANTHENE |            |            | ug            | y/L 0.5 U<br>y/L 0.5 U |                      | NA<br>NA           | NA<br>NA              | NA<br>NA       | NA<br>NA          | NA<br>NA             | NA<br>NA         | NA<br>NA          | 0.2 U 0.2 U<br>0.2 U 0.2 U   | 0.2 U<br>0.2 U      | 0.2 U<br>0.2 U | 0.8 U             | 0.19 U<br>0.19 U | 0.19 U<br>0.19 U        | 0.5 U<br>0.5 U    | NA<br>NA          | NA<br>NA       | 0.2 U<br>0.2 U | 0.2 U 0.2<br>0.2 U 0.2 |                          | 0.2 U<br>0.2 U     | 0.19 U<br>0.19 U | -                       |                    |               |                      |            |                 | 0.19 U<br>0.19 U   | NA<br>NA          | NA<br>NA  | NA<br>NA     |              | _                   | 0.5 U<br>0.5 U    | NA<br>NA          | NA<br>NA          |
|                   | CHRYSENE                                  | 0.2        | 0.2        | 65 10         | yL 0.30                | _                    | 0.2 U              | 0.2 U                 | 0.2 U          |                   | 0.2 U                | 0.2 U            | 0.2 U             | 0.2 U 0.2 U                  | 0.2 U               | 0.2 U          | 0.8 U             | 0.19 U           | 0.19 U                  | 0.2 U             | 0.2 U             | 0.2 U          | 0.2 U          | 0.2 U 0.2              | _                        | 0.2 U              | 0.19 U           |                         |                    |               |                      |            |                 | 0.19 U             | NA NA             | NA NA     | NA.          |              |                     | 0.2 U             | 0.2 U             | 0.2 U             |
| PAHs              | DIBENZO(A,H)ANTHRACENE                    |            | 0.3        | us            | yL 1U                  |                      | NA.                | NA.                   | NA.            | NA NA             | NA NA                | NA .             | NA NA             | 0.2 U 0.2 U                  | 0.2 U               | 0.2 U          | 0.8 U             | 0.19 U           | 0.19 U                  | 1 U               | NA NA             | NA.            |                | 0.2 U 0.2              |                          | 0.2 U              | 0.19 U           |                         |                    |               |                      |            |                 | 0.19 U             | NA NA             | NA.       | NA NA        |              | 9.8 U               | 1 U               | NA .              | NA .              |
|                   | FLUORANTHENE                              | 0.5        | 1000       | ug            | y/L 0.5 U              | _                    | 0.5 U              | 0.5 U                 | 0.5 U          | _                 | 0.5 U                | 0.5 U            | 0.5 U             | 0.2 U 0.2 U                  | 0.2 U               | 0.2 U          | 0.8 U             | 0.19 U           | 0.19 U                  | 0.5 U             | 0.5 U             | 0.5 U          | 0.2 U          | 0.2 U 0.2              |                          | 0.2 U              | 0.19 U           |                         |                    |               |                      |            |                 | 0.19 U             | NA                | NA        | NA.          |              |                     | 0.5 U             | 0.5 U             | 0.5 U             |
|                   | FLUORENE                                  | 0.5        | 1000       | ug            | y/L 0.5 U              | NA.                  | 0.5 U              | 0.5 U                 | 0.5 U          | 0.5 U             | 0.5 U                | 0.5 U            | 0.5 U             | 0.2 U 0.2 U                  | 0.2 U               | 0.2 U          | 2                 | 0.19 U           | 0.19 U                  | 0.5 U             | 0.5 U             | 0.5 U          | 0.2 U          | 0.2 U 0.2              | U 0.2 U                  | 0.2 U              | 0.19 U           | 0.2 U                   | .2 U 0.            | 19 U* 9.      | .5 U                 | NA         | NA              | 0.19 U             | NA                | NA        | NA .         | NA.          | 9.8 U               | 0.5 U             | 0.5 U             | 0.5 U             |
|                   | INDENO(1,2,3-CD)PYRENE                    |            | 0.4        | ug            | g/L 0.5 U              | NA                   | NA                 | NA                    | NA             | NA                | NA                   | NA               | NA                | 0.2 U 0.2 U                  | 0.2 U               | 0.2 U          | 0.8 U             | 0.19 U           | 0.19 U                  | 0.5 U             | NA                | NA             | 0.2 U          | 0.2 U 0.2              | U 0.2 U                  | 0.2 U              | 0.19 U           | 0.2 U                   | .2 U 0             | 19 U 9.       | .5 U                 | NA         | NA              | 0.19 U             | NA                | NA        | NA           | NA           | 9.8 U               | 0.5 U             | NA                | NA                |
|                   | 1-METHYLNAPHTHALENE                       |            |            | ug            | y'L NA                 | NA                   | NA                 | NA                    | NA             | NA                | NA                   | NA               | NA                | 0.2 U 0.2 U                  | 0.2 U               | 0.2 U          | 2                 | 0.19 U           | 0.19 U                  | NA                | NA                | NA             | 0.2 U          | 0.2 U 0.2              | U 0.2 U                  | 0.2 U              | 0.19 U           | 0.2 U                   | .2 U 0             | 75 U 9.       | .5 U                 | NA         | NA              | 0.38 U             | NA                | NA        | NA           | NA           | 9.8 U               | NA                | NA                | NA                |
|                   | 2-METHYLNAPHTHALENE                       |            |            | ug            | y'L NA                 | NA                   | NA                 | NA                    | NA             | NA                | NA                   | NA               | NA                | 0.2 U 0.2 U                  | 0.2 U               | 0.2 U          | 3.2               | 0.19 U           | 0.19 U                  | NA                | NA                | NA             | 0.2 U          | 0.2 U 0.2              |                          | 0.2 U              | 0.19 U           | -                       |                    |               |                      |            |                 | 0.19 U             | NA                | NA        | NA .         | NA           | 9.8 U               | NA                | NA                | NA                |
|                   | NAPHTHALENE                               | 1          | 20         | 20 uç         | y/L 1 U                | _                    | 1 U                | 1 U                   | 1 U            |                   | 1 U                  | 1 U              | 1 U               | 0.2 U 0.2 U                  | 0.2 U               | 0.2 U          | 35                | 0.19 U           | 0.19 U                  | 1 U               | 1 U               | 1 U            | 0.2 U          | 0.2 U 0.2              |                          | 0.2 U              | 0.19 U           |                         |                    |               |                      |            |                 | 0.19 U             | NA                | NA        | NA           |              | 9.8 U               | 1 U               | 1 U               | 1 U               |
|                   | PHENANTHRENE<br>PYRENE                    | 0.22       | 1000       | 510 ug        | y/L 0.2 U<br>y/L 0.5 U |                      | 0.2 U<br>0.5 U     | 0.2 U<br>0.5 U        | 0.2 U<br>0.5 U | _                 | 0.2 U<br>0.5 U       | 0.2 U<br>0.5 U   | 0.2 U<br>0.5 U    | 0.2 U 0.2 U<br>0.2 U 0.2 U   | 0.2 U<br>0.2 U      | 0.2 U<br>0.2 U | 3.4<br>0.8 U      | 0.19 U<br>0.19 U | 0.19 U<br>0.19 U        | 0.2 U<br>0.5 U    | 0.2 U<br>0.5 U    | 0.2 U<br>0.5 U | 0.2 U<br>0.2 U | 0.2 U 0.2<br>0.2 U 0.2 |                          | 0.2 U<br>0.2 U     | 0.19 U<br>0.19 U | -                       |                    |               |                      |            |                 | 0.19 U<br>0.19 U   | NA                | NA<br>NA  | NA<br>NA     |              | _                   | 0.2 U<br>0.5 U    | 0.2 U<br>0.5 U    | 0.69<br>0.5 U     |
|                   | TOTAL PAHs                                | 0.5        | 1000       | 09            | yL 0.50                | NA<br>NA             | ND                 | ND                    | ND             | ND                | ND                   | ND               | ND                | ND ND                        | 0.2 U               | ND             | 49                | 0.19 U           | 0.19 U                  | ND                | ND                | ND             | 0.2 U          | 0.2 U 0.2              |                          | ND                 | 0.19 U           |                         |                    |               |                      |            | NA NA           | U.19 U             | NA<br>NA          | NA<br>NA  | NA NA        | NA NA        | 9.8 U<br>ND         | ND ND             | ND                | 5.69              |
|                   | BENZENE                                   | 1          | 5          | 31.2 us       | yL 1U                  |                      | 1 U                | 1 U                   | 1 U            | _                 | 10                   | 1 U              | 1 U               | 10 10                        | 1 U                 | 1 U            | 1 U               | NA NA            | 1 U                     | 1 U               | 1 U               | 1 U            | 1 U            | 10 1                   |                          | 1 U                | 1 U              |                         |                    |               |                      |            | NA .            | 1 U                | NA NA             | NA NA     | NA NA        | NA NA        | 1 U                 | 1 U               | 1 U               | 1 U               |
|                   | ETHYLBENZENE                              | 1          | 700        | uç            | y/L 1 U                |                      | 1 U                | 1 U                   | 1 U            | _                 | 1 U                  | 1 U              | 1 U               | 10 10                        | 1 U                 | 1 U            | 1 U               | NA NA            | 1 U                     | 1 U               | 1 U               | 1 U            | 1 U            | 1 U 1                  | _                        | 1 U                | 1 U              |                         |                    |               |                      | NA         | NA              | 1 U                | NA                | NA        | NA.          | NA           | 1 U                 | 1 U               | 1 U               | 1 U               |
|                   | p/m-XYLENE                                |            |            | ug            | y'L NA                 | NA.                  | 1 U                | 1 U                   | 1 U            | 1 U               | 1 U                  | 1 U              | 1 U               | NA NA                        | NA                  | NA             | NA                | NA               | NA                      | NA                | 1 U               | 1 U            | NA.            | NA N                   | A NA                     | NA                 | NA               | NA                      | NA                 | NA I          | NA                   | NA         | NA              | NA                 | NA                | NA        | NA .         | NA           | NA                  | NA                | 1 U               | 1 U               |
|                   | METHYLENE CHLORIDE                        |            |            | ug            | y/L NA                 | NA                   | 5 U                | NA                    | NA             | NA                | NA                   | NA               | NA                | NA NA                        | NA                  | NA             | NA                | NA               | NA                      | NA                | NA                | NA             | NA             | NA N                   | A NA                     | NA                 | NA               | NA                      | NA                 | NA 5          | 5 U                  | NA         | NA              | NA                 | NA                | NA        | NA           | NA           | NA                  | NA                | 5 U               | NA                |
| VOCs              | o-XYLENE                                  |            |            | uş            | y'L NA                 | NA                   | 1 U                | 1 U                   | 1 U            | 1 U               | 1 U                  | 1 U              | 1 U               | NA NA                        | NA                  | NA             | NA                | NA               | NA                      | NA                | 1 U               | 1 U            | NA             | NA N                   | NA NA                    | NA                 | NA               | NA                      | NA                 | NA I          | NA                   | NA         | NA              | NA                 | NA                | NA        | NA NA        | NA           | NA                  | NA                | 1 U               | 1 U               |
|                   | TOLUENE                                   | 1          | 1000       | 1900 ug       | y/L 2.3                | 1 U                  | 1 U                | 1 U                   | 1 U            | 1 U               | 1 U                  | 1 U              | 1 U               | 10 10                        | 1 U                 | 1 U            | 1 U               | NA               | 1 U                     | 1 U               | 1 U               | 1 U            | 1 U            | 1 U 1                  | J 1 U                    | 1 U                | 1 U              | 1 U                     | 1 U                | I U 1         | 1 U                  | NA         | NA              | 1 U                | NA                | NA        | NA .         | NA           | 1 U                 | 1 U               | 1 U               | 1 U               |
|                   | XYLENES (TOTAL)                           | 2          | 10000      | ug            | y/L 2 U                |                      | 1 U                | 1 U                   | 1 U            | 1 U               | 1 U                  | 1 U              | 1 U               | 2 U 2 U                      | 2 U                 | 2 U            | 2 U               | NA               | 2 U                     | 2 U               | 1 U               | 1 U            | 2 U            | 2 U 2                  |                          | 2 U                | 2 U              | -                       |                    |               |                      |            | NA              | 2 U                | NA                | NA        | NA           | NA           | 2 U                 | 2 U               | 1 U               | 1 U               |
|                   | METHYL TERT BUTYL ETHER TOTAL BTEX        |            |            | ug            | g/L NA<br>g/L 2.3      | NA<br>ND             | NA<br>ND           | NA<br>ND              | NA<br>ND       | NA<br>ND          | NA<br>ND             | NA<br>ND         | NA<br>ND          | NA NA                        | NA<br>ND            | NA<br>ND       | NA<br>ND          | NA NA            | 10 U<br>ND              | NA<br>ND          | NA<br>ND          | NA<br>ND       | NA<br>ND       | NA N                   |                          | 10 U<br>ND         | 10 U<br>ND       |                         |                    |               |                      |            | NA<br>NA        | 10 U               | NA NA             | NA NA     | NA NA        | NA<br>NA     | NA<br>ND            | NA<br>ND          | NA<br>ND          | NA<br>ND          |
|                   | ARSENIC                                   | 0.018      | 0.018      | 0.018 m       | g/L 2.3                | _                    | 0.01 U             | 0.01 U                | 0.01 U         | _                 | 0.01 U               | 0.01 U           | 0.01 U            | 0.01 U 0.01 U                | 0.01 U              | 0.01 U         | 0.01 U            | 0.01 U           | 0.01 U                  | 0.0131            | 0.018             | 0.01 U         | 0.014          | 0.011 <b>0</b> .       |                          | 0.01 U             | 0.01             |                         |                    |               |                      |            |                 | 0.02 U             | 0.018 U           | 0.018 U   | 0.018 U      | 0.018 U      | 0.02 U              | 0.111             | 0.11              | 0.16              |
|                   | BERYLLIUM                                 |            | 0.004      | m             | g/L 0.005 L            | _                    | NA NA              | NA.                   | NA.            | NA NA             | NA NA                | NA NA            | NA NA             | NA NA                        | NA.                 | NA.            | NA.               | NA NA            | NA NA                   | 0.005 U           | NA NA             | NA.            | NA NA          | NA N                   |                          | NA NA              | NA NA            |                         |                    |               |                      |            | NA .            | NA NA              | NA NA             | NA NA     | NA NA        | NA NA        |                     | 0.005 U           | NA NA             | NA NA             |
|                   | BORON                                     |            |            | m             | g/L NA                 | NA                   | NA                 | NA                    | NA             | NA                | NA                   | NA               | NA                | NA NA                        | NA                  | NA             | NA                | NA               | NA                      | NA                | NA                | NA             | NA             | NA N                   | A NA                     | NA                 | NA               | NA                      | NA                 | NA I          | NA .                 | NA         | NA              | NA                 | NA                | NA        | NA           | NA           | NA                  | NA                | NA                | NA                |
|                   | CADMIUM                                   |            | 0.005      | m             | g/L 0.005 L            | I NA                 | NA                 | NA.                   | NA             | NA                | NA                   | NA               | NA                | NA NA                        | NA                  | NA             | NA                | NA               | NA                      | 0.005 U           | NA                | NA             | NA             | NA N                   | NA NA                    | NA                 | NA               | NA .                    | NA                 | NA I          | NA                   | NA         | NA              | NA                 | NA                | NA        | NA .         | NA           | NA                  | 0.005 U           | NA .              | NA                |
|                   | CALCIUM METAL                             |            |            | m             | g/L NA                 | NA.                  | NA                 | NA                    | NA             | NA                | NA                   | NA               | NA                | NA NA                        | NA                  | NA             | NA                | NA               | NA                      | NA                | NA                | NA             | NA             | NA N                   | NA NA                    | NA                 | NA               | NA                      | NA                 | NA I          | NA                   | NA         | NA              | NA                 | NA                | NA        | NA.          | NA           | NA                  | NA                | NA                | NA                |
|                   | CHROMIUM                                  | 0.013      | 0.1        | m             | g/L 0.01 U             | NA.                  | 0.01 U             | 0.01 U                | 0.01 U         | 0.01 U            | 0.01 U               | 0.01 U           | 0.01 U            | 0.01 U 0.01 U                | 0.01 U              | 0.01 U         | 0.01 U            | 0.01 U           | 0.01 U                  | 0.01 U            | 0.01 U            | 0.01 U         | 0.01 U         | 0.01 U 0.0             | U 0.01 U                 | 0.01 U             | 0.01 U           | 0.01 U                  | .01 U 0            | 01 U 0.0      | 01 U                 | NA         | NA              | 0.01 U             | NA                | NA        | NA .         | NA           | 0.01 U              | 0.01 U            | 0.01 U            | 0.01 U            |
| Metals, Total     | LEAD                                      | 0.007      | 0.015      | 0.015 m       | g/L 0.005 L            | -                    | 0.005 U            |                       | 0.005 U        |                   | 0.005 U              | 0.005 U          | 0.005 U           | 0.005 U 0.005 U              |                     | 0.005 U        | 0.005 U           | 0.005 U          | 0.005 U                 | 0.005 U           | 0.007             | 0.005 U        |                | 0.005 U 0.00           |                          | 0.005 U            | 0.005 U          |                         |                    |               |                      |            |                 | 0.01 U             | NA                | NA        | NA           |              |                     |                   | 0.005 U           | 0.005 U           |
|                   | MAGNESIUM                                 |            | 0.002      | m             | g/L NA                 | J NA                 | NA<br>NA           | NA                    | NA             | NA<br>NA          | NA<br>NA             | NA<br>NA         | NA<br>NA          | NA NA                        | NA<br>NA            | NA<br>NA       | NA<br>NA          | NA<br>NA         | NA<br>NA                | NA<br>0.0002 U    | NA                | NA<br>NA       | NA<br>NA       | NA N                   |                          | NA<br>NA           | NA<br>NA         |                         |                    |               |                      |            | NA<br>NA        | NA<br>NA           | NA                | NA<br>NA  | NA<br>NA     | NA<br>NA     | NA<br>NA            | 0.0002 U          | NA                | NA<br>NA          |
|                   | MERCURY                                   | 0.13       | 0.002      | 2 m           | g/L 0.0002             |                      | 0.04 U             | 0.04 U                | NA<br>0.04 U   | _                 | 0.04 U               | 0.04 U           | 0.04 U            | NA NA 0.04 U 0.04 U          | 0.04 U              | 0.04 U         | 0.04 U            | 0.04 U           | 0.04 U                  | 0.0002 U          | NA<br>0.04 U      | 0.04 U         | 0.04 U         | 0.04 U 0.0             |                          | 0.04 U             | 0.04 U           |                         |                    |               |                      |            |                 | 0.04 U             | NA<br>NA          | NA<br>NA  | NA NA        | NA NA        |                     | 0.0002 U          | NA<br>0.04 U      | 0.04 U            |
|                   | POTASSIUM                                 |            |            | m             | g/L NA                 | NA.                  | NA                 | NA.                   | NA.            | NA                | NA NA                | NA               | NA NA             | NA NA                        | NA NA               | NA             | NA.               | NA NA            | NA NA                   | NA NA             | NA NA             | NA.            | NA NA          | NA N                   |                          | NA NA              | NA NA            |                         |                    |               | _                    |            | NA .            | NA NA              | NA NA             | NA NA     | NA NA        | NA NA        | NA .                | NA.               | NA                | NA NA             |
|                   | SODIUM                                    |            |            | m             | g/L NA                 | NA.                  | NA                 | NA.                   | NA             | NA                | NA                   | NA               | NA                | NA NA                        | NA                  | NA             | NA                | NA NA            | NA                      | NA                | NA                | NA             | NA             | NA N                   |                          | NA                 | NA               | -                       |                    | NA I          |                      |            | NA              | NA                 | NA                | NA        | NA.          | NA           | NA                  | NA                | NA .              | NA                |
|                   | ZINC                                      | 0.96       | 2          | 31 m          | g/L 0.0385             | NA.                  | 0.02 U             | 0.02 U                | 0.02 U         | 0.02 U            | 0.02 U               | 0.02 U           | 0.02 U            | 0.02 U 0.02 U                | 0.02 U              | 0.02 U         | 0.02 U            | 0.02 U           | 0.02 U                  | 0.0744            | 0.049             | 0.15           | 0.023          | 0.02 U 0.0             | 2 U 0.02 U               | 0.02 U             | 0.12             | 0.042                   | .087               | 036 0.        | 02 U                 | NA         | NA              | 0.02 U             | NA                | NA        | NA .         | NA           | 0.02 U              | 0.0576            | 0.065             | 0.18              |
|                   | ARSENIC                                   | 0.018      | 0.018      | 0.018 m       | g/L NA                 | NA                   | NA                 | 0.01 U                | 0.01 U         | NA                | NA                   | NA               | NA                | NA NA                        | NA                  | NA             | NA                | 0.01 U           | NA                      | 0.01 U            | 0.01 U            | NA             | NA             | NA N                   | A NA                     | NA                 | NA               | 0.01 U                  | .01 U 0            | 02 U I        | NA                   | NA         | NA              | NA                 | NA                | NA        | NA           | NA           | NA                  | NA                | NA                | 0.01 U            |
|                   | BERYLLIUM                                 |            | 0.004      |               | g/L NA                 |                      |                    | NA                    | NA             | _                 | NA                   | NA               | NA                | NA NA                        | NA                  | NA             | NA                | NA               |                         | 0.005 U           | NA                | NA             | NA             | NA N                   |                          | NA                 | NA               |                         |                    |               |                      |            | NA              | NA                 | NA                | NA        | NA .         | NA           | NA                  | NA                | NA                | NA                |
|                   | CADMIUM                                   |            | 0.005      |               | g/L NA                 | NA                   | NA                 | NA                    | NA             | NA                | NA                   | NA               | NA                | NA NA                        | NA                  | NA             | NA                | NA               |                         | 0.005 U           | NA                | NA             | NA             | NA N                   |                          | NA                 | NA               |                         |                    |               |                      |            | NA              | NA                 | NA                | NA        | NA           | NA           | NA                  | NA                | NA                | NA                |
| Metals, Dissolved | CHROMIUM                                  | 0.013      | 0.1        | m             | _                      |                      | NA NA              | _                     | +              |                   | NA<br>NA             | NA NA            | NA NA             | NA NA                        | NA<br>NA            | NA NA          | NA                | 0.01 U           |                         | 0.01 U<br>0.005 U | NA<br>0.005 U     | NA NA          | NA NA          | NA N                   |                          | NA NA              | NA NA            |                         |                    |               |                      |            | NA NA           | NA NA              | NA NA             | NA<br>NA  | NA<br>NA     | NA<br>NA     | NA NA               | NA NA             |                   | 0.01 U<br>0.005 U |
|                   | MERCURY                                   | 0.007      | 0.015      |               | g/L NA                 |                      | NA<br>NA           | _                     | 0.005 U        | _                 | NA<br>NA             | NA<br>NA         | NA<br>NA          | NA NA                        | NA<br>NA            | NA<br>NA       | NA<br>NA          | 0.005 U<br>NA    |                         | 0.005 U           | 0.005 U<br>NA     | NA<br>NA       | NA<br>NA       | NA N                   | _                        | NA<br>NA           | NA<br>NA         |                         |                    |               |                      |            | NA<br>NA        | NA<br>NA           | NA<br>NA          | NA<br>NA  | NA<br>NA     | NA<br>NA     | NA<br>NA            | NA<br>NA          | NA<br>NA          | 0.005 U<br>NA     |
|                   | NICKEL                                    | 0.13       | 0.002      | 2 m           | _                      |                      |                    | 0.04 U                | +              | _                 | NA NA                | NA NA            | NA NA             | NA NA                        | NA NA               | NA NA          | NA NA             | 0.04 U           |                         | 0.0002 U          | NA NA             | NA NA          | NA NA          | NA N                   | _                        | NA NA              | NA NA            | -                       |                    |               |                      |            | NA NA           | NA NA              | NA NA             | NA NA     | NA NA        | NA NA        | NA NA               | NA NA             |                   | 0.04 U            |
|                   | ZINC                                      | 0.13       | 2          |               | g/L NA                 |                      | NA NA              | _                     | +              |                   | NA NA                | NA NA            | NA NA             | NA NA                        | NA NA               |                | NA NA             | 0.02 U           |                         | 0.0522            | 0.02 U            | 0.14           | NA NA          | NA N                   |                          | NA NA              | NA NA            |                         |                    |               |                      |            | NA NA           | NA NA              | NA NA             | NA NA     | NA NA        | NA NA        | NA NA               | NA NA             | NA NA             | 0.09              |
|                   | ALKALINITY                                |            |            | m             |                        |                      |                    | _                     | NA             |                   | NA                   | NA               | NA                | NA NA                        | NA                  | NA.            | NA                | NA               | NA                      | NA                | NA                | NA             | NA.            | NA N                   |                          | NA                 | NA               |                         |                    |               |                      |            | NA              | NA                 | NA                | NA        | NA NA        | NA           | NA                  | NA                | NA                | NA                |
|                   | ALKALINITY, TOTAL (AS CACO3)              |            |            | m             | g/L NA                 | NA                   | NA                 | NA                    | NA             | _                 | NA                   | NA               | NA                | NA NA                        | NA                  | NA             | NA                | NA               | NA                      | NA                | NA                | NA             | NA             | NA N                   |                          | NA                 | NA               |                         |                    |               |                      |            | NA              | NA                 | NA                | NA        | NA.          | NA           | NA                  | NA                | NA                | NA                |
|                   | AMMONIA AS N                              | 15         | 30         | 30 m          | g/L 0.74               | NA.                  | 16                 | 19                    | 14             | 17                | 16                   | 17               | 17                | 19 18                        | 12                  | 21             | 22                | NA               | 15                      | 0.037             | 2.4               | 0.29           | 0.27           | 0.045 0.               | 3 0.11                   | 0.35               | 0.49             | 0.54                    | 0.31               | .31           | 1.7                  | 2.2        | 2               | 0.69               | NA                | 1.5       | NA.          | NA           | 1.6                 | 6.8               | 30                | 7.9               |
|                   | BICARBONATE                               |            |            | m             | g/L NA                 | _                    | NA                 | NA                    | NA             |                   | NA                   | NA               | NA                | NA NA                        | NA                  | NA             | NA                | NA               | NA                      | NA                | NA                | NA             | NA             | NA N                   |                          | NA                 | NA               |                         |                    |               |                      |            | NA              | NA                 | NA                | NA        | NA           | NA           | NA                  | NA                | NA                | NA                |
| Miscellaneous     | CARBONATE                                 |            |            | m             | g/L NA                 |                      | NA                 | NA                    | NA             | _                 | NA                   | NA               | NA                | NA NA                        | NA                  | NA             | NA                | NA               | NA                      | NA                | NA                | NA             | NA             | NA N                   |                          | NA                 | NA               | -                       |                    |               |                      |            | NA              | NA                 | NA                | NA        | NA .         | NA           | NA                  | NA                | NA                | NA                |
|                   | CONDUCTIVITY                              |            |            | - um          |                        |                      | NA                 |                       | NA             |                   | NA                   | NA               | NA                | NA NA                        | NA                  | NA             | NA                | NA               | NA                      | NA                | NA                | NA             | NA .           | NA N                   | _                        | NA                 | NA               | -                       |                    |               |                      |            | NA              | NA                 | NA                | NA        | NA           | NA           | NA                  | NA                | NA                | NA                |
|                   | NITRATE (AS N)                            |            | 10         |               | g/L NA                 |                      |                    | _                     | NA             | _                 | NA                   | NA               | NA                | NA NA                        | NA                  | NA             | NA                | NA               | NA                      | NA                | NA                | NA             | NA             | NA N                   |                          | NA                 | NA               |                         |                    |               |                      |            |                 | NA                 | NA                | NA        | NA           |              | 0.05 U              | NA                | NA                | NA                |
|                   | NITRITE (AS N)<br>SULFATE                 |            |            |               | g/I NA<br>g/L NA       | _                    | NA<br>NA           | _                     | NA<br>NA       | _                 | NA<br>NA             | NA<br>NA         | NA<br>NA          | NA NA                        | NA<br>NA            | NA<br>NA       | NA<br>NA          | NA<br>NA         | NA<br>NA                | NA<br>NA          | NA<br>NA          | NA<br>NA       | NA<br>NA       | NA N                   |                          | NA<br>NA           | NA<br>NA         |                         |                    |               |                      |            | .05 U<br>NA     | NA<br>NA           | NA<br>NA          | NA<br>NA  | NA<br>NA     | NA<br>NA     | NA<br>NA            | NA<br>NA          | NA<br>NA          | NA<br>NA          |
|                   | SOLIDS, TOTAL DISSOLVED                   |            |            |               | g/L NA                 | _                    | NA<br>NA           | NA NA                 | NA NA          | _                 | NA<br>NA             | NA<br>NA         | NA<br>NA          | NA NA                        | NA<br>NA            | NA NA          | NA NA             | NA NA            | NA<br>NA                | NA<br>NA          | NA NA             | NA.            | NA NA          | NA N                   |                          | NA<br>NA           | NA<br>NA         |                         |                    |               |                      |            | NA NA           | NA NA              | NA<br>NA          | NA<br>NA  | NA NA        | NA NA        | NA NA               | NA NA             | NA NA             | NA<br>NA          |
| SVOCs             | 1,4-DICHLOROBENZENE                       |            |            |               | y'L NA                 | _                    |                    | _                     | NA.            | _                 | NA NA                | NA NA            | NA NA             | NA NA                        | NA.                 | NA.            | NA                | NA NA            | NA NA                   | NA                | NA.               | NA NA          | NA.            | NA N                   |                          | NA NA              | NA NA            |                         |                    |               |                      |            |                 | NA                 | NA NA             | NA        | NA NA        | NA           | NA                  | NA NA             | NA NA             | NA                |
|                   |                                           |            |            |               |                        |                      |                    |                       |                |                   |                      |                  |                   |                              |                     |                |                   |                  |                         |                   |                   |                |                |                        |                          |                    |                  |                         |                    |               |                      |            |                 |                    |                   |           |              |              |                     |                   |                   |                   |

Notes:

Shaded cell indicates comparison standard used in data evaluation.

"ghi ghied cell indicates analytical result exceeds comparison criteria.

Bold and fails text indicates analytical result exceeds background value.

In Nirata comparison standard backe on the Maximum Containmant steet (MCL) stabilished by the USEPA National Primary C

NO - No constituents detected above the laboratory indirum detection limit.

Lindicates constituent was not detected above value shown.

Lindicates constituent was not detected above value shown.

Lindicates constituent was not detected at an estimated value.

Uninclates constituent was not detected at an estimated value.

Monitoring will in MW 31, POANW 42, POANW 430, POANW 181, POANW 181

| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                              |            |            | ı          | Location:    |             |             |             |             |             |             | PDMW-31R    |             |             |             |             |              |                                                  |             |             |                     |             | PDMW-31R2   |             |             |           |            |             | PDMW-32P |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------|------------|------------|------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|--------------------------------------------------|-------------|-------------|---------------------|-------------|-------------|-------------|-------------|-----------|------------|-------------|----------|-------------|
| Property    |                   |                              |            |            |            |              | 2/23/2000   | 5/16/2000   | 8/22/2000   | 1/10/2001   | 7/16/2001   | 2/6/2002    |             | 2/7/2003    | 6/26/2003   | 1/29/2004   | 7/22/2004   | 3/8          | /2006                                            | 4/2/2008    | 7/21        | /2008               |             |             |             | 12/15/2010  | 6/15/2011 | 12/7/2011  | 11/5/1997   | 8/9/1999 | 11/18/1999  |
| Profession   Pro   |                   |                              |            |            | Samp       | ple Type:    | Normal      | No           | ormal                                            | Normal      | Normal      | Dup                 | Normal      | Normal      | Normal      | Normal      | Normal    | Normal     | Normal      | Normal   | Normal      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                              |            |            | Se         | ample ID:    | 31R_2/23/20 | 31R_5/16/20 | 31R_8/22/20 | 31R_1/10/20 | 31R_7/16/20 | 31R_2/6/200 | 31R_9/12/20 | 31R_2/7/200 | 31R_6/26/20 | 31R_1/29/20 | 31R_7/22/20 | Filtered_3/8 | Unfiltered_3                                     | 31R2_4/2/20 | 31R2_7/21/2 | 31R2<br>DUP_7/21/20 | 31R2_10/8/2 | 31R2_12/4/2 | 31R2_6/16/2 | 31R2_12/15/ | 31R2-     | 31R2_12072 | 32P_11/5/19 |          | 32P_11/18/1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Method Group      | Analyte                      | Background | Type 3 RRS | Type 4 RRS | Units        | Result       | Result                                           | Result      | Result      | Result              | Result      | Result      | Result      | Result      | Result    | Result     | Result      | Result   | Result      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                              |            | 2000       |            | ug/L         |             |             |             |             |             |             |             |             |             |             |             |              | 1                                                |             |             |                     |             |             |             | ļ           |           |            |             |          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | -                            |            |            |            | ÷            |             |             |             |             |             |             |             |             |             |             |             | <b>!</b>     | 1                                                |             |             |                     |             |             |             |             |           |            |             |          | -           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                              |            |            |            | -            |             |             |             |             |             |             |             |             |             |             |             | -            | 1                                                | +           |             |                     |             |             |             |             |           |            |             |          | -           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                              |            |            |            | <u> </u>     |             |             |             |             |             |             |             |             |             |             |             |              |                                                  |             |             |                     |             |             |             | <b>!</b>    | 1         | 1          |             |          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                              |            |            |            |              |             |             |             |             |             |             |             |             |             |             |             |              | +                                                | +           |             |                     |             |             |             |             |           |            |             |          | _           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                              |            |            |            | _            |             |             |             |             |             |             |             |             |             |             |             |              | +                                                | +           |             |                     |             |             |             |             | _         |            |             |          | _           |
| Mathematical Registration      |                   |                              |            |            |            | +            |             | NA          |             | NA          | NA          | NA.         | 0.2 U       | 0.2 U       |             |             | 0.2 U       | 0.19 U       | +                                                | +           | 0.19 U      | 0.19 U              |             |             | 0.19 U      | NA          |           | NA         | 0.5 U       | NA       | NA          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | CHRYSENE                     | 0.2        | 0.2        | 65         | ug/L         | 0.2 U       | 0.19 U       | 0.19 U                                           | 0.19 U      | 0.19 U      | 0.19 U              | 0.19 U      | 0.19 U      | 0.19 U      | NA          | NA        | NA         | 0.2 U       | 0.2 U    | 0.2 U       |
| 94. 14. 14. 14. 14. 14. 14. 14. 14. 14. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PAHs              | DIBENZO(A,H)ANTHRACENE       |            | 0.3        |            | ug/L         | NA          | NA          | NA          | NA          | NA          | NA.         | 0.2 U       | 0.19 U       | 0.19 U                                           | 0.19 U      | 0.19 U      | 0.19 U              | 0.19 U      | 0.19 U      | 0.19 U      | NA          | NA        | NA         | 1 U         | NA       | NA          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | FLUORANTHENE                 | 0.5        | 1000       |            | ug/L         | 0.5 U       | 0.2 U       | 0.19 U       | 0.19 U                                           | 0.19 U      | 0.19 U      | 0.19 U              | 0.19 U      | 0.19 U      | 0.19 U      | NA          | NA        | NA         | 0.5 U       | 0.5 U    | 0.5 U       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | FLUORENE                     | 0.5        | 1000       |            | ug/L         | 0.5 U       | 0.2 U       | 0.19 U       | 0.19 U                                           | 0.19 U      | 0.19 U      | 0.19 U              | 0.19 U      | 0.19 U      | 0.19 U      | NA          | NA        | NA         | 0.5 U       | 0.5 U    | 0.5 U       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | INDENO(1,2,3-CD)PYRENE       |            | 0.4        |            | ug/L         | NA          |             |             |             |             |             | 0.2 U       | 0.19 U       | 0.19 U                                           | 0.19 U      | 0.19 U      | 0.19 U              | 0.19 U      | 0.19 U      | 0.19 U      | NA          | NA        | NA         | 0.5 U       | NA       |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | -                            |            |            |            | +-           |             |             |             |             |             |             |             |             |             |             |             |              | -                                                | +           |             |                     |             |             |             |             |           | 1          |             |          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                              |            |            |            | +-           |             |             |             |             |             |             |             |             |             |             |             |              | -                                                | +           |             |                     |             |             |             | 1           |           |            |             |          |             |
| Minima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                              |            |            |            | ÷            |             |             |             |             |             |             |             |             |             |             |             | <b>!</b>     | 1                                                | 1           |             |                     |             |             |             | ļ           | 1         |            |             |          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | -                            |            |            | 510        | _            |             |             |             |             |             |             |             |             |             |             |             |              | +                                                | +           |             |                     |             |             |             |             |           |            |             |          | _           |
| Mathematical angle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                              |            |            |            | +            |             |             |             |             |             |             |             |             |             |             |             |              | +                                                | +           |             |                     |             |             |             |             |           |            |             |          | _           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                              | 1          | 5          | 31.2       | _            |             |             |             |             |             |             |             |             |             |             |             | <b>!</b>     | 1                                                | 1           |             |                     |             |             |             | <b>!</b>    |           | 1          |             |          |             |
| Mathematical parameter   Mathematical parame   |                   | ETHYLBENZENE                 | 1          | 700        |            | _            |             |             |             |             |             |             |             |             |             |             | 1 U         |              | +                                                | +           |             |                     |             |             |             |             |           |            |             |          | _           |
| Profession   Pro   |                   | p/m-XYLENE                   |            |            |            | ug/L         | 1 U         | 1 U         | 1 U         | 1 U         | 1 U         | NA.         | NA.         | NA          | NA.         | NA          | NA          | NA           | NA                                               | NA          | NA          | NA                  | NA          | NA          | NA          | NA          | NA        | NA         | NA          | 1 U      | 1 U         |
| March   Marc   |                   | METHYLENE CHLORIDE           |            |            |            | ug/L         | NA          | NA          | NA          | NA          | NA          | NA.         | NA          | NA          | NA.         | NA          | NA          | NA           | NA                                               | NA          | NA          | NA                  | NA          | NA          | NA          | NA          | NA        | NA         | NA          | 5 U      | NA          |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VOCs              | o-XYLENE                     |            |            |            | ug/L         | 1 U         | 1 U         | 1 U         | 1 U         | 1 U         | NA           | NA                                               | NA          | NA          | NA                  | NA          | NA          | NA          | NA          | NA        | NA         | NA          | 1 U      | 1 U         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | TOLUENE                      | 1          | 1000       | 1900       | ug/L         | 1 U         | 1 U         | 1 U         | 1 U         | 1 U         | 1 U         | 1 U         | 1 U         | 1 U         | 1 U         | 1 U         | NA           | 1 U                                              | 1 U         | 1 U         | 1 U                 | 1 U         | 1 U         | 1 U         | NA          | NA        | NA         | 1 U         | 1 U      | 1 U         |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | XYLENES (TOTAL)              | 2          | 10000      |            | ug/L         | 1 U         | 1 U         | 1 U         | 1 U         | 1 U         | 2 U         | 2 U         | 2 U         | 2 U         | 2 U         | 2 U         | NA           | 2 U                                              | 2 U         | 2 U         | 2 U                 | 2 U         | 2 U         | 2 U         | NA          | NA        | NA         | 2 U         | 1 U      | 1 U         |
| Marcha   M   |                   |                              |            |            |            | ug/L         |             |             | NA          | NA          |             |             | NA          | NA          | NA          |             | NA          | NA           | +                                                |             | 10 U        | 10 U                | NA          |             | 10 U        | NA          |           | NA         | NA          | NA       | -           |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                              |            |            |            | ug/L         |             |             |             |             |             |             |             |             |             |             |             |              |                                                  |             |             |                     |             |             |             | <b>!</b>    |           | 1          |             |          | -           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                              | 0.018      |            | 0.018      | +            |             |             |             |             |             |             |             |             |             |             |             |              |                                                  | _           |             |                     |             |             |             | -           |           |            |             |          |             |
| Marchane    |                   |                              |            | 0.004      |            | +            |             |             |             |             |             |             |             |             |             |             |             |              | 1                                                | +           |             |                     |             |             |             |             |           |            |             |          | -           |
| A MATERIAL PROPERTIES AND PROPERTIES |                   | -                            |            | 0.005      |            | +            |             |             |             |             |             |             |             |             |             |             |             |              | -                                                | +           |             |                     |             |             |             |             |           |            |             |          |             |
| Refule Line Line Line Line Line Line Line Lin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |                              |            | 0.005      |            | +            |             |             |             |             |             |             |             |             |             |             |             | <b>!</b>     | 1                                                | 1           |             |                     |             |             |             | <b>!</b>    |           | 1          |             |          | -           |
| **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | -                            | 0.013      | 0.1        |            | +            |             |             |             |             |             |             |             |             |             |             |             |              | +                                                | +           |             |                     |             |             | -           |             |           |            |             |          | _           |
| Marchine    | Metals, Total     | LEAD                         |            | 0.015      | 0.015      | +            |             |             | 0.005 U     |             |             |             | 0.005 U     |             |             |             | 0.005 U     |              | +                                                | +           | 0.005 U     | 0.005 U             |             |             | 0.01 U      | NA          |           |            |             |          | _           |
| Marchine    |                   | MAGNESIUM                    |            |            |            | mg/L         | NA           | NA.                                              | NA          | NA          | NA                  | NA          |             | NA          | NA          | NA        | NA         | NA          | NA       |             |
| - Marical Problem 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   | MERCURY                      |            | 0.002      |            | mg/L         | NA          | NA          | NA          | NA          | NA          | NA.         | NA.         | NA          | NA          | NA          | NA          | NA           | NA                                               | NA          | NA          | NA                  | NA          | NA          | NA          | NA          | NA        | NA         | 0.0002 U    | NA.      | NA          |
| Maria   Mari   |                   | NICKEL                       | 0.13       | 0.1        | 2          | mg/L         | 0.04 U       | 0.04 U                                           | 0.04 U      | 0.04 U      | 0.04 U              | 0.04 U      | 0.04 U      | 0.04 U      | NA          | NA        | NA         | 0.0472      | 0.04 U   | 0.049       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | POTASSIUM                    |            |            |            | mg/L         | NA           | NA                                               | NA          | NA          | NA                  | NA          | NA          | NA          | NA          | NA        | NA         | NA          | NA       | NA          |
| Marchian    |                   | SODIUM                       |            |            |            | mg/L         | NA           | NA                                               | NA          | NA          | NA                  | NA          | NA          | NA          | NA          | NA        | NA         | NA          | NA       | NA          |
| Fertile   Fert   |                   |                              |            |            |            | <u> </u>     |             |             |             |             |             |             |             |             |             |             |             |              |                                                  |             |             |                     |             |             |             |             |           |            |             |          |             |
| ACRIAN STATE |                   | -                            | 0.018      |            | 0.018      | +            |             |             |             |             |             |             |             |             | _           |             |             |              |                                                  |             |             |                     |             |             |             | -           |           |            |             |          | _           |
| PRINCIPAL PROPERTIES AND ASSESSION OF THE PROPERTIES AND ASSESSMENT OF THE PROPERTIES AND ASSESSMENT OF THE PROPERTIES AND ASS |                   |                              |            |            |            | +            |             |             |             |             |             |             |             |             |             |             |             | -            | <del>                                     </del> |             |             |                     |             |             |             | <b>!</b>    |           |            |             |          |             |
| MERCURY  MER |                   |                              |            |            |            | +            |             |             |             |             |             |             |             |             |             |             |             | -            | <del>                                     </del> |             |             |                     |             |             |             | -           |           |            |             |          |             |
| MERCURY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Metals, Dissolved |                              |            |            |            | +            |             |             |             |             |             |             |             |             |             |             |             |              | +                                                | +           |             |                     |             |             |             |             |           |            |             |          | _           |
| NCREL 0.13 0.1 22 mgl 0.04 1 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                              |            |            |            | +            |             |             |             |             |             |             |             |             |             |             |             |              | +                                                | +           |             |                     |             |             |             |             |           |            |             |          | _           |
| 2NG 0.96 2 31 mg 0.069 0.05 0.069 0.05 0.069 0.07 0.083 0.076 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                              | 0.13       |            |            |              |             |             |             |             |             |             |             |             |             |             |             |              | +                                                | +           |             |                     |             |             |             |             |           |            |             |          | _           |
| ALKALINITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | ZINC                         |            |            |            |              |             |             | 0.086       |             |             |             |             |             |             |             |             | -            | 1                                                | +           |             |                     |             |             |             | 1           |           | 1          |             |          | -           |
| AMMONIA AS N 15 30 30 mg L 3.3 4.3 6.4 4 6.7 11 13 7.6 5.4 3 9.5 NA 22 12 14 14 15 8.5 16 18 18 13 1.4 4.4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   | ALKALINITY                   |            |            |            | _            | NA           | NA                                               | NA          | NA          | NA                  | NA.         | NA          | NA          | NA          | NA        | NA         | NA          | NA       | _           |
| BICARBONATE mg L NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | ALKALINITY, TOTAL (AS CACO3) |            |            |            | +            | NA           | NA                                               | NA          | NA          | NA                  | NA          | NA          | NA          | NA          | NA        | NA         | NA          | NA       | NA          |
| ARBONATE mg NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | AMMONIA AS N                 | 15         | 30         | 30         | mg/L         | 3.3         | 4.3         | 6.4         | 4           | 6.7         | 11          | 13          | 7.6         | 5.4         | 3           | 9.5         | NA           | 32                                               | 12          | 14          | 14                  | 15          | 8.5         | 16          | 18          | 18        | 13         | 1.4         | 4.4      | 8           |
| CONDUCTIVITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | BICARBONATE                  |            |            |            | mg/L         | NA           | NA                                               | NA          | NA          | NA                  | NA          | NA          | NA          | NA          | NA        | NA         | NA          | NA       | NA          |
| CONDUCTIVITY Unificial NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Miscellaneous     | CARBONATE                    |            |            |            |              | NA           | NA                                               | NA          | NA          | NA                  | NA          | NA          | NA          | NA          | NA        | NA         | NA          | NA       | NA          |
| NITRITE (AS N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   | CONDUCTIVITY                 |            |            |            | umhos/<br>cm | NA           | NA                                               | NA          | NA          | NA                  | NA          | NA          | NA          | NA          | NA        | NA         | NA          | NA       | NA          |
| SULFATE mg/L NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   | NITRATE (AS N)               |            | 10         |            | mg/L         |             | NA           | NA                                               | NA          | NA          | NA                  | NA          | NA          | NA          | NA          | NA        | NA         | NA          | NA       |             |
| SCLIDS, TOTAL DISSOLVED mgL NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | ,                            |            |            |            | _            |             |             |             |             |             |             |             |             |             |             |             |              |                                                  |             |             |                     |             |             |             |             |           |            |             |          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                              |            |            | -          | +-           |             |             |             |             |             |             |             |             |             |             |             | -            | <del>                                     </del> |             |             |                     |             |             |             | -           |           |            |             |          |             |
| ONLAS (A-HUNELAPINGENEENE Ugit NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 01/00-            |                              |            |            |            | _            |             |             |             |             |             |             |             |             |             |             |             |              |                                                  |             | 1           | 1                   |             |             |             |             | 1         | 1          |             |          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SVUCS             | 1,4-DICHLOHOBENZENE          |            |            | 1          | ug/L         | NA.         | NA          | NA          | NA          | NA          | NA.         | NA          | NA          | NA.         | NA          | NA          | NA           | NA NA                                            | NA          | NA          | NA                  | NA.         | NA          | NA          | NA          | NA        | NA         | NA          | NA       | NA.         |

Note:

| Shaded cell indicates comparison standard used in data evaluation.
| Indignighted cell indicates analytical result exceeds comparison criteria.
| Bold and Risk feet indicates analytical result exceeds background value.
| Bold and Risk feet indicates analytical result exceeds background value.
| No -Re constituents os standard back on the Maximum Containmant Level (MCL) established by the USEPA National Primary C
| NO -Re constituents detected above the laboratory minimum detection limit.
| J. Indicates constituent was not detected above value shown.
| J. Indicates constituent was not detected at an estimated value.
| W. Indicates constituent was not detected at an estimated value.
| W. Indicates constituent was not detected at an estimated value.
| Monitoring wells MM-38, PDMM-88, PDMM-38, PDMM-318, PDMM-3

|                   |                                         |            |            | Locat         | ion:                     |            |                |            |                |            |                      |                    |            |              | PDMW-32F       | 1                                                |                |                                  |              |              |                                                  |                      |                      |                       |            |             | PDI                                | /W-33R       |                        |                              |                    |                        |                  |                          | PDMW-3:                  | 3R2                         |            |                |               |               | PDMW-33T                       |
|-------------------|-----------------------------------------|------------|------------|---------------|--------------------------|------------|----------------|------------|----------------|------------|----------------------|--------------------|------------|--------------|----------------|--------------------------------------------------|----------------|----------------------------------|--------------|--------------|--------------------------------------------------|----------------------|----------------------|-----------------------|------------|-------------|------------------------------------|--------------|------------------------|------------------------------|--------------------|------------------------|------------------|--------------------------|--------------------------|-----------------------------|------------|----------------|---------------|---------------|--------------------------------|
|                   |                                         |            |            | Sample D      | ate: 2/23/2000           | 5/16/2000  | 8/22/2000      | 1/9/2001   | 7/16/2001      | 2/5/2002   | 9/12/2002            | 2/6/2003 6/26/2    | 03 1/30/20 | 04 7/22/2004 | 3/8/2006       | 4/4/2008 7/2                                     | 22/2008        | 10/9/2008 12/7/20                | 09 6/19/20   | 10 6/16/2011 | 12/12/2013                                       | /4/2014 1            | 11/6/2014            | 5/19/2015             | 11/11/2015 | 9/10/2002 2 | 4/2003 6/25/2003                   | 1/29/2004    | 7/22/2004              | 3/8/2006 4/4/                | 1008 7/21/200      | 10/9/2008              | 12/5/2009        | 6/17/2010                | 6/14/20                  | 11 12/11                    | 1/2013 6/- | 5/4/2014       | 11/4/2014 5/2 | 0/2015 11/11/ | 2015 11/5/1997                 |
|                   |                                         |            |            | Sample Ty     | /pe: Normal              | Normal     | Normal         | Normal     | Normal         | Normal     | Normal               | Normal Norm        | al Norma   | Normal       | Normal         | Normal N                                         | lormal         | Normal Norm                      | l Norma      | al Normal    | Normal                                           | Normal               | Normal               | Normal                | Normal     | Normal N    | ormal Normal                       | Normal       | Normal                 | Normal No                    | mal Norma          | l Normal               | Normal           | Normal                   | Normal                   | Dup No                      | rmal N     | Normal         | Normal No     | ormal Nort    | mal Normal                     |
|                   |                                         |            |            | Sample        | PDMW-<br>ID: 32R_2/23/20 | PDMW-      | PDMW-          | PDMW-      | PDMW-          | PDMW-      | PDMW-<br>32R_9/12/20 | PDMW- PDM          | /- PDMW    | /- PDMW-     | PDMW-          | PDMW- P                                          | PDMW-          | PDMW- PDM\<br>2R_10/9/20 32R_12/ | /- PDMV      | DIM W-32H-   | PDMW-<br>32R_12/12/2 32                          | PDMW-<br>R_060420 32 | PDMW-<br>R_110620 3: | PDMW-<br>32R_051920 3 | PDMW-      | PDMW- F     | DMW- PDMW-<br>1_2/4/200 33R_6/25/2 | PDMW-        | PDMW-<br>0 33R_7/22/20 | PDMW- PD<br>33R_3/8/200 33R2 | IW- PDMW           | PDMW-<br>1/2 33R2_10/9 | PDMW-            | PDMW-<br>i/2 33R2_6/17/2 | PDMW-<br>33R2-<br>061411 | Dup-4-<br>061411 PD<br>33R2 | MW- P      | PDMW-          | PDMW- PE      | MW- PDN       | IW- PDMW-<br>11112 33T_11/5/19 |
|                   |                                         |            |            | Sample        | 00                       | 00<br>00   | 00<br>00       | 1          | 01             | 2<br>2     | 02                   | 3 03               | 04<br>04   | 04<br>04     | 6<br>6         | 8<br>8                                           | 08             | 08 09                            | 10           | 061611       | 013                                              | 14                   | 14                   | 15                    | 15         |             | 3 03                               | 04<br>04     | 04<br>04               | 6 (                          | 8 008              | 008                    | 009              | 010                      | 061411                   | 061411                      | 013        | 014            | 014           | 015 01        | 97                             |
| Method Gro        | p Analyte                               | Background | Type 3 RRS | Type 4 RRS Un | its Result               | Result     | Result         | Result     | Result         | Result     | Result               | Result Resu        | lt Resul   | t Result     | Result         | Result F                                         | Result         | Result Resu                      | t Resu       | lt Result    | Result                                           | Result               | Result               | Result                | Result     | Result F    | Result Result                      | Result       | Result                 | Result Re                    | ult Resul          | Result                 | Result           | Result                   | Result                   | Result Re                   | sult R     | Result         | Result Re     | esult Res     | ult Result                     |
|                   | ACENAPHTHENE                            | 1          | 2000       | ug            | /L 1 U                   | 1 U        | 1 U            | 1 U        | 1 U            | NA         | 0.2 U                | 0.2 U 0.2 I        | 0.2 U      | 0.2 U        | 0.2 U          | 0.19 U                                           | 0.2 U          | 0.19 U 0.19                      | J 0.19 U     | U NA         | 9.8 U                                            | 9.9 U                | NA                   | NA                    | NA         | 0.2 U       | 0.2 U 0.2 U                        | 0.2 U        | 0.28                   | 0.2 U 0.1                    | 9 U 0.2 U          | 0.19 U                 | 0.19 U           | 0.19 U                   | NA                       | NA 9.                       | .5 U       | 9.7 U          | NA            | NA N          | 1 U                            |
|                   | ACENAPHTHYLENE                          | 1.4        | 1          | 510 ug        | /L 1 U                   | 1 U        | 1 U            | 1 U        | 1 U            | NA         | 0.2 U                | 0.2 U 0.2 I        | _          |              | 0.2 U          | <del>                                     </del> | 0.2 U          | 0.19 U 0.19                      |              | _            |                                                  | 9.9 U                | NA                   | NA                    | NA         |             | 0.2 U 0.2 U                        | 0.2 U        | 0.2 U                  | _                            | 9 U 0.2 U          | 0.19 U                 | 0.19 U           | 0.19 U                   | NA                       |                             |            | 9.7 U          |               | NA N          |                                |
|                   | ANTHRACENE                              | 0.2        | 0.2        | 5100 ug       | /L 0.2 U                 | 0.2 U      | 0.2 U          | 0.2 U      | 0.2 U          | NA         | 0.2 U                | 0.2 U 0.2 I        | _          | _            | 0.2 U          | <del>                                     </del> | 0.2 U          | 0.19 U 0.19                      |              | _            | 9.8 U                                            | 9.9 U                | NA                   | NA                    | NA         |             | 0.2 U 0.2 U                        | 0.2 U        | 0.2 U                  | _                            | 9 U 0.2 U          | 0.19 U                 | 0.19 U           | 0.19 U                   | NA                       |                             |            | 9.7 U          | NA            | NA N          |                                |
|                   | BENZO(A)ANTHRACENE                      | 0.2        | 0.1        | 3.9 ug        | /L 0.2 U                 | 0.2 U      | 0.2 U          | 0.2 U      | 0.2 U<br>0.2 U | NA         | 0.2 U                | 0.2 U 0.2 I        |            | _            | 0.2 U          | <del>                                     </del> | 0.2 U          | 0.19 U 0.19                      |              |              |                                                  | 9.9 U                | NA<br>NA             | NA                    | NA<br>NA   |             | 0.2 U 0.2 U                        | 0.2 U        | 0.2 U                  | 0.2 U 0.1                    |                    | 0.19 U                 | 0.19 U           | 0.19 U                   | NA                       |                             |            | 9.7 U          | NA            | NA N          |                                |
|                   | BENZO(A)PYRENE BENZO(B)FLUORANTHENE     | 0.2        | 0.2        | 0.39 ug       | /L 0.2 U                 | 0.2 U      | 0.2 U<br>0.2 U | 0.2 U      | 0.2 U          | NA<br>NA   | 0.2 U                | 0.2 U 0.2 I        | _          | _            | 0.2 U<br>0.2 U | +                                                | 0.2 U<br>0.2 U | 0.19 U 0.19<br>0.19 U 0.19       |              | _            | 9.8 U                                            | 9.9 U<br>9.9 U       | NA<br>NA             | NA<br>NA              | NA<br>NA   |             | 0.2 U 0.2 U<br>0.2 U 0.2 U         | 0.2 U        | 0.2 U<br>0.2 U         | 0.2 U 0.1                    | 9 U 0.2 U          | 0.19 U<br>0.19 U       | 0.19 U<br>0.19 U | 0.19 U<br>0.19 U         | NA<br>NA                 |                             | _          | 9.7 U<br>9.7 U |               | NA N          |                                |
|                   | BENZO(G,H,I)PERYLENE                    |            |            | ·- uc         | /L NA                    | NA.        | NA.            | NA.        | NA.            | NA.        | 0.2 U                | 0.2 U 0.2 I        | _          | _            | 0.2 U          |                                                  | 0.2 UJ         | 0.19 U 0.19                      |              |              | 9.8 U                                            | 9.9 U                | NA.                  | NA.                   | NA.        |             | 0.2 U 0.2 U                        | 0.2 U        | 0.2 U                  | 0.2 U 0.1                    |                    | 0.19 U                 | 0.19 U           | 0.19 U                   | NA NA                    |                             | _          | 9.7 U          | NA NA         | NA N          |                                |
|                   | BENZO(K)FLUORANTHENE                    |            |            | uç            | /L NA                    | NA         | NA             | NA         | NA.            | NA         | 0.2 U                | 0.2 U 0.2 I        | _          | _            | 0.2 U          | <del>                                     </del> | 0.2 U          | 0.19 U 0.19                      | J 0.19 L     | J NA         |                                                  | 9.9 U                | NA                   | NA .                  | NA         |             | 0.2 U 0.2 U                        | 0.2 U        | 0.2 U                  | 0.2 U 0.1                    |                    | 0.19 U                 | 0.19 U           |                          | NA NA                    |                             |            | 9.7 U          | NA            | NA N          |                                |
|                   | CHRYSENE                                | 0.2        | 0.2        | 65 US         | /L 0.2 U                 | 0.2 U      | 0.2 U          | 0.2 U      | 0.2 U          | NA         | 0.2 U                | 0.2 U 0.2 I        | 0.2 U      | 0.2 U        | 0.2 U          | 0.19 U                                           | 0.2 U          | 0.19 U 0.19                      | J 0.19 L     | J NA         | 9.8 U                                            | 9.9 U                | NA                   | NA                    | NA         | 0.2 U       | 0.2 U 0.2 U                        | 0.2 U        | 0.2 U                  | 0.2 U 0.1                    | 9 U 0.2 U          | 0.19 U                 | 0.19 U           | 0.19 U                   | NA                       | NA 9.                       | .5 U       | 9.7 U          | NA            | NA N          | A 0.2 U                        |
| PAHs              | DIBENZO(A,H)ANTHRACENE                  |            | 0.3        | ug            | /L NA                    | NA         | NA             | NA         | NA             | NA         | 0.2 U                | 0.2 U 0.2 I        | 0.2 U      | 0.2 U        | 0.2 U          | 0.19 U                                           | 0.2 U          | 0.19 U 0.19                      | J 0.19 L     | J NA         | 9.8 U                                            | 9.9 U                | NA                   | NA                    | NA         | 0.2 U       | 0.2 U 0.2 U                        | 0.2 U        | 0.2 U                  | 0.2 U 0.1                    | 9 U 0.2 U          | 0.19 U                 | 0.19 U           | 0.19 U                   | NA                       | NA 9.                       | .5 U       | 9.7 U          | NA            | NA N          | A 1 U                          |
|                   | FLUORANTHENE                            | 0.5        | 1000       | ug            | /L 0.5 U                 | 0.5 U      | 0.5 U          | 0.5 U      | 0.5 U          | NA         | 0.2 U                | 0.2 U 0.2 I        | 0.2 U      | 0.2 U        | 0.2 U          | 0.19 U                                           | 0.2 U          | 0.19 U 0.19                      | J 0.19 L     | J NA         | 9.8 U                                            | 9.9 U                | NA                   | NA                    | NA         | 0.2 U       | 0.2 U 0.2 U                        | 0.2 U        | 0.2 U                  | 0.2 U 0.1                    | 9 U 0.2 U          | 0.19 U                 | 0.19 U           | 0.19 U                   | NA                       | NA 9.                       | .5 U       | 9.7 U          | NA            | NA N          | 0.5 U                          |
|                   | FLUORENE                                | 0.5        | 1000       | ug            | /L 0.5 U                 | 0.5 U      | 0.5 U          | 0.5 U      | 0.5 U          | NA         | 0.2 U                | 0.2 U 0.2 I        | 0.2 U      | 0.2 U        | 0.2 U          |                                                  | 0.2 U          | 0.19 U 0.19                      | J 0.19 L     | J NA         | 9.8 U                                            | 9.9 U                | NA                   | NA                    | NA         | 0.2 U       | 0.2 U 0.2 U                        | 0.2 U        | 0.2 U                  | _                            | 9 U 0.2 U          | 0.19 U                 | 0.19 U           | 0.19 U                   | NA                       | NA 9.                       | .5 U       | 9.7 U          | NA            | NA N          |                                |
|                   | INDENO(1,2,3-CD)PYRENE                  |            | 0.4        | ug            | /L NA                    | NA         | NA             | NA         | NA             | NA         | 0.2 U                | 0.2 U 0.2 I        |            |              | 0.2 U          |                                                  | 0.2 U          | 0.19 U 0.19                      | J 0.19 L     |              | 9.8 U                                            | 9.9 U                | NA                   | NA                    | NA         |             | 0.2 U 0.2 U                        | 0.2 U        | 0.2 U                  | 0.2 U 0.1                    |                    | 0.19 U                 | 0.19 U           | 0.19 U                   | NA                       |                             |            | 9.7 U          |               | NA N          |                                |
|                   | 1-METHYLNAPHTHALENE 2-METHYLNAPHTHALENE | 1          |            | ug            | /L NA                    | NA<br>NA   | NA<br>NA       | NA<br>NA   | NA<br>NA       | NA<br>NA   | 0.2 U                | 0.2 U 0.2 I        |            | -            | 0.2 U<br>0.2 U |                                                  | 0.2 U<br>0.2 U | 0.19 U 0.76                      | J 0.38 U     | _            | 9.8 U<br>9.8 U                                   | 9.9 U<br>9.9 U       | NA<br>NA             | NA<br>NA              | NA<br>NA   |             | 0.2 U 0.2 U<br>0.2 U 0.2 U         | 0.2 U        | 0.2 U<br>0.2 U         | 0.2 U 0.1                    |                    | 0.19 U<br>0.19 U       | 0.76 U<br>0.19 U | 0.38 U<br>0.19 U         | NA<br>NA                 |                             | _          | 9.7 U<br>9.7 U |               | NA N          |                                |
|                   | NAPHTHALENE                             | 1          | 20         | 20            | /L 1 U                   | 1 U        | 1 U            | NA<br>1 U  | NA<br>1 U      | NA<br>NA   | 0.2 U                | 0.2 U 0.2 I        | _          | _            | 0.2 U          |                                                  | 0.2 U          | 0.19 U 0.19                      |              |              |                                                  | 9.9 U                | NA<br>NA             | NA<br>NA              | NA<br>NA   |             | 0.2 U 0.2 U                        | 0.2 U        | 0.2 U                  | _                            | 9U 0.2U            |                        | 0.19 U           |                          | NA<br>NA                 |                             |            | 9.7 U          |               | NA N          |                                |
|                   | PHENANTHRENE                            | 0.22       | 0.2        | 510 US        | /L 0.2 U                 | 0.2 U      | 0.2 U          | 0.2 U      | 0.2 U          | NA NA      | 0.2 U                | 0.2 U 0.2 I        | _          | _            | 0.2 U          | <del>                                     </del> | 0.2 U          | 0.19 U 0.19                      |              |              | <del>                                     </del> | 9.9 U                | NA NA                | NA NA                 |            |             | 0.2 U 0.2 U                        | 0.2 U        | 0.2 U                  |                              | 9U 0.2U            | _                      | 0.19 U           |                          | NA NA                    |                             |            | 9.7 U          |               | NA N          |                                |
|                   | PYRENE                                  | 0.5        | 1000       | ug            | /L 0.5 U                 | 0.5 U      | 0.5 U          | 0.5 U      | 0.5 U          | NA         | 0.2 U                | 0.2 U 0.2 I        | _          | _            | 0.2 U          |                                                  | 0.2 U          | 0.19 U 0.19                      | _            | _            |                                                  | 9.9 U                | NA                   | NA                    | -          |             | 0.2 U 0.2 U                        | 0.2 U        | 0.2 U                  | _                            | 9 U 0.2 U          |                        | 0.19 U           |                          | NA                       |                             | _          | 9.7 U          | NA            | NA N          | _                              |
|                   | TOTAL PAHs                              |            |            | ug            | /L ND                    | ND         | ND             | ND         | ND             | NA         | ND                   | ND ND              | ND         | ND           | ND             | ND                                               | ND             | ND ND                            | ND           | NA           | ND                                               | ND                   | NA                   | NA                    | NA         | ND          | ND ND                              | ND           | 0.28                   | ND N                         | D ND               | ND                     | ND               | ND                       | NA                       | NA I                        | ND         | ND             | NA            | NA N          | . ND                           |
|                   | BENZENE                                 | 1          | 5          | 31.2 ug       | /L 1 U                   | 1 U        | 1 U            | 1 U        | 1 U            | NA         | 1 U                  | 10 10              | 1 U        | 1 U          | 1 U            | 1 U                                              | 1 U            | 10 10                            | 1 U          | NA           | 1 U                                              | 1 U                  | NA                   | NA                    | NA         | 1 U         | 10 10                              | 10           | 1 U                    | 1 U 1                        | U 1 U              | 1 U                    | 1 U              | 1 U                      | NA                       | NA 1                        | 1 U        | 1 U            | NA            | NA N          | A 1 U                          |
|                   | ETHYLBENZENE                            | 1          | 700        | ug            | /L 1 U                   | 1 U        | 1 U            | 1 U        | 1 U            | NA         | 1 U                  | 1 U 1 U            | 1 U        | 1 U          | 1 U            | 1 U                                              | 1 U            | 1 U 1 U                          | 1 U          | NA           | 1 U                                              | 1 U                  | NA                   | NA                    | NA         | 1 U         | 10 10                              | 1 U          | 1 U                    | 1 U 1                        | U 1 U              | 1 U                    | 1 U              | 1 U                      | NA                       | NA 1                        | 1 U        | 1 U            | NA            | NA N          | A 1 U                          |
|                   | p/m-XYLENE                              |            |            | ug            | /L 1 U                   | 1 U        | 1 U            | 1 U        | 1 U            | NA         | NA                   | NA NA              | NA         | NA           | NA             | +                                                | NA             | NA NA                            | NA           | NA           | NA                                               | NA                   | NA                   | NA                    | NA         | NA          | NA NA                              | NA           | NA                     | NA N                         |                    | NA                     | NA               | NA                       | NA                       | NA 1                        | NA         | NA             | NA            | NA N          |                                |
|                   | METHYLENE CHLORIDE                      |            |            | ug            | /L NA                    | NA<br>1 II | NA             | NA<br>1 II | NA<br>1 II     | NA<br>NA   | NA<br>NA             | NA NA              | NA<br>NA   | NA<br>NA     | NA<br>NA       | NA<br>NA                                         | NA<br>NA       | NA NA                            | NA<br>NA     | NA<br>NA     | 5 U<br>NA                                        | NA                   | NA<br>NA             | NA<br>NA              | NA<br>NA   | NA<br>NA    | NA NA                              | NA<br>NA     | NA<br>NA               | NA 1                         |                    | NA<br>NA               | NA               | NA                       | NA                       | NA 5                        | 5 U<br>NA  | NA<br>NA       | NA            | NA N          |                                |
| VOCS              | TOLUENE                                 |            | 1000       | 1900          | /L 1U                    | 10         | 111            | 10         | 10             | NA<br>NA   | 111                  | 111 111            | 111        | 1 U          | 1 U            | +                                                | 1 U            | 1 U 1 U                          | _            | _            | 1 U                                              | 1 U                  | NA<br>NA             | NA<br>NA              | NA.        | 111         | 1U 1U                              | 1 U          | 1 U                    | 1 U 1                        |                    | 111                    | 111              | 1 U                      | NA<br>NA                 | NA 1                        | 111        | 111            |               | NA N          |                                |
|                   | XYLENES (TOTAL)                         | 2          | 10000      | ug            | /L 1U                    | 10         | 10             | 1 U        | 1 U            | NA.        | 2 U                  | 2U 2U              | 2 U        | 2 U          | 2 U            | +                                                | 2 U            | 2U 2U                            | 2 U          | _            | 2 U                                              | 2 U                  | NA NA                | NA                    | NA.        | 2 U         | 2U 2U                              | 2 U          | 2 U                    | 2 U 2                        | U 2U               | 2 U                    | 2 U              | 2 U                      | NA NA                    | NA 2                        | 2 U        | 2 U            | NA .          | NA N          |                                |
|                   | METHYL TERT BUTYL ETHER                 |            |            | ug            | /L NA                    | NA         | NA             | NA         | NA             | NA         | NA                   | NA NA              | NA         | NA           | 10 U           | 10 U                                             | 10 U           | NA NA                            | 10 U         | NA           | 10 U                                             | NA                   | NA                   | NA                    | NA         | NA          | NA NA                              | NA           | NA                     | 10 U 1                       | U 10 U             | NA                     | NA               | 10 U                     | NA                       | NA 1                        | 0 U        | NA             | NA            | NA N          |                                |
|                   | TOTAL BTEX                              |            |            | ug            | /L ND                    | ND         | ND             | ND         | ND             | NA         | ND                   | ND ND              | ND         | ND           | ND             | ND                                               | ND             | ND ND                            | ND           | NA           | ND                                               | ND                   | NA                   | NA                    | NA         | ND          | ND ND                              | ND           | ND                     | ND N                         | D ND               | ND                     | ND               | ND                       | NA                       | NA 1                        | ND         | ND             | NA            | NA N          | A ND                           |
|                   | ARSENIC                                 | 0.018      | 0.018      | 0.018 mg      | g/L 0.01 U               | 0.01 U     | 0.01 U         | 0.01 U     | 0.01 U         | NA         | 0.01 U               | 0.01 U 0.01        | J 0.01 L   | 0.01 U       | 0.01 U         | 0.01 U                                           | 0.01 U         | 0.01 U 0.02                      | J 0.02 L     | J NA         | 0.0063                                           | 0.02 U               | 0.02 U               | 0.02 U                | 0.02 U     | 0.01 U      | 0.01 U 0.01 U                      | 0.01 U       | 0.01 U                 | 0.01 U 0.0                   | 1 U 0.01 U         | 0.01 U                 | 0.02 U           | 0.02 U                   | NA                       | NA 0.0                      | 02 U (     | 0.02 U         | 0.02 U 0      | 02 U 0.00     | U 0.01 U                       |
|                   | BERYLLIUM                               |            | 0.004      | m             | g/L NA                   | NA         | NA             | NA         | NA             | NA         | NA                   | NA NA              | NA         | NA           | NA             | <u> </u>                                         | NA             | NA NA                            | NA           | _            | NA                                               | NA                   | NA                   | NA                    | NA         | NA          | NA NA                              | NA           | NA                     | NA 1                         |                    | NA                     | NA               | NA                       | NA                       | NA 1                        | NA         | NA             | NA            | NA N          |                                |
|                   | BORON                                   |            |            | m             | g/L NA                   | NA         | NA             | NA         | NA             | NA         | NA                   | NA NA              | NA         | NA           | NA             | +                                                | NA             | NA NA                            | NA           | _            | NA                                               | NA                   | NA                   | NA                    | NA         | NA          | NA NA                              | NA           | NA                     | NA 1                         |                    | NA                     | NA               | NA                       | NA NA                    | NA I                        | NA         | NA             | NA            | NA N          |                                |
|                   | CALCIUM METAL                           |            | 0.005      | mg            | y/L NA                   | NA<br>NA   | NA<br>NA       | NA<br>NA   | NA<br>NA       | NA<br>NA   | NA<br>NA             | NA NA              | NA<br>NA   | NA<br>NA     | NA<br>NA       | NA<br>NA                                         | NA<br>NA       | NA NA                            | NA<br>NA     | _            | NA<br>NA                                         | NA<br>NA             | NA<br>NA             | NA<br>NA              | NA<br>NA   | NA<br>NA    | NA NA                              | NA<br>NA     | NA<br>NA               | NA 1                         |                    | NA<br>NA               | NA<br>NA         | NA<br>NA                 | NA<br>NA                 | NA I                        | NA<br>NA   | NA<br>NA       | NA<br>NA      | NA N          |                                |
|                   | CHROMILIM                               | 0.013      | 0.1        | m             | yl 001U                  | 0.01.11    | 0.0111         | 0.01 U     | 0.01 U         | NA<br>NA   | 0.01 U               | 0.01 U 0.01        | _          |              | 0.01 U         | <u> </u>                                         | 0.01 U         | 0.01 U 0.01                      |              |              | <del></del>                                      | 0.01 U               | NA<br>NA             | NA<br>NA              | NA<br>NA   |             | 0.01 U 0.01 U                      | 0.01 U       | 0.01 U                 | 0.01 U 0.0                   |                    | 0.01 U                 | 0.01 U           | 0.01 U                   | NA<br>NA                 |                             |            | 0.01 U         |               | NA N          |                                |
| Metals, Total     | LEAD                                    | 0.007      | 0.015      | 0.015 mg      | y/L 0.005 U              | 0.005 U    | 0.005 U        | 0.005 U    | 0.005 U        | NA.        | 0.013                | 0.0079 0.005       |            | _            | 0.005 U        | +                                                | 0.005 U        | 0.005 U 0.01                     |              |              |                                                  |                      | 0.01 U               | 0.01 U                | 0.01 U     |             | .005 U 0.005 U                     | 0.005 U      | 0.005 U                |                              | 5 U 0.005 L        |                        | 0.01 U           |                          | NA NA                    |                             |            | 0.01 U         | 0.01 U 0      | 01 U 0.01     |                                |
|                   | MAGNESIUM                               |            |            | mg            | g/L NA                   | NA         | NA             | NA         | NA             | NA         | NA                   | NA NA              | NA         | NA           | NA             | NA                                               | NA             | NA NA                            | NA.          | NA           | NA                                               | NA                   | NA                   | NA                    | NA         | NA          | NA NA                              | NA           | NA                     | NA N                         | A NA               | NA                     | NA               | NA                       | NA                       | NA 1                        | NA         | NA             | NA            | NA N          | -                              |
|                   | MERCURY                                 |            | 0.002      | mg            | g/L NA                   | NA         | NA             | NA         | NA             | NA         | NA                   | NA NA              | NA         | NA           | NA             | NA                                               | NA             | NA NA                            | NA           | NA           | NA                                               | NA                   | NA                   | NA                    | NA         | NA          | NA NA                              | NA           | NA                     | NA N                         | A NA               | NA                     | NA               | NA                       | NA                       | NA I                        | NA         | NA             | NA            | NA N          | A 0.0002 U                     |
|                   | NICKEL                                  | 0.13       | 0.1        | 2 m           | g/L 0.12                 | 0.092      | 0.04 U         | 0.13       | 0.04 U         | NA         | 0.17                 | 0.09 0.05          | _          |              | 0.057          | <del>                                     </del> | 0.04 U         | 0.04 U 0.04                      | 0.04 L       |              |                                                  |                      | 0.04 U               | 0.04 U                | 0.04 U     |             | 0.04 U 0.04 U                      | 0.04 U       | 0.04 U                 | 0.04 U 0.0                   |                    | 0.04 U                 | 0.04 U           | 0.04 U                   | NA                       |                             |            | 0.04 U         |               | NA N          |                                |
|                   | POTASSIUM                               |            |            | m             | g/L NA                   | NA         | NA             | NA         | NA             | NA         | NA                   | NA NA              | NA         | NA           | NA             | +                                                | NA             | NA NA                            | NA           | _            | NA                                               | NA                   | NA                   | NA                    | NA         |             | NA NA                              | NA           | NA                     | NA 1                         |                    | NA                     | NA               | NA                       | NA NA                    | NA I                        |            | NA             |               | NA N          |                                |
|                   | SODIUM                                  | 0.96       |            | m             | g/L NA<br>g/L 0.74       | NA<br>0.61 | NA<br>0.027    | NA<br>0.96 | NA<br>0.16     | NA<br>NA   | NA<br>2.1            | NA NA<br>0.63 0.47 | NA<br>0.63 | NA<br>0.39   | NA<br>0.45     | <u> </u>                                         | NA<br>0.2      | NA NA<br>0.23 0.49               | NA<br>0.02 L | _            | NA<br>0.37                                       | NA<br>0.031          | NA<br>0.21           | NA<br>0.11            | NA<br>0.12 |             | NA NA<br>0.02 U 0.02 U             | NA<br>0.02 U | NA<br>0.02 U           | 0.02 U 0.0                   | A NA<br>2 U 0.02 U | 0.02 U                 | NA<br>0.02 U     | 0.02 U                   | NA<br>NA                 | NA 1                        |            | NA<br>0.02 U   |               | NA N          |                                |
| -                 | ZINC                                    | 0.96       | 0.018      | 0.018 mg      | g/L 0.74<br>g/L 0.01 U   | 0.61<br>NA | 0.02/<br>NA    | 0.96<br>NA | U. IG          | NA<br>NA   | 2.1<br>NA            | 0.43<br>NA NA      | 0.63<br>NA | 0.39<br>NA   | 0.45<br>NA     |                                                  | 0.2<br>NA      | 0.23 0.49<br>NA NA               | 0.02 L<br>NA |              | 0.37<br>NA                                       | 0.031<br>NA          | 0.21<br>NA           | 0.11<br>NA            | 0.12<br>NA |             | 0.02 U 0.02 U                      | 0.02 U<br>NA | 0.02 U<br>NA           | 0.02 U 0.0                   |                    | 0.02 U<br>NA           | u.uz u           | V.UZ U<br>NA             | NA NA                    | NA P                        | NA C       | NA             |               | NA N          |                                |
|                   | BERYLLIUM                               |            | 0.004      | mg            | yL NA                    | NA.        | NA.            | NA NA      | NA NA          | NA NA      | NA NA                | NA NA              | NA NA      | NA.          | NA.            | +                                                | NA NA          | NA NA                            |              | _            | NA NA                                            | NA NA                | NA NA                | NA NA                 | NA NA      |             | NA NA                              | NA.          | NA NA                  |                              | A NA               | NA NA                  | NA NA            | NA NA                    | NA NA                    | NA I                        | NA .       | NA NA          |               | NA N          |                                |
|                   | CADMIUM                                 |            | 0.005      | m             | g/L NA                   | NA         | NA.            | NA         | NA             | NA         | NA                   | NA NA              | NA         | NA.          | NA             | NA                                               | NA             | NA NA                            | NA           | NA           | NA .                                             | NA                   | NA                   | NA                    | NA         | NA          | NA NA                              | NA           | NA                     | NA 1                         | A NA               | NA                     | NA               | NA                       | NA                       | NA I                        | NA         | NA             | NA            | NA N          | NA NA                          |
| Metals, Dissolved | CHROMIUM                                | 0.013      | 0.1        | m             | g/L 0.01 U               | NA.        | NA.            | NA         | NA             | NA         | NA                   | NA NA              | NA         | NA.          | NA             | NA .                                             | NA             | NA NA                            | NA           | NA           | NA .                                             | NA                   | NA                   | NA                    | NA .       | NA          | NA NA                              | NA           | NA                     | NA 1                         | A NA               | NA                     | NA               | NA                       | NA                       | NA I                        | NA         | NA             | NA            | NA N          | NA NA                          |
| mans, Dissulved   | LEAD                                    | 0.007      | 0.015      |               | g/L 0.005 U              |            | _              | NA         | NA             | NA         | NA                   | NA NA              | _          | _            | NA             | +                                                | NA             | NA NA                            |              | _            | <del></del>                                      | NA                   | NA                   | NA                    | -          |             | NA NA                              | NA           | NA                     |                              | A NA               |                        | NA               | NA                       | NA                       |                             |            | NA             |               | NA N          |                                |
|                   | MERCURY                                 |            | 0.002      |               | g/L NA                   | NA         | NA             | NA         | NA             | NA         | NA                   | NA NA              | _          | _            | NA             |                                                  | NA             | NA NA                            |              | _            | NA                                               | NA                   | NA                   | NA                    | NA         |             | NA NA                              | NA           | NA                     | NA 1                         |                    |                        | NA               | NA                       | NA                       |                             |            | NA             |               | NA N          |                                |
|                   | NICKEL                                  | 0.13       | 0.1        |               | g/L 0.13                 | 0.087      |                | 0.13       | NA<br>0.40     | NA<br>0.50 | NA NA                | NA NA              | _          | _            | NA NA          | + +                                              | NA NA          | NA NA                            |              |              | NA NA                                            | NA NA                | NA                   | NA NA                 | NA NA      |             | NA NA                              | NA NA        | NA NA                  |                              | A NA               |                        | NA NA            | NA<br>NA                 | NA NA                    |                             |            | NA NA          |               | NA N          |                                |
| <u> </u>          | ZINC                                    | 0.96       | 2          |               | g/L 0.79<br>g/L NA       | 0.58<br>NA | 0.025<br>NA    | 0.87<br>NA | 0.19<br>NA     | 0.59<br>NA | NA<br>NA             | NA NA              |            | _            | NA<br>NA       |                                                  | NA<br>NA       | NA NA                            |              | _            | NA<br>NA                                         | NA<br>NA             | NA<br>NA             | NA<br>NA              | NA<br>NA   |             | NA NA                              | NA<br>NA     | NA<br>NA               |                              | A NA NA            |                        | NA<br>NA         | NA<br>NA                 | NA<br>NA                 |                             |            | NA<br>NA       |               | NA N          |                                |
|                   | ALKALINITY, TOTAL (AS CACO3)            |            |            |               | y'L NA                   | NA.        | NA.            | NA NA      | NA NA          | NA NA      | NA NA                | NA NA              | _          | _            | NA.            | +                                                | NA NA          | NA NA                            |              | _            | NA NA                                            | NA NA                | NA NA                | NA NA                 | NA NA      |             | NA NA                              | NA NA        | NA.                    |                              | A NA               | _                      | NA NA            | NA NA                    | NA NA                    |                             | _          | NA NA          |               | NA N          |                                |
|                   | AMMONIA AS N                            | 15         | 30         |               | g/L 0.31                 | 6.1        | 13             | 1.2        | 42             | NA NA      | 0.64                 | 1.5 1.3            | _          |              | 0.12           |                                                  | 0.73           | 3.6 0.23                         | _            | _            | 6.6                                              | 11                   | 7                    | 0.7                   | 1.3        |             | 8.7 8.2                            | 5.2          | 14                     |                              | 4 19               | _                      | 18               | 8.1                      | 17 J                     |                             |            | 16             |               |               | 5 0.38                         |
|                   | BICARBONATE                             |            |            | mg            | g/L NA                   | NA         | NA.            | NA         | NA             | NA         | NA                   | NA NA              | _          | NA.          | NA             | +                                                | NA             | NA NA                            | _            |              | NA .                                             | NA                   | NA                   | NA                    | NA         | NA          | NA NA                              | NA           | NA                     | NA 1                         | A NA               | NA                     | NA               | NA                       | NA                       | NA I                        | NA         | NA             | NA            | NA N          | -                              |
| Miscellaneous     | CARBONATE                               |            |            | mg            | g/L NA                   | NA         | NA             | NA         | NA             | NA         | NA                   | NA NA              | NA         | NA.          | NA             | NA NA                                            | NA             | NA NA                            | NA           | NA           | NA .                                             | NA                   | NA                   | NA                    | NA         | NA          | NA NA                              | NA           | NA                     | NA N                         | A NA               | NA                     | NA               | NA                       | NA                       | NA I                        | NA         | NA             | NA            | NA N          | NA NA                          |
| maccilaricous     | CONDUCTIVITY                            |            |            | uml<br>c      | nos/<br>m NA             | NA         | NA             | NA         | NA             | NA         | NA                   | NA NA              | NA         | NA           | NA             | NA                                               | NA             | NA NA                            | NA           | NA           | NA                                               | NA                   | NA                   | NA                    | NA         | NA          | NA NA                              | NA           | NA                     | NA 1                         | A NA               | NA                     | NA               | NA                       | NA                       | NA I                        | NA         | NA             | NA            | NA N          | NA NA                          |
|                   | NITRATE (AS N)                          |            | 10         |               | g/L NA                   | NA         | NA             | NA         | NA             | NA         | NA                   | NA NA              |            | _            | NA             |                                                  | NA             | NA NA                            |              | _            | <del></del>                                      |                      |                      | 0.05 U                | 0.17       |             | NA NA                              | NA           | NA                     |                              | A NA               |                        | NA               | NA                       | NA                       |                             |            | 0.05 U         |               | 05 U 0.08     |                                |
|                   | NITRITE (AS N)                          |            |            |               | g/I NA                   | NA         | NA             | NA         | NA             | NA         | NA                   | NA NA              | _          | _            | NA             |                                                  | NA             | NA NA                            | _            | _            | NA                                               | NA                   |                      | 0.05 U                | 0.05 U     |             | NA NA                              | NA           | NA                     |                              | A NA               | _                      | NA               | NA                       | NA                       |                             |            | NA             |               | 05 U 0.05     |                                |
|                   | SULFATE SOLIDS, TOTAL DISSOLVED         |            |            |               | g/L NA<br>g/L NA         | NA<br>NA   | NA<br>NA       | NA<br>NA   | NA<br>NA       | NA<br>NA   | NA<br>NA             | NA NA              | _          | _            | NA<br>NA       |                                                  | NA<br>NA       | NA NA                            |              | _            | NA<br>NA                                         | NA<br>NA             | NA<br>NA             | NA<br>NA              | NA<br>NA   |             | NA NA                              | NA<br>NA     | NA<br>NA               | NA N                         | A NA NA            | _                      | NA<br>NA         | NA<br>NA                 | NA<br>NA                 |                             | _          | NA<br>NA       |               | NA N          |                                |
| SVOCs             | 1,4-DICHLOROBENZENE                     |            |            |               | yL NA                    | NA<br>NA   | NA<br>NA       | NA<br>NA   |                | NA<br>NA   | NA<br>NA             | NA NA              | _          |              | NA<br>NA       |                                                  | NA<br>NA       | NA NA                            |              |              |                                                  |                      | NA<br>NA             | NA<br>NA              |            |             | NA NA                              | NA<br>NA     | NA<br>NA               |                              | A NA               | _                      | NA<br>NA         | _                        | NA<br>NA                 |                             |            | NA<br>NA       |               | NA N          |                                |
|                   |                                         |            |            |               |                          |            |                |            |                |            |                      |                    |            |              | •              |                                                  | 1              |                                  |              |              |                                                  |                      |                      | I_                    |            |             |                                    |              |                        | 1                            |                    |                        |                  |                          |                          |                             |            |                |               |               |                                |

Notes:

Shaded cell indicates comparison standard used in data evaluation.

In splitighted cell indicates analytical result exceeds comparison criteria.

Bodd and Rolls feet indicates analytical result exceeds background value.

In Nivra to comparison sandards back on the Maximum Containance Level (MCL) established by the USEPA National Primary (

No. No constituents detected above the laboratory infirmum detection lines.

I indicates constituent was not detected above value shown.

I indicates constituent was not detected at an estimated value.

Uniformation instituent was not detected at an estimated value.

Uniformation instituent was not detected at an estimated value.

Monitoring wells, MMV-38, POAMW-48P, POAMW-18P, POAMW-18TP, POAMW-23P, POAMW-23P, POAMW-33P, POAMW

|                   |                                           |            |            |           | Location:    |                    |                  |                    |                   |                   |                   |                   | PDMW-34T          |                  |                   |                   |                  |                   |                   |                   |                   |                  |                   |                   |                   |                       | PDMW-35P                |                  |                   |                   |                  |                    |                     |
|-------------------|-------------------------------------------|------------|------------|-----------|--------------|--------------------|------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|-------------------|-------------------|------------------|-------------------|-------------------|-------------------|-------------------|------------------|-------------------|-------------------|-------------------|-----------------------|-------------------------|------------------|-------------------|-------------------|------------------|--------------------|---------------------|
|                   |                                           |            |            | Sam       | ple Date:    | 11/6/1997          | 8/9/1999         | 11/17/1999         | 2/22/2000         | 5/15/2000         | 8/22/2000         | 1/10/2001         | 7/11/2001         | 2/6/2002         | 9/12/2002         | 10/9/2002         | 2/3/2003         | 6/27/2003         | 1/29/2004         | 7/23/2004         | 9/11/2002         | 2/6/2003         | 6/26/2003         | 1/30/2004         | 7/21/2004         | 3/9/2                 | 2006                    | 4/3/2008         | 7/19/2008         | 10/7/2008         | 12/7/2009        | 6/19/2010          | 6/15/2011           |
|                   |                                           |            |            | Sam       | ple Type:    | Normal             | Normal           | Normal             | Normal            | Normal            | Normal            | Normal            | Normal            | Normal           | Normal            | Normal            | Normal           | Normal            | Normal            | Normal            | Normal            | Normal           | Normal            | Normal            | Normal            | Nor                   | mal                     | Normal           | Normal            | Normal            | Normal           | Normal             | Normal              |
|                   |                                           |            |            |           |              | PDMW-              | PDMW-            | PDMW-              | PDMW-             | PDMW-             | PDMW-             | PDMW-             | PDMW-             | PDMW-            | PDMW-             | PDMW-             | PDMW-            | PDMW-             | PDMW-             | PDMW-             | PDMW-             | PDMW-            | PDMW-             | PDMW-             | PDMW-             | PDMW-35P              | PDMW-35P                | PDMW-            | PDMW-             | PDMW-             | PDMW-            | PDMW-              |                     |
|                   |                                           |            |            | S         | ample ID:    | 34T_11/6/19<br>97  | 34T_8/9/199<br>9 | 34T_11/17/1<br>999 | 34T_2/22/20<br>00 | 34T_5/15/20<br>00 | 34T_8/22/20<br>00 | 34T_1/10/20<br>01 | 34T_7/11/20<br>01 | 34T_2/6/200<br>2 | 34T_9/12/20<br>02 | 34T_10/9/20<br>02 | 34T_2/3/200<br>3 | 34T_6/27/20<br>03 | 34T_1/29/20<br>04 | 34T_7/23/20<br>04 | 35P_9/11/20<br>02 | 35P_2/6/200<br>3 | 35P_6/26/20<br>03 | 35P_1/30/20<br>04 | 35P_7/21/20<br>04 | Filtered_3/9<br>/2006 | Unfiltered_3<br>/9/2006 | 35P_4/3/200<br>8 | 35P_7/19/20<br>08 | 35P_10/7/20<br>08 |                  | 35P_6/19/20<br>10  | PDMW-35P-<br>061511 |
| Method Group      | Analyte                                   | Background | Type 3 RRS | Type 4 RR | S Units      | Result             | Result           | Result             | Result            | Result            | Result            | Result            | Result            | Result           | Result            | Result            | Result           | Result            | Result            | Result            | Result            | Result           | Result            | Result            | Result            | Result                | Result                  | Result           | Result            | Result            | Result           | Result             | Result              |
|                   | ACENAPHTHENE                              | 1          | 2000       |           | ug/L         | 1 U                | 1 U              | 1 U                | 1 U               | 1 U               | 1 U               | 1 U               | 1 U               | 1 U              | 0.2 U             | NA                | 0.2 U            | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U            | 0.2 U             | 0.2 U             | NA .              | 0.2 U                 | 0.21 U                  | 0.26 U           | 0.19 U            | 0.19 U            | 0.19 U           | 0.19 UJ            | NA                  |
|                   | ACENAPHTHYLENE                            | 1.4        | 1          | 510       | ug/L         | 1 U                | 1 U              | 1 U                | 1 U               | 1 U               | 1 U               | 1 U               | 1 U               | 1 U              | 0.2 U             | NA                | 0.2 U            | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U            | 0.2 U             | 0.2 U             | NA                | 0.2 U                 | 0.21 U                  | 0.26 U           | 0.19 U            | 0.19 U            | 0.19 U           | 0.19 UJ            | NA                  |
|                   | ANTHRACENE                                | 0.2        | 0.2        | 5100      | ug/L         | 0.2 U              | 0.2 U            | 0.2 U              | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U            | 0.2 U             | NA                | 0.2 U            | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U            | 0.2 U             | 0.2 U             | NA                | 0.2 U                 | 0.21 U                  | 0.26 U           | 0.19 U            | 0.19 U            | 0.19 U           | 0.19 UJ            | NA                  |
|                   | BENZO(A)ANTHRACENE                        | 0.2        | 0.1        | 3.9       | ug/L         | 0.2 U              | 0.2 U            | 0.2 U              | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U            | 0.2 U             | NA                | 0.2 U            | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U            | 0.2 U             | 0.2 U             | NA                | 0.2 U                 | 0.21 U                  | 0.26 U           | 0.19 U            | 0.19 U            | 0.19 U           | 0.19 UJ            | NA                  |
|                   | BENZO(A)PYRENE                            | 0.2        | 0.2        | 0.39      | ug/L         | 0.2 U              | 0.2 U            | 0.2 U              | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U            | 0.2 U             | NA                | 0.2 U            | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U            | 0.2 U             | 0.2 U             | NA                | 0.2 U                 | 0.21 U                  | 0.26 U           | 0.19 U            | 0.19 U            | 0.19 U           | 0.19 UJ            | NA                  |
|                   | BENZO(B)FLUORANTHENE                      | 0.2        | 0.2        | 0.65      | ug/L         | 0.2 U              | 0.2 U            | 0.2 U              | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U            | 0.2 U             | NA                | 0.2 U            | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U            | 0.2 U             | 0.2 U             | NA                | 0.2 U                 | 0.21 U                  | 0.26 U           | 0.19 U            | 0.19 U            | 0.19 U           | 0.19 UJ            | NA                  |
|                   | BENZO(G,H,I)PERYLENE BENZO(K)FLUORANTHENE |            |            |           | ug/L         | 0.5 U<br>0.5 U     | NA<br>NA         | NA<br>NA           | NA<br>NA          | NA<br>NA          | NA<br>NA          | NA<br>NA          | NA<br>NA          | NA<br>NA         | 0.2 U<br>0.2 U    | NA<br>NA          | 0.2 U<br>0.2 U   | 0.2 U             | 0.2 U<br>0.2 U    | 0.2 U<br>0.2 U    | 0.2 U<br>0.2 U    | 0.2 U<br>0.2 U   | 0.2 U<br>0.2 U    | 0.2 U<br>0.2 U    | NA<br>NA          | 0.2 U<br>0.2 U        | 0.21 U<br>0.21 U        | 0.26 U<br>0.26 U | 0.19 U<br>0.19 U  | 0.19 U<br>0.19 U  | 0.19 U<br>0.19 U | 0.19 UJ<br>0.19 UJ | NA<br>NA            |
|                   | CHRYSENE                                  | 0.2        | 0.2        | 65        | ug/L         | 0.2 U              | 0.2 U            | 0.2 U              | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U            | 0.2 U             | NA NA             | 0.2 U            | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U            | 0.2 U             | 0.2 U             | NA NA             | 0.2 U                 | 0.21 U                  | 0.26 U           | 0.19 U            | 0.19 U            | 0.19 U           | 0.19 UJ            | NA NA               |
| PAHs              | DIBENZO(A,H)ANTHRACENE                    |            | 0.3        |           | ug/L         | 1 U                | NA               | NA                 | NA.               | NA.               | NA.               | NA                | NA.               | NA               | 0.2 U             | NA                | 0.2 U            | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U            | 0.2 U             | 0.2 U             | NA                | 0.2 U                 | 0.21 U                  | 0.26 U           | 0.19 U            | 0.19 U            | 0.19 U           | 0.19 UJ            | NA                  |
|                   | FLUORANTHENE                              | 0.5        | 1000       |           | ug/L         | 0.5 U              | 0.5 U            | 0.5 U              | 0.5 U             | 0.5 U             | 0.5 U             | 0.5 U             | 0.5 U             | 0.5 U            | 0.2 U             | NA                | 0.2 U            | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U            | 0.2 U             | 0.2 U             | NA                | 0.2 U                 | 0.21 U                  | 0.26 U           | 0.19 U            | 0.19 U            | 0.19 U           | 0.19 UJ            | NA                  |
|                   | FLUORENE                                  | 0.5        | 1000       |           | ug/L         | 0.5 U              | 0.5 U            | 0.5 U              | 0.5 U             | 0.5 U             | 0.5 U             | 0.5 U             | 0.5 U             | 0.5 U            | 0.2 U             | NA                | 0.2 U            | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U            | 0.2 U             | 0.2 U             | NA                | 0.2 U                 | 0.21 U                  | 0.26 U           | 0.19 U            | 0.19 U            | 0.19 U           | 0.19 UJ            | NA                  |
|                   | INDENO(1,2,3-CD)PYRENE                    |            | 0.4        |           | ug/L         | 0.5 U              | NA               | NA                 | NA                | NA                | NA                | NA                | NA                | NA               | 0.2 U             | NA                | 0.2 U            | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U            | 0.2 U             | 0.2 U             | NA                | 0.2 U                 | 0.21 U                  | 0.26 U           | 0.19 U            | 0.19 U            | 0.19 U           | 0.19 UJ            | NA                  |
|                   | 1-METHYLNAPHTHALENE                       |            |            |           | ug/L         | NA                 | NA               | NA                 | NA                | NA                | NA                | NA                | NA                | NA               | 0.2 U             | NA                | 0.2 U            | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U            | 0.2 U             | 0.2 U             | NA                | 0.2 U                 | 0.21 U                  | 0.26 U           | 0.19 U            | 0.19 U            | 0.75 U           | 0.38 UJ            | NA                  |
|                   | 2-METHYLNAPHTHALENE                       |            |            |           | ug/L         | NA                 | NA               | NA                 | NA                | NA                | NA                | NA                | NA                | NA               | 0.2 U             | NA                | 0.2 U            | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U            | 0.2 U             | 0.2 U             | NA                | 0.2 U                 | 0.21 U                  | 0.26 U           | 0.19 U            | 0.19 U            | 0.19 U           | 0.19 UJ            | NA                  |
|                   | NAPHTHALENE                               | 1 0.22     | 20         | 20        | ug/L         | 10                 | 1 U              | 1 U                | 1 U               | 1 U               | 1 U               | 1 U               | 1 U               | 1 U              | 0.2 U             | NA<br>NA          | 0.2 U            | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U            | 0.2 U             | 0.2 U             | NA<br>NA          | 0.2 U                 | 0.21 U                  | 0.26 U           | 0.19 U            | 0.19 U            | 0.19 U           | 0.19 UJ            | NA<br>NA            |
|                   | PHENANTHRENE<br>PYRENE                    | 0.22       | 1000       | 510       | ug/L<br>ug/L | 0.2 U<br>0.5 U     | 0.2 U<br>0.5 U   | 0.2 U<br>0.5 U     | 0.2 U<br>0.5 U    | 0.2 U<br>0.5 U    | 0.2 U<br>0.5 U    | 0.2 U<br>0.5 U    | 0.2 U<br>0.5 U    | 0.2 U<br>0.5 U   | 0.2 U<br>0.2 U    | NA<br>NA          | 0.2 U<br>0.2 U   | 0.2 U             | 0.2 U             | 0.2 U<br>0.2 U    | 0.2 U<br>0.2 U    | 0.2 U<br>0.2 U   | 0.2 U<br>0.2 U    | 0.2 U<br>0.2 U    | NA<br>NA          | 0.2 U<br>0.2 U        | 0.21 U<br>0.21 U        | 0.26 U<br>0.26 U | 0.19 U<br>0.19 U  | 0.19 U<br>0.19 U  | 0.19 U<br>0.19 U | 0.19 UJ<br>0.19 UJ | NA<br>NA            |
|                   | TOTAL PAHs                                |            |            | -         | ug/L         | ND                 | ND               | ND                 | ND                | ND                | ND                | ND                | ND                | ND               | ND                | NA<br>NA          | ND               | ND                | ND                | ND                | ND                | ND               | ND                | ND                | NA NA             | ND                    | 0.21 U                  | 0.26 U           | 0.19 U            | 0.19 U            | 0.19 U           | 0.19 0.0<br>ND     | NA<br>NA            |
|                   | BENZENE                                   | 1          | 5          | 31.2      | ug/L         | 1 U                | 1 U              | 1 U                | 1 U               | 1 U               | 1 U               | 1 U               | 1 U               | 1 U              | 1 U               | NA NA             | 1 U              | 1 U               | 1 U               | 1 U               | 1 U               | 1 U              | 1 U               | 10                | NA NA             | NA NA                 | 1 U                     | 1 U              | 1 U               | 1 U               | 1 U              | 1 W                | NA NA               |
|                   | ETHYLBENZENE                              | 1          | 700        |           | ug/L         | 1 U                | 1 U              | 1 U                | 1 U               | 1 U               | 1 U               | 1 U               | 1 U               | 1 U              | 1 U               | NA                | 1 U              | 1 U               | 1 U               | 1 U               | 1 U               | 1 U              | 1 U               | 1 U               | NA                | NA                    | 1 U                     | 1 U              | 1 U               | 1 U               | 1 U              | 1 W                | NA                  |
|                   | p/m-XYLENE                                |            |            |           | ug/L         | NA                 | 1 U              | 1 U                | 1 U               | 1 U               | 1 U               | 1 U               | 1 U               | NA               | NA                | NA                | NA.              | NA                | NA                | NA                | NA                | NA               | NA                | NA                | NA                | NA                    | NA                      | NA               | NA                | NA                | NA               | NA                 | NA                  |
|                   | METHYLENE CHLORIDE                        |            |            |           | ug/L         | NA                 | 5 U              | NA                 | NA                | NA                | NA                | NA                | NA                | NA               | NA                | NA                | NA               | NA                | NA                | NA                | NA                | NA               | NA                | NA                | NA                | NA                    | NA                      | NA               | NA                | NA                | NA               | NA                 | NA                  |
| VOCs              | o-XYLENE                                  |            |            |           | ug/L         | NA                 | 1 U              | 1 U                | 1 U               | 1 U               | 1 U               | 1 U               | 1 U               | NA               | NA                | NA                | NA               | NA                | NA                | NA                | NA                | NA               | NA                | NA                | NA                | NA                    | NA                      | NA               | NA                | NA                | NA               | NA                 | NA                  |
|                   | TOLUENE                                   | 1          | 1000       | 1900      | ug/L         | 1 U                | 1 U              | 1 U                | 1 U               | 1 U               | 1 U               | 1 U               | 1 U               | 1 U              | 1 U               | NA                | 1 U              | 1 U               | 1 U               | 1 U               | 1 U               | 1 U              | 1 U               | 1 U               | NA                | NA                    | 1 U                     | 1.5 U            | 1 U               | 1 U               | 1 U              | 1 W                | NA                  |
|                   | XYLENES (TOTAL)                           | 2          | 10000      |           | ug/L         | 2 U                | 1 U              | 1 U                | 1 U               | 1 U               | 1 U               | 1 U               | 1 U               | 2 U              | 2 U               | NA                | 2 U              | 2 U               | 2 U               | 2 U               | 2 U               | 2 U              | 2 U               | 2 U               | NA                | NA                    | 2 U                     | 2 U              | 2 U               | 2 U               | 2 U              | 2 W                | NA                  |
|                   | METHYL TERT BUTYL ETHER TOTAL BTEX        |            |            |           | ug/L<br>ug/L | NA<br>ND           | NA<br>ND         | NA<br>ND           | NA<br>ND          | NA<br>ND          | NA<br>ND          | NA<br>ND          | NA<br>ND          | NA<br>ND         | NA<br>ND          | NA<br>NA          | NA<br>ND         | NA<br>ND          | NA<br>ND          | NA<br>ND          | NA<br>ND          | NA<br>ND         | NA<br>ND          | NA<br>ND          | NA<br>NA          | NA<br>NA              | 10 U<br>ND              | 10 U<br>ND       | 10 U<br>ND        | NA<br>ND          | NA<br>ND         | 10 LU<br>ND        | NA<br>NA            |
|                   | ARSENIC                                   | 0.018      | 0.018      | 0.018     | mg/I         | 0.01 U             | 0.026            | 0.017 U            | 0.019             | 0.021             | 0.031             | 0.02              | 0.037             | 0.028            | 0.038             | 0.01 U            | 0.022            | 0.037             | 0.028             | 0.049             | NA NA             | 0.01 U           | 0.01 U            | 0.01 U            | 0.01 U            | 0.01 U                | 0.01 U                  | 0.01 U           | 0.01              | 0.01 U            | 0.02 U           | 0.02 U             | NA NA               |
|                   | BERYLLIUM                                 |            | 0.004      |           | mg/L         | 0.005 U            | NA .             | NA .               | NA.               | NA.               | NA                | NA .              | NA .              | NA NA            | NA .              | NA .              | NA NA            | NA NA             | NA.               | NA .              | NA NA             | NA NA            | NA NA             | NA NA             | NA.               | NA.                   | NA.                     | NA .             | NA.               | NA NA             | NA NA            | NA NA              | NA NA               |
|                   | BORON                                     |            |            |           | mg/L         | NA                 | NA               | NA                 | NA.               | NA                | NA                | NA                | NA                | NA               | NA                | NA                | NA               | NA                | NA                | NA                | NA                | NA               | NA                | NA                | NA                | NA                    | NA                      | NA               | NA                | NA                | NA               | NA                 | NA                  |
|                   | CADMIUM                                   |            | 0.005      |           | mg/L         | 0.005 U            | NA .             | NA                 | NA                | NA.               | NA                | NA                | NA                | NA               | NA                | NA                | NA.              | NA                | NA                | NA                | NA                | NA               | NA                | NA                | NA                | NA                    | NA                      | NA               | NA                | NA                | NA               | NA                 | NA                  |
|                   | CALCIUM METAL                             |            |            |           | mg/L         | NA                 | NA               | NA                 | NA                | NA.               | NA                | NA                | NA                | NA               | NA                | NA                | NA               | NA                | NA                | NA                | NA                | NA               | NA                | NA                | NA                | NA                    | NA                      | NA               | NA                | NA                | NA               | NA                 | NA                  |
|                   | CHROMIUM                                  | 0.013      | 0.1        |           | mg/L         | 0.01 U             | 0.01 U           | 0.01 U             | 0.01 U            | 0.01 U            | 0.01 U            | 0.01 U            | 0.018             | 0.01 U           | 0.01 U            | NA                | 0.01 U           | 0.01 U            | 0.01 U            | 0.01 U            | NA                | 0.01 U           | 0.01 U            | 0.01 U            | 0.01 U            | 0.01 U                | 0.01 U                  | 0.01 U           | 0.01 U            | 0.01 U            | 0.01 U           | 0.01 U             | NA                  |
| Metals, Total     | LEAD                                      | 0.007      | 0.015      | 0.015     | mg/L         | 0.005 U            | 0.005 U          | 0.005 U            | 0.005 U           | 0.005 U           | 0.005 U           | 0.16              | 0.014             | 0.005 U          | 0.005 U           | NA                | 0.005 U          | 0.005 U           | 0.005 U           | 0.005 U           | NA                | 0.005 U          | 0.005 U           | 0.005 U           | 0.005 U           | 0.005 U               | 0.005 U                 | 0.005 U          | 0.005 U           | 0.005 U           | 0.01 U           | 0.01 U             | NA                  |
|                   | MAGNESIUM                                 |            |            |           | mg/L         | NA                 | NA               | NA                 | NA                | NA.               | NA                | NA                | NA                | NA               | NA                | NA                | NA .             | NA                | NA                | NA                | NA                | NA               | NA                | NA                | NA                | NA                    | NA                      | NA               | NA                | NA                | NA               | NA                 | NA                  |
|                   | MERCURY<br>NICKEL                         | 0.13       | 0.002      |           | mg/L         | 0.0002 U<br>0.04 U | 0.04 U           | 0.04 U             | 0.04 U            | 0.04 U            | 0.04 U            | 0.04 U            | 0.04 U            | 0.04 U           | 0.04 U            | NA<br>NA          | NA<br>0.04 U     | 0.04 U            | 0.04 U            | 0.04 U            | NA<br>NA          | NA<br>0.04 U     | 0.04 U            | 0.04 U            | 0.04 U            | NA<br>0.04 U          | NA<br>0.04 U            | 0.04 U           | NA<br>0.04 U      | 0.04 U            | 0.04 U           | 0.04 U             | NA<br>NA            |
|                   | POTASSIUM                                 | 0.13       | 0.1        |           | mg/L         | 0.04 U             | 0.04 U           | 0.04 U             | 0.04 U            | 0.04 U            | 0.04 U            | 0.04 U            | 0.04 U            | 0.04 U           | 0.04 U            | NA<br>NA          | 0.04 U           | 0.04 U            | 0.04 U            | 0.04 U            | NA<br>NA          | 0.04 U           | 0.04 U            | 0.04 U            | 0.04 U            | 0.04 U                | 0.04 U                  | 0.04 U           | 0.04 U            | 0.04 U            | 0.04 U           | 0.04 U             | NA<br>NA            |
|                   | SODIUM                                    |            |            |           | mg/L         | NA NA              | NA               | NA NA              | NA.               | NA.               | NA.               | NA NA             | NA NA             | NA NA            | NA NA             | NA NA             | NA NA            | NA NA             | NA NA             | NA NA             | NA NA             | NA NA            | NA NA             | NA NA             | NA NA             | NA.                   | NA.                     | NA NA            | NA.               | NA NA             | NA NA            | NA NA              | NA NA               |
|                   | ZINC                                      | 0.96       | 2          | 31        | mg/L         | 0.02 U             | 0.02 U           | 0.02 U             | 0.02 U            | 0.02 U            | 0.02 U            | 1.9               | 0.046             | 0.02 U           | 0.02 U            | NA                | 0.02 U           | 0.02 U            | 0.02 U            | 0.02 U            | NA                | 0.02 U           | 0.025             | 0.02 U            | 0.02 U            | 0.02 U                | 0.029                   | 0.02 U           | 0.02 U            | 0.021             | 0.02 U           | 0.02 U             | NA                  |
|                   | ARSENIC                                   | 0.018      | 0.018      | 0.018     | mg/L         | NA                 | NA               | 0.01 U             | 0.01 U            | 0.01 U            | 0.01 U            | NA                | 0.01 U            | 0.01 U           | NA                | NA                | NA               | NA                | NA                | NA                | NA                | NA               | NA                | NA                | NA                | 0.01 U                | NA                      | 0.01 U           | 0.01 U            | NA                | NA               | NA                 | NA                  |
|                   | BERYLLIUM                                 |            | 0.004      |           | mg/L         | NA                 | NA               | NA                 | NA                | NA                | NA                | NA                | NA                | NA               | NA                | NA                | NA               | NA                | NA                | NA                | NA                | NA               | NA                | NA                | NA                | NA                    | NA                      | NA               | NA                | NA                | NA               | NA                 | NA                  |
|                   | CADMIUM                                   |            | 0.005      |           | mg/L         | NA                 | NA               | NA                 | NA                | NA                | NA                | NA                | NA                | NA               | NA                | NA                | NA.              | NA                | NA                | NA                | NA                | NA               | NA                | NA                | NA                | NA                    | NA                      | NA               | NA                | NA                | NA               | NA                 | NA                  |
| Metals, Dissolved | CHROMIUM                                  | 0.013      | 0.1        |           | mg/L         | NA                 | NA               | 0.01 U             | 0.01 U            | NA                | NA                | NA                | 0.01 U            | NA               | NA                | NA                | NA.              | NA                | NA                | NA .              | NA .              | NA               | NA                | NA                | NA                | 0.01 U                | NA                      | 0.01 U           | 0.01 U            | NA                | NA               | NA                 | NA                  |
|                   | LEAD                                      | 0.007      | 0.015      | 0.015     | mg/L         | NA<br>NA           | NA NA            | 0.005 U            | 0.005 U           | NA NA             | NA NA             | 0.005 U           | 0.005 U           | NA<br>NA         | NA NA             | NA<br>NA          | NA NA            | NA                | NA NA             | NA NA             | NA NA             | NA NA            | NA NA             | NA NA             | NA NA             | 0.005 U               | NA                      | 0.005 U          | 0.005 U           | NA NA             | NA NA            | NA NA              | NA<br>NA            |
|                   | MERCURY<br>NICKEL                         | 0.13       | 0.002      | 2         | mg/L<br>mg/L | NA<br>NA           | NA<br>NA         | NA<br>0.04 U       | NA<br>0.04 U      | NA<br>NA          | NA<br>NA          | NA<br>NA          | NA<br>NA          | NA<br>NA         | NA<br>NA          | NA<br>NA          | NA<br>NA         | NA<br>NA          | NA<br>NA          | NA<br>NA          | NA<br>NA          | NA<br>NA         | NA<br>NA          | NA<br>NA          | NA<br>NA          | NA<br>0.04 U          | NA<br>NA                | NA<br>0.04 U     | NA<br>0.04 U      | NA<br>NA          | NA<br>NA         | NA<br>NA           | NA<br>NA            |
|                   | ZINC                                      | 0.13       | 2          | 31        | mg/L<br>mg/L | NA<br>NA           | NA<br>NA         | 0.04 U             | 0.04 U            | NA<br>NA          | NA<br>NA          | 0.02 U            | 0.02 U            | NA<br>NA         | NA<br>NA          | NA<br>NA          | NA<br>NA         | NA<br>NA          | NA<br>NA          | NA<br>NA          | NA<br>NA          | NA<br>NA         | NA<br>NA          | NA<br>NA          | NA<br>NA          | 0.04 U                | NA<br>NA                | 0.04 U           | 0.04 U            | NA<br>NA          | NA<br>NA         | NA<br>NA           | NA<br>NA            |
|                   | ALKALINITY                                |            |            |           | mg/L         | NA NA              | NA NA            | NA NA              | NA NA             | NA NA             | NA NA             | NA NA             | NA NA             | NA NA            | NA NA             | NA NA             | NA NA            | NA.               | NA NA             | NA NA             | NA NA             | NA NA            | NA NA             | NA NA             | NA NA             | NA NA                 | NA NA                   | NA NA            | NA NA             | NA NA             | NA NA            | NA NA              | NA NA               |
|                   | ALKALINITY, TOTAL (AS CACO3)              |            |            |           | mg/L         | NA                 | NA               | NA                 | NA.               | NA                | NA                | NA.               | NA                | NA               | NA                | NA                | NA.              | NA                | NA                | NA                | NA                | NA               | NA                | NA                | NA                | NA                    | NA                      | NA               | NA                | NA                | NA               | NA                 | NA                  |
|                   | AMMONIA AS N                              | 15         | 30         | 30        | mg/L         | 1.7                | 2.6              | 2.4                | 2.4               | 2.8               | 3.4               | 2                 | 3.7               | 3.7              | 4.3               | NA                | 3.6              | 3.4               | 3.5               | 5.2               | 26                | 7.9              | 5.5               | 5.2               | 8.4               | NA                    | 1.9                     | 7.2              | 6.7               | 3.9               | 2.8              | 3.2 J              | 3.3                 |
|                   | BICARBONATE                               |            |            |           | mg/L         | NA                 | NA               | NA                 | NA                | NA                | NA                | NA                | NA                | NA               | NA                | NA                | NA.              | NA                | NA                | NA                | NA                | NA               | NA                | NA                | NA                | NA                    | NA                      | NA               | NA                | NA                | NA               | NA                 | NA                  |
| Miscellaneous     | CARBONATE                                 |            |            |           | mg/L         | NA                 | NA               | NA                 | NA                | NA                | NA                | NA                | NA                | NA               | NA                | NA                | NA               | NA                | NA                | NA                | NA                | NA               | NA                | NA                | NA                | NA                    | NA                      | NA               | NA                | NA                | NA               | NA                 | NA                  |
|                   | CONDUCTIVITY                              |            |            |           | umhos/<br>cm | NA                 | NA               | NA                 | NA                | NA                | NA                | NA                | NA                | NA               | NA                | NA                | NA.              | NA                | NA                | NA                | NA                | NA               | NA                | NA                | NA                | NA                    | NA                      | NA               | NA                | NA                | NA               | NA                 | NA                  |
|                   | NITRATE (AS N)                            |            | 10         |           | mg/L         | NA                 | NA               | NA                 | NA                | NA                | NA                | NA                | NA                | NA               | NA                | NA                | NA               | NA                | NA                | NA                | NA                | NA               | NA                | NA                | NA                | NA                    | NA                      | NA               | NA                | NA                | NA               | NA                 | NA                  |
|                   | NITRITE (AS N)                            |            |            |           | mg/l         | NA                 | NA               | NA                 | NA                | NA                | NA                | NA                | NA                | NA               | NA                | NA                | NA               | NA                | NA                | NA                | NA                | NA               | NA                | NA                | NA                | NA                    | NA                      | NA               | NA                | NA                | NA               | NA                 | NA                  |
|                   | SULFATE SOLIDS, TOTAL DISSOLVED           |            |            |           | mg/L         | NA<br>NA           | NA<br>NA         | NA<br>NA           | NA<br>NA          | NA<br>NA          | NA<br>NA          | NA<br>NA          | NA<br>NA          | NA<br>NA         | NA<br>NA          | NA<br>NA          | NA<br>NA         | NA<br>NA          | NA<br>NA          | NA<br>NA          | NA<br>NA          | NA<br>NA         | NA<br>NA          | NA<br>NA          | NA<br>NA          | NA<br>NA              | NA<br>NA                | NA<br>NA         | NA<br>NA          | NA<br>NA          | NA<br>NA         | NA<br>NA           | NA<br>NA            |
| SVOCs             | 1,4-DICHLOROBENZENE                       |            |            |           | mg/L<br>ug/L | NA<br>NA           | NA<br>NA         | NA<br>NA           | NA<br>NA          | NA<br>NA          | NA<br>NA          | NA<br>NA          | NA<br>NA          | NA<br>NA         | NA<br>NA          | NA<br>NA          | NA<br>NA         | NA<br>NA          | NA<br>NA          | NA<br>NA          | NA<br>NA          | NA<br>NA         | NA<br>NA          | NA<br>NA          | NA<br>NA          | NA<br>NA              | NA<br>NA                | NA<br>NA         | NA<br>NA          | NA<br>NA          | NA<br>NA         | NA<br>NA           | NA<br>NA            |
|                   | ı                                         |            | ·          | 1         | 1 -          |                    | 1                | 1                  | 1                 | 1                 |                   | 1                 | 1                 |                  | 1                 |                   | ıl               |                   |                   |                   |                   |                  |                   |                   |                   |                       |                         |                  |                   |                   |                  |                    |                     |

Notes:

Shaded cell indicates comparison standard used in data evaluation.

rightighted cell indicates analytical result exceeds comparison criteria.

Bold and fault tent indicates analytical result exceeds background value.

In Nara comparison standard back on the Maximum Containmant Level (MCL) established by the USEPA National Primary C

NO - No constituents detected above the laboratory minimum detection limit.

I. Indicates constituent was not detected above value shown.

I. Indicates constituent was not detected at an estimated value.

Monitoring will a MW 38, POMMY 48, POMMY 488, POMMY 118, POMMY 14TR, POMMY 23R, POMMY 318, POMMY 318, POMMY 318, POMMY 318, POMMY 318, POMMY 318, POMMY 319, POMMY 318, POMMY 318,

|                   |                                    |                          | Lo         | cation:                   |              |                  |                     |                        |                      |                        | PDMW-3                                | SP .                |                            |                         |                    |             |          |                                          |                       |                |                      |                      |                      |                        | PDM                  | IW-37P               |                      |                                    |              |                  |                     |                      |                                       |                    | PDMV            | V-38P          |                  |                                  |                  |
|-------------------|------------------------------------|--------------------------|------------|---------------------------|--------------|------------------|---------------------|------------------------|----------------------|------------------------|---------------------------------------|---------------------|----------------------------|-------------------------|--------------------|-------------|----------|------------------------------------------|-----------------------|----------------|----------------------|----------------------|----------------------|------------------------|----------------------|----------------------|----------------------|------------------------------------|--------------|------------------|---------------------|----------------------|---------------------------------------|--------------------|-----------------|----------------|------------------|----------------------------------|------------------|
|                   |                                    |                          | Sampl      | e Date: 9/12/200          | 10/9/20      | 2/5/2003         | 6/24/2003           | 1/27/2004              | 7/21/2004            | 3/8/2006               | 4/2/2008 7/22/200                     | 8 1                 | 0/7/2008                   | 12/3/2009               | 5/15/2010          | 12/14/2010  | 6/14/20  | 011 12/8/2011                            | 9/13/2002             | 10/9/2002      | 2/5/2003             | 6/26/2003            | 1/29/2004            | 7/22/2004              | 3/8/2006             | 4/2/2008             | 7/22/                | 2008 10/7/                         | 008 12/2/2   | 009 6/16/2010    | 6/14/2011           | 9/12/2002            | 2/5/2003 6/24/2003                    | 1/27/200           | 7/21/2004       | 3/8/2006       | 4/4/2008 7       | 7/22/2008 10/7/20                | 08 12/2/2009     |
|                   |                                    |                          | Sampl      | e Type: Norma             | I Norma      | al Normal        | Normal              | Normal                 | Normal               | Normal                 | Normal Norma                          | Norma               | Dup                        | Normal                  | Normal             | Normal      | Norma    | al Normal                                | Normal                | Normal         | Normal               | Normal               | Normal               | Normal                 | Normal               | Normal               | Normal               | Dup Nor                            | nal Norr     | nal Normal       | Normal              | Normal               | Normal Normal                         | Norma              | l Normal        | Normal         | Normal           | Normal Norma                     | ıl Normal        |
|                   |                                    |                          | Sar        | PDMW<br>nple ID: 36P_9/12 | /20 36P_10/9 | 9/20 36P_2/5/200 | PDMW-<br>36P_6/24/2 | PDMW-<br>0 36P_1/27/20 | PDMW-<br>36P_7/21/20 | PDMW-<br>0 36P_3/8/200 | PDMW- PDMW<br>36P_4/2/200 36P_7/22    | PDMW<br>20 36P_10/7 | PDMW-36P-<br>20 DUP_10/7/2 | PDMW-<br>36_12/3/200 36 | PDMW-<br>P_6/15/20 | 36P 12/14/2 | W-36P- P | PDMW-36P-<br>061411FF PDMW-<br>36P_12082 | PDMW-<br>0 37P_9/13/2 | 20 37P_10/9/20 | PDMW-<br>37P_2/5/200 | PDMW-<br>37P_6/26/20 | PDMW-<br>37P_1/29/20 | PDMW-<br>0 37P_7/22/20 | PDMW-<br>37P_3/8/200 | PDMW-<br>37P_4/2/200 | PDMW-<br>37P_7/22/20 | PDWM-37P PDN<br>DUP_7/22/20 37P_10 | /7/20 37P_12 | /2/20 37P_6/16/2 | PDMW-37P-<br>061411 | PDMW-<br>38P_9/12/20 | PDMW-<br>38P_2/5/200 38P_6/24/3       | PDMW<br>0 38P_1/27 | /20 38P_7/21/20 | 38P_3/8/200 38 | P_4/4/200 38     |                                  | 7/20 38P_12/2/20 |
|                   |                                    |                          |            | 02                        | 02           |                  | 03                  | 04                     | 04                   | 6                      | 8 08                                  | 08                  | 08                         | 9                       | 10                 | 010         |          |                                          | 02                    | 02             | 3                    | 03                   | 04                   | 04                     | 6                    | 8                    | 80                   | 08 0                               |              |                  |                     | 02                   | 3 03                                  | 04                 | 04              | 6              | 8                | 08 08                            |                  |
| Method Group      | Analyte                            | Background Type 3 RRS    | Type 4 RRS |                           |              |                  | Result              | Result                 | Result               | Result                 | Result Result                         |                     |                            | Result                  | Result             | Result Re   | sult     | Result Result                            | Result                |                | Result               | Result               | Result               | Result                 | Result               | Result               | Result               | Result Res                         |              |                  | Result              | Result               | Result Result                         | Result             |                 |                |                  | Result Resul                     |                  |
|                   | ACENAPHTHENE<br>ACENAPHTHYLENE     | 1 2000                   | 510        | ug/L 0.2 U                | NA<br>NA     | 0.2 U<br>0.2 U   | 0.2 U<br>0.2 U      | 0.2 U<br>0.2 U         | 0.2 U<br>0.2 U       | 0.19 U<br>0.19 U       | 0.19 U 0.2 U<br>0.19 U 0.2 U          | 0.2 U<br>0.2 U      | 0.2 U                      | 0.19 U<br>0.19 U        | 0.19 U<br>0.19 U   | NA I        | NA<br>NA | NA NA                                    | NA<br>NA              | NA<br>NA       | 0.2 U<br>0.2 U       | 0.2 U<br>0.2 U       | 0.2 U<br>0.2 U       | 0.2 U<br>0.2 U         | 0.19 U               | 0.19 U<br>0.19 U     | 0.19 U<br>0.19 U     | 0.19 U 0.2<br>0.19 U 0.2           |              |                  | NA<br>NA            | 0.25<br>0.2 U        | 0.2 U 0.2 U                           | 0.2 U              | _               |                | 0.19 U<br>0.19 U | 0.2 U 0.2 U<br>0.2 U 0.2 U       |                  |
|                   | ANTHRACENE                         | 0.2 0.2                  | 5100       | ug/L 0.2 U                | NA.          | 0.2 U            | 0.2 U               | 0.2 U                  | 0.2 U                | 0.19 U                 | 0.19 U 0.2 U                          | 0.2 U               | _                          | 0.19 U                  | 0.19 U             | NA I        | NA NA    | NA NA                                    | NA NA                 | NA NA          | 0.2 U                | 0.2 U                | 0.2 U                | 0.2 U                  | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U 0.2                         | _            |                  | NA.                 | 0.2 U                | 0.2 U 0.2 U                           | 0.2 U              |                 | 0.19 U         | 0.19 U           | 0.2 U 0.2 U                      |                  |
|                   | BENZO(A)ANTHRACENE                 | 0.2 0.1                  | 3.9        | ug/L 0.2 U                | NA.          | _                | 0.2 U               | 0.2 U                  | 0.2 U                | 0.19 U                 | 0.19 U 0.2 U                          | 0.2 U               |                            | 0.19 U                  | 0.19 U             | NA I        | NA .     | NA NA                                    | NA.                   | NA             | 0.2 U                | 0.2 U                | 0.2 U                | 0.2 U                  | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U 0.2                         |              |                  | NA                  | 0.2 U                | 0.2 U 0.2 U                           | 0.2 U              | _               |                | 0.19 U           | 0.2 U 0.2 U                      |                  |
|                   | BENZO(A)PYRENE                     | 0.2 0.2                  | 0.39       | ug/L 0.2 U                | NA           | 0.2 U            | 0.2 U               | 0.2 U                  | 0.2 U                | 0.19 U                 | 0.19 U 0.2 UJ                         | 0.2 U               | 0.2 U                      | 0.19 U                  | 0.19 U             | NA I        | NA       | NA NA                                    | NA                    | NA             | 0.2 U                | 0.2 U                | 0.2 U                | 0.2 U                  | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U 0.2                         | U 0.19       | U 0.19 U         | NA                  | 0.2 U                | 0.2 U 0.2 U                           | 0.2 U              | 0.2 U           | 0.19 U         | 0.19 U           | 0.2 U 0.2 U                      | J 0.19 U         |
|                   | BENZO(B)FLUORANTHENE               | 0.2 0.2                  | 0.65       | ug/L 0.2 U                | NA           | 0.2 U            | 0.2 U               | 0.2 U                  | 0.2 U                | 0.19 U                 | 0.19 U 0.2 U                          | 0.2 U               | 0.2 U                      | 0.19 U                  | 0.19 U             | NA I        | NA       | NA NA                                    | NA                    | NA             | 0.2 U                | 0.2 U                | 0.2 U                | 0.2 U                  | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U 0.2                         | U 0.19       | U 0.19 U         | NA                  | 0.2 U                | 0.2 U 0.2 U                           | 0.2 U              | 0.2 U           | 0.19 U         | 0.19 U           | 0.2 U 0.2 U                      | J 0.19 U         |
|                   | BENZO(G,H,I)PERYLENE               |                          |            | ug/L 0.2 U                | NA           | 0.2 U            | 0.2 U               | 0.2 U                  | 0.2 U                | 0.19 U                 | 0.19 U 0.2 UJ                         | 0.2 U               | 0.2 U                      | 0.19 U                  | 0.19 U             | NA I        | NA       | NA NA                                    | NA                    | NA             | 0.2 U                | 0.2 U                | 0.2 U                | 0.2 U                  | 0.19 U               | 0.19 U               | 0.19 W               | 0.19 U 0.2                         | U 0.19       | U 0.19 U         | NA                  | 0.2 U                | 0.2 U 0.2 U                           | 0.2 U              | 0.2 U           | 0.19 U         | 0.19 U           | 0.2 UJ 0.2 U                     | J 0.19 U         |
|                   | BENZO(K)FLUORANTHENE               |                          |            | ug/L 0.2 U                | NA           | 0.2 U            | 0.2 U               | 0.2 U                  | 0.2 U                | 0.19 U                 | 0.19 U 0.2 UJ                         | 0.2 U               | 0.2 U                      | 0.19 U                  | 0.19 U             | NA I        | NA       | NA NA                                    | NA                    | NA             | 0.2 U                | 0.2 U                | 0.2 U                | 0.2 U                  | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U 0.2                         | U 0.19       | U 0.19 U         | NA                  | 0.2 U                | 0.2 U 0.2 U                           | 0.2 U              | 0.2 U           | 0.19 U         | 0.19 U           | 0.2 U 0.2 U                      | J 0.19 U         |
|                   | CHRYSENE                           | 0.2 0.2                  | 65         | ug/L 0.2 U                |              | _                | 0.2 U               | 0.2 U                  | 0.2 U                | 0.19 U                 | 0.19 U 0.2 U                          | 0.2 U               |                            | 0.19 U                  | 0.19 U             | NA I        | NA       | NA NA                                    | NA                    | NA             | 0.2 U                | 0.2 U                | 0.2 U                | 0.2 U                  | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U 0.2                         | U 0.19       | U 0.19 U         | NA                  | 0.2 U                | 0.2 U 0.2 U                           | 0.2 U              |                 |                | 0.19 U           | 0.2 U 0.2 U                      |                  |
| PAHs              | DIBENZO(A,H)ANTHRACENE             | 0.3                      |            | ug/L 0.2 U                | _            | _                | 0.2 U               | 0.2 U                  | 0.2 U                | 0.19 U                 | 0.19 U 0.2 UJ                         |                     |                            | 0.19 U                  | 0.19 U             |             | NA       | NA NA                                    | NA                    | NA             | 0.2 U                | 0.2 U                | 0.2 U                | 0.2 U                  | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U 0.2                         |              |                  | NA                  | 0.2 U                | 0.2 U 0.2 U                           | 0.2 U              | _               |                |                  | 0.2 U 0.2 U                      |                  |
|                   | FLUORANTHENE                       | 0.5 1000                 |            | ug/L 0.2 U                | NA           |                  | 0.2 U               | 0.2 U                  | 0.2 U                | 0.19 U                 | 0.19 U 0.2 U                          | 0.2 U               |                            | 0.19 U                  | 0.19 U             |             | NA       | NA NA                                    | NA                    | NA             | 0.2 U                | 0.2 U                | 0.2 U                | 0.2 U                  | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U 0.2                         |              |                  | NA                  | 0.2 U                | 0.2 U 0.2 U                           | 0.2 U              |                 | 0.19 U         | 0.19 U           | 0.2 U 0.2 U                      |                  |
|                   | FLUORENE<br>INDENO(1.2.3-CD)PYRENE | 0.5 1000                 |            | ug/L 0.2 U                | _            |                  | 0.2 U               | 0.2 U<br>0.2 U         | 0.2 U<br>0.2 U       | 0.19 U<br>0.19 U       | 0.19 U 0.2 U<br>0.19 U 0.2 UJ         | 0.2 U               | _                          | 0.19 U*                 | 0.19 U<br>0.19 U   |             | NA<br>NA | NA NA                                    | NA<br>NA              | NA<br>NA       | 0.2 U                | 0.2 U<br>0.2 U       | 0.2 U                | 0.2 U                  | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U 0.2                         |              |                  | NA<br>NA            | 0.2 U                | 0.2 U 0.2 U<br>0.2 U 0.2 U            | 0.2 U              |                 | -              | 0.19 U           | 0.2 U 0.2 U                      |                  |
|                   | 1-METHYLNAPHTHALENE                | 0.4                      |            | ug/L 0.2 U                | NA<br>NA     |                  | 0.2 U<br>0.2 U      | 0.2 U                  | 0.2 U                | 0.19 U                 | 0.19 U 0.2 UJ<br>0.19 U 0.2 UJ        | 0.2 U<br>0.2 U      |                            | 0.19 U<br>0.75 U        | 0.19 U             |             | NA<br>NA | NA NA                                    | NA<br>NA              | NA<br>NA       | 0.2 U<br>0.2 U       | 0.2 U                | 0.2 U                | 0.2 U                  | 0.19 0               | 0.19 U               | 0.19 U               | 0.19 U 0.2<br>0.19 U 0.2           |              |                  | NA<br>NA            | 0.2 U<br>0.2 U       | 0.2 U 0.2 U                           | 0.2 U              | _               |                | 0.19 U<br>0.19 U | 0.2 U 0.2 U<br>0.2 U 0.2 U       |                  |
|                   | 2-METHYLNAPHTHALENE                |                          |            | ug/L 0.2 U                | NA.          | 0.2 U            | 0.2 U               | 0.2 U                  | 0.2 U                | 0.19 U                 | 0.19 U 0.2 UJ                         | 0.2 U               | _                          | 0.19 U                  | 0.19 U             |             | NA.      | NA NA                                    | NA.                   | NA.            | 0.2 U                | 0.2 U                | 0.2 U                | 0.2 U                  | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U 0.2                         |              |                  | NA.                 | 0.2 U                | 0.2 U 0.2 U                           | 0.2 U              |                 | 0.19 U         | 0.19 U           | 0.2 U 0.2 U                      |                  |
|                   | NAPHTHALENE                        | 1 20                     | 20         | ug/L 0.2 U                | NA.          | _                | 0.2 U               | 0.2 U                  | 0.2 U                | 0.19 U                 | 0.19 U 0.2 UJ                         | 0.2 U               | _                          | 0.19 U                  | 0.19 U             | NA I        | NA .     | NA NA                                    | NA.                   | NA             | 0.2 U                | 0.2 U                | 0.2 U                | 0.2 U                  | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U 0.2                         | U 0.19       | U 0.19 U         | NA                  | 0.2 U                | 0.2 U 0.2 U                           | 0.2 U              | _               |                | 0.19 U           | 0.2 U 0.2 U                      |                  |
|                   | PHENANTHRENE                       | 0.22 0.2                 | 510        | ug/L 0.2 U                | NA           | 0.2 U            | 0.2 U               | 0.2 U                  | 0.2 U                | 0.19 U                 | 0.19 U 0.2 U                          | 0.2 U               | 0.2 U                      | 0.19 U                  | 0.19 U             | NA I        | NA       | NA NA                                    | NA                    | NA             | 0.2 U                | 0.2 U                | 0.2 U                | 0.2 U                  | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U 0.2                         | U 0.19       | U 0.19 U         | NA                  | 0.2 U                | 0.2 U 0.2 U                           | 0.2 U              | 0.2 U           | 0.19 U         | 0.19 U           | 0.2 U 0.2 U                      | J 0.19 U         |
|                   | PYRENE                             | 0.5 1000                 |            | ug/L 0.2 U                | NA           | 0.2 U            | 0.2 U               | 0.2 U                  | 0.2 U                | 0.19 U                 | 0.19 U 0.2 U                          | 0.2 U               | 0.2 U                      | 0.19 U                  | 0.19 U             | NA I        | NA       | NA NA                                    | NA                    | NA             | 0.2 U                | 0.2 U                | 0.2 U                | 0.2 U                  | 0.19 U               | 0.19 U               | 0.19 U               | 0.19 U 0.2                         | U 0.19       | U 0.19 U         | NA                  | 0.2 U                | 0.2 U 0.2 U                           | 0.2 U              | 0.2 U           | 0.19 U         | 0.19 U           | 0.2 U 0.2 U                      | 0.19 U           |
|                   | TOTAL PAHs                         |                          |            | ug/L ND                   | NA           | ND               | ND                  | ND                     | ND                   | ND                     | ND ND                                 | ND                  | ND                         | ND                      | ND                 | NA I        | NA       | NA NA                                    | NA                    | NA             | ND                   | ND                   | ND                   | ND                     | ND                   | ND                   | ND                   | ND N                               | ) NE         | ND               | NA                  | 0.25                 | 0.2 ND                                | ND                 | ND              | ND             | ND               | ND ND                            | ND               |
|                   | BENZENE                            | 1 5                      | 31.2       | ug/L 1 U                  | NA           | 1 U              | 1 U                 | 1 U                    | 1 U                  | 1 U                    | 1U 1U                                 | 1 U                 | 1 U                        | 1 U                     | 1 U                | NA I        | NA       | NA NA                                    | 1 U                   | NA             | 1 U                  | 1 U                  | 1 U                  | 1 U                    | 1 U                  | 1 U                  | 1 U                  | 1 U 1                              | J 11         | 1 U              | NA                  | 1 U                  | 10 10                                 | 1 U                | 1 U             | 1 U            | 1 U              | 10 10                            | 1 U              |
|                   | ETHYLBENZENE                       | 1 700                    |            | ug/L 1 U                  | NA           |                  | 1 U                 | 1 U                    | 1 U                  | 1 U                    | 1U 1U                                 | 1 U                 | 1 U                        | 1 U                     | 1 U                | NA I        | NA       | NA NA                                    | 1 U                   | NA             | 1 U                  | 1 U                  | 1 U                  | 1 U                    | 1 U                  | 1 U                  | 1 U                  | 1 U 1                              | _            | _                | NA                  | 1 U                  | 10 10                                 | 1 U                | _               | 1 U            | 1 U              | 10 10                            | 1 U              |
|                   | p/m-XYLENE                         |                          |            | ug/L NA                   | NA           | NA               | NA                  | NA                     | NA                   | NA                     | NA NA                                 | NA                  | NA                         | NA                      | NA                 | NA I        | NA       | NA NA                                    | NA                    | NA             | NA                   | NA                   | NA                   | NA                     | NA                   | NA                   | NA                   | NA N                               | . NA         | . NA             | NA                  | NA                   | NA NA                                 | NA                 | NA              | NA             | NA               | NA NA                            | NA               |
|                   | METHYLENE CHLORIDE                 |                          |            | ug/L NA                   | NA           | NA               | NA<br>NA            | NA                     | NA                   | NA                     | NA NA                                 | NA                  | NA                         | NA                      | NA                 | NA I        | NA       | NA NA                                    | NA                    | NA<br>NA       | NA                   | NA                   | NA                   | NA                     | NA                   | NA                   | NA                   | NA N                               | N/           | NA               | NA                  | NA                   | NA NA                                 | NA                 | NA              | NA             | NA               | NA NA                            | NA               |
| VOCs              | TOLUENE                            | 1 1000                   | 1000       | ug/L NA                   | NA<br>NA     |                  | NA<br>1 U           | NA<br>1 U              | NA<br>1 U            | NA<br>1 U              | NA NA                                 | NA                  | NA 111                     | NA<br>1 U               | NA<br>1.II         | NA I        | NA<br>NA | NA NA                                    | NA<br>1 U             | NA<br>NA       | NA<br>1 U            | NA<br>1 U            | NA<br>1 U            | NA<br>1 U              | NA 111               | NA<br>111            | NA 111               | NA N                               |              | NA 1 U           | NA<br>NA            | NA<br>1 U            | NA NA                                 | NA<br>1 U          | NA<br>1 U       | NA<br>1 U      | NA<br>1 U        | NA NA                            | NA 111           |
|                   | XYLENES (TOTAL)                    | 2 10000                  | 1500       | ug/L 10                   | NA.          | 2 U              | 2 U                 | 2 U                    | 2 U                  | 2 U                    | 211 211                               | 211                 | 2 U                        | 2 U                     | 2 U                | NA I        | NA.      | NA NA                                    | 211                   | NA NA          | 2 U                  | 2 U                  | 2 U                  | 2 U                    | 211                  | 211                  | 211                  | 2 U 2                              |              |                  | NA.                 | 211                  | 2U 2U                                 | 2 U                | 2 U             | 2 U            | 2 U              | 20 20                            | 2 U              |
|                   | METHYL TERT BUTYL ETHER            |                          |            | ug/L NA                   | NA.          | _                | NA NA               | NA NA                  | NA.                  | 10 U                   | 10 U 10 U                             | NA.                 | NA NA                      | NA NA                   | 10 U               | NA I        | NA .     | NA NA                                    | NA NA                 | NA NA          | NA .                 | NA NA                | NA NA                | NA.                    | 10 U                 | 65                   | 10 U                 | 10 U N                             | . NA         | 10 U             | NA NA               | NA.                  | NA NA                                 | NA.                | NA NA           | 10 U           | 10 U             | 10 U NA                          | NA NA            |
|                   | TOTAL BTEX                         |                          |            | ug/L ND                   | NA           | ND               | ND                  | ND                     | ND                   | ND                     | ND ND                                 | ND                  | ND                         | ND                      | ND                 | NA I        | NA       | NA NA                                    | ND                    | NA             | ND                   | ND                   | ND                   | ND                     | ND                   | ND                   | ND                   | ND N                               | ) NE         | ND               | NA                  | ND                   | ND ND                                 | ND                 | ND              | ND             | ND               | ND ND                            | ND               |
|                   | ARSENIC                            | 0.018 0.018              | 0.018      | mg/L <b>0.064</b>         | 0.01 U       | J 0.013          | 0.018               | 0.013                  | 0.018                | 0.01 U                 | 0.01 0.01 U                           | 0.032               | 0.03                       | 0.02 U                  | 0.02 U             | 0.018 U 0.0 | )72 U    | NA 0.018 U                               | 0.057                 | 0.032          | 0.036                | 0.028                | 0.031                | 0.01 U                 | 0.01 U               | 0.01 U               | 0.01 U               | 0.01 U 0.01                        | U 0.02       | U 0.02 U         | 0.018 U             | 0.014                | 0.01 U 0.01 U                         | 0.01 U             | 0.01 U          | 0.01 U         | 0.01 U           | 0.01 U 0.01 U                    | U 0.02 U         |
|                   | BERYLLIUM                          | 0.004                    |            | mg/L NA                   | NA           | NA               | NA                  | NA                     | NA                   | NA                     | NA NA                                 | NA.                 | NA                         | NA                      | NA                 | NA I        | NA       | NA NA                                    | NA                    | NA             | NA                   | NA                   | NA                   | NA                     | NA                   | NA                   | NA                   | NA N                               | N/           | . NA             | NA                  | NA                   | NA NA                                 | NA                 | NA              | NA             | NA               | NA NA                            | NA               |
|                   | BORON                              |                          |            | mg/L NA                   | NA           | NA               | NA                  | NA                     | NA                   | NA                     | NA NA                                 | NA                  | NA                         | NA                      | NA                 | NA I        | NA       | NA NA                                    | NA                    | NA             | NA                   | NA                   | NA                   | NA                     | NA                   | NA                   | NA                   | NA N                               | N/           | . NA             | NA                  | NA                   | NA NA                                 | NA                 | NA              | NA             | NA               | NA NA                            | NA               |
|                   | CADMIUM                            | 0.005                    |            | mg/L NA                   | NA           | _                | NA                  | NA                     | NA                   | NA                     | NA NA                                 | NA                  | NA                         | NA                      | NA                 | NA I        | NA       | NA NA                                    | NA                    | NA             | NA                   | NA                   | NA                   | NA                     | NA                   | NA                   | NA                   | NA N                               |              |                  | NA                  | NA                   | NA NA                                 | NA                 | NA              | NA             | NA               | NA NA                            | _                |
|                   | CALCIUM METAL                      |                          |            | mg/L NA                   | NA           | _                | NA                  | NA                     | NA                   | NA                     | NA NA                                 | NA                  | NA NA                      | NA                      | NA                 | NA I        | NA       | NA NA                                    | NA                    | NA             | NA                   | NA                   | NA                   | NA                     | NA                   | NA                   | NA                   | NA N                               | _            | _                | NA                  | NA                   | NA NA                                 | NA                 | NA              | NA             | NA               | NA NA                            | _                |
| Metals, Total     | CHROMIUM                           | 0.013 0.1<br>0.007 0.015 | 0.015      | mg/L 0.01 U               | J NA         | _                | 0.01 U<br>0.005 U   | 0.01 U<br>0.005 U      | 0.01 U<br>0.005 U    | 0.01 U<br>0.005 U      | 0.01 U 0.01 U<br>0.005 U 0.005 U      | 0.01 U<br>0.005 U   | 0.01 U<br>0.005 U          | 0.01 U                  | 0.01 U<br>0.01 U   | NA I        | NA<br>NA | NA NA                                    | 0.039                 | NA<br>NA       | 0.01 U<br>0.005 U    | 0.01 U<br>0.0067     | 0.01 U<br>0.005 U    | 0.01 U                 | 0.01 U               | 0.01 U<br>0.005 U    | 0.01 U<br>0.005 U    | 0.01 U 0.01<br>0.005 U 0.00        | -            |                  | 0.01 U              | 0.01 U<br>0.005 U    | 0.01 U 0.01 U<br>0.005 U 0.005 U      | 0.01 U<br>0.005 L  |                 |                |                  | 0.01 U 0.01 U<br>0.005 U 0.005 U |                  |
| metals, rotal     | MAGNESIUM                          | 0.007 0.015              | 0.015      | mg/L 0.005 C              | NA NA        | _                | 0.005 U             | 0.005 U                | 0.005 U              | 0.005 G                | NA NA                                 | 0.005 C             | 0.005 U                    | 0.01 U<br>NA            | NA.                |             | NA<br>NA | NA NA                                    | NA                    | NA<br>NA       | 0.005 U              | 0.0067<br>NA         | 0.006 U              | 0.008 U                | 0.005 U              | 0.005 U              | NA.                  | 0.005 U 0.00                       |              |                  | NA.                 | 0.005 U              | NA NA                                 | 0.005 C            | 0.005 U         | 0.005 U        | 0.005 U          | NA NA                            |                  |
|                   | MERCURY                            | 0.002                    |            | mg/L NA                   | NA.          |                  | NA                  | NA.                    | NA.                  | NA.                    | NA NA                                 | NA.                 | NA.                        | NA NA                   | NA NA              |             | NA .     | NA NA                                    | NA NA                 | NA NA          | NA NA                | NA NA                | NA.                  | NA.                    | NA.                  | NA .                 | NA.                  | NA N                               | _            | _                | NA NA               | NA.                  | NA NA                                 | NA.                | NA NA           | NA NA          | NA               | NA NA                            |                  |
|                   | NICKEL                             | 0.13 0.1                 | 2          | mg/L 0.04 U               | NA           | 0.04 U           | 0.04 U              | 0.04 U                 | 0.04 U               | 0.04 U                 | 0.04 U 0.04 U                         | 0.04 U              | 0.04 U                     | 0.04 U                  | 0.04 U             | NA I        | NA       | NA NA                                    | 0.04 U                | NA             | 0.04 U               | 0.04 U               | 0.04 U               | 0.04 U                 | 0.04 U               | 0.04 U               | 0.04 U               | 0.04 U 0.04                        | U 0.04       | U 0.04 U         | NA NA               | 0.04 U               | 0.04 U 0.04 U                         | 0.04 U             | 0.04 U          | 0.04 U         | 0.04 U           | 0.04 U 0.04 U                    | U 0.04 U         |
|                   | POTASSIUM                          |                          |            | mg/L NA                   | NA           | NA NA            | NA                  | NA                     | NA                   | NA                     | NA NA                                 | NA                  | NA                         | NA                      | NA                 | NA I        | NA       | NA NA                                    | NA                    | NA             | NA                   | NA                   | NA                   | NA                     | NA                   | NA                   | NA                   | NA N                               | N/           | . NA             | NA                  | NA                   | NA NA                                 | NA                 | NA              | NA             | NA               | NA NA                            | NA NA            |
|                   | SODIUM                             |                          |            | mg/L NA                   | NA           | NA               | NA                  | NA                     | NA                   | NA                     | NA NA                                 | NA                  | NA                         | NA                      | NA                 | NA I        | NA       | NA NA                                    | NA                    | NA             | NA                   | NA                   | NA                   | NA                     | NA                   | NA                   | NA                   | NA N                               | N/           | . NA             | NA                  | NA                   | NA NA                                 | NA                 | NA              | NA             | NA               | NA NA                            | NA               |
|                   | ZINC                               | 0.96 2                   | 31         | mg/L 0.095                | NA           | 0.02 U           | 0.065               | 0.057                  | 0.02 U               | 0.02 U                 | 0.038 0.02 U                          | 0.053               | 0.06                       | 0.048                   | 0.02 U             | NA I        | NA       | NA NA                                    | 0.22                  | NA             | 0.02 U               | 0.02 U               | 0.02 U               | 0.02 U                 | 0.02 U               | 0.02 U               | 0.02 U               | 0.02 U 0.00                        | U 0.02       | U 0.02 U         | NA                  | 0.045                | 0.02 U 0.02 U                         | 0.02 U             | 0.02 U          | 0.02 U         | 0.02 U           | 0.02 U 0.02 U                    | U 0.02 U         |
|                   | ARSENIC                            | 0.018 0.018              | 0.018      | mg/L NA                   | NA           | _                | NA                  | NA                     | NA                   | NA                     | NA NA                                 | NA                  | NA                         | NA NA                   | 0.021              |             | NA       | 0.072 U 0.018 U                          | NA                    | NA             | NA                   | NA                   | NA                   | NA                     | NA                   | NA                   | NA                   | NA N                               | _            |                  | NA                  | NA                   | NA NA                                 | NA                 | NA              | NA             | NA               | NA NA                            |                  |
|                   | BERYLLIUM                          | 0.004                    |            | mg/L NA                   | -            | -                | NA                  | NA                     | NA                   | NA                     | NA NA                                 | NA                  | _                          | NA                      | NA                 |             | NA       | NA NA                                    | NA                    | NA             | NA                   | NA                   | NA                   | NA                     | NA                   | NA                   | NA                   |                                    | . NA         |                  | NA                  | NA                   | NA NA                                 | NA                 | NA              | NA             | NA               | NA NA                            |                  |
|                   | CADMIUM                            | 0.005<br>0.013 0.1       |            | mg/L NA                   | NA<br>NA     | _                | NA<br>NA            | NA<br>NA               | NA<br>NA             | NA<br>NA               | NA NA                                 | NA<br>NA            | _                          | NA<br>NA                | 0.01 U             |             | NA<br>NA | NA NA                                    | NA<br>NA              | NA<br>NA       | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA N                               | _            |                  | NA<br>NA            | NA<br>NA             | NA NA                                 | NA<br>NA           | NA<br>NA        | NA<br>NA       | NA<br>NA         | NA NA                            |                  |
| Metals, Dissolved | LEAD                               | 0.013 0.1<br>0.007 0.015 | 0.015      | mg/L NA                   |              | _                | NA<br>NA            | NA<br>NA               | NA<br>NA             | NA<br>NA               | NA NA                                 | NA<br>NA            |                            |                         | 0.01 U             |             | NA<br>NA | NA NA                                    | NA<br>NA              | NA<br>NA       | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA             | NA<br>NA             | NA<br>NA             |                                    | . NA         | _                | NA<br>NA            | NA<br>NA             | NA NA                                 | NA<br>NA           | NA<br>NA        | NA<br>NA       |                  | NA NA                            |                  |
|                   | MERCURY                            | 0.002                    |            | mg/L NA                   |              | _                | NA NA               | NA NA                  | NA NA                | NA NA                  | NA NA                                 |                     | _                          | NA NA                   | NA NA              |             | NA .     | NA NA                                    | NA NA                 | NA NA          | NA NA                | NA NA                | NA NA                | NA NA                  | NA NA                | NA NA                | NA NA                | NA N                               | _            | _                | NA NA               | NA NA                | NA NA                                 | NA NA              | _               | NA NA          |                  | NA NA                            |                  |
|                   | NICKEL                             | 0.13 0.1                 |            | mg/L NA                   |              | _                | NA                  | NA NA                  | NA                   | NA                     | NA NA                                 |                     |                            |                         | 0.04 U             |             | NA       | NA NA                                    | NA                    | NA NA          | NA                   | NA NA                | NA NA                | NA.                    | NA                   | NA NA                | NA.                  |                                    | N/           | _                | NA NA               | NA                   | NA NA                                 | NA.                |                 | NA NA          |                  | NA NA                            |                  |
|                   | ZINC                               | 0.96 2                   | 31         | mg/L NA                   | NA           | NA NA            | NA.                 | NA                     | NA                   | NA                     | NA NA                                 | NA                  | NA                         | NA                      | 0.02 U             | NA I        | NA       | NA NA                                    | NA                    | NA             | NA                   | NA                   | NA                   | NA                     | NA                   | NA                   | NA                   | NA N                               | . NA         | NA NA            | NA                  | NA                   | NA NA                                 | NA                 | NA              | NA             | NA               | NA NA                            | NA               |
|                   | ALKALINITY                         |                          |            | mg/L NA                   | NA           | NA               | NA                  | NA                     | NA                   | NA                     | NA NA                                 | NA                  | NA                         | NA                      | NA                 | NA I        | NA       | NA NA                                    | NA                    | NA             | NA                   | NA                   | NA                   | NA                     | NA                   | NA                   | NA                   | NA N                               | N/           | . NA             | NA                  | NA                   | NA NA                                 | NA                 | NA              | NA             | NA               | NA NA                            | NA               |
|                   | ALKALINITY, TOTAL (AS CACO3)       |                          |            | mg/L NA                   | _            | _                | NA                  | NA                     | NA                   | NA                     | NA NA                                 | NA                  | _                          | NA                      | NA                 |             | NA       | NA NA                                    | NA                    | NA             | NA                   | NA                   | NA                   | NA                     | NA                   | NA                   | NA                   |                                    | . NA         |                  | NA                  | NA                   | NA NA                                 | NA                 |                 | NA             |                  | NA NA                            |                  |
|                   | AMMONIA AS N                       | 15 30                    | 30         | mg/L 12                   |              | _                | 3.8                 | 4.8                    | 9.2                  | 3.9                    | 7.5 3.7                               |                     |                            | 3                       | 6.8                |             | NA       | NA NA                                    | 16                    | NA             | 21                   | 15                   | 19                   | 7.4                    | 1.1                  | 1.9                  | 7.9                  |                                    | 0.6          |                  |                     | 15                   | 17 10                                 | 13                 | _               |                | 8.6              | 13 13                            |                  |
|                   | BICARBONATE                        |                          |            | mg/L NA                   |              | _                | NA                  | NA                     | NA                   | NA                     | NA NA                                 | NA                  |                            | NA                      | NA                 |             | NA       | NA NA                                    | NA                    | NA             | NA                   | NA                   | NA                   | NA                     | NA                   | NA                   | NA                   | NA N                               |              |                  | NA                  | NA                   | NA NA                                 | NA                 | _               | NA             | NA               | NA NA                            |                  |
| Miscellaneous     | CARBONATE                          |                          |            | mg/L NA<br>umhos/         |              | _                | NA                  | NA                     | NA                   | NA                     | NA NA                                 | NA                  | _                          | NA                      | NA                 |             | NA       | NA NA                                    | NA                    | NA             | NA                   | NA                   | NA                   | NA                     | NA                   | NA                   | NA                   | NA N                               |              |                  | NA                  | NA                   | NA NA                                 | NA                 |                 | NA             | NA               | NA NA                            |                  |
|                   | CONDUCTIVITY  NITRATE (AS N)       |                          |            | umhos/<br>cm NA           |              | _                | NA<br>NA            | NA<br>NA               | NA<br>NA             | NA<br>NA               | NA NA                                 | NA<br>NA            |                            | NA<br>NA                | NA<br>NA           |             | NA<br>NA | NA NA                                    | NA<br>NA              | NA<br>NA       | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA N                               |              |                  | NA<br>NA            | NA<br>NA             | NA NA                                 | NA<br>NA           | _               | NA<br>NA       |                  | NA NA                            |                  |
|                   | NITRATE (AS N) NITRITE (AS N)      | 10                       |            | mg/L NA<br>mg/l NA        |              | _                | NA<br>NA            | NA<br>NA               | NA<br>NA             | NA<br>NA               | NA NA                                 |                     |                            | NA<br>NA                | NA<br>NA           |             | NA<br>NA | NA NA                                    | NA<br>NA              | NA<br>NA       | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA N                               | . NA         |                  | NA<br>NA            | NA<br>NA             | NA NA                                 | NA<br>NA           |                 | NA<br>NA       |                  | NA NA                            |                  |
|                   | SULFATE                            | 1                        |            | mg/L NA                   | _            | _                | NA<br>NA            | NA<br>NA               | NA NA                | NA NA                  | NA NA                                 |                     | _                          | NA NA                   | NA<br>NA           |             | NA NA    | NA NA                                    | NA<br>NA              | NA<br>NA       | NA<br>NA             | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA NA                | NA NA                | NA<br>NA             |                                    | . NA         |                  |                     | NA<br>NA             | NA NA                                 | NA NA              | _               | NA<br>NA       |                  | NA NA                            |                  |
|                   | SOLIDS, TOTAL DISSOLVED            |                          |            | mg/L NA                   |              | _                | NA                  | NA                     | NA                   | NA                     | NA NA                                 | NA                  | _                          | NA                      | NA                 |             | NA       | NA NA                                    | NA                    | NA             | NA                   | NA                   | NA                   | NA                     | NA                   | NA                   | NA                   |                                    | . NA         |                  | NA                  | NA                   | NA NA                                 | NA                 |                 | NA             | NA               | NA NA                            |                  |
| SVOCs             | 1,4-DICHLOROBENZENE                |                          |            | ug/L NA                   | _            | _                | NA                  | NA                     | NA                   | NA                     | NA NA                                 |                     | _                          | NA                      | NA                 |             | NA       | NA NA                                    | NA                    | NA             | NA                   | NA                   | NA                   |                        | NA                   | NA                   | NA                   |                                    | . NA         | _                |                     | NA                   | NA NA                                 | NA                 |                 |                |                  | NA NA                            |                  |
|                   |                                    |                          |            |                           |              |                  |                     |                        |                      |                        | · · · · · · · · · · · · · · · · · · · |                     |                            |                         |                    |             |          |                                          |                       |                |                      |                      |                      |                        |                      |                      |                      |                                    |              |                  |                     |                      | · · · · · · · · · · · · · · · · · · · |                    |                 |                |                  |                                  |                  |

Notes:

| Shaded cell indicates comparison standard used in data evaluation.
| "gligified cell indicates analytical result exceeds comparison criteria.
| Boald and fasile toor includes analytical result exceeds background value.
| In Nata comparison standard based on the Maximum Containant Level (MCL) satablished by the USEPA National Primary C
| No- No constituents detected above the laboratory minimum detection limit.
| Undidates constituent was not detected above value shown.
| Indicates constituent was not detected above value shown.
| Undicates constituent was not detected at an estimated value.
| Undicates constituent was not detected at an estimated value.
| Undicates constituent was not detected at an estimated value.
| Undicates constituent was not detected at an estimated value.
| Undicates constituent was not detected at an estimated value.
| Undicates constituent was not detected at an estimated value.
| Undicates constituent was not detected at an estimated value.
| Undicates constituent was not detected at an estimated value.
| Undicates constituent was not detected at an estimated value.
| Undicates constituent was not detected at an estimated value.
| Undicates constituent was not detected at an estimated value.
| Undicates constituent was not detected at an estimated value.
| Undicates constituent was not detected at an estimated value.
| Undicates constituent was not detected at an estimated value.
| Undicates constituent was not detected at an estimated value.
| Undicates constituent was not detected at an estimated value.
| Undicates constituent was not detected at an estimated value.
| Undicates constituent was not detected at an estimated value.
| Undicates constituent was not detected at an estimated value.
| Undicates constituent was not detected at an estimated value.
| Undicates constituent was not detected at an estimated value.
| Undicates constituent was not detected at an estimated value.
| Undicates constituent was not detected at an estimated value.
| Undicates constituent was no

| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | Location                                           | 1:            | PDMW-          | 39                   |                          |                | PDM               | W-40P                                            |                                                  |                     |                        | PDMW-40R           |                 |               |               |             | PDMW-4               | 1                |            |                                |                    | PDMW-42                        |             |                    |                | PDI          | MW-43       |                   |              |            | PDMW-               | 45                     |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------|---------------|----------------|----------------------|--------------------------|----------------|-------------------|--------------------------------------------------|--------------------------------------------------|---------------------|------------------------|--------------------|-----------------|---------------|---------------|-------------|----------------------|------------------|------------|--------------------------------|--------------------|--------------------------------|-------------|--------------------|----------------|--------------|-------------|-------------------|--------------|------------|---------------------|------------------------|----------------|
| No.    |                | Sample Date                                        | 9/11/2002 2/7 | 7/2003 6/26/20 | 03 1/30/2004 7/2     | 2/2004 9/10/2            | 2002 2/5/20    | 003 6/24/2003     | 1/27/2004 7/20/2004                              | 3/8/2006 4/3/2008                                | 7/20/2008           | 10/7/2008 12/5/2009    | 6/17/2010 12/      | 15/2010 6/16/20 | 011 12/7/2011 | 1 11/5/2014   | 2/4/2003    | 6/25/2003 1/27/200   | 7/21/2004        | 3/8/2006   | 9/13/2002 2/3/2003             | 6/24/2003          | 1/27/2004 7/21/2004            | 3/9/        | 2006 9/13/2        | 2002 2/3/200   | 03 6/24/2003 | 1/27/2004   | 7/20/2004 3/8/200 | 6 11/14/2002 | 2 2/7/2003 | 6/27/2003 1         | 1/29/2004 7/22/        | /2004 4/3/2006 |
| The column                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | Sample Type                                        | : Normal No   | iormal Norma   | al Normal N          | ormal Norm               | mal Norm       | nal Normal        | Normal Normal                                    | Normal Normal                                    | Normal              | Normal Normal          | Normal N           | Iormal Norm     | al Normal     | Normal        | Normal      | Normal Norma         | Normal           | Normal     | Normal Normal                  | Normal             | Normal Normal                  | Normal      | Dup Norr           | mal Norma      | al Normal    | Normal      | Normal Norma      | l Normal     | Normal     | Normal              | Normal Nor             | mal Normal     |
| Section   Sect   |                |                                                    | PDMW- pr      | DMW PDMW       | /- PDMW- PI          | DMW- PDM                 | /W- PDM\       | W- PDMW-          | PDMW- PDMW-                                      | PDMW- PDMW-                                      | PDMW-               | PDMW- PDMW-            | PDMW- P            | DMW- PDMW       | PDMW-         | PDMW-         | PDMW.       | PDMW- PDMW           | PDMW-            | DDMW.      | PDMW- PDMW                     | PDMW-              | PDMW- PDMW-                    | DDMW        | PDMW-42 PDM        | IW- PDMM       | , PDMW-      | PDMW-       | PDMW- PDMW        | PDMW-        | DDMW.      | PDMW-               | PDMW- PDI              | MW- DDMW       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | Sample ID                                          | 20 0/11/200 F | 20 6/26/       | 200 39_1/30/200 39_3 | 7/22/200 40P_9/1<br>4 02 | /10/20 40P_2/5 | 5/200 40P_6/24/20 | 40P_1/27/20 40P_7/20/20                          | 40P_3/8/200 40R_4/3/20<br>6 8                    | 0 40R_7/20/20<br>08 | 40R_10/7/20 40R_12/5/3 | 20 40R 6/17/20 40R | 12/15/2         | 40R_12072     | 20 40R_110520 | 41_2/4/2003 | 1_6/25/200 41_1/27/2 | 00 41_7/21/200 4 | 1_3/8/2006 | 42_9/13/200<br>2<br>42_2/3/200 | 3 42_6/24/200<br>3 | 42_1/27/200 42_7/21/200<br>4 4 | 42_3/9/2006 | (DUP)_3/9/2 43_9/1 |                |              | 43_1/27/200 | 12 7/20/200       | AE 11/14/2   | DO FDIMW   | 45_6/27/200 45<br>3 | 5_1/29/200 45_7/2<br>4 | 45_4/3/2006    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Method G       | pup Analyte Background Type 3 RRS Type 4 RRS Units | Result R      | Result Resul   | t Result R           | esult Resu               | sult Resu      | ult Result        | Result Result                                    | Result Result                                    | Result              | Result Result          | Result F           | Result Resu     | It Result     | Result        | Result      | Result Result        | Result           | Result     | Result Result                  | Result             | Result Result                  | Result      | Result Res         | ult Resul      | lt Result    | Result      | Result Resul      | t Result     | Result     | Result              | Result Res             | sult Result    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                    |               |                | J 0.2 U              |                          |                |                   |                                                  | 0.19 U 0.2 U                                     |                     |                        |                    | NA NA           | NA.           | 10 U          |             |                      | 0.2 U            | 0.2 U      | 140 91                         | 54                 | 20 31                          | 57          | 28 34              | 0 110          | 100          | 0.2 U       | 89 280            | NA.          |            | 0.2 U               |                        | 2 0.19 U       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | ACENAPHTHYLENE 1.4 1 510 ug/L                      | 0.31 U (      | 0.2 U 0.83 U   | J 0.2 U              | 4 U 0.2 I                | U 0.2 U        | U 0.2 U           | 0.2 U 0.2 U                                      | 0.19 U 0.2 U                                     | 0.19 U              | 0.19 U 1.9 U           | 0.19 U             | NA NA           | NA            | 10 U          | 0.2 U       | 0.2 U 0.2 U          | 0.2 U            | 0.2 U      | 20 U 20 U                      | 2.1                | 1 8 U                          | 0.94 U      | 5 81               | U 2 U          | 2 U          | 0.2 U       | 2 U 3.8 U         | NA           | 0.2 U      | 0.2 U               | 0.2 U 0.2              | 2 U 0.19 U     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | ANTHRACENE 0.2 0.2 5100 ug/L                       | 4.3           | 0.7 0.83 U     | J 0.2 U              | 4 U 4.4                  | 4 0.98         | 8 0.3             | 4.3 0.55                                         | 0.68 0.2 U                                       | 0.19 U              | 0.19 U 1.9 U           | 0.19 U             | NA NA           | NA            | 10 U          | 0.2 U       | 0.2 U 0.2 U          | 0.2 U            | 0.2 U      | 20 U 20 U                      | 4.9                | 2.8 8 U                        | 4.3         | 0.38 U 14          | 4 4.1          | 2.4          | 0.38        | 2.4 14            | NA           | 0.2 U      | 0.2 U               | 0.2 U <b>0.</b> -      | 46 0.19 U      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | BENZO(A)ANTHRACENE 0.2 0.1 3.9 ug/L                | 0.31 U        | 0.2 U 0.83 U   | J 0.2 U              | 4 U 0.2 I                | U 0.2 U        | U 0.2 U           | 0.2 U 0.2 U                                      | 0.19 U 0.2 U                                     | 0.19 U              | 0.19 U 1.9 U           | 0.19 U             | NA NA           | NA            | 10 U          | 0.2 U       | 0.2 U 0.2 U          | 0.2 U            | 0.2 U      | 20 U 20 U                      | 1.4                | <b>2.8</b> 8 U                 | 0.94 U      | 0.38 U 8 I         | U 2 U          | 2 U          | 0.2 U       | 2 U 3.8 U         | NA           | 0.2 U      | 0.2 U               | 0.2 U 0.2              | : U 0.19 U     |
| Fine column                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                                                    |               |                |                      |                          |                |                   | l                                                | 0.19 U 0.2 U                                     | +                   |                        |                    | NA NA           | NA            |               | _           |                      | 0.2 U            |            |                                | 1 U                |                                | 0.94 U      | 0.38 U 8           | U 2 U          | 2 U          | 0.2 U       |                   | NA           |            |                     |                        |                |
| Separate and the separa |                |                                                    | 0.31 U (      | 0.2 U 0.83 U   |                      |                          |                |                   | l                                                | 0.19 U 0.2 U                                     | +                   |                        | +                  | NA NA           | NA            | 10 U          | _           |                      | 0.2 U            |            |                                | 1 U                |                                | 0.94 U      | 0.38 U 8 I         | U 2 U          | 2 U          | 0.2 U       | 2 U 3.8 U         | NA           | + +        | 0.2 U               |                        |                |
| Mathematical Amplitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                                                    | 0.31 U (      | 0.2 U 0.83 U   |                      |                          |                |                   | l                                                | 0.19 U 0.2 U                                     | +                   |                        | +                  | NA NA           | NA<br>NA      | 10 U          | _           |                      | 0.2 U            |            |                                | 10                 |                                | 0.94 U      | 0.38 U 8 I         | U 2U           | 211          | 0.2 U       | 2U 3.8U           | NA<br>NA     |            | 0.2 U               |                        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                    | 0.31 U (      |                |                      |                          |                |                   |                                                  | 0.19 U 0.2 U                                     |                     |                        |                    | NA NA           | NA NA         | 10 U          |             |                      | +                |            |                                | 1.4                |                                |             |                    | U 2U           | 20           | 0.2 U       |                   | NA.          | +          | 0.2 U               |                        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PAHs           |                                                    |               |                |                      |                          |                |                   | <del>                                     </del> | 0.19 U 0.2 U                                     | -                   |                        | +                  | NA NA           | NA.           |               |             |                      |                  |            |                                | 10                 |                                |             |                    | U 2U           | 2 U          |             |                   | NA.          | +          |                     |                        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                    | 1.1 (         | 0.2 U 0.83 U   | J 0.2 U              |                          |                |                   | 0.35 0.2 U                                       | 0.19 U 0.2 U                                     | 0.19 U              | <del></del>            | +                  | NA NA           | NA            | 10 U          |             |                      | + +              | 0.2 U      | 20 U 20 U                      | 14                 |                                | 6.9         | 5.4 13             | 3 4.1          | 3            | 0.21        | 2 U 14            | NA           | 0.2 U      |                     |                        | .48 0.19 U     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | FLUORENE 0.5 1000 ug/L                             | 2.4           | 0.2 U 0.83 U   | J 0.2 U              | 41 3                     | 0.22           | 2 0.2 U           | 0.28 0.2 U                                       | 0.19 U 0.2 U                                     | 0.19 U              | 1.7 1.9 U              | 3                  | NA NA           | NA            | 10 U          | 0.2 U       | 0.2 U 0.2 U          | 0.2 U            | 0.2 U      | 73 30                          | 21                 | 8.7 14                         | 18          | 0.38 U 13          | 0 24           | 25           | 0.2 U       | 3.3 120           | NA           | 0.2 U      | 0.2 U               | 0.2 U 2                | .1 0.19 U      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | INDENO(1,2,3-CD)PYRENE 0.4 ug/L                    | 0.31 U (      | 0.2 U 0.83 U   | J 0.2 U              | 4 U 0.2 I                | !U 0.2 L       | U 0.2 U           | 0.2 U 0.2 U                                      | 0.19 U 0.2 U                                     | 0.19 U              | 0.19 U 1.9 U           | 0.19 U             | NA NA           | NA            | 10 U          | 0.2 U       | 0.2 U 0.2 U          | 0.2 U            | 0.2 U      | 20 U 20 U                      | 10                 | 0.4 U 8 U                      | 0.94 U      | 0.38 U 8 I         | U 2 U          | 2 U          | 0.2 U       | 2 U 3.8 U         | NA           | 0.2 U      | 0.2 U               | 0.2 U 0.2              | 2 U 0.19 U     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                    |               |                |                      |                          |                |                   |                                                  | 0.19 U 0.2 U                                     | +                   |                        |                    |                 | NA            |               |             |                      | 0.2 U            |            |                                | 27                 |                                | 23          |                    | 0 33           | 28           | 0.2 U       | 7.7 36            | NA           |            |                     |                        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                    |               |                |                      |                          |                |                   | l                                                | 0.19 U 0.2 U                                     | +                   |                        |                    |                 | NA            |               | _           |                      | 0.2 U            |            |                                |                    |                                |             |                    | 1 2            | _            | 0.2 U       |                   | NA           |            | 0.2 U               |                        |                |
| 94. 14. 14. 14. 14. 14. 14. 14. 14. 14. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                                                    |               |                |                      |                          |                |                   |                                                  | 0.19 U 0.2 U                                     | 1                   |                        |                    |                 |               |               |             |                      |                  |            |                                |                    |                                |             |                    | U 12           |              |             |                   | NA .         |            | 0.2 U               |                        |                |
| Mathematical Registration      |                |                                                    |               |                |                      | _                        | _              |                   |                                                  | 0.19 U 0.2 U                                     | +                   |                        |                    |                 |               | -             |             |                      | + +              |            |                                | 24                 |                                | 22          |                    | 29             | 14           | 1           | 3.6 62            | NA<br>NA     | + +        | 0.2 U               |                        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                    | -             |                | ND ND                |                          |                |                   | l                                                | 0.68 ND                                          | -                   | 6.1 5.6                | +                  |                 | NA<br>NA      | ND ND         | ND          |                      | ND               |            |                                | 164.3              |                                | 224.7       |                    | 2.3<br>8 220.5 | 182.1        | 0.59        | 106 535.6         | NA NA        | ND         | ND ND               |                        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                    | 1 U           |                | 1 U                  |                          |                |                   |                                                  | 10 10                                            | -                   | 10 10                  | +                  |                 | NA NA         | NA.           | 10          |                      | 1 U              | 1 U        | 6 4.3                          | 1.7                |                                | 1.6         |                    | 5 7.8          |              | 1 U         |                   | NA.          | 10         | 1 U                 |                        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                    | 1 U           | 10 10          | 1 U                  | 10 10                    | U 1 U          | J 1U              | 10 10                                            | 10 10                                            | +                   | 10 10                  | 1 U                | NA NA           | NA            | NA            | 1 U         |                      | 1 U              | 1 U        | 1.9 1.4                        | 1 U                | 10 10                          | 1 U         | 1 U 1.9            | 9 1.1          | 1 U          | 1 U         | 10 10             | NA           | 1 U        | 1 U                 | 1 U 1                  | U 1 U          |
| Section   Sect   |                | p/m-XYLENE · · · · · ug/L                          | NA            | NA NA          | NA NA                | NA NA                    | A NA           | NA NA             | NA NA                                            | NA NA                                            | NA                  | NA NA                  | NA                 | NA NA           | NA            | NA            | NA.         | NA NA                | NA               | NA         | NA NA                          | NA                 | NA NA                          | NA          | NA N               | A NA           | NA           | NA          | NA NA             | NA           | NA         | NA                  | NA N                   | iA NA          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | METHYLENE CHLORIDE ug/L                            | NA            | NA NA          | NA NA                | NA NA                    | A NA           | NA NA             | NA NA                                            | NA NA                                            | NA                  | NA NA                  | NA                 | NA NA           | NA            | NA            | NA          | NA NA                | NA               | NA         | NA NA                          | NA                 | NA NA                          | NA          | NA NA              | A NA           | NA           | NA          | NA NA             | NA           | NA         | NA                  | NA N                   | IA NA          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VOCs           | o-XYLENE ug/L                                      | NA            | NA NA          | NA                   | NA NA                    | A NA           | NA NA             | NA NA                                            | NA NA                                            | NA                  | NA NA                  | NA                 | NA NA           | NA            | NA            | NA          | NA NA                | NA               | NA         | NA NA                          | NA                 | NA NA                          | NA          | NA NA              | A NA           | NA           | NA          | NA NA             | NA           | NA         | NA                  | NA N                   | A NA           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                    | 1 U           | 10 10          | 1 U                  | 1U 1U                    | U 1 U          | J 1 U             | 10 10                                            | 1 U 1.7 U                                        | 1 U                 | 10 10                  | 1 U                | NA NA           | NA            | NA            | 1 U         | 1 U 1 U              | 1 U              | 1 U        | 1.8 1.5                        | 1 U                | 10 10                          | 1 U         | 1 U 4              | 4 1            | 1 U          | 1 U         | 1 U 1 U           | NA           | 1 U        | 1 U                 | 1 U 1                  | U 1 U          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | ,                                                  | 2 U           | 2 U 2 U        | 2 U                  |                          |                | J 2 U             |                                                  | 2 U 2 U                                          |                     |                        |                    | NA NA           | NA            | NA            |             |                      | 2 U              | 2 U        | 17 26                          | 11                 |                                | 2 U         | 2.1 2.1            | 8 6.4          | 2 U          | 2 U         | 2 U 2 U           | NA.          | 2 U        | 2 U                 |                        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                    | NA<br>ND      | NA NA          | NA<br>ND             |                          |                | NA NA             |                                                  | 10 U 10 U                                        |                     |                        | +                  | NA NA           | NA<br>NA      | NA<br>NA      |             |                      | NA<br>ND         | 10 U       | NA NA                          | NA 12.7            |                                | 10 0        | 10 U N/            | A NA           |              | NA<br>ND    |                   | NA<br>NA     | NA<br>ND   | NA<br>ND            |                        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                    | NA 0          | 0.01 U 0.01 U  | J 0.01 U 0           |                          |                | U 0.01 U          |                                                  | 0.01 U 0.01 U                                    |                     |                        |                    | NA NA           | NA NA         |               |             |                      | 0.01 U           | 0.01 U     | 0.029 0.023                    | 0.022              |                                | 0.01 U      | 0.01 U 0.01        | I U 0.01 U     |              | 0.01 U      | 0.01 U 0.01 L     | 0.031        | 0.012      | 0.031               |                        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                    | NA NA         | NA NA          | NA NA                | NA NA                    | A NA           | NA NA             | l                                                | NA NA                                            | +                   | NA NA                  | NA NA              | NA NA           | NA            | NA            | NA.         | NA NA                | NA NA            | NA         | NA NA                          | NA .               |                                | NA.         | NA NA              | A NA           | NA.          | NA          | NA NA             | NA.          | NA.        | NA NA               |                        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | BORON mg/L                                         | NA NA         | NA NA          | NA NA                | NA NA                    | A NA           | NA NA             | NA NA                                            | NA NA                                            | NA                  | NA NA                  | NA                 | NA NA           | NA            | NA            | NA          | NA NA                | NA               | NA         | NA NA                          | NA                 | NA NA                          | NA          | NA N               | A NA           | NA           | NA          | NA NA             | NA           | NA         | NA                  | NA N                   | IA NA          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | CADMIUM 0.005 mg/L                                 | NA NA         | NA NA          | NA                   | NA NA                    | A NA           | NA NA             | NA NA                                            | NA NA                                            | NA                  | NA NA                  | NA                 | NA NA           | NA            | NA            | NA          | NA NA                | NA               | NA         | NA NA                          | NA                 | NA NA                          | NA          | NA N               | A NA           | NA           | NA          | NA NA             | NA           | NA         | NA                  | NA N                   | A NA           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | CALCIUM METAL mg/L                                 | NA NA         | NA NA          | NA                   | NA NA                    | A NA           | NA NA             | NA NA                                            | NA NA                                            | NA                  | NA NA                  | NA                 | NA NA           | NA            | NA            | NA          | NA NA                | NA               | NA         | NA NA                          | NA                 | NA NA                          | NA          | NA NA              | A NA           | NA           | NA          | NA NA             | NA           | NA         | NA                  | NA N                   | A NA           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                    | NA 0          | 0.01 U 0.01 U  | J 0.032 0            | .01 U 0.01               |                |                   |                                                  | 0.01 U 0.01 U                                    |                     |                        |                    |                 | NA            |               |             |                      | 0.01 U           | 0.01 U     | 0.01 U 0.01 U                  | 0.01 U             |                                | 0.01 U      | 0.01 U 0.01        | I U 0.01 U     | J 0.01 U     |             |                   | NA.          | 0.01 U     |                     |                        |                |
| Marchasses   Mar   | Metals, Total  |                                                    | 1 1 1         |                |                      |                          |                | _                 |                                                  |                                                  | +                   | -                      | +                  |                 | NA            | -             |             |                      | 0.005 U          |            |                                | 0.005 U            |                                | 0.005 U     | 0.005 U 0.00       | 5 U 0.005 L    | U 0.005 U    | 0.018       |                   | NA.          | 0.005 U    | 0.005 U             |                        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                    | NA NA         |                |                      |                          |                |                   |                                                  |                                                  |                     |                        |                    |                 | NA<br>NA      | -             |             |                      | NA NA            | NA NA      |                                | NA NA              |                                | NA NA       | NA N               | A NA           | NA<br>NA     | NA NA       |                   | NA NA        | NA NA      | NA NA               |                        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                    | NA O          |                |                      |                          |                |                   |                                                  |                                                  |                     |                        |                    |                 | NA<br>NA      | _             |             |                      | +                | 0.0411     |                                | 0.04.11            |                                | 0.0411      | 0.0411 0.04        |                |              | 0.0411      |                   | NA.          | +          | 0.0411              |                        |                |
| Final and transform    |                |                                                    | <u> </u>      |                |                      |                          |                |                   | <u> </u>                                         |                                                  |                     |                        |                    |                 | NA NA         |               |             |                      |                  |            |                                |                    |                                |             |                    |                |              |             |                   | NA NA        |            |                     |                        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | SODIUM mg/L                                        | NA NA         | NA NA          | NA NA                | NA NA                    | A NA           | NA NA             | NA NA                                            | NA NA                                            | NA                  | NA NA                  | NA                 | NA NA           | NA            | NA            | NA.         | NA NA                | NA               | NA         | NA NA                          | NA                 | NA NA                          | NA          | NA NA              | A NA           | NA           | NA          | NA NA             | NA.          | NA         | NA                  | NA N                   | JA NA          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | ZINC 0.96 2 31 mg/L                                | NA (          | 0.052 0.02     | 0.077 0              | .02 U 0.02               | 0.02           | U 0.02 U          | 0.02 U 0.02 U                                    | 0.028 0.02 U                                     | 0.02 U              | 0.02 U 0.02 U          | 0.02 U             | NA NA           | NA            | NA            | 0.02 U      | 0.02 U 0.039         | 0.02 U           | 0.02 U     | 0.02 U 0.02 U                  | 0.02 U             | 0.056 0.02 U                   | 0.02 U      | 0.02 U 0.02        | 2 U 0.02 U     | J 0.02 U     | 0.082       | 0.27 0.02 L       | NA.          | 0.02 U     | 0.02 U              | 0.081 0.0              | 2 U 0.02 U     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | ARSENIC 0.018 0.018 0.018 mg/L                     | NA            | NA NA          | NA                   | NA NA                    | A NA           | NA NA             | NA NA                                            | NA NA                                            | NA                  | NA NA                  | NA                 | NA NA           | NA            | NA            | NA          | NA NA                | NA               | NA         | NA NA                          | NA                 | NA NA                          | NA          | NA N               | A NA           | NA           | NA          | NA NA             | NA           | NA         | NA                  | NA N                   | A NA           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                    |               |                |                      |                          |                |                   | l                                                |                                                  | +                   |                        |                    |                 |               |               |             |                      |                  |            |                                | NA                 |                                |             |                    |                | NA           |             |                   |              | NA         | NA                  | NA N                   | A NA           |
| 日本には、日本には、日本には、日本には、日本には、日本には、日本には、日本には、                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                                                    |               |                |                      |                          |                |                   |                                                  |                                                  |                     |                        |                    |                 |               |               |             |                      |                  |            |                                | 1                  |                                |             |                    |                |              | +           |                   |              |            |                     |                        |                |
| Ministry    | Metals, Dissol | ed .                                               |               |                |                      |                          |                |                   |                                                  |                                                  |                     |                        |                    |                 | _             | _             |             |                      |                  |            |                                |                    |                                |             |                    |                |              | ++          |                   |              |            |                     |                        |                |
| Section of the control of the cont   |                |                                                    |               |                |                      |                          |                |                   |                                                  |                                                  |                     |                        |                    |                 | _             | _             |             |                      |                  |            |                                |                    |                                | +           |                    |                | _            | +           |                   | _            |            |                     |                        |                |
| Part      |                |                                                    |               |                |                      |                          |                | _                 | <del>                                     </del> | + + +                                            | +                   | <del></del>            | +                  |                 | _             |               |             |                      |                  |            |                                |                    |                                | +           |                    |                | _            | +           |                   | _            |            | -                   |                        |                |
| ALCHISTING S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                                                    |               |                |                      |                          |                | _                 |                                                  | <del>                                     </del> |                     |                        |                    |                 |               |               |             |                      |                  |            |                                |                    |                                | _           |                    |                | _            | + +         |                   | _            |            |                     |                        |                |
| AMICINAL SINGLE  |                |                                                    |               |                |                      |                          |                |                   |                                                  | <del></del>                                      |                     |                        |                    |                 | _             |               |             |                      |                  | NA         |                                | NA                 |                                |             | NA N               | A NA           | NA           | ++          |                   | NA           |            | NA                  |                        |                |
| Substititititititititititititititititititi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | ALKALINITY, TOTAL (AS CACO3) mg/L                  | NA NA         | NA NA          | NA NA                | NA NA                    | A NA           | NA NA             | NA NA                                            | NA NA                                            | NA                  | NA NA                  | NA                 | NA NA           | NA            | NA            | NA          | NA NA                | NA               | NA         | NA NA                          | NA                 | NA NA                          | NA          | NA N               | A NA           | NA           | NA          | NA NA             | NA           | NA         | NA                  | NA N                   | .A NA          |
| ARBORATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | AMMONIA AS N 15 30 30 mg/L                         |               |                |                      |                          |                |                   |                                                  |                                                  |                     |                        |                    |                 | _             |               |             |                      |                  |            |                                |                    |                                | _           |                    |                |              | 0.18        |                   |              |            |                     |                        |                |
| Migratification   Migratific   |                |                                                    |               |                |                      |                          |                |                   | <b></b>                                          |                                                  | 1                   |                        |                    |                 |               |               |             |                      |                  |            |                                | 1                  |                                | 1           |                    |                | _            | + +         |                   | _            |            |                     |                        |                |
| NTEATE (AS N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Miscellaneous  |                                                    |               |                |                      |                          |                |                   |                                                  |                                                  |                     |                        |                    |                 |               |               |             |                      |                  |            |                                | _                  |                                |             |                    |                | _            | +           |                   | _            |            | -                   |                        |                |
| NITRITE (AS N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                                                    |               |                |                      |                          |                |                   |                                                  |                                                  |                     |                        |                    |                 |               |               |             |                      |                  |            |                                | 1                  |                                | 1           |                    |                | _            | + +         |                   | _            |            |                     |                        |                |
| SLEFATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                                                    |               |                |                      |                          |                |                   |                                                  |                                                  |                     |                        |                    |                 | _             |               |             |                      |                  |            |                                |                    |                                |             |                    |                |              | +           |                   |              |            |                     |                        |                |
| SCUIDS, TOTAL DISSOLVED mg L NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                                                    |               |                |                      |                          |                |                   |                                                  |                                                  |                     |                        |                    |                 | _             |               |             |                      |                  |            |                                |                    |                                |             |                    | _              | _            | _           |                   | _            |            |                     |                        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                    |               |                |                      |                          |                |                   |                                                  |                                                  |                     |                        |                    |                 |               | _             |             |                      |                  |            |                                | 1                  |                                |             |                    |                | _            | + +         |                   |              |            |                     |                        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SVOCs          |                                                    |               |                |                      |                          |                |                   |                                                  |                                                  |                     |                        |                    |                 |               |               |             |                      |                  |            |                                |                    |                                |             |                    |                |              |             |                   |              |            |                     |                        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                    |               |                |                      |                          |                |                   |                                                  |                                                  |                     |                        |                    |                 |               |               |             |                      | •                |            |                                |                    |                                |             |                    |                |              |             |                   |              |            |                     |                        |                |

Notes:

Shaded cell indicates comparison standard used in data evaluation.

"gligified cell indicates analytical result exceeds comparison criteria.

Rold and Rolk test indicates analytical result exceeds background value.

In Narac comparison standard backe on the Maximum Containmant Leve (MCL) established by the USEPA National Primary C

No. No constituents detected above the laboratory minimum detection limit.

It indicates constituent was not detected above value shown.

It indicates constituent was not detected at an estimated value.

Us indicates constituent was not detected at an estimated value.

Nonlineing sells MN 38, POMM 48, POMM 487, POMM 187, POMM 187, POMM 187, POMM 318, POMM 318, POMM 318, POMM 318, POMM 437, P

|                   |                                    |           |                   | Locatio            | n: PDMW-45P          | , [           |                       |                |                      |                      | PDMW-        | 45R              |                     |                    |                  |                     |                | PDMW-46        |                  |                  |                         |                   | PDM             | 1W-47    |           |           |                   |              | PDMW-48             |                   | PDMW-4                | 9                  | PDMW-                     | -50         |              | PDMW-51   |                |                    | PDM\            | N-52                 |                         | PDMW-                    | 53             |
|-------------------|------------------------------------|-----------|-------------------|--------------------|----------------------|---------------|-----------------------|----------------|----------------------|----------------------|--------------|------------------|---------------------|--------------------|------------------|---------------------|----------------|----------------|------------------|------------------|-------------------------|-------------------|-----------------|----------|-----------|-----------|-------------------|--------------|---------------------|-------------------|-----------------------|--------------------|---------------------------|-------------|--------------|-----------|----------------|--------------------|-----------------|----------------------|-------------------------|--------------------------|----------------|
|                   |                                    |           |                   | Sample Dat         |                      | _             | 08 7/22/2008          | 10/7/20        | 008 6/15/201         | 10 12/14/20          | _            | 011 12/11/201    | 13 6/3/2014         | 11/3/2014          | 5/20/2015        | 11/11/2015          | 6/4/2014       |                |                  | 1/2015 6/4       | /2014 11/4/2014         | 5/20/2015         |                 |          | 5/25/2016 | 7/25/2016 | 7/25/2016 6/4/2   |              | 014 5/19/2015       | 5 11/11/2015      |                       | _                  |                           | 114 5/19/20 | 15 6/6/2014  |           | 5/18/2015      | 6/5/2              |                 |                      | 18/2015 11              |                          | 15 11/11/2015  |
|                   |                                    |           |                   | Sample Typ         | e: Normal            | Norma         | al Normal             | Norma          | al Norma             | al Norma             | al Norma     | al Normal        | Normal              | Normal             | Normal           | Normal              | Normal         | Normal No      | rmal No          | rmal No          | rmal Normal             | Normal            | Normal          | Normal   | Dup       | Normal    | Dup Norm          | nal Norm     | al Normal           | Normal            | Normal Normal         | Normal             | Normal Norma              | al Norma    | al Normal    | Normal    | Normal         | Normal             | Dup             | Normal N             | ormal I                 | Normal Norma             | l Normal       |
|                   |                                    |           |                   |                    | PDMW-                | PDMW          | V- PDMW-              | PDMV           | W- PDMW              | V- PDMW              | V- PDMV      | , PDMW-          | PDMW-               | PDMW-              | PDMW-            | PDMW-               | PDMW-          | PDMW- PD       | MW- PD           | MW- PE           | MW- PDMW-               | PDMW-             | PDMW-           |          |           |           | PDM               | W- PDM\      | W- PDMW-            | PDMW-             | PDMW- PDMW-           | PDMW-              | PDMW- PDMW                | V- PDMV     | /- PDMW-     | PDMW-     | PDMW-          | PDMW-              | DUP-            | PDMW- PI             | DMW- F                  | PDMW- PDMW               | /- PDMW-       |
|                   |                                    |           |                   | Sample I           | D: 45P_12/4/20<br>09 | 45R_4/2/<br>8 | /200 45R_7/22/2<br>08 | 45R_10/1<br>08 | /7/20 45R_6/15<br>10 | 5/20 45R_12/1<br>010 | 14/2 AFD OCA | 45R_12/11<br>013 | 1/2 45R_06032<br>14 | 0 45R_110320<br>14 | 45R_052020<br>15 | 45R_111120 46<br>15 | 4              | 6_1103201 46_0 | 520201 46_1<br>5 | 111201 47_0<br>5 | 604201 47_110420<br>4 4 | 1 47_0520201<br>5 | 47_1111201<br>5 | PDMW-47  | DUP-1     | PDMW-47   | DUP-1 48_060<br>4 | 4201 48_1104 | 4201 48_051920<br>5 | 01 48_111120<br>5 | 1 49_0606201 49_11042 | 01 49_0518201<br>5 | 50_0604201 50_1106<br>4 4 | 201 50_0519 | 201 51_06062 | 51_110620 | 51_051820<br>5 | 01 52_0605201<br>4 | 03_0605201<br>4 | 52_1106201 52_0<br>4 | 0518201 53 <sub>-</sub> | _1104201 53_05193<br>4 5 | 201 53_1111201 |
| Method Grou       | p Analyte                          | Backgroun | d Type 3 RRS Type | e 4 RRS Unit       | s Result             | Resul         | It Result             | Resul          | ılt Result           | lt Resul             | lt Resul     | It Result        | Result              | Result             | Result           | Result              | Result         | Result Re      | sult Re          | sult Re          | sult Result             | Result            | Result          | Result   | Result    | Result    | Result Res        | ult Resu     | ılt Result          | Result            | Result Result         | Result             | Result Resul              | lt Resu     | t Result     | Result    | Result         | Result             | Result          | Result R             | lesult I                | Result Result            | t Result       |
|                   | ACENAPHTHENE                       | 1         | 2000              | ug/L               | 0.19 U               | 0.19 L        |                       | 0.2 U          |                      |                      | NA.          |                  | 9.4 UH              | NA.                | NA.              | NA NA               | 9.6 U          | NA I           | NA I             |                  | .6 U NA                 | NA.               | NA NA           | NA NA    | NA NA     | NA NA     | NA NA             |              |                     | NA NA             | NA NA                 | NA NA              | NA NA                     | NA NA       | NA.          | NA NA     | NA.            | NA NA              | NA.             | NA .                 | NA .                    | NA NA                    |                |
|                   | ACENAPHTHYLENE                     | 1.4       | 1                 | 510 ug/L           | . 0.19 U             | 0.19 L        | _                     | 0.2 U          | J 0.19 U             | J NA                 | NA.          | 10 U             | 9.4 UH              | NA.                | NA               | NA NA               | 9.6 U          | NA I           | NA I             | NA 9             | .6 U NA                 | NA.               | NA              | NA       | NA        | NA        | NA NA             | 9.8 L        | J NA                | NA                | NA NA                 | NA                 | NA NA                     | NA.         | NA           | NA        | NA             | NA                 | NA.             | NA                   | NA                      | NA NA                    | NA             |
|                   | ANTHRACENE                         | 0.2       | 0.2               | 5100 ug/L          | . 0.19 U             | 0.19 L        | U 0.19 U              | 0.2 U          | J 0.2 U              | NA.                  | NA.          | 10 U             | 9.4 UH              | NA                 | NA               | NA                  | 9.6 U          | NA I           | NA I             | NA 9             | .6 U NA                 | NA.               | NA              | NA       | NA        | NA        | NA NA             | 9.8 L        | J NA                | NA                | NA NA                 | NA                 | NA NA                     | NA          | NA           | NA        | NA             | NA                 | NA.             | NA                   | NA                      | NA NA                    | NA             |
|                   | BENZO(A)ANTHRACENE                 | 0.2       | 0.1               | 3.9 ug/L           | 0.19 U               | 0.19 L        | U 0.19 U              | 0.2 U          | J 0.2 U              | NA                   | NA           | 10 U             | 9.4 UH              | NA.                | NA               | NA                  | 9.6 U          | NA I           | NA I             | NA 9             | .6 U NA                 | NA                | NA              | NA       | NA        | NA        | NA NA             | 9.8 L        | J NA                | NA                | NA NA                 | NA                 | NA NA                     | NA          | NA           | NA        | NA             | NA                 | NA              | NA                   | NA                      | NA NA                    | NA             |
|                   | BENZO(A)PYRENE                     | 0.2       | 0.2               | 0.39 ug/L          | 0.19 U               | 0.19 L        | U 0.19 U              | 0.2 U          | J 0.2 U              | NA.                  | NA           | 10 U             | 9.4 UH              | NA                 | NA               | NA                  | 9.6 U          | NA I           | NA I             | NA 9             | .6 U NA                 | NA                | NA              | NA       | NA        | NA        | NA NA             | 9.8 L        | J NA                | NA                | NA NA                 | NA                 | NA NA                     | NA          | NA           | NA        | NA             | NA                 | NA              | NA                   | NA                      | NA NA                    | NA             |
|                   | BENZO(B)FLUORANTHENE               | 0.2       | 0.2               | 0.65 ug/L          | . 0.19 U             | 0.19 L        |                       | 0.2 U          |                      | NA                   | NA           | 10 U             |                     | NA.                | NA               | <b></b>             | 9.6 U          | NA I           | NA I             | NA 9             | .6 U NA                 | NA                | NA              | NA       | NA        | NA        | NA NA             |              | _                   | NA                | NA NA                 | NA                 | NA NA                     | NA          | NA           | NA        | NA             | NA                 | NA              | NA                   | NA                      | NA NA                    |                |
|                   | BENZO(G,H,I)PERYLENE               |           |                   | ug/L               | . 0.19 U             | 0.19 L        |                       | 0.2 U          |                      | _                    |              | 10 U             | 9.4 UH              | NA                 | NA               | <b></b>             | 9.6 U          | NA I           | NA I             |                  | .6 U NA                 | NA.               | NA              | NA       | NA        | NA        | NA NA             |              | _                   | NA                | NA NA                 | NA                 | NA NA                     | NA.         | NA           | NA        | NA             | NA                 | NA.             |                      |                         | NA NA                    |                |
|                   | BENZO(K)FLUORANTHENE<br>CHRYSENE   | 0.2       | 0.2               | ug/L               | 0.19 U               | 0.19 L        |                       | 0.2 U<br>0.2 U | _                    | NA<br>NA             |              | 10 U             | 9.4 UH<br>9.4 UH    | NA<br>NA           | NA<br>NA         |                     | 9.6 U<br>9.6 U | NA I           |                  |                  | .6 U NA                 | NA NA             | NA<br>NA        | NA NA    | NA<br>NA  | NA NA     | NA NA             |              |                     | NA<br>NA          | NA NA                 | NA<br>NA           | NA NA                     | NA<br>NA    | NA<br>NA     | NA<br>NA  | NA<br>NA       | NA<br>NA           | NA<br>NA        |                      | NA<br>NA                | NA NA                    |                |
| PAHs              | DIBENZO(A,H)ANTHRACENE             | 0.2       | 0.2               | 65 Ug/L            | 0.19 U               | 0.19 0        |                       | 0.2 U          | _                    | -                    | NA<br>NA     | 10 U             | 9.4 UH              | NA<br>NA           | NA<br>NA         |                     | 9.6 U          | NA NA          |                  |                  | .6U NA                  | NA.               | NA<br>NA        | NA<br>NA | NA<br>NA  | NA<br>NA  | NA NA             |              | _                   | NA<br>NA          | NA NA                 | NA NA              | NA NA                     | _           |              | NA<br>NA  | NA<br>NA       | NA<br>NA           | NA NA           |                      |                         | NA NA                    |                |
| 1                 | FLUORANTHENE                       | 0.5       | 1000              | ug/L               | 0.19 U               | 0.19 L        |                       | 0.2 U          | _                    | NA NA                | NA NA        | 10 U             | 9.4 UH              | NA.                | NA NA            |                     | 9.6 U          | NA I           | NA I             |                  | .6U NA                  | NA NA             | NA NA           | NA NA    | NA NA     | NA NA     | NA NA             |              |                     | NA NA             | NA NA                 | NA.                | NA NA                     | NA NA       | NA.          | NA NA     | NA NA          | NA NA              | NA NA           |                      | NA NA                   | NA NA                    |                |
|                   | FLUORENE                           | 0.5       | 1000              | ug/L               | . 0.19 U             | 0.19 L        | U 0.19 U              | 0.2 U          | J 0.2 U              | NA.                  | NA           | 10 U             | 9.4 UH              | NA                 | NA               | NA NA               | 9.6 U          | NA I           | NA I             | NA 9             | .6 U NA                 | NA.               | NA              | NA       | NA        | NA        | NA NA             | 9.8 L        | J NA                | NA                | NA NA                 | NA                 | NA NA                     | NA          | NA           | NA        | NA             | NA                 | NA.             | NA                   | NA                      | NA NA                    | NA             |
|                   | INDENO(1,2,3-CD)PYRENE             |           | 0.4               | ug/L               | . 0.19 U             | 0.19 L        | U 0.19 U              | 0.2 U          | J 0.2 U              | NA                   | NA           | 10 U             | 9.4 UH              | NA                 | NA               | NA .                | 9.6 U          | NA             | NA I             | NA 9             | .6 U NA                 | NA.               | NA              | NA       | NA        | NA        | NA NA             | 9.8 L        | J NA                | NA                | NA NA                 | NA                 | NA NA                     | NA          | NA           | NA        | NA             | NA                 | NA              | NA.                  | NA                      | NA NA                    | NA             |
|                   | 1-METHYLNAPHTHALENE                |           |                   | - · ug/L           | . 0.75 U             | 0.19 L        | U 0.19 U              | 0.2 U          | J 0.4 U              | NA                   | NA           | 10 U             | 9.4 UH              | NA                 | NA               | NA                  | 9.6 U          | NA             | NA I             | NA 9             | .6 U NA                 | NA                | NA              | NA       | NA        | NA        | NA NA             | 9.8 L        | J NA                | NA                | NA NA                 | NA                 | NA NA                     | NA          | NA           | NA        | NA             | NA                 | NA              | NA.                  | NA                      | NA NA                    | NA             |
|                   | 2-METHYLNAPHTHALENE                |           |                   | ug/L               | 0.19 U               | 0.19 L        |                       | 0.2 U          |                      | NA                   | NA           | 10 U             | 9.4 UH              | NA                 | NA               | NA                  | 9.6 U          | NA I           | NA I             |                  | .6 U NA                 | NA                | NA              | NA       | NA        | NA        | NA NA             | 9.8 L        |                     | NA                | NA NA                 | NA                 | NA NA                     | NA          | NA           | NA        | NA             | NA                 | NA              | NA.                  | NA                      | NA NA                    |                |
|                   | NAPHTHALENE                        | 1         | 20                | 20 ug/L            | 0.19 U               | 0.19 L        | U 0.19 U              | 0.2 U          |                      | NA                   | NA           | 10 U             | 9.4 UH              | NA                 | NA               | NA                  | 9.6 U          | NA I           | NA I             |                  | .6 U NA                 | NA                | NA              | NA       | NA        | NA        | NA NA             |              | _                   | NA                | NA NA                 | NA                 | NA NA                     | NA          | NA           | NA        | NA             | NA                 | NA              | NA                   | NA                      | NA NA                    |                |
|                   | PHENANTHRENE                       | 0.22      | 0.2               | 510 ug/L           | 0.19 U               | 0.19 L        | U 0.19 U              | 0.2 U          | _                    | NA                   | NA           | 10 U             | 9.4 UH              | NA                 | NA               | NA NA               | 9.6 U          | NA I           | NA I             |                  | .6U NA                  | NA                | NA NA           | NA NA    | NA        | NA        | NA NA             | 9.81         | _                   | NA                | NA NA                 | NA                 | NA NA                     | NA .        | NA           | NA<br>NA  | NA<br>NA       | NA                 | NA<br>NA        | NA NA                | NA                      | NA NA                    |                |
|                   | PYRENE<br>TOTAL PAHs               | 0.5       | 1000              | ug/L               | . 0.19 U             | 0.19 U<br>ND  | U 0.19 U              | 0.2 U<br>ND    | _                    | NA<br>NA             | NA<br>NA     | 10 U             | 9.4 UH<br>ND        | NA<br>NA           | NA<br>NA         | NA NA               | 9.6 U<br>ND    | NA I           | NA .             |                  | .6 U NA                 | NA.               | NA<br>NA        | NA<br>NA | NA<br>NA  | NA<br>NA  | NA NA             |              | _                   | NA<br>NA          | NA NA                 | NA<br>NA           | NA NA                     | NA<br>NA    | NA<br>NA     | NA<br>NA  | NA<br>NA       | NA<br>NA           | NA<br>NA        | NA NA                | NA NA                   | NA NA                    |                |
|                   | BENZENE                            | 1         | 5 ;               | 31.2 ug/L          | . 1U                 | 1 U           | 1 U                   | 1 U            |                      | NA NA                | NA NA        | 1 U              | 1 U                 | NA.                | NA.              | NA NA               | 1 U            | NA NA          | NA I             |                  | 1 U NA                  | NA.               | NA NA           | NA NA    | NA NA     | NA NA     | NA NA             |              | _                   | NA NA             | NA NA                 | NA NA              | NA NA                     | NA NA       | NA NA        | NA NA     | NA NA          | NA NA              | NA NA           | NA NA                | NA NA                   | NA NA                    |                |
|                   | ETHYLBENZENE                       | 1         | 700               | - ug/L             | . 10                 | 1 U           | 1 U                   | 1 U            | 1 U                  | NA                   | NA.          | 1 U              | 1 U                 | NA                 | NA.              | NA NA               | 1 U            | NA I           | NA I             | NA               | 1 U NA                  | NA.               | NA              | NA       | NA        | NA.       | NA NA             | 1 U          | NA NA               | NA NA             | NA NA                 | NA.                | NA NA                     | NA.         | NA           | NA NA     | NA             | NA                 | NA.             | NA                   | NA                      | NA NA                    |                |
|                   | p/m-XYLENE                         |           |                   | ug/L               | . NA                 | NA            | NA                    | NA             | NA                   | NA                   | NA           | NA               | NA                  | NA                 | NA               | NA                  | NA             | NA I           | NA I             | NA               | NA NA                   | NA.               | NA              | NA       | NA        | NA        | NA NA             | . NA         | NA                  | NA                | NA NA                 | NA                 | NA NA                     | NA          | NA           | NA        | NA             | NA                 | NA              | NA                   | NA                      | NA NA                    | NA             |
|                   | METHYLENE CHLORIDE                 |           |                   | ug/L               | . NA                 | NA            | NA                    | NA             | NA                   | NA                   | NA           | 5 U              | NA                  | NA                 | NA               | NA                  | NA             | NA I           | NA I             | NA .             | NA NA                   | NA                | NA              | NA       | NA        | NA        | NA NA             | . NA         | NA                  | NA                | NA NA                 | NA                 | NA NA                     | NA.         | NA           | NA        | NA             | NA                 | NA              | NA                   | NA                      | NA NA                    | NA             |
| VOCs              | o-XYLENE                           |           |                   | ug/L               | . NA                 | NA            | NA                    | NA             | NA                   | NA                   | NA           | NA               | NA                  | NA                 | NA               | NA                  | NA             | NA I           | NA I             | NA               | NA NA                   | NA                | NA              | NA       | NA        | NA        | NA NA             | . NA         | NA                  | NA                | NA NA                 | NA                 | NA NA                     | NA.         | NA           | NA        | NA             | NA                 | NA              | NA                   | NA                      | NA NA                    | NA             |
|                   | TOLUENE                            | 1         |                   | 1900 ug/L          | . 1 U                | 1 U           | 1 U                   | 1 U            | 1 U                  | NA                   | NA           | 1 U              | 1 U                 | NA                 | NA               | NA                  | 1 U            | NA I           | NA I             | NA               | 1 U NA                  | NA                | NA              | NA       | NA        | NA        | NA NA             | 1 U          | NA                  | NA                | NA NA                 | NA                 | NA NA                     | NA          | NA           | NA        | NA             | NA                 | NA              | NA                   | NA                      | NA NA                    |                |
|                   | XYLENES (TOTAL)                    | 2         | 10000             | ug/L               | . 2 U                | 2 U           |                       | 2 U            |                      | NA                   | NA           | 2 U              | 2 U                 | NA                 | NA               | NA .                | 2 U            | NA             | NA I             | NA               | 2 U NA                  | NA.               | NA              | NA       | NA        | NA        | NA NA             |              | _                   | NA                | NA NA                 | NA                 | NA NA                     | NA          | NA           | NA        | NA             | NA                 | NA.             | NA                   | NA                      | NA NA                    |                |
|                   | METHYL TERT BUTYL ETHER TOTAL BTEX | -         |                   | ug/L               | . NA                 | 10 U<br>ND    |                       | NA<br>ND       |                      | NA<br>NA             | NA<br>NA     | 10 U<br>ND       | NA<br>ND            | NA<br>NA           | NA<br>NA         | NA<br>NA            | NA<br>ND       | NA NA          | NA I             | NA<br>NA         | NA NA                   | NA<br>NA          | NA<br>NA        | NA<br>NA | NA<br>NA  | NA<br>NA  | NA NA             |              |                     | NA<br>NA          | NA NA                 | NA<br>NA           | NA NA                     | NA<br>NA    | NA<br>NA     | NA<br>NA  | NA<br>NA       | NA<br>NA           | NA<br>NA        | NA<br>NA             | NA<br>NA                | NA NA                    |                |
|                   | ARSENIC                            | 0.018     | 0.018             | 0.018 mg/L         | . 0.02 U             | 0.01 L        | _                     | 0.01 L         | _                    | _                    | _            | _                | _                   | 0.02 U             | 0.02 U           | 0.02 U              | 0.0211         |                |                  |                  | 02 U 0.02 U             | 0.02 U            | 0.02 U          | NA NA    | NA NA     | NA NA     | NA NA             |              | _                   | NA NA             | NA NA                 | NA NA              | NA NA                     | NA.         | NA NA        | NA NA     | NA NA          | NA NA              | NA.             | NA NA                | NA NA                   | NA NA                    |                |
|                   | BERYLLIUM                          |           | 0.004             | mg/L               | . NA                 | NA            | NA.                   | NA.            | NA.                  | NA.                  | NA.          | NA.              | NA                  | NA.                | NA.              | NA NA               | NA             | NA I           | NA I             | NA               | NA NA                   | NA.               | NA .            | NA       | NA        | NA        | NA NA             | . NA         | NA NA               | NA NA             | NA NA                 | NA.                | NA NA                     | NA.         | NA           | NA        | NA             | NA                 | NA.             | NA                   | NA                      | NA NA                    |                |
|                   | BORON                              |           |                   | mg/L               | . NA                 | NA            | NA                    | NA             | NA                   | NA                   | NA           | NA               | NA                  | NA                 | NA               | NA                  | NA             | NA I           | NA I             | NA               | NA NA                   | NA.               | NA              | NA       | NA        | NA        | NA NA             | . NA         | NA                  | NA                | NA NA                 | NA                 | NA NA                     | NA          | NA           | NA        | NA             | NA                 | NA              | NA                   | NA                      | NA NA                    | NA             |
|                   | CADMIUM                            |           | 0.005             | mg/L               | _ NA                 | NA            | NA                    | NA             | NA                   | NA                   | NA           | NA               | NA                  | NA                 | NA               | NA                  | NA             | NA I           | NA I             | NA               | NA NA                   | NA                | NA              | NA       | NA        | NA        | NA NA             | . NA         | NA                  | NA                | NA NA                 | NA                 | NA NA                     | NA          | NA           | NA        | NA             | NA                 | NA              | NA                   | NA                      | NA NA                    | NA             |
|                   | CALCIUM METAL                      |           |                   | mg/L               | . NA                 | NA            | NA                    | NA             | NA                   | NA                   | NA           | NA               | NA                  | NA                 | NA               | NA                  | NA             | NA             | NA I             | NA               | NA NA                   | NA                | NA              | NA       | NA        | NA        | NA NA             | NA NA        | NA                  | NA                | NA NA                 | NA                 | NA NA                     | NA          | NA           | NA        | NA             | NA                 | NA              | NA                   | NA                      | NA NA                    |                |
|                   | CHROMIUM                           | 0.013     | 0.1               | mg/L               | 0.01 U               | 0.01 L        |                       | 0.01 L         | _                    |                      | NA           | 0.01 U           | 0.01 U              | NA                 | NA               | NA                  | 0.01 U         | NA I           | NA I             |                  | 01 U NA                 | NA                | NA              | NA       | NA        | NA        | NA NA             |              |                     | NA                | NA NA                 | NA                 | NA NA                     | NA          |              | NA        | NA             | NA                 | NA              | NA                   | NA                      | NA NA                    |                |
| Metals, Total     | LEAD                               | 0.007     | 0.015             | 0.015 mg/L         | 0.01 U               | 0.005 l       |                       | 0.005 (        |                      |                      | J 0.01 L     |                  | 0.01 U              | 0.01 U             | 0.01 U           | 0.01 U              | 0.01 U         | 0.01 U 0.      | 01 U 0.          |                  | 01 U 0.01 U             | 0.01 U            | 0.01            | NA       | NA        | NA        | NA NA             |              |                     | NA                | NA NA                 | NA                 | NA NA                     | NA.         |              | NA        | NA             | NA                 | NA<br>NA        |                      |                         | NA NA                    |                |
|                   | MAGNESIUM                          |           | 0.002             | mg/L               | . NA                 | NA<br>NA      | NA<br>NA              | NA<br>NA       |                      | NA<br>NA             | NA<br>NA     | NA<br>NA         | NA<br>NA            | NA<br>NA           | NA<br>NA         | NA<br>NA            | NA<br>NA       | NA I           | NA I             |                  | NA NA                   | NA<br>NA          | NA<br>NA        | NA<br>NA | NA<br>NA  | NA<br>NA  | NA NA             |              |                     | NA<br>NA          | NA NA                 | NA<br>NA           | NA NA                     | NA<br>NA    | NA<br>NA     | NA<br>NA  | NA<br>NA       | NA<br>NA           | NA<br>NA        |                      | NA<br>NA                | NA NA                    |                |
|                   | NICKEL                             | 0.13      | 0.002             | 2 mg/L             | 0.04 U               | 0.04 L        |                       | 0.04 L         |                      | J NA                 | NA NA        | 0.0054           | 0.04 U              | 0.04 U             | 0.04 U           | 0.04 U              | 0.04 U         | NA NA          | NA NA            | -                | 04 U NA                 | NA.               | NA.             | NA NA    | NA NA     | NA NA     | NA NA             |              | _                   | NA NA             | NA NA                 | NA NA              | NA NA                     | NA.         | NA NA        | NA NA     | NA NA          | NA NA              | NA.             | NA NA                | NA NA                   | NA NA                    |                |
|                   | POTASSIUM                          |           |                   | mg/L               | . NA                 | NA.           |                       | NA.            |                      | NA NA                | NA NA        | NA NA            | NA NA               | NA .               | NA NA            | NA .                | NA .           | NA .           | NA I             |                  | NA NA                   | NA.               | NA              | NA       | NA NA     | NA        | NA NA             |              |                     | NA NA             | NA NA                 | NA NA              | NA NA                     |             | NA NA        | NA NA     | NA NA          | NA NA              | NA.             | NA.                  | NA                      | NA NA                    |                |
|                   | SODIUM                             |           |                   | mg/L               | . NA                 | NA            | NA                    | NA             | NA.                  | NA                   | NA           | NA               | NA                  | NA                 | NA               | NA .                | NA             | NA             | NA I             | NA               | NA NA                   | NA.               | NA              | NA       | NA        | NA        | NA NA             | . NA         | NA NA               | NA                | NA NA                 | NA                 | NA NA                     | NA          | NA           | NA        | NA             | NA                 | NA              | NA.                  | NA                      | NA NA                    | NA             |
|                   | ZINC                               | 0.96      | 2                 | 31 mg/L            | 0.02 U               | 0.02 L        | U 0.02 U              | 0.02 L         | U 0.02 U             | J NA                 | NA           | 0.02 U           | 0.02 U              | NA                 | NA               | NA                  | 0.4            | NA             | NA I             | NA 0.            | 02 U NA                 | NA                | NA              | NA       | NA        | NA        | NA NA             | 0.02         | U NA                | NA                | NA NA                 | NA                 | NA NA                     | NA          | NA           | NA        | NA             | NA                 | NA              | NA.                  | NA                      | NA NA                    | NA             |
|                   | ARSENIC                            | 0.018     |                   | 0.018 mg/L         | . NA                 | NA            | NA                    | NA             | 0.02 U               | J NA                 | NA           | NA               | NA                  | NA                 | NA               | NA .                | NA             | NA             | NA I             | NA               | NA NA                   | NA.               | NA              | NA       | NA        | NA        | NA NA             | NA NA        | NA                  | NA                | NA NA                 | NA                 | NA NA                     | NA          | NA           | NA        | NA             | NA                 | NA              | NA.                  | NA                      | NA NA                    |                |
|                   | BERYLLIUM                          |           | 0.004             | mg/L               | . NA                 | NA            |                       | NA             |                      |                      | _            | _                | NA                  | NA                 | NA               | NA                  | NA             |                |                  |                  | NA NA                   | NA.               | NA              | NA       | NA        | NA        | NA NA             |              | _                   | NA                | NA NA                 | NA.                | NA NA                     |             |              | NA        | NA             | NA                 | NA .            |                      |                         | NA NA                    |                |
|                   | CADMIUM                            | 0.010     | 0.005             | mg/L               | . NA                 | NA<br>NA      | _                     | NA<br>NA       |                      | _                    | _            |                  | NA<br>NA            | NA<br>NA           | NA<br>NA         | NA<br>NA            | NA<br>NA       |                |                  |                  | NA NA                   | NA<br>NA          | NA<br>NA        | NA<br>NA | NA<br>NA  | NA<br>NA  | NA NA             |              | _                   | NA<br>NA          | NA NA                 | NA<br>NA           | NA NA                     | _           |              | NA<br>NA  | NA<br>NA       | NA<br>NA           | NA<br>NA        |                      |                         | NA NA                    |                |
| Metals, Dissolved | LEAD                               | 0.013     | _                 | mg/L<br>0.015 mg/L | -                    | NA<br>NA      | _                     | NA<br>NA       | _                    | _                    | _            | _                |                     | NA<br>NA           | NA<br>NA         | NA<br>NA            | NA<br>NA       |                |                  |                  | NA NA                   | _                 | NA<br>NA        | NA<br>NA | NA<br>NA  | NA<br>NA  | NA NA             | _            | _                   | NA<br>NA          | NA NA                 | NA<br>NA           | NA NA                     | _           |              | NA<br>NA  | +              | NA<br>NA           | NA<br>NA        |                      |                         | NA NA                    |                |
|                   | MERCURY                            |           | 0.002             | mg/L               | -                    |               | _                     | NA.            | _                    | _                    | _            | _                | _                   | NA NA              | NA NA            | NA NA               | NA NA          |                |                  |                  | NA NA                   |                   | NA NA           | NA NA    | NA NA     | NA NA     | NA NA             |              | _                   |                   | NA NA                 | NA.                | <del> </del>              | _           |              | NA NA     | +              | NA NA              | NA NA           |                      |                         | NA NA                    |                |
|                   | NICKEL                             | 0.13      |                   | 2 mg/L             | -                    | NA            | _                     | NA             |                      | _                    | _            | _                |                     | NA                 | NA               | NA                  | NA             |                |                  |                  | NA NA                   |                   | NA              | NA       | NA        | NA        | NA NA             |              | _                   | NA                | NA NA                 | NA                 | NA NA                     |             |              | NA        |                | NA                 | NA.             |                      | _                       | NA NA                    |                |
| L                 | ZINC                               | 0.96      |                   | 31 mg/L            |                      |               | _                     | NA             | _                    |                      | NA           |                  |                     | NA                 | NA               | NA                  | NA             |                |                  | NA               | NA NA                   |                   | NA              | NA       | NA        | NA        | NA NA             |              |                     | NA                | NA NA                 | NA                 |                           |             | NA           |           |                | NA                 | NA              | NA .                 | NA                      | NA NA                    |                |
|                   | ALKALINITY                         |           |                   | mg/L               | . NA                 | NA            | NA                    | NA             | NA                   | NA                   | NA           | NA               | NA                  | NA                 | NA               | NA                  | NA             | NA I           | NA I             | NA               | NA NA                   | NA.               | NA              | NA       | NA        | NA        | NA NA             | . NA         | NA                  | NA                | NA NA                 | NA                 | NA NA                     | NA          | NA           | NA        | NA             | NA                 | NA              | NA.                  | NA                      | NA NA                    | NA             |
|                   | ALKALINITY, TOTAL (AS CACO3)       |           |                   | mg/L               |                      |               |                       | NA             |                      | _                    |              |                  |                     | NA                 | NA               | NA                  | NA             |                |                  |                  | NA NA                   | _                 | NA              | NA       | NA        | NA        | NA NA             |              |                     |                   | NA NA                 | NA                 | NA NA                     | _           | _            | NA        |                | NA                 | NA              |                      |                         | NA NA                    |                |
| 1                 | AMMONIA AS N                       | 15        | 30                | 30 mg/L            |                      |               |                       | 6.6            |                      |                      | _            |                  | _                   | 4.7                | 3.6              | <b></b>             | 2.9            |                |                  |                  | 72 110                  |                   | 39              |          | 30        | 19        | 19 27             |              |                     |                   | 0.42 1.7              | 0.63               | 7.8 7.7                   | _           | _            | 5.7       | -              | 11                 | 8.8             |                      | _                       | 5.5 1.6                  |                |
| 1                 | BICARBONATE                        |           |                   | mg/L               | . NA                 |               | _                     | NA NA          |                      |                      | _            |                  | _                   | NA                 | NA NA            | NA NA               | NA NA          |                |                  |                  | NA NA                   | _                 | NA NA           | NA NA    | NA        | NA        | NA NA             |              |                     |                   | NA NA                 | NA NA              | +                         | _           | _            | NA NA     | _              | NA<br>NA           | NA NA           |                      |                         | NA NA                    |                |
| Miscellaneous     | CONDUCTIVITY                       |           |                   | mg/L<br>umho       | NA NA                | +             |                       | NA<br>NA       |                      |                      | _            | _                |                     | NA<br>NA           | NA<br>NA         | NA<br>NA            | NA<br>NA       |                |                  |                  | NA NA                   | _                 | NA<br>NA        | NA<br>NA | NA<br>NA  | NA<br>NA  | NA NA             |              | _                   | _                 | NA NA                 | NA<br>NA           | NA NA                     |             |              | NA<br>NA  | -              | NA<br>NA           | NA<br>NA        |                      | _                       | NA NA                    |                |
|                   | NITRATE (AS N)                     |           | 10                | - cm               | -                    | +             |                       | NA<br>NA       |                      |                      |              | _                |                     | 0.05 U             | 0.05 U           | <del></del>         | 0.05 U         |                |                  |                  | NA NA<br>05 U 0.05 U    |                   | 0.05 U          | NA<br>NA | NA<br>NA  | NA<br>NA  | NA NA             |              | _                   | 0.11              | 0.05 UH 0.05 U        |                    | 0.05 U 0.05 L             |             | _            | _         |                | 0.05 U             | 0.05 U          |                      |                         | 0.05 U 0.05 U            |                |
| 1                 | NITRITE (AS N)                     |           |                   | mg/L               | -                    | +             |                       | NA.            |                      |                      | _            | _                |                     | NA                 | 0.05 U           | 0.05 U              | NA NA          |                |                  |                  | NA NA                   |                   | 0.05 U          | NA NA    | NA<br>NA  | NA<br>NA  | NA NA             |              | _                   | 0.11              | NA NA                 | 0.05 U             |                           |             |              | NA        |                | _                  | 0.05 U          |                      |                         | NA 0.089                 |                |
|                   | SULFATE                            |           |                   | mg/L               | _                    | +             |                       | NA.            |                      |                      | _            | _                |                     | NA NA              | NA NA            | NA NA               | NA NA          |                |                  |                  | NA NA                   |                   | NA NA           | NA NA    | NA NA     | NA NA     | NA NA             |              |                     |                   | NA NA                 | NA NA              |                           | _           | _            | NA NA     |                | NA NA              | NA.             |                      |                         |                          | NA NA          |
|                   | SOLIDS, TOTAL DISSOLVED            |           |                   | mg/L               | . NA                 | +             |                       | NA             |                      |                      | _            | _                | _                   | NA                 | NA               | NA                  | NA             |                |                  |                  | NA NA                   | +                 | NA              | NA       | NA        | NA        | NA NA             |              | _                   | _                 | NA NA                 | NA                 | NA NA                     |             |              | NA        | -              | NA                 | NA              |                      |                         | NA NA                    |                |
| SVOCs             | 1,4-DICHLOROBENZENE                |           |                   | - · ug/L           | . NA                 | NA            | NA                    | NA             | NA                   | NA                   | NA           | 1 U              | NA                  | NA                 | NA               | NA                  | NA             | NA             | NA I             | NA               | NA NA                   | NA.               | NA              | NA       | NA        | NA        | NA NA             | . NA         | NA                  | NA                | NA NA                 | NA                 | NA NA                     | NA          | NA           | NA        | NA             | NA                 | NA              | NA.                  | NA                      | NA NA                    | NA             |
|                   |                                    |           |                   |                    |                      |               |                       |                |                      |                      |              |                  |                     |                    |                  |                     |                |                |                  |                  |                         |                   |                 |          |           |           |                   |              |                     |                   |                       |                    |                           |             |              |           |                |                    |                 |                      |                         |                          |                |

Notes:

Shaded cell indicates comparison standard used in date evaluation.

Inglighted cell indicates analytical result exceeds comparison criteria.

Bold and Bolk test indicates analytical result exceeds background value.

Bold and Bolk test indicates analytical result exceeds background value.

Bold and Bolk test indicates analytical result exceeds background value.

No - No constituents detected above the laboratory wininum detection limit.

Lindicates constituent was not detected above value shown.

Ji indicates constituent was not detected at an estimated value.

Unindicates constituent was not detected at an estimated value.

Monitoring will a MM-3R, POMM-3R, POMM-3R, POMM-1R, POMM-1ER, POMM-3ER, POMM

|                   |                                        |            |                 | Locatio      | on: RT-1        | RT-2        | RT-3        |                  |               |             |               |                         |              |               |             |                                |          |                              |                |                                                  |                      |                    | TMV                | <i>l</i> -1             |                        |                                   |                  |                  |                          |                          |                   |           |                |                                            |                |                |                                                  |                                         | TW2                         |
|-------------------|----------------------------------------|------------|-----------------|--------------|-----------------|-------------|-------------|------------------|---------------|-------------|---------------|-------------------------|--------------|---------------|-------------|--------------------------------|----------|------------------------------|----------------|--------------------------------------------------|----------------------|--------------------|--------------------|-------------------------|------------------------|-----------------------------------|------------------|------------------|--------------------------|--------------------------|-------------------|-----------|----------------|--------------------------------------------|----------------|----------------|--------------------------------------------------|-----------------------------------------|-----------------------------|
|                   |                                        |            |                 | Sample Dat   | te: 10/16/2001  | 1/10/2002   | 3/8/2002    | 10/11/1997       | 8/11/1        | 1999        | 9/28/1999     | 11/18/1999 2/24/20      | 00 5/16/200  | 0 8/22/2000   | 1/10/2001   | 7/16/2001 2/5/2                | 002 9/1  | 10/2002 2/5/2003             | 6/25/2003      | 1/27/2004 7                                      | 7/23/2004 3/         | /2006              | 4/3/2008           | 7/18/2008 10            | 0/5/2008               | 12/5/2009                         | 6/18/2010        | 12/15            | 2010                     | 6/15/2011                | 12                | 6/2011    | 12/11/2013     | 6/5/2014 11/5                              | 5/2014         | 5/21/2015      | 5/21/2015 11                                     | 1/12/2015 11/12/201                     | 015 10/11/1997              |
|                   |                                        |            |                 | Sample Typ   | oe: Normal      | Normal      | Normal      | Normal           | Norm          | mal         | Normal        | Normal Norma            | l Normal     | Normal        | Normal      | Normal Norr                    | nal N    | lormal Normal                | Normal         | Normal                                           | Normal Normal        | Dup                | Normal             | Normal 1                | Normal No              | ormal Dup                         | Normal           | Normal           | Dup No                   | mal Dup                  | Normal            | Dup       | Normal         | Normal Normal                              | Dup            | Dup            | Normal                                           | Dup Normal                              | al Normal                   |
|                   |                                        |            |                 |              | RT-             | RT-         | RT-         | TMW-             | TMM-          | TMW-        | TMW-          | TMW- TMW                | THE          | 71111/        | 71111/      | THAIN THAI                     |          | TMW- TMW-                    | TMW-           | TMW-                                             | TMW- TMW-            | TMW-1              | 77414/             | TANK                    | 714111                 | TMW-1-                            | TMW-             | TMW-             | TMW-1                    | w Dun                    | 71414             | DUP-      | TMW-           | TMW- TMW                                   | DUP-           | DUP 01 052     | TMW 4 050                                        | DUP- TMW.                               | TWO 40/44/4                 |
|                   |                                        |            |                 | Sample I     | ID: 1_10/16/200 | 2_1/10/2002 | 3_3/8/2002  | 1_10/11/199<br>7 | 1_8/11/1999 1 | 1_8/11/1999 | 1_9/28/1999   | 1_11/18/199<br>1_2/24/2 | 1_5/16/20    | 00 1_8/22/200 | 1_1/10/200  | TMW- TM1<br>1_7/16/2001 1_2/5/ | 2002 1_9 | TMW-<br>1/10/2002 1_2/5/2003 | 1_6/25/2003    | 1_1/27/2004 1_                                   | 7/23/2004 1_3/9/2000 | (DUP)_3/9/2<br>006 | TMW-<br>1_4/3/2008 | TMW-<br>1_7/18/2008 1_1 | TMW-<br>10/5/2008 1_12 | MW-<br>1/5/2009 DUP_12/5/20<br>09 | 1_6/18/2010      | 1_12/15/201<br>0 | DUP1_12/15/<br>2010 1_06 | W- DUP-<br>1511 1_061511 | TMW-<br>1_1206201 | 02_120620 | 1 1_12/11/201  | TMW-<br>01_0605201<br>4 TMW-<br>1_11052014 | 1_11052014     | 12015          | 12015 02                                         | DUP-<br>2_1112201<br>5 TMW-<br>1_111220 | -<br>TW2_10/11/1<br>015 997 |
| Method Grou       | Analyte                                | Rackground | Type 3 RRS Type | a 4 RRS Unit | ts Result       | Result      | Result      | Result           | Result        | Result      | Result        | Result Resul            | t Result     | Result        | Result      | Result Res                     | ult B    | Result Result                | Result         | Result                                           | Result Result        | Result             | Result             | Result I                | Result Re              | esult Result                      | Result           | Result           | Result Re                | ult Result               | Result            | Result    | Result         | Result Result                              | Result         | Result         | Result                                           | Result Result                           | t Result                    |
| method Grou       | ACENAPHTHENE                           | Background | 2000            | e 4 AAS OHIL | is nesult       | 1 II        | 1 II        | 5 II             | 22            | 111         | NA NA         | 10 U 2.1 J              |              | 1 U           | 1 U         | 1 U N/                         | _        | 2 U 2 U                      | 3.8            | 2 U                                              | 1U 1U                | 0.19 U             | 1.9 U              |                         |                        | .2 U 0.2 U                        | 1.9 U            | 1.9 U            | 0.19 U 1.                |                          | 1.9 U             | 1.9 U     | 9.2 U          | 9.8 U 9.7 U                                | 9.8 U          | 9.9 U          | 9.7 U                                            | 9.7 U 9.5 U                             |                             |
|                   | ACENAPHTHYLENE                         | 1.4        |                 | 510 ug/L     | L 1.1           | 1 U         | 1 U         | 5 U              | 1 U           | 10          | NA NA         | 10 U 1 U                | _            |               | 10          | 7.4 D N/                       |          | 20 20                        | 0.2 U          | 2 U                                              | 10 10                | 0.19 U             | 1.9 U              |                         |                        | .2U 0.2U                          | 1.9 U            | 1.9 U            |                          | U 1.9 U                  | 1.9 U             | 1.9 U     | 9.2 U          | 9.8 U* 9.7 U                               | 9.8 U          | 9.9 U          | 9.7 U                                            | 9.7 U 9.5 U                             |                             |
|                   | ANTHRACENE                             | 0.2        | 0.2             | 5100 ug/L    | L 0.2 U         | 0.2 U       | 0.2 U       | 1 U              | 0.2 U         | 0.2 U       | NA            | 2 U 0.2 U               | _            | _             | 0.2 U       | 0.2 U N/                       |          | 2 U 2 U                      | 0.26           | 2 U                                              | 10 10                | 0.19 U             | 1.9 U              |                         |                        | .2 U 0.2 U                        | 0.19 U           | 1.9 U            | 0.19 U 1.                |                          | 1.9 U             | 1.9 U     | 9.2 U          | 9.8 U 9.7 U                                | 9.8 U          | 9.9 U          | 9.7 U                                            | 9.7 U 9.5 U                             |                             |
|                   | BENZO(A)ANTHRACENE                     | 0.2        | 0.1             | 3.9 ug/L     | L 0.2 U         | 0.2 U       | 0.2 U       | 1 U              | 0.2 U         | 0.2 U       | NA            | 2 U 0.2 U               | 0.2 U        | 0.2 U         | 0.2 U       | 0.2 U N/                       |          | 2 U 2 U                      | 0.2 U          | 2 U                                              | 10 10                | 0.19 U             | 1.9 U              | 0.2 U                   | 0.38 U 0               | .2 U 0.2 U                        | 0.19 U           | 1.9 U            | 0.19 U 1.                | U 1.9 U                  | 1.9 U             | 1.9 U     | 9.2 U          | 9.8 U 9.7 U                                | 9.8 U          | 9.9 U          | 9.7 U                                            | 9.7 U 9.5 U                             | 0.2 U                       |
|                   | BENZO(A)PYRENE                         | 0.2        | 0.2             | 0.39 ug/L    | L 0.2 U         | 0.2 U       | 0.2 U       | 1 U              | 0.2 U         | 0.2 U       | NA            | 2 U 0.2 U               | 0.2 U        | 0.2 U         | 0.2 U       | 0.2 U N/                       |          | 2 U 2 U                      | 0.2 U          | 2 U                                              | 10 10                | 0.19 U             | 1.9 U              | 0.2 U                   | 0.38 U 0               | .2 U 0.2 U                        | 0.19 U           | 1.9 U            | 0.19 U 1.                | U 1.9 U                  | 1.9 UJ            | 1.9 UJ    | 9.2 U          | 9.8 U 9.7 U                                | 9.8 U          | 9.9 U          | 9.7 U                                            | 9.7 U 9.5 U                             | 0.2 U                       |
|                   | BENZO(B)FLUORANTHENE                   | 0.2        | 0.2             | 0.65 ug/L    | L 0.2 U         | 0.2 U       | 0.2 U       | 1 U              | 0.2 U         | 0.2 U       | NA            | 2 U 0.2 U               | 0.2 U        | 0.2 U         | 0.2 U       | 0.2 U N/                       | ı        | 2 U 2 U                      | 0.2 U          | 2 U                                              | 10 10                | 0.19 U             | 1.9 U              | 0.2 U                   | 0.38 U 0               | .2 U 0.2 U                        | 0.19 U           | 1.9 U            | 0.19 U 1.                | U 1.9 U                  | 1.9 U             | 1.9 U     | 9.2 U          | 9.8 U 9.7 U                                | 9.8 U          | 9.9 U          | 9.7 U                                            | 9.7 U 9.5 U                             | 0.2 U                       |
|                   | BENZO(G,H,I)PERYLENE                   |            |                 | ug/L         | L NA            | NA          | NA          | 2.5 U            | NA            | NA          | NA            | NA NA                   | NA           | NA            | NA          | NA NA                          |          | 2 U 2 U                      | 0.2 U          | 2 U                                              | 10 10                | 0.19 U             | 1.9 U              | 0.2 U                   | 0.38 U 0               | .2 U 0.2 U                        | 0.19 U           | 1.9 U            | 0.19 U 1.                | U 1.9 U                  | 1.9 UJ            | 1.9 UJ    | 9.2 U          | 9.8 U 9.7 U                                | 9.8 U          | 9.9 U          | 9.7 U                                            | 9.7 U 9.5 U                             | 0.5 U                       |
|                   | BENZO(K)FLUORANTHENE                   |            |                 | ug/L         | L NA            | NA          | NA          | 2.5 U            | NA            | NA          | NA            | NA NA                   | NA           | NA            | NA          | NA NA                          | _        | 2 U 2 U                      | 0.2 U          | +                                                | 10 10                | 0.19 U             | 1.9 U              |                         |                        | .2 U 0.2 U                        | 0.19 U           | 1.9 U            |                          | U 1.9 U                  | _                 | 1.9 U     | 9.2 U          | 9.8 U 9.7 U                                | 9.8 U          | 9.9 U          | 9.7 U                                            | 9.7 U 9.5 U                             | _                           |
|                   | CHRYSENE                               | 0.2        |                 | 65 ug/L      | L 0.2 U         | 0.2 U       | 0.2 U       | 1 U              | 0.2 U         | 0.2 U       | NA            | 2 U 0.2 U               |              | 0.2 U         | 0.2 U       | 0.2 U N/                       |          | 2 U 2 U                      | 0.2 U          | 2 U                                              | 1U 1U                | 0.19 U             | 1.9 U              |                         |                        | .2 U 0.2 U                        | 0.19 U           | 1.9 U            | _                        | U 1.9 U                  |                   | 1.9 U     | 9.2 U          | 9.8 U 9.7 U                                | 9.8 U          | 9.9 U          | 9.7 U                                            | 9.7 U 9.5 U                             |                             |
| PAHs              | DIBENZO(A,H)ANTHRACENE<br>FLUORANTHENE | 0.5        | 0.3             | ug/L         | L NA<br>L 0.5 U | NA<br>0.5 U | NA<br>0.5 U | 5 U              | NA<br>0.5.U   | NA<br>0.5 U | NA<br>NA      | NA NA<br>5 U 0.5 U      | NA<br>0.5 U  | NA<br>0.5     | NA<br>0.5 U | 0.5 U N/                       |          | 2U 2U<br>2U 2U               | 0.2 U<br>0.2 U | 2 U                                              | 10 10                | 0.19 U<br>0.19 U   | 1.9 U              |                         |                        | .2 U 0.2 U                        | 0.19 U<br>0.19 U | 1.9 U            |                          | U 1.9 U                  | 1.9 U             | 1.9 U     | 9.2 U<br>9.2 U | 9.8 U 9.7 U<br>9.8 U 9.7 U                 | 9.8 U<br>9.8 U | 9.9 U<br>9.9 U | 9.7 U                                            | 9.7 U 9.5 U<br>9.7 U 9.5 U              |                             |
|                   | FLUORANIHENE                           | 0.5        | 1000            | ug/L         | L 0.5 U         | 0.5 U       | 0.5 U       | 2.5 U            | 0.5 U         | 0.5 U       | NA<br>NA      | 5U 0.5U                 | 0.5 U        | 0.5<br>0.5 U  | 0.5 0       | 0.5 U N/                       |          | 2U 2U                        | 0.2 0          | 2 U                                              | 10 10                | 0.19 U             | 1.9 U              |                         |                        | .20 0.20                          | 0.19 U           | 1.9 U            |                          | U 1.9 U                  |                   | 1.9 U     | 9.2 U          | 9.80 9.70                                  | 9.8 U          | 9.9 U          | 9.7 U                                            | 9.7U 9.5U                               |                             |
|                   | INDENO(1,2,3-CD)PYRENE                 | 0.5        | 0.4             | ug/L         | L NA            | NA NA       | NA.         | 2.5 U            | NA NA         | NA.         | NA NA         | NA NA                   | 0.04 3<br>NA | NA.           | NA.         | NA NA                          |          | 2U 2U                        | 0.34<br>0.2 U  | 2 U                                              | 10 10                | 0.19 U             | 1.9 U              |                         |                        | .20 0.20                          | 0.19 U           | 1.9 U            | _                        | U 1.9 U                  | 1.9 U             | 1.9 U     | 9.2 U          | 9.8 U 9.7 U                                | 9.8 U          | 9.9 U          | 9.7 U                                            | 9.7 U 9.5 U                             |                             |
|                   | 1-METHYLNAPHTHALENE                    |            |                 | ug/L         | L NA            | NA NA       | NA NA       | NA NA            | NA .          | NA.         | NA NA         | NA NA                   | NA NA        | NA NA         | NA.         | NA NA                          |          | 17 17                        | 18             | 17                                               | 12 22                | 19                 | 15                 | 2                       |                        | 1.2 1.2                           | 0.38 U           | 6.3              | 7 6                      |                          | 9.7               | 10        | 12             | 15 12                                      | 12             | 11             | 9.7 U                                            | 11 9.5 U                                |                             |
|                   | 2-METHYLNAPHTHALENE                    |            |                 | ug/L         | L NA            | NA          | NA          | NA               | NA            | NA          | NA            | NA NA                   | NA           | NA            | NA          | NA NA                          |          | 30 31                        | 46 D           | 28                                               | 17 36                | 29                 | 18                 | 2.1                     | 5.4 D (                | 0.84 0.75                         | 0.19 U           | 5.1              | 5.5                      | 6 6.6                    | 13                | 14        | 7              | 15 16                                      | 16             | 11             | 9.7 U                                            | 13 9.5 U                                |                             |
|                   | NAPHTHALENE                            | 1          | 20              | 20 ug/L      | L 1.4 J         | 1 U         | 1 U         | 59               | 54 D          | 1 U         | NA            | 88 67 D                 | 140 D        | 92            | 110 D       | 110 D N/                       |          | 100 120                      | 140 D          | 92                                               | 27 °X 69             | 16                 | 72                 | 14                      | 27 D                   | 6.4 6.1                           | 1.8              | 33               | 37                       | 3 34                     | 52                | 55        | 5.2            | 39 44                                      | 40             | 44             | 40                                               | 63 26 F1                                | 1 U                         |
|                   | PHENANTHRENE                           | 0.22       | 0.2             | 510 ug/L     | L 0.2 U         | 0.2 U       | 0.2 U       | 1 U              | 0.62          | 0.25        | NA            | 2 U 0.54 J              | 1.7          | 1             | 0.69        | 0.35 J N/                      |          | 2 U 2 U                      | 0.46           | 2 U                                              | 10 10                | 0.19 U             | 1.9 U              | 0.2 U                   | 0.38 U 0               | .2 U 0.2 U                        | 0.19 U           | 1.9 U            | 1.9 U 1.                 | U 1.9 U                  | 1.9 U             | 1.9 U     | 9.2 U          | 9.8 U 9.7 U                                | 9.8 U          | 9.9 U          | 9.7 U                                            | 9.7 U 9.5 U                             | 0.2 U                       |
|                   | PYRENE                                 | 0.5        | 1000            | ug/L         | L 0.5 U         | 0.5 U       | 0.5 U       | 2.5 U            | 0.5 U         | 0.5 U       | NA            | 5 U 0.5 U               | _            | 0.53          | 0.5 U       | 0.5 U N/                       |          | 2 U 2 U                      | 0.2 U          | 2 U                                              | 10 10                | 0.19 U             | 1.9 U              | 0.2 U                   |                        | .2 U 0.2 U                        | 0.19 U           | 1.9 U            | 1.9 U 1.                 |                          | 1.9 U             | 1.9 U     | 9.2 U          | 9.8 U 9.7 U                                | 9.8 U          | 9.9 U          | 9.7 U                                            | 9.7 U 9.5 U                             | 0.5 U                       |
|                   | TOTAL PAHs                             |            |                 | ug/L         | L 2.5           | ND          | ND          | 59               | 56.82         | 0.25        | NA            | 88 69.64                |              |               | 111.45      | 117.75 N/                      |          | 147 168                      | 208.86         | 137                                              | 56 127               | 64                 | 105                |                         |                        | 3.44 8.05                         | 1.8              | 44.4             | 49.5 4                   |                          | 74.7              | 79        | 31.3           | 69 72                                      | 68             | 66             | 40                                               | 87 58                                   | ND                          |
|                   | BENZENE                                | 1          |                 | 31.2 ug/L    | L 2.5           | 1 U         | 1 U         | 120              | 1 U           | 84          | 50 U          | 120 130                 | 120          | 140           | 150         | 160 N/                         |          | 120 110                      | 90             |                                                  | 25 18                | 14                 | 56                 | 47                      |                        | 30 21                             | 32               | 52               | 51                       |                          | NA NA             | NA        | 58             | 81 80                                      | 77             | 48             | 47                                               | 51 52                                   |                             |
|                   | ETHYLBENZENE                           | 1          | 700             | ug/L         | L 2<br>I NA     | 1 U         | 1 U         | 250<br>NA        | 10            | 10 U<br>500 | 570<br>1500   | 250 370<br>490 840      | 490<br>1300  | 580           | 580<br>1400 | 650 N/                         |          | 420 530<br>NA NA             | 340            | 390<br>NA                                        | 1 U 77               | 21<br>NA           | 1.2<br>NA          | 12<br>NA                |                        | 1 U 1 U                           | 1 U<br>NA        | 1 U<br>NA        | 1 U 1                    | _                        | NA<br>NA          | NA        | 160            | 2 U 5 U                                    | 5 U<br>NA      | 1 U<br>NA      | 1 U<br>NA                                        | 1 U 1 U<br>NA NA                        | 1 U                         |
|                   | p/m-XYLENE<br>METHYLENE CHLORIDE       |            |                 | ug/L         | L NA            | NA NA       | NA<br>NA    | NA<br>NA         | 5 U           | 50 U        | 1500<br>250 U | 490 840<br>NA NA        | 1300<br>NA   | 670<br>NA     | 1400<br>NA  | 1400 N/<br>NA N/               |          | NA NA                        | NA<br>NA       |                                                  | NA NA                | NA<br>NA           | NA<br>NA           | NA<br>NA                |                        | NA NA                             | NA<br>NA         | NA<br>NA         | NA I                     |                          | NA<br>NA          | NA<br>NA  | 10 U           | NA NA                                      | NA<br>NA       | NA<br>NA       | NA<br>NA                                         | NA NA                                   | NA<br>NA                    |
| VOCs              | o-XYLENE                               |            |                 | · ug/L       | L NA            | 1 U         | NA.         | NA.              | 10            | 360         | 50 U          | 460 880                 | 620          | 1000          | 830         | 880 N/                         |          | NA NA                        | NA NA          | NA NA                                            | NA NA                | NA.                | NA.                | NA NA                   |                        | NA NA                             | NA.              | NA.              | NA I                     |                          | NA NA             | NA NA     | NA.            | NA NA                                      | NA.            | NA.            | NA NA                                            | NA NA                                   | NA NA                       |
|                   | TOLUENE                                | 1          | 1000            | 1900 ug/L    | L 1U            | 1 U         | 1 U         | 700              | 1 U           | 280         | 1100          | 550 970                 | 1100         | 730           | 1300        | 950 N/                         |          | 450 880                      | 740            | 750                                              | 1.4 140              | 76                 | 1.5 U              | 11                      | 10                     | 10 10                             | 1.5 U            | 1 U              | 10 1                     | U 1U                     | NA                | NA        | 1.2            | 2 U 5 U                                    | 5 U            | 1 U            | 1 U                                              | 10 10                                   | 1 U                         |
|                   | XYLENES (TOTAL)                        | 2          | 10000           | · · ug/L     | L 2.3           | NA          | 2 U         | 1000             | NA            | 860         | 1500          | 950 1720                | 1920         | 1670          | 2230        | 2280 N/                        |          | 1500 1900                    | 1400           | 1400                                             | 2 U 310              | 200                | 440 D              | 220                     | 93                     | 22 12                             | 18               | 120              | 110 1                    | 0 140                    | NA                | NA        | 3.5            | 250 420                                    | 420            | 120            | 110                                              | 220 220                                 | 2 U                         |
|                   | METHYL TERT BUTYL ETHER                |            |                 | - ug/L       | L NA            | NA          | NA          | NA               | NA            | NA          | NA            | NA NA                   | NA           | NA            | NA          | NA N                           |          | NA NA                        | NA             | NA                                               | NA 10 U              | 10 U               | 10 U               | 10 U                    | NA                     | NA NA                             | 10 U             | NA               | NA 1                     | A NA                     | NA                | NA        | 20 U           | 20 U NA                                    | NA.            | NA             | NA .                                             | NA NA                                   | NA                          |
|                   | TOTAL BTEX                             |            |                 | - · ug/L     | L 6.8           | ND          | ND          | 2070             | ND            | 1220        | 3170          | 1870 3190               | 3630         | 3120          | 4260        | 4040 N/                        | ı        | 2490 3420                    | 2570           | 2627                                             | 26.4 545             | 311                | 497.2              | 290                     | 134                    | 52 33                             | 50               | 172              | 161 1                    | 2 184                    | NA                | NA        | 222.7          | 331 500                                    | 497            | 168            | 157                                              | 271 272                                 | ND                          |
|                   | ARSENIC                                | 0.018      |                 | 0.018 mg/L   | L 0.013         | 0.01 U      | 0.01 U      | 0.479            | 0.57          | 0.01 U      | NA NA         | 0.54 0.36               | 0.57         | 0.01 U        | 0.01 U      | 0.33 N/                        | ı        | 0.35 0.43                    | 0.34           | 0.33                                             | 0.32 0.37            | 0.36               | 0.058              | 0.082                   | <b>0.045</b> 0.        | 02 U 0.02 U                       | 0.02 U           | 0.14             |                          | 2 U 0.072 U              | 0.15              | 0.17      | 0.15           | 0.095 0.13                                 | 0.15           | 0.14           | 0.16 F1                                          | 0.12 0.15                               |                             |
|                   | BERYLLIUM                              |            | 0.004           | mg/L         | L NA            | NA          | NA          | 0.005 U          | NA            | NA          | NA            | NA NA                   | NA           | NA            | NA          | NA NA                          |          | NA NA                        | NA             | NA                                               | NA NA                | NA                 | NA                 | NA                      |                        | NA NA                             | NA.              | NA               | NA N                     |                          | NA                | NA        | NA             | NA NA                                      | NA.            | NA             | NA .                                             | NA NA                                   | 0.005 U                     |
|                   | BORON                                  |            |                 | mg/L         | 'L NA           | NA          | 0.2         | NA               | NA            | NA          | NA            | NA NA                   | NA           | NA            | NA          | NA N/                          |          | NA NA                        | NA             | +                                                | NA NA                | NA                 | NA                 |                         |                        | NA NA                             | NA.              | NA.              | NA 1                     | _                        | NA                | NA        | NA             | NA NA                                      | NA NA          | NA             | NA                                               | NA NA                                   | NA                          |
|                   | CADMIUM  CALCIUM METAL                 |            | 0.005           | mg/L         | L NA            | NA<br>140   | NA<br>110   | 0.005 U          | NA<br>NA      | NA<br>NA    | NA<br>NA      | NA NA                   | NA<br>NA     | NA<br>NA      | NA<br>NA    | NA NA                          |          | NA NA                        | NA<br>NA       | NA<br>NA                                         | NA NA                | NA<br>NA           | NA<br>NA           | NA<br>NA                |                        | NA NA                             | NA<br>NA         | NA<br>NA         | NA 1                     |                          | NA<br>NA          | NA<br>NA  | NA<br>NA       | NA NA                                      | NA<br>NA       | NA<br>NA       | NA<br>NA                                         | NA NA                                   | 0.005 U                     |
|                   | CHROMILIM                              | 0.013      | 0.1             | mg/L         | 1 0.0111        | 0.01.11     | 0.0111      | 0.0706           | 0.111         | 0.01 U      | NA NA         | 0.095 0.072             |              | 0.01 U        | 0.01 U      | 0.055 N/                       |          | 0.061 0.075                  | 0.056          | <del>                                     </del> | 0.063 0.053          | 0.052              | 0.01 U             |                         |                        | .01 U 0.01 U                      | 0.01 U           | NA.              | NA I                     |                          | NA NA             | NA NA     | 0.023          | 0.017 0.026                                | 0.03           | 0.019          | 0.032                                            | 0.023 0.029                             | 0.01 U                      |
| Metals, Total     | LEAD                                   | 0.007      | 0.015           | 0.015 mg/L   | L 0.024         | 0.0075      | NA .        | 0.0202           | 0.05 U        | 0.005 U     | NA            | 0.038 0.034             |              | 0.005 U       | 0.005 U     | 0.021 N/                       |          | 0.025 U 0.017                | 0.021          |                                                  | 0.041 0.014          | 0.016              | 0.005 U            | 0.005 U (               | 0.005 U 0.             | .01 U 0.01 U                      | 0.01 U           | 0.01 U           |                          | 4 U 0.04 U               | 0.05 U            | 0.05 U    | 0.01 U         | 0.01 U 0.01 U                              | 0.01 U         | 0.01 U         | 0.01 U                                           | 0.01 U 0.01 U                           |                             |
|                   | MAGNESIUM                              |            |                 | mg/L         | 'L 14           | 65          | 28          | NA               | NA NA         | NA          | NA            | NA NA                   | NA           | NA            | NA          | NA NA                          | _        | NA NA                        | NA             | NA NA                                            | NA NA                | NA.                | NA                 | NA.                     |                        | NA NA                             | NA.              | NA.              | NA 1                     |                          | NA                | NA        | NA             | NA NA                                      | NA.            | NA             | NA .                                             | NA NA                                   | NA NA                       |
|                   | MERCURY                                |            | 0.002           | mg/L         | L NA            | NA          | NA          | 0.0002 U         | NA            | NA          | NA            | NA NA                   | NA           | NA            | NA          | NA NA                          |          | NA NA                        | NA             | NA                                               | NA NA                | NA                 | NA                 | NA .                    | NA                     | NA NA                             | NA.              | NA.              | NA N                     | A NA                     | NA                | NA        | NA             | NA NA                                      | NA.            | NA             | NA                                               | NA NA                                   | 0.0002 U                    |
|                   | NICKEL                                 | 0.13       | 0.1             | 2 mg/L       | 'L 0.04 U       | 0.04 U      | 0.04 U      | 0.0442           | 0.4 U         | 0.04 U      | NA            | 0.04 U 0.045            | 0.06         | 0.04 U        | 0.04 U      | 0.042 N/                       |          | 0.2 U 0.057                  | 0.045          | 0.2 U                                            | 0.2 UF 0.04          | 0.04               | 0.063              | 0.077                   | 0.049 0.               | .04 U 0.04 U                      | 0.04 U           | NA               | NA 1                     | A NA                     | NA                | NA        | 0.041          | 0.04 U 0.041                               | 0.04 U         | 0.04 U         | 0.04 U                                           | 0.04 U 0.04 U                           | U 0.04 U                    |
|                   | POTASSIUM                              |            |                 | mg/l         | 'L NA           | NA          | 27          | NA               | NA            | NA          | NA            | NA NA                   | NA           | NA            | NA          | NA NA                          |          | NA NA                        | NA             | NA                                               | NA NA                | NA                 | NA                 | NA                      | NA                     | NA NA                             | NA               | NA               | NA 1                     | A NA                     | NA                | NA        | NA             | NA NA                                      | NA             | NA             | NA                                               | NA NA                                   | NA                          |
|                   | SODIUM                                 |            |                 | mg/L         | L 110           | 480         | 200         | NA               | NA            | NA          | NA            | NA NA                   | NA           | NA            | NA          | NA N/                          |          | NA NA                        | NA             | NA                                               | NA NA                | NA                 | NA                 | NA                      |                        | NA NA                             | NA               | NA               | NA 1                     |                          | NA                | NA        | NA             | NA NA                                      | NA             | NA             | NA .                                             | NA NA                                   | NA                          |
|                   | ZINC                                   | 0.96       | 2               | 31 mg/L      | L 0.02 U        | 0.032       | 0.074       | 0.0895           | 0.2           | 0.02 U      | NA            | 0.1 U 0.09              | 0.12         | 0.02 U        | 0.02 U      | 0.12 N/                        |          | 0.59 0.18                    | 0.18           |                                                  | 0.34 0.068           | 0.07               | 0.21               | 0.59                    |                        | 0.21 0.23                         | 0.036            | NA               | NA N                     | A NA                     | NA                | NA        | 0.091          | 0.072 0.097                                | 0.094          | 0.072          | 0.077                                            | 0.063 0.078                             |                             |
|                   | AHSENIC                                | 0.018      | 0.018           | 0.018 mg/L   | L NA            | NA<br>NA    | NA<br>NA    | NA<br>NA         | NA<br>NA      | NA<br>NA    | NA<br>NA      | 0.13 0.34<br>NA NA      | 0.54<br>NA   | NA<br>NA      | NA<br>NA    | 0.29 0.3<br>NA N/              | _        | NA NA                        | NA<br>NA       | NA<br>NA                                         | NA NA                | NA<br>NA           | NA<br>NA           | NA<br>NA                | NA<br>NA               | NA NA                             | NA<br>NA         | NA<br>NA         | NA N                     | _                        | NA<br>NA          | NA<br>NA  | NA<br>NA       | NA NA                                      | NA<br>NA       | NA<br>NA       | NA<br>NA                                         | NA NA                                   | 0.01 U<br>0.005 U           |
|                   | CADMIUM                                |            | 0.004           | mg/L         | L NA            | NA<br>NA    | NA<br>NA    | NA<br>NA         | NA<br>NA      | NA<br>NA    | NA<br>NA      | NA NA                   | NA<br>NA     | NA<br>NA      | NA<br>NA    | NA NA                          |          | NA NA                        | NA<br>NA       | NA<br>NA                                         | NA NA                | NA<br>NA           | NA<br>NA           | NA<br>NA                | NA<br>NA               | NA NA                             | NA<br>NA         | NA<br>NA         | NA I                     |                          | NA<br>NA          | NA<br>NA  | NA<br>NA       | NA NA                                      | NA<br>NA       | NA<br>NA       | NA<br>NA                                         | NA NA                                   | 0.005 U                     |
|                   | CHROMIUM                               | 0.013      | 0.003           | mg/L         | L NA            | NA NA       | NA NA       | NA NA            | NA NA         | NA NA       | NA NA         | 0.023 0.067             | _            | NA NA         | NA.         | 0.046 0.04                     | _        | NA NA                        | NA NA          | NA NA                                            | NA NA                | NA NA              | NA NA              | NA NA                   |                        | NA NA                             | NA.              | NA NA            | NA NA                    |                          | NA NA             | NA NA     | NA NA          | NA NA                                      | NA NA          | NA NA          | NA NA                                            | NA NA                                   | 0.01 U                      |
| Metals, Dissolved | LEAD                                   | 0.007      |                 | 0.015 mg/L   | 'L NA           | NA          | NA          | NA               | NA NA         | NA          | NA            | 0.0097 0.04             |              |               | NA          | 0.018 0.0                      | _        | NA NA                        | NA             |                                                  | NA NA                | NA                 | NA                 |                         |                        | NA NA                             | NA.              | NA               | NA 1                     |                          | NA                | NA        | NA             | NA NA                                      | NA             | NA             | NA .                                             | NA NA                                   |                             |
|                   | MERCURY                                |            | 0.002           | mg/L         | L NA            | NA          | NA          | NA               | NA            | NA          | NA            | NA NA                   |              | NA            | NA          | NA NA                          | -+-      | NA NA                        | NA             |                                                  | NA NA                | NA                 | NA                 |                         |                        | NA NA                             | NA.              | NA               | NA N                     | _                        | NA                | NA        | NA             | NA NA                                      | NA             | NA             | <del>                                     </del> | NA NA                                   | -                           |
|                   | NICKEL                                 | 0.13       | 0.1             | 2 mg/L       | L NA            | NA          | NA          | NA               | NA            | NA          | NA            | 0.2 U 0.043             | 0.061        | NA            | NA          | 0.04 U N/                      |          | NA NA                        | NA             | NA                                               | NA NA                | NA                 | NA                 | NA                      | NA                     | NA NA                             | NA.              | NA               | NA 1                     | A NA                     | NA                | NA        | NA             | NA NA                                      | NA             | NA             | NA                                               | NA NA                                   | 0.04 U                      |
|                   | ZINC                                   | 0.96       | 2               | 31 mg/L      | 'L NA           | NA          | NA          | NA               | NA            | NA          | NA            | 0.031 0.1               | 0.13         | NA            | NA          | 0.13 0.07                      | 75       | NA NA                        | NA             | NA                                               | NA NA                | NA                 | NA                 | NA                      | NA                     | NA NA                             | NA.              | NA               | NA N                     | A NA                     | NA                | NA        | NA             | NA NA                                      | NA             | NA             | NA                                               | NA NA                                   | 0.02 U                      |
|                   | ALKALINITY                             |            |                 | mg/L         | 'L NA           | NA          | 390         | NA               | NA            | NA          | NA            | NA NA                   | NA           | NA            | NA          | NA NA                          |          | NA NA                        | NA             | NA                                               | NA NA                | NA                 | NA                 | NA                      | NA                     | NA NA                             | NA               | NA               | NA 1                     | A NA                     | NA                | NA        | NA             | NA NA                                      | NA             | NA             | NA                                               | NA NA                                   | NA                          |
|                   | ALKALINITY, TOTAL (AS CACO3)           |            |                 | mg/L         | L NA            | NA          | 360         | NA               | NA            | NA          | NA            | NA NA                   |              | NA            | NA          | NA N/                          |          | NA NA                        | NA             |                                                  | NA NA                | NA                 | NA                 | NA .                    |                        | NA NA                             | NA               | NA               | NA 1                     |                          | NA                | NA        | NA             | NA NA                                      | NA             | NA             | NA .                                             | NA NA                                   |                             |
|                   | AMMONIA AS N                           | 15         | 30              | 30 mg/L      |                 |             |             |                  |               | 170         | NA            | 3500 5400               | _            |               |             | 5300 N/                        |          | 7600 5900                    |                |                                                  | NA 9400              | 8000               | 1400               |                         |                        | 330 350                           | 500              | 3200             |                          |                          | 4600              |           |                | 2600 3800                                  | 3900           |                |                                                  | 3400 3600 F1                            |                             |
|                   | BICARBONATE<br>CARBONATE               |            |                 | mg/L         | L NA            | NA<br>NA    | 360<br>1 U  | NA<br>NA         | NA<br>NA      | NA<br>NA    | NA<br>NA      | NA NA                   | _            | NA<br>NA      | NA<br>NA    | NA NA                          |          | NA NA                        | NA<br>NA       |                                                  | NA NA                | NA<br>NA           | NA<br>NA           |                         |                        | NA NA                             | NA<br>NA         | NA<br>NA         | NA N                     | A NA NA                  | NA<br>NA          | NA<br>NA  | NA<br>NA       | NA NA                                      | NA<br>NA       | NA<br>NA       |                                                  | NA NA                                   | +                           |
| Miscellaneous     | CARBONATE                              | 1          |                 | mg/L<br>umho | _               | NA<br>3900  | 1 U<br>2000 | NA<br>NA         | NA<br>NA      | NA<br>NA    | NA<br>NA      | NA NA                   | -            | NA<br>NA      | NA<br>NA    | NA NA                          |          | NA NA                        | NA<br>NA       |                                                  | NA NA                | NA<br>NA           | NA<br>NA           |                         |                        | NA NA                             | NA<br>NA         | NA<br>NA         | NA I                     |                          | NA<br>NA          | NA<br>NA  | NA<br>NA       | NA NA                                      | NA<br>NA       | NA<br>NA       |                                                  | NA NA                                   | +                           |
|                   | NITRATE (AS N)                         |            | 10              | cm           |                 | 3900<br>NA  | 3           | NA<br>NA         | NA<br>NA      | NA<br>NA    | NA<br>NA      | NA NA                   |              |               | NA<br>NA    | NA NA                          | _        | NA NA                        | NA<br>NA       |                                                  | NA NA                | NA<br>NA           | NA<br>NA           |                         |                        | NA NA                             | NA<br>NA         | NA<br>NA         | NA I                     |                          | NA<br>NA          | NA<br>NA  | NA<br>88       | 170 120                                    | NA<br>100      | NA<br>280      |                                                  | NA NA NA 230 250 F1                     |                             |
|                   | NITRITE (AS N)                         |            |                 | mg/L         | _               | NA NA       | NA NA       | NA<br>NA         | NA NA         | NA NA       | NA<br>NA      | NA NA                   | _            | NA NA         | NA<br>NA    | NA NA                          |          | NA NA                        | NA<br>NA       |                                                  | NA NA                | NA<br>NA           | NA NA              |                         |                        | NA NA                             | NA.              | NA<br>NA         | NA I                     |                          | NA<br>NA          | NA<br>NA  | NA NA          | NA NA                                      | NA NA          | 50 U           |                                                  | 10 U 10 U                               |                             |
|                   | SULFATE                                |            |                 | mg/L         |                 | NA NA       | 230         | NA               | NA NA         | NA          | NA NA         | NA NA                   | _            | NA.           | NA          | NA NA                          |          | NA NA                        | NA NA          |                                                  | NA NA                | NA.                | NA NA              |                         |                        | NA NA                             | NA.              | NA               | NA 1                     |                          | NA NA             | NA NA     | NA NA          | NA NA                                      | NA NA          | NA .           | <del>                                     </del> | NA NA                                   |                             |
|                   | SOLIDS, TOTAL DISSOLVED                |            |                 | mg/L         | L NA            | NA          | 1100        | NA               | NA            | NA          | NA            | NA NA                   | NA           | NA            | NA          | NA NA                          |          | NA NA                        | NA             | NA                                               | NA NA                | NA                 | NA                 | NA                      | NA                     | NA NA                             | NA               | NA               | NA N                     | A NA                     | NA                | NA        | NA             | NA NA                                      | NA             | NA             | NA                                               | NA NA                                   | NA                          |
| SVOCs             | 1,4-DICHLOROBENZENE                    |            |                 | ug/L         | L NA            | NA          | NA          | NA               | NA            | NA          | NA            | NA NA                   | NA           | NA            | NA          | NA N/                          |          | NA NA                        | NA             | NA                                               | NA NA                | NA                 | NA                 | NA                      | NA                     | NA NA                             | NA.              | NA               | NA 1                     | A NA                     | NA                | NA        | 2 U            | 2 U NA                                     | NA             | NA             | NA .                                             | NA NA                                   | NA                          |
| Notes:            |                                        |            |                 |              |                 |             |             |                  |               |             |               |                         |              |               |             |                                |          |                              |                |                                                  |                      |                    |                    |                         |                        |                                   |                  |                  |                          |                          |                   |           |                |                                            |                |                |                                                  |                                         |                             |

Notes:

Shaded cell indicates comparison standard used in data evaluation.

In splitighted cell indicates analytical result exceeds comparison criteria.

Bodd and Rolls feet indicates analytical result exceeds background value.

In Nivra to comparison sandards back on the Maximum Containance Level (MCL) established by the USEPA National Primary (

No. No constituents detected above the laboratory infirmum detection lines.

I indicates constituent was not detected above value shown.

I indicates constituent was not detected at an estimated value.

Uniformation instituent was not detected at an estimated value.

Uniformation instituent was not detected at an estimated value.

Monitoring wells, MMV-38, POAMW-48P, POAMW-18P, POAMW-18TP, POAMW-23P, POAMW-23P, POAMW-33P, POAMW

| Fig. 1   Fig. 2   Fig. 3   Fig. 3   Fig. 4   Fig. 5   F   |                   |                        |                 |            | Loca      | ation:          |             |              |           |           |           |             | TMW-4     |          |           |          |           |           |                 |                 |           |           |           |           |            | TM            | W-4R       |        |                  |          |           |           |            | UMW            | FIEL           | ELDQC          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------|-----------------|------------|-----------|-----------------|-------------|--------------|-----------|-----------|-----------|-------------|-----------|----------|-----------|----------|-----------|-----------|-----------------|-----------------|-----------|-----------|-----------|-----------|------------|---------------|------------|--------|------------------|----------|-----------|-----------|------------|----------------|----------------|----------------|
| Note   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982      |                   |                        |                 |            |           |                 | 7 8/10/1999 | 9 11/17/1999 | 2/23/2000 | 5/16/2000 | 8/22/2000 | 1/10/2001   | 7/16/2001 | 2/6/2002 | 9/11/2002 | 2/7/2003 | 6/25/2003 | 1/29/2004 | 7/20/2004       | 4/3/2008        | 7/20/2008 | 10/5/2008 | 12/1/2009 | 6/17/2010 | 12/14/2010 | 6/13/2011     | 12/21/2011 | 12/12  | 2/2013           | 6/3/2014 | 11/4/2014 | 5/19/2015 | 11/12/2015 |                | 6/3/2014       | 11/6/2014      |
| Property of the property of    |                   |                        |                 |            | Sample    | Type: Normal    | Normal      | Normal       | Normal    | Normal    | Normal    | Normal      | Normal    | Normal   | Normal    | Normal   | Normal    | Normal    | Normal          | Normal          | Normal    | Normal    | Normal    | Normal    | Normal     | Normal        | Normal     | Normal | Dup              | Normal   | Normal    | Normal    | Normal     | Normal         | Normal         | Normal         |
| The image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                        |                 |            |           | TMW-            | TMW-        | TMW-         | . TMW-    | TMW-      | TMW-      | TMW-        | TMW-      | TMW-     | TMW-      | TMW-     | TMW-      | TMW-      |                 |                 | TMW-      | TMW-      | TMW-      | TMW-      | TMW-       |               | TMW-       | TMW-   |                  | TMW-     | TMW-      | TMW-      | TMW-       |                |                |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                        |                 |            | Samp      |                 |             |              |           |           |           | 4_1/10/2001 |           |          |           |          |           |           | TMW-4_7/20/2004 | TMW-4R_4/3/2008 |           |           |           |           |            | TMW-4R-061311 |            |        | DUP-2_12/12/2013 |          |           |           |            | UMW_10/19/1997 | FB-01_06032014 | FB-01_11062014 |
| **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Method Group      | Analyte                | Background Type | e 3 RRS Ty | /pe 4 RRS | Units Result    | Result      | Result       | Result    | Result    | Result    | Result      | Result    | Result   | Result    | Result   | Result    | Result    | Result          | Result          | Result    | Result    | Result    | Result    | Result     | Result        | Result     | Result | Result           | Result   | Result    | Result    | Result     | Result         | Result         | Result         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | ACENAPHTHENE           | 1 :             | 2000       |           | ug/L 1 U        | 1 U         | 1 U          | 1 U       | 1 U       | 1 U       | 1 U         | 1 U       | 1 U      | 0.41      | 0.33     | 0.38      | 0.32      | 0.33            | 0.19 U          | 0.19 U    | 0.29      | 0.19 U    | 0.32      | NA         | NA.           | NA.        | 10 U   | 10 U             | 9.9 U    | NA NA     | NA        | NA         | 1 U            | 9.8 U          | 9.6 U          |
| Method 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   | ACENAPHTHYLENE         | 1.4             | 1          | 510       | ug/L 1 U        | 1 U         | 1.6          | 1 U       | 1 U       | 1 U       | 10          | 1 U       | 1 U      | 0.2 U     | 0.2 U    | 0.2 U     | 0.2 U     | 0.2 U           | 0.19 U          | 0.19 U    | 0.19 U    | 0.19 U    | 0.19 U    | NA         | NA            | NA         | 10 U   | 10 U             | 9.9 U    | NA        | NA        | NA         | 1 U            | 9.8 U          | 9.6 U          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                        |                 | _          |           |                 | _           |              |           | 1         |           |             |           |          |           |          |           |           |                 |                 |           |           |           |           |            |               |            |        |                  |          |           |           |            |                | 9.8 U          |                |
| **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                        |                 |            |           |                 | _           |              |           | 1         |           |             |           |          | -         |          |           |           |                 |                 |           |           | 1         |           |            | 1             | 1          |        |                  |          |           |           |            |                |                |                |
| Seminorial Residual R |                   |                        |                 | _          |           |                 | _           |              | _         |           |           |             | _         |          |           |          |           | _         |                 |                 |           |           |           |           |            |               | <b>-</b>   |        |                  |          |           |           |            |                |                | +              |
| *** *** *** *** *** *** *** *** *** **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                        | 0.2             | 0.2        | 0.65      | _               | -           |              | -         |           | +         |             |           | U.Z U    |           |          |           |           |                 |                 |           |           |           |           |            |               |            |        |                  |          |           |           |            |                |                | <del> </del>   |
| Method   M   |                   |                        |                 |            |           |                 | _           |              |           |           | -         |             | 1         | NA NA    |           |          |           | _         |                 |                 |           |           |           | -         |            |               | <b>-</b>   |        |                  |          |           |           |            |                |                | +              |
| Properties   Pro   |                   |                        | 0.2             | 0.2        | 65        | ug/L 0.2 U      | 0.2 U       | 0.2 U        | 0.2 U     | 0.2 U     | 0.2 U     | 0.2 U       | 0.2 U     | 0.2 U    |           |          |           |           |                 |                 |           |           |           |           |            |               |            |        |                  |          |           | NA        | NA         |                |                | +              |
| March   Marc   | PAHs              | DIBENZO(A,H)ANTHRACENE |                 | 0.3        |           | ug/L 1 U        | NA          | NA           | NA        | NA        | NA.       | NA          | NA.       | NA       | 0.2 U     | 0.2 U    | 0.2 U     | 0.2 U     | 0.2 U           | 0.19 U          | 0.19 U    | 0.19 U    | 0.19 U    | 0.19 U    | NA         | NA.           | NA.        | 10 U   | 10 U             | 9.9 U    | NA        | NA        | NA         | 1 U            | 9.8 U          | 9.6 U          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | FLUORANTHENE           | 0.5             | 1000       |           | ug/L 0.5 U      | 0.5 U       | 0.5 U        | 0.5 U     | 0.5 U     | 0.5 U     | 0.5 U       | 0.5 U     | 0.5 U    | 0.2 U     | 0.2 U    | 0.2 U     | 0.2 U     | 0.2 U           | 0.19 U          | 0.19 U    | 0.19 U    | 0.19 U    | 0.19 U    | NA         | NA.           | NA.        | 10 U   | 10 U             | 9.9 U    | NA        | NA        | NA         | 0.5 U          | 9.8 U          | 9.6 U          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | FLUORENE               | 0.5             | 1000       |           | ug/L 0.5 U      | 0.5 U       | 0.5 U        | 0.5 U     | 0.5 U     | 0.5 U     | 0.5 U       | 0.5 U     | 0.5 U    | 0.37      | 0.26     | 0.35      | 0.33      | 0.29            | 0.19 U          | 0.19 U    | 0.48      | 0.32      | 0.47      | NA         | NA            | NA         | 10 U   | 10 U             | 9.9 U    | NA        | NA        | NA         | 0.5 U          | 9.8 U          | 9.6 U          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                        |                 | 0.4        |           | -               |             |              |           |           |           |             |           |          |           |          |           |           |                 |                 |           |           |           |           |            |               |            |        |                  |          |           |           |            |                |                |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                        |                 |            |           |                 | _           |              | _         | 1         | -         |             | 1         |          |           |          |           | _         |                 |                 |           |           |           |           |            |               |            |        |                  |          |           |           |            |                |                |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                        | 1               | 20         | 20        | -               | _           | _            | +         |           | +         |             |           |          |           | -        |           |           |                 |                 |           |           |           |           | 1          |               |            | 1      |                  |          |           |           |            |                |                | +              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                        |                 |            |           | -               | _           |              |           |           |           |             |           |          | -         |          |           |           |                 |                 |           |           |           |           |            |               |            |        |                  |          |           |           |            |                |                |                |
| March   Marc   |                   |                        |                 |            |           |                 | _           |              | _         |           |           |             |           |          |           |          |           | _         |                 |                 |           |           |           |           |            |               |            |        |                  |          |           |           |            |                |                | _              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | TOTAL PAHs             |                 |            |           | ug/L ND         | ND          | 1.6          | ND        | ND        | ND        | ND          | ND        | ND       | 0.78      | 1.21     | 0.73      | 0.65      | 0.62            | ND              | ND        | 0.77      | 0.32      | 0.79      | NA         | NA            | NA         | ND     | ND               | ND       | NA        | NA        | NA         | ND             | ND             | ND             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | BENZENE                | 1               | 5          | 31.2      | ug/L 1 U        | 1 U         | 1 U          | 13        | 1 U       | 1 U       | 3.9         | 1 U       | 1 U      | 7.4       | 1 U      | 1 U       | 9.6       | 9.1             | 1 U             | 1 U       | 1 U       | 1 U       | 1 U       | NA         | NA            | NA         | 1 U    | 10               | 1 U      | NA        | NA        | NA         | 1 U            | 1 U            | 1 U            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | ETHYLBENZENE           | 1               | 700        |           | ug/L 1 U        | 1 U         | 1 U          | 12        | 1.2       | 1 U       | 4.3         | 1 U       | 1 U      | 3.3       | 1 U      | 1 U       | 4         | 3               | 1 U             | 1 U       | 1 U       | 1 U       | 1 U       | NA         | NA            | NA         | 1 U    | 1 U              | 1 U      | NA        | NA        | NA         | 1 U            | 1 U            | 1 U            |
| Properties   Pro   |                   | p/m-XYLENE             |                 |            |           | -               | 1.2         |              | _         |           | -         |             | 1         |          |           |          |           |           |                 |                 |           | NA        |           |           |            | NA.           | <b>-</b>   |        |                  | NA       | NA        |           | NA         | NA             | NA             |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                        |                 |            |           |                 | -           |              |           |           | 1         |             | 1         |          |           |          |           |           |                 |                 |           |           |           |           |            | 1             |            |        |                  |          |           |           |            |                |                |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VOCs              | -                      |                 | 4000       | 4000      | -               | _           |              | +         |           | + -       |             |           |          |           |          |           |           |                 |                 |           |           |           |           |            |               |            |        |                  |          |           |           |            |                |                |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                        |                 |            | 1900      |                 | _           | _            |           | 1         |           |             |           |          |           | -        |           |           |                 |                 |           |           |           |           |            |               |            |        |                  |          |           |           |            |                |                |                |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | ,                      |                 |            |           |                 | _           |              |           | NA NA     |           |             |           |          |           |          |           |           |                 |                 |           |           |           |           |            |               | 1          |        |                  |          |           |           |            |                |                |                |
| Minima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | TOTAL BTEX             |                 |            |           | ug/L 7.6        | 1.2         | ND           | 38.2      | 2.2       | ND        | 10.6        | 6.1       | ND       | 10.7      | ND       | 2.6       | 15.9      | 17.8            | ND              | ND        | ND        | ND        | ND        | NA         | NA.           | NA.        | ND     | ND               | ND       | NA        | NA        | NA         | ND             | ND             | ND             |
| Property of the content of the con   |                   | ARSENIC                | 0.018           | 0.018      | 0.018     | mg/L 0.01 U     | 0.014       | 0.01 U       | 0.01 U    | 0.01 U    | 0.01 U    | 0.01 U      | 0.021     | 0.025    | 0.01 U    | 0.01 U   | 0.01 U    | 0.01 U    | 0.01 U          | 0.01 U          | 0.021     | 0.032     | 0.02 U    | 0.02 U    | 0.018 U    | NA.           | 0.018 U    | 0.02 U | 0.02 U           | 0.02 U   | 0.02 U    | 0.02 U    | 0.02 U     | 0.01 U         | 0.02 U         | 0.02 U         |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | BERYLLIUM              | (               | 0.004      | 1         | mg/L 0.005 U    | NA          | NA           | NA        | NA        | NA.       | NA          | NA        | NA       | NA        | NA       | NA        | NA        | NA              | NA              | NA        | NA        | NA        | NA        | NA         | NA.           | NA .       | NA.    | NA               | NA       | NA        | NA        | NA         | 0.005 U        | NA             | NA             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | BORON                  |                 |            | 1         |                 | -           |              | -         |           | +         |             |           |          |           |          |           |           |                 |                 |           |           |           |           |            |               |            |        |                  |          |           |           |            |                |                |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                        | (               | 0.005      | 1         |                 | _           |              |           |           | -         |             | 1         |          |           |          |           |           |                 |                 |           |           |           |           |            |               | <b>-</b>   |        |                  |          |           |           |            |                |                |                |
| Final black      |                   |                        | 0.013           | 0.1        | !         | ,               | _           |              |           |           | +         |             | 1         |          |           |          |           |           |                 |                 |           |           |           |           |            |               |            |        |                  |          |           |           |            |                |                | +              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Metals, Total     | LEAD                   |                 |            | 0.015     | _               | _           |              | -         | -         | -         |             |           |          |           |          |           |           |                 |                 |           |           |           |           |            |               |            |        |                  |          |           |           |            |                |                | _              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | MAGNESIUM              |                 |            | 1         | mg/L NA         | NA          | NA           | _         | NA        | NA        |             | _         | NA       | NA        | NA       |           | _         |                 | NA              | NA        |           |           | NA NA     | NA         |               | <b>-</b>   |        | NA               |          |           |           | NA         |                |                |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | MERCURY                | (               | 0.002      | 1         | mg/L 0.0002 U   | NA NA       | NA           | NA        | NA        | NA.       | NA          | NA        | NA       | NA        | NA       | NA        | NA        | NA              | NA.             | NA NA     | NA        | NA NA     | NA        | NA         | NA.           | NA.        | NA.    | NA               | NA       | NA        | NA        | NA         | ND             | NA             | NA NA          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | NICKEL                 | 0.13            | 0.1        | 2         | mg/L 0.04 U     | 0.04 U      | 0.04 U       | 0.04 U    | 0.04 U    | 0.04 U    | 0.04 U      | 0.04 U    | 0.04 U   | 0.04 U    | 0.04 U   | 0.04 U    | 0.04 U    | 0.04 U          | 0.04 U          | 0.04 U    | 0.04 U    | 0.04 U    | 0.04 U    | NA         | NA.           | NA.        | 0.04 U | 0.04 U           | 0.04 U   | NA        | NA        | NA         | 0.04 U         | 0.04 U         | 0.04 U         |
| 日本                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | POTASSIUM              |                 |            | 1         | mg/L NA         | NA          | NA           | NA        | NA        | NA.       | NA          | NA        | NA       | NA        | NA       | NA        | NA        | NA              | NA.             | NA        | NA        | NA        | NA        | NA         | NA.           | NA.        | NA.    | NA               | NA       | NA        | NA        | NA         | NA             | NA             |                |
| March   Marc   |                   | SODIUM                 |                 |            | 1         |                 | _           |              | +         |           |           |             |           |          |           |          |           |           |                 |                 |           |           | -         |           | ļ          |               |            | ļ      |                  |          |           |           |            |                |                |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | ZINC                   |                 | 2          |           |                 | _           |              |           | 1         |           |             |           |          | -         |          |           |           |                 |                 |           |           |           |           |            |               |            |        |                  |          |           |           |            |                |                |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                        | _               |            |           | _               | _           |              | _         |           |           |             |           |          |           |          |           |           |                 |                 |           |           |           |           |            |               |            |        |                  |          |           |           |            |                |                |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                        | _               |            |           |                 | -           | _            | _         |           | _         |             |           |          |           | -        |           |           |                 |                 |           |           |           |           |            |               |            |        |                  |          |           |           |            |                |                | +              |
| Final Care   C   |                   | CHROMIUM               | _               |            | 1         |                 | NA          | 0.01 U       |           | 1         |           |             | NA        | NA       | NA        | NA       |           | NA        |                 | NA              |           | 0.01 U    | NA        | NA        |            |               | <b>-</b>   | NA.    |                  | NA       |           | NA        | NA         | 0.01 U         |                | NA NA          |
| REEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Metals, Dissolved | LEAD                   | 0.007           | 0.015      | 0.015     | mg/L NA         | NA          | 0.005 U      | 0.005 U   | NA        | NA        | NA          | 0.005 U   | NA       | NA        | NA       | NA        | NA        | NA              | NA              | 0.005 U   | 0.005 U   | NA        | NA        | NA         | NA            | NA         | NA     | NA               | NA       | NA        | NA        | NA         | 0.005 U        | NA             | NA             |
| 20   20   30   30   30   30   30   30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | MERCURY                |                 | 0.002      | 1         |                 | NA          |              |           | 1         | NA        | NA          | NA        | NA       |           | NA       |           | NA        |                 | NA              | NA        | NA        | NA        | NA NA     | NA         | NA            | NA         | NA     | NA               | NA       | NA NA     | NA        | NA         | ND             | NA             |                |
| ALMARITY STALLAS STALL |                   | NICKEL                 |                 |            |           |                 | _           |              |           | +         | -         |             | 1         |          |           |          |           |           |                 |                 |           |           |           |           |            | _             | -          |        |                  |          |           |           |            |                |                |                |
| ALALISMY, TOTAL (AS CACCU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | ZINC                   | 0.96            | 2          |           |                 | _           |              |           | 1         | +         |             | _         |          |           |          |           |           |                 |                 |           |           |           |           |            |               | <b>-</b>   |        |                  |          |           |           |            |                |                |                |
| AMMONIA SAN 15 30 30 mgl NA 20 0.32 18 20 12 22 30 6 21 8.9 16 3.4 10 2.1 2.9 9.3 17 20 NA 1.9 1.6 6.1 7.8 6.8 3.1 17 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0. |                   |                        |                 |            |           |                 | _           |              |           |           | +         |             |           |          | -         |          |           |           |                 |                 |           |           |           |           |            |               | <b>-</b>   |        |                  |          |           |           |            |                |                |                |
| BICARBONATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                        | 15              | 30         |           |                 | _           |              |           | 1         |           |             |           |          | -         |          |           |           |                 | 1               |           |           | 1         | 1         |            | _             |            |        |                  |          |           |           |            |                |                |                |
| AREONATE G.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                        |                 |            |           |                 | _           |              | _         | 1         | -         |             |           |          | -         |          |           |           |                 |                 |           |           |           |           |            |               |            |        |                  |          |           |           |            |                |                |                |
| CORDICITITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                        |                 |            | 1         |                 | _           |              |           | 1         |           |             |           |          | -         |          |           |           |                 |                 |           |           | 1         | 1         |            |               |            |        |                  |          |           |           |            |                |                |                |
| NITRITE (AS N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Miscellaneous     | CONDUCTIVITY           |                 |            | u         | imhos/<br>cm NA | NA          | NA           | NA        | NA        | NA        | NA          | NA        | NA       | NA        | NA       | NA        | NA        | NA              | NA NA           | NA NA     | NA        | NA        | NA        | NA         | NA.           | NA NA      | NA.    | NA               | NA       | NA        | NA        | NA.        | NA             | NA             | NA NA          |
| SLEFATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | NITRATE (AS N)         |                 | 10         | 1         | mg/L NA         | NA          | NA           | NA        | NA        | NA        | NA          | NA        | NA       | NA        | NA       | NA        | NA        | NA              | NA .            | NA        | NA        | NA        | NA        | NA         | NA            | NA .       | 0.05 U | 0.05 U           | 0.05 U   | 0.05 U    | 0.05 U    | 0.05 U     | NA             | 0.17           | 0.17           |
| SCLIDS, TOTAL DISSOLIVED mg/L NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                        |                 |            |           |                 | _           |              |           |           |           |             |           |          | -         |          |           |           |                 |                 |           |           | 1         |           |            | _             |            |        |                  |          |           |           |            |                |                |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                        |                 |            |           |                 | _           |              | _         | 1         |           |             |           |          |           |          |           |           |                 |                 |           |           |           |           |            |               |            |        |                  |          |           |           |            |                |                |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | evoc-             |                        |                 |            |           |                 | _           | _            |           |           |           |             |           |          |           |          |           |           |                 |                 |           |           |           |           |            | 1             | 1          |        |                  |          |           |           |            |                |                |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SVUUS             | 1,4-UICHLOHOBENZENE    | · · ·           |            | 1         | ug/L NA         | NA          | NA           | NA NA     | NA NA     | ΝA        | ΝA          | NA        | rwA      | ruA       | NA.      | reA .     | rvA       | NA.             | NA.             | ΝA        | NΑ        | NA        | NA        | NA         | NA.           | NA.        | 10     | 10               | ΝA       | NA        | NA.       | nA         | ΝA             | NΑ             | reA            |

Notes:

Shaded cell indicates comparison standard used in data evaluation.

Inglighted cell indicates analytical result exceeds comparison criteria.

Bold and Rails for indicates analytical result exceeds background value.

Bold and Rails for indicates analytical result exceeds background value.

No - No constituents detected above the laboratory minimum detection limit.

Lindicates constituent was not detected above view behave.

Lindicates constituent was detected at an estimated value.

Us indicates constituent was detected at an estimated value.

Nonitaring wells with 33 p. P.DAWN 92.00 p. DOMN-118, P.DAWN-14TR, P.DAWN-23R, P.DAWN-312R, P.DAWN-331 instilled to replace wells MW-3, P.DAWN-85, P.DAWN-87, P.DAWN-11P, P.DAWN-14TR, P.DAWN-23R, P.DAWN-30P, P.DAWN-31R, P.DAWN-30P, P.DAWN-31P, P.DAWN-30P, P.DAWN-31P, P.DAWN-30P, P.DAWN-31P, P.DAWN-30P, P.DAWN-31P, P.DAWN-30P, P.DAWN-31P, P.DAWN-30P, P.DAWN-30P, P.DAWN-31P, P.DAWN-30P, P.DAWN-30P

Table 8 - XRF and Laboratory Results Generated During Metal-Impacted Soil Excavation Program

| Area           | Sample ID    | Sample Date | Lead (XRF) | Lead<br>(6010B)<br>Type 3 RRS=<br>400 mg/kg | Arsenic (XRF) | Arsenic<br>(6010B)<br>Type 3 RRS=<br>38 mg/kg | Comment                      |
|----------------|--------------|-------------|------------|---------------------------------------------|---------------|-----------------------------------------------|------------------------------|
|                | As1A-E01-3"  | 15-Nov-06   | 59.9       | 53                                          | 21.3          | 44                                            | Excavated                    |
|                | AS1A-E02-3"  | 20-Nov-06   | 67.23      | 91                                          | ND            | 25                                            | Confirmed to Meet Type 3 RRS |
|                | AS1A-E03-6"  | 29-Nov-06   | 81.8       | 110                                         | 14.12         | 20                                            | Confirmed to Meet Type 3 RRS |
|                | AS1A-E04-3"  | 7-Dec-06    | NA         | 85                                          | 15            | 33                                            | Confirmed to Meet Type 3 RRS |
|                | As1A-N01-3"  | 15-Nov-06   | 42.43      | 36                                          | ND            | 11                                            | Confirmed to Meet Type 3 RRS |
|                | AS1A-N02-6"  | 29-Nov-06   | 108.95     | 250                                         | 16.95         | 110                                           | Excavated                    |
| _              | AS1A-N05-6"  | 1-Dec-06    | NA         | 170                                         | 13            | 47                                            | Excavated                    |
| rea            | AS1A-N06-3"  | 6-Dec-06    | NA         | 420                                         | 52            | 97                                            | Excavated                    |
| ic ≽           | AS1A-N07-3"  | 7-Dec-06    | NA         | 180                                         | 17            | 39                                            | Excavated                    |
| Arsenic Area 1 | AS1A-N07A-3" | 13-Dec-06   | NA         | 190                                         | NA            | 33                                            | Confirmed to Meet Type 3 RRS |
| Ā              | As1A-S01-3"  | 15-Nov-06   | 108.18     | 190                                         | 19.26         | 23                                            | Confirmed to Meet Type 3 RRS |
|                | AS1A-S02-1'  | 29-Nov-06   | 33.39      | 49                                          | ND            | 5.1                                           | Confirmed to Meet Type 3 RRS |
|                | As1A-W01-3"  | 15-Nov-06   | 20.52      | 25                                          | ND            | 5.3                                           | Confirmed to Meet Type 3 RRS |
|                | AS1A-W02-6"  | 29-Nov-06   | 16.88      | 21                                          | ND            | 10                                            | Confirmed to Meet Type 3 RRS |
|                | AS1A-W03-3"  | 7-Dec-06    | NA         | 100                                         | 41            | 41                                            | Excavated                    |
|                | AS1A-W04-3"  | 7-Dec-06    | NA         | 31                                          | ND            | 6                                             | Confirmed to Meet Type 3 RRS |
|                | AS1A-W06-3"  | 7-Dec-06    | NA         | 73                                          | 35            | 32                                            | Confirmed to Meet Type 3 RRS |
| ⋖              | PB1A-E01-1'  | 16-Nov-06   | ND         | 24                                          | ND            | NA                                            | Confirmed to Meet Type 3 RRS |
| Lead Area 1A   | PB1A-FL01-2' | 16-Nov-06   | ND         | 4.6                                         | ND            | NA                                            | Confirmed to Meet Type 3 RRS |
| Are            | PB1A-N01-1'  | 16-Nov-06   | 14.14      | 8.8                                         | ND            | NA                                            | Confirmed to Meet Type 3 RRS |
| gad            | PB1A-S01-1'  | 16-Nov-06   | 41.85      | 21                                          | ND            | NA                                            | Confirmed to Meet Type 3 RRS |
| ٽ              | PB1A-W01-1'  | 16-Nov-06   | 30.13      | 17                                          | ND            | NA                                            | Confirmed to Meet Type 3 RRS |
|                | PB1B-E01-1'  | 17-Nov-06   | 24.05      | 20                                          | ND            | <1.0                                          | Confirmed to Meet Type 3 RRS |
|                | PB1B-E02-1'  | 17-Nov-06   | 150.98     | 110                                         | ND            | 2.6                                           | Confirmed to Meet Type 3 RRS |
|                | PB1B-FL01-2' | 16-Nov-06   | 15.97      | 13                                          | ND            | <1.1                                          | Confirmed to Meet Type 3 RRS |
|                | PB1B-FL02-2' | 17-Nov-06   | 19.83      | 6.1                                         | ND            | <1.0                                          | Confirmed to Meet Type 3 RRS |
|                | PB1B-FL03-2' | 17-Nov-06   | 156.94     | 220                                         | ND            | 12                                            | Confirmed to Meet Type 3 RRS |
|                | PB1B-FL04-2' | 17-Nov-06   | ND         | 6.1                                         | ND            | <1.0                                          | Confirmed to Meet Type 3 RRS |
| =              | PB1B-FL05-2' | 17-Nov-06   | 16.9       | 5                                           | ND            | <1.1                                          | Confirmed to Meet Type 3 RRS |
| rea            | PB1B-FL06-2' | 17-Nov-06   | 36.2       | 37                                          | ND            | 3.9                                           | Confirmed to Meet Type 3 RRS |
| Lead Area 1B   | PB1B-N01-1'  | 17-Nov-06   | 28.25      | 17                                          | ND            | 1.5                                           | Confirmed to Meet Type 3 RRS |
| Les            | PB1B-N02-1'  | 17-Nov-06   | 14.58      | 29                                          | ND            | 4                                             | Confirmed to Meet Type 3 RRS |
|                | PB1B-N03-1'  | 17-Nov-06   | 15.42      | 7.9                                         | ND            | <1.1                                          | Confirmed to Meet Type 3 RRS |
|                | PB1B-S01-1'  | 16-Nov-06   | 23.79      | 21                                          | ND            | <1.1                                          | Confirmed to Meet Type 3 RRS |
|                | PB1B-S02-1'  | 17-Nov-06   | ND         | 5.9                                         | ND            | <0.95                                         | Confirmed to Meet Type 3 RRS |
|                | PB1B-S03-1'  | 17-Nov-06   | 109.75     | 190                                         | ND            | <0.95                                         | Confirmed to Meet Type 3 RRS |
|                | PB1B-W01-1   | 16-Nov-06   | 7.69       | 4.5                                         | ND            | <1.0                                          | Confirmed to Meet Type 3 RRS |
|                | PB1B-W02-1'  | 17-Nov-06   | 9.25       | 3.8                                         | ND            | <0.89                                         | Confirmed to Meet Type 3 RRS |

Table 8 - XRF and Laboratory Results Generated During Metal-Impacted Soil Excavation Program

| Area         | Sample ID    | Sample Date | Lead (XRF) | Lead<br>(6010B)<br>Type 3 RRS=<br>400 mg/kg | Arsenic (XRF) | Arsenic<br>(6010B)<br>Type 3 RRS=<br>38 mg/kg | Comment                      |
|--------------|--------------|-------------|------------|---------------------------------------------|---------------|-----------------------------------------------|------------------------------|
|              | PB2A-E01-1'  | 16-Nov-06   | 18.61      | 32                                          | ND            | <0.91                                         | Confirmed to Meet Type 3 RRS |
|              | PB2A-E02-1'  | 16-Nov-06   | 42.98      | 44                                          | ND            | <1.0                                          | Confirmed to Meet Type 3 RRS |
| Lead Area 2A | PB2A-FL01-2' | 16-Nov-06   | 15.47      | 32                                          | ND            | <0.99                                         | Confirmed to Meet Type 3 RRS |
| rea          | PB2A-FL02-2' | 16-Nov-06   | 15.13      | 13                                          | ND            | <1.0                                          | Confirmed to Meet Type 3 RRS |
| d A          | PB2A-N01-1'  | 16-Nov-06   | 70.78      | 99                                          | ND            | 4.2                                           | Confirmed to Meet Type 3 RRS |
| -ea          | PB2A-S01-1'  | 16-Nov-06   | 17.75      | 4                                           | ND            | 1.2                                           | Confirmed to Meet Type 3 RRS |
| _            | PB2A-W01-1'  | 16-Nov-06   | 45.12      | 110                                         | ND            | 3.2                                           | Confirmed to Meet Type 3 RRS |
|              | PB2A-W02-1'  | 16-Nov-06   | 31.42      | 24                                          | ND            | <1.1                                          | Confirmed to Meet Type 3 RRS |
| В            | PB2B-E01-1'  | 16-Nov-06   | 26.37      | 25                                          | ND            | NA                                            | Confirmed to Meet Type 3 RRS |
| ia 2         | PB2B-FL01-2' | 16-Nov-06   | 26.92      | 61                                          | ND            | NA                                            | Confirmed to Meet Type 3 RRS |
| Are          | PB2B-N01-1'  | 16-Nov-06   | 13.55      | 25                                          | ND            | NA                                            | Confirmed to Meet Type 3 RRS |
| Lead Area 2B | PB2B-S01-1'  | 16-Nov-06   | 69.06      | 60                                          | ND            | NA                                            | Confirmed to Meet Type 3 RRS |
| Le           | PB2B-W01-1'  | 16-Nov-06   | 87.55      | 110                                         | ND            | NA                                            | Confirmed to Meet Type 3 RRS |
| Ö            | PB2C-E01-1'  | 16-Nov-06   | 27.02      | 7.9                                         | ND            | NA                                            | Confirmed to Meet Type 3 RRS |
| a 2          | PB2C-FL01-2' | 16-Nov-06   | 76.15      | 63                                          | ND            | NA                                            | Confirmed to Meet Type 3 RRS |
| Lead Area 2C | PB2C-W01-1'  | 16-Nov-06   | 65.89      | 41                                          | ND            | NA                                            | Confirmed to Meet Type 3 RRS |
| ad           | PB2C-N01-1'  | 16-Nov-06   | 191.97     | 190                                         | ND            | NA                                            | Confirmed to Meet Type 3 RRS |
| Le           | PB2C-S01-1'  | 16-Nov-06   | 161.9      | 250                                         | ND            | NA                                            | Confirmed to Meet Type 3 RRS |
|              | PB3A-E01-6"  | 17-Nov-06   | 232.4      | 220                                         | ND            | NA                                            | Confirmed to Meet Type 3 RRS |
|              | PB3A-FL01-1' | 17-Nov-06   | 223.38     | 98                                          | ND            | NA                                            | Confirmed to Meet Type 3 RRS |
| 3A           | PB3A-N01-6"  | 17-Nov-06   | 546.11     | NA                                          | ND            | NA                                            | Excavated                    |
| rea          | PB3A-N02-6"  | 20-Nov-06   | 57.27      | 120                                         | ND            | NA                                            | Confirmed to Meet Type 3 RRS |
| Lead Area 3A | PB3A-S01-6"  | 17-Nov-06   | 208.18     | 270                                         | ND            | NA                                            | Confirmed to Meet Type 3 RRS |
| -ea          | PB3A-W01-6"  | 17-Nov-06   | 1030.91    | NA                                          | ND            | NA                                            | Excavated                    |
|              | PB3A-W02-6"  | 20-Nov-06   | 799.78     | NA                                          | ND            | NA                                            | Excavated                    |
|              | PB3A-W03-6"  | 20-Nov-06   | 10.3       | 8.6                                         | ND            | <.97                                          | Confirmed to Meet Type 3 RRS |

Table 8 - XRF and Laboratory Results Generated During Metal-Impacted Soil Excavation Program

| Area         | Sample ID     | Sample Date | Lead (XRF) | Lead<br>(6010B)<br>Type 3 RRS=<br>400 mg/kg | Arsenic (XRF) | Arsenic<br>(6010B)<br>Type 3 RRS=<br>38 mg/kg | Comment                      |
|--------------|---------------|-------------|------------|---------------------------------------------|---------------|-----------------------------------------------|------------------------------|
|              | PB3B-E01-6"   | 20-Nov-06   | 173.05     | 380                                         | ND            | 4                                             | Confirmed to Meet Type 3 RRS |
|              | PB3&-E02-6"   | 20-Nov-06   | 181.38     | 350                                         | ND            | 1.5                                           | Confirmed to Meet Type 3 RRS |
|              | PB3B-FL01-1'  | 20-Nov-06   | 2714.07    | NA                                          | 81.47         | NA                                            | Excavated                    |
|              | PB3B-FL02-1'  | 20-Nov-06   | 33.92      | 130                                         | ND            | <0.98                                         | Confirmed to Meet Type 3 RRS |
|              | PB3B-FL03-1'  | 20-Nov-06   | 257.85     | NA                                          | ND            | NA                                            | Excavated                    |
|              | PB3B-FL04-1'  | 20-Nov-06   | 84.64      | 440                                         | ND            | NA                                            | Excavated                    |
|              | PB3B-FL05-1'  | 20-Nov-06   | 202.01     | 240                                         | ND            | 2.3                                           | Confirmed to Meet Type 3 RRS |
|              | PB3B-FL-06-1' | 20-Nov-06   | 28.7       | 6.4                                         | ND            | <1                                            | Confirmed to Meet Type 3 RRS |
|              | PB3B-FL07-2'  | 28-Nov-06   | 8.22       | 4.9                                         | ND            | <1.3                                          | Confirmed to Meet Type 3 RRS |
|              | PB3B-FL08-2'  | 28-Nov-06   | ND         | 1.2                                         | ND            | <1.1                                          | Confirmed to Meet Type 3 RRS |
|              | PB3B-FL09-2'  | 28-Nov-06   | 7.36       | 2.3                                         | ND            | <1.2                                          | Confirmed to Meet Type 3 RRS |
| Lead Area 3B | PB3B-N01-6"   | 20-Nov-06   | 414.1      | NA                                          | ND            | NA                                            | Excavated                    |
| rea          | PB3B-N02-6"   | 20-Nov-06   | 868.5      | NA                                          | ND            | NA                                            | Excavated                    |
| Αρ           | PB3B-N03-3"   | 20-Nov-06   | 321.16     | NA                                          | ND            | NA                                            | Excavated                    |
| ea<br>-ea    | PB3B-N04-1'   | 28-Nov-06   | 226.07     | 300                                         | ND            | 7.4                                           | Confirmed to Meet Type 3 RRS |
| _            | PB3B-N05-1'   | 28-Nov-06   | 309.4      | NA                                          | 19.57         | NA                                            | Excavated                    |
|              | PB3B-N06-1'   | 28-Nov-06   | 8.78       | 7.7                                         | ND            | 2.1                                           | Confirmed to Meet Type 3 RRS |
|              | PB3B-N07-1'   | 28-Nov-06   | 18.56      | 18                                          | ND            | <0.94                                         | Confirmed to Meet Type 3 RRS |
|              | PB3B-S01-6"   | 20-Nov-06   | 1347.13    | NA                                          | 44.13         | NA                                            | Excavated                    |
|              | PB3B-S02-6"   | 20-Nov-06   | 528.24     | NA                                          | ND            | NA                                            | Excavated                    |
|              | PB@B-S03-6"   | 20-Nov-06   | 191.99     | 270                                         | ND            | 1.3                                           | Confirmed to Meet Type 3 RRS |
|              | PB3B-S04-1'   | 28-Nov-06   | ND         | 9.3                                         | ND            | <0.99                                         | Confirmed to Meet Type 3 RRS |
|              | PB3B-S05-1'   | 28-Nov-06   | 9.64       | 19                                          | ND            | <1.0                                          | Confirmed to Meet Type 3 RRS |
|              | PB3B-W01-6"   | 20-Nov-06   | 18.55      | 5.6                                         | ND            | <0.97                                         | Confirmed to Meet Type 3 RRS |
|              | PB3B-W02-6"   | 20-Nov-06   | 523.44     | NA                                          | 28.9          | NA                                            | Excavated                    |
|              | PB3B-W03-1'   | 28-Nov-06   | 16.02      | 22                                          | ND            | <1.1                                          | Confirmed to Meet Type 3 RRS |
|              | PB4A-E01-6"   | 16-Nov-06   | 341.91     | NA                                          | 20.61         | NA                                            | Excavated                    |
|              | PB4A-E02-6"   | 16-Nov-06   | 202.99     | 280                                         | ND            | 9.5                                           | Confirmed to Meet Type 3 RRS |
|              | PB4A-E03-6"   | 28-Nov-06   | 149.31     | 200                                         | ND            | 7.3                                           | Confirmed to Meet Type 3 RRS |
|              | PB4A-FL01-1'  | 16-Nov-06   | 66.6       | 220                                         | ND            | 7.1                                           | Confirmed to Meet Type 3 RRS |
| ∢            | PB4A-N01-6"   | 16-Nov-06   | 130.76     | 390                                         | ND            | 14                                            | Confirmed to Meet Type 3 RRS |
| Lead Area 4A | PB4A-S01-6"   | 16-Nov-06   | 288.71     | NA                                          | ND            | NA                                            | Excavated                    |
| Are          | PB4A-S02-6"   | 16-Nov-06   | 383.85     | NA                                          | 46.34         | NA                                            | Excavated                    |
| ad           | PB4A-S03-6"   | 16-Nov-06   | 199.09     | 580                                         | ND            | NA                                            | Excavated                    |
| Le           | PB4A-S04-6"   | 27-Nov-06   | 486.83     | NA                                          | 29.38         | NA                                            | Excavated                    |
|              | PB4A-S05-6"   | 27-Nov-06   | 828.18     | NA                                          | 35.9          | NA                                            | Excavated                    |
|              | PB4A-S06-6"   | 27-Nov-06   | 252.27     | 270                                         | ND            | 6.5                                           | Confirmed to Meet Type 3 RRS |
|              | PB4A-W01-6"   | 16-Nov-06   | 207.49     | 330                                         | ND            | 5.3                                           | Confirmed to Meet Type 3 RRS |
|              | PB4A-W02-6"   | 28-Nov-06   | 236.89     | 320                                         | 35.64         | 22                                            | Confirmed to Meet Type 3 RRS |

Table 8 - XRF and Laboratory Results Generated During Metal-Impacted Soil Excavation Program

| Area         | Sample ID      | Sample Date | Lead (XRF) | Lead<br>(6010B)<br>Type 3 RRS=<br>400 mg/kg | Arsenic (XRF) | Arsenic<br>(6010B)<br>Type 3 RRS=<br>38 mg/kg | Comment                      |
|--------------|----------------|-------------|------------|---------------------------------------------|---------------|-----------------------------------------------|------------------------------|
| _            | PB5A-E01-6"    | 14-Nov-06   | 54.7       | 49                                          | ND            | NA                                            | Confirmed to Meet Type 3 RRS |
| 5A           | PB5A-FL01-1'   | 14-Nov-06   | 59.82      | 70                                          | ND            | NA                                            | Excavated                    |
| rea          | PD3A-FLUZ-(10- | 5-Feb-08    | NA         | 74                                          | NA            | NA                                            | Confirmed to Meet Type 3 RRS |
| Lead Area 5A | PB5A-N01-6"    | 14-Nov-06   | 22.68      | 28                                          | ND            | NA                                            | Confirmed to Meet Type 3 RRS |
| Lea          | PB5A-S01-6"    | 14-Nov-06   | 85.21      | 62                                          | ND            | NA                                            | Confirmed to Meet Type 3 RRS |
| _            | PB5A-W01-6"    | 14-Nov-06   | 50.37      | 37                                          | ND            | NA                                            | Confirmed to Meet Type 3 RRS |
|              | PB5B-E01-6"    | 15-Nov-06   | 61.68      | 85                                          | ND            | NA                                            | Confirmed to Meet Type 3 RRS |
| œ            | PB5B-FL01-1'   | 15-Nov-06   | 299.72     | NA                                          | ND            | NA                                            | Excavated                    |
| a<br>5       | PB5B-FL02-2'   | 15-Nov-06   | 14.51      | 26                                          | ND            | NA                                            | Confirmed to Meet Type 3 RRS |
| Are          | PB5B-N01-6"    | 15-Nov-06   | 13.56      | 10                                          | ND            | NA                                            | Confirmed to Meet Type 3 RRS |
| Lead Area 5B | PB5B-S01-6"    | 15-Nov-06   | 28.59      | 120                                         | ND            | NA                                            | Confirmed to Meet Type 3 RRS |
| ۳            | PB5B-W01-6"    | 15-Nov-06   | 464.96     | NA                                          | ND            | NA                                            | Excavated                    |
|              | PB5B-W02-1'    | 15-Nov-06   | 262.01     | 240                                         | 19.03         | NA                                            | Confirmed to Meet Type 3 RRS |
|              | PB5C-E01-6"    | 15-Nov-06   | 311.63     | NA                                          | ND            | NA                                            | Excavated                    |
|              | PB5C-E02-1'    | 15-Nov-06   | 87.73      | 100                                         | ND            | 4.5                                           | Confirmed to Meet Type 3 RRS |
| ပ            | PB5C-FL01-1'   | 15-Nov-06   | 300.21     | NA                                          | ND            | NA                                            | Excavated                    |
| a 5          | PB5C-FL02-2'   | 15-Nov-06   | ND         | 13                                          | ND            | 1.2                                           | Confirmed to Meet Type 3 RRS |
| Are          | PB5C-N01-6"    | 15-Nov-06   | 438.93     | NA                                          | 28.94         | NA                                            | Excavated                    |
| ead Area 5C  | PB5C-N02-1'    | 15-Nov-06   | 130.1      | 300                                         | ND            | 11                                            | Confirmed to Meet Type 3 RRS |
| Le Le        | PB5C-S01-6"    | 15-Nov-06   | 218.38     | 210                                         | ND            | 4.9                                           | Confirmed to Meet Type 3 RRS |
|              | PB5C-W01-6"    | 15-Nov-06   | 255.68     | 1400                                        | 23.6          | NA                                            | Excavated                    |
|              | PB5C-W02-1'    | 27-Nov-06   | 18.29      | 14                                          | ND            | <0.96                                         | Confirmed to Meet Type 3 RRS |

Notes: ND = less than detection limit of XRF device

NA = Not Analyzed

XRF = x-ray fluorescence mg/kg = milligram/kilogram

RRS = Risk Reduction Standard

All units are in mg/Kg

**Table 9 - Metals-Impacted Soil Excavation Confirmation Analytical Results** 

|                |              |           | Arsenic             | Lead                 |
|----------------|--------------|-----------|---------------------|----------------------|
| Area           | Sample ID    | Date      | (6010B)             | (6010B)              |
|                |              |           | Type 3 RRS=38 mg/kg | Type 3 RRS=400 mg/kg |
|                | AS1A-E02-3"  | 20-Nov-06 | 25                  | 91                   |
|                | AS1A-E03-6"  | 29-Nov-06 | 20                  | 110                  |
|                | AS1A-E04-3"  | 7-Dec-06  | 18                  | 71                   |
| <del>-</del>   | AS1A-N01-3"  | 15-Nov-06 | 11                  | 36                   |
| rea            | AS1A-N07A-3" | 13-Dec-08 | 33                  | 190                  |
| Arsenic Area 1 | AS1A-S01-3"  | 15-Nov-06 | 23                  | 190                  |
| ser            | AS1A-S02-1'  | 29-Nov-06 | 5.1                 | 49                   |
| ₹              | AS1A-W01-3"  | 15-Nov-06 | 5.3                 | 25                   |
|                | AS1A-W02-6"  | 29-Nov-06 | 10                  | 21                   |
|                | AS1A-W04-3"  | 7-Dec-06  | 6                   | 31                   |
|                | AS1A-W06-3"  | 7-Dec-06  | 32                  | 73                   |
| ∢              | PB1A-E01-1'  | 16-Nov-06 | NA                  | 24                   |
| Lead Area 1A   | PB1A-FL01-2' | 16-Nov-06 | NA                  | 4.6                  |
| Are            | PB1A-N01-1'  | 16-Nov-06 | NA                  | 8.8                  |
| ead            | PB1A-S01-1'  | 16-Nov-06 | NA                  | 21                   |
| ٦              | PB1A-W01-1'  | 16-Nov-06 | NA                  | 17                   |
|                | PB1B-E01-1'  | 17-Nov-06 | <1.0                | 20                   |
|                | PB1B-E02-1'  | 17-Nov-06 | 2.6                 | 110                  |
|                | PB1B-FL01-1' | 16-Nov-06 | <1.1                | 13                   |
|                | PB1B-FL02-2' | 17-Nov-06 | <1.0                | 6.1                  |
|                | PB1B-FL03-2' | 17-Nov-06 | 12                  | 220                  |
|                | PB1B-FL04-2' | 17-Nov-06 | <1.0                | 6.1                  |
| Lead Area 1B   | PB1B-FL05-2' | 17-Nov-06 | <1.1                | 5                    |
| vrea           | PB1B-FL06-2' | 17-Nov-06 | 3.9                 | 37                   |
| ad A           | PB1B-N01-1'  | 17-Nov-06 | 1.5                 | 17                   |
| Γĕ             | PB1B-N02-1'  | 17-Nov-06 | 4                   | 29                   |
|                | PB1B-N03-1'  | 17-Nov-06 | <1.1                | 7.9                  |
|                | PB1B-S01-1'  | 16-Nov-06 | <1.1                | 21                   |
|                | PB1B-S02-1'  | 17-Nov-06 | <0.95               | 5.9                  |
|                | PB1B-S03-1'  | 17-Nov-06 | <0.95               | 190                  |
|                | PB1B-W01-1   | 16-Nov-06 | <1.0                | 4.5                  |
|                | PB1B-W02-1'  | 17-Nov-06 | <0.89               | 3.8                  |
|                | PB2A-E01-1'  | 16-Nov-06 | <0.91               | 32                   |
| _              | PB2A-E02-1'  | 16-Nov-06 | <1.0                | 44                   |
| 1 2A           | PB2A-FL01-2' | 16-Nov-06 | <0.99               | 32                   |
| Lead Area 2A   | PB2A-FL02-2' | 16-Nov-06 | <1.0                | 13                   |
| ad ∤           | PB2A-N01-1'  | 16-Nov-06 | 4.2                 | 99                   |
| Le.            | PB2A-S01-1'  | 16-Nov-06 | 1.2                 | 4                    |
|                | PB2A-W01-1'  | 16-Nov-06 | 3.2                 | 110                  |
|                | PB2A-W02-1'  | 16-Nov-06 | <1.1                | 24                   |

**Table 9 - Metals-Impacted Soil Excavation Confirmation Analytical Results** 

|              |               |           | Arsenic             | Lead                 |
|--------------|---------------|-----------|---------------------|----------------------|
| Area         | Sample ID     | Date      | (6010B)             | (6010B)              |
|              |               |           | Type 3 RRS=38 mg/kg | Type 3 RRS=400 mg/kg |
| В            | PB2B-E01-1'   | 16-Nov-06 | NA                  | 25                   |
| Lead Area 2B | PB2B-FL01-2'  | 16-Nov-06 | NA                  | 61                   |
| Are          | PB2B-N01-1'   | 16-Nov-06 | NA                  | 25                   |
| ead          | PB2B-S01-1'   | 16-Nov-06 | NA                  | 60                   |
|              | PB2B-W01-1'   | 16-Nov-06 | NA                  | 110                  |
| O            | PB2C-E01-1'   | 16-Nov-06 | NA                  | 7.9                  |
| Lead Area 2C | PB2C-FL01-2'  | 16-Nov-06 | NA                  | 63                   |
| Are          | PB2C-W01-1'   | 16-Nov-06 | NA                  | 41                   |
| ead          | PB2C-N01-1'   | 16-Nov-06 | NA                  | 190                  |
| ٦            | PB2C-S01-1'   | 16-Nov-06 | NA                  | 250                  |
| ⋖            | PB3A-E01-6"   | 17-Nov-06 | NA                  | 220                  |
| Lead Area 3A | PB3A-FL01-1'  | 17-Nov-06 | NA                  | 98                   |
| Are          | PB3A-N02-6"   | 20-Nov-06 | NA                  | 120                  |
| ead          | PB3A-S01-6"   | 17-Nov-06 | NA                  | 270                  |
| ٦            | PB3A-W03-6"   | 20-Nov-06 | <.97                | 8.6                  |
|              | PB3B-E01-6"   | 20-Nov-06 | 4                   | 380                  |
|              | PB3B-E02-6"   | 20-Nov-06 | 1.5                 | 350                  |
|              | PB3B-FL02-1'  | 20-Nov-06 | <0.98               | 130                  |
|              | PB3B-FL05-1'  | 20-Nov-06 | 2.3                 | 240                  |
|              | PB3B-FL-06-1' | 20-Nov-06 | <1                  | 6.4                  |
|              | PB3B-FL07-2'  | 28-Nov-06 | <1.3                | 4.9                  |
| Lead Area 3B | PB3B-FL08-2'  | 28-Nov-06 | <1.1                | 1.2                  |
| rea          | PB3B-FL09-2'  | 28-Nov-06 | <1.2                | 2.3                  |
| ad A         | PB3B-N04-1'   | 28-Nov-06 | 7.4                 | 300                  |
| Le           | PB3B-N06-1'   | 28-Nov-06 | 2.1                 | 7.7                  |
|              | PB3B-N07-1'   | 28-Nov-06 | <0.94               | 18                   |
|              | PB3B-S03-6"   | 20-Nov-06 | 1.3                 | 270                  |
|              | PB3B-S04-1'   | 28-Nov-06 | <0.99               | 9.3                  |
|              | PB3B-S05-1'   | 28-Nov-06 | <1.0                | 19                   |
|              | PB3B-W01-6"   | 20-Nov-06 | <0.97               | 5.6                  |
|              | PB3B-W03-1'   | 28-Nov-06 | <1.1                | 22                   |
|              | PB4A-E02-6"   | 16-Nov-06 | 9.5                 | 280                  |
| 4 <b>4</b>   | PB4A-E03-6"   | 28-Nov-06 | 7.3                 | 200                  |
| Lead Area 4A | PB4A-FL01-1'  | 16-Nov-06 | 7.1                 | 220                  |
| d Ar         | PB4A-N01-6"   | 16-Nov-06 | 14                  | 390                  |
| -eac         | PB4A-S06-6"   | 27-Nov-06 | 6.5                 | 270                  |
|              | PB4A-W01-6"   | 16-Nov-06 | 5.3                 | 330                  |
|              | PB4A-W02-6"   | 28-Nov-06 | 22                  | 320                  |

**Table 9 - Metals-Impacted Soil Excavation Confirmation Analytical Results** 

|              |                    |           | Arsenic             | Lead                 |  |  |
|--------------|--------------------|-----------|---------------------|----------------------|--|--|
| Area         | Sample ID          | Date      | (6010B)             | (6010B)              |  |  |
|              |                    |           | Type 3 RRS=38 mg/kg | Type 3 RRS=400 mg/kg |  |  |
| 5A           | PB5A-E01-6"        | 14-Nov-06 | NA                  | 49                   |  |  |
| 3a 5         | PB5A-FL02-(18-24") | 5-Feb-08  | NA                  | 74                   |  |  |
| Lead Area    | PB5A-N01-6"        | 14-Nov-06 | NA                  | 28                   |  |  |
| ead          | PB5A-S01-6"        | 14-Nov-06 | NA                  | 62                   |  |  |
|              | PB5A-W01-6"        | 14-Nov-06 | NA                  | 37                   |  |  |
| 5B           | PB5B-E01-6"        | 15-Nov-06 | NA                  | 85                   |  |  |
|              | PB5B-FL02-2'       | 15-Nov-06 | NA                  | 26                   |  |  |
| Lead Area    | PB5B-N01-6"        | 15-Nov-06 | NA                  | 10                   |  |  |
| ead          | PB5B-S01-6"        | 15-Nov-06 | NA                  | 120                  |  |  |
| _            | PB5B-W02-1'        | 15-Nov-06 | NA                  | 240                  |  |  |
| O            | PB5C-E02-1'        | 15-Nov-06 | 4.5                 | 100                  |  |  |
| 3a 5         | PB5C-FL02-2'       | 15-Nov-06 | 1.2                 | 13                   |  |  |
| Lead Area 5C | PB5C-N02-1'        | 15-Nov-06 | 11                  | 300                  |  |  |
| ead          | PB5C-S01-6"        | 15-Nov-06 | 4.9                 | 210                  |  |  |
|              | PB5C-W92-1'        | 27-Nov-06 | <0.96               | 14                   |  |  |

Notes: ND = less than detection limit of XRF device

NA = Not Analyzed
All units are in mg/Kg

Table 10 - Summary of PAH Soil Confirmation Testing Results

| Compound               | Type 1/3<br>RRS | PDMW-14T<br>North Wall A-1 (1<br>FT BGS) | PDMW-14T North<br>Wall B-1 (1 FT<br>BGS) | PDMW-14T East<br>Wall A-1 (1 Ft<br>BGS) | PDMW-14T<br>East Wall B-1<br>(1 FT BGS) | PDMW-14T<br>South Wall A-1 (1<br>FT BGS) | PDMW-14T<br>South Wall B-1<br>(1 FT BGS) | PDMW-14T<br>West Wall A-1<br>(1 FT BGS) | PDMW-14T<br>West Wall B-1<br>(1 FT BGS) |
|------------------------|-----------------|------------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------|
| Date                   |                 | 3/5/2007                                 | 3/5/2007                                 | 3/5/2007                                | 3/5/2007                                | 3/5/2007                                 | 3/5/2007                                 | 2/21/2007                               | 2/22/2007                               |
| Acenaphthene           | 300             | 0.075 U                                  | 0.085 U                                  | 0.0076 U                                | 0.830 U                                 | 1.100 U                                  | 0.850 U                                  | 0.0078 U                                | 0.074 U                                 |
| Acenaphthylene         | 130             | 0.075 U                                  | 0.085 U                                  | 0.0076 U                                | 0.830 U                                 | 1.100 U                                  | 0.850 U                                  | 0.0078 U                                | 0.074 U                                 |
| Anthracene             | 500             | 4.3                                      | 0.085 U                                  | 0.0076 U                                | 0.830 U                                 | 1.100 U                                  | 0.850 U                                  | 0.67                                    | 0.074 U                                 |
| Benzo[a]anthracene     | 5               | 0.075 U                                  | 0.085 U                                  | 0.0076 U                                | 0.830 U                                 | 1.100 U                                  | 0.850 U                                  | 0.0078 U                                | 0.074 U                                 |
| Benzo[a]pyrene         | 1.6             | 0.075 U                                  | 0.085 U                                  | 0.0076 U                                | 0.830 U                                 | 1.100 U                                  | 0.850 U                                  | 0.0078 U                                | 0.074 U                                 |
| Benzo[b]fluoranthene   | 5               | 0.075 U                                  | 0.085 U                                  | 0.0076 U                                | 0.830 UM                                | 1.100 U                                  | 0.850 U                                  | 0.0078 U                                | 0.074 U                                 |
| Benzo[g,h,i]perylene   | 500             | 0.083                                    | 0.1                                      | 0.0076 U                                | 0.830 U                                 | 1.100 U                                  | 0.850 U                                  | 0.0078 U                                | 0.074 U                                 |
| Benzo[k]fluoranthene   | 5               | 0.075 U                                  | 0.085 U                                  | 0.0076 U                                | 0.830 U                                 | 1.100 U                                  | 0.850 U                                  | 0.0078 U                                | 0.074 U                                 |
| Chrysene               | 5               | 0.11                                     | 0.085 U                                  | 0.0076 U                                | 0.830 U                                 | 1.100 U                                  | 0.850 U                                  | 0.023                                   | 0.074 U                                 |
| Dibenz(a,h)anthracene  | 5               | 0.075 U                                  | 0.085 U                                  | 0.0076 U                                | 0.830 U                                 | 1.100 U                                  | 0.850 U                                  | 0.0078 U                                | 0.074 U                                 |
| Fluoranthene           | 500             | 0.15                                     | 0.085 U                                  | 0.0076 U                                | 0.830 U                                 | 1.100 U                                  | 0.850 U                                  | 0.026                                   | 0.074 U                                 |
| Fluorene               | 360             | 0.23                                     | 0.085 U                                  | 0.0076 U                                | 0.830 U                                 | 1.100 U                                  | 0.850 U                                  | 0.057                                   | 0.074 U                                 |
| Indeno[1,2,3-cd]pyrene | 5               | 0.075 U                                  | 0.085 U                                  | 0.0076 U                                | 0.830 U                                 | 1.100 U                                  | 0.850 U                                  | 0.0078 U                                | 0.074 U                                 |
| 2-Methylnaphthalene    |                 | 0.087                                    | 0.085 U                                  | 0.0076 U                                | 0.830 U                                 | 1.100 U                                  | 0.850 U                                  | 0.0078 U                                | 0.074 U                                 |
| 1-Methylnaphthalene    |                 | 0.075 U                                  | 0.085 U                                  | 0.0076 U                                | 0.830 U                                 | 1.100 U                                  | 0.850 U                                  | 0.016                                   | 0.074 U                                 |
| Naphthalene            | 100             | 0.11                                     | 0.085 U                                  | 0.0076 U                                | 0.830 U                                 | 1.100 U                                  | 0.850 U                                  | 0.018                                   | 0.074 U                                 |
| Phenanthrene           | 110             | 0.38                                     | 0.085 U                                  | 0.0076 U                                | 0.830 U                                 | 1.100 U                                  | 0.850 U                                  | 0.075                                   | 0.074 U                                 |
| Pyrene                 | 500             | 0.15                                     | 0.085 U                                  | 0.0076 U                                | 0.830 U                                 | 1.100 U                                  | 0.850 U                                  | 0.037                                   | 0.074 U                                 |

Notes:

All values in mg/Kg

U = Indicates the analyte was analyzed for but not detected. M = Manual integrated compound.

**Table 11 - Excavation Area Summary** 

| Excavation Area Name | Excavation Depth Range (feet bgs) | Area (Ft <sup>2</sup> ) |  |  |  |  |  |
|----------------------|-----------------------------------|-------------------------|--|--|--|--|--|
| Petro                | oleum Source Material A           | reas                    |  |  |  |  |  |
| PSM Area 2           | 2-4                               | 123,750                 |  |  |  |  |  |
| PSM Area 3           | 2-4                               | 52,708                  |  |  |  |  |  |
| PSM Area 4           | 3-5                               | 33,342                  |  |  |  |  |  |
| PSM Area 5           | 2-4                               | 5,625                   |  |  |  |  |  |
| PSM Area 6           | 0-4                               | 62,383                  |  |  |  |  |  |
| PSM Area 7           | 4-6                               | 2,178                   |  |  |  |  |  |
| PSM Area 8           | 2-3                               | 460                     |  |  |  |  |  |
| PSM Area 9           | 2-3                               | 1,350                   |  |  |  |  |  |
| PSM Area 10          | 1-4                               | 21,276                  |  |  |  |  |  |
| PSM Area 11          | 2-5                               | 7,740                   |  |  |  |  |  |
| PSM Area 12          | 2-8                               | 10,339                  |  |  |  |  |  |
| PSM Area 13          | 2-5                               | 7,913                   |  |  |  |  |  |
|                      | Metals Impacted Areas             |                         |  |  |  |  |  |
| Arsenic Area 1A      | 0-4                               | 2,750                   |  |  |  |  |  |
| Lead Area 1A-B       | 0-3                               | 2,394                   |  |  |  |  |  |
| Lead Area 2A-C       | 0-2                               | 969                     |  |  |  |  |  |
| Lead Area 3A-B       | 0-1.5                             | 2,372                   |  |  |  |  |  |
| Lead Area 4A         | 0-1                               | 750                     |  |  |  |  |  |
| Lead Area 5A-C       | 0-1                               | 1,257                   |  |  |  |  |  |

|                          |       |            |                 |              |               |              |               |              |              | Sa             | mples Collect | ed from Locat | ion Upstream | SW           |               |               |               |                          |               |                        |                                          |
|--------------------------|-------|------------|-----------------|--------------|---------------|--------------|---------------|--------------|--------------|----------------|---------------|---------------|--------------|--------------|---------------|---------------|---------------|--------------------------|---------------|------------------------|------------------------------------------|
| Sample ID:               | -     | Canal - Up | SW1 Up          | SW1 Up-High  | SW1-High      | SW1-Low      | SW1-HIGH      | SW1-LOW      | SW1-HIGH     | SW1-LOW        | SW1-HIGH      | SW1-LOW       | SW1-HIGH     | SW1-Low      | SW1-High      | SW1-Low       | SW UPSTREA    | M SW-UPSTREAM            | SW-UPSTREA    | M SW Upstream          | SW-UPSTREAM                              |
| Date Collected:          |       | 11/07/97   | 11/17/99        | 11/17/99     | 02/25/00      | 02/25/00     | 05/16/00      | 05/16/00     | 08/22/00     | 08/22/00       | 01/09/01      | 01/09/01      | 07/16/01     | 07/16/01     | 02/04/02      | 02/05/02      | 09/12/02      | 02/07/03                 | 06/26/03      | 01/27/04               | 07/23/04                                 |
| Tide Stage:              | Units | Low        | Low             | High         | High          | Low          | High          | Low          | High         | Low            | High          | Low           | High         | Low          | High          | Low           | High          | Low                      | Low           | High                   | High                                     |
| PAHs                     |       |            |                 |              |               |              |               |              |              |                |               |               |              |              |               |               |               |                          |               |                        |                                          |
| 1-Methylnaphthalene      | ug/L  | NA         | NA              | NA           | NA            | NA           | NA            | NA           | NA           | NA             | NA            | NA            | NA           | NA           | NA            | NA            | 0.2 U         | 0.2 U [0.2 U]            | 0.2 U         | 0.2 U [0.2 U]          | 0.2 U                                    |
| 2-Methylnaphthalene      | ug/L  | NA         | NA              | NA           | NA            | NA           | NA            | NA           | NA           | NA             | NA            | NA            | NA           | NA           | NA            | NA            | 0.2 U         | 0.2 U [0.2 U]            | 0.2 U         | 0.2 U [0.2 U]          | 0.2 U                                    |
| Acenaphthene             | ug/L  | 1 U        | 1 U             | 1 U          | NA            | NA           | NA            | NA           | NA           | NA             | 1 U           | 1 U           | 1 U          | 1 U          | 1 U           | 1 U           | 0.2 U         | 0.2 U [0.2 U]            | 0.2 U         | 0.2 U [0.2 U]          | 0.2 U                                    |
| Acenaphthylene           | ug/L  | 1 U        | 1 U             | 1 U          | NA            | NA           | NA            | NA           | NA           | NA             | 1 U           | 1 U           | 1 U          | 1 U          | 1 U           | 1 U           | 0.2 U         | 0.2 U [0.2 U]            | 0.2 U         | 0.2 U [0.2 U]          | 0.2 U                                    |
| Anthracene               | ug/L  | 0.2 U      | 0.2 U           | 0.2 U        | NA            | NA           | NA            | NA           | NA           | NA             | 0.2 U         | 0.2 U         | 0.2 U        | 0.2 U        | 0.2 U         | 0.2 U         | 0.2 U         | 0.2 U [0.2 U]            | 0.2 U         | 0.2 U [0.2 U]          | 0.2 U                                    |
| Benzo(a)anthracene       | ug/L  | 0.2 U      | 0.2 U           | 0.2 U        | NA            | NA           | NA            | NA           | NA           | NA             | 0.2 U         | 0.2 U         | 0.2 U        | 0.2 U        | 0.2 U         | 0.2 U         | 0.2 U         | 0.2 U [0.2 U]            | 0.2 U         | 0.2 U [0.2 U]          | 0.2 U                                    |
| Benzo(a)pyrene           | ug/L  | 0.2 U      | 0.2 U           | 0.2 U        | NA            | NA           | NA            | NA           | NA           | NA             | 0.2 U         | 0.2 U         | 0.2 U        | 0.2 U        | 0.2 U         | 0.2 U         | 0.2 U         | 0.2 U [0.2 U]            | 0.2 U         | 0.2 U [0.2 U]          | 0.2 U                                    |
| Benzo(b)fluoranthene     | ug/L  | 0.2 U      | 0.2 U           | 0.2 U        | NA            | NA           | NA            | NA           | NA           | NA             | 0.2 U         | 0.2 U         | 0.2 U        | 0.2 U        | 0.2 U         | 0.2 U         | 0.2 U         | 0.2 U [0.2 U]            | 0.2 U         | 0.2 U [0.2 U]          | 0.2 U                                    |
| Benzo(g,h,i)perylene     | ug/L  | 0.5 U      | NA              | NA           | NA            | NA           | NA            | NA           | NA           | NA             | NA            | NA            | NA           | NA           | NA            | NA            | 0.2 U         | 0.2 U [0.2 U]            | 0.2 U         | 0.2 U [0.2 U]          | 0.2 U                                    |
| Benzo(k)fluoranthene     | ug/L  | 0.5 U      | NA              | NA           | NA            | NA           | NA            | NA           | NA           | NA             | NA            | NA            | NA           | NA           | NA            | NA            | 0.2 U         | 0.2 U [0.2 U]            | 0.2 U         | 0.2 U [0.2 U]          | 0.2 U                                    |
| Chrysene                 | ug/L  | 0.2 U      | 0.2 U           | 0.2 U        | NA            | NA           | NA            | NA           | NA           | NA             | 0.2 U         | 0.2 U         | 0.2 U        | 0.2 U        | 0.2 U         | 0.2 U         | 0.2 U         | 0.2 U [0.2 U]            | 0.2 U         | 0.2 U [0.2 U]          | 0.2 U                                    |
| Dibenz(a,h)anthracene    | ug/L  | 1 U        | NA              | NA           | NA            | NA           | NA            | NA           | NA           | NA             | NA            | NA            | NA           | NA           | NA            | NA            | 0.2 U         | 0.2 U [0.2 U]            | 0.2 U         | 0.2 U [0.2 U]          | 0.2 U                                    |
| Fluoranthene             | ug/L  | 0.5 U      | 0.5 U           | 0.5 U        | NA            | NA           | NA            | NA           | NA           | NA             | 0.5 U         | 0.5 U         | 0.5 U        | 0.5 U        | 0.5 U         | 0.5 U         | 0.2 U         | 0.2 U [0.2 U]            | 0.2 U         | 0.2 U [0.2 U]          | 0.2                                      |
| Fluorene                 | ug/L  | 0.5 U      | 0.5 U           | 0.5 U        | NA            | NA           | NA            | NA           | NA           | NA             | 0.5 U         | 0.5 U         | 0.5 U        | 0.5 U        | 0.5 U         | 0.5 U         | 0.2 U         | 0.2 U [0.2 U]            | 0.2 U         | 0.2 U [0.2 U]          | 0.2 U                                    |
| Indeno(1,2,3-cd)pyrene   | ug/L  | 0.5 U      | NA              | NA           | NA            | NA           | NA            | NA           | NA           | NA             | NA            | NA            | NA           | NA           | NA            | NA            | 0.2 U         | 0.2 U [0.2 U]            | 0.2 U         | 0.2 U [0.2 U]          | 0.2 U                                    |
| Naphthalene              | ug/L  | 1 U        | 1 U             | 1 U          | NA            | NA           | NA            | NA           | NA           | NA             | 1 U           | 1 U           | 1 U          | 1 U          | 1 U           | 1 U           | 0.2 U         | 0.2 U [0.2 U]            | 0.2 U         | 0.2 U [0.2 U]          | 0.2 U                                    |
| Phenanthrene             | ug/L  | 0.2 U      | 0.2 U           | 0.2 U        | NA            | NA           | NA            | NA           | NA           | NA             | 0.2 U         | 0.2 U         | 0.2 U        | 0.2 U        | 0.2 U         | 0.2 U         | 0.2 U         | 0.2 U [0.2 U]            | 0.2 U         | 0.2 U [0.2 U]          | 0.63                                     |
| Pyrene                   | ug/L  | 0.5 U      | 0.5 U           | 0.5 U        | NA            | NA           | NA            | NA           | NA           | NA             | 0.5 U         | 0.5 U         | 0.5 U        | 0.5 U        | 0.5 U         | 0.5 U         | 0.2 U         | 0.2 U [0.2 U]            | 0.2 U         | 0.2 U [0.2 U]          | 0.21                                     |
| Total PAHs               | ug/L  | ND         | ND              | ND           | NA            | NA           | NA            | NA           | NA           | NA             | ND            | ND            | ND           | ND           | ND            | NA            | ND            | ND [ND]                  | ND            | ND [ND]                | 1.04                                     |
| Volatile Organic Compoun | ds    |            |                 |              |               |              |               |              |              |                |               |               |              |              |               |               |               |                          |               |                        |                                          |
| Benzene                  | ug/L  | 1 U        | 1 U             | 1 U          | NA            | NA           | NA            | NA           | NA           | NA             | 1 U           | 1 U           | NA           | 1 U          | 1 U           | 1 U           | 1 U           | 1 U [1 U]                | 1 U           | 1 U [1 U]              | 1 U                                      |
| Ethylbenzene             | ug/L  | 1 U        | 1 U             | 1 U          | NA            | NA           | NA            | NA           | NA           | NA             | 1 U           | 1 U           | NA           | 1 U          | 1 U           | 1 U           | 1 U           | 1 U [1 U]                | 1 U           | 1 U [1 U]              | 1 U                                      |
| m&p-Xylene               | ug/L  | NA         | 1 U             | 1 U          | NA            | NA           | NA            | NA           | NA           | NA             | 1 U           | 1 U           | NA           | 1 U          | NA            | NA            | NA            | NA                       | NA            | NA                     | NA                                       |
| o-Xylene                 | ug/L  | NA         | 1 U             | 1 U          | NA            | NA           | NA            | NA           | NA           | NA             | 1 U           | 1 U           | NA           | 1 U          | NA            | NA            | NA            | NA                       | NA            | NA                     | NA                                       |
| Toluene                  | ug/L  | 1 U        | 1 U             | 1 U          | NA            | NA           | NA            | NA           | NA           | NA             | 1 U           | 1 U           | NA           | 1 U          | 1 U           | 1 U           | 1 U           | 1 U [1 U]                | 1 U           | 1 U [1 U]              | 1 U                                      |
| Xylenes (total)          | ug/L  | 2 U        | NA              | NA           | NA            | NA           | NA            | NA           | NA           | NA             | NA            | NA            | NA           | NA           | 2 U           | 2 U           | 2 U           | 2 U [2 U]                | 2 U           | 2 U [2 U]              | 2 U                                      |
| Total BTEX               | ug/L  | ND         | ND              | ND           | NA            | NA           | NA            | NA           | NA           | NA             | ND            | ND            | NA           | ND           | ND            | NA            | ND            | ND [ND]                  | ND            | ND [ND]                | ND                                       |
| Metals                   |       |            |                 |              |               |              |               |              |              |                |               |               |              |              |               | 1             |               |                          |               |                        |                                          |
| Arsenic                  | mg/L  | 0.01 U     | 0.01 U          | 0.01 U       | 0.01 U        | 0.01 U       | 0.01 U        | 0.01 U       | 0.025 U      | 0.025 U        | 0.01 U        | 0.01 U        | 0.01 U       | 0.01 U       | 0.01 U        | 0.01 U        | 0.01 U        | 0.01 U [0.01 U]          | 0.01 U        | 0.01 U [0.01 U]        | 0.01 U                                   |
| Beryllium                | mg/L  | 0.005 U    | NA NA           | NA           | NA NA         | NA<br>NA     | NA            | NA           | NA           | NA             | NA            | NA            | NA           | NA           | NA            | NA            | NA            | NA<br>NA                 | NA NA         | NA<br>NA               | NA NA                                    |
| Cadmium                  | mg/L  | 0.005 U    | NA<br>0.04 II   | NA<br>0.04 H | NA<br>0.04.11 | NA<br>0.04 H | NA<br>0.04 H  | NA<br>0.04 H | NA<br>0.04 H | NA<br>0.04 III | NA<br>0.04 H  | NA<br>0.04 H  | NA<br>0.04 H | NA           | NA            | NA            | NA<br>0.04.11 | NA NA                    | NA<br>0.04.11 | NA<br>0.00 [0.04 LI]   | NA O O O O O O O O O O O O O O O O O O O |
| Chromium                 | mg/L  | 0.01 U     | 0.01 U          | 0.01 U       | 0.01 U        | 0.01 U       | 0.01 U        | 0.01 U       | 0.01 U       | 0.01 U         | 0.01 U        | 0.01 U        | 0.01 U       | 0.01 U       | 0.01 U        | 0.01 U        | 0.01 U        | 0.01 U [0.01 U]          | 0.01 U        | 0.02 [0.01 U]          | 0.01 U                                   |
| Lead                     | mg/L  | 0.005 U    | 0.005 U         | 0.005 U      | 0.0073 U      | 0.005 U      | 0.005 U       | 0.01         | 0.015 U      | 0.015 U        | 0.005 U       | 0.005 U       | 0.005 U      | 0.005 U      | 0.023         | 0.005 U       | 0.005 U       | 0.005 U [0.0057]         | 0.0064        | 0.02 [0.005 U]         | 0.005 U                                  |
| Mercury                  | mg/L  | 0.0002 U   | NA<br>O O A I I | NA<br>0.04 H | NA<br>0.04 H  | NA<br>0.0411 | NA<br>0.04 LL | NA<br>0.0411 | NA<br>0.04 H | NA<br>0.04 H   | NA<br>0.04 H  | NA<br>0.04 H  | NA<br>0.04 H | NA<br>0.0411 | NA<br>0.04 H  | NA<br>0.0411  | NA<br>0.04 H  | NA<br>O O A LLIO O A LII | NA<br>0.04 H  | NA<br>0.04 LUIO 04 LUI | NA<br>0.04 H                             |
| Nickel                   | mg/L  | 0.04 U     | 0.04 U          | 0.04 U       | 0.04 U        | 0.04 U       | 0.04 U        | 0.04 U       | 0.04 U       | 0.04 U         | 0.04 U        | 0.04 U        | 0.04 U       | 0.04 U       | 0.04 U        | 0.04 U        | 0.04 U        | 0.04 U [0.04 U]          | 0.04 U        | 0.04 U [0.04 U]        | 0.04 U                                   |
| Zinc                     | mg/L  | 0.02 U     | 0.02 U          | 0.02 U       | 0.11          | 0.093        | 0.02 U        | 0.081        | 0.072        | 0.14           | 0.07          | 0.02 U        | 0.11         | 0.05         | 0.12          | 0.06          | 0.026         | 0.044 [0.043]            | 0.044         | 0.15 [0.082]           | 0.02 U                                   |
| Metals-Filtered          |       | NIA T      | 0.04.11         | 0.04.11      | 0.04.11       | 0.04.11      | l NIA         | NIA.         | l NIA        | I NIA          | I NIA         | l NIA         | l NIA        | l NA         | T NIA         | T NIA         | T NA          | T NA T                   | NIA           | T NA T                 | NIA                                      |
| Arsenic                  | mg/L  | NA<br>NA   | 0.01 U          | 0.01 U       | 0.01 U        | 0.01 U       | NA<br>NA      | NA<br>NA     | NA           | NA             | NA<br>NA      | NA<br>NA      | NA<br>NA     | NA           | NA<br>NA      | NA<br>NA      | NA            | NA<br>NA                 | NA<br>NA      | NA<br>NA               | NA<br>NA                                 |
| Chromium                 | mg/L  | NA<br>NA   | 0.01 U          | 0.01 U       | 0.01 U        | 0.01 U       | NA<br>NA      | NA<br>NA     | NA<br>NA     | NA<br>NA       | NA<br>NA      | NA<br>NA      | NA<br>NA     | NA<br>NA     | NA<br>0.005 H | NA<br>NA      | NA<br>NA      | NA<br>NA                 | NA<br>NA      | NA<br>NA               | NA<br>NA                                 |
| Lead                     | mg/L  | NA<br>NA   | 0.005 U         | 0.005 U      | 0.005 U       | 0.005 U      | NA<br>NA      | NA<br>NA     | NA           | NA             | NA<br>NA      | NA<br>NA      | NA<br>NA     | NA<br>NA     | 0.005 U       | NA<br>NA      | NA<br>NA      | NA<br>NA                 | NA<br>NA      | NA<br>NA               | NA NA                                    |
| Nickel                   | mg/L  | NA<br>NA   | 0.04 U          | 0.04 U       | 0.04 U        | 0.04 U       | NA<br>NA      | NA<br>0.047  | NA<br>NA     | NA<br>0.02     | NA<br>0.030   | NA<br>NA      | NA<br>0.000  | NA<br>0.024  | NA<br>0.000   | NA<br>0.02.11 | NA            | NA<br>NA                 | NA<br>NA      | NA<br>NA               | NA<br>NA                                 |
| Zinc                     | mg/L  | NA         | 0.02 U          | 0.02 U       | 0.049         | 0.071        | NA            | 0.047        | NA           | 0.03           | 0.039         | NA            | 0.028        | 0.024        | 0.028         | 0.02 U        | NA            | NA                       | NA            | NA                     | NA                                       |
| Miscellaneous            | , ,   | 0.00       | 2.24            | 0.40         |               | 0.0          | 0.00          | 4.0          | 0.00         |                | 1.0           | 0.70          | 0.04         | 1.0          | 0.04          | 1 110         |               | 0.010.71                 | 0.00          | 0.5.00.03              | 2.00                                     |
| Ammonia-N                | mg/L  | 0.36       | 0.84            | 0.42         | 4.1           | 2.6          | 0.36          | 1.3          | 0.26         | 1.4            | 1.8           | 0.76          | 0.21         | 1.8          | 0.94          | NA            | 0.14          | 2.6 [2.7]                | 0.92          | 3.5 [3.9]              | 0.33                                     |

### Notes:

- 1) NA = Analyte was not analyzed.
- 2) ND = Not Detected
- 3) U = Indicates result value is below the laboratory quantitaton limit.
- 4) Total BTEX and Total PAHs were calculated as the sum of detected results where at least one of the analytes was detected, and reported as Not Detected (ND) in cases where all analytes were below their respective laboratory quantitation limits.
- 5) [value] indicates results of field duplicate sample

|                            |              | Samples Collected from Location Downstream SW |            |               |          |          |          |          |          |          |            |          |          |          |           |
|----------------------------|--------------|-----------------------------------------------|------------|---------------|----------|----------|----------|----------|----------|----------|------------|----------|----------|----------|-----------|
| Sample ID:                 |              | Canal - Down                                  | SW1 Down   | SW1 Down-High | SW2-High | SW2-Low  | SW2-HIGH | SW2-LOW  | SW2-HIGH | SW2-LOW  | SW2-HIGH   | SW2-LOW  | SW2-HIGH | SW2-Low  | SW2-High  |
| Date Collected:            |              | 11/08/97                                      | 11/17/99   | 11/17/99      | 02/25/00 | 02/25/00 | 05/16/00 | 05/16/00 | 08/22/00 | 08/22/00 | 01/09/01   | 01/09/01 | 07/16/01 | 07/16/01 | 02/04/02  |
| Tide Stage:                | Units        | Low                                           | Low        | High          | High     | Low      | High     | Low      | High     | Low      | High       | Low      | High     | Low      | High      |
| PAHs                       |              |                                               |            |               |          |          |          |          |          |          |            |          |          |          |           |
| 1-Methylnaphthalene        | ug/L         | NA                                            | NA         | NA            | NA       | NA       | NA       | NA       | NA       | NA       | NA         | NA       | NA       | NA       | NA        |
| 2-Methylnaphthalene        | ug/L         | NA                                            | NA         | NA            | NA       | NA       | NA       | NA       | NA       | NA       | NA         | NA       | NA       | NA       | NA        |
| Acenaphthene               | ug/L         | 1 U                                           | 1 U        | 1 U           | NA       | 1 U      | NA       | NA       | NA       | NA       | 1 U        | 1 U      | 1 U      | 1 U      | 1 U       |
| Acenaphthylene             | ug/L         | 1 U                                           | 1 U        | 1 U           | NA       | 1 U      | NA       | NA       | NA       | NA       | 1 U        | 1 U      | 1 U      | 1 U      | 1 U       |
| Anthracene                 | ug/L         | 0.2 U                                         | 0.2 U      | 0.2 U         | NA       | 0.2 U    | NA       | NA       | NA       | NA       | 0.2 U      | 0.2 U    | 0.2 U    | 0.2 U    | 0.2 U     |
| Benzo(a)anthracene         | ug/L         | 0.2 U                                         | 0.2 U      | 0.2 U         | NA       | 0.2 U    | NA       | NA       | NA       | NA       | 0.2 U      | 0.2 U    | 0.2 U    | 0.2 U    | 0.2 U     |
| Benzo(a)pyrene             | ug/L         | 0.2 U                                         | 0.2 U      | 0.2 U         | NA       | 0.2 U    | NA       | NA       | NA       | NA       | 0.2 U      | 0.2 U    | 0.2 U    | 0.2 U    | 0.2 U     |
| Benzo(b)fluoranthene       | ug/L         | 0.2 U                                         | 0.2 U      | 0.2 U         | NA       | 0.2 U    | NA       | NA       | NA       | NA       | 0.2 U      | 0.2 U    | 0.2 U    | 0.2 U    | 0.2 U     |
| Benzo(g,h,i)perylene       | ug/L         | 0.5 U                                         | NA         | NA            | NA       | NA       | NA       | NA       | NA       | NA       | NA         | NA       | NA       | NA       | NA        |
| Benzo(k)fluoranthene       | ug/L         | 0.5 U                                         | NA         | NA            | NA       | NA       | NA       | NA       | NA       | NA       | NA         | NA       | NA       | NA       | NA        |
| Chrysene                   | ug/L         | 0.2 U                                         | 0.2 U      | 0.2 U         | NA       | 0.2 U    | NA       | NA       | NA       | NA       | 0.2 U      | 0.2 U    | 0.2 U    | 0.2 U    | 0.2 U     |
| Dibenz(a,h)anthracene      | ug/L         | 1 U                                           | NA         | NA            | NA       | NA       | NA       | NA       | NA       | NA       | NA         | NA       | NA       | NA       | NA        |
| Fluoranthene               | ug/L         | 0.5 U                                         | 0.5 U      | 0.5 U         | NA       | 0.5 U    | NA       | NA       | NA       | NA       | 0.5 U      | 0.5 U    | 0.5 U    | 0.5 U    | 0.5 U     |
| Fluorene                   | ug/L         | 0.5 U                                         | 0.5 U      | 0.5 U         | NA       | 0.5 U    | NA       | NA       | NA       | NA       | 0.5 U      | 0.5 U    | 0.5 U    | 0.5 U    | 0.5 U     |
| Indeno(1,2,3-cd)pyrene     | ug/L         | 0.5 U                                         | NA         | NA            | NA       | NA       | NA       | NA       | NA       | NA       | NA         | NA       | NA       | NA       | NA        |
| Naphthalene                | ug/L         | 1 U                                           | 1 U        | 1 U           | NA       | 1 U      | NA       | NA       | NA       | NA       | 1 U        | 1 U      | 1 U      | 1 U      | 1 U       |
| Phenanthrene               | ug/L         | 0.2 U                                         | 0.2 U      | 0.2 U         | NA       | 0.2 U    | NA       | NA       | NA       | NA       | 0.2 U      | 0.2 U    | 0.2 U    | 0.2 U    | 0.2 U     |
| Pyrene                     | ug/L         | 0.5 U                                         | 0.5 U      | 0.5 U         | NA       | 0.5 U    | NA       | NA       | NA       | NA       | 0.5 U      | 0.5 U    | 0.5 U    | 0.5 U    | 0.5 U     |
| Total PAHs                 | ug/L         | ND                                            | ND         | ND            | NA       | NA       | NA       | NA       | NA       | NA       | ND         | ND       | ND       | ND       | ND        |
| Volatile Organic Compoun   |              | 4.11                                          | 4.11       | 1 411         | NIA      | 4.11     | NIA      | N14      | N10      | N10      | 411        | 4.11     | 4.11     | 411      | 4.11      |
| Benzene                    | ug/L         | 1 U                                           | 1 U        | 1 U           | NA       | 1 U      | NA<br>NA | NA       | NA       | NA       | 1 U        | 1 U      | 1 U      | 1 U      | 1 U       |
| Ethylbenzene               | ug/L         | 1 U<br>NA                                     | 1 U        | 1 U<br>1 U    | NA       | 1 U      |          | NA       | NA<br>NA | NA       |            | 1 U      | 1 U      | 1 U      | 1 U<br>NA |
| m&p-Xylene                 | ug/L         | NA<br>NA                                      | 1 U<br>1 U | 1 U           | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | 1 U<br>1 U | 1 U      | 1 U      | 1 U      | NA<br>NA  |
| o-Xylene                   | ug/L         | 1 U                                           | 1 U        | 1 U           | NA<br>NA | 1 U      | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | 1 U        | 1 U      | 1 U      | 1 U      | 1 U       |
| Toluene<br>Xylenes (total) | ug/L<br>ug/L | 2 U                                           | NA         | NA            | NA<br>NA | 2 U      | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA         | NA       | NA       | NA       | 2 U       |
| Total BTEX                 | ug/L<br>ug/L | ND                                            | ND ND      | ND ND         | NA<br>NA | NA       | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>ND   | ND<br>ND | ND<br>ND | ND ND    | ND ND     |
| Metals                     | ug/L         | ND                                            | ND         | ND            | IVA      | IVA      | INA      | IVA      | IVA      | IVA      | ND         | ND       | ND       | ND       | ND        |
| Arsenic                    | mg/L         | 0.01 U                                        | 0.01 U     | 0.01 U        | 0.01 U   | 0.01 U   | 0.01 U   | 0.01 U   | 0.025 U  | 0.01 U   | 0.01 U     | 0.01 U   | 0.01 U   | 0.01 U   | 0.01 U    |
| Beryllium                  | mg/L         | 0.005 U                                       | NA         | NA            | NA       | NA       | NA       | NA       | NA       | NA       | NA         | NA       | NA       | NA       | NA        |
| Cadmium                    | mg/L         | 0.005 U                                       | NA NA      | NA<br>NA      | NA NA    | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  |
| Chromium                   | mg/L         | 0.003 U                                       | 0.01 U     | 0.01 U        | 0.01 U   | 0.01 U   | 0.01 U   | 0.01 U   | 0.01 U   | 0.01 U   | 0.01 U     | 0.01 U   | 0.01 U   | 0.01 U   | 0.01 U    |
| Lead                       | mg/L         | 0.005 U                                       | 0.005 U    | 0.005 U       | 0.005 U  | 0.005 U  | 0.005 U  | 0.005 U  | 0.015 U  | 0.0087   | 0.005 U    | 0.005 U  | 0.005 U  | 0.0069   | 0.005 U   |
| Mercury                    | mg/L         | 0.0002 U                                      | NA         | NA            | NA       | NA       | NA       | NA       | NA       | NA       | NA         | NA       | NA       | NA       | NA        |
| Nickel                     | mg/L         | 0.04 U                                        | 0.04 U     | 0.04 U        | 0.04 U   | 0.04 U   | 0.04 U   | 0.04 U   | 0.04 U   | 0.04 U   | 0.04 U     | 0.04 U   | 0.04 U   | 0.04 U   | 0.04 U    |
| Zinc                       | mg/L         | 0.052                                         | 0.02 U     | 0.02 U        | 0.022    | 0.02 U   | 0.02 U   | 0.025    | 0.072    | 0.025    | 0.024      | 0.02 U   | 0.027    | 0.038    | 0.02 U    |
| Metals-Filtered            | <i>J</i>     | -                                             | -          | -             |          | _        | _        |          |          |          |            |          |          |          | _         |
| Arsenic                    | mg/L         | NA                                            | 0.01 U     | 0.01 U        | 0.01 U   | 0.01 U   | NA       | NA       | NA       | NA       | NA         | NA       | NA       | NA       | NA        |
| Chromium                   | mg/L         | NA                                            | 0.01 U     | 0.01 U        | 0.01 U   | 0.01 U   | NA       | NA       | NA       | NA       | NA         | NA       | NA       | NA       | NA        |
| Lead                       | mg/L         | NA                                            | 0.005 U    | 0.005 U       | 0.005 U  | 0.005 U  | NA       | NA       | NA       | 0.005 U  | NA         | NA       | NA       | 0.005 U  | NA        |
| Nickel                     | mg/L         | NA                                            | 0.04 U     | 0.04 U        | 0.04 U   | 0.04 U   | NA       | NA       | NA       | NA       | NA         | NA       | NA       | NA       | NA        |
| Zinc                       | mg/L         | NA                                            | 0.02 U     | 0.02 U        | 0.02 U   | 0.02 U   | NA       | 0.02 U   | NA       | 0.02 U   | 0.032      | NA       | 0.053    | 0.02     | NA        |
| Miscellaneous              |              |                                               |            | •             |          |          |          |          | •        |          | •          | •        | •        | -        | <u> </u>  |
| Ammonia-N                  | mg/L         | 0.93                                          | 6.2        | 0.48          | 0.64     | 5.2      | 0.64     | 1.8      | 0.18     | 2.2      | 0.17       | 2.8      | 0.82     | 4.3      | 0.12      |
|                            |              |                                               |            |               |          |          |          |          |          |          |            |          |          |          |           |

Table 12

# Notes:

- 1) NA = Analyte was not analyzed.
- 2) ND = Not Detected
- 3) U = Indicates result value is below
- 4) Total BTEX and Total PAHs were where at least one of the analytes (ND) in cases where all analytes we quantitation limits.
- 5) [value] indicates results of field dup

|                                              |       |                                   | Samples Collected                | d from Location Downs            | tream SW                          |                                   |
|----------------------------------------------|-------|-----------------------------------|----------------------------------|----------------------------------|-----------------------------------|-----------------------------------|
| Sample ID:<br>Date Collected:<br>Tide Stage: | Units | SW DOWNSTREAM<br>09/12/02<br>High | SW-DOWNSTREAM<br>02/07/03<br>Low | SW DOWNSTREAM<br>06/25/03<br>Low | SW Downstream<br>01/27/04<br>High | SW-Downstream<br>07/22/04<br>High |
| PAHs                                         |       |                                   |                                  |                                  |                                   |                                   |
| 1-Methylnaphthalene                          | ug/L  | 0.2 U                             | 0.2 U                            | 0.2 U [0.2 U]                    | 0.2 U                             | 0.2 U                             |
| 2-Methylnaphthalene                          | ug/L  | 0.2 U                             | 0.2 U                            | 0.2 U [0.2 U]                    | 0.2 U                             | 0.2 U                             |
| Acenaphthene                                 | ug/L  | 0.2 U                             | 0.2 U                            | 0.2 U [0.2 U]                    | 0.2 U                             | 0.2 U                             |
| Acenaphthylene                               | ug/L  | 0.2 U                             | 0.2 U                            | 0.2 U [0.2 U]                    | 0.2 U                             | 0.2 U                             |
| Anthracene                                   | ug/L  | 0.2 U                             | 0.2 U                            | 0.2 U [0.2 U]                    | 0.2 U                             | 0.2 U                             |
| Benzo(a)anthracene                           | ug/L  | 0.2 U                             | 0.2 U                            | 0.2 U [0.2 U]                    | 0.2 U                             | 0.2 U                             |
| Benzo(a)pyrene                               | ug/L  | 0.2 U                             | 0.2 U                            | 0.2 U [0.2 U]                    | 0.2 U                             | 0.2 U                             |
| Benzo(b)fluoranthene                         | ug/L  | 0.2 U                             | 0.2 U                            | 0.2 U [0.2 U]                    | 0.2 U                             | 0.2 U                             |
| Benzo(g,h,i)perylene                         | ug/L  | 0.2 U                             | 0.2 U                            | 0.2 U [0.2 U]                    | 0.2 U                             | 0.2 U                             |
| Benzo(k)fluoranthene                         | ug/L  | 0.2 U                             | 0.2 U                            | 0.2 U [0.2 U]                    | 0.2 U                             | 0.2 U                             |
| Chrysene                                     | ug/L  | 0.2 U                             | 0.2 U                            | 0.2 U [0.2 U]                    | 0.2 U                             | 0.2 U                             |
| Dibenz(a,h)anthracene                        | ug/L  | 0.2 U                             | 0.2 U                            | 0.2 U [0.2 U]                    | 0.2 U                             | 0.2 U                             |
| Fluoranthene                                 | ug/L  | 0.2 U                             | 0.2 U                            | 0.2 U [0.2 U]                    | 0.2 U                             | 0.2 U                             |
| Fluorene                                     | ug/L  | 0.2 U                             | 0.2 U                            | 0.2 U [0.2 U]                    | 0.2 U                             | 0.2 U                             |
| Indeno(1,2,3-cd)pyrene                       | ug/L  | 0.2 U                             | 0.2 U                            | 0.2 U [0.2 U]                    | 0.2 U                             | 0.2 U                             |
| Naphthalene                                  | ug/L  | 0.2 U                             | 0.2 U                            | 0.2 U [0.2 U]                    | 0.2 U                             | 0.2 U                             |
| Phenanthrene                                 | ug/L  | 0.2 U                             | 0.2 U                            | 0.2 U [0.2 U]                    | 0.2 U                             | 0.2 U                             |
| Pyrene                                       | ug/L  | 0.2 U                             | 0.2 U                            | 0.2 U [0.2 U]                    | 0.2 U                             | 0.2 U                             |
| Total PAHs                                   | ug/L  | ND                                | ND                               | ND [ND]                          | ND                                | ND                                |
| Volatile Organic Compoun                     | ds    |                                   |                                  |                                  | •                                 |                                   |
| Benzene                                      | ug/L  | 1 U                               | 1 U                              | 1 U [1 U]                        | 1 U                               | 1 U                               |
| Ethylbenzene                                 | ug/L  | 1.3                               | 1 U                              | 1 U [1 U]                        | 1 U                               | 1 U                               |
| m&p-Xylene                                   | ug/L  | NA                                | NA                               | NA                               | NA                                | NA                                |
| o-Xylene                                     | ug/L  | NA                                | NA                               | NA                               | NA                                | NA                                |
| Toluene                                      | ug/L  | 2                                 | 1 U                              | 1 U [1 U]                        | 1 U                               | 1 U                               |
| Xylenes (total)                              | ug/L  | 7.2                               | 2 U                              | 2 U [2 U]                        | 2 U                               | 2 U                               |
| Total BTEX                                   | ug/L  | 10.5                              | ND                               | ND [ND]                          | ND                                | ND                                |
| Metals                                       |       |                                   |                                  |                                  |                                   |                                   |
| Arsenic                                      | mg/L  | 0.01 U                            | 0.01 U                           | 0.01 U [0.01 U]                  | 0.01 U                            | 0.01 U                            |
| Beryllium                                    | mg/L  | NA                                | NA                               | NA                               | NA                                | NA                                |
| Cadmium                                      | mg/L  | NA                                | NA                               | NA                               | NA                                | NA                                |
| Chromium                                     | mg/L  | 0.01 U                            | 0.01 U                           | 0.01 U [0.01 U]                  | 0.01 U                            | 0.01 U                            |
| Lead                                         | mg/L  | 0.005 U                           | 0.005 U                          | 0.0075 [0.0083]                  | 0.005 U                           | 0.005 U                           |
| Mercury                                      | mg/L  | NA                                | NA                               | NA                               | NA                                | NA                                |
| Nickel                                       | mg/L  | 0.04 U                            | 0.04 U                           | 0.04 U [0.04 U]                  | 0.04 U                            | 0.04 U                            |
| Zinc                                         | mg/L  | 0.02 U                            | 0.02 U                           | 0.032 [0.027]                    | 0.13                              | 0.02 U                            |
| Metals-Filtered                              |       |                                   |                                  |                                  |                                   |                                   |
| Arsenic                                      | mg/L  | NA                                | NA                               | NA                               | NA                                | NA                                |
| Chromium                                     | mg/L  | NA                                | NA                               | NA                               | NA                                | NA                                |
| Lead                                         | mg/L  | NA                                | NA                               | NA                               | NA                                | NA                                |
| Nickel                                       | mg/L  | NA                                | NA                               | NA                               | NA                                | NA                                |
| Zinc                                         | mg/L  | NA                                | NA                               | NA                               | NA                                | NA                                |
| Miscellaneous                                | -     |                                   |                                  |                                  |                                   |                                   |
| Ammonia-N                                    | mg/L  | 0.57                              | 5.6                              | 3 [3]                            | 1.1                               | 0.32                              |

# Notes:

- 1) NA = Analyte was not analyzed.
- 2) ND = Not Detected
- 3) U = Indicates result value is below
  4) Total BTEX and Total PAHs were where at least one of the analytes (ND) in cases where all analytes we quantitation limits.
- 5) [value] indicates results of field dup

Table 13 - Summary of 2013-2015 Surface Water Analytical Results

| Sample ID:                  |       |        |        |        | SV     | V-1  |       |         |         |        |        |        | SV     | V-2   |       |       |         |
|-----------------------------|-------|--------|--------|--------|--------|------|-------|---------|---------|--------|--------|--------|--------|-------|-------|-------|---------|
| Date Collected:             |       | 12/1   | 13/13  | 06/0   | 5/14   | 11/0 | 06/14 | 05/2    | 21/15   | 12/1   | 3/13   | 06/0   | 5/14   | 11/0  | 06/14 | 05/2  | 21/15   |
| Tide Stage:                 | Units | LOW    | HIGH   | LOW    | HIGH   | LOW  | HIGH  | LOW     | HIGH    | LOW    | HIGH   | LOW    | HIGH   | LOW   | HIGH  | LOW   | HIGH    |
| Polycyclic Aromatic Hydroca | rbons |        |        |        |        |      |       |         |         |        |        |        |        |       |       |       |         |
| 1-Methylnaphthalene         | ug/L  | 9.5 U  | 9.5 U  | 10 U   | 10 U   | NA   | NA    | NA      | NA      | 9.5 U  | NA     | 9.7 U  | 9.5 U  | NA    | NA    | NA    | NA      |
| 2-Methylnaphthalene         | ug/L  | 9.5 U  | 9.5 U  | 10 U   | 10 U   | NA   | NA    | NA      | NA      | 9.5 U  | NA     | 9.7 U  | 9.5 U  | NA    | NA    | NA    | NA      |
| Acenaphthene                | ug/L  | 9.5 U  | 9.5 U  | 10 U   | 10 U   | NA   | NA    | NA      | NA      | 9.5 U  | NA     | 9.7 U  | 9.5 U  | NA    | NA    | NA    | NA      |
| Acenaphthylene              | ug/L  | 9.5 U  | 9.5 U  | 10 U   | 10 U   | NA   | NA    | NA      | NA      | 9.5 U  | NA     | 9.7 U  | 9.5 U  | NA    | NA    | NA    | NA      |
| Anthracene                  | ug/L  | 9.5 U  | 9.5 U  | 10 U   | 10 U   | NA   | NA    | NA      | NA      | 9.5 U  | NA     | 9.7 U  | 9.5 U  | NA    | NA    | NA    | NA      |
| Benzo(a)anthracene          | ug/L  | 9.5 U  | 9.5 U  | 10 U   | 10 U   | NA   | NA    | NA      | NA      | 9.5 U  | NA     | 9.7 U  | 9.5 U  | NA    | NA    | NA    | NA      |
| Benzo(a)pyrene              | ug/L  | 9.5 U  | 9.5 U  | 10 U   | 10 U   | NA   | NA    | NA      | NA      | 9.5 U  | NA     | 9.7 U  | 9.5 U  | NA    | NA    | NA    | NA      |
| Benzo(b)fluoranthene        | ug/L  | 9.5 U  | 9.5 U  | 10 U   | 10 U   | NA   | NA    | NA      | NA      | 9.5 U  | NA     | 9.7 U  | 9.5 U  | NA    | NA    | NA    | NA      |
| Benzo(g,h,i)perylene        | ug/L  | 9.5 U  | 9.5 U  | 10 U   | 10 U   | NA   | NA    | NA      | NA      | 9.5 U  | NA     | 9.7 U  | 9.5 U  | NA    | NA    | NA    | NA      |
| Benzo(k)fluoranthene        | ug/L  | 9.5 U  | 9.5 U  | 10 U   | 10 U   | NA   | NA    | NA      | NA      | 9.5 U  | NA     | 9.7 U  | 9.5 U  | NA    | NA    | NA    | NA      |
| Chrysene                    | ug/L  | 9.5 U  | 9.5 U  | 10 U   | 10 U   | NA   | NA    | NA      | NA      | 9.5 U  | NA     | 9.7 U  | 9.5 U  | NA    | NA    | NA    | NA      |
| Dibenz(a,h)anthracene       | ug/L  | 9.5 U  | 9.5 U  | 10 U   | 10 U   | NA   | NA    | NA      | NA      | 9.5 U  | NA     | 9.7 U  | 9.5 U  | NA    | NA    | NA    | NA      |
| Fluoranthene                | ug/L  | 9.5 U  | 9.5 U  | 10 U   | 10 U   | NA   | NA    | NA      | NA      | 9.5 U  | NA     | 9.7 U  | 9.5 U  | NA    | NA    | NA    | NA      |
| Fluorene                    | ug/L  | 9.5 U  | 9.5 U  | 10 U   | 10 U   | NA   | NA    | NA      | NA      | 9.5 U  | NA     | 9.7 U  | 9.5 U  | NA    | NA    | NA    | NA      |
| Indeno(1,2,3-cd)pyrene      | ug/L  | 9.5 U  | 9.5 U  | 10 U   | 10 U   | NA   | NA    | NA      | NA      | 9.5 U  | NA     | 9.7 U  | 9.5 U  | NA    | NA    | NA    | NA      |
| Naphthalene                 | ug/L  | 9.5 U  | 9.5 U  | 10 U   | 10 U   | NA   | NA    | NA      | NA      | 9.5 U  | NA     | 9.7 U  | 9.5 U  | NA    | NA    | NA    | NA      |
| Phenanthrene                | ug/L  | 9.5 U  | 9.5 U  | 10 U   | 10 U   | NA   | NA    | NA      | NA      | 9.5 U  | NA     | 9.7 U  | 9.5 U  | NA    | NA    | NA    | NA      |
| Pyrene                      | ug/L  | 9.5 U  | 9.5 U  | 10 U   | 10 U   | NA   | NA    | NA      | NA      | 9.5 U  | NA     | 9.7 U  | 9.5 U  | NA    | NA    | NA    | NA      |
| Total PAHs                  | ug/L  | ND     | ND     | ND     | ND     | NA   | NA    | NA      | NA      | ND     | NA     | ND     | ND     | NA    | NA    | NA    | NA      |
| Volatile Organic Compounds  |       |        |        |        |        |      |       |         |         |        |        |        |        |       |       |       |         |
| Benzene                     | ug/L  | 1 U    | 1 U    | 1 U    | 1 U    | NA   | NA    | NA      | NA      | 1 U    | NA     | 1 U    | 1 U    | NA    | NA    | NA    | NA      |
| Ethylbenzene                | ug/L  | 1 U    | 1 U    | 1 U    | 1 U    | NA   | NA    | NA      | NA      | 1 U    | NA     | 1 U    | 1 U    | NA    | NA    | NA    | NA      |
| Toluene                     | ug/L  | 1 U    | 1 U    | 1 U    | 1 U    | NA   | NA    | NA      | NA      | 1 U    | NA     | 1 U    | 1 U    | NA    | NA    | NA    | NA      |
| Xylenes (total)             | ug/L  | 2 U    | 2 U    | 2 U    | 2 U    | NA   | NA    | NA      | NA      | 2 U    | NA     | 2 U    | 2 U    | NA    | NA    | NA    | NA      |
| Total BTEX                  | ug/L  | ND     | ND     | ND     | ND     | NA   | NA    | NA      | NA      | ND     | NA     | ND     | ND     | NA    | NA    | NA    | NA      |
| Dissolved Metals            |       |        |        |        |        |      |       |         |         |        |        |        |        |       |       |       |         |
| Arsenic                     | mg/L  | 0.02 U | 0.02 U | 0.02 U | 0.02 U | NA   | NA    | NA      | NA      | 0.02 U | 0.02 U | 0.02 U | 0.02 U | NA    | NA    | NA    | NA      |
| Chromium                    | mg/L  | 0.01 U | 0.01 U | 0.01 U | 0.01 U | NA   | NA    | NA      | NA      | 0.01 U | 0.01 U | 0.01 U | 0.01 U | NA    | NA    | NA    | NA      |
| Lead                        | mg/L  | 0.01 U | 0.01 U | 0.01 U | 0.01 U | NA   | NA    | NA      | NA      | 0.01 U | 0.01 U | 0.01 U | 0.01 U | NA    | NA    | NA    | NA      |
| Nickel                      | mg/L  | 0.04 U | 0.04 U | 0.04 U | 0.04 U | NA   | NA    | NA      | NA      | 0.04 U | 0.04 U | 0.04 U | 0.04 U | NA    | NA    | NA    | NA      |
| Zinc                        | mg/L  | 0.02 U | 0.02 U | 0.02 U | 0.02 U | NA   | NA    | NA      | NA      | 0.02 U | 0.02 U | 0.02 U | 0.02 U | NA    | NA    | NA    | NA      |
| Miscellaneous               |       |        |        |        |        |      |       |         |         |        |        |        |        |       |       |       |         |
| Alkalinity                  | mg/L  | NA     | NA     | NA     | NA     | 88   | 62    | 77      | 39      | NA     | NA     | NA     | NA     | 87    | 62    | 130   | 39      |
| Ammonia-N                   | mg/L  | 0.30   | 0.25   | 1.4    | 0.44   | 0.29 | 0.16  | 0.62    | 0.41    | 0.29   | 0.053  | 1.6    | 0.12   | 0.40  | 0.20  | 1.5   | 0.52    |
| Nitrite                     | mg/L  | NA     | NA     | NA     | NA     | NA   | NA    | 0.050 U | 0.050 U | NA     | NA     | NA     | NA     | NA    | NA    | 0.085 | 0.050 U |
| Nitrate                     | mg/L  | 0.21   | 0.4    | 0.32   | 0.34   | 0.12 | 0.25  | 0.27    | 0.28    | 0.18   | NA     | 0.22   | 0.37   | 0.085 | 0.24  | 0.28  | 0.29    |

#### Notos:

U = Indicates the analyte was not detected above the minimum laboratory reporting limit

NA = Analyte was not analyzed.

ND = None of the constituents were detected above the minimum laboratory reporting limit

mg/L = milligrams per liter

ug/L = micrograms per liter

Table 13 - Summary of 2013-2015 Surface Water Analytical Results

| Sample ID:                  |       |        |        |        | SV     | V-3   |      |         |         |        |        |        | SV     | V-4   |      |       |       |
|-----------------------------|-------|--------|--------|--------|--------|-------|------|---------|---------|--------|--------|--------|--------|-------|------|-------|-------|
| Date Collected:             |       | 12/1   | 3/13   | 06/0   | 5/14   | 11/0  | 6/14 | 05/2    | 21/15   | 12/1   | 3/13   | 06/0   | 5/14   | 11/0  | 6/14 | 05/2  | 21/15 |
| Tide Stage:                 | Units | LOW    | HIGH   | LOW    | HGH    | LOW   | HIGH | LOW     | HIGH    | LOW    | HIGH   | LOW    | HIGH   | LOW   | HIGH | LOW   | HIGH  |
| Polycyclic Aromatic Hydroca | rbons |        |        |        |        |       |      |         |         |        |        |        |        |       |      |       |       |
| 1-Methylnaphthalene         | ug/L  | 9.5 U  | 9.5 U  | 9.6 U  | 9.7 U  | NA    | NA   | NA      | NA      | 9.5 U  | 9.5 U  | 10 U   | 10 U   | NA    | NA   | NA    | NA    |
| 2-Methylnaphthalene         | ug/L  | 9.5 U  | 9.5 U  | 9.6 U  | 9.7 U  | NA    | NA   | NA      | NA      | 9.5 U  | 9.5 U  | 10 U   | 10 U   | NA    | NA   | NA    | NA    |
| Acenaphthene                | ug/L  | 9.5 U  | 9.5 U  | 9.6 U  | 9.7 U  | NA    | NA   | NA      | NA      | 9.5 U  | 9.5 U  | 10 U   | 10 U   | NA    | NA   | NA    | NA    |
| Acenaphthylene              | ug/L  | 9.5 U  | 9.5 U  | 9.6 U  | 9.7 U  | NA    | NA   | NA      | NA      | 9.5 U  | 9.5 U  | 10 U   | 10 U   | NA    | NA   | NA    | NA    |
| Anthracene                  | ug/L  | 9.5 U  | 9.5 U  | 9.6 U  | 9.7 U  | NA    | NA   | NA      | NA      | 9.5 U  | 9.5 U  | 10 U   | 10 U   | NA    | NA   | NA    | NA    |
| Benzo(a)anthracene          | ug/L  | 9.5 U  | 9.5 U  | 9.6 U  | 9.7 U  | NA    | NA   | NA      | NA      | 9.5 U  | 9.5 U  | 10 U   | 10 U   | NA    | NA   | NA    | NA    |
| Benzo(a)pyrene              | ug/L  | 9.5 U  | 9.5 U  | 9.6 U  | 9.7 U  | NA    | NA   | NA      | NA      | 9.5 U  | 9.5 U  | 10 U   | 10 U   | NA    | NA   | NA    | NA    |
| Benzo(b)fluoranthene        | ug/L  | 9.5 U  | 9.5 U  | 9.6 U  | 9.7 U  | NA    | NA   | NA      | NA      | 9.5 U  | 9.5 U  | 10 U   | 10 U   | NA    | NA   | NA    | NA    |
| Benzo(g,h,i)perylene        | ug/L  | 9.5 U  | 9.5 U  | 9.6 U  | 9.7 U  | NA    | NA   | NA      | NA      | 9.5 U  | 9.5 U  | 10 U   | 10 U   | NA    | NA   | NA    | NA    |
| Benzo(k)fluoranthene        | ug/L  | 9.5 U  | 9.5 U  | 9.6 U  | 9.7 U  | NA    | NA   | NA      | NA      | 9.5 U  | 9.5 U  | 10 U   | 10 U   | NA    | NA   | NA    | NA    |
| Chrysene                    | ug/L  | 9.5 U  | 9.5 U  | 9.6 U  | 9.7 U  | NA    | NA   | NA      | NA      | 9.5 U  | 9.5 U  | 10 U   | 10 U   | NA    | NA   | NA    | NA    |
| Dibenz(a,h)anthracene       | ug/L  | 9.5 U  | 9.5 U  | 9.6 U  | 9.7 U  | NA    | NA   | NA      | NA      | 9.5 U  | 9.5 U  | 10 U   | 10 U   | NA    | NA   | NA    | NA    |
| Fluoranthene                | ug/L  | 9.5 U  | 9.5 U  | 9.6 U  | 9.7 U  | NA    | NA   | NA      | NA      | 9.5 U  | 9.5 U  | 10 U   | 10 U   | NA    | NA   | NA    | NA    |
| Fluorene                    | ug/L  | 9.5 U  | 9.5 U  | 9.6 U  | 9.7 U  | NA    | NA   | NA      | NA      | 9.5 U  | 9.5 U  | 10 U   | 10 U   | NA    | NA   | NA    | NA    |
| Indeno(1,2,3-cd)pyrene      | ug/L  | 9.5 U  | 9.5 U  | 9.6 U  | 9.7 U  | NA    | NA   | NA      | NA      | 9.5 U  | 9.5 U  | 10 U   | 10 U   | NA    | NA   | NA    | NA    |
| Naphthalene                 | ug/L  | 9.5 U  | 9.5 U  | 9.6 U  | 9.7 U  | NA    | NA   | NA      | NA      | 9.5 U  | 9.5 U  | 10 U   | 10 U   | NA    | NA   | NA    | NA    |
| Phenanthrene                | ug/L  | 9.5 U  | 9.5 U  | 9.6 U  | 9.7 U  | NA    | NA   | NA      | NA      | 9.5 U  | 9.5 U  | 10 U   | 10 U   | NA    | NA   | NA    | NA    |
| Pyrene                      | ug/L  | 9.5 U  | 9.5 U  | 9.6 U  | 9.7 U  | NA    | NA   | NA      | NA      | 9.5 U  | 9.5 U  | 10 U   | 10 U   | NA    | NA   | NA    | NA    |
| Total PAHs                  | ug/L  | ND     | ND     | ND     | ND     | NA    | NA   | NA      | NA      | ND     | ND     | 10 U   | ND     | NA    | NA   | NA    | NA    |
| Volatile Organic Compounds  |       |        |        |        |        |       |      |         |         |        |        |        |        |       |      |       |       |
| Benzene                     | ug/L  | 1 U    | 1 U    | 1 U    | 1 U    | NA    | NA   | NA      | NA      | 1 U    | 1 U    | 1 U    | 1 U    | NA    | NA   | NA    | NA    |
| Ethylbenzene                | ug/L  | 1 U    | 1 U    | 1 U    | 1 U    | NA    | NA   | NA      | NA      | 1 U    | 1 U    | 1 U    | 1 U    | NA    | NA   | NA    | NA    |
| Toluene                     | ug/L  | 1 U    | 1 U    | 1 U    | 1 U    | NA    | NA   | NA      | NA      | 1 U    | 1 U    | 1 U    | 1 U    | NA    | NA   | NA    | NA    |
| Xylenes (total)             | ug/L  | 2 U    | 2 U    | 2 U    | 2 U    | NA    | NA   | NA      | NA      | 2 U    | 2 U    | 2 U    | 2 U    | NA    | NA   | NA    | NA    |
| Total BTEX                  | ug/L  | ND     | ND     | ND     | ND     | NA    | NA   | NA      | NA      | ND     | ND     | ND     | ND     | NA    | NA   | NA    | NA    |
| Dissolved Metals            |       |        |        |        |        |       |      |         |         |        |        |        |        |       |      |       |       |
| Arsenic                     | mg/L  | 0.02 U | 0.02 U | 0.02 U | 0.02 U | NA    | NA   | NA      | NA      | 0.02 U | 0.02 U | 0.02 U | 0.02 U | NA    | NA   | NA    | NA    |
| Chromium                    | mg/L  | 0.01 U | 0.01 U | 0.01 U | 0.01 U | NA    | NA   | NA      | NA      | 0.01 U | 0.01 U | 0.01 U | 0.01 U | NA    | NA   | NA    | NA    |
| Lead                        | mg/L  | 0.01 U | 0.01 U | 0.01 U | 0.01 U | NA    | NA   | NA      | NA      | 0.01 U | 0.01 U | 0.01 U | 0.01 U | NA    | NA   | NA    | NA    |
| Nickel                      | mg/L  | 0.04 U | 0.04 U | 0.04 U | 0.04 U | NA    | NA   | NA      | NA      | 0.04 U | 0.04 U | 0.04 U | 0.04 U | NA    | NA   | NA    | NA    |
| Zinc                        | mg/L  | 0.02 U | 0.02 U | 0.02 U | 0.02 U | NA    | NA   | NA      | NA      | 0.02 U | 0.02 U | 0.02 U | 0.02 U | NA    | NA   | NA    | NA    |
| Miscellaneous               |       |        |        |        |        |       |      |         |         |        |        |        |        |       |      |       |       |
| Alkalinity                  | mg/L  | NA     | NA     | NA     | NA     | 100   | 60   | 120     | 71      | NA     | NA     | NA     | NA     | 84    | 58   | 120   | 100   |
| Ammonia-N                   | mg/L  | 0.27   | 0.092  | 1.7    | 0.31   | 0.19  | 0.22 | 0.80    | 0.91    | 0.17   | 0.33   | 1.9    | 0.39   | 0.13  | 0.16 | 1.5   | 0.83  |
| Nitrite                     | mg/L  | NA     | NA     | NA     | NA     | NA    | NA   | 0.050 U | 0.050 U | NA     | NA     | NA     | NA     | NA    | NA   | 0.094 | 0.060 |
| Nitrate                     | mg/L  | 0.18   | 0.42   | 0.26   | 0.36   | 0.083 | 0.25 | 0.21    | 0.27    | 0.41   | 0.24   | 0.28   | 0.39   | 0.078 | 0.24 | 0.17  | 0.25  |

# Notes:

U = Indicates the analyte was not detected above the minimum laboratory reporting limit

NA = Analyte was not analyzed.

ND = None of the constituents were detected above the minimum laboratory reporting limit

mg/L = milligrams per liter

ug/L = micrograms per liter













1,200 400 800 1,600 200 Feet

PROJ: 6-4300-5247

Drawn: TDN

Aerial data source: Obtained through ESRI online services, 2015 Parcel Data Source: Savannah Area GIS (SAGIS)









NOTES:
-Ammonia in groundwater data depicted is the most recent collected
-mg/L = milligrams per liter





**CSX Transportation, Inc.** 

Cross Section A-A' - Hutchinson Island HSI - 10101 Savannah, Georgia

FIGURE 6





Drawn: TDN Date: 07/12/2016 PROJ: 643005247

Document Path: P:\ENV\643005246 - CSX Hutchinson Island\GIS\2016CSR\CSXT\_Hutch\_Soil\_Profile\_A-A'\_VRP\_Plan\_07122016.mxd







2677 Buford Highway Atlanta, GA 30324

200

400



800

1,200

1,600

# **Ammonia Isoconcentration Map** November 2015 / July 2016 Hutchinson Island HSI - 10101 - Savannah, Georgia

File: P:\643005256\GIS\2016VRP\ CSXT\_Hutch\_Is\_ Ammonia\_Conc\_Dec2015Rpt.mxd 08/01/2016 REV: Aerial data source: Obtained through Drawn: TDN ESRI online services, 2015 PROJ: 6-4300-5247 Parcel Data Source: Savannah Area GIS (SAGIS)



# Amec Foster Wheeler Environment & Infrastructure 2677 Buford Highway Atlanta, Georgia 30324 O 200 400 800 1,200 1,600 Feet CSX Transportation, Inc. CSX Transportation, Inc. FIGURE 10 Lead Isoconcentration Map - November 2015 Hutchinson Island HSI - 10101 - Savannah, Georgia O7/20/2016 REV: File: P:\ENV\643005246-CSX Hutchinson Island\GIS \( \frac{2016VRP\CSXT\_Hutch\_IS\_Lead\_Conc\_Nov2015.mxd}{2016VRP\CSXT\_Hutch\_IS\_Lead\_Conc\_Nov2015.mxd} PROJ: 6-4300-5267 Aerial data source: Obtained through ESRI online services, 2015 Parcel Data Source: Savannah Area GIS (SAGIS)



07/20/2016 REV: 1,200 800 1,600 200 Aerial data source: Obtained through ESRI online services, 2015 ■ Feet Drawn: TDN PROJ: 6-4300-5247 Parcel Data Source: Savannah Area GIS (SAGIS)



2677 Buford Highway Atlanta, Georgia 30324



Hutchinson Island HSI - 10101 - Savannah, Georgia



07/20/2016 REV:

Aerial data source: Obtained through ESRI online services, 2015

File: P:\ENV\643005246-CSX Hutchinson Island\GIS \2016VRP\CSXT\_Hutch\_IS\_Naphthalene\_ Conc\_Nov2015.mxd

Drawn: TDN PROJ: 6-4300-5247 Parcel Data Source: Savannah Area GIS (SAGIS)



2677 Buford Highway Atlanta, Georgia 30324



Hutchinson Island HSI - 10101 - Savannah, Georgia

























# APPENDIX A LABORATORY DATA



THE LEADER IN ENVIRONMENTAL TESTING

# **ANALYTICAL REPORT**

TestAmerica Laboratories, Inc.

TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

TestAmerica Job ID: 680-101934-1

Client Project/Site: CSX Hutchinson Island VRP

#### For:

AMEC Environment & Infrastructure, Inc. 396 Plasters Avenue, NE Atlanta, Georgia 30324

Attn: Mr. Steve Foley

Side Horey

Authorized for release by: 6/18/2014 5:46:41 PM

Lisa Harvey, Project Manager II (912)354-7858 e.3221

lisa.harvey@testamericainc.com

.....LINKS .....

Review your project results through
Total Access

**Have a Question?** 



Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Job ID: 680-101934-1

Laboratory: TestAmerica Savannah

Narrative

#### **CASE NARRATIVE**

Client: AMEC Environment & Infrastructure, Inc.
Project: CSX Hutchinson Island VRP
Report Number: 680-101934-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

No additional analytical or quality issues were noted, other than those described below or in the Definitions/Glossary page.

#### <u>RECEIPT</u>

The samples were received on 6/4/2014 8:44 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 0.8° C and 1.0° C.

There was a discrepancy noted between the COC and the container lable for sample PDMW-30R\_06032014 (680-101934-9). Vials show PDMW-30P-06032014. The COC was used for login.

#### **VOLATILE ORGANIC COMPOUNDS (GC-MS)**

Samples ERB-01\_06032014 (680-101934-1), FB-01\_06032014 (680-101934-2), ERB-02-06032014 (680-101934-3), TMW-4R\_06032014 (680-101934-4), MW-01\_06032014 (680-101934-5), PDMW-8R\_06032014 (680-101934-6), PDMW-45R\_06032014 (680-101934-7), PDMW-29D\_06032014 (680-101934-8), PDMW-30R\_06032014 (680-101934-9), DUP-01\_06032014 (680-101934-10), DUP-02\_06032014 (680-101934-11) and TRIPBLANK\_06032014 (680-101934-12) were analyzed for Volatile Organic Compounds (GC-MS) in accordance with EPA SW-846 Method 8260B.

#### SEMIVOLATILE ORGANIC COMPOUNDS (AQUEOUS)

Samples ERB-01\_06032014 (680-101934-1), FB-01\_06032014 (680-101934-2), ERB-02-06032014 (680-101934-3), TMW-4R\_06032014 (680-101934-4), MW-01\_06032014 (680-101934-5), PDMW-8R\_06032014 (680-101934-6), PDMW-45R\_06032014 (680-101934-7), PDMW-29D\_06032014 (680-101934-8), PDMW-30R\_06032014 (680-101934-9), DUP-01\_06032014 (680-101934-10) and DUP-02\_06032014 (680-101934-11) were analyzed for Semivolatile Organic Compounds (Aqueous) in accordance with EPA SW-846 Method 8270D.

Method(s) 8270D: Six surrogates are used for this analysis. The laboratory's SOP allows one acid and/or base of these surrogates to be outside acceptance criteria without performing re-extraction/re-analysis. The following sample(s) contained an allowable number of surrogate compounds outside limits: DUP-02 06032014 (680-101934-11). These results have been reported and qualified.

Method(s) 8270D: The continuing calibration verification (CCV) analyzed in batch 333838 was outside the method criteria for the following analyte(s): 2,4,6-Tribromophenol. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

Method(s) 8270D: Surrogate recovery for the following sample(s) was outside control limits: PDMW-45R\_06032014 (680-101934-7). Re-extraction and/or re-analysis was performed outside of holding time with acceptable results. Both sets of results are reported. The sample that was extracted outside hold time will have an "H" Flag.

#### **METALS (ICP**

Samples ERB-01\_06032014 (680-101934-1), FB-01\_06032014 (680-101934-2), ERB-02-06032014 (680-101934-3), TMW-4R\_06032014 (680-101934-4), MW-01\_06032014 (680-101934-5), PDMW-8R\_06032014 (680-101934-6), PDMW-45R\_06032014 (680-101934-6), PDMW-29D\_06032014 (680-101934-8), PDMW-30R\_06032014 (680-101934-9), DUP-01\_06032014 (680-101934-10) and DUP-02\_06032014 (680-101934-11) were analyzed for Metals (ICP) in accordance with EPA SW-846 Method 6010C.

4

b

R

9

1 4

10

#### **Case Narrative**

TestAmerica Job ID: 680-101934-1

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Job ID: 680-101934-1 (Continued)

Laboratory: TestAmerica Savannah (Continued)

#### **AMMONIA**

Samples ERB-01\_06032014 (680-101934-1), FB-01\_06032014 (680-101934-2), ERB-02-06032014 (680-101934-3), TMW-4R\_06032014 (680-101934-4), MW-01\_06032014 (680-101934-5), PDMW-8R\_06032014 (680-101934-6), PDMW-45R\_06032014 (680-101934-6), PDMW-29D\_06032014 (680-101934-8), PDMW-30R\_06032014 (680-101934-9), DUP-01\_06032014 (680-101934-10) and DUP-02\_06032014 (680-101934-11) were analyzed for ammonia in accordance with EPA Method 350.1.

Method(s) 350.1: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 332667 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method(s) 350.1: Field Blank sample has a hit. Sample was originally run on 6/5/14 and has a result of 0.10043 (reference batch 680-332667). Sample was rerun on 6/6/14 and had a result of 0.05394 (reference batch 680-333058). Sample was repoured and re-run several times, but results continued to be high. Reagents were made fresh prior to analysis, but results were still high.

Samples TMW-4R\_06032014 (680-101934-4)[5X], MW-01\_06032014 (680-101934-5)[20X], PDMW-8R\_06032014 (680-101934-6)[50X], PDMW-45R\_06032014 (680-101934-7)[5X], PDMW-29D\_06032014 (680-101934-8)[10X], DUP-01\_06032014 (680-101934-10)[10X] and DUP-02\_06032014 (680-101934-11)[50X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

#### **NITRATE-NITRITE AS NITROGEN**

Samples ERB-01\_06032014 (680-101934-1), FB-01\_06032014 (680-101934-2), ERB-02-06032014 (680-101934-3), TMW-4R\_06032014 (680-101934-4), MW-01\_06032014 (680-101934-5), PDMW-8R\_06032014 (680-101934-6), PDMW-45R\_06032014 (680-101934-6), PDMW-29D\_06032014 (680-101934-8), PDMW-30R\_06032014 (680-101934-9), DUP-01\_06032014 (680-101934-10) and DUP-02\_06032014 (680-101934-11) were analyzed for nitrate-nitrite as nitrogen in accordance with EPA Method 353.2. The samples were analyzed on 06/04/2014.

Method(s) 353.2: Sample 680-101934-2 (Field Blank) was observed to have an analyte hit in the NO3+NO2 channel; sample was reanalyzed on 06/05/14 with consistent results.

А

4

5

\_

8

9

11

19

# **Definitions/Glossary**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-101934-1

#### **Qualifiers**

#### **GC/MS VOA**

Qualifier **Qualifier Description** 

U Indicates the analyte was analyzed for but not detected.

#### **GC/MS Semi VOA**

| Qualifier | Qualifier Description                                    |
|-----------|----------------------------------------------------------|
| U         | Indicates the analyte was analyzed for but not detected. |

Χ Surrogate is outside control limits

Sample was prepped or analyzed beyond the specified holding time

#### **Metals**

Qualifier **Qualifier Description** 

U Indicates the analyte was analyzed for but not detected.

#### **General Chemistry**

| Qualifier | Qualifier Description                                    |
|-----------|----------------------------------------------------------|
| U         | Indicates the analyte was analyzed for but not detected. |
| F1        | MS and/or MSD Recovery exceeds the control limits        |

Toxicity Equivalent Quotient (Dioxin)

### **Glossary**

TEQ

| Abbreviation   | These commonly used abbreviations may or may not be present in this report.                                 |
|----------------|-------------------------------------------------------------------------------------------------------------|
| ¤              | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |
| %R             | Percent Recovery                                                                                            |
| CFL            | Contains Free Liquid                                                                                        |
| CNF            | Contains no Free Liquid                                                                                     |
| DER            | Duplicate error ratio (normalized absolute difference)                                                      |
| Dil Fac        | Dilution Factor                                                                                             |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |
| DLC            | Decision level concentration                                                                                |
| MDA            | Minimum detectable activity                                                                                 |
| EDL            | Estimated Detection Limit                                                                                   |
| MDC            | Minimum detectable concentration                                                                            |
| MDL            | Method Detection Limit                                                                                      |
| ML             | Minimum Level (Dioxin)                                                                                      |
| NC             | Not Calculated                                                                                              |
| ND             | Not detected at the reporting limit (or MDL or EDL if shown)                                                |
| PQL            | Practical Quantitation Limit                                                                                |
| QC             | Quality Control                                                                                             |
| RER            | Relative error ratio                                                                                        |
| RL             | Reporting Limit or Requested Limit (Radiochemistry)                                                         |
| RPD            | Relative Percent Difference, a measure of the relative difference between two points                        |
| TEF            | Toxicity Equivalent Factor (Dioxin)                                                                         |

TestAmerica Savannah

Page 4 of 37

# **Sample Summary**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-101934-1

| Lab Sample ID | Client Sample ID   | Matrix | Collected      | Received       |
|---------------|--------------------|--------|----------------|----------------|
| 680-101934-1  | ERB-01_06032014    | Water  | 06/03/14 10:15 | 06/04/14 08:44 |
| 680-101934-2  | FB-01_06032014     | Water  | 06/03/14 10:45 | 06/04/14 08:44 |
| 680-101934-3  | ERB-02-06032014    | Water  | 06/03/14 10:50 | 06/04/14 08:44 |
| 680-101934-4  | TMW-4R_06032014    | Water  | 06/03/14 12:30 | 06/04/14 08:44 |
| 680-101934-5  | MW-01_06032014     | Water  | 06/03/14 12:45 | 06/04/14 08:44 |
| 680-101934-6  | PDMW-8R_06032014   | Water  | 06/03/14 14:05 | 06/04/14 08:44 |
| 680-101934-7  | PDMW-45R_06032014  | Water  | 06/03/14 14:20 | 06/04/14 08:44 |
| 680-101934-8  | PDMW-29D_06032014  | Water  | 06/03/14 16:10 | 06/04/14 08:44 |
| 680-101934-9  | PDMW-30R_06032014  | Water  | 06/03/14 16:40 | 06/04/14 08:44 |
| 680-101934-10 | DUP-01_06032014    | Water  | 06/03/14 00:00 | 06/04/14 08:44 |
| 680-101934-11 | DUP-02_06032014    | Water  | 06/03/14 00:00 | 06/04/14 08:44 |
| 680-101934-12 | TRIPBLANK_06032014 | Water  | 06/03/14 00:00 | 06/04/14 08:44 |

4

5

7

8

9

10

11

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: CSX Hutchinson Island VRP

Client Sample ID: ERB-01\_06032014 Lab Sample ID: 680-101934-1

Date Collected: 06/03/14 10:15 Matrix: Water

Date Received: 06/04/14 08:44

| Analyte              | Result    | Qualifier | RL       | MDL Unit | D | Prepared | Analyzed       | Dil Fac |
|----------------------|-----------|-----------|----------|----------|---|----------|----------------|---------|
| Benzene              | 1.0       | U         | 1.0      | ug/L     |   |          | 06/09/14 19:41 | 1       |
| Ethylbenzene         | 1.0       | U         | 1.0      | ug/L     |   |          | 06/09/14 19:41 | 1       |
| Toluene              | 1.0       | U         | 1.0      | ug/L     |   |          | 06/09/14 19:41 | 1       |
| Xylenes, Total       | 2.0       | U         | 2.0      | ug/L     |   |          | 06/09/14 19:41 | 1       |
| Surrogate            | %Recovery | Qualifier | Limits   |          |   | Prepared | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene | 91        |           | 70 - 130 |          |   |          | 06/09/14 19:41 | 1       |
| Dibromofluoromethane | 95        |           | 70 - 130 |          |   |          | 06/09/14 19:41 | 1       |
| Toluene-d8 (Surr)    | 101       |           | 70 - 130 |          |   |          | 06/09/14 19:41 | 1       |

| Analyte                | Result    | Qualifier | RL     | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|--------|-----|------|---|----------------|----------------|---------|
| Acenaphthene           | 9.9       | U         | 9.9    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 14:15 | 1       |
| Acenaphthylene         | 9.9       | U         | 9.9    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 14:15 | 1       |
| Anthracene             | 9.9       | U         | 9.9    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 14:15 | 1       |
| Benzo[a]anthracene     | 9.9       | U         | 9.9    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 14:15 | 1       |
| Benzo[a]pyrene         | 9.9       | U         | 9.9    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 14:15 | 1       |
| Benzo[b]fluoranthene   | 9.9       | U         | 9.9    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 14:15 | 1       |
| Benzo[g,h,i]perylene   | 9.9       | U         | 9.9    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 14:15 | 1       |
| Benzo[k]fluoranthene   | 9.9       | U         | 9.9    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 14:15 | 1       |
| Chrysene               | 9.9       | U         | 9.9    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 14:15 | 1       |
| Dibenz(a,h)anthracene  | 9.9       | U         | 9.9    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 14:15 | 1       |
| Fluoranthene           | 9.9       | U         | 9.9    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 14:15 | 1       |
| Fluorene               | 9.9       | U         | 9.9    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 14:15 | 1       |
| Indeno[1,2,3-cd]pyrene | 9.9       | U         | 9.9    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 14:15 | 1       |
| 1-Methylnaphthalene    | 9.9       | U         | 9.9    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 14:15 | 1       |
| 2-Methylnaphthalene    | 9.9       | U         | 9.9    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 14:15 | 1       |
| Naphthalene            | 9.9       | U         | 9.9    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 14:15 | 1       |
| Phenanthrene           | 9.9       | U         | 9.9    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 14:15 | 1       |
| Pyrene                 | 9.9       | U         | 9.9    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 14:15 | 1       |
| Surrogate              | %Recovery | Qualifier | Limits |     |      |   | Prepared       | Analyzed       | Dil Fac |
| 2 Fluorohinhenyl       |           |           | 20 120 |     |      |   | 06/10/14 15:11 | 06/10/14 14:15 |         |

|   | Surrogate              | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|---|------------------------|-----------|-----------|----------|----------------|----------------|---------|
|   | 2-Fluorobiphenyl       | 64        |           | 38 - 130 | 06/10/14 15:11 | 06/12/14 14:15 | 1       |
|   | Nitrobenzene-d5 (Surr) | 79        |           | 39 - 130 | 06/10/14 15:11 | 06/12/14 14:15 | 1       |
| L | Terphenyl-d14 (Surr)   | 92        |           | 10 - 143 | 06/10/14 15:11 | 06/12/14 14:15 | 1       |

| Method: 6010C - Metals (ICP) |        |           |    |     |      |   |                |                |         |
|------------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte                      | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                      | 20     | U         | 20 |     | ug/L |   | 06/06/14 10:16 | 06/10/14 15:35 | 1       |
| Chromium                     | 10     | U         | 10 |     | ug/L |   | 06/06/14 10:16 | 06/10/14 15:35 | 1       |
| Lead                         | 10     | U         | 10 |     | ug/L |   | 06/06/14 10:16 | 06/10/14 15:35 | 1       |
| Nickel                       | 40     | U         | 40 |     | ug/L |   | 06/06/14 10:16 | 06/10/14 15:35 | 1       |
| Zinc                         | 20     | U         | 20 |     | ug/L |   | 06/06/14 10:16 | 06/10/14 15:35 | 1       |

| General Chemistry |        |           |       |     |      |   |          |                |         |
|-------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Analyte           | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Ammonia           | 0.11   |           | 0.050 |     | mg/L |   |          | 06/05/14 15:12 | 1       |
| Nitrate as N      | 0.050  | U         | 0.050 |     | mg/L |   |          | 06/04/14 15:36 | 1       |

TestAmerica Savannah

Page 6 of 37

6/18/2014

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: CSX Hutchinson Island VRP

Client Sample ID: FB-01\_06032014

Lab Sample ID: 680-101934-2

Matrix: Water

Date Collected: 06/03/14 10:45 Date Received: 06/04/14 08:44

| Analyte              | Result    | Qualifier | RL       | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|----------------------|-----------|-----------|----------|-----|------|---|----------|----------------|---------|
| Benzene              | 1.0       | U         | 1.0      |     | ug/L |   |          | 06/09/14 20:04 | 1       |
| Ethylbenzene         | 1.0       | U         | 1.0      |     | ug/L |   |          | 06/09/14 20:04 | 1       |
| Toluene              | 1.0       | U         | 1.0      |     | ug/L |   |          | 06/09/14 20:04 | 1       |
| Xylenes, Total       | 2.0       | U         | 2.0      |     | ug/L |   |          | 06/09/14 20:04 | 1       |
| Surrogate            | %Recovery | Qualifier | Limits   |     |      |   | Prepared | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene | 90        |           | 70 - 130 |     |      | - |          | 06/09/14 20:04 | 1       |
| Dibromofluoromethane | 93        |           | 70 - 130 |     |      |   |          | 06/09/14 20:04 | 1       |
| Toluene-d8 (Surr)    | 102       |           | 70 - 130 |     |      |   |          | 06/09/14 20:04 | 1       |

| Analyte                | Result    | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|-----|------|---|----------------|----------------|---------|
| Acenaphthene           | 9.8       | U         | 9.8      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 14:38 | 1       |
| Acenaphthylene         | 9.8       | U         | 9.8      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 14:38 | 1       |
| Anthracene             | 9.8       | U         | 9.8      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 14:38 | 1       |
| Benzo[a]anthracene     | 9.8       | U         | 9.8      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 14:38 | 1       |
| Benzo[a]pyrene         | 9.8       | U         | 9.8      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 14:38 | 1       |
| Benzo[b]fluoranthene   | 9.8       | U         | 9.8      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 14:38 | 1       |
| Benzo[g,h,i]perylene   | 9.8       | U         | 9.8      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 14:38 | 1       |
| Benzo[k]fluoranthene   | 9.8       | U         | 9.8      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 14:38 | 1       |
| Chrysene               | 9.8       | U         | 9.8      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 14:38 | 1       |
| Dibenz(a,h)anthracene  | 9.8       | U         | 9.8      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 14:38 | 1       |
| Fluoranthene           | 9.8       | U         | 9.8      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 14:38 | 1       |
| Fluorene               | 9.8       | U         | 9.8      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 14:38 | 1       |
| Indeno[1,2,3-cd]pyrene | 9.8       | U         | 9.8      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 14:38 | 1       |
| 1-Methylnaphthalene    | 9.8       | U         | 9.8      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 14:38 | 1       |
| 2-Methylnaphthalene    | 9.8       | U         | 9.8      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 14:38 | 1       |
| Naphthalene            | 9.8       | U         | 9.8      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 14:38 | 1       |
| Phenanthrene           | 9.8       | U         | 9.8      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 14:38 | 1       |
| Pyrene                 | 9.8       | U         | 9.8      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 14:38 | 1       |
| Surrogate              | %Recovery | Qualifier | Limits   |     |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl       | 61        |           | 38 - 130 |     |      |   | 06/10/14 15:11 | 06/12/14 14:38 | 1       |
| Nitrobenzene-d5 (Surr) | 73        |           | 39 - 130 |     |      |   | 06/10/14 15:11 | 06/12/14 14:38 | 1       |
| Terphenyl-d14 (Surr)   | 86        |           | 10 - 143 |     |      |   | 06/10/14 15:11 | 06/12/14 14:38 | 1       |

| Terpnenyi-a14 (Surr)         | 80     |           | 10 - 143 |     |      |   | 06/10/14 15:11 | 06/12/14 14:38 | 7       |
|------------------------------|--------|-----------|----------|-----|------|---|----------------|----------------|---------|
| Method: 6010C - Metals (ICP) |        |           |          |     |      |   |                |                |         |
| Analyte                      | Result | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                      | 20     | U         | 20       |     | ug/L |   | 06/06/14 10:16 | 06/10/14 15:56 | 1       |
| Chromium                     | 10     | U         | 10       |     | ug/L |   | 06/06/14 10:16 | 06/10/14 15:56 | 1       |
| Lead                         | 10     | U         | 10       |     | ug/L |   | 06/06/14 10:16 | 06/10/14 15:56 | 1       |
| Nickel                       | 40     | U         | 40       |     | ug/L |   | 06/06/14 10:16 | 06/10/14 15:56 | 1       |
| Zinc                         | 20     | U         | 20       |     | ug/L |   | 06/06/14 10:16 | 06/10/14 15:56 | 1       |
| General Chemistry            |        |           |          |     |      |   |                |                |         |
| Analyte                      | Result | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Ammonia                      | 0.054  |           | 0.050    |     | mg/L |   |                | 06/06/14 11:56 | 1       |
| Nitrate as N                 | 0.17   |           | 0.050    |     | mg/L |   |                | 06/04/14 15:40 | 1       |

TestAmerica Savannah

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: CSX Hutchinson Island VRP

Client Sample ID: ERB-02-06032014 Lab Sample ID: 680-101934-3

Date Collected: 06/03/14 10:50 Matrix: Water Date Received: 06/04/14 08:44

| Method: 8260B - Volatile Organic | c Compounds | (GC/MS)   |          |     |      |   |          |                |         |
|----------------------------------|-------------|-----------|----------|-----|------|---|----------|----------------|---------|
| Analyte                          | Result      | Qualifier | RL       | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Benzene                          | 1.0         | U         | 1.0      |     | ug/L |   |          | 06/09/14 20:27 | 1       |
| Ethylbenzene                     | 1.0         | U         | 1.0      |     | ug/L |   |          | 06/09/14 20:27 | 1       |
| Toluene                          | 1.0         | U         | 1.0      |     | ug/L |   |          | 06/09/14 20:27 | 1       |
| Xylenes, Total                   | 2.0         | U         | 2.0      |     | ug/L |   |          | 06/09/14 20:27 | 1       |
| Surrogate                        | %Recovery   | Qualifier | Limits   |     |      |   | Prepared | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene             | 91          |           | 70 - 130 |     |      | - |          | 06/09/14 20:27 | 1       |
| Dibromofluoromethane             | 98          |           | 70 - 130 |     |      |   |          | 06/09/14 20:27 | 1       |
| Toluene-d8 (Surr)                | 102         |           | 70 - 130 |     |      |   |          | 06/09/14 20:27 | 1       |

| Analyte                | Result    | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|-----|------|---|----------------|----------------|---------|
| Acenaphthene           | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:02 | 1       |
| Acenaphthylene         | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:02 | 1       |
| Anthracene             | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:02 | 1       |
| Benzo[a]anthracene     | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:02 | 1       |
| Benzo[a]pyrene         | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:02 | 1       |
| Benzo[b]fluoranthene   | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:02 | 1       |
| Benzo[g,h,i]perylene   | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:02 | 1       |
| Benzo[k]fluoranthene   | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:02 | 1       |
| Chrysene               | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:02 | 1       |
| Dibenz(a,h)anthracene  | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:02 | 1       |
| Fluoranthene           | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:02 | 1       |
| Fluorene               | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:02 | 1       |
| Indeno[1,2,3-cd]pyrene | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:02 | 1       |
| 1-Methylnaphthalene    | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:02 | 1       |
| 2-Methylnaphthalene    | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:02 | 1       |
| Naphthalene            | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:02 | 1       |
| Phenanthrene           | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:02 | 1       |
| Pyrene                 | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:02 | 1       |
| Surrogate              | %Recovery | Qualifier | Limits   |     |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl       | 65        |           | 38 - 130 |     |      |   | 06/10/14 15:11 | 06/12/14 15:02 | 1       |
| Nitrobenzene-d5 (Surr) | 75        |           | 39 - 130 |     |      |   | 06/10/14 15:11 | 06/12/14 15:02 | 1       |
| Terphenyl-d14 (Surr)   | 91        |           | 10 - 143 |     |      |   | 06/10/14 15:11 | 06/12/14 15:02 | 1       |

| Terpnenyi-a14 (Surr)                 | 91     |           | 10 - 143 |     |      |   | 06/10/14 15:11 | 06/12/14 15:02 | 7       |
|--------------------------------------|--------|-----------|----------|-----|------|---|----------------|----------------|---------|
| Method: 6010C - Metals (ICP) Analyte | Rosult | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                              | 20     |           |          |     | ug/L |   | 06/06/14 10:16 | 06/10/14 16:01 | 1       |
| Chromium                             |        | U         | 10       |     | ug/L |   | 06/06/14 10:16 | 06/10/14 16:01 | 1       |
| Lead                                 | 10     | U         | 10       |     | ug/L |   | 06/06/14 10:16 | 06/10/14 16:01 | 1       |
| Nickel                               | 40     | U         | 40       |     | ug/L |   | 06/06/14 10:16 | 06/10/14 16:01 | 1       |
| Zinc                                 | 20     | U         | 20       |     | ug/L |   | 06/06/14 10:16 | 06/10/14 16:01 | 1       |
| General Chemistry                    |        |           |          |     |      |   |                |                |         |
| Analyte                              | Result | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Ammonia                              | 0.10   |           | 0.050    |     | mg/L |   |                | 06/05/14 15:21 | 1       |
| Nitrate as N                         | 0.12   |           | 0.050    |     | mg/L |   |                | 06/04/14 15:41 | 1       |
|                                      |        |           |          |     |      |   |                |                |         |

TestAmerica Savannah

Page 8 of 37

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: CSX Hutchinson Island VRP

Client Sample ID: TMW-4R\_06032014

Date Collected: 06/03/14 12:30

Lab Sample ID: 680-101934-4 Matrix: Water

Date Received: 06/04/14 08:44

| Analyte              | Result    | Qualifier | RL       | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|----------------------|-----------|-----------|----------|-----|------|---|----------|----------------|---------|
| Benzene              | 1.0       | U         | 1.0      |     | ug/L |   |          | 06/09/14 20:50 | 1       |
| Ethylbenzene         | 1.0       | U         | 1.0      |     | ug/L |   |          | 06/09/14 20:50 | 1       |
| Toluene              | 1.0       | U         | 1.0      |     | ug/L |   |          | 06/09/14 20:50 | 1       |
| Xylenes, Total       | 2.0       | U         | 2.0      |     | ug/L |   |          | 06/09/14 20:50 | 1       |
| Surrogate            | %Recovery | Qualifier | Limits   |     |      |   | Prepared | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene | 93        |           | 70 - 130 |     |      | - |          | 06/09/14 20:50 | 1       |
| Dibromofluoromethane | 96        |           | 70 - 130 |     |      |   |          | 06/09/14 20:50 | 1       |
| Toluene-d8 (Surr)    | 103       |           | 70 - 130 |     |      |   |          | 06/09/14 20:50 | 1       |

| Analyte                | Result    | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|-----|------|---|----------------|----------------|---------|
| Acenaphthene           | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:25 | 1       |
| Acenaphthylene         | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:25 | 1       |
| Anthracene             | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:25 | 1       |
| Benzo[a]anthracene     | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:25 | 1       |
| Benzo[a]pyrene         | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:25 | 1       |
| Benzo[b]fluoranthene   | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:25 | 1       |
| Benzo[g,h,i]perylene   | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:25 | 1       |
| Benzo[k]fluoranthene   | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:25 | 1       |
| Chrysene               | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:25 | 1       |
| Dibenz(a,h)anthracene  | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:25 | 1       |
| Fluoranthene           | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:25 | 1       |
| Fluorene               | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:25 | 1       |
| Indeno[1,2,3-cd]pyrene | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:25 | 1       |
| 1-Methylnaphthalene    | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:25 | 1       |
| 2-Methylnaphthalene    | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:25 | 1       |
| Naphthalene            | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:25 | 1       |
| Phenanthrene           | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:25 | 1       |
| Pyrene                 | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:25 | 1       |
| Surrogate              | %Recovery | Qualifier | Limits   |     |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl       | 57        |           | 38 - 130 |     |      |   | 06/10/14 15:11 | 06/12/14 15:25 | 1       |
| Nitrohenzene-d5 (Surr) | 6.1       |           | 20 120   |     |      |   | 06/10/14 15:11 | 06/12/14 15:25 | 1       |

| Surrogate              | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|----------------|----------------|---------|
| 2-Fluorobiphenyl       | 57        |           | 38 - 130 | 06/10/14 15:11 | 06/12/14 15:25 | 1       |
| Nitrobenzene-d5 (Surr) | 64        |           | 39 - 130 | 06/10/14 15:11 | 06/12/14 15:25 | 1       |
| Terphenyl-d14 (Surr)   | 52        |           | 10 - 143 | 06/10/14 15:11 | 06/12/14 15:25 | 1       |
|                        |           |           |          |                |                |         |

| Method: 6010C - Metals (ICP) Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Arsenic                              | 20     | U         | 20 |     | ug/L |   | 06/06/14 10:16 | 06/10/14 16:05 | 1       |
| Chromium                             | 10     | U         | 10 |     | ug/L |   | 06/06/14 10:16 | 06/10/14 16:05 | 1       |
| Lead                                 | 10     | U         | 10 |     | ug/L |   | 06/06/14 10:16 | 06/10/14 16:05 | 1       |
| Nickel                               | 40     | U         | 40 |     | ug/L |   | 06/06/14 10:16 | 06/10/14 16:05 | 1       |
| Zinc                                 | 20     | U         | 20 |     | ug/L |   | 06/06/14 10:16 | 06/10/14 16:05 | 1       |
| _<br>_                               |        |           |    |     |      |   |                |                |         |

| General Chemistry |        |           |       |     |      |   |          |                |         |
|-------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Analyte           | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Ammonia           | 6.1    |           | 0.25  |     | mg/L |   |          | 06/05/14 15:50 | 5       |
| Nitrate as N      | 0.050  | U         | 0.050 |     | mg/L |   |          | 06/04/14 15:43 | 1       |

TestAmerica Savannah

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: CSX Hutchinson Island VRP

Lab Sample ID: 680-101934-5

Matrix: Water

| Client Sample ID: MW-01_       | 06032014 |  |  |  |  |  |  |  |  |
|--------------------------------|----------|--|--|--|--|--|--|--|--|
| Data Callacted: 06/02/44 42:45 |          |  |  |  |  |  |  |  |  |

Date Received: 06/04/14 08:44

| Analyte              | Result    | Qualifier | RL       | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|----------------------|-----------|-----------|----------|-----|------|---|----------|----------------|---------|
| Benzene              | 1.0       | U         | 1.0      |     | ug/L |   |          | 06/09/14 21:13 | 1       |
| Ethylbenzene         | 1.0       | U         | 1.0      |     | ug/L |   |          | 06/09/14 21:13 | 1       |
| Toluene              | 1.0       | U         | 1.0      |     | ug/L |   |          | 06/09/14 21:13 | 1       |
| Xylenes, Total       | 2.0       | U         | 2.0      |     | ug/L |   |          | 06/09/14 21:13 | 1       |
| Surrogate            | %Recovery | Qualifier | Limits   |     |      |   | Prepared | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene | 91        |           | 70 - 130 |     |      | - |          | 06/09/14 21:13 | 1       |
| Dibromofluoromethane | 93        |           | 70 - 130 |     |      |   |          | 06/09/14 21:13 | 1       |
| Toluene-d8 (Surr)    | 101       |           | 70 - 130 |     |      |   |          | 06/09/14 21:13 | 1       |

| Analyte                | Result    | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|-----|------|---|----------------|----------------|---------|
| Acenaphthene           | 9.5       | U         | 9.5      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:48 | 1       |
| Acenaphthylene         | 9.5       | U         | 9.5      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:48 | 1       |
| Anthracene             | 9.5       | U         | 9.5      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:48 | 1       |
| Benzo[a]anthracene     | 9.5       | U         | 9.5      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:48 | 1       |
| Benzo[a]pyrene         | 9.5       | U         | 9.5      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:48 | 1       |
| Benzo[b]fluoranthene   | 9.5       | U         | 9.5      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:48 | 1       |
| Benzo[g,h,i]perylene   | 9.5       | U         | 9.5      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:48 | 1       |
| Benzo[k]fluoranthene   | 9.5       | U         | 9.5      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:48 | 1       |
| Chrysene               | 9.5       | U         | 9.5      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:48 | 1       |
| Dibenz(a,h)anthracene  | 9.5       | U         | 9.5      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:48 | 1       |
| Fluoranthene           | 9.5       | U         | 9.5      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:48 | 1       |
| Fluorene               | 9.5       | U         | 9.5      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:48 | 1       |
| Indeno[1,2,3-cd]pyrene | 9.5       | U         | 9.5      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:48 | 1       |
| 1-Methylnaphthalene    | 9.5       | U         | 9.5      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:48 | 1       |
| 2-Methylnaphthalene    | 9.5       | U         | 9.5      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:48 | 1       |
| Naphthalene            | 9.5       | U         | 9.5      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:48 | 1       |
| Phenanthrene           | 9.5       | U         | 9.5      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:48 | 1       |
| Pyrene                 | 9.5       | U         | 9.5      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 15:48 | 1       |
| Surrogate              | %Recovery | Qualifier | Limits   |     |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenvl       | 59        |           | 38 - 130 |     |      |   | 06/10/14 15:11 | 06/12/14 15:48 |         |

| Surrogate              | %Recovery | Qualifier | Limits   |    | Prepared      | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|----|---------------|----------------|---------|
| 2-Fluorobiphenyl       | 59        |           | 38 - 130 | 06 | 6/10/14 15:11 | 06/12/14 15:48 | 1       |
| Nitrobenzene-d5 (Surr) | 72        |           | 39 - 130 | 06 | 6/10/14 15:11 | 06/12/14 15:48 | 1       |
| Terphenyl-d14 (Surr)   | 61        |           | 10 - 143 | 06 | 6/10/14 15:11 | 06/12/14 15:48 | 1       |
| _                      |           |           |          |    |               |                |         |

| Method: 6010C - Metals (ICP) |        |           |    |     |      |   |                |                |  |
|------------------------------|--------|-----------|----|-----|------|---|----------------|----------------|--|
| Analyte                      | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       |  |
| Arsenic                      | 20     | U         | 20 |     | ug/L | _ | 06/06/14 10:16 | 06/10/14 16:18 |  |
| Chromium                     | 10     | U         | 10 |     | ug/L |   | 06/06/14 10:16 | 06/10/14 16:18 |  |

| Chromium | 10 U | 10 | ug/L | 06/06/14 10:16 | 06/10/14 16:18 |
|----------|------|----|------|----------------|----------------|
| Lead     | 10 U | 10 | ug/L | 06/06/14 10:16 | 06/10/14 16:18 |
| Nickel   | 40 U | 40 | ug/L | 06/06/14 10:16 | 06/10/14 16:18 |
| Zinc     | 20 U | 20 | ug/L | 06/06/14 10:16 | 06/10/14 16:18 |

| General Chemistry Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia                   | 25     |           | 1.0   |     | mg/L |   |          | 06/05/14 16:09 | 20      |
| Nitrate as N              | 0.050  | U         | 0.050 |     | mg/L |   |          | 06/04/14 15:46 | 1       |

TestAmerica Savannah

Dil Fac

Client: AMEC Environment & Infrastructure, Inc.

Client Sample ID: PDMW-8R\_06032014

Project/Site: CSX Hutchinson Island VRP

Lab Sample ID: 680-101934-6

Matrix: Water

Date Collected: 06/03/14 14:05 Date Received: 06/04/14 08:44

| Analyte              | Result    | Qualifier | RL       | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|----------------------|-----------|-----------|----------|-----|------|---|----------|----------------|---------|
| Benzene              | 1.0       | U         | 1.0      |     | ug/L |   |          | 06/09/14 21:37 | 1       |
| Ethylbenzene         | 1.0       | U         | 1.0      |     | ug/L |   |          | 06/09/14 21:37 | 1       |
| Toluene              | 1.0       | U         | 1.0      |     | ug/L |   |          | 06/09/14 21:37 | 1       |
| Xylenes, Total       | 2.0       | U         | 2.0      |     | ug/L |   |          | 06/09/14 21:37 | 1       |
| Surrogate            | %Recovery | Qualifier | Limits   |     |      |   | Prepared | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene | 93        |           | 70 - 130 |     |      | - |          | 06/09/14 21:37 | 1       |
| Dibromofluoromethane | 95        |           | 70 - 130 |     |      |   |          | 06/09/14 21:37 | 1       |
| Toluene-d8 (Surr)    | 102       |           | 70 - 130 |     |      |   |          | 06/09/14 21:37 | 1       |

| Analyte                | Result    | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|-----|------|---|----------------|----------------|---------|
| Acenaphthene           | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:12 | 1       |
| Acenaphthylene         | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:12 | 1       |
| Anthracene             | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:12 | 1       |
| Benzo[a]anthracene     | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:12 | 1       |
| Benzo[a]pyrene         | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:12 | 1       |
| Benzo[b]fluoranthene   | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:12 | 1       |
| Benzo[g,h,i]perylene   | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:12 | 1       |
| Benzo[k]fluoranthene   | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:12 | 1       |
| Chrysene               | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:12 | 1       |
| Dibenz(a,h)anthracene  | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:12 | 1       |
| Fluoranthene           | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:12 | 1       |
| Fluorene               | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:12 | 1       |
| Indeno[1,2,3-cd]pyrene | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:12 | 1       |
| 1-Methylnaphthalene    | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:12 | 1       |
| 2-Methylnaphthalene    | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:12 | 1       |
| Naphthalene            | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:12 | 1       |
| Phenanthrene           | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:12 | 1       |
| Pyrene                 | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:12 | 1       |
| Surrogate              | %Recovery | Qualifier | Limits   |     |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl       | 59        |           | 38 - 130 |     |      |   | 06/10/14 15:11 | 06/12/14 16:12 | 1       |
| Nitrobenzene-d5 (Surr) | 68        |           | 39 - 130 |     |      |   | 06/10/14 15:11 | 06/12/14 16:12 | 1       |
| Terphenyl-d14 (Surr)   | 62        |           | 10 - 143 |     |      |   | 06/10/14 15:11 | 06/12/14 16:12 | 1       |

| resplicitly a 14 (dail)      | 02     |           | 10 - 140 |     |      |   | 00/10/14 10:11 | 00/12/14 10:12 | ,       |
|------------------------------|--------|-----------|----------|-----|------|---|----------------|----------------|---------|
| Method: 6010C - Metals (ICP) |        |           |          |     |      |   |                |                |         |
| Analyte                      | Result | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                      | 29     |           | 20       |     | ug/L |   | 06/06/14 10:16 | 06/10/14 16:22 | 1       |
| Chromium                     | 10     | U         | 10       |     | ug/L |   | 06/06/14 10:16 | 06/10/14 16:22 | 1       |
| Lead                         | 10     | U         | 10       |     | ug/L |   | 06/06/14 10:16 | 06/10/14 16:22 | 1       |
| Nickel                       | 40     | U         | 40       |     | ug/L |   | 06/06/14 10:16 | 06/10/14 16:22 | 1       |
| Zinc                         | 20     | U         | 20       |     | ug/L |   | 06/06/14 10:16 | 06/10/14 16:22 | 1       |
| General Chemistry            |        |           |          |     |      |   |                |                |         |
| Analyte                      | Result | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Ammonia                      | 62     |           | 2.5      |     | mg/L |   |                | 06/05/14 16:09 | 50      |
| Nitrate as N                 | 0.050  | U         | 0.050    |     | mg/L |   |                | 06/04/14 15:47 | 1       |

TestAmerica Savannah

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: CSX Hutchinson Island VRP

Lab Sample ID: 680-101934-7

Matrix: Water

Client Sample ID: PDMW-45R\_06032014 Date Collected: 06/03/14 14:20

Date Received: 06/04/14 08:44

| Analyte              | Result    | Qualifier | RL       | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|----------------------|-----------|-----------|----------|-----|------|---|----------|----------------|---------|
| Benzene              | 1.0       | U         | 1.0      |     | ug/L |   |          | 06/09/14 22:00 | 1       |
| Ethylbenzene         | 1.0       | U         | 1.0      |     | ug/L |   |          | 06/09/14 22:00 | 1       |
| Toluene              | 1.0       | U         | 1.0      |     | ug/L |   |          | 06/09/14 22:00 | 1       |
| Xylenes, Total       | 2.0       | U         | 2.0      |     | ug/L |   |          | 06/09/14 22:00 | 1       |
| Surrogate            | %Recovery | Qualifier | Limits   |     |      |   | Prepared | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene | 90        |           | 70 - 130 |     |      | _ |          | 06/09/14 22:00 | 1       |
| Dibromofluoromethane | 94        |           | 70 - 130 |     |      |   |          | 06/09/14 22:00 | 1       |
| Toluene-d8 (Surr)    | 102       |           | 70 - 130 |     |      |   |          | 06/09/14 22:00 | 1       |

| Analyte                | Result    | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|-----|------|---|----------------|----------------|---------|
| Acenaphthene           | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:35 | 1       |
| Acenaphthylene         | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:35 | 1       |
| Anthracene             | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:35 | 1       |
| Benzo[a]anthracene     | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:35 | 1       |
| Benzo[a]pyrene         | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:35 | 1       |
| Benzo[b]fluoranthene   | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:35 | 1       |
| Benzo[g,h,i]perylene   | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:35 | 1       |
| Benzo[k]fluoranthene   | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:35 | 1       |
| Chrysene               | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:35 | 1       |
| Dibenz(a,h)anthracene  | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:35 | 1       |
| Fluoranthene           | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:35 | 1       |
| Fluorene               | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:35 | 1       |
| Indeno[1,2,3-cd]pyrene | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:35 | 1       |
| 1-Methylnaphthalene    | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:35 | 1       |
| 2-Methylnaphthalene    | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:35 | 1       |
| Naphthalene            | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:35 | 1       |
| Phenanthrene           | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:35 | 1       |
| Pyrene                 | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:35 | 1       |
| Surrogate              | %Recovery | Qualifier | Limits   |     |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl       | 24        | X         | 38 - 130 |     |      |   | 06/10/14 15:11 | 06/12/14 16:35 | 1       |
| Nitrobenzene-d5 (Surr) | 22        | X         | 39 - 130 |     |      |   | 06/10/14 15:11 | 06/12/14 16:35 | 1       |
| Terphenyl-d14 (Surr)   | 48        |           | 10 - 143 |     |      |   | 06/10/14 15:11 | 06/12/14 16:35 | 1       |

| Analyte               | Result | Qualifier | RL  | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------|--------|-----------|-----|-----|------|---|----------------|----------------|---------|
| Acenaphthene          | 9.4    | UH        | 9.4 |     | ug/L |   | 06/11/14 16:18 | 06/12/14 19:55 | 1       |
| Acenaphthylene        | 9.4    | UH        | 9.4 |     | ug/L |   | 06/11/14 16:18 | 06/12/14 19:55 | 1       |
| Anthracene            | 9.4    | UH        | 9.4 |     | ug/L |   | 06/11/14 16:18 | 06/12/14 19:55 | 1       |
| Benzo[a]anthracene    | 9.4    | UH        | 9.4 |     | ug/L |   | 06/11/14 16:18 | 06/12/14 19:55 | 1       |
| Benzo[a]pyrene        | 9.4    | UH        | 9.4 |     | ug/L |   | 06/11/14 16:18 | 06/12/14 19:55 | 1       |
| Benzo[b]fluoranthene  | 9.4    | UH        | 9.4 |     | ug/L |   | 06/11/14 16:18 | 06/12/14 19:55 | 1       |
| Benzo[g,h,i]perylene  | 9.4    | UH        | 9.4 |     | ug/L |   | 06/11/14 16:18 | 06/12/14 19:55 | 1       |
| Benzo[k]fluoranthene  | 9.4    | UH        | 9.4 |     | ug/L |   | 06/11/14 16:18 | 06/12/14 19:55 | 1       |
| Chrysene              | 9.4    | UH        | 9.4 |     | ug/L |   | 06/11/14 16:18 | 06/12/14 19:55 | 1       |
| Dibenz(a,h)anthracene | 9.4    | UH        | 9.4 |     | ug/L |   | 06/11/14 16:18 | 06/12/14 19:55 | 1       |
| Fluoranthene          | 9.4    | UH        | 9.4 |     | ug/L |   | 06/11/14 16:18 | 06/12/14 19:55 | 1       |
| Fluorene              | 9.4    | UH        | 9.4 |     | ug/L |   | 06/11/14 16:18 | 06/12/14 19:55 | 1       |

TestAmerica Savannah

Page 12 of 37

# **Client Sample Results**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-101934-1

Lab Sample ID: 680-101934-7

Matrix: Water

## Client Sample ID: PDMW-45R\_06032014

Date Collected: 06/03/14 14:20 Date Received: 06/04/14 08:44

Lead

Nickel

Zinc

| Analyte                          | Result    | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|----------------------------------|-----------|-----------|----------|-----|------|---|----------------|----------------|---------|
| Indeno[1,2,3-cd]pyrene           | 9.4       | UH        | 9.4      |     | ug/L |   | 06/11/14 16:18 | 06/12/14 19:55 | 1       |
| 1-Methylnaphthalene              | 9.4       | UH        | 9.4      |     | ug/L |   | 06/11/14 16:18 | 06/12/14 19:55 | 1       |
| 2-Methylnaphthalene              | 9.4       | UH        | 9.4      |     | ug/L |   | 06/11/14 16:18 | 06/12/14 19:55 | 1       |
| Naphthalene                      | 9.4       | UH        | 9.4      |     | ug/L |   | 06/11/14 16:18 | 06/12/14 19:55 | 1       |
| Phenanthrene                     | 9.4       | UH        | 9.4      |     | ug/L |   | 06/11/14 16:18 | 06/12/14 19:55 | 1       |
| Pyrene                           | 9.4       | UH        | 9.4      |     | ug/L |   | 06/11/14 16:18 | 06/12/14 19:55 | 1       |
| Surrogate                        | %Recovery | Qualifier | Limits   |     |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl                 | 54        |           | 38 - 130 |     |      |   | 06/11/14 16:18 | 06/12/14 19:55 | 1       |
| Nitrobenzene-d5 (Surr)           | 72        |           | 39 _ 130 |     |      |   | 06/11/14 16:18 | 06/12/14 19:55 | 1       |
| Terphenyl-d14 (Surr)             | 54        |           | 10 - 143 |     |      |   | 06/11/14 16:18 | 06/12/14 19:55 | 1       |
| -<br>Method: 6010C - Metals (ICP | )         |           |          |     |      |   |                |                |         |
| Analyte                          | Result    | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arassis                          |           | П         |          |     | ug/L |   | 06/06/14 10:16 | 06/10/14 16:26 | 1       |
| Arsenic                          | 20        | U         | 20       |     | ug/L |   | 00/00/14 10:10 | 00/10/14 10.20 |         |

| General Chemistry |        |           |       |     |      |   |          |                |         |
|-------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Analyte           | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Ammonia           | 8.6    |           | 0.25  |     | mg/L |   |          | 06/05/14 15:59 | 5       |
| Nitrate as N      | 0.050  | U         | 0.050 |     | mg/L |   |          | 06/04/14 15:49 | 1       |

10

40

20

ug/L

ug/L

ug/L

06/06/14 10:16

06/06/14 10:16

06/06/14 10:16

06/10/14 16:26

06/10/14 16:26

06/10/14 16:26

10 U

40 U

20 U

3

6

\_\_\_\_\_

9

10

4.0

Client: AMEC Environment & Infrastructure, Inc.

Client Sample ID: PDMW-29D\_06032014

Project/Site: CSX Hutchinson Island VRP

Lab Sample ID: 680-101934-8

Matrix: Water

Date Collected: 06/03/14 16:10 Date Received: 06/04/14 08:44

| Analyte              | Result    | Qualifier | RL       | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|----------------------|-----------|-----------|----------|-----|------|---|----------|----------------|---------|
| Benzene              | 1.0       | U         | 1.0      |     | ug/L |   |          | 06/09/14 22:23 | 1       |
| Ethylbenzene         | 1.0       | U         | 1.0      |     | ug/L |   |          | 06/09/14 22:23 | 1       |
| Toluene              | 1.0       | U         | 1.0      |     | ug/L |   |          | 06/09/14 22:23 | 1       |
| Xylenes, Total       | 2.0       | U         | 2.0      |     | ug/L |   |          | 06/09/14 22:23 | 1       |
| Surrogate            | %Recovery | Qualifier | Limits   |     |      |   | Prepared | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene | 91        |           | 70 - 130 |     |      | - |          | 06/09/14 22:23 | 1       |
| Dibromofluoromethane | 95        |           | 70 - 130 |     |      |   |          | 06/09/14 22:23 | 1       |
| Toluene-d8 (Surr)    | 102       |           | 70 - 130 |     |      |   |          | 06/09/14 22:23 | 1       |

| Analyte                | Result    | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|-----|------|---|----------------|----------------|---------|
| Acenaphthene           | 9.7       | U         | 9.7      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:58 | 1       |
| Acenaphthylene         | 9.7       | U         | 9.7      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:58 | 1       |
| Anthracene             | 9.7       | U         | 9.7      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:58 | 1       |
| Benzo[a]anthracene     | 9.7       | U         | 9.7      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:58 | 1       |
| Benzo[a]pyrene         | 9.7       | U         | 9.7      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:58 | 1       |
| Benzo[b]fluoranthene   | 9.7       | U         | 9.7      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:58 | 1       |
| Benzo[g,h,i]perylene   | 9.7       | U         | 9.7      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:58 | 1       |
| Benzo[k]fluoranthene   | 9.7       | U         | 9.7      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:58 | 1       |
| Chrysene               | 9.7       | U         | 9.7      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:58 | 1       |
| Dibenz(a,h)anthracene  | 9.7       | U         | 9.7      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:58 | 1       |
| Fluoranthene           | 9.7       | U         | 9.7      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:58 | 1       |
| Fluorene               | 9.7       | U         | 9.7      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:58 | 1       |
| Indeno[1,2,3-cd]pyrene | 9.7       | U         | 9.7      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:58 | 1       |
| 1-Methylnaphthalene    | 9.7       | U         | 9.7      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:58 | 1       |
| 2-Methylnaphthalene    | 9.7       | U         | 9.7      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:58 | 1       |
| Naphthalene            | 9.7       | U         | 9.7      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:58 | 1       |
| Phenanthrene           | 9.7       | U         | 9.7      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:58 | 1       |
| Pyrene                 | 9.7       | U         | 9.7      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 16:58 | 1       |
| Surrogate              | %Recovery | Qualifier | Limits   |     |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl       | 60        |           | 38 - 130 |     |      |   | 06/10/14 15:11 | 06/12/14 16:58 | 1       |
| Nitrobenzene-d5 (Surr) | 69        |           | 39 - 130 |     |      |   | 06/10/14 15:11 | 06/12/14 16:58 | 1       |
| Terphenyl-d14 (Surr)   | 65        |           | 10 - 143 |     |      |   | 06/10/14 15:11 | 06/12/14 16:58 | 1       |

| Terphenyl-d14 (Surr)         | 65     |           | 10 - 143 |     |      |   | 06/10/14 15:11 | 06/12/14 16:58 | 1       |
|------------------------------|--------|-----------|----------|-----|------|---|----------------|----------------|---------|
| Method: 6010C - Metals (ICP) |        |           |          |     |      |   |                |                |         |
| Analyte                      | Result | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                      | 20     | U         | 20       |     | ug/L |   | 06/06/14 10:16 | 06/10/14 16:30 | 1       |
| Chromium                     | 10     | U         | 10       |     | ug/L |   | 06/06/14 10:16 | 06/10/14 16:30 | 1       |
| Lead                         | 10     | U         | 10       |     | ug/L |   | 06/06/14 10:16 | 06/10/14 16:30 | 1       |
| Nickel                       | 40     | U         | 40       |     | ug/L |   | 06/06/14 10:16 | 06/10/14 16:30 | 1       |
| Zinc                         | 20     | U         | 20       |     | ug/L |   | 06/06/14 10:16 | 06/10/14 16:30 | 1       |
| General Chemistry            |        |           |          |     |      |   |                |                |         |
| Analyte                      | Result | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Ammonia                      | 11     |           | 0.50     |     | mg/L |   |                | 06/05/14 16:09 | 10      |
| Nitrate as N                 | 0.050  | U         | 0.050    |     | mg/L |   |                | 06/04/14 15:50 | 1       |

TestAmerica Savannah

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: CSX Hutchinson Island VRP

Client Sample ID: PDMW-30R\_06032014 Lab Sample ID: 680-101934-9

Date Collected: 06/03/14 16:40 Matrix: Water Date Received: 06/04/14 08:44

| Method: 8260B - Volatile Org | anic Compounds | (GC/MS)   |          |     |      |   |          |                |         |
|------------------------------|----------------|-----------|----------|-----|------|---|----------|----------------|---------|
| Analyte                      | Result         | Qualifier | RL       | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Benzene                      | 1.0            | U         | 1.0      |     | ug/L |   |          | 06/09/14 22:46 | 1       |
| Ethylbenzene                 | 1.0            | U         | 1.0      |     | ug/L |   |          | 06/09/14 22:46 | 1       |
| Toluene                      | 1.0            | U         | 1.0      |     | ug/L |   |          | 06/09/14 22:46 | 1       |
| Xylenes, Total               | 2.0            | U         | 2.0      |     | ug/L |   |          | 06/09/14 22:46 | 1       |
| Surrogate                    | %Recovery      | Qualifier | Limits   |     |      |   | Prepared | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene         | 94             |           | 70 - 130 |     |      | - |          | 06/09/14 22:46 | 1       |
| Dibromofluoromethane         | 95             |           | 70 - 130 |     |      |   |          | 06/09/14 22:46 | 1       |
| Toluene-d8 (Surr)            | 102            |           | 70 - 130 |     |      |   |          | 06/09/14 22:46 | 1       |

| Analyte                | Result    | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|-----|------|---|----------------|----------------|---------|
| Acenaphthene           | 9.8       | U         | 9.8      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 17:22 | 1       |
| Acenaphthylene         | 9.8       | U         | 9.8      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 17:22 | 1       |
| Anthracene             | 9.8       | U         | 9.8      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 17:22 | 1       |
| Benzo[a]anthracene     | 9.8       | U         | 9.8      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 17:22 | 1       |
| Benzo[a]pyrene         | 9.8       | U         | 9.8      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 17:22 | 1       |
| Benzo[b]fluoranthene   | 9.8       | U         | 9.8      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 17:22 | 1       |
| Benzo[g,h,i]perylene   | 9.8       | U         | 9.8      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 17:22 | 1       |
| Benzo[k]fluoranthene   | 9.8       | U         | 9.8      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 17:22 | 1       |
| Chrysene               | 9.8       | U         | 9.8      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 17:22 | 1       |
| Dibenz(a,h)anthracene  | 9.8       | U         | 9.8      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 17:22 | 1       |
| Fluoranthene           | 9.8       | U         | 9.8      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 17:22 | 1       |
| Fluorene               | 9.8       | U         | 9.8      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 17:22 | 1       |
| Indeno[1,2,3-cd]pyrene | 9.8       | U         | 9.8      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 17:22 | 1       |
| 1-Methylnaphthalene    | 9.8       | U         | 9.8      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 17:22 | 1       |
| 2-Methylnaphthalene    | 9.8       | U         | 9.8      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 17:22 | 1       |
| Naphthalene            | 9.8       | U         | 9.8      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 17:22 | 1       |
| Phenanthrene           | 9.8       | U         | 9.8      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 17:22 | 1       |
| Pyrene                 | 9.8       | U         | 9.8      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 17:22 | 1       |
| Surrogate              | %Recovery | Qualifier | Limits   |     |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl       | 59        |           | 38 - 130 |     |      |   | 06/10/14 15:11 | 06/12/14 17:22 | 1       |
| Nitrobenzene-d5 (Surr) | 68        |           | 39 - 130 |     |      |   | 06/10/14 15:11 | 06/12/14 17:22 | 1       |
| Terphenyl-d14 (Surr)   | 67        |           | 10 - 143 |     |      |   | 06/10/14 15:11 | 06/12/14 17:22 | 1       |

| resplienty-u 14 (Sull)       | 07     |           | 10 - 143 |     |      |   | 00/10/14 10:11 | 00/12/14 11.22 | ,       |
|------------------------------|--------|-----------|----------|-----|------|---|----------------|----------------|---------|
| Method: 6010C - Metals (ICP) |        |           |          |     |      |   |                |                |         |
| Analyte                      | Result | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                      | 20     | U         | 20       |     | ug/L |   | 06/06/14 10:16 | 06/10/14 16:35 | 1       |
| Chromium                     | 10     | U         | 10       |     | ug/L |   | 06/06/14 10:16 | 06/10/14 16:35 | 1       |
| Lead                         | 10     | U         | 10       |     | ug/L |   | 06/06/14 10:16 | 06/10/14 16:35 | 1       |
| Nickel                       | 40     | U         | 40       |     | ug/L |   | 06/06/14 10:16 | 06/10/14 16:35 | 1       |
| Zinc                         | 20     | U         | 20       |     | ug/L |   | 06/06/14 10:16 | 06/10/14 16:35 | 1       |
| General Chemistry            |        |           |          |     |      |   |                |                |         |
| Analyte                      | Result | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Ammonia                      | 1.6    |           | 0.050    |     | mg/L |   |                | 06/05/14 15:21 | 1       |
| Nitrate as N                 | 0.050  | U         | 0.050    |     | mg/L |   |                | 06/04/14 15:51 | 1       |

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: CSX Hutchinson Island VRP

Client Sample ID: DUP-01\_06032014 Lab Sample ID: 680-101934-10

Date Collected: 06/03/14 00:00 Matrix: Water

Date Received: 06/04/14 08:44

| Analyte              | Result    | Qualifier | RL       | MDL Un | nit | D | Prepared | Analyzed       | Dil Fac |
|----------------------|-----------|-----------|----------|--------|-----|---|----------|----------------|---------|
| Benzene              | 1.0       | U         | 1.0      | ug     | g/L |   |          | 06/09/14 23:09 | 1       |
| Ethylbenzene         | 1.0       | U         | 1.0      | ug     | g/L |   |          | 06/09/14 23:09 | 1       |
| Toluene              | 1.0       | U         | 1.0      | ug     | g/L |   |          | 06/09/14 23:09 | 1       |
| Xylenes, Total       | 2.0       | U         | 2.0      | ug     | g/L |   |          | 06/09/14 23:09 | 1       |
| Surrogate            | %Recovery | Qualifier | Limits   |        |     |   | Prepared | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene | 92        |           | 70 - 130 |        |     | - |          | 06/09/14 23:09 | 1       |
| Dibromofluoromethane | 96        |           | 70 - 130 |        |     |   |          | 06/09/14 23:09 | 1       |
| Toluene-d8 (Surr)    | 102       |           | 70 - 130 |        |     |   |          | 06/09/14 23:09 | 1       |

| Analyte                | Result    | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|-----|------|---|----------------|----------------|---------|
| Acenaphthene           | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 17:45 | 1       |
| Acenaphthylene         | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 17:45 | 1       |
| Anthracene             | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 17:45 | 1       |
| Benzo[a]anthracene     | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 17:45 | 1       |
| Benzo[a]pyrene         | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 17:45 | 1       |
| Benzo[b]fluoranthene   | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 17:45 | 1       |
| Benzo[g,h,i]perylene   | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 17:45 | 1       |
| Benzo[k]fluoranthene   | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 17:45 | 1       |
| Chrysene               | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 17:45 | 1       |
| Dibenz(a,h)anthracene  | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 17:45 | 1       |
| Fluoranthene           | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 17:45 | 1       |
| Fluorene               | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 17:45 | 1       |
| Indeno[1,2,3-cd]pyrene | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 17:45 | 1       |
| 1-Methylnaphthalene    | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 17:45 | 1       |
| 2-Methylnaphthalene    | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 17:45 | 1       |
| Naphthalene            | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 17:45 | 1       |
| Phenanthrene           | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 17:45 | 1       |
| Pyrene                 | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 17:45 | 1       |
| Surrogate              | %Recovery | Qualifier | Limits   |     |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl       | 56        |           | 38 - 130 |     |      |   | 06/10/14 15:11 | 06/12/14 17:45 | 1       |
| Nitrobenzene-d5 (Surr) | 68        |           | 39 - 130 |     |      |   | 06/10/14 15:11 | 06/12/14 17:45 | 1       |
| Terphenyl-d14 (Surr)   | 51        |           | 10 - 143 |     |      |   | 06/10/14 15:11 | 06/12/14 17:45 | 1       |

| Terpnenyi-a14 (Surr)                 | 51     |           | 10 - 143 |     |      |   | 06/10/14 15:11 | 06/12/14 17:45 | 7       |
|--------------------------------------|--------|-----------|----------|-----|------|---|----------------|----------------|---------|
| Method: 6010C - Metals (ICP) Analyte | Result | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                              | 20     | U         |          |     | ug/L |   | 06/06/14 10:16 | 06/10/14 16:39 | 1       |
| Chromium                             | 10     | U         | 10       |     | ug/L |   | 06/06/14 10:16 | 06/10/14 16:39 | 1       |
| Lead                                 | 10     | U         | 10       |     | ug/L |   | 06/06/14 10:16 | 06/10/14 16:39 | 1       |
| Nickel                               | 40     | U         | 40       |     | ug/L |   | 06/06/14 10:16 | 06/10/14 16:39 | 1       |
| Zinc                                 | 20     | U         | 20       |     | ug/L |   | 06/06/14 10:16 | 06/10/14 16:39 | 1       |
| General Chemistry                    |        |           |          |     |      |   |                |                |         |
| Analyte                              | Result | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Ammonia                              | 18     | ·         | 0.50     | ·   | mg/L |   |                | 06/05/14 16:09 | 10      |
| Nitrate as N                         | 0.050  | U         | 0.050    |     | mg/L |   |                | 06/04/14 15:52 | 1       |

Page 16 of 37

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: CSX Hutchinson Island VRP

Client Sample ID: DUP-02\_06032014 Lab Sample ID: 680-101934-11

Date Collected: 06/03/14 00:00 Matrix: Water

Date Received: 06/04/14 08:44

| Analyte              | Result    | Qualifier | RL       | MDL Unit | D | Prepared | Analyzed       | Dil Fac |
|----------------------|-----------|-----------|----------|----------|---|----------|----------------|---------|
| Benzene              | 1.0       | U         | 1.0      | ug/L     |   |          | 06/09/14 23:33 | 1       |
| Ethylbenzene         | 1.0       | U         | 1.0      | ug/L     |   |          | 06/09/14 23:33 | 1       |
| Toluene              | 1.0       | U         | 1.0      | ug/L     |   |          | 06/09/14 23:33 | 1       |
| Xylenes, Total       | 2.0       | U         | 2.0      | ug/L     |   |          | 06/09/14 23:33 | 1       |
| Surrogate            | %Recovery | Qualifier | Limits   |          |   | Prepared | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene | 92        |           | 70 - 130 |          |   |          | 06/09/14 23:33 | 1       |
| Dibromofluoromethane | 95        |           | 70 - 130 |          |   |          | 06/09/14 23:33 | 1       |
| Toluene-d8 (Surr)    | 102       |           | 70 - 130 |          |   |          | 06/09/14 23:33 | 1       |

| Analyte                | Result    | Qualifier | RL     | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|--------|-----|------|---|----------------|----------------|---------|
| Acenaphthene           | 9.9       | U         | 9.9    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:09 | 1       |
| Acenaphthylene         | 9.9       | U         | 9.9    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:09 | 1       |
| Anthracene             | 9.9       | U         | 9.9    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:09 | 1       |
| Benzo[a]anthracene     | 9.9       | U         | 9.9    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:09 | 1       |
| Benzo[a]pyrene         | 9.9       | U         | 9.9    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:09 | 1       |
| Benzo[b]fluoranthene   | 9.9       | U         | 9.9    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:09 | 1       |
| Benzo[g,h,i]perylene   | 9.9       | U         | 9.9    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:09 | 1       |
| Benzo[k]fluoranthene   | 9.9       | U         | 9.9    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:09 | 1       |
| Chrysene               | 9.9       | U         | 9.9    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:09 | 1       |
| Dibenz(a,h)anthracene  | 9.9       | U         | 9.9    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:09 | 1       |
| Fluoranthene           | 9.9       | U         | 9.9    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:09 | 1       |
| Fluorene               | 9.9       | U         | 9.9    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:09 | 1       |
| Indeno[1,2,3-cd]pyrene | 9.9       | U         | 9.9    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:09 | 1       |
| 1-Methylnaphthalene    | 9.9       | U         | 9.9    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:09 | 1       |
| 2-Methylnaphthalene    | 9.9       | U         | 9.9    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:09 | 1       |
| Naphthalene            | 9.9       | U         | 9.9    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:09 | 1       |
| Phenanthrene           | 9.9       | U         | 9.9    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:09 | 1       |
| Pyrene                 | 9.9       | U         | 9.9    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:09 | 1       |
| Surrogate              | %Recovery | Qualifier | Limits |     |      |   | Prepared       | Analyzed       | Dil Fac |

| Surrogate              | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | DII Fac |  |
|------------------------|-----------|-----------|----------|----------------|----------------|---------|--|
| 2-Fluorobiphenyl       | 38        |           | 38 - 130 | 06/10/14 15:11 | 06/12/14 18:09 | 1       |  |
| Nitrobenzene-d5 (Surr) | 33        | X         | 39 - 130 | 06/10/14 15:11 | 06/12/14 18:09 | 1       |  |
| Terphenyl-d14 (Surr)   | 63        |           | 10 - 143 | 06/10/14 15:11 | 06/12/14 18:09 | 1       |  |
|                        |           |           |          |                |                |         |  |

|   | Method: 6010C - Metals (ICP) |        |           |    |     |      |   |                |                |         |
|---|------------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| 1 | Analyte                      | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| 7 | Arsenic                      | 28     |           | 20 |     | ug/L |   | 06/06/14 10:16 | 06/10/14 16:43 | 1       |
| ( | Chromium                     | 10     | U         | 10 |     | ug/L |   | 06/06/14 10:16 | 06/10/14 16:43 | 1       |
| ı | Lead                         | 10     | U         | 10 |     | ug/L |   | 06/06/14 10:16 | 06/10/14 16:43 | 1       |
| ı | Nickel                       | 40     | U         | 40 |     | ug/L |   | 06/06/14 10:16 | 06/10/14 16:43 | 1       |
| 2 | Zinc                         | 20     | U         | 20 |     | ug/L |   | 06/06/14 10:16 | 06/10/14 16:43 | 1       |

| General Chemistry Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia                   | 63     |           | 2.5   |     | mg/L |   |          | 06/05/14 16:12 | 50      |
| Nitrate as N              | 0.050  | U         | 0.050 |     | mg/L |   |          | 06/04/14 15:53 | 1       |

TestAmerica Savannah

6/18/2014

# **Client Sample Results**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-101934-1

Client Sample ID: TRIPBLANK\_06032014

Date Collected: 06/03/14 00:00 Date Received: 06/04/14 08:44 Lab Sample ID: 680-101934-12

Matrix: Water

| Method: 8260B - Volatile Or | ganic Compounds | (GC/MS)   |          |     |      |   |          |                |         |
|-----------------------------|-----------------|-----------|----------|-----|------|---|----------|----------------|---------|
| Analyte                     | Result          | Qualifier | RL       | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Benzene                     | 1.0             | U         | 1.0      |     | ug/L |   |          | 06/09/14 16:58 | 1       |
| Ethylbenzene                | 1.0             | U         | 1.0      |     | ug/L |   |          | 06/09/14 16:58 | 1       |
| Toluene                     | 1.0             | U         | 1.0      |     | ug/L |   |          | 06/09/14 16:58 | 1       |
| Xylenes, Total              | 2.0             | U         | 2.0      |     | ug/L |   |          | 06/09/14 16:58 | 1       |
| Surrogate                   | %Recovery       | Qualifier | Limits   |     |      |   | Prepared | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene        | 91              |           | 70 - 130 |     |      | - |          | 06/09/14 16:58 | 1       |
| Dibromofluoromethane        | 94              |           | 70 - 130 |     |      |   |          | 06/09/14 16:58 | 1       |
| Toluene-d8 (Surr)           | 100             |           | 70 - 130 |     |      |   |          | 06/09/14 16:58 | 1       |

8

9

10

11

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

# Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-333167/8

**Matrix: Water** 

Analysis Batch: 333167

Client Sample ID: Method Blank

Prep Type: Total/NA

|                | IVID   | IVID      |     |     |      |   |          |                |         |
|----------------|--------|-----------|-----|-----|------|---|----------|----------------|---------|
| Analyte        | Result | Qualifier | RL  | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Benzene        | 1.0    | U         | 1.0 |     | ug/L |   |          | 06/09/14 16:23 | 1       |
| Ethylbenzene   | 1.0    | U         | 1.0 |     | ug/L |   |          | 06/09/14 16:23 | 1       |
| Toluene        | 1.0    | U         | 1.0 |     | ug/L |   |          | 06/09/14 16:23 | 1       |
| Xylenes, Total | 2.0    | U         | 2.0 |     | ug/L |   |          | 06/09/14 16:23 | 1       |
|                |        |           |     |     |      |   |          |                |         |

MB MB Limits Surrogate %Recovery Qualifier Prepared Analyzed Dil Fac 70 - 130 4-Bromofluorobenzene 93 06/09/14 16:23 Dibromofluoromethane 93 70 - 130 06/09/14 16:23 Toluene-d8 (Surr) 70 - 130 06/09/14 16:23 101

Lab Sample ID: LCS 680-333167/4

**Matrix: Water** 

Analysis Batch: 333167

Client Sample ID: Lab Control Sample Prep Type: Total/NA

|                | Spike | LCS  | LCS       |      |   |      | %Rec.    |  |
|----------------|-------|------|-----------|------|---|------|----------|--|
| Analyte        | Added |      | Qualifier | Unit | D | %Rec | Limits   |  |
| Benzene        | 50.0  | 50.4 |           | ug/L |   | 101  | 74 - 123 |  |
| Ethylbenzene   | 50.0  | 48.5 |           | ug/L |   | 97   | 78 - 125 |  |
| Toluene        | 50.0  | 48.0 |           | ug/L |   | 96   | 77 - 125 |  |
| Xylenes, Total | 150   | 147  |           | ug/L |   | 98   | 80 - 124 |  |

LCS LCS Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene 99 70 - 130 Dibromofluoromethane 111 70 - 130 Toluene-d8 (Surr) 98 70 - 130

Lab Sample ID: LCSD 680-333167/5

**Matrix: Water** 

Analysis Batch: 333167

| Client Sample ID: Lab | <b>Control Sample Dup</b> |
|-----------------------|---------------------------|
|                       | Prep Type: Total/NA       |

| -             | Spike | LCSD   | LCSD      |      |   |      | %Rec.    |     | RPD   |  |
|---------------|-------|--------|-----------|------|---|------|----------|-----|-------|--|
| Analyte       | Added | Result | Qualifier | Unit | D | %Rec | Limits   | RPD | Limit |  |
| Benzene       | 50.0  | 52.4   |           | ug/L |   | 105  | 74 - 123 | 4   | 30    |  |
| Ethylbenzene  | 50.0  | 48.5   |           | ug/L |   | 97   | 78 - 125 | 0   | 30    |  |
| Toluene       | 50.0  | 50.3   |           | ug/L |   | 101  | 77 - 125 | 5   | 30    |  |
| Yulanas Total | 150   | 1/16   |           | ua/l |   | 97   | 80 124   | 1   | 30    |  |

|                      | LCSD LC     | CSD      |          |
|----------------------|-------------|----------|----------|
| Surrogate            | %Recovery Q | ualifier | Limits   |
| 4-Bromofluorobenzene | 97          |          | 70 - 130 |
| Dibromofluoromethane | 104         |          | 70 - 130 |
| Toluene-d8 (Surr)    | 100         |          | 70 - 130 |

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

## Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-333327/21-A

Matrix: Water

Analysis Batch: 333622

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 333327

|                        | MB     | MB        |    |     |      |   |                |                |         |
|------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte                | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Acenaphthene           | 10     | U         | 10 |     | ug/L |   | 06/10/14 15:11 | 06/11/14 21:30 | 1       |
| Acenaphthylene         | 10     | U         | 10 |     | ug/L |   | 06/10/14 15:11 | 06/11/14 21:30 | 1       |
| Anthracene             | 10     | U         | 10 |     | ug/L |   | 06/10/14 15:11 | 06/11/14 21:30 | 1       |
| Benzo[a]anthracene     | 10     | U         | 10 |     | ug/L |   | 06/10/14 15:11 | 06/11/14 21:30 | 1       |
| Benzo[a]pyrene         | 10     | U         | 10 |     | ug/L |   | 06/10/14 15:11 | 06/11/14 21:30 | 1       |
| Benzo[b]fluoranthene   | 10     | U         | 10 |     | ug/L |   | 06/10/14 15:11 | 06/11/14 21:30 | 1       |
| Benzo[g,h,i]perylene   | 10     | U         | 10 |     | ug/L |   | 06/10/14 15:11 | 06/11/14 21:30 | 1       |
| Benzo[k]fluoranthene   | 10     | U         | 10 |     | ug/L |   | 06/10/14 15:11 | 06/11/14 21:30 | 1       |
| Chrysene               | 10     | U         | 10 |     | ug/L |   | 06/10/14 15:11 | 06/11/14 21:30 | 1       |
| Dibenz(a,h)anthracene  | 10     | U         | 10 |     | ug/L |   | 06/10/14 15:11 | 06/11/14 21:30 | 1       |
| Fluoranthene           | 10     | U         | 10 |     | ug/L |   | 06/10/14 15:11 | 06/11/14 21:30 | 1       |
| Fluorene               | 10     | U         | 10 |     | ug/L |   | 06/10/14 15:11 | 06/11/14 21:30 | 1       |
| Indeno[1,2,3-cd]pyrene | 10     | U         | 10 |     | ug/L |   | 06/10/14 15:11 | 06/11/14 21:30 | 1       |
| 1-Methylnaphthalene    | 10     | U         | 10 |     | ug/L |   | 06/10/14 15:11 | 06/11/14 21:30 | 1       |
| 2-Methylnaphthalene    | 10     | U         | 10 |     | ug/L |   | 06/10/14 15:11 | 06/11/14 21:30 | 1       |
| Naphthalene            | 10     | U         | 10 |     | ug/L |   | 06/10/14 15:11 | 06/11/14 21:30 | 1       |
| Phenanthrene           | 10     | U         | 10 |     | ug/L |   | 06/10/14 15:11 | 06/11/14 21:30 | 1       |
| Pyrene                 | 10     | U         | 10 |     | ug/L |   | 06/10/14 15:11 | 06/11/14 21:30 | 1       |
|                        |        |           |    |     |      |   |                |                |         |

MB MB

| Surrogate              | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|----------------|----------------|---------|
| 2-Fluorobiphenyl       | 76        |           | 38 - 130 | 06/10/14 15:11 | 06/11/14 21:30 | 1       |
| Nitrobenzene-d5 (Surr) | 83        |           | 39 - 130 | 06/10/14 15:11 | 06/11/14 21:30 | 1       |
| Terphenyl-d14 (Surr)   | 84        |           | 10 - 143 | 06/10/14 15:11 | 06/11/14 21:30 | 1       |

Lab Sample ID: LCS 680-333327/22-A

**Matrix: Water** 

Analysis Batch: 333622

| Client | Sample | D: | Lab ( | Control | Sample |
|--------|--------|----|-------|---------|--------|
|--------|--------|----|-------|---------|--------|

Prep Type: Total/NA Prep Batch: 333327

| Analysis Batch: 333622 |       |        |           |      |   |      | Prep Batt | :n: 333321 |
|------------------------|-------|--------|-----------|------|---|------|-----------|------------|
|                        | Spike | LCS    | LCS       |      |   |      | %Rec.     |            |
| Analyte                | Added | Result | Qualifier | Unit | D | %Rec | Limits    |            |
| Acenaphthene           | 100   | 65.8   |           | ug/L |   | 66   | 41 - 99   |            |
| Acenaphthylene         | 100   | 62.6   |           | ug/L |   | 63   | 32 _ 118  |            |
| Anthracene             | 100   | 74.8   |           | ug/L |   | 75   | 50 - 103  |            |
| Benzo[a]anthracene     | 100   | 72.7   |           | ug/L |   | 73   | 53 _ 109  |            |
| Benzo[a]pyrene         | 100   | 68.6   |           | ug/L |   | 69   | 38 _ 111  |            |
| Benzo[b]fluoranthene   | 100   | 71.4   |           | ug/L |   | 71   | 53 _ 108  |            |
| Benzo[g,h,i]perylene   | 100   | 66.5   |           | ug/L |   | 67   | 42 _ 114  |            |
| Benzo[k]fluoranthene   | 100   | 67.9   |           | ug/L |   | 68   | 49 - 108  |            |
| Chrysene               | 100   | 70.2   |           | ug/L |   | 70   | 54 _ 111  |            |
| Dibenz(a,h)anthracene  | 100   | 68.1   |           | ug/L |   | 68   | 48 - 110  |            |
| Fluoranthene           | 100   | 72.0   |           | ug/L |   | 72   | 48 _ 111  |            |
| Fluorene               | 100   | 74.8   |           | ug/L |   | 75   | 50 _ 105  |            |
| Indeno[1,2,3-cd]pyrene | 100   | 62.7   |           | ug/L |   | 63   | 34 _ 115  |            |
| 1-Methylnaphthalene    | 100   | 54.6   |           | ug/L |   | 55   | 50 _ 130  |            |
| 2-Methylnaphthalene    | 100   | 51.8   |           | ug/L |   | 52   | 32 - 92   |            |
| Naphthalene            | 100   | 52.3   |           | ug/L |   | 52   | 29 _ 91   |            |
| Phenanthrene           | 100   | 74.5   |           | ug/L |   | 75   | 52 - 108  |            |
| Pyrene                 | 100   | 71.9   |           | ug/L |   | 72   | 50 - 111  |            |
|                        |       |        |           |      |   |      |           |            |

TestAmerica Savannah

6/18/2014

Page 20 of 37

9

3

5

7

9

1 1

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-333327/22-A

**Matrix: Water** 

Analysis Batch: 333622

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA Prep Batch: 333327

LCS LCS

| Surrogate              | %Recovery Qualif | ier Limits |
|------------------------|------------------|------------|
| 2-Fluorobiphenyl       | 71               | 38 - 130   |
| Nitrobenzene-d5 (Surr) | 70               | 39 - 130   |
| Terphenyl-d14 (Surr)   | 80               | 10 - 143   |

Client Sample ID: Method Blank Prep Type: Total/NA

**Prep Batch: 333599** 

Lab Sample ID: MB 680-333599/2-A

**Matrix: Water** 

Analysis Batch: 333830

| _                      | МВ     | MB        |    |     |      |   |                | •              |         |
|------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte                | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Acenaphthene           | 10     | U         | 10 |     | ug/L |   | 06/11/14 16:18 | 06/12/14 18:42 | 1       |
| Acenaphthylene         | 10     | U         | 10 |     | ug/L |   | 06/11/14 16:18 | 06/12/14 18:42 | 1       |
| Anthracene             | 10     | U         | 10 |     | ug/L |   | 06/11/14 16:18 | 06/12/14 18:42 | 1       |
| Benzo[a]anthracene     | 10     | U         | 10 |     | ug/L |   | 06/11/14 16:18 | 06/12/14 18:42 | 1       |
| Benzo[a]pyrene         | 10     | U         | 10 |     | ug/L |   | 06/11/14 16:18 | 06/12/14 18:42 | 1       |
| Benzo[b]fluoranthene   | 10     | U         | 10 |     | ug/L |   | 06/11/14 16:18 | 06/12/14 18:42 | 1       |
| Benzo[g,h,i]perylene   | 10     | U         | 10 |     | ug/L |   | 06/11/14 16:18 | 06/12/14 18:42 | 1       |
| Benzo[k]fluoranthene   | 10     | U         | 10 |     | ug/L |   | 06/11/14 16:18 | 06/12/14 18:42 | 1       |
| Chrysene               | 10     | U         | 10 |     | ug/L |   | 06/11/14 16:18 | 06/12/14 18:42 | 1       |
| Dibenz(a,h)anthracene  | 10     | U         | 10 |     | ug/L |   | 06/11/14 16:18 | 06/12/14 18:42 | 1       |
| Fluoranthene           | 10     | U         | 10 |     | ug/L |   | 06/11/14 16:18 | 06/12/14 18:42 | 1       |
| Fluorene               | 10     | U         | 10 |     | ug/L |   | 06/11/14 16:18 | 06/12/14 18:42 | 1       |
| Indeno[1,2,3-cd]pyrene | 10     | U         | 10 |     | ug/L |   | 06/11/14 16:18 | 06/12/14 18:42 | 1       |
| 1-Methylnaphthalene    | 10     | U         | 10 |     | ug/L |   | 06/11/14 16:18 | 06/12/14 18:42 | 1       |
| 2-Methylnaphthalene    | 10     | U         | 10 |     | ug/L |   | 06/11/14 16:18 | 06/12/14 18:42 | 1       |
| Naphthalene            | 10     | U         | 10 |     | ug/L |   | 06/11/14 16:18 | 06/12/14 18:42 | 1       |
| Phenanthrene           | 10     | U         | 10 |     | ug/L |   | 06/11/14 16:18 | 06/12/14 18:42 | 1       |
| Pyrene                 | 10     | U         | 10 |     | ug/L |   | 06/11/14 16:18 | 06/12/14 18:42 | 1       |
|                        |        |           |    |     |      |   |                |                |         |

мв мв

| Surrogate              | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|----------------|----------------|---------|
| 2-Fluorobiphenyl       | 68        |           | 38 - 130 | 06/11/14 16:18 | 06/12/14 18:42 | 1       |
| Nitrobenzene-d5 (Surr) | 81        |           | 39 - 130 | 06/11/14 16:18 | 06/12/14 18:42 | 1       |
| Terphenyl-d14 (Surr)   | 91        |           | 10 - 143 | 06/11/14 16:18 | 06/12/14 18:42 | 1       |

Lab Sample ID: LCS 680-333599/3-A

**Matrix: Water** 

Analysis Batch: 333830

**Client Sample ID: Lab Control Sample** Prep Type: Total/NA

**Prep Batch: 333599** 

| ,                     | Spike | LCS    | LCS       |      |   |      | %Rec.    |  |
|-----------------------|-------|--------|-----------|------|---|------|----------|--|
| Analyte               | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Acenaphthene          | 100   | 68.6   |           | ug/L |   | 69   | 41 - 99  |  |
| Acenaphthylene        | 100   | 68.5   |           | ug/L |   | 69   | 32 - 118 |  |
| Anthracene            | 100   | 74.3   |           | ug/L |   | 74   | 50 - 103 |  |
| Benzo[a]anthracene    | 100   | 79.1   |           | ug/L |   | 79   | 53 - 109 |  |
| Benzo[a]pyrene        | 100   | 71.6   |           | ug/L |   | 72   | 38 - 111 |  |
| Benzo[b]fluoranthene  | 100   | 71.0   |           | ug/L |   | 71   | 53 - 108 |  |
| Benzo[g,h,i]perylene  | 100   | 69.8   |           | ug/L |   | 70   | 42 - 114 |  |
| Benzo[k]fluoranthene  | 100   | 77.8   |           | ug/L |   | 78   | 49 - 108 |  |
| Chrysene              | 100   | 77.4   |           | ug/L |   | 77   | 54 - 111 |  |
| Dibenz(a.h)anthracene | 100   | 72.9   |           | ua/L |   | 73   | 48 - 110 |  |

TestAmerica Savannah

Page 21 of 37

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

# Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-333599/3-A

**Matrix: Water** 

Analysis Batch: 333830

**Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Prep Batch: 333599

| •                      | Spike | LCS    | LCS       |      |   |      | %Rec.    |  |
|------------------------|-------|--------|-----------|------|---|------|----------|--|
| Analyte                | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Fluoranthene           | 100   | 75.0   |           | ug/L |   | 75   | 48 - 111 |  |
| Fluorene               | 100   | 78.3   |           | ug/L |   | 78   | 50 _ 105 |  |
| Indeno[1,2,3-cd]pyrene | 100   | 66.8   |           | ug/L |   | 67   | 34 _ 115 |  |
| 1-Methylnaphthalene    | 100   | 64.2   |           | ug/L |   | 64   | 50 - 130 |  |
| 2-Methylnaphthalene    | 100   | 62.6   |           | ug/L |   | 63   | 32 - 92  |  |
| Naphthalene            | 100   | 56.4   |           | ug/L |   | 56   | 29 - 91  |  |
| Phenanthrene           | 100   | 74.9   |           | ug/L |   | 75   | 52 _ 108 |  |
| Pyrene                 | 100   | 78.2   |           | ug/L |   | 78   | 50 _ 111 |  |
|                        |       |        |           |      |   |      |          |  |

LCS LCS

MB MB

| Surrogate              | %Recovery | Qualifier | Limits   |
|------------------------|-----------|-----------|----------|
| 2-Fluorobiphenyl       | 67        |           | 38 - 130 |
| Nitrobenzene-d5 (Surr) | 70        |           | 39 - 130 |
| Terphenyl-d14 (Surr)   | 82        |           | 10 - 143 |

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 680-332730/1-A

**Matrix: Water** 

Analysis Batch: 333550

Client Sample ID: Method Blank

Prep Type: Total/NA

**Prep Batch: 332730** 

| Analyte  | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|----------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Arsenic  | 20     | U         | 20 |     | ug/L |   | 06/06/14 10:16 | 06/10/14 15:26 | 1       |
| Chromium | 10     | U         | 10 |     | ug/L |   | 06/06/14 10:16 | 06/10/14 15:26 | 1       |
| Lead     | 10     | U         | 10 |     | ug/L |   | 06/06/14 10:16 | 06/10/14 15:26 | 1       |
| Nickel   | 40     | U         | 40 |     | ug/L |   | 06/06/14 10:16 | 06/10/14 15:26 | 1       |
| Zinc     | 20     | U         | 20 |     | ug/L |   | 06/06/14 10:16 | 06/10/14 15:26 | 1       |

Lab Sample ID: LCS 680-332730/2-A

**Matrix: Water** 

Analysis Batch: 333550

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

**Prep Batch: 332730** 

|          | Spike | LCS    | LCS       |      |   |      | %Rec.               |  |
|----------|-------|--------|-----------|------|---|------|---------------------|--|
| Analyte  | Added | Result | Qualifier | Unit | D | %Rec | Limits              |  |
| Arsenic  | 100   | 99.5   |           | ug/L |   | 99   | 75 - 125            |  |
| Chromium | 100   | 99.4   |           | ug/L |   | 99   | 75 - 125            |  |
| Lead     | 50.0  | 49.8   |           | ug/L |   | 100  | 75 - 125            |  |
| Nickel   | 100   | 98.1   |           | ug/L |   | 98   | 75 - 125            |  |
| Zinc     | 100   | 98.2   |           | ug/L |   | 98   | 75 <sub>-</sub> 125 |  |

Lab Sample ID: 680-101934-1 MS

**Matrix: Water** 

Analysis Batch: 333550

Client Sample ID: ERB-01\_06032014

Prep Type: Total/NA

Prep Batch: 332730

|          | Sample | Sample    | Spike | MS     | MS        |      |   |      | %Rec.    |  |
|----------|--------|-----------|-------|--------|-----------|------|---|------|----------|--|
| Analyte  | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Arsenic  | 20     | U         | 100   | 95.6   |           | ug/L |   | 96   | 75 - 125 |  |
| Chromium | 10     | U         | 100   | 96.7   |           | ug/L |   | 97   | 75 - 125 |  |
| Lead     | 10     | U         | 50.0  | 49.0   |           | ug/L |   | 98   | 75 - 125 |  |
| Nickel   | 40     | U         | 100   | 96.0   |           | ug/L |   | 96   | 75 - 125 |  |
| Zinc     | 20     | U         | 100   | 89.8   |           | ug/L |   | 90   | 75 - 125 |  |
|          |        |           |       |        |           |      |   |      |          |  |

TestAmerica Savannah

Page 22 of 37

6/18/2014

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Method: 6010C - Metals (ICP) (Continued)

| Lab Sample ID: 680-101934-1 M<br>Matrix: Water<br>Analysis Batch: 333550 | SD     |           |       |        |           |      | Clie | nt Samp |          | -01_060<br>ype: Tot<br>Batch: 3 | tal/NA |
|--------------------------------------------------------------------------|--------|-----------|-------|--------|-----------|------|------|---------|----------|---------------------------------|--------|
|                                                                          | Sample | Sample    | Spike | MSD    | MSD       |      |      |         | %Rec.    |                                 | RPD    |
| Analyte                                                                  | Result | Qualifier | Added | Result | Qualifier | Unit | D    | %Rec    | Limits   | RPD                             | Limit  |
| Arsenic                                                                  | 20     | U         | 100   | 96.8   |           | ug/L |      | 97      | 75 - 125 | 1                               | 20     |
| Chromium                                                                 | 10     | U         | 100   | 98.0   |           | ug/L |      | 98      | 75 - 125 | 1                               | 20     |
| Lead                                                                     | 10     | U         | 50.0  | 49.1   |           | ug/L |      | 98      | 75 - 125 | 0                               | 20     |
| Nickel                                                                   | 40     | U         | 100   | 97.6   |           | ug/L |      | 98      | 75 - 125 | 2                               | 20     |
| Zinc                                                                     | 20     | U         | 100   | 97.3   |           | ug/L |      | 97      | 75 - 125 | 8                               | 20     |

Method: 350.1 - Nitrogen, Ammonia

Lab Sample ID: MB 680-332667/2 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 332667

|         | IVID   | IVID      |       |     |      |   |          |                |         |
|---------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Ammonia | 0.050  | U         | 0.050 |     | mg/L |   |          | 06/05/14 15:12 | 1       |

Lab Sample ID: LCS 680-332667/20 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 332667

|         | Spike | LCS    | LCS       |        |      | %Rec.    |       |
|---------|-------|--------|-----------|--------|------|----------|-------|
| Analyte | Added | Result | Qualifier | Unit D | %Rec | Limits   |       |
| Ammonia | 1.00  | 1.01   |           | mg/L   | 101  | 90 - 110 | <br>_ |

Lab Sample ID: 680-101934-1 MS Client Sample ID: ERB-01\_06032014 Prep Type: Total/NA

**Matrix: Water** 

Analysis Batch: 332667

|         | Sample | Sample    | Spike | MS     | MS        |      |   |      | %Rec.    |  |
|---------|--------|-----------|-------|--------|-----------|------|---|------|----------|--|
| Analyte | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Ammonia | 0.11   |           | 1.00  | 1.28   | F1        | ma/L |   | 117  | 90 - 110 |  |

Lab Sample ID: 680-101934-1 MSD Client Sample ID: ERB-01\_06032014 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 332667

|         | Sample | Sample    | Spike | MSD    | MSD       |      |   |      | %Rec.    |     | RPD   |
|---------|--------|-----------|-------|--------|-----------|------|---|------|----------|-----|-------|
| Analyte | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   | RPD | Limit |
| Ammonia | 0.11   |           | 1.00  | 1.32   | F1        | mg/L |   | 121  | 90 - 110 | 3   | 30    |

Lab Sample ID: 680-101934-3 DU Client Sample ID: ERB-02-06032014

**Matrix: Water** 

Analysis Batch: 332667

|         | Sample | Sample    | DU     | DU        |        |   |       | RPD   |
|---------|--------|-----------|--------|-----------|--------|---|-------|-------|
| Analyte | Result | Qualifier | Result | Qualifier | Unit I | D | RPD   | Limit |
| Ammonia | 0.10   |           | 0.0983 |           | mg/L   |   | <br>3 | 30    |

Lab Sample ID: MB 680-333058/2 Client Sample ID: Method Blank

**Matrix: Water** 

Analysis Batch: 333058

MB MB Result Qualifier Analyte MDL Unit Prepared Analyzed Dil Fac 0.050 Ammonia 0.050 U mg/L 06/06/14 11:56

TestAmerica Savannah

Prep Type: Total/NA

Prep Type: Total/NA

**Client Sample ID: Lab Control Sample** 

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: DUP-02\_06032014

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: CSX Hutchinson Island VRP

Method: 350.1 - Nitrogen, Ammonia (Continued)

Lab Sample ID: LCS 680-333058/12

**Matrix: Water** 

Analysis Batch: 333058

Spike LCS LCS %Rec. Added Analyte Result Qualifier Limits Unit D %Rec 1.00 104 90 - 110 Ammonia 1.04 mg/L

Lab Sample ID: LCSD 680-333058/17

**Matrix: Water** 

**Analysis Batch: 333058** 

LCSD LCSD %Rec. RPD Spike Analyte Added Limit Result Qualifier Unit %Rec Limits RPD Ammonia 1.00 1.04 mg/L 104 90 - 110 30

Method: 353.2 - Nitrogen, Nitrate-Nitrite

Lab Sample ID: MB 680-332350/13

**Matrix: Water** 

Analysis Batch: 332350

MR MR

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Nitrate as N 0.050 U 0.050 06/04/14 15:32 mg/L

Lab Sample ID: 680-101934-11 DU

**Matrix: Water** 

Analysis Batch: 332350

DU DU RPD Sample Sample Result Qualifier Result Qualifier RPD Limit Analyte Unit Nitrate as N 0.050 U 0.050 U NC 30 mg/L

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

### **GC/MS VOA**

### Analysis Batch: 333167

| Lab Sample ID     | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|-------------------|------------------------|-----------|--------|--------|------------|
| 680-101934-1      | ERB-01_06032014        | Total/NA  | Water  | 8260B  | _          |
| 680-101934-2      | FB-01_06032014         | Total/NA  | Water  | 8260B  |            |
| 680-101934-3      | ERB-02-06032014        | Total/NA  | Water  | 8260B  |            |
| 680-101934-4      | TMW-4R_06032014        | Total/NA  | Water  | 8260B  |            |
| 680-101934-5      | MW-01_06032014         | Total/NA  | Water  | 8260B  |            |
| 680-101934-6      | PDMW-8R_06032014       | Total/NA  | Water  | 8260B  |            |
| 680-101934-7      | PDMW-45R_06032014      | Total/NA  | Water  | 8260B  |            |
| 680-101934-8      | PDMW-29D_06032014      | Total/NA  | Water  | 8260B  |            |
| 680-101934-9      | PDMW-30R_06032014      | Total/NA  | Water  | 8260B  |            |
| 680-101934-10     | DUP-01_06032014        | Total/NA  | Water  | 8260B  |            |
| 680-101934-11     | DUP-02_06032014        | Total/NA  | Water  | 8260B  |            |
| 680-101934-12     | TRIPBLANK_06032014     | Total/NA  | Water  | 8260B  |            |
| LCS 680-333167/4  | Lab Control Sample     | Total/NA  | Water  | 8260B  |            |
| LCSD 680-333167/5 | Lab Control Sample Dup | Total/NA  | Water  | 8260B  |            |
| MB 680-333167/8   | Method Blank           | Total/NA  | Water  | 8260B  |            |

### **GC/MS Semi VOA**

#### **Prep Batch: 333327**

| Lab Sample ID       | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|---------------------|--------------------|-----------|--------|--------|------------|
| 680-101934-1        | ERB-01_06032014    | Total/NA  | Water  | 3520C  |            |
| 680-101934-2        | FB-01_06032014     | Total/NA  | Water  | 3520C  |            |
| 680-101934-3        | ERB-02-06032014    | Total/NA  | Water  | 3520C  |            |
| 680-101934-4        | TMW-4R_06032014    | Total/NA  | Water  | 3520C  |            |
| 680-101934-5        | MW-01_06032014     | Total/NA  | Water  | 3520C  |            |
| 680-101934-6        | PDMW-8R_06032014   | Total/NA  | Water  | 3520C  |            |
| 680-101934-7        | PDMW-45R_06032014  | Total/NA  | Water  | 3520C  |            |
| 680-101934-8        | PDMW-29D_06032014  | Total/NA  | Water  | 3520C  |            |
| 680-101934-9        | PDMW-30R_06032014  | Total/NA  | Water  | 3520C  |            |
| 680-101934-10       | DUP-01_06032014    | Total/NA  | Water  | 3520C  |            |
| 680-101934-11       | DUP-02_06032014    | Total/NA  | Water  | 3520C  |            |
| LCS 680-333327/22-A | Lab Control Sample | Total/NA  | Water  | 3520C  |            |
| MB 680-333327/21-A  | Method Blank       | Total/NA  | Water  | 3520C  |            |

### **Prep Batch: 333599**

| Lab Sample ID    | Client Sample ID        | Prep Type | Matrix | Method | Prep Batch |
|------------------|-------------------------|-----------|--------|--------|------------|
| 680-101934-7 - F | PDMW-45R_06032014       | Total/NA  | Water  | 3520C  |            |
| LCS 680-333599   | /3-A Lab Control Sample | Total/NA  | Water  | 3520C  |            |
| MB 680-333599/   | 2-A Method Blank        | Total/NA  | Water  | 3520C  |            |

### Analysis Batch: 333622

| Lab Sample ID       | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|---------------------|--------------------|-----------|--------|--------|------------|
| LCS 680-333327/22-A | Lab Control Sample | Total/NA  | Water  | 8270D  | 333327     |
| MB 680-333327/21-A  | Method Blank       | Total/NA  | Water  | 8270D  | 333327     |

### Analysis Batch: 333830

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 680-101934-7 - RE  | PDMW-45R_06032014  | Total/NA  | Water  | 8270D  | 333599     |
| LCS 680-333599/3-A | Lab Control Sample | Total/NA  | Water  | 8270D  | 333599     |
| MB 680-333599/2-A  | Method Blank       | Total/NA  | Water  | 8270D  | 333599     |

TestAmerica Savannah

Page 25 of 37

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

### GC/MS Semi VOA (Continued)

### Analysis Batch: 333838

| Lab Sample ID | Client Sample ID  | Prep Type | Matrix | Method | Prep Batch |
|---------------|-------------------|-----------|--------|--------|------------|
| 680-101934-1  | ERB-01_06032014   | Total/NA  | Water  | 8270D  | 333327     |
| 680-101934-2  | FB-01_06032014    | Total/NA  | Water  | 8270D  | 333327     |
| 680-101934-3  | ERB-02-06032014   | Total/NA  | Water  | 8270D  | 333327     |
| 680-101934-4  | TMW-4R_06032014   | Total/NA  | Water  | 8270D  | 333327     |
| 680-101934-5  | MW-01_06032014    | Total/NA  | Water  | 8270D  | 333327     |
| 680-101934-6  | PDMW-8R_06032014  | Total/NA  | Water  | 8270D  | 333327     |
| 680-101934-7  | PDMW-45R_06032014 | Total/NA  | Water  | 8270D  | 333327     |
| 680-101934-8  | PDMW-29D_06032014 | Total/NA  | Water  | 8270D  | 333327     |
| 680-101934-9  | PDMW-30R_06032014 | Total/NA  | Water  | 8270D  | 333327     |
| 680-101934-10 | DUP-01_06032014   | Total/NA  | Water  | 8270D  | 333327     |
| 680-101934-11 | DUP-02_06032014   | Total/NA  | Water  | 8270D  | 333327     |

#### **Metals**

### Prep Batch: 332730

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batcl |
|--------------------|--------------------|-----------|--------|--------|------------|
| 680-101934-1       | ERB-01_06032014    | Total/NA  | Water  | 3010A  |            |
| 680-101934-1 MS    | ERB-01_06032014    | Total/NA  | Water  | 3010A  |            |
| 680-101934-1 MSD   | ERB-01_06032014    | Total/NA  | Water  | 3010A  |            |
| 680-101934-2       | FB-01_06032014     | Total/NA  | Water  | 3010A  |            |
| 680-101934-3       | ERB-02-06032014    | Total/NA  | Water  | 3010A  |            |
| 680-101934-4       | TMW-4R_06032014    | Total/NA  | Water  | 3010A  |            |
| 680-101934-5       | MW-01_06032014     | Total/NA  | Water  | 3010A  |            |
| 680-101934-6       | PDMW-8R_06032014   | Total/NA  | Water  | 3010A  |            |
| 680-101934-7       | PDMW-45R_06032014  | Total/NA  | Water  | 3010A  |            |
| 680-101934-8       | PDMW-29D_06032014  | Total/NA  | Water  | 3010A  |            |
| 680-101934-9       | PDMW-30R_06032014  | Total/NA  | Water  | 3010A  |            |
| 680-101934-10      | DUP-01_06032014    | Total/NA  | Water  | 3010A  |            |
| 680-101934-11      | DUP-02_06032014    | Total/NA  | Water  | 3010A  |            |
| LCS 680-332730/2-A | Lab Control Sample | Total/NA  | Water  | 3010A  |            |
| MB 680-332730/1-A  | Method Blank       | Total/NA  | Water  | 3010A  |            |

### Analysis Batch: 333550

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 680-101934-1       | ERB-01_06032014    | Total/NA  | Water  | 6010C  | 332730     |
| 680-101934-1 MS    | ERB-01_06032014    | Total/NA  | Water  | 6010C  | 332730     |
| 680-101934-1 MSD   | ERB-01_06032014    | Total/NA  | Water  | 6010C  | 332730     |
| 680-101934-2       | FB-01_06032014     | Total/NA  | Water  | 6010C  | 332730     |
| 680-101934-3       | ERB-02-06032014    | Total/NA  | Water  | 6010C  | 332730     |
| 680-101934-4       | TMW-4R_06032014    | Total/NA  | Water  | 6010C  | 332730     |
| 680-101934-5       | MW-01_06032014     | Total/NA  | Water  | 6010C  | 332730     |
| 680-101934-6       | PDMW-8R_06032014   | Total/NA  | Water  | 6010C  | 332730     |
| 680-101934-7       | PDMW-45R_06032014  | Total/NA  | Water  | 6010C  | 332730     |
| 680-101934-8       | PDMW-29D_06032014  | Total/NA  | Water  | 6010C  | 332730     |
| 680-101934-9       | PDMW-30R_06032014  | Total/NA  | Water  | 6010C  | 332730     |
| 680-101934-10      | DUP-01_06032014    | Total/NA  | Water  | 6010C  | 332730     |
| 680-101934-11      | DUP-02_06032014    | Total/NA  | Water  | 6010C  | 332730     |
| LCS 680-332730/2-A | Lab Control Sample | Total/NA  | Water  | 6010C  | 332730     |
| MB 680-332730/1-A  | Method Blank       | Total/NA  | Water  | 6010C  | 332730     |

TestAmerica Savannah

Page 26 of 37

9

4

6

7

10

11

12

6/18/2014

# **QC Association Summary**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-101934-1

### **General Chemistry**

### Analysis Batch: 332350

| Lab Sample ID     | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|-------------------|--------------------|-----------|--------|--------|------------|
| 680-101934-1      | ERB-01_06032014    | Total/NA  | Water  | 353.2  |            |
| 680-101934-1 MS   | ERB-01_06032014    | Total/NA  | Water  | 353.2  |            |
| 680-101934-1 MSD  | ERB-01_06032014    | Total/NA  | Water  | 353.2  |            |
| 680-101934-2      | FB-01_06032014     | Total/NA  | Water  | 353.2  |            |
| 680-101934-3      | ERB-02-06032014    | Total/NA  | Water  | 353.2  |            |
| 680-101934-4      | TMW-4R_06032014    | Total/NA  | Water  | 353.2  |            |
| 680-101934-5      | MW-01_06032014     | Total/NA  | Water  | 353.2  |            |
| 680-101934-6      | PDMW-8R_06032014   | Total/NA  | Water  | 353.2  |            |
| 680-101934-7      | PDMW-45R_06032014  | Total/NA  | Water  | 353.2  |            |
| 680-101934-8      | PDMW-29D_06032014  | Total/NA  | Water  | 353.2  |            |
| 680-101934-9      | PDMW-30R_06032014  | Total/NA  | Water  | 353.2  |            |
| 680-101934-10     | DUP-01_06032014    | Total/NA  | Water  | 353.2  |            |
| 680-101934-11     | DUP-02_06032014    | Total/NA  | Water  | 353.2  |            |
| 680-101934-11 DU  | DUP-02_06032014    | Total/NA  | Water  | 353.2  |            |
| LCS 680-332350/16 | Lab Control Sample | Total/NA  | Water  | 353.2  |            |
| MB 680-332350/13  | Method Blank       | Total/NA  | Water  | 353.2  |            |

### Analysis Batch: 332667

| Lab Sample ID     | Client Sample ID   | Prep Type | Matrix | Method | Prep Batc |
|-------------------|--------------------|-----------|--------|--------|-----------|
| 680-101934-1      | ERB-01_06032014    | Total/NA  | Water  | 350.1  |           |
| 680-101934-1 MS   | ERB-01_06032014    | Total/NA  | Water  | 350.1  |           |
| 680-101934-1 MSD  | ERB-01_06032014    | Total/NA  | Water  | 350.1  |           |
| 680-101934-3      | ERB-02-06032014    | Total/NA  | Water  | 350.1  |           |
| 680-101934-3 DU   | ERB-02-06032014    | Total/NA  | Water  | 350.1  |           |
| 680-101934-4      | TMW-4R_06032014    | Total/NA  | Water  | 350.1  |           |
| 680-101934-5      | MW-01_06032014     | Total/NA  | Water  | 350.1  |           |
| 680-101934-6      | PDMW-8R_06032014   | Total/NA  | Water  | 350.1  |           |
| 680-101934-7      | PDMW-45R_06032014  | Total/NA  | Water  | 350.1  |           |
| 680-101934-8      | PDMW-29D_06032014  | Total/NA  | Water  | 350.1  |           |
| 680-101934-9      | PDMW-30R_06032014  | Total/NA  | Water  | 350.1  |           |
| 680-101934-10     | DUP-01_06032014    | Total/NA  | Water  | 350.1  |           |
| 680-101934-11     | DUP-02_06032014    | Total/NA  | Water  | 350.1  |           |
| LCS 680-332667/20 | Lab Control Sample | Total/NA  | Water  | 350.1  |           |
| MB 680-332667/2   | Method Blank       | Total/NA  | Water  | 350.1  |           |

### Analysis Batch: 333058

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| 680-101934-2       | FB-01_06032014         | Total/NA  | Water  | 350.1  |            |
| LCS 680-333058/12  | Lab Control Sample     | Total/NA  | Water  | 350.1  |            |
| LCSD 680-333058/17 | Lab Control Sample Dup | Total/NA  | Water  | 350.1  |            |
| MB 680-333058/2    | Method Blank           | Total/NA  | Water  | 350.1  |            |

Page 27 of 37

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Client Sample ID: ERB-01\_06032014 Lab Sample ID: 680-101934-1

Date Collected: 06/03/14 10:15 Matrix: Water

Date Received: 06/04/14 08:44

|           | Batch    | Batch            |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|----------|------------------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method           | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8260B            |     | 1      | 5 mL     | 5 mL   | 333167 | 06/09/14 19:41 | MMT     | TAL SAV |
|           | Instrume | ent ID: CMSAD    |     |        |          |        |        |                |         |         |
| Total/NA  | Prep     | 3520C            |     |        | 251.6 mL | 0.5 mL | 333327 | 06/10/14 15:11 | RBS     | TAL SAV |
| Total/NA  | Analysis | 8270D            |     | 1      | 251.6 mL | 0.5 mL | 333838 | 06/12/14 14:15 | LEG     | TAL SAV |
|           | Instrume | ent ID: CMSN     |     |        |          |        |        |                |         |         |
| Total/NA  | Prep     | 3010A            |     |        | 50 mL    | 50 mL  | 332730 | 06/06/14 10:16 | BJB     | TAL SAV |
| Total/NA  | Analysis | 6010C            |     | 1      | 50 mL    | 50 mL  | 333550 | 06/10/14 15:35 | BCB     | TAL SAV |
|           | Instrume | ent ID: ICPE     |     |        |          |        |        |                |         |         |
| Total/NA  | Analysis | 350.1            |     | 1      | 2 mL     | 2 mL   | 332667 | 06/05/14 15:12 | JME     | TAL SAV |
|           | Instrume | ent ID: KONELAB1 |     |        |          |        |        |                |         |         |
| Total/NA  | Analysis | 353.2            |     | 1      | 2 mL     | 2 mL   | 332350 | 06/04/14 15:36 | GRX     | TAL SAV |
|           | Instrume | ent ID: LACHAT2  |     |        |          |        |        |                |         |         |

Client Sample ID: FB-01\_06032014 Lab Sample ID: 680-101934-2

Date Collected: 06/03/14 10:45 Date Received: 06/04/14 08:44

|           | Batch                | Batch                     |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|---------------------------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                    | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis<br>Instrume | 8260B<br>ent ID: CMSAD    |     | 1      | 5 mL     | 5 mL   | 333167 | 06/09/14 20:04 | MMT     | TAL SAV |
| Total/NA  | Prep                 | 3520C                     |     |        | 256.2 mL | 0.5 mL | 333327 | 06/10/14 15:11 | RBS     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 8270D<br>ent ID: CMSN     |     | 1      | 256.2 mL | 0.5 mL | 333838 | 06/12/14 14:38 | LEG     | TAL SAV |
| Total/NA  | Prep                 | 3010A                     |     |        | 50 mL    | 50 mL  | 332730 | 06/06/14 10:16 | BJB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 6010C<br>ent ID: ICPE     |     | 1      | 50 mL    | 50 mL  | 333550 | 06/10/14 15:56 | BCB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>ent ID: KONELAB1 |     | 1      | 2 mL     | 2 mL   | 333058 | 06/06/14 11:56 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>ent ID: LACHAT2  |     | 1      | 2 mL     | 2 mL   | 332350 | 06/04/14 15:40 | GRX     | TAL SAV |

Client Sample ID: ERB-02-06032014 Lab Sample ID: 680-101934-3

Date Collected: 06/03/14 10:50 **Matrix: Water** Date Received: 06/04/14 08:44

|           | Batch    | Batch         |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8260B         |     | 1      | 5 mL     | 5 mL   | 333167 | 06/09/14 20:27 | MMT     | TAL SAV |
|           | Instrum  | ent ID: CMSAD |     |        |          |        |        |                |         |         |
| Total/NA  | Prep     | 3520C         |     |        | 252.3 mL | 0.5 mL | 333327 | 06/10/14 15:11 | RBS     | TAL SAV |
| Total/NA  | Analysis | 8270D         |     | 1      | 252.3 mL | 0.5 mL | 333838 | 06/12/14 15:02 | LEG     | TAL SAV |
|           | Instrum  | ent ID: CMSN  |     |        |          |        |        |                |         |         |
| Total/NA  | Prep     | 3010A         |     |        | 50 mL    | 50 mL  | 332730 | 06/06/14 10:16 | BJB     | TAL SAV |

TestAmerica Savannah

Matrix: Water

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: CSX Hutchinson Island VRP

Client Sample ID: ERB-02-06032014 Lab Sample ID: 680-101934-3

Date Collected: 06/03/14 10:50 Matrix: Water

Date Received: 06/04/14 08:44

|           | Batch                 | Batch                    |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|-----------------------|--------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                  | Method                   | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis              | 6010C                    |     | 1      | 50 mL   | 50 mL  | 333550 | 06/10/14 16:01 | BCB     | TAL SAV |
|           | Instrumer             | nt ID: ICPE              |     |        |         |        |        |                |         |         |
| Total/NA  | Analysis<br>Instrumer | 350.1<br>nt ID: KONELAB1 |     | 1      | 2 mL    | 2 mL   | 332667 | 06/05/14 15:21 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrumer | 353.2<br>nt ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 332350 | 06/04/14 15:41 | GRX     | TAL SAV |

Client Sample ID: TMW-4R\_06032014 Lab Sample ID: 680-101934-4

Date Collected: 06/03/14 12:30 Matrix: Water

Date Received: 06/04/14 08:44

|           | Batch                | Batch                     |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|---------------------------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                    | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis<br>Instrume | 8260B<br>ent ID: CMSAD    |     | 1      | 5 mL     | 5 mL   | 333167 | 06/09/14 20:50 | MMT     | TAL SAV |
| Total/NA  | Prep                 | 3520C                     |     |        | 252.4 mL | 0.5 mL | 333327 | 06/10/14 15:11 | RBS     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 8270D<br>ent ID: CMSN     |     | 1      | 252.4 mL | 0.5 mL | 333838 | 06/12/14 15:25 | LEG     | TAL SAV |
| Total/NA  | Prep                 | 3010A                     |     |        | 50 mL    | 50 mL  | 332730 | 06/06/14 10:16 | BJB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 6010C<br>ent ID: ICPE     |     | 1      | 50 mL    | 50 mL  | 333550 | 06/10/14 16:05 | BCB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>ent ID: KONELAB1 |     | 5      | 2 mL     | 2 mL   | 332667 | 06/05/14 15:50 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>ent ID: LACHAT2  |     | 1      | 2 mL     | 2 mL   | 332350 | 06/04/14 15:43 | GRX     | TAL SAV |

Client Sample ID: MW-01\_06032014 Lab Sample ID: 680-101934-5

Date Collected: 06/03/14 12:45 Matrix: Water Date Received: 06/04/14 08:44

|           | Batch                | Batch                     |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|---------------------------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                    | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis<br>Instrume | 8260B<br>ent ID: CMSAD    |     | 1      | 5 mL     | 5 mL   | 333167 | 06/09/14 21:13 | MMT     | TAL SAV |
| Total/NA  | Prep                 | 3520C                     |     |        | 262.6 mL | 0.5 mL | 333327 | 06/10/14 15:11 | RBS     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 8270D<br>ent ID: CMSN     |     | 1      | 262.6 mL | 0.5 mL | 333838 | 06/12/14 15:48 | LEG     | TAL SAV |
| Total/NA  | Prep                 | 3010A                     |     |        | 50 mL    | 50 mL  | 332730 | 06/06/14 10:16 | BJB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 6010C<br>ent ID: ICPE     |     | 1      | 50 mL    | 50 mL  | 333550 | 06/10/14 16:18 | BCB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>ent ID: KONELAB1 |     | 20     | 2 mL     | 2 mL   | 332667 | 06/05/14 16:09 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>ent ID: LACHAT2  |     | 1      | 2 mL     | 2 mL   | 332350 | 06/04/14 15:46 | GRX     | TAL SAV |

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Client Sample ID: PDMW-8R\_06032014

Date Collected: 06/03/14 14:05 Date Received: 06/04/14 08:44 Lab Sample ID: 680-101934-6

Matrix: Water

|           | Batch    | Batch            |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|----------|------------------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method           | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8260B            |     | 1      | 5 mL     | 5 mL   | 333167 | 06/09/14 21:37 | MMT     | TAL SAV |
|           | Instrume | ent ID: CMSAD    |     |        |          |        |        |                |         |         |
| Total/NA  | Prep     | 3520C            |     |        | 251.4 mL | 0.5 mL | 333327 | 06/10/14 15:11 | RBS     | TAL SAV |
| Total/NA  | Analysis | 8270D            |     | 1      | 251.4 mL | 0.5 mL | 333838 | 06/12/14 16:12 | LEG     | TAL SAV |
|           | Instrume | ent ID: CMSN     |     |        |          |        |        |                |         |         |
| Total/NA  | Prep     | 3010A            |     |        | 50 mL    | 50 mL  | 332730 | 06/06/14 10:16 | BJB     | TAL SAV |
| Total/NA  | Analysis | 6010C            |     | 1      | 50 mL    | 50 mL  | 333550 | 06/10/14 16:22 | BCB     | TAL SAV |
|           | Instrume | ent ID: ICPE     |     |        |          |        |        |                |         |         |
| Total/NA  | Analysis | 350.1            |     | 50     | 2 mL     | 2 mL   | 332667 | 06/05/14 16:09 | JME     | TAL SAV |
|           | Instrume | ent ID: KONELAB1 |     |        |          |        |        |                |         |         |
| Total/NA  | Analysis | 353.2            |     | 1      | 2 mL     | 2 mL   | 332350 | 06/04/14 15:47 | GRX     | TAL SAV |
|           | Instrume | ent ID: LACHAT2  |     |        |          |        |        |                |         |         |

Client Sample ID: PDMW-45R\_06032014

Date Collected: 06/03/14 14:20 Date Received: 06/04/14 08:44 Lab Sample ID: 680-101934-7

**Matrix: Water** 

|           | Batch    | Batch            |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|----------|------------------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method           | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8260B            |     | 1      | 5 mL     | 5 mL   | 333167 | 06/09/14 22:00 | MMT     | TAL SA\ |
|           | Instrum  | ent ID: CMSAD    |     |        |          |        |        |                |         |         |
| Total/NA  | Prep     | 3520C            | RE  |        | 266.1 mL | 0.5 mL | 333599 | 06/11/14 16:18 | RBS     | TAL SAV |
| Total/NA  | Analysis | 8270D            | RE  | 1      | 266.1 mL | 0.5 mL | 333830 | 06/12/14 19:55 | LEG     | TAL SA\ |
|           | Instrum  | ent ID: CMSE     |     |        |          |        |        |                |         |         |
| Total/NA  | Prep     | 3520C            |     |        | 253.7 mL | 0.5 mL | 333327 | 06/10/14 15:11 | RBS     | TAL SAV |
| Total/NA  | Analysis | 8270D            |     | 1      | 253.7 mL | 0.5 mL | 333838 | 06/12/14 16:35 | LEG     | TAL SAV |
|           | Instrum  | ent ID: CMSN     |     |        |          |        |        |                |         |         |
| Total/NA  | Prep     | 3010A            |     |        | 50 mL    | 50 mL  | 332730 | 06/06/14 10:16 | BJB     | TAL SAV |
| Total/NA  | Analysis | 6010C            |     | 1      | 50 mL    | 50 mL  | 333550 | 06/10/14 16:26 | BCB     | TAL SAV |
|           | Instrum  | ent ID: ICPE     |     |        |          |        |        |                |         |         |
| Total/NA  | Analysis | 350.1            |     | 5      | 2 mL     | 2 mL   | 332667 | 06/05/14 15:59 | JME     | TAL SAV |
|           | Instrum  | ent ID: KONELAB1 |     |        |          |        |        |                |         |         |
| Total/NA  | Analysis | 353.2            |     | 1      | 2 mL     | 2 mL   | 332350 | 06/04/14 15:49 | GRX     | TAL SAV |
|           | Instrum  | ent ID: LACHAT2  |     |        |          |        |        |                |         |         |

Client Sample ID: PDMW-29D\_06032014

Date Collected: 06/03/14 16:10

Date Received: 06/04/14 08:44

Lab Sample ID: 680-101934-8

Matrix: Water

|           | Batch    | Batch         |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8260B         |     | 1      | 5 mL     | 5 mL   | 333167 | 06/09/14 22:23 | MMT     | TAL SAV |
|           | Instrume | ent ID: CMSAD |     |        |          |        |        |                |         |         |
| Total/NA  | Prep     | 3520C         |     |        | 257.8 mL | 0.5 mL | 333327 | 06/10/14 15:11 | RBS     | TAL SAV |
| Total/NA  | Analysis | 8270D         |     | 1      | 257.8 mL | 0.5 mL | 333838 | 06/12/14 16:58 | LEG     | TAL SAV |
|           | Instrume | ent ID: CMSN  |     |        |          |        |        |                |         |         |

TestAmerica Savannah

Page 30 of 37

Client: AMEC Environment & Infrastructure, Inc.

Client Sample ID: PDMW-29D\_06032014

Project/Site: CSX Hutchinson Island VRP

Lab Sample ID: 680-101934-8

Matrix: Water

Date Collected: 06/03/14 16:10

Date Received: 06/04/14 08:44

|           | Batch                | Batch                     |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|---------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре                 | Method                    | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep                 | 3010A                     |     |        | 50 mL   | 50 mL  | 332730 | 06/06/14 10:16 | BJB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 6010C<br>ent ID: ICPE     |     | 1      | 50 mL   | 50 mL  | 333550 | 06/10/14 16:30 | ВСВ     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>ent ID: KONELAB1 |     | 10     | 2 mL    | 2 mL   | 332667 | 06/05/14 16:09 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>ent ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 332350 | 06/04/14 15:50 | GRX     | TAL SAV |

Client Sample ID: PDMW-30R\_06032014 Lab Sample ID: 680-101934-9

Date Collected: 06/03/14 16:40 Matrix: Water

Date Received: 06/04/14 08:44

|           | Batch    | Batch            |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|----------|------------------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method           | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8260B            |     | 1      | 5 mL     | 5 mL   | 333167 | 06/09/14 22:46 | MMT     | TAL SAV |
|           | Instrume | ent ID: CMSAD    |     |        |          |        |        |                |         |         |
| Total/NA  | Prep     | 3520C            |     |        | 255.2 mL | 0.5 mL | 333327 | 06/10/14 15:11 | RBS     | TAL SAV |
| Total/NA  | Analysis | 8270D            |     | 1      | 255.2 mL | 0.5 mL | 333838 | 06/12/14 17:22 | LEG     | TAL SAV |
|           | Instrume | ent ID: CMSN     |     |        |          |        |        |                |         |         |
| Total/NA  | Prep     | 3010A            |     |        | 50 mL    | 50 mL  | 332730 | 06/06/14 10:16 | BJB     | TAL SAV |
| Total/NA  | Analysis | 6010C            |     | 1      | 50 mL    | 50 mL  | 333550 | 06/10/14 16:35 | BCB     | TAL SAV |
|           | Instrume | ent ID: ICPE     |     |        |          |        |        |                |         |         |
| Total/NA  | Analysis | 350.1            |     | 1      | 2 mL     | 2 mL   | 332667 | 06/05/14 15:21 | JME     | TAL SAV |
|           | Instrume | ent ID: KONELAB1 |     |        |          |        |        |                |         |         |
| Total/NA  | Analysis | 353.2            |     | 1      | 2 mL     | 2 mL   | 332350 | 06/04/14 15:51 | GRX     | TAL SAV |
|           | Instrume | ent ID: LACHAT2  |     |        |          |        |        |                |         |         |

Lab Sample ID: 680-101934-10 Client Sample ID: DUP-01\_06032014

Date Collected: 06/03/14 00:00 **Matrix: Water** Date Received: 06/04/14 08:44

|           | Batch                | Batch                     |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|---------------------------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                    | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis<br>Instrume | 8260B<br>ent ID: CMSAD    |     | 1      | 5 mL     | 5 mL   | 333167 | 06/09/14 23:09 | MMT     | TAL SAV |
| Total/NA  | Prep                 | 3520C                     |     |        | 259.5 mL | 0.5 mL | 333327 | 06/10/14 15:11 | RBS     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 8270D<br>ent ID: CMSN     |     | 1      | 259.5 mL | 0.5 mL | 333838 | 06/12/14 17:45 | LEG     | TAL SAV |
| Total/NA  | Prep                 | 3010A                     |     |        | 50 mL    | 50 mL  | 332730 | 06/06/14 10:16 | BJB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 6010C<br>ent ID: ICPE     |     | 1      | 50 mL    | 50 mL  | 333550 | 06/10/14 16:39 | BCB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>ent ID: KONELAB1 |     | 10     | 2 mL     | 2 mL   | 332667 | 06/05/14 16:09 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>ent ID: LACHAT2  |     | 1      | 2 mL     | 2 mL   | 332350 | 06/04/14 15:52 | GRX     | TAL SAV |

### **Lab Chronicle**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-101934-1

Lab Sample ID: 680-101934-11

Lab Sample ID: 680-101934-12

ob uniched deb ib. eee 101001 1

Client Sample ID: DUP-02\_06032014

Date Collected: 06/03/14 00:00 Matrix: Water

Date Received: 06/04/14 08:44

|           | Batch    | Batch            |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|----------|------------------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method           | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8260B            |     | 1      | 5 mL     | 5 mL   | 333167 | 06/09/14 23:33 | MMT     | TAL SAV |
|           | Instrume | ent ID: CMSAD    |     |        |          |        |        |                |         |         |
| Total/NA  | Prep     | 3520C            |     |        | 252.5 mL | 0.5 mL | 333327 | 06/10/14 15:11 | RBS     | TAL SAV |
| Total/NA  | Analysis | 8270D            |     | 1      | 252.5 mL | 0.5 mL | 333838 | 06/12/14 18:09 | LEG     | TAL SAV |
|           | Instrume | ent ID: CMSN     |     |        |          |        |        |                |         |         |
| Total/NA  | Prep     | 3010A            |     |        | 50 mL    | 50 mL  | 332730 | 06/06/14 10:16 | BJB     | TAL SAV |
| Total/NA  | Analysis | 6010C            |     | 1      | 50 mL    | 50 mL  | 333550 | 06/10/14 16:43 | BCB     | TAL SAV |
|           | Instrume | ent ID: ICPE     |     |        |          |        |        |                |         |         |
| Total/NA  | Analysis | 350.1            |     | 50     | 2 mL     | 2 mL   | 332667 | 06/05/14 16:12 | JME     | TAL SAV |
|           | Instrume | ent ID: KONELAB1 |     |        |          |        |        |                |         |         |
| Total/NA  | Analysis | 353.2            |     | 1      | 2 mL     | 2 mL   | 332350 | 06/04/14 15:53 | GRX     | TAL SAV |
|           | Instrume | ent ID: LACHAT2  |     |        |          |        |        |                |         |         |

Client Sample ID: TRIPBLANK\_06032014

Date Collected: 06/03/14 00:00 Matrix: Water

Date Received: 06/04/14 08:44

|           | Batch    | Batch         |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8260B         |     | 1      | 5 mL    | 5 mL   | 333167 | 06/09/14 16:58 | MMT     | TAL SAV |
|           | Instrum  | ent ID: CMSAD |     |        |         |        |        |                |         |         |

#### Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

### **Laboratory: TestAmerica Savannah**

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

| Authority               | Program       | EPA Region | Certification ID     | Expiration Date |
|-------------------------|---------------|------------|----------------------|-----------------|
|                         | AFCEE         |            | SAVLAB               |                 |
| A2LA                    | DoD ELAP      |            | 399.01               | 02-28-15        |
| A2LA                    | ISO/IEC 17025 |            | 399.01               | 02-28-15        |
| Alabama                 | State Program | 4          | 41450                | 06-30-14 *      |
| Arkansas DEQ            | State Program | 6          | 88-0692              | 01-31-15        |
| California              | NELAP         | 9          | 3217CA               | 07-31-14 *      |
| Colorado                | State Program | 8          | N/A                  | 12-31-14        |
| Connecticut             | State Program | 1          | PH-0161              | 03-31-15        |
| Florida                 | NELAP         | 4          | E87052               | 06-30-14 *      |
| GA Dept. of Agriculture | State Program | 4          | N/A                  | 06-30-14 *      |
| Georgia                 | State Program | 4          | N/A                  | 06-30-14 *      |
| Georgia                 | State Program | 4          | 803                  | 06-30-14 *      |
| Guam                    | State Program | 9          | 09-005r              | 04-16-15        |
| Hawaii                  | State Program | 9          | N/A                  | 06-30-14 *      |
| Illinois                | NELAP         | 5          | 200022               | 11-30-14        |
| Indiana                 | State Program | 5          | N/A                  | 06-30-14 *      |
| lowa                    | State Program | 7          | 353                  | 07-01-15        |
| Kentucky (DW)           | State Program | 4          | 90084                | 12-31-14        |
| Kentucky (UST)          | State Program | 4          | 18                   | 02-28-15        |
| Louisiana               | NELAP         | 6          | 30690                | 06-30-14 *      |
| Louisiana (DW)          | NELAP         | 6          | LA140023             | 12-31-14        |
| Maine                   | State Program | 1          | GA00006              | 08-16-14        |
| Maryland                | State Program | 3          | 250                  | 12-31-14        |
| Massachusetts           | State Program | 1          | M-GA006              | 06-30-14 *      |
| Michigan                | State Program | 5          | 9925                 | 06-30-14 *      |
| Mississippi             | State Program | 4          | N/A                  | 06-30-14 *      |
| Montana                 | State Program | 8          | CERT0081             | 01-01-15        |
| Nebraska                | State Program | 7          | TestAmerica-Savannah | 06-30-14 *      |
| New Jersey              | NELAP         | 2          | GA769                | 06-30-14 *      |
| New Mexico              | State Program | 6          | N/A                  | 06-30-14 *      |
| New York                | NELAP         | 2          | 10842                | 03-31-15        |
| North Carolina DENR     | State Program | 4          | 269                  | 12-31-14        |
| North Carolina DHHS     | State Program | 4          | 13701                | 07-31-14 *      |
| Oklahoma                | State Program | 6          | 9984                 | 08-31-14        |
| Pennsylvania            | NELAP         | 3          | 68-00474             | 06-30-15        |
| Puerto Rico             | State Program | 2          | GA00006              | 12-31-14        |
| South Carolina          | State Program | 4          | 98001                | 06-30-14 *      |
| Tennessee               | State Program | 4          | TN02961              | 06-30-14 *      |
| Texas                   | NELAP         | 6          | T104704185-08-TX     | 11-30-14        |
| USDA                    | Federal       |            | SAV 3-04             | 06-11-17        |
| Virginia                | NELAP         | 3          | 460161               | 06-14-15        |
| Washington              | State Program | 10         | C805                 | 06-10-15        |
| West Virginia DEP       | State Program | 3          | 94                   | 06-30-14 *      |
| West Virginia DHHR      | State Program | 3          | 9950C                | 12-31-14        |
| Wisconsin               | State Program | 5          | 999819810            | 08-31-14        |
| Wyoming                 | State Program | 8          | 8TMS-L               | 06-30-14 *      |

TestAmerica Savannah

2

A

5

7

10

<sup>\*</sup> Certification renewal pending - certification considered valid.

# **Method Summary**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-101934-1

| Method | Method Description                     | Protocol | Laboratory |
|--------|----------------------------------------|----------|------------|
| 8260B  | Volatile Organic Compounds (GC/MS)     | SW846    | TAL SAV    |
| 8270D  | Semivolatile Organic Compounds (GC/MS) | SW846    | TAL SAV    |
| 6010C  | Metals (ICP)                           | SW846    | TAL SAV    |
| 350.1  | Nitrogen, Ammonia                      | MCAWW    | TAL SAV    |
| 353.2  | Nitrogen, Nitrate-Nitrite              | MCAWW    | TAL SAV    |

#### Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

#### Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

A

6

7

ŏ

10

11

| WINDOWS CONTROL OF THE WASHINGTON ON THE WORLD WINDOWS THE WASHINGTON ON THE WASHING |                  | LABORATORY                                                                                                                                                                                                   | INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NO                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8 R                       |                                                             |                                      | A CONCESSION OF THE PERSONS OF THE P | 22.47.49.                                                   | #<br>000                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L                | TestAmerica Savannah - 5102 LaRoche Avenue, Savannah, GA 31404 P: 912                                                                                                                                        | nah - 5102 LaF<br>Canton - 4101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | oche Avenue<br>Shuffel Drive   | , Savannah,<br>NW, North                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           | : 912-<br>1720                                              | -7858 F:<br>330-497-93               | F: 912-352-0165<br>-9396 F: 330-49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 354-7858 F; 912-352-0165<br>P; 330-497-9396 F; 330-497-0772 | SHIPMENT INFORMATION                                | ORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CANADA CA |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 🗂 TestAmerica Tampa - 6712 Benjamin Road, Sulte 100, Tampa, FL 33634<br>🗂 TestAmerica Pensacola - 3355 McLemore Drive, Pensacola, FL 32514 🛚 F                                                               | ı - 6712 Benjan<br>cola - 3355 Mc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | in Road, Sul<br>Lemore Drive   | te 100, Tamı<br>ı, Pensacola                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | oa, FL 33634<br>FL 32514  | <ul> <li>P: 813-885-742</li> <li>P: 850-474-1001</li> </ul> | <u></u>                              | F: 813-885-70<br>F: 850-478-2671                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5-7049<br>2671                                              | Shipment Method:                                    | A CONTRACTOR OF THE PROPERTY O |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| IKANSPOKIALION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  | ☐ TestAmerica Buffalo - 10 Hazelwood Drive, Suite 106, Amherst, NY 14228 P: 716-691-2600 F: 716-961 Fig. 1 FestAmerica Chicago - 2417 Bond Street, University Park, IL 60466 P: 708-534-5200 F: 708-534-5211 | o - 10 Hazelwo<br>jo - 2417 Bond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | od Dríve, Sul<br>Street, Univi | ie 106, Amhi<br>ersity Park, I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | erst, NY 142<br>L 60466 P | 28 P: 716<br>: 708-534-6                                    | P: 716-691-2600<br>8-534-5200 F: 708 | F: 716-<br>08-534-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F; 716-961-7991<br>8-534-5211                               | Shipment Tracking No:                               | No:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CSXT PROJECT INFORMATION GLINSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N. C.            | Proj. State (State of Origin)                                                                                                                                                                                | of Origin)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ٦                              | CONSULTANT INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ANT INF                   | ORWATI                                                      | Z                                    | ia diriki di ka                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             | £#;                                                 | 0725-005H-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CSXT Project Number: 6 4250 52 45050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | Proj. City: Save                                                                                                                                                                                             | 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                | COMPANIEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           | ERT                                                         |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             | PM: Pat H                                           | Harri Sor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Intellinsan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Island           |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40                             | 3850 EZ211 Rd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ezel                      | 3                                                           | K                                    | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                             | £-1                                                 | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ~033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CSXT Contact: Sam Ross                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ž                | 1 389 1 S                                                                                                                                                                                                    | Z<br>K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                              | Nashor Ile, Th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sip: II Le.               | 7                                                           | 3721                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             | S) (8:4-2)                                          | 658-1374Fax:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ħ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13 Davs          | Preservative Codes:                                                                                                                                                                                          | odes: 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | = Sulfur                       | Acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                         | 1                                                           | 3                                    | ā                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>ල්</u><br>ට                                              |                                                     | COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LAB USE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ays              | 0 = No Preservatives                                                                                                                                                                                         | tives 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 94                             | Sodium Thiosulfate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           | res.                                                        | ~                                    | ETHO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | METHODS FOR ANALYSIS                                        | VALYSIS                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Days             | 1 = Hydrochloric Acid                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5 = Sodium Hydroxide           | Hydroxic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           | Code                                                        | WI-SON 99                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Δ <u>S</u> (                                                | one on                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | aggestian.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AAAAAAAAAAAA     | 2 = Nitric Acid                                                                                                                                                                                              | و                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6 = Other                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                             |                                      | oom.ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>₩</b>                                                    |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Deliverables: Other Deliv:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | Matrix Codes:                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SO = Soil                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LIQ = Liquid              | p                                                           |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ;W,                                                         |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ndard (Level II)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - L              | GW = Groundwater                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SL = Sludge                    | e.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           | naradateke                                                  | 201                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>•</i> 기                                                  |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Level III Level IV Level IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ed, rolliat.     | SW = Surface Water                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SOL = Other Solid              | er Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |                                                             | he.<br>Ion                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , eA                                                        |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | g person and de la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SAMPLE INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                             | .≫.<br>.₩                            | (3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                             | e III e III e II e II e II e II e II e              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Containers       | Sample                                                                                                                                                                                                       | Collection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                | Filtered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           | Matrix                                                      | 14.<br>1100                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . <del>U</del> ,                                            | WANT-MAYO                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sample Identification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Number &<br>Type | Date                                                                                                                                                                                                         | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sampler                        | Y or N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Comp<br>or Grab           | Code                                                        |                                      | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             |                                                     | -1019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ERB-01_06032014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                | HIOZISI9                                                                                                                                                                                                     | 0 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PCo                            | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | J                         | <b>13</b> 9                                                 | ×                                    | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                           |                                                     | 34 Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FB-01_06032014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | σ                | H102 8 9                                                                                                                                                                                                     | 045<br>245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>ه</u>                       | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | J                         | 39                                                          | ×                                    | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                           |                                                     | nain C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FRB-02-06032014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | σ                | 13 2014                                                                                                                                                                                                      | 050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S A                            | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ৩                         | 3                                                           | XX                                   | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                           |                                                     | of Cus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TMW-4R-06032014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | σ                | H102/8/9                                                                                                                                                                                                     | 08.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23                             | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ૭                         | 39                                                          | X                                    | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                           |                                                     | stody                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| H1028090-10-MW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | σ                | 16 2 2 3                                                                                                                                                                                                     | 1245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E                              | z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9                         | 3                                                           | X<br>X                               | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                           | 444                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 41028070-88-MWad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | σ                | 102 519                                                                                                                                                                                                      | 1405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S<br>S                         | z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9                         | 3                                                           | ×                                    | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×                                                           |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PDMW-45R_06032014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ٥-               | 6 3 20 W                                                                                                                                                                                                     | 0271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | h<br>h                         | z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ৩                         | 3                                                           | ×                                    | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×                                                           |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PDMW-291-06032014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6                | 4102   5014                                                                                                                                                                                                  | 510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 月                              | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | اق                        | 3                                                           | X<br>X                               | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X<br>X                                                      |                                                     | Emidate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PDMW-30R-06032014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ح                | 6 3 2014                                                                                                                                                                                                     | 0<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                              | z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S                         | 73                                                          | K<br>K                               | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | X<br>X                                                      |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PUP-01_0603 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                | 6 [3 [2014                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                              | z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ৩                         | 3                                                           | ×<br>×                               | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×                                                           |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Pelihay Brand Bran | "   Date/Time:   |                                                                                                                                                                                                              | Received By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |                                                             | Date/filme                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 17                                                        | Comments & S                                        | Comments & Special Analytical Requirements:<br>≬                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | quirements:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Reinfquisy of By.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Date/Time:       |                                                                                                                                                                                                              | Received By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | )<br>                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                             | Date/Time                            | <b>4</b> n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                             | <u>\$</u>                                           | 76-2-39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 57200 M30 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Relinfuished By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Date/Time:       |                                                                                                                                                                                                              | Received By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                | N LOWER TO THE PARTY OF THE PAR |                           |                                                             | Date/Time.                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             | <b>a</b>                                            | 3 50 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Received By Laboralon: J.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Date/Time        | 75                                                                                                                                                                                                           | Lab Remarks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S:                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                             | LAB USE:                             | Cust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Custody Intact                                              | Custody Seal-#                                      | LAB Log Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ORIGINAL – RETURN TO LABORATORY WITH SAMPLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | APLES            |                                                                                                                                                                                                              | With the second |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | 2                                                           | VOICE IM                             | UST BE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SUBMITTE                                                    | INVOICE MUST BE SUBMITTED TO CSXT WITH ORIGINAL COC | RIGINAL COC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TAL-6006 (0509)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| # 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 SHIPMENT INFORMATION                                                                                                                                                                                        | Shipment Method:                                                                                                                                                                                           | Shipment Tracking No:                                                                                | Project #: 6-4300-5240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PM: D. L. L. C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TAT TAT SO                             | ă                        | (智慧)658-1374 Fax:      | COMMENTS LABUSE    | ANALYSIS               | W                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 19                    | ×           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |        | Comments &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 66-10121         | \$ ° ° -1] 8 · Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Custody Seat# LAB Log Number # # |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------|------------------------|--------------------|------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------|-------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F: 912-352-0165<br>-9396 F: 330-497-0772                                                                                                                                                                      | F: 813-885-7049<br>F: 850-478-2671                                                                                                                                                                         | TestAmerica Buffalo 10 Hazalwood Drive, Suite 106, Amherst, NY 14228 P: 716-691-2600 F: 716-961-7991 | A CONTRACTOR OF THE PROPERTY O | DOMESTIC .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ////////////////////////////////////// | 0 <u>0</u>               |                        | 0                  | METHODS FOR ANALYSIS   |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | (                     | ۶۲:<br>۱                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4;<br>3T<br>1A'    | 8                     | ×           | ×                                       | `.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (e)              | 18:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E: Custody Intact                | OV L. J. J. S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-354-7858<br>P: 330-497                                                                                                                                                                                      | 813-885-7427<br>50-474-1001                                                                                                                                                                                | P: 716-691-26                                                                                        | MATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Control of the contro | 00<br>[1]                              | Rast                     | 377                    | 0<br>6             | VOTE THE               | ar and a second                   | . 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ***                      | มไก<br>เ              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JW                 | A                     | X           | 200000000000000000000000000000000000000 | 20001100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ***********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | ,,ne   | Date/fime:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date/Time:       | Date/Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LAB USE:                         | muskamananana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | v 31404 P: 91<br>ston, OH 44720                                                                                                                                                                               | FL 33634 P:<br>L 32514 P: 8                                                                                                                                                                                | t, NY 14228                                                                                          | CONSULTANT INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PMEC EST                               | Adystoc Ezell Rd St. 100 | City, State, Zip. A.N. | Note my            |                        | Cog                               | Dinoi - Oi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>.</u>                 |                       | A CONTRACTOR OF THE CONTRACTOR | Type Matrix        | Comp Code or Grab     | 6 6 W       | - (6 W                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TATION -                         | Part of the second seco |
| 100 CO 10 | , Savannah, GA<br>NW, North Cai                                                                                                                                                                               | te 100, Tampa,<br>, Pensacola, Fl                                                                                                                                                                          | e 106, Amhers                                                                                        | ONSULTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ompany:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C                                      | 44880C                   | State Zir              | Acid               | 4 = Sodium Thiosulfate | 5 = Sodium Hydroxide<br>6 = Other | )} [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          | , c                   | ei conc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Filtered T         | Y or N C              | 7           | Z                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | 9      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | AND THE PROPERTY OF THE PROPER |                                  | TAXABLE INSTITUTE OF THE PARTY  |
| NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Roche Avenue,<br>Shuffel Drive                                                                                                                                                                                | min Road, Suil<br>cLemore Drive                                                                                                                                                                            | od Drive, Suit                                                                                       | A A C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        | <b>4</b>                 | <u>ه</u>               | 3 = Sulfuric Acid  | 4 ≈ Sodium             | 5 = Sodium<br>6 = Other           | ioo - 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SL = Sludge              | O =  O                | SOL = O(rie! Solic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>u</u>           | Sampler               | R           | 1                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A.1,0-part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | y.               | y.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (5:                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NFORMAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nah - 5102 Lal<br>Canton - 4101                                                                                                                                                                               | a - 6712 Benjal<br>cola - 3355 MI                                                                                                                                                                          | o - 10 Hazelwo                                                                                       | of Origin)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4800                                   |                          | 915M1                  | Name and Address   |                        |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | ,                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample Collection  |                       |             |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |        | Received By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Received By:     | Received By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lab Remarks:                     | anver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| LABORATORY INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TestAmerica Savannah - 5102 LaRoche Avenue, Savannah, GA 31404   P. 912-354-7858   F. 912-352-0165<br>TrestAmerica North Canton - 4101 Shuffel Drive NW, North Canton, OH 44720   P. 330-497-8396   F. 330-46 | □ TestAmerica Tampa - 6712 Benjamin Road, Suite 100, Tampa, FL 33634 P: 813-885-7427 F: 813-885-7049<br>□ TestAmerica Pensacola - 3355 McLemore Drive, Pensacola, FL 32514 P: 850-474-1001 F: 850-478-2671 | ☐ TestAmerica Buffal                                                                                 | Proj. State (State of Origin)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Proj. City:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Savaroa                                |                          | EN WON 289             | vativ              | 0 = No Preservatives   | 1 = Hydrochloric Acid             | State of the state | GW = Groundwater         | WW = Waste Water      | SW = Sunace water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Samole             | Date                  | 7: 69       | 63.IT                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A Company of the Comp |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |        | ARRINGA BERNAMAN STATEMENT OF THE STATEM | 330              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                               | <del></del>                                                                                                                                                                                                |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ON SANDERS OF THE PROPERTY OF  |                                        | Blad                     | 1                      |                    | /s                     | Days                              | (44)\\\(\text{\text{2}}\)\\\(\text{2}\)\\\\(\text{2}\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          | d, Format:            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Containers         | Number & Type         | 0           | d                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | ······ | Date/Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date/Time:       | Date/⊓me:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| THE PROPERTY OF THE PROPERTY O |                                                                                                                                                                                                               | _                                                                                                                                                                                                          |                                                                                                      | 3MATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Section Sectio | の中のの一丁の                                | Hatchinson I             |                        | Standard 6-13 Days |                        | Standard 14 Days                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | EDD Required, Format: | (SHEEDS SOON SEEDS SEEDS SEEDS SOON SEEDS  |                    | ıntification          | F107.50     | 06032014                                | COLUMN TO THE CO | ** The state of th | SANSONNE — 2 m — dyddyddiangenadle e ann am ellwyddian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A TO THE PERSON NAMED OF T |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |        | MW ons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| iver (Speprofit Stavy)//pressentialities/(Highpare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                               |                                                                                                                                                                                                            | TRANSPORTATION                                                                                       | CSXT PROJECT INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CSYT Droject Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SAT Project Number.                    | CSXT Project Name:       | CSXT Contact: Sam      | 18                 | 1 Dav Rush             | 2 Day Rush                        | S Day husii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CSXT Standard (Level II) | Cevel III             | Level IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SAMPLE INFORMATION | Sample Identification | 7505 - 0603 | TRIPBLANK OLO32014                      | H4644670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - Control of the Cont | TAMAKAN TAMAKA | THE PARTY OF THE P | dissolver revenue and the second seco |   |        | Refinqu's yed By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | elinqustif d IV. | Relinquished By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Received By Laboratory)          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# **Login Sample Receipt Checklist**

Client: AMEC Environment & Infrastructure, Inc.

Job Number: 680-101934-1

Login Number: 101934 List Source: TestAmerica Savannah

List Number: 1

Creator: Conner, Keaton

| Creator: Conner, Neaton                                                                                   |        |         |
|-----------------------------------------------------------------------------------------------------------|--------|---------|
| Question                                                                                                  | Answer | Comment |
| Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td> | N/A    |         |
| The cooler's custody seal, if present, is intact.                                                         | True   |         |
| Sample custody seals, if present, are intact.                                                             | True   |         |
| The cooler or samples do not appear to have been compromised or tampered with.                            | True   |         |
| Samples were received on ice.                                                                             | True   |         |
| Cooler Temperature is acceptable.                                                                         | True   |         |
| Cooler Temperature is recorded.                                                                           | True   |         |
| COC is present.                                                                                           | True   |         |
| COC is filled out in ink and legible.                                                                     | True   |         |
| COC is filled out with all pertinent information.                                                         | True   |         |
| Is the Field Sampler's name present on COC?                                                               | True   |         |
| There are no discrepancies between the containers received and the COC.                                   | True   |         |
| Samples are received within Holding Time.                                                                 | True   |         |
| Sample containers have legible labels.                                                                    | True   |         |
| Containers are not broken or leaking.                                                                     | True   |         |
| Sample collection date/times are provided.                                                                | True   |         |
| Appropriate sample containers are used.                                                                   | True   |         |
| Sample bottles are completely filled.                                                                     | True   |         |
| Sample Preservation Verified.                                                                             | True   |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs                          | True   |         |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").                           | True   |         |
| Multiphasic samples are not present.                                                                      | True   |         |
| Samples do not require splitting or compositing.                                                          | True   |         |
| Residual Chlorine Checked.                                                                                | N/A    |         |

4

6

0

9

10

11



THE LEADER IN ENVIRONMENTAL TESTING

# ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

TestAmerica Job ID: 680-101996-1

Client Project/Site: CSX Hutchinson Island VRP

For:

AMEC Environment & Infrastructure, Inc. 2677 Buford Highway Atlanta, Georgia 30324

Attn: Mr. Steve Foley

Authorized for release by:

6/20/2014 10:34:56 AM

Lisa Harvey, Project Manager II (912)354-7858 e.3221

lisa.harvey@testamericainc.com

·····LINKS ······

Review your project results through

Total Access

**Have a Question?** 



Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Job ID: 680-101996-1

Laboratory: TestAmerica Savannah

Narrative

### **CASE NARRATIVE**

Client: AMEC Environment & Infrastructure, Inc.
Project: CSX Hutchinson Island VRP
Report Number: 680-101996-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

No additional analytical or quality issues were noted, other than those described below or in the Definitions/Glossary page.

#### <u>RECEIPT</u>

The samples were received on 6/5/2014 9:04 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 3 coolers at receipt time were 1.4° C, 2.8° C and 2.8° C.

#### **VOLATILE ORGANIC COMPOUNDS (GC-MS)**

Samples PDMW-07P\_06042014 (680-101996-1), PDMW-46\_06042014 (680-101996-2), MW-201\_06042014 (680-101996-3), PDMW-19P\_06042014 (680-101996-4), PDMW-47\_06042014 (680-101996-5), PDMW-23R\_06042014 (680-101996-6), PDMW-33R2\_06042014 (680-101996-7), PDMW-32R\_06042014 (680-101996-9), EW-01\_06042014 (680-101996-10) and TRIPBLANK\_06042014 (680-101996-12) were analyzed for Volatile Organic Compounds (GC-MS) in accordance with EPA SW-846 Method 8260B.

#### SEMIVOLATILE ORGANIC COMPOUNDS (AQUEOUS)

Samples PDMW-07P\_06042014 (680-101996-1), PDMW-46\_06042014 (680-101996-2), MW-201\_06042014 (680-101996-3), PDMW-19P\_06042014 (680-101996-4), PDMW-47\_06042014 (680-101996-5), PDMW-23R\_06042014 (680-101996-6), PDMW-33R2\_06042014 (680-101996-7), PDMW-32R\_06042014 (680-101996-9) and EW-01\_06042014 (680-101996-10) were analyzed for Semivolatile Organic Compounds (Aqueous) in accordance with EPA SW-846 Method 8270D.

Method(s) 8270D: The continuing calibration verification (CCV) analyzed in batch 333838 was outside the method criteria for the following analyte(s): 2,4,6-Tribromophenol. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

#### **METALS (ICP)**

Samples PDMW-07P\_06042014 (680-101996-1), PDMW-46\_06042014 (680-101996-2), MW-201\_06042014 (680-101996-3), PDMW-19P\_06042014 (680-101996-4), PDMW-47\_06042014 (680-101996-5), PDMW-23R\_06042014 (680-101996-6), PDMW-33R2\_06042014 (680-101996-7), PDMW-32R\_06042014 (680-101996-9) and EW-01\_06042014 (680-101996-10) were analyzed for Metals (ICP) in accordance with EPA SW-846 Method 6010C. The samples were prepared on 06/06/2014 and 06/07/2014 and analyzed on 06/10/2014.

Zinc recovery is outside criteria low for the MSD of sample EW-01\_06042014 (680-101996-10) in batch 680-333550.

#### **AMMONIA**

Samples PDMW-07P\_06042014 (680-101996-1), PDMW-46\_06042014 (680-101996-2), MW-201\_06042014 (680-101996-3), PDMW-19P\_06042014 (680-101996-4), PDMW-47\_06042014 (680-101996-5), PDMW-23R\_06042014 (680-101996-6), PDMW-33R2\_06042014 (680-101996-7), PDMW-48\_06042014 (680-101996-8), PDMW-32R\_06042014 (680-101996-9), EW-01\_06042014 (680-101996-10) and PDMW-50\_06042014 (680-101996-11) were analyzed for ammonia in accordance with EPA Method 350.1.

Method(s) 350.1: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 333396 were outside control limits. Sample

6

4

5

6

9

10

11

#### **Case Narrative**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-101996-1

Job ID: 680-101996-1 (Continued)

#### Laboratory: TestAmerica Savannah (Continued)

matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Samples PDMW-07P\_06042014 (680-101996-1)[10X], PDMW-46\_06042014 (680-101996-2)[2X], MW-201\_06042014 (680-101996-3) [10X], PDMW-19P\_06042014 (680-101996-4)[5X], PDMW-47\_06042014 (680-101996-5)[50X], PDMW-23R\_06042014 (680-101996-6) [2X], PDMW-33R2\_06042014 (680-101996-7)[10X], PDMW-48\_06042014 (680-101996-8)[20X], PDMW-32R\_06042014 (680-101996-9) [10X], EW-01\_06042014 (680-101996-10)[1000X] and PDMW-50\_06042014 (680-101996-11)[5X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

#### **NITRATE-NITRITE AS NITROGEN**

Samples PDMW-07P\_06042014 (680-101996-1), PDMW-46\_06042014 (680-101996-2), MW-201\_06042014 (680-101996-3), PDMW-19P\_06042014 (680-101996-4), PDMW-47\_06042014 (680-101996-5), PDMW-23R\_06042014 (680-101996-6), PDMW-33R2\_06042014 (680-101996-7), PDMW-48\_06042014 (680-101996-8), PDMW-32R\_06042014 (680-101996-9), EW-01\_06042014 (680-101996-10) and PDMW-50\_06042014 (680-101996-11) were analyzed for nitrate-nitrite as nitrogen in accordance with EPA Method 353.2.

3

4

5

6

9

10

11

# **Definitions/Glossary**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-101996-1

### **Qualifiers**

### **GC/MS VOA**

Qualifier **Qualifier Description** 

U Indicates the analyte was analyzed for but not detected.

#### **GC/MS Semi VOA**

Qualifier **Qualifier Description** 

Indicates the analyte was analyzed for but not detected.

#### **Metals**

Qualifier **Qualifier Description** 

Ū Indicates the analyte was analyzed for but not detected.

4 MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not

applicable.

**Quality Control** 

Relative error ratio

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

#### **General Chemistry**

Qualifier **Qualifier Description** Ū Indicates the analyte was analyzed for but not detected. F1 MS and/or MSD Recovery exceeds the control limits

# **Glossary**

QC

RER

RL**RPD** 

TEF

**TEQ** 

| Abbreviation   | These commonly used abbreviations may or may not be present in this report.                                 |
|----------------|-------------------------------------------------------------------------------------------------------------|
| ¤              | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |
| %R             | Percent Recovery                                                                                            |
| CFL            | Contains Free Liquid                                                                                        |
| CNF            | Contains no Free Liquid                                                                                     |
| DER            | Duplicate error ratio (normalized absolute difference)                                                      |
| Dil Fac        | Dilution Factor                                                                                             |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |
| DLC            | Decision level concentration                                                                                |
| MDA            | Minimum detectable activity                                                                                 |
| EDL            | Estimated Detection Limit                                                                                   |
| MDC            | Minimum detectable concentration                                                                            |
| MDL            | Method Detection Limit                                                                                      |
| ML             | Minimum Level (Dioxin)                                                                                      |
| NC             | Not Calculated                                                                                              |
| ND             | Not detected at the reporting limit (or MDL or EDL if shown)                                                |
| PQL            | Practical Quantitation Limit                                                                                |

TestAmerica Savannah

Page 4 of 37

# **Sample Summary**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

> Client Sample ID PDMW-07P\_06042014

PDMW-46\_06042014

PDMW-19P\_06042014

PDMW-47\_06042014 PDMW-23R\_06042014

PDMW-33R2\_06042014 PDMW-48\_06042014

PDMW-32R\_06042014 EW-01\_06042014

PDMW-50\_06042014

TRIPBLANK\_06042014

MW-201\_06042014

Lab Sample ID

680-101996-1

680-101996-2 680-101996-3

680-101996-4

680-101996-5

680-101996-6 680-101996-7

680-101996-8 680-101996-9

680-101996-10 680-101996-11

680-101996-12

TestAmerica Job ID: 680-101996-1

06/04/14 16:25

06/04/14 00:00

| Matrix | Collected      | Received       |
|--------|----------------|----------------|
| Water  | 06/04/14 09:45 | 06/05/14 09:04 |
| Water  | 06/04/14 09:30 | 06/05/14 09:04 |
| Water  | 06/04/14 10:40 | 06/05/14 09:04 |
| Water  | 06/04/14 10:55 | 06/05/14 09:04 |
| Water  | 06/04/14 11:45 | 06/05/14 09:04 |
| Water  | 06/04/14 12:45 | 06/05/14 09:04 |
| Water  | 06/04/14 13:15 | 06/05/14 09:04 |
| Water  | 06/04/14 14:35 | 06/05/14 09:04 |
| Water  | 06/04/14 15:20 | 06/05/14 09:04 |
| Water  | 06/04/14 15:09 | 06/05/14 09:04 |

Water

Water

06/05/14 09:04

06/05/14 09:04

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: CSX Hutchinson Island VRP

Client Sample ID: PDMW-07P\_06042014 Lab Sample ID: 680-101996-1

Date Collected: 06/04/14 09:45 Matrix: Water

Date Received: 06/05/14 09:04

| Analyte              | Result    | Qualifier | RL       | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|----------------------|-----------|-----------|----------|-----|------|---|----------|----------------|---------|
| Benzene              | 1.0       | U         | 1.0      |     | ug/L |   |          | 06/11/14 14:12 | 1       |
| Ethylbenzene         | 1.0       | U         | 1.0      |     | ug/L |   |          | 06/11/14 14:12 | 1       |
| Toluene              | 1.0       | U         | 1.0      |     | ug/L |   |          | 06/11/14 14:12 | 1       |
| Xylenes, Total       | 2.0       | U         | 2.0      |     | ug/L |   |          | 06/11/14 14:12 | 1       |
| Surrogate            | %Recovery | Qualifier | Limits   |     |      |   | Prepared | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene | 95        |           | 70 - 130 |     |      | - |          | 06/11/14 14:12 | 1       |
| Dibromofluoromethane | 97        |           | 70 - 130 |     |      |   |          | 06/11/14 14:12 | 1       |
| Toluene-d8 (Surr)    | 102       |           | 70 - 130 |     |      |   |          | 06/11/14 14:12 | 1       |

| Analyte                | Result    | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|-----|------|---|----------------|----------------|---------|
| Acenaphthene           | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:32 | 1       |
| Acenaphthylene         | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:32 | 1       |
| Anthracene             | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:32 | 1       |
| Benzo[a]anthracene     | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:32 | 1       |
| Benzo[a]pyrene         | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:32 | 1       |
| Benzo[b]fluoranthene   | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:32 | 1       |
| Benzo[g,h,i]perylene   | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:32 | 1       |
| Benzo[k]fluoranthene   | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:32 | 1       |
| Chrysene               | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:32 | 1       |
| Dibenz(a,h)anthracene  | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:32 | 1       |
| Fluoranthene           | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:32 | 1       |
| Fluorene               | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:32 | 1       |
| Indeno[1,2,3-cd]pyrene | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:32 | 1       |
| 1-Methylnaphthalene    | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:32 | 1       |
| 2-Methylnaphthalene    | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:32 | 1       |
| Naphthalene            | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:32 | 1       |
| Phenanthrene           | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:32 | 1       |
| Pyrene                 | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:32 | 1       |
| Surrogate              | %Recovery | Qualifier | Limits   |     |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl       | 59        |           | 38 - 130 |     |      |   | 06/10/14 15:11 | 06/12/14 18:32 | 1       |
| Nitrobenzene-d5 (Surr) | 66        |           | 39 - 130 |     |      |   | 06/10/14 15:11 | 06/12/14 18:32 | 1       |
| Ternhenyl-d14 (Surr)   | 57        |           | 10 143   |     |      |   | 06/10/14 15:11 | 06/12/14 18:32 | 1       |

| Surrogate              | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|----------------|----------------|---------|
| 2-Fluorobiphenyl       | 59        |           | 38 - 130 | 06/10/14 15:11 | 06/12/14 18:32 | 1       |
| Nitrobenzene-d5 (Surr) | 66        |           | 39 - 130 | 06/10/14 15:11 | 06/12/14 18:32 | 1       |
| Terphenyl-d14 (Surr)   | 57        |           | 10 - 143 | 06/10/14 15:11 | 06/12/14 18:32 | 1       |

| Analyte  | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|----------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Arsenic  | 20     | U         | 20 |     | ug/L |   | 06/06/14 10:16 | 06/10/14 17:26 | 1       |
| Chromium | 10     | U         | 10 |     | ug/L |   | 06/06/14 10:16 | 06/10/14 17:26 | 1       |
| Lead     | 10     | U         | 10 |     | ug/L |   | 06/06/14 10:16 | 06/10/14 17:26 | 1       |
| Nickel   | 40     | U         | 40 |     | ug/L |   | 06/06/14 10:16 | 06/10/14 17:26 | 1       |
| Zinc     | 20     | U         | 20 |     | ug/L |   | 06/06/14 10:16 | 06/10/14 17:26 | 1       |

| General Chemistry |        |           |       |     |      | _ |          |                |         |
|-------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Analyte           | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Ammonia           | 12     |           | 0.50  |     | mg/L |   |          | 06/10/14 11:17 | 10      |
| Nitrate as N      | 0.050  | U         | 0.050 |     | mg/L |   |          | 06/05/14 17:12 | 1       |

TestAmerica Savannah

Page 6 of 37

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Client Sample ID: PDMW-46\_06042014

Lab Sample ID: 680-101996-2

Matrix: Water

Date Collected: 06/04/14 09:30 Date Received: 06/05/14 09:04

| Analyte              | Result    | Qualifier | RL       | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|----------------------|-----------|-----------|----------|-----|------|---|----------|----------------|---------|
| Benzene              | 1.0       | U         | 1.0      |     | ug/L |   |          | 06/11/14 14:35 | 1       |
| Ethylbenzene         | 1.0       | U         | 1.0      |     | ug/L |   |          | 06/11/14 14:35 | 1       |
| Toluene              | 1.0       | U         | 1.0      |     | ug/L |   |          | 06/11/14 14:35 | 1       |
| Xylenes, Total       | 2.0       | U         | 2.0      |     | ug/L |   |          | 06/11/14 14:35 | 1       |
| Surrogate            | %Recovery | Qualifier | Limits   |     |      |   | Prepared | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene | 95        |           | 70 - 130 |     |      | - |          | 06/11/14 14:35 | 1       |
| Dibromofluoromethane | 95        |           | 70 - 130 |     |      |   |          | 06/11/14 14:35 | 1       |
| Toluene-d8 (Surr)    | 103       |           | 70 - 130 |     |      |   |          | 06/11/14 14:35 | 1       |

| Analyte                | Result    | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|-----|------|---|----------------|----------------|---------|
| Acenaphthene           | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:55 | 1       |
| Acenaphthylene         | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:55 | 1       |
| Anthracene             | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:55 | 1       |
| Benzo[a]anthracene     | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:55 | 1       |
| Benzo[a]pyrene         | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:55 | 1       |
| Benzo[b]fluoranthene   | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:55 | 1       |
| Benzo[g,h,i]perylene   | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:55 | 1       |
| Benzo[k]fluoranthene   | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:55 | 1       |
| Chrysene               | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:55 | 1       |
| Dibenz(a,h)anthracene  | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:55 | 1       |
| Fluoranthene           | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:55 | 1       |
| Fluorene               | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:55 | 1       |
| Indeno[1,2,3-cd]pyrene | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:55 | 1       |
| 1-Methylnaphthalene    | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:55 | 1       |
| 2-Methylnaphthalene    | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:55 | 1       |
| Naphthalene            | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:55 | 1       |
| Phenanthrene           | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:55 | 1       |
| Pyrene                 | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 18:55 | 1       |
| Surrogate              | %Recovery | Qualifier | Limits   |     |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl       | 65        |           | 38 - 130 |     |      |   | 06/10/14 15:11 | 06/12/14 18:55 | 1       |
| Nitrobenzene-d5 (Surr) | 76        |           | 39 - 130 |     |      |   | 06/10/14 15:11 | 06/12/14 18:55 | 1       |
| Terphenyl-d14 (Surr)   | 60        |           | 10 - 143 |     |      |   | 06/10/14 15:11 | 06/12/14 18:55 | 1       |

| Terphenyl-d14 (Surr)         | 60     |           | 10 - 143 |     |      |   | 06/10/14 15:11 | 06/12/14 18:55 | 1       |
|------------------------------|--------|-----------|----------|-----|------|---|----------------|----------------|---------|
| Method: 6010C - Metals (ICP) |        |           |          |     |      |   |                |                |         |
| Analyte                      | Result | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                      | 20     | U         | 20       |     | ug/L |   | 06/06/14 10:16 | 06/10/14 17:34 | 1       |
| Chromium                     | 10     | U         | 10       |     | ug/L |   | 06/06/14 10:16 | 06/10/14 17:34 | 1       |
| Lead                         | 10     | U         | 10       |     | ug/L |   | 06/06/14 10:16 | 06/10/14 17:34 | 1       |
| Nickel                       | 40     | U         | 40       |     | ug/L |   | 06/06/14 10:16 | 06/10/14 17:34 | 1       |
| Zinc                         | 400    |           | 20       |     | ug/L |   | 06/06/14 10:16 | 06/10/14 17:34 | 1       |
| General Chemistry            |        |           |          |     |      |   |                |                |         |
| Analyte                      | Result | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Ammonia                      | 2.9    |           | 0.10     |     | mg/L |   |                | 06/10/14 09:44 | 2       |
| Nitrate as N                 | 0.050  | U         | 0.050    |     | mg/L |   |                | 06/05/14 17:13 | 1       |

TestAmerica Savannah

Page 7 of 37

6/20/2014

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: CSX Hutchinson Island VRP

Client Sample ID: MW-201\_06042014 Lab Sample ID: 680-101996-3

Date Collected: 06/04/14 10:40 Matrix: Water

Date Received: 06/05/14 09:04

| Analyte              | Result    | Qualifier | RL       | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|----------------------|-----------|-----------|----------|-----|------|---|----------|----------------|---------|
| Benzene              | 1.0       | U         | 1.0      |     | ug/L |   |          | 06/11/14 14:58 | 1       |
| Ethylbenzene         | 1.0       | U         | 1.0      |     | ug/L |   |          | 06/11/14 14:58 | 1       |
| Toluene              | 1.0       | U         | 1.0      |     | ug/L |   |          | 06/11/14 14:58 | 1       |
| Xylenes, Total       | 2.0       | U         | 2.0      |     | ug/L |   |          | 06/11/14 14:58 | 1       |
| Surrogate            | %Recovery | Qualifier | Limits   |     |      |   | Prepared | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene | 94        |           | 70 - 130 |     |      | - |          | 06/11/14 14:58 | 1       |
| Dibromofluoromethane | 93        |           | 70 - 130 |     |      |   |          | 06/11/14 14:58 | 1       |
| Toluene-d8 (Surr)    | 102       |           | 70 - 130 |     |      |   |          | 06/11/14 14:58 | 1       |

| Analyte                | Result    | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|-----|------|---|----------------|----------------|---------|
| Acenaphthene           |           | U         | 10       |     | ug/L |   | 06/10/14 15:11 | 06/12/14 19:18 | 1       |
| Acenaphthylene         | 10        | U         | 10       |     | ug/L |   | 06/10/14 15:11 | 06/12/14 19:18 | 1       |
| Anthracene             | 10        | U         | 10       |     | ug/L |   | 06/10/14 15:11 | 06/12/14 19:18 | 1       |
| Benzo[a]anthracene     | 10        | U         | 10       |     | ug/L |   | 06/10/14 15:11 | 06/12/14 19:18 | 1       |
| Benzo[a]pyrene         | 10        | U         | 10       |     | ug/L |   | 06/10/14 15:11 | 06/12/14 19:18 | 1       |
| Benzo[b]fluoranthene   | 10        | U         | 10       |     | ug/L |   | 06/10/14 15:11 | 06/12/14 19:18 | 1       |
| Benzo[g,h,i]perylene   | 10        | U         | 10       |     | ug/L |   | 06/10/14 15:11 | 06/12/14 19:18 | 1       |
| Benzo[k]fluoranthene   | 10        | U         | 10       |     | ug/L |   | 06/10/14 15:11 | 06/12/14 19:18 | 1       |
| Chrysene               | 10        | U         | 10       |     | ug/L |   | 06/10/14 15:11 | 06/12/14 19:18 | 1       |
| Dibenz(a,h)anthracene  | 10        | U         | 10       |     | ug/L |   | 06/10/14 15:11 | 06/12/14 19:18 | 1       |
| Fluoranthene           | 10        | U         | 10       |     | ug/L |   | 06/10/14 15:11 | 06/12/14 19:18 | 1       |
| Fluorene               | 10        | U         | 10       |     | ug/L |   | 06/10/14 15:11 | 06/12/14 19:18 | 1       |
| Indeno[1,2,3-cd]pyrene | 10        | U         | 10       |     | ug/L |   | 06/10/14 15:11 | 06/12/14 19:18 | 1       |
| 1-Methylnaphthalene    | 10        | U         | 10       |     | ug/L |   | 06/10/14 15:11 | 06/12/14 19:18 | 1       |
| 2-Methylnaphthalene    | 10        | U         | 10       |     | ug/L |   | 06/10/14 15:11 | 06/12/14 19:18 | 1       |
| Naphthalene            | 10        | U         | 10       |     | ug/L |   | 06/10/14 15:11 | 06/12/14 19:18 | 1       |
| Phenanthrene           | 10        | U         | 10       |     | ug/L |   | 06/10/14 15:11 | 06/12/14 19:18 | 1       |
| Pyrene                 | 10        | U         | 10       |     | ug/L |   | 06/10/14 15:11 | 06/12/14 19:18 | 1       |
| Surrogate              | %Recovery | Qualifier | Limits   |     |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl       | 45        |           | 38 - 130 |     |      |   | 06/10/14 15:11 | 06/12/14 19:18 | 1       |
| Nitrobenzene-d5 (Surr) | 52        |           | 39 - 130 |     |      |   | 06/10/14 15:11 | 06/12/14 19:18 | 1       |
| Terphenyl-d14 (Surr)   | 52        |           | 10 - 143 |     |      |   | 06/10/14 15:11 | 06/12/14 19:18 | 1       |

| Terphenyl-d14 (Surr)         | 52     |           | 10 - 143 |     |      |   | 06/10/14 15:11 | 06/12/14 19:18 | 1       |
|------------------------------|--------|-----------|----------|-----|------|---|----------------|----------------|---------|
| Method: 6010C - Metals (ICP) |        |           |          |     |      |   |                |                |         |
| Analyte                      | Result | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                      | 20     | U         |          |     | ug/L |   | 06/07/14 09:43 | 06/10/14 18:16 | 1       |
| Chromium                     | 10     | U         | 10       |     | ug/L |   | 06/07/14 09:43 | 06/10/14 18:16 | 1       |
| Lead                         | 10     | U         | 10       |     | ug/L |   | 06/07/14 09:43 | 06/10/14 18:16 | 1       |
| Nickel                       | 40     | U         | 40       |     | ug/L |   | 06/07/14 09:43 | 06/10/14 18:16 | 1       |
| Zinc                         | 20     | U         | 20       |     | ug/L |   | 06/07/14 09:43 | 06/10/14 18:16 | 1       |
| General Chemistry            |        |           |          |     |      |   |                |                |         |
| Analyte                      | Result | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Ammonia                      | 15     |           | 0.50     |     | mg/L |   |                | 06/10/14 09:34 | 10      |
| Nitrate as N                 | 0.070  |           | 0.050    |     | mg/L |   |                | 06/05/14 17:15 | 1       |

TestAmerica Savannah

Page 8 of 37

Client: AMEC Environment & Infrastructure, Inc.

Client Sample ID: PDMW-19P\_06042014

Project/Site: CSX Hutchinson Island VRP

Lab Sample ID: 680-101996-4

Matrix: Water

| Date Collected: 06/04/14 10:55 |  |
|--------------------------------|--|
|                                |  |

Date Received: 06/05/14 09:04

| Analyte              | Result    | Qualifier | RL       | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|----------------------|-----------|-----------|----------|-----|------|---|----------|----------------|---------|
| Benzene              | 1.0       | U         | 1.0      |     | ug/L |   |          | 06/11/14 15:21 | 1       |
| Ethylbenzene         | 1.0       | U         | 1.0      |     | ug/L |   |          | 06/11/14 15:21 | 1       |
| Toluene              | 1.0       | U         | 1.0      |     | ug/L |   |          | 06/11/14 15:21 | 1       |
| Xylenes, Total       | 2.0       | U         | 2.0      |     | ug/L |   |          | 06/11/14 15:21 | 1       |
| Surrogate            | %Recovery | Qualifier | Limits   |     |      |   | Prepared | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene | 95        |           | 70 - 130 |     |      | - |          | 06/11/14 15:21 | 1       |
| Dibromofluoromethane | 93        |           | 70 - 130 |     |      |   |          | 06/11/14 15:21 | 1       |
| Toluene-d8 (Surr)    | 102       |           | 70 - 130 |     |      |   |          | 06/11/14 15:21 | 1       |

| Analyte                | Result    | Qualifier | RL     | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|--------|-----|------|---|----------------|----------------|---------|
| Acenaphthene           | 9.8       | U         | 9.8    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 19:42 | 1       |
| Acenaphthylene         | 9.8       | U         | 9.8    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 19:42 | 1       |
| Anthracene             | 9.8       | U         | 9.8    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 19:42 | 1       |
| Benzo[a]anthracene     | 9.8       | U         | 9.8    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 19:42 | 1       |
| Benzo[a]pyrene         | 9.8       | U         | 9.8    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 19:42 | 1       |
| Benzo[b]fluoranthene   | 9.8       | U         | 9.8    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 19:42 | 1       |
| Benzo[g,h,i]perylene   | 9.8       | U         | 9.8    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 19:42 | 1       |
| Benzo[k]fluoranthene   | 9.8       | U         | 9.8    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 19:42 | 1       |
| Chrysene               | 9.8       | U         | 9.8    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 19:42 | 1       |
| Dibenz(a,h)anthracene  | 9.8       | U         | 9.8    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 19:42 | 1       |
| Fluoranthene           | 9.8       | U         | 9.8    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 19:42 | 1       |
| Fluorene               | 9.8       | U         | 9.8    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 19:42 | 1       |
| Indeno[1,2,3-cd]pyrene | 9.8       | U         | 9.8    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 19:42 | 1       |
| 1-Methylnaphthalene    | 9.8       | U         | 9.8    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 19:42 | 1       |
| 2-Methylnaphthalene    | 9.8       | U         | 9.8    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 19:42 | 1       |
| Naphthalene            | 9.8       | U         | 9.8    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 19:42 | 1       |
| Phenanthrene           | 9.8       | U         | 9.8    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 19:42 | 1       |
| Pyrene                 | 9.8       | U         | 9.8    |     | ug/L |   | 06/10/14 15:11 | 06/12/14 19:42 | 1       |
| Surrogate              | %Recovery | Qualifier | Limits |     |      |   | Prepared       | Analyzed       | Dil Fac |

| Surrogate              | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|----------------|----------------|---------|
| 2-Fluorobiphenyl       | 63        |           | 38 - 130 | 06/10/14 15:11 | 06/12/14 19:42 | 1       |
| Nitrobenzene-d5 (Surr) | 75        |           | 39 _ 130 | 06/10/14 15:11 | 06/12/14 19:42 | 1       |
| Terphenyl-d14 (Surr)   | 72        |           | 10 - 143 | 06/10/14 15:11 | 06/12/14 19:42 | 1       |

| Analyte  | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|----------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Arsenic  | 20     | U         | 20 |     | ug/L |   | 06/07/14 09:43 | 06/10/14 18:21 | 1       |
| Chromium | 10     | U         | 10 |     | ug/L |   | 06/07/14 09:43 | 06/10/14 18:21 | 1       |
| Lead     | 10     | U         | 10 |     | ug/L |   | 06/07/14 09:43 | 06/10/14 18:21 | 1       |
| Nickel   | 40     | U         | 40 |     | ug/L |   | 06/07/14 09:43 | 06/10/14 18:21 | 1       |
| Zinc     | 20     | U         | 20 |     | ug/L |   | 06/07/14 09:43 | 06/10/14 18:21 | 1       |

| General Chemistry |        |           |       |     |      |   |          |                |         |
|-------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Analyte           | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Ammonia           | 5.6    |           | 0.25  |     | mg/L |   |          | 06/10/14 11:17 | 5       |
| Nitrate as N      | 0.050  | U         | 0.050 |     | mg/L |   |          | 06/05/14 17:18 | 1       |

TestAmerica Savannah

Page 9 of 37

Lab Sample ID: 680-101996-5

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: CSX Hutchinson Island VRP

Client Sample ID: PDMW-47\_06042014

Date Collected: 06/04/14 11:45 Matrix: Water

Date Received: 06/05/14 09:04

| Analyte              | Result    | Qualifier | RL       | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|----------------------|-----------|-----------|----------|-----|------|---|----------|----------------|---------|
| Benzene              | 1.0       | U         | 1.0      |     | ug/L |   |          | 06/11/14 15:44 | 1       |
| Ethylbenzene         | 1.0       | U         | 1.0      |     | ug/L |   |          | 06/11/14 15:44 | 1       |
| Toluene              | 1.0       | U         | 1.0      |     | ug/L |   |          | 06/11/14 15:44 | 1       |
| Xylenes, Total       | 2.0       | U         | 2.0      |     | ug/L |   |          | 06/11/14 15:44 | 1       |
| Surrogate            | %Recovery | Qualifier | Limits   |     |      |   | Prepared | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene | 95        |           | 70 - 130 |     |      | _ |          | 06/11/14 15:44 | 1       |
| Dibromofluoromethane | 89        |           | 70 - 130 |     |      |   |          | 06/11/14 15:44 | 1       |
| Toluene-d8 (Surr)    | 102       |           | 70 - 130 |     |      |   |          | 06/11/14 15:44 | 1       |

| Analyte                | Result    | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|-----|------|---|----------------|----------------|---------|
| Acenaphthene           | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:05 | 1       |
| Acenaphthylene         | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:05 | 1       |
| Anthracene             | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:05 | 1       |
| Benzo[a]anthracene     | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:05 | 1       |
| Benzo[a]pyrene         | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:05 | 1       |
| Benzo[b]fluoranthene   | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:05 | 1       |
| Benzo[g,h,i]perylene   | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:05 | 1       |
| Benzo[k]fluoranthene   | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:05 | 1       |
| Chrysene               | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:05 | 1       |
| Dibenz(a,h)anthracene  | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:05 | 1       |
| Fluoranthene           | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:05 | 1       |
| Fluorene               | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:05 | 1       |
| Indeno[1,2,3-cd]pyrene | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:05 | 1       |
| 1-Methylnaphthalene    | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:05 | 1       |
| 2-Methylnaphthalene    | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:05 | 1       |
| Naphthalene            | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:05 | 1       |
| Phenanthrene           | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:05 | 1       |
| Pyrene                 | 9.6       | U         | 9.6      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:05 | 1       |
| Surrogate              | %Recovery | Qualifier | Limits   |     |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl       | 51        |           | 38 - 130 |     |      |   | 06/10/14 15:11 | 06/12/14 20:05 | 1       |
| Nitrobenzene-d5 (Surr) | 56        |           | 39 - 130 |     |      |   | 06/10/14 15:11 | 06/12/14 20:05 | 1       |
| Terphenyl-d14 (Surr)   | 47        |           | 10 - 143 |     |      |   | 06/10/14 15:11 | 06/12/14 20:05 | 1       |

| Terphenyl-d14 (Surr)         | 47     |           | 10 - 143 |     |      |   | 06/10/14 15:11 | 06/12/14 20:05 | 1       |
|------------------------------|--------|-----------|----------|-----|------|---|----------------|----------------|---------|
| Method: 6010C - Metals (ICP) |        |           |          |     |      |   |                |                |         |
| Analyte                      | Result | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                      | 20     | U         | 20       |     | ug/L |   | 06/07/14 09:43 | 06/10/14 18:25 | 1       |
| Chromium                     | 10     | U         | 10       |     | ug/L |   | 06/07/14 09:43 | 06/10/14 18:25 | 1       |
| Lead                         | 10     | U         | 10       |     | ug/L |   | 06/07/14 09:43 | 06/10/14 18:25 | 1       |
| Nickel                       | 40     | U         | 40       |     | ug/L |   | 06/07/14 09:43 | 06/10/14 18:25 | 1       |
| Zinc                         | 20     | U         | 20       |     | ug/L |   | 06/07/14 09:43 | 06/10/14 18:25 | 1       |
| General Chemistry            |        |           |          |     |      |   |                |                |         |
| Analyte                      | Result | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Ammonia                      | 72     |           | 2.5      |     | mg/L |   |                | 06/10/14 09:44 | 50      |
| Nitrate as N                 | 0.050  | U         | 0.050    |     | mg/L |   |                | 06/05/14 17:19 | 1       |

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: CSX Hutchinson Island VRP

Lab Sample ID: 680-101996-6

Matrix: Water

| Client Sample ID: PDMW-23R_06042014 |  |
|-------------------------------------|--|
| Date Collected: 06/04/14 12:45      |  |

Date Received: 06/05/14 09:04

| Analyte                          | Result       | Qualifier  | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|----------------------------------|--------------|------------|----------|-----|------|---|----------------|----------------|---------|
| Benzene                          | 1.0          | U          | 1.0      |     | ug/L |   |                | 06/11/14 16:08 | 1       |
| Ethylbenzene                     | 1.0          | U          | 1.0      |     | ug/L |   |                | 06/11/14 16:08 | 1       |
| Toluene                          | 1.0          | U          | 1.0      |     | ug/L |   |                | 06/11/14 16:08 | 1       |
| Xylenes, Total                   | 2.0          | U          | 2.0      |     | ug/L |   |                | 06/11/14 16:08 | 1       |
| Surrogate                        | %Recovery    | Qualifier  | Limits   |     |      |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene             | 95           |            | 70 - 130 |     |      |   |                | 06/11/14 16:08 | 1       |
| Dibromofluoromethane             | 93           |            | 70 - 130 |     |      |   |                | 06/11/14 16:08 | 1       |
| Toluene-d8 (Surr)                | 102          |            | 70 - 130 |     |      |   |                | 06/11/14 16:08 | 1       |
| Method: 8270D - Semivolatile Org | ganic Compou | nds (GC/MS | S)       |     |      |   |                |                |         |
| Analyte                          | Result       | Qualifier  | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Acenaphthene                     | 10           | U          | 10       |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:28 | 1       |
| Acenaphthylene                   | 10           | U          | 10       |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:28 | 1       |
| Anthracene                       | 10           | U          | 10       |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:28 | 1       |
| Benzo[a]anthracene               | 10           | U          | 10       |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:28 | 1       |
| Benzo[a]pyrene                   | 10           | U          | 10       |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:28 | 1       |
| Benzo[b]fluoranthene             | 10           | U          | 10       |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:28 | 1       |
| Benzo[g,h,i]perylene             | 10           | U          | 10       |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:28 | 1       |
| Benzo[k]fluoranthene             | 10           | U          | 10       |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:28 | 1       |
| Chrysene                         | 10           | U          | 10       |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:28 | 1       |
| Dibenz(a,h)anthracene            | 10           | U          | 10       |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:28 | 1       |
| Fluoranthene                     | 10           | U          | 10       |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:28 | 1       |
| Fluorene                         | 10           | U          | 10       |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:28 | 1       |
| Indeno[1,2,3-cd]pyrene           | 10           | U          | 10       |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:28 | 1       |
| 1-Methylnaphthalene              | 10           | U          | 10       |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:28 | 1       |
| 2-Methylnaphthalene              | 10           | U          | 10       |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:28 | 1       |
| Naphthalene                      | 10           | U          | 10       |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:28 | 1       |
| Phenanthrene                     | 10           | U          | 10       |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:28 | 1       |
| Pyrene                           | 10           | U          | 10       |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:28 | 1       |
| Surrogate                        | %Recovery    | Qualifier  | Limits   |     |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl                 | 61           |            | 38 - 130 |     |      |   | 06/10/14 15:11 | 06/12/14 20:28 | 1       |
| Nitrobenzene-d5 (Surr)           | 70           |            | 39 - 130 |     |      |   | 06/10/14 15:11 | 06/12/14 20:28 | 1       |
| Terphenyl-d14 (Surr)             | 58           |            | 10 - 143 |     |      |   | 06/10/14 15:11 | 06/12/14 20:28 | 1       |
| Method: 6010C - Metals (ICP)     |              |            |          |     |      |   |                |                |         |
| Analyte                          | Result       | Qualifier  | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                          | 20           | U          | 20       |     | ug/L |   | 06/07/14 09:43 | 06/10/14 18:29 | 1       |
| Chromium                         | 10           | U          | 10       |     | ug/L |   | 06/07/14 09:43 | 06/10/14 18:29 | 1       |
| Lead                             | 10           | U          | 10       |     | ug/L |   | 06/07/14 09:43 | 06/10/14 18:29 | 1       |

| motriou: ou rou motais (ror) |        |           |    |     |      |   |                |                |         |
|------------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte                      | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                      | 20     | U         | 20 |     | ug/L |   | 06/07/14 09:43 | 06/10/14 18:29 | 1       |
| Chromium                     | 10     | U         | 10 |     | ug/L |   | 06/07/14 09:43 | 06/10/14 18:29 | 1       |
| Lead                         | 10     | U         | 10 |     | ug/L |   | 06/07/14 09:43 | 06/10/14 18:29 | 1       |
| Nickel                       | 40     | U         | 40 |     | ug/L |   | 06/07/14 09:43 | 06/10/14 18:29 | 1       |
| Zinc                         | 20     | U         | 20 |     | ug/L |   | 06/07/14 09:43 | 06/10/14 18:29 | 1       |
|                              |        |           |    |     |      |   |                |                |         |

| General | l Chemi | stry |
|---------|---------|------|
|---------|---------|------|

| Analyte      | Result | Qualifier | RL    | MDL | Unit | 0 | ) | Prepared | Analyzed       | Dil Fac |
|--------------|--------|-----------|-------|-----|------|---|---|----------|----------------|---------|
| Ammonia      | 3.6    |           | 0.10  |     | mg/L |   | _ |          | 06/10/14 09:44 | 2       |
| Nitrate as N | 0.11   |           | 0.050 |     | mg/L |   |   |          | 06/05/14 17:21 | 1       |

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: CSX Hutchinson Island VRP

Lab Sample ID: 680-101996-7

Matrix: Water

| Client Sample ID: PDMW-33R2_0  | 6042014 |
|--------------------------------|---------|
| Date Collected: 06/04/14 13:15 |         |

Date Received: 06/05/14 09:04

| Analyte                    | Result            | Qualifier  | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|----------------------------|-------------------|------------|----------|-----|------|---|----------------|----------------|---------|
| Benzene                    | 1.0               | U          | 1.0      |     | ug/L |   |                | 06/11/14 16:31 |         |
| Ethylbenzene               | 1.0               | U          | 1.0      |     | ug/L |   |                | 06/11/14 16:31 | •       |
| Toluene                    | 1.0               | U          | 1.0      |     | ug/L |   |                | 06/11/14 16:31 |         |
| Xylenes, Total             | 2.0               | U          | 2.0      |     | ug/L |   |                | 06/11/14 16:31 |         |
| Surrogate                  | %Recovery         | Qualifier  | Limits   |     |      |   | Prepared       | Analyzed       | Dil Fa  |
| 4-Bromofluorobenzene       | 93                |            | 70 - 130 |     |      |   |                | 06/11/14 16:31 |         |
| Dibromofluoromethane       | 89                |            | 70 - 130 |     |      |   |                | 06/11/14 16:31 | 1       |
| Toluene-d8 (Surr)          | 102               |            | 70 - 130 |     |      |   |                | 06/11/14 16:31 | •       |
| Method: 8270D - Semivolati | le Organic Compou | nds (GC/MS | S)       |     |      |   |                |                |         |
| Analyte                    |                   | Qualifier  | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Acenaphthene               | 9.7               | U          | 9.7      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:51 |         |
| Acenaphthylene             | 9.7               | U          | 9.7      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:51 |         |
| Anthracene                 | 9.7               | U          | 9.7      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:51 |         |
| Benzo[a]anthracene         | 9.7               | U          | 9.7      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:51 |         |
| Benzo[a]pyrene             | 9.7               | U          | 9.7      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:51 | •       |
| Benzo[b]fluoranthene       | 9.7               | U          | 9.7      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:51 | •       |
| Benzo[g,h,i]perylene       | 9.7               | U          | 9.7      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:51 |         |
| Benzo[k]fluoranthene       | 9.7               | U          | 9.7      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:51 | •       |
| Chrysene                   | 9.7               | U          | 9.7      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:51 |         |
| Dibenz(a,h)anthracene      | 9.7               | U          | 9.7      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:51 |         |
| Fluoranthene               | 9.7               | U          | 9.7      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:51 |         |
| Fluorene                   | 9.7               | U          | 9.7      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:51 | •       |
| Indeno[1,2,3-cd]pyrene     | 9.7               | U          | 9.7      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:51 |         |
| 1-Methylnaphthalene        | 9.7               | U          | 9.7      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:51 | •       |
| 2-Methylnaphthalene        | 9.7               | U          | 9.7      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:51 | •       |
| Naphthalene                | 9.7               | U          | 9.7      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:51 |         |
| Phenanthrene               | 9.7               | U          | 9.7      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:51 | •       |
| Pyrene                     | 9.7               | U          | 9.7      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 20:51 | ,       |
| Surrogate                  | %Recovery         | Qualifier  | Limits   |     |      |   | Prepared       | Analyzed       | Dil Fa  |
| 2-Fluorobiphenyl           | 64                |            | 38 - 130 |     |      |   | 06/10/14 15:11 | 06/12/14 20:51 | -       |
| Nitrobenzene-d5 (Surr)     | 71                |            | 39 - 130 |     |      |   | 06/10/14 15:11 | 06/12/14 20:51 |         |
| Terphenyl-d14 (Surr)       | 54                |            | 10 - 143 |     |      |   | 06/10/14 15:11 | 06/12/14 20:51 |         |

| Method: | 6010C - I | Vletals ( | ICP) |
|---------|-----------|-----------|------|
|---------|-----------|-----------|------|

| method. 00100 - metals (101) |        |           |    |     |      |   |                |                |         |
|------------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte                      | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                      | 20     | U         | 20 |     | ug/L |   | 06/07/14 09:43 | 06/10/14 18:34 | 1       |
| Chromium                     | 10     | U         | 10 |     | ug/L |   | 06/07/14 09:43 | 06/10/14 18:34 | 1       |
| Lead                         | 10     | U         | 10 |     | ug/L |   | 06/07/14 09:43 | 06/10/14 18:34 | 1       |
| Nickel                       | 40     | U         | 40 |     | ug/L |   | 06/07/14 09:43 | 06/10/14 18:34 | 1       |
| Zinc                         | 20     | U         | 20 |     | ug/L |   | 06/07/14 09:43 | 06/10/14 18:34 | 1       |
|                              |        |           |    |     |      |   |                |                |         |

| General | Chem | istry |
|---------|------|-------|
|---------|------|-------|

| Analyte      | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|--------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia      | 16     |           | 0.50  |     | mg/L |   |          | 06/10/14 09:34 | 10      |
| Nitrate as N | 0.050  | U         | 0.050 |     | mg/L |   |          | 06/05/14 17:22 | 1       |

# **Client Sample Results**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-101996-1

Client Sample ID: PDMW-48\_06042014

Lab Sample ID: 680-101996-8 Date Collected: 06/04/14 14:35

Matrix: Water

Date Received: 06/05/14 09:04

| Gen     | eral Chemistry |              |       |     |      |   |          |                |         |
|---------|----------------|--------------|-------|-----|------|---|----------|----------------|---------|
| Analy   | re Resu        | lt Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Amm     | onia 2         | 7            | 1.0   |     | mg/L |   |          | 06/10/14 10:03 | 20      |
| Nitrate | as N 0.05      | 0 U          | 0.050 |     | mg/L |   |          | 06/05/14 17:23 | 1       |

Client: AMEC Environment & Infrastructure, Inc.

Client Sample ID: PDMW-32R\_06042014

Project/Site: CSX Hutchinson Island VRP

Lab Sample ID: 680-101996-9

Matrix: Water

Date Collected: 06/04/14 15:20 Date Received: 06/05/14 09:04

| Analyte              | Result    | Qualifier | RL       | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|----------------------|-----------|-----------|----------|-----|------|---|----------|----------------|---------|
| Benzene              | 1.0       | U         | 1.0      |     | ug/L |   |          | 06/11/14 16:54 | 1       |
| Ethylbenzene         | 1.0       | U         | 1.0      |     | ug/L |   |          | 06/11/14 16:54 | 1       |
| Toluene              | 1.0       | U         | 1.0      |     | ug/L |   |          | 06/11/14 16:54 | 1       |
| Xylenes, Total       | 2.0       | U         | 2.0      |     | ug/L |   |          | 06/11/14 16:54 | 1       |
| Surrogate            | %Recovery | Qualifier | Limits   |     |      |   | Prepared | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene | 96        |           | 70 - 130 |     |      | - |          | 06/11/14 16:54 | 1       |
| Dibromofluoromethane | 92        |           | 70 - 130 |     |      |   |          | 06/11/14 16:54 | 1       |
| Toluene-d8 (Surr)    | 102       |           | 70 - 130 |     |      |   |          | 06/11/14 16:54 | 1       |

| Analyte                | Result    | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|-----|------|---|----------------|----------------|---------|
| Acenaphthene           | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 21:14 | 1       |
| Acenaphthylene         | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 21:14 | 1       |
| Anthracene             | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 21:14 | 1       |
| Benzo[a]anthracene     | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 21:14 | 1       |
| Benzo[a]pyrene         | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 21:14 | 1       |
| Benzo[b]fluoranthene   | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 21:14 | 1       |
| Benzo[g,h,i]perylene   | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 21:14 | 1       |
| Benzo[k]fluoranthene   | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 21:14 | 1       |
| Chrysene               | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 21:14 | 1       |
| Dibenz(a,h)anthracene  | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 21:14 | 1       |
| Fluoranthene           | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 21:14 | 1       |
| Fluorene               | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 21:14 | 1       |
| Indeno[1,2,3-cd]pyrene | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 21:14 | 1       |
| 1-Methylnaphthalene    | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 21:14 | 1       |
| 2-Methylnaphthalene    | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 21:14 | 1       |
| Naphthalene            | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 21:14 | 1       |
| Phenanthrene           | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 21:14 | 1       |
| Pyrene                 | 9.9       | U         | 9.9      |     | ug/L |   | 06/10/14 15:11 | 06/12/14 21:14 | 1       |
| Surrogate              | %Recovery | Qualifier | Limits   |     |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl       | 57        |           | 38 - 130 |     |      |   | 06/10/14 15:11 | 06/12/14 21:14 | 1       |
| Nitrobenzene-d5 (Surr) | 66        |           | 39 - 130 |     |      |   | 06/10/14 15:11 | 06/12/14 21:14 | 1       |
| Terphenyl-d14 (Surr)   | 55        |           | 10 - 143 |     |      |   | 06/10/14 15:11 | 06/12/14 21:14 | 1       |

| Terphenyl-d14 (Surr)         | 55     |           | 10 - 143 |     |      |   | 06/10/14 15:11 | 06/12/14 21:14 | 1       |
|------------------------------|--------|-----------|----------|-----|------|---|----------------|----------------|---------|
| Method: 6010C - Metals (ICP) |        |           |          |     |      |   |                |                |         |
| Analyte                      | Result | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                      | 20     | U         | 20       |     | ug/L |   | 06/07/14 09:43 | 06/10/14 18:38 | 1       |
| Chromium                     | 10     | U         | 10       |     | ug/L |   | 06/07/14 09:43 | 06/10/14 18:38 | 1       |
| Lead                         | 10     | U         | 10       |     | ug/L |   | 06/07/14 09:43 | 06/10/14 18:38 | 1       |
| Nickel                       | 40     | U         | 40       |     | ug/L |   | 06/07/14 09:43 | 06/10/14 18:38 | 1       |
| Zinc                         | 31     |           | 20       |     | ug/L |   | 06/07/14 09:43 | 06/10/14 18:38 | 1       |
| —<br>General Chemistry       |        |           |          |     |      |   |                |                |         |
| Analyte                      | Result | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Ammonia                      |        |           | 0.50     |     | mg/L |   |                | 06/10/14 11:41 | 10      |
| Nitrate as N                 | 0.050  | U         | 0.050    |     | mg/L |   |                | 06/05/14 17:24 | 1       |

TestAmerica Savannah

Page 14 of 37

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: CSX Hutchinson Island VRP

Client Sample ID: EW-01\_06042014

Lab Sample ID: 680-101996-10

**Matrix: Water** 

Date Collected: 06/04/14 15:09 Date Received: 06/05/14 09:04

| Analyte              | Result    | Qualifier | RL       | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|----------------------|-----------|-----------|----------|-----|------|---|----------|----------------|---------|
| Benzene              | 1.0       | U         | 1.0      |     | ug/L |   |          | 06/11/14 17:17 | 1       |
| Ethylbenzene         | 1.0       | U         | 1.0      |     | ug/L |   |          | 06/11/14 17:17 | 1       |
| Toluene              | 1.0       | U         | 1.0      |     | ug/L |   |          | 06/11/14 17:17 | 1       |
| Xylenes, Total       | 2.0       | U         | 2.0      |     | ug/L |   |          | 06/11/14 17:17 | 1       |
| Surrogate            | %Recovery | Qualifier | Limits   |     |      |   | Prepared | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene | 94        |           | 70 - 130 |     |      | _ |          | 06/11/14 17:17 | 1       |
| Dibromofluoromethane | 95        |           | 70 - 130 |     |      |   |          | 06/11/14 17:17 | 1       |
| Toluene-d8 (Surr)    | 103       |           | 70 - 130 |     |      |   |          | 06/11/14 17:17 | 1       |

| Analyte                | Result    | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|-----|------|---|----------------|----------------|---------|
| Acenaphthene           | 10        | U         | 10       |     | ug/L |   | 06/10/14 15:11 | 06/11/14 23:07 | 1       |
| Acenaphthylene         | 10        | U         | 10       |     | ug/L |   | 06/10/14 15:11 | 06/11/14 23:07 | 1       |
| Anthracene             | 10        | U         | 10       |     | ug/L |   | 06/10/14 15:11 | 06/11/14 23:07 | 1       |
| Benzo[a]anthracene     | 10        | U         | 10       |     | ug/L |   | 06/10/14 15:11 | 06/11/14 23:07 | 1       |
| Benzo[a]pyrene         | 10        | U         | 10       |     | ug/L |   | 06/10/14 15:11 | 06/11/14 23:07 | 1       |
| Benzo[b]fluoranthene   | 10        | U         | 10       |     | ug/L |   | 06/10/14 15:11 | 06/11/14 23:07 | 1       |
| Benzo[g,h,i]perylene   | 10        | U         | 10       |     | ug/L |   | 06/10/14 15:11 | 06/11/14 23:07 | 1       |
| Benzo[k]fluoranthene   | 10        | U         | 10       |     | ug/L |   | 06/10/14 15:11 | 06/11/14 23:07 | 1       |
| Chrysene               | 10        | U         | 10       |     | ug/L |   | 06/10/14 15:11 | 06/11/14 23:07 | 1       |
| Dibenz(a,h)anthracene  | 10        | U         | 10       |     | ug/L |   | 06/10/14 15:11 | 06/11/14 23:07 | 1       |
| Fluoranthene           | 10        | U         | 10       |     | ug/L |   | 06/10/14 15:11 | 06/11/14 23:07 | 1       |
| Fluorene               | 10        | U         | 10       |     | ug/L |   | 06/10/14 15:11 | 06/11/14 23:07 | 1       |
| Indeno[1,2,3-cd]pyrene | 10        | U         | 10       |     | ug/L |   | 06/10/14 15:11 | 06/11/14 23:07 | 1       |
| 1-Methylnaphthalene    | 10        | U         | 10       |     | ug/L |   | 06/10/14 15:11 | 06/11/14 23:07 | 1       |
| 2-Methylnaphthalene    | 10        | U         | 10       |     | ug/L |   | 06/10/14 15:11 | 06/11/14 23:07 | 1       |
| Naphthalene            | 10        | U         | 10       |     | ug/L |   | 06/10/14 15:11 | 06/11/14 23:07 | 1       |
| Phenanthrene           | 10        | U         | 10       |     | ug/L |   | 06/10/14 15:11 | 06/11/14 23:07 | 1       |
| Pyrene                 | 10        | U         | 10       |     | ug/L |   | 06/10/14 15:11 | 06/11/14 23:07 | 1       |
| Surrogate              | %Recovery | Qualifier | Limits   |     |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl       | 55        |           | 38 - 130 |     |      |   | 06/10/14 15:11 | 06/11/14 23:07 | 1       |
| Nitrobenzene-d5 (Surr) | 65        |           | 39 - 130 |     |      |   | 06/10/14 15:11 | 06/11/14 23:07 | 1       |
| Terphenyl-d14 (Surr)   | 52        |           | 10 - 143 |     |      |   | 06/10/14 15:11 | 06/11/14 23:07 | 1       |

| Terphenyl-d14 (Surr)         | 52     |           | 10 - 143 |     |      |   | 06/10/14 15:11 | 06/11/14 23:07 | 1       |
|------------------------------|--------|-----------|----------|-----|------|---|----------------|----------------|---------|
| Method: 6010C - Metals (ICP) |        |           |          |     |      |   |                |                |         |
| Analyte                      | Result | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                      | 20     | U         | 20       |     | ug/L |   | 06/07/14 09:43 | 06/10/14 18:42 | 1       |
| Chromium                     | 12     |           | 10       |     | ug/L |   | 06/07/14 09:43 | 06/10/14 18:42 | 1       |
| Lead                         | 10     |           | 10       |     | ug/L |   | 06/07/14 09:43 | 06/10/14 18:42 | 1       |
| Nickel                       | 100    |           | 40       |     | ug/L |   | 06/07/14 09:43 | 06/10/14 18:42 | 1       |
| Zinc                         | 550    |           | 20       |     | ug/L |   | 06/07/14 09:43 | 06/10/14 18:42 | 1       |
| General Chemistry            |        |           |          |     |      |   |                |                |         |
| Analyte                      | Result | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Ammonia                      | 1100   |           | 50       |     | mg/L |   |                | 06/10/14 11:41 | 1000    |
| Nitrate as N                 | 0.050  | U         | 0.050    |     | mg/L |   |                | 06/05/14 17:08 | 1       |

TestAmerica Savannah

6/20/2014

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-101996-1

Client Sample ID: PDMW-50\_06042014

Lab Sample ID: 680-101996-11

Matrix: Water

Date Collected: 06/04/14 16:25 Date Received: 06/05/14 09:04

| General Chemistry |        |           |       |     |      |   |          |                |         |
|-------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Analyte           | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Ammonia           | 7.8    |           | 0.25  |     | mg/L |   |          | 06/10/14 09:54 | 5       |
| Nitrate as N      | 0.050  | U         | 0.050 |     | mg/L |   |          | 06/05/14 17:25 | 1       |

5

6

Q

9

10

11

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-101996-1

Client Sample ID: TRIPBLANK\_06042014

Date Collected: 06/04/14 00:00 Date Received: 06/05/14 09:04 Lab Sample ID: 680-101996-12

Matrix: Water

| Method: 8260B - Volatile Or | ganic Compounds | (GC/MS)   |          |     |      |   |          |                |         |
|-----------------------------|-----------------|-----------|----------|-----|------|---|----------|----------------|---------|
| Analyte                     | Result          | Qualifier | RL       | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Benzene                     | 1.0             | U         | 1.0      |     | ug/L |   |          | 06/11/14 13:02 | 1       |
| Ethylbenzene                | 1.0             | U         | 1.0      |     | ug/L |   |          | 06/11/14 13:02 | 1       |
| Toluene                     | 1.0             | U         | 1.0      |     | ug/L |   |          | 06/11/14 13:02 | 1       |
| Xylenes, Total              | 2.0             | U         | 2.0      |     | ug/L |   |          | 06/11/14 13:02 | 1       |
| Surrogate                   | %Recovery       | Qualifier | Limits   |     |      |   | Prepared | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene        | 96              |           | 70 - 130 |     |      | - |          | 06/11/14 13:02 | 1       |
| Dibromofluoromethane        | 98              |           | 70 - 130 |     |      |   |          | 06/11/14 13:02 | 1       |
| Toluene-d8 (Surr)           | 103             |           | 70 - 130 |     |      |   |          | 06/11/14 13:02 | 1       |

8

9

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-333526/8

**Matrix: Water** 

Analysis Batch: 333526

Client Sample ID: Method Blank

Prep Type: Total/NA

мв мв Result Qualifier RL Analyte MDL Unit D Prepared Analyzed Dil Fac Benzene 1.0 U 1.0 ug/L 06/11/14 11:42 Ethylbenzene 1.0 U 1.0 ug/L 06/11/14 11:42 06/11/14 11:42 Toluene 1.0 U 1.0 ug/L 06/11/14 11:42 Xylenes, Total 2.0 U 2.0 ug/L

MB MB Qualifier Surrogate %Recovery Limits Dil Fac Prepared Analyzed 4-Bromofluorobenzene 96 70 - 130 06/11/14 11:42 70 - 130 Dibromofluoromethane 101 06/11/14 11:42 Toluene-d8 (Surr) 70 - 130 06/11/14 11:42 104

Lab Sample ID: LCS 680-333526/4

**Matrix: Water** 

Analysis Batch: 333526

**Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Spike LCS LCS %Rec. Analyte babbA Result Qualifier %Rec Limits Unit D Benzene 50.0 51.3 ug/L 103 74 - 123 Ethylbenzene 50.0 49.2 98 78 - 125 ug/L Toluene 50.0 50.9 ug/L 102 77 - 125 150 145 ug/L 80 - 124 Xylenes, Total 96

LCS LCS Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene 96 70 - 130 Dibromofluoromethane 108 70 - 130 Toluene-d8 (Surr) 103 70 - 130

Lab Sample ID: LCSD 680-333526/6

**Matrix: Water** 

Analysis Batch: 333526

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

|                | Spike | LCSD   | LCSD      |      |   |      | %Rec.    |     | RPD   |  |
|----------------|-------|--------|-----------|------|---|------|----------|-----|-------|--|
| Analyte        | Added | Result | Qualifier | Unit | D | %Rec | Limits   | RPD | Limit |  |
| Benzene        | 50.0  | 49.1   |           | ug/L |   | 98   | 74 - 123 | 4   | 30    |  |
| Ethylbenzene   | 50.0  | 46.6   |           | ug/L |   | 93   | 78 - 125 | 6   | 30    |  |
| Toluene        | 50.0  | 47.0   |           | ug/L |   | 94   | 77 - 125 | 8   | 30    |  |
| Xylenes, Total | 150   | 140    |           | ug/L |   | 93   | 80 - 124 | 3   | 30    |  |

|                      | LCSD LCS      | SD             |   |
|----------------------|---------------|----------------|---|
| Surrogate            | %Recovery Qua | alifier Limits |   |
| 4-Bromofluorobenzene | 93            | 70 - 130       | ) |
| Dibromofluoromethane | 106           | 70 - 130       | ) |
| Toluene-d8 (Surr)    | 97            | 70 - 130       | ) |

Lab Sample ID: 680-101996-10 MS

**Matrix: Water** 

Analysis Batch: 333526

| Analysis Daton. 000020 |        |           |       |        |           |      |   |      |                     |  |
|------------------------|--------|-----------|-------|--------|-----------|------|---|------|---------------------|--|
|                        | Sample | Sample    | Spike | MS     | MS        |      |   |      | %Rec.               |  |
| Analyte                | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits              |  |
| Benzene                | 1.0    | U         | 50.0  | 49.7   |           | ug/L |   | 99   | 74 - 123            |  |
| Ethylbenzene           | 1.0    | U         | 50.0  | 49.7   |           | ua/L |   | 99   | 78 <sub>-</sub> 125 |  |

TestAmerica Savannah

Prep Type: Total/NA

Client Sample ID: EW-01\_06042014

Page 18 of 37

Client Sample ID: EW-01\_06042014

Prep Type: Total/NA

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

# Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 680-101996-10 MS

**Matrix: Water** 

Analysis Batch: 333526

|                | Sample | Sample    | Spike | MS     | MS        |      |   |      | %Rec.    |  |
|----------------|--------|-----------|-------|--------|-----------|------|---|------|----------|--|
| Analyte        | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Toluene        | 1.0    | U         | 50.0  | 51.0   |           | ug/L |   | 102  | 77 - 125 |  |
| Xylenes, Total | 2.0    | U         | 150   | 144    |           | ug/L |   | 96   | 80 - 124 |  |

|                      | MS        | MS        |          |
|----------------------|-----------|-----------|----------|
| Surrogate            | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene | 92        |           | 70 - 130 |
| Dibromofluoromethane | 95        |           | 70 - 130 |
| Toluene-d8 (Surr)    | 102       |           | 70 - 130 |

Lab Sample ID: 680-101996-10 MSD

**Matrix: Water** 

Analysis Batch: 333526

Client Sample ID: EW-01\_06042014

Prep Type: Total/NA

| -              | Sample | Sample    | Spike | MSD    | MSD       |      |   |      | %Rec.    |     | RPD   |
|----------------|--------|-----------|-------|--------|-----------|------|---|------|----------|-----|-------|
| Analyte        | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   | RPD | Limit |
| Benzene        | 1.0    | U         | 50.0  | 50.2   |           | ug/L |   | 100  | 74 - 123 | 1   | 30    |
| Ethylbenzene   | 1.0    | U         | 50.0  | 51.1   |           | ug/L |   | 102  | 78 - 125 | 3   | 30    |
| Toluene        | 1.0    | U         | 50.0  | 50.6   |           | ug/L |   | 101  | 77 - 125 | 1   | 30    |
| Xylenes, Total | 2.0    | U         | 150   | 148    |           | ug/L |   | 98   | 80 - 124 | 3   | 30    |

|                      | MSD       | MSD       |          |
|----------------------|-----------|-----------|----------|
| Surrogate            | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene | 95        |           | 70 - 130 |
| Dibromofluoromethane | 90        |           | 70 - 130 |
| Toluene-d8 (Surr)    | 103       |           | 70 - 130 |

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-333327/21-A

**Matrix: Water** 

Analysis Batch: 333622

| Client Sample ID: Method Blank |
|--------------------------------|
| Prep Type: Total/NA            |
| Prep Batch: 333327             |

| · · · · · · · · · · · · · · · · · · · |        |           |    |     |      |   |                |                |         |
|---------------------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
|                                       | МВ     | МВ        |    |     |      |   |                |                |         |
| Analyte                               | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Acenaphthene                          | 10     | U         | 10 |     | ug/L |   | 06/10/14 15:11 | 06/11/14 21:30 | 1       |
| Acenaphthylene                        | 10     | U         | 10 |     | ug/L |   | 06/10/14 15:11 | 06/11/14 21:30 | 1       |
| Anthracene                            | 10     | U         | 10 |     | ug/L |   | 06/10/14 15:11 | 06/11/14 21:30 | 1       |
| Benzo[a]anthracene                    | 10     | U         | 10 |     | ug/L |   | 06/10/14 15:11 | 06/11/14 21:30 | 1       |
| Benzo[a]pyrene                        | 10     | U         | 10 |     | ug/L |   | 06/10/14 15:11 | 06/11/14 21:30 | 1       |
| Benzo[b]fluoranthene                  | 10     | U         | 10 |     | ug/L |   | 06/10/14 15:11 | 06/11/14 21:30 | 1       |
| Benzo[g,h,i]perylene                  | 10     | U         | 10 |     | ug/L |   | 06/10/14 15:11 | 06/11/14 21:30 | 1       |
| Benzo[k]fluoranthene                  | 10     | U         | 10 |     | ug/L |   | 06/10/14 15:11 | 06/11/14 21:30 | 1       |
| Chrysene                              | 10     | U         | 10 |     | ug/L |   | 06/10/14 15:11 | 06/11/14 21:30 | 1       |
| Dibenz(a,h)anthracene                 | 10     | U         | 10 |     | ug/L |   | 06/10/14 15:11 | 06/11/14 21:30 | 1       |
| Fluoranthene                          | 10     | U         | 10 |     | ug/L |   | 06/10/14 15:11 | 06/11/14 21:30 | 1       |
| Fluorene                              | 10     | U         | 10 |     | ug/L |   | 06/10/14 15:11 | 06/11/14 21:30 | 1       |
| Indeno[1,2,3-cd]pyrene                | 10     | U         | 10 |     | ug/L |   | 06/10/14 15:11 | 06/11/14 21:30 | 1       |
| 1-Methylnaphthalene                   | 10     | U         | 10 |     | ug/L |   | 06/10/14 15:11 | 06/11/14 21:30 | 1       |
| 2-Methylnaphthalene                   | 10     | U         | 10 |     | ug/L |   | 06/10/14 15:11 | 06/11/14 21:30 | 1       |
| Naphthalene                           | 10     | U         | 10 |     | ug/L |   | 06/10/14 15:11 | 06/11/14 21:30 | 1       |
| Phenanthrene                          | 10     | U         | 10 |     | ug/L |   | 06/10/14 15:11 | 06/11/14 21:30 | 1       |

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: CSX Hutchinson Island VRP

# Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-333327/21-A

**Matrix: Water** 

Analyte

Pyrene

Analysis Batch: 333622

Client Sample ID: Method Blank Prep Type: Total/NA

**Prep Batch: 333327** 

Dil Fac Result Qualifier RL MDL Unit Analyzed Prepared 10 U 10 06/10/14 15:11 06/11/14 21:30 ug/L

мв мв

MB MB

| Surrogate              | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|----------------|----------------|---------|
| 2-Fluorobiphenyl       | 76        |           | 38 - 130 | 06/10/14 15:11 | 06/11/14 21:30 | 1       |
| Nitrobenzene-d5 (Surr) | 83        |           | 39 - 130 | 06/10/14 15:11 | 06/11/14 21:30 | 1       |
| Terphenyl-d14 (Surr)   | 84        |           | 10 - 143 | 06/10/14 15:11 | 06/11/14 21:30 | 1       |

Lab Sample ID: LCS 680-333327/22-A

**Matrix: Water** 

Analysis Batch: 333622

**Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Prep Batch: 333327

|                        | Spike | LCS    | LCS       |      |   |      | %Rec.               |
|------------------------|-------|--------|-----------|------|---|------|---------------------|
| Analyte                | Added | Result | Qualifier | Unit | D | %Rec | Limits              |
| Acenaphthene           | 100   | 65.8   |           | ug/L |   | 66   | 41 - 99             |
| Acenaphthylene         | 100   | 62.6   |           | ug/L |   | 63   | 32 _ 118            |
| Anthracene             | 100   | 74.8   |           | ug/L |   | 75   | 50 _ 103            |
| Benzo[a]anthracene     | 100   | 72.7   |           | ug/L |   | 73   | 53 - 109            |
| Benzo[a]pyrene         | 100   | 68.6   |           | ug/L |   | 69   | 38 _ 111            |
| Benzo[b]fluoranthene   | 100   | 71.4   |           | ug/L |   | 71   | 53 _ 108            |
| Benzo[g,h,i]perylene   | 100   | 66.5   |           | ug/L |   | 67   | 42 _ 114            |
| Benzo[k]fluoranthene   | 100   | 67.9   |           | ug/L |   | 68   | 49 - 108            |
| Chrysene               | 100   | 70.2   |           | ug/L |   | 70   | 54 - 111            |
| Dibenz(a,h)anthracene  | 100   | 68.1   |           | ug/L |   | 68   | 48 - 110            |
| Fluoranthene           | 100   | 72.0   |           | ug/L |   | 72   | 48 - 111            |
| Fluorene               | 100   | 74.8   |           | ug/L |   | 75   | 50 _ 105            |
| Indeno[1,2,3-cd]pyrene | 100   | 62.7   |           | ug/L |   | 63   | 34 _ 115            |
| 1-Methylnaphthalene    | 100   | 54.6   |           | ug/L |   | 55   | 50 - 130            |
| 2-Methylnaphthalene    | 100   | 51.8   |           | ug/L |   | 52   | 32 - 92             |
| Naphthalene            | 100   | 52.3   |           | ug/L |   | 52   | 29 - 91             |
| Phenanthrene           | 100   | 74.5   |           | ug/L |   | 75   | 52 <sub>-</sub> 108 |
| Pyrene                 | 100   | 71.9   |           | ug/L |   | 72   | 50 <sub>-</sub> 111 |

LCS LCS

| Surrogate              | %Recovery Qualifier | Limits   |
|------------------------|---------------------|----------|
| 2-Fluorobiphenyl       | 71                  | 38 - 130 |
| Nitrobenzene-d5 (Surr) | 70                  | 39 - 130 |
| Terphenyl-d14 (Surr)   | 80                  | 10 - 143 |

Lab Sample ID: 680-101996-10 MS

**Matrix: Water** 

Analysis Batch: 333622

| Client | Sample | ID: | <b>EW-01</b> | _06042014 |
|--------|--------|-----|--------------|-----------|
|        |        |     |              |           |

Prep Type: Total/NA

Prep Batch: 333327

|                      | Sample | Sample    | Spike | MS     | MS        |      |   |      | %Rec.    |  |
|----------------------|--------|-----------|-------|--------|-----------|------|---|------|----------|--|
| Analyte              | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Acenaphthene         | 10     | U         | 94.6  | 67.4   |           | ug/L |   | 71   | 41 - 99  |  |
| Acenaphthylene       | 10     | U         | 94.6  | 64.6   |           | ug/L |   | 68   | 32 - 118 |  |
| Anthracene           | 10     | U         | 94.6  | 72.6   |           | ug/L |   | 77   | 50 - 103 |  |
| Benzo[a]anthracene   | 10     | U         | 94.6  | 71.2   |           | ug/L |   | 75   | 53 - 109 |  |
| Benzo[a]pyrene       | 10     | U         | 94.6  | 64.1   |           | ug/L |   | 68   | 38 _ 111 |  |
| Benzo[b]fluoranthene | 10     | U         | 94.6  | 68.7   |           | ug/L |   | 73   | 53 - 108 |  |
| Benzo[g,h,i]perylene | 10     | U         | 94.6  | 66.5   |           | ug/L |   | 68   | 42 - 114 |  |

TestAmerica Savannah

Page 20 of 37

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 680-101996-10 MS

Lab Sample ID: 680-101996-10 MSD

**Matrix: Water** 

Analysis Batch: 333622

Client Sample ID: EW-01\_06042014 **Prep Type: Total/NA** 

Prep Batch: 333327

|                        | Sample | Sample    | Spike | MS     | MS        |      |   |      | %Rec.               |  |
|------------------------|--------|-----------|-------|--------|-----------|------|---|------|---------------------|--|
| Analyte                | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits              |  |
| Benzo[k]fluoranthene   | 10     | U         | 94.6  | 65.6   |           | ug/L |   | 69   | 49 - 108            |  |
| Chrysene               | 10     | U         | 94.6  | 70.5   |           | ug/L |   | 74   | 54 <sub>-</sub> 111 |  |
| Dibenz(a,h)anthracene  | 10     | U         | 94.6  | 67.3   |           | ug/L |   | 69   | 48 - 110            |  |
| Fluoranthene           | 10     | U         | 94.6  | 71.2   |           | ug/L |   | 75   | 48 - 111            |  |
| Fluorene               | 10     | U         | 94.6  | 74.4   |           | ug/L |   | 79   | 50 _ 105            |  |
| Indeno[1,2,3-cd]pyrene | 10     | U         | 94.6  | 64.6   |           | ug/L |   | 66   | 34 - 115            |  |
| 1-Methylnaphthalene    | 10     | U         | 94.6  | 57.3   |           | ug/L |   | 61   | 50 _ 130            |  |
| 2-Methylnaphthalene    | 10     | U         | 94.6  | 51.8   |           | ug/L |   | 55   | 32 - 92             |  |
| Naphthalene            | 10     | U         | 94.6  | 52.6   |           | ug/L |   | 56   | 29 - 91             |  |
| Phenanthrene           | 10     | U         | 94.6  | 73.3   |           | ug/L |   | 77   | 52 _ 108            |  |
| Pyrene                 | 10     | U         | 94.6  | 70.1   |           | ug/L |   | 74   | 50 <sub>-</sub> 111 |  |
|                        |        |           |       |        |           |      |   |      |                     |  |

MS MS

| Surrogate              | %Recovery | Qualifier | Limits   |
|------------------------|-----------|-----------|----------|
| 2-Fluorobiphenyl       | 68        |           | 38 - 130 |
| Nitrobenzene-d5 (Surr) | 73        |           | 39 - 130 |
| Terphenyl-d14 (Surr)   | 68        |           | 10 - 143 |

Client Sample ID: EW-01\_06042014

Prep Batch: 333327

**Matrix: Water** Prep Type: Total/NA Analysis Batch: 333622

| •                      | Sample | Sample    | Spike | MSD    | MSD       |      |   |      | %Rec.    |     | RPD   |
|------------------------|--------|-----------|-------|--------|-----------|------|---|------|----------|-----|-------|
| Analyte                | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   | RPD | Limit |
| Acenaphthene           |        | U         | 92.1  | 60.5   |           | ug/L |   | 66   | 41 - 99  | 11  | 50    |
| Acenaphthylene         | 10     | U         | 92.1  | 60.9   |           | ug/L |   | 66   | 32 - 118 | 6   | 50    |
| Anthracene             | 10     | U         | 92.1  | 64.7   |           | ug/L |   | 70   | 50 - 103 | 12  | 50    |
| Benzo[a]anthracene     | 10     | U         | 92.1  | 58.0   |           | ug/L |   | 63   | 53 - 109 | 20  | 50    |
| Benzo[a]pyrene         | 10     | U         | 92.1  | 51.8   |           | ug/L |   | 56   | 38 - 111 | 21  | 50    |
| Benzo[b]fluoranthene   | 10     | U         | 92.1  | 52.3   |           | ug/L |   | 57   | 53 - 108 | 27  | 50    |
| Benzo[g,h,i]perylene   | 10     | U         | 92.1  | 51.1   |           | ug/L |   | 53   | 42 - 114 | 26  | 50    |
| Benzo[k]fluoranthene   | 10     | U         | 92.1  | 54.5   |           | ug/L |   | 59   | 49 - 108 | 19  | 50    |
| Chrysene               | 10     | U         | 92.1  | 57.6   |           | ug/L |   | 63   | 54 - 111 | 20  | 50    |
| Dibenz(a,h)anthracene  | 10     | U         | 92.1  | 51.6   |           | ug/L |   | 54   | 48 - 110 | 26  | 50    |
| Fluoranthene           | 10     | U         | 92.1  | 60.9   |           | ug/L |   | 66   | 48 - 111 | 16  | 50    |
| Fluorene               | 10     | U         | 92.1  | 68.2   |           | ug/L |   | 74   | 50 - 105 | 9   | 50    |
| Indeno[1,2,3-cd]pyrene | 10     | U         | 92.1  | 51.9   |           | ug/L |   | 54   | 34 - 115 | 22  | 50    |
| 1-Methylnaphthalene    | 10     | U         | 92.1  | 53.6   |           | ug/L |   | 58   | 50 - 130 | 7   | 50    |
| 2-Methylnaphthalene    | 10     | U         | 92.1  | 51.5   |           | ug/L |   | 56   | 32 - 92  | 1   | 50    |
| Naphthalene            | 10     | U         | 92.1  | 52.4   |           | ug/L |   | 57   | 29 - 91  | 0   | 50    |
| Phenanthrene           | 10     | U         | 92.1  | 66.2   |           | ug/L |   | 72   | 52 - 108 | 10  | 50    |
| Pyrene                 | 10     | U         | 92.1  | 60.5   |           | ug/L |   | 66   | 50 - 111 | 15  | 50    |
|                        |        |           |       |        |           |      |   |      |          |     |       |

|                        | MSD       | MSD       |          |
|------------------------|-----------|-----------|----------|
| Surrogate              | %Recovery | Qualifier | Limits   |
| 2-Fluorobiphenyl       | 59        |           | 38 - 130 |
| Nitrobenzene-d5 (Surr) | 71        |           | 39 - 130 |
| Terphenyl-d14 (Surr)   | 56        |           | 10 - 143 |

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 680-332730/1-A

**Matrix: Water** 

Analysis Batch: 333550

Client Sample ID: Method Blank

Prep Type: Total/NA

**Prep Batch: 332730** 

Prep Type: Total/NA

|          | IVID   | IVID      |    |     |      |   |                |                |         |
|----------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte  | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic  | 20     | U         | 20 |     | ug/L |   | 06/06/14 10:16 | 06/10/14 15:26 | 1       |
| Chromium | 10     | U         | 10 |     | ug/L |   | 06/06/14 10:16 | 06/10/14 15:26 | 1       |
| Lead     | 10     | U         | 10 |     | ug/L |   | 06/06/14 10:16 | 06/10/14 15:26 | 1       |
| Nickel   | 40     | U         | 40 |     | ug/L |   | 06/06/14 10:16 | 06/10/14 15:26 | 1       |
| Zinc     | 20     | U         | 20 |     | ug/L |   | 06/06/14 10:16 | 06/10/14 15:26 | 1       |
|          |        |           |    |     |      |   |                |                |         |

**Client Sample ID: Lab Control Sample** 

**Matrix: Water** 

Analyte Arsenic Chromium Lead Nickel Zinc

Analysis Batch: 333550

|             |       |        |           |      |   |      | Prep Bat            | ch: 332730 |
|-------------|-------|--------|-----------|------|---|------|---------------------|------------|
|             | Spike | LCS    | LCS       |      |   |      | %Rec.               |            |
|             | Added | Result | Qualifier | Unit | D | %Rec | Limits              |            |
| <del></del> | 100   | 99.5   |           | ug/L |   | 99   | 75 - 125            |            |
|             | 100   | 99.4   |           | ug/L |   | 99   | 75 - 125            |            |
|             | 50.0  | 49.8   |           | ug/L |   | 100  | 75 <sub>-</sub> 125 |            |
|             | 100   | 98.1   |           | ug/L |   | 98   | 75 <sub>-</sub> 125 |            |
|             | 100   | 98.2   |           | ug/L |   | 98   | 75 <sub>-</sub> 125 |            |

ug/L

Lab Sample ID: MB 680-332912/1-A

Lab Sample ID: LCS 680-332730/2-A

**Matrix: Water** 

Analysis Batch: 333550

Client Sample ID: Method Blank

Prep Type: Total/NA

**Prep Batch: 332912** 

|          | IVID   | IVID      |    |     |      |   |                |                |         |
|----------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte  | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic  | 20     | U         | 20 |     | ug/L |   | 06/07/14 09:43 | 06/10/14 18:08 | 1       |
| Chromium | 10     | U         | 10 |     | ug/L |   | 06/07/14 09:43 | 06/10/14 18:08 | 1       |
| Lead     | 10     | U         | 10 |     | ug/L |   | 06/07/14 09:43 | 06/10/14 18:08 | 1       |
| Nickel   | 40     | U         | 40 |     | ug/L |   | 06/07/14 09:43 | 06/10/14 18:08 | 1       |
| Zinc     | 20     | U         | 20 |     | ug/L |   | 06/07/14 09:43 | 06/10/14 18:08 | 1       |

MD MD

Lab Sample ID: LCS 680-332912/2-A

**Matrix: Water** 

Analysis Batch: 333550

Client Sample ID: Lab Control Sample Prep Type: Total/NA **Prep Batch: 332912** 

| •        | Spike | LCS    | LCS       |      |   |      | %Rec.               |  |
|----------|-------|--------|-----------|------|---|------|---------------------|--|
| Analyte  | Added | Result | Qualifier | Unit | D | %Rec | Limits              |  |
| Arsenic  | 100   | 101    |           | ug/L |   | 101  | 75 - 125            |  |
| Chromium | 100   | 97.4   |           | ug/L |   | 97   | 75 - 125            |  |
| Lead     | 50.0  | 48.9   |           | ug/L |   | 98   | 75 - 125            |  |
| Nickel   | 100   | 97.9   |           | ug/L |   | 98   | 75 - 125            |  |
| Zinc     | 100   | 96.8   |           | ug/L |   | 97   | 75 <sub>-</sub> 125 |  |

Lab Sample ID: 680-101996-10 MS

**Matrix: Water** 

Analysis Batch: 333550

Client Sample ID: EW-01\_06042014

Prep Type: Total/NA **Prep Batch: 332912** 

|          | Sample | Sample    | Spike | MS     | MS        |      |   |      | %Rec.    |  |
|----------|--------|-----------|-------|--------|-----------|------|---|------|----------|--|
| Analyte  | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Arsenic  | 20     | U         | 100   | 106    |           | ug/L |   | 97   | 75 - 125 |  |
| Chromium | 12     |           | 100   | 98.0   |           | ug/L |   | 86   | 75 - 125 |  |
| Lead     | 10     |           | 50.0  | 54.3   |           | ug/L |   | 88   | 75 - 125 |  |
| Nickel   | 100    |           | 100   | 188    |           | ug/L |   | 86   | 75 - 125 |  |
| Zinc     | 550    |           | 100   | 629    | 4         | ug/L |   | 79   | 75 - 125 |  |

TestAmerica Savannah

Page 22 of 37

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-101996-1

## Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: 680-101996-10 MSD Client Sample ID: EW-01\_06042014 **Matrix: Water** Prep Type: Total/NA **Prep Batch: 332912** Analysis Batch: 333550

|          | Sample | Sample    | Spike | MSD    | MSD       |      |   |      | %Rec.    |     | RPD   |
|----------|--------|-----------|-------|--------|-----------|------|---|------|----------|-----|-------|
| Analyte  | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   | RPD | Limit |
| Arsenic  | 20     | U         | 100   | 106    |           | ug/L |   | 98   | 75 - 125 | 0   | 20    |
| Chromium | 12     |           | 100   | 98.2   |           | ug/L |   | 86   | 75 - 125 | 0   | 20    |
| Lead     | 10     |           | 50.0  | 50.6   |           | ug/L |   | 81   | 75 - 125 | 7   | 20    |
| Nickel   | 100    |           | 100   | 187    |           | ug/L |   | 85   | 75 - 125 | 0   | 20    |
| Zinc     | 550    |           | 100   | 621    | 4         | ug/L |   | 71   | 75 - 125 | 1   | 20    |

## Method: 350.1 - Nitrogen, Ammonia

Lab Sample ID: MB 680-333396/5 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 333396

мв мв

| Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia | 0.050  | U         | 0.050 |     | mg/L |   |          | 06/09/14 18:30 | 1       |

Lab Sample ID: LCS 680-333396/4 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 333396

|         | Spike    | LCS    | LCS       |      |   |      | %Rec.    |  |
|---------|----------|--------|-----------|------|---|------|----------|--|
| Analyte | Added    | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Ammonia | <br>1.00 | 1.01   |           | mg/L |   | 101  | 90 - 110 |  |

Lab Sample ID: 680-101996-10 MS Client Sample ID: EW-01\_06042014 Prep Type: Total/NA

**Matrix: Water** 

Analysis Batch: 333396

|         | Sample | Sample    | Spike | MS     | MS        |      |   |      | %Rec.    |  |
|---------|--------|-----------|-------|--------|-----------|------|---|------|----------|--|
| Analyte | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Ammonia | 1100   |           | 500   | 1320   | F1        | ma/L | _ | 54   | 90 - 110 |  |

Lab Sample ID: 680-101996-10 MSD Client Sample ID: EW-01\_06042014 Prep Type: Total/NA

**Matrix: Water** 

Analysis Batch: 333396

| -       | Sample | Sample    | Spike | MSD    | MSD       |      |   |      | %Rec.    |     | RPD   |
|---------|--------|-----------|-------|--------|-----------|------|---|------|----------|-----|-------|
| Analyte | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   | RPD | Limit |
| Ammonia | 1100   |           | 500   | 1330   | F1        | mg/L |   | 54   | 90 - 110 | 0   | 30    |

### Method: 353.2 - Nitrogen, Nitrate-Nitrite

Lab Sample ID: MB 680-332632/13 Client Sample ID: Method Blank Prep Type: Total/NA

**Matrix: Water** 

Analysis Batch: 332632

|              | MB     | MB        |       |     |      |   |          |                |         |
|--------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Analyte      | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Nitrate as N | 0.050  | U         | 0.050 |     | mg/L |   |          | 06/05/14 17:04 | 1       |

# **QC Sample Results**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-101996-1

Method: 353.2 - Nitrogen, Nitrate-Nitrite (Continued)

| Lab Sample ID: LCS 680-332632/16 | Client Sample ID: Lab Control Sample |
|----------------------------------|--------------------------------------|
| Matrix: Water                    | Prep Type: Total/NA                  |

Analysis Batch: 332632

|              | Spike | LCS    | LCS       |      |   |      | %Rec.    |       |
|--------------|-------|--------|-----------|------|---|------|----------|-------|
| Analyte      | Added | Result | Qualifier | Unit | D | %Rec | Limits   |       |
| Nitrate as N | 0.500 | 0.527  |           | ma/L |   | 105  | 75 - 125 | <br>_ |

Lab Sample ID: 680-101996-10 MS Client Sample ID: EW-01\_06042014 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 332632

| -            | Sample | Sample    | Spike | MS     | MS        |      |   |      | %Rec.    |  |
|--------------|--------|-----------|-------|--------|-----------|------|---|------|----------|--|
| Analyte      | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Nitrate as N | 0.050  | U         | 0.500 | 0.550  |           | mg/L |   | 110  | 75 - 125 |  |

Client Sample ID: EW-01\_06042014 Lab Sample ID: 680-101996-10 MSD **Matrix: Water Prep Type: Total/NA** 

Analysis Batch: 332632

|   |              | Sample | Sample    | Spike | MSD    | MSD       |      |   |      | %Rec.    |     | RPD   |
|---|--------------|--------|-----------|-------|--------|-----------|------|---|------|----------|-----|-------|
|   | Analyte      | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   | RPD | Limit |
| Į | Nitrate as N | 0.050  | U         | 0.500 | 0.550  |           | mg/L |   | 110  | 75 - 125 | 0   | 30    |

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

## **GC/MS VOA**

Analysis Batch: 333526

| Lab Sample ID     | Client Sample ID       | Prep Type | Matrix | Method | Prep Batcl |
|-------------------|------------------------|-----------|--------|--------|------------|
| 680-101996-1      | PDMW-07P_06042014      | Total/NA  | Water  | 8260B  | _          |
| 680-101996-2      | PDMW-46_06042014       | Total/NA  | Water  | 8260B  |            |
| 680-101996-3      | MW-201_06042014        | Total/NA  | Water  | 8260B  |            |
| 680-101996-4      | PDMW-19P_06042014      | Total/NA  | Water  | 8260B  |            |
| 680-101996-5      | PDMW-47_06042014       | Total/NA  | Water  | 8260B  |            |
| 680-101996-6      | PDMW-23R_06042014      | Total/NA  | Water  | 8260B  |            |
| 680-101996-7      | PDMW-33R2_06042014     | Total/NA  | Water  | 8260B  |            |
| 680-101996-9      | PDMW-32R_06042014      | Total/NA  | Water  | 8260B  |            |
| 680-101996-10     | EW-01_06042014         | Total/NA  | Water  | 8260B  |            |
| 680-101996-10 MS  | EW-01_06042014         | Total/NA  | Water  | 8260B  |            |
| 680-101996-10 MSD | EW-01_06042014         | Total/NA  | Water  | 8260B  |            |
| 680-101996-12     | TRIPBLANK_06042014     | Total/NA  | Water  | 8260B  |            |
| LCS 680-333526/4  | Lab Control Sample     | Total/NA  | Water  | 8260B  |            |
| LCSD 680-333526/6 | Lab Control Sample Dup | Total/NA  | Water  | 8260B  |            |
| MB 680-333526/8   | Method Blank           | Total/NA  | Water  | 8260B  |            |

### **GC/MS Semi VOA**

**Prep Batch: 333327** 

| Lab Sample ID       | Client Sample ID   | Prep Type | Matrix | Method | Prep Batcl |
|---------------------|--------------------|-----------|--------|--------|------------|
| 680-101996-1        | PDMW-07P_06042014  | Total/NA  | Water  | 3520C  |            |
| 680-101996-2        | PDMW-46_06042014   | Total/NA  | Water  | 3520C  |            |
| 680-101996-3        | MW-201_06042014    | Total/NA  | Water  | 3520C  |            |
| 680-101996-4        | PDMW-19P_06042014  | Total/NA  | Water  | 3520C  |            |
| 680-101996-5        | PDMW-47_06042014   | Total/NA  | Water  | 3520C  |            |
| 680-101996-6        | PDMW-23R_06042014  | Total/NA  | Water  | 3520C  |            |
| 680-101996-7        | PDMW-33R2_06042014 | Total/NA  | Water  | 3520C  |            |
| 680-101996-9        | PDMW-32R_06042014  | Total/NA  | Water  | 3520C  |            |
| 680-101996-10       | EW-01_06042014     | Total/NA  | Water  | 3520C  |            |
| 680-101996-10 MS    | EW-01_06042014     | Total/NA  | Water  | 3520C  |            |
| 680-101996-10 MSD   | EW-01_06042014     | Total/NA  | Water  | 3520C  |            |
| LCS 680-333327/22-A | Lab Control Sample | Total/NA  | Water  | 3520C  |            |
| MB 680-333327/21-A  | Method Blank       | Total/NA  | Water  | 3520C  |            |

## Analysis Batch: 333622

| Lab Sample ID       | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|---------------------|--------------------|-----------|--------|--------|------------|
| 680-101996-10       | EW-01_06042014     | Total/NA  | Water  | 8270D  | 333327     |
| 680-101996-10 MS    | EW-01_06042014     | Total/NA  | Water  | 8270D  | 333327     |
| 680-101996-10 MSD   | EW-01_06042014     | Total/NA  | Water  | 8270D  | 333327     |
| LCS 680-333327/22-A | Lab Control Sample | Total/NA  | Water  | 8270D  | 333327     |
| MB 680-333327/21-A  | Method Blank       | Total/NA  | Water  | 8270D  | 333327     |

# Analysis Batch: 333838

| Lab Sample ID | Client Sample ID  | Prep Type | Matrix | Method | Prep Batch |
|---------------|-------------------|-----------|--------|--------|------------|
| 680-101996-1  | PDMW-07P_06042014 | Total/NA  | Water  | 8270D  | 333327     |
| 680-101996-2  | PDMW-46_06042014  | Total/NA  | Water  | 8270D  | 333327     |
| 680-101996-3  | MW-201_06042014   | Total/NA  | Water  | 8270D  | 333327     |
| 680-101996-4  | PDMW-19P_06042014 | Total/NA  | Water  | 8270D  | 333327     |
| 680-101996-5  | PDMW-47_06042014  | Total/NA  | Water  | 8270D  | 333327     |
| 680-101996-6  | PDMW-23R_06042014 | Total/NA  | Water  | 8270D  | 333327     |
|               |                   |           |        |        |            |

TestAmerica Savannah

Page 25 of 37

9

4

၁ —

7

10

11

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

# GC/MS Semi VOA (Continued)

## **Analysis Batch: 333838 (Continued)**

| Lab Sample ID | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|---------------|--------------------|-----------|--------|--------|------------|
| 680-101996-7  | PDMW-33R2_06042014 | Total/NA  | Water  | 8270D  | 333327     |
| 680-101996-9  | PDMW-32R_06042014  | Total/NA  | Water  | 8270D  | 333327     |

### **Metals**

## **Prep Batch: 332730**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 680-101996-1       | PDMW-07P_06042014  | Total/NA  | Water  | 3010A  |            |
| 680-101996-2       | PDMW-46_06042014   | Total/NA  | Water  | 3010A  |            |
| LCS 680-332730/2-A | Lab Control Sample | Total/NA  | Water  | 3010A  |            |
| MB 680-332730/1-A  | Method Blank       | Total/NA  | Water  | 3010A  |            |

## **Prep Batch: 332912**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 680-101996-3       | MW-201_06042014    | Total/NA  | Water  | 3010A  |            |
| 680-101996-4       | PDMW-19P_06042014  | Total/NA  | Water  | 3010A  |            |
| 680-101996-5       | PDMW-47_06042014   | Total/NA  | Water  | 3010A  |            |
| 680-101996-6       | PDMW-23R_06042014  | Total/NA  | Water  | 3010A  |            |
| 680-101996-7       | PDMW-33R2_06042014 | Total/NA  | Water  | 3010A  |            |
| 680-101996-9       | PDMW-32R_06042014  | Total/NA  | Water  | 3010A  |            |
| 680-101996-10      | EW-01_06042014     | Total/NA  | Water  | 3010A  |            |
| 680-101996-10 MS   | EW-01_06042014     | Total/NA  | Water  | 3010A  |            |
| 680-101996-10 MSD  | EW-01_06042014     | Total/NA  | Water  | 3010A  |            |
| LCS 680-332912/2-A | Lab Control Sample | Total/NA  | Water  | 3010A  |            |
| MB 680-332912/1-A  | Method Blank       | Total/NA  | Water  | 3010A  |            |

### **Analysis Batch: 333550**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batcl |
|--------------------|--------------------|-----------|--------|--------|------------|
| 680-101996-1       | PDMW-07P_06042014  | Total/NA  | Water  | 6010C  | 332730     |
| 680-101996-2       | PDMW-46_06042014   | Total/NA  | Water  | 6010C  | 332730     |
| 680-101996-3       | MW-201_06042014    | Total/NA  | Water  | 6010C  | 33291      |
| 680-101996-4       | PDMW-19P_06042014  | Total/NA  | Water  | 6010C  | 332912     |
| 680-101996-5       | PDMW-47_06042014   | Total/NA  | Water  | 6010C  | 332912     |
| 680-101996-6       | PDMW-23R_06042014  | Total/NA  | Water  | 6010C  | 33291      |
| 680-101996-7       | PDMW-33R2_06042014 | Total/NA  | Water  | 6010C  | 33291      |
| 680-101996-9       | PDMW-32R_06042014  | Total/NA  | Water  | 6010C  | 33291      |
| 680-101996-10      | EW-01_06042014     | Total/NA  | Water  | 6010C  | 33291      |
| 680-101996-10 MS   | EW-01_06042014     | Total/NA  | Water  | 6010C  | 33291      |
| 680-101996-10 MSD  | EW-01_06042014     | Total/NA  | Water  | 6010C  | 33291      |
| LCS 680-332730/2-A | Lab Control Sample | Total/NA  | Water  | 6010C  | 33273      |
| LCS 680-332912/2-A | Lab Control Sample | Total/NA  | Water  | 6010C  | 33291      |
| MB 680-332730/1-A  | Method Blank       | Total/NA  | Water  | 6010C  | 33273      |
| MB 680-332912/1-A  | Method Blank       | Total/NA  | Water  | 6010C  | 33291      |

## **General Chemistry**

## Analysis Batch: 332632

| Lab Sample ID | Client Sample ID  | Prep Type | Matrix | Method | Prep Batch |
|---------------|-------------------|-----------|--------|--------|------------|
| 680-101996-1  | PDMW-07P_06042014 | Total/NA  | Water  | 353.2  |            |
| 680-101996-2  | PDMW-46_06042014  | Total/NA  | Water  | 353.2  |            |

TestAmerica Savannah

Page 26 of 37

6

3

4

0

9

10

11

# **QC Association Summary**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-101996-1

# **General Chemistry (Continued)**

# Analysis Batch: 332632 (Continued)

| Lab Sample ID     | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|-------------------|--------------------|-----------|--------|--------|------------|
| 680-101996-3      | MW-201_06042014    | Total/NA  | Water  | 353.2  |            |
| 680-101996-4      | PDMW-19P_06042014  | Total/NA  | Water  | 353.2  |            |
| 680-101996-5      | PDMW-47_06042014   | Total/NA  | Water  | 353.2  |            |
| 680-101996-6      | PDMW-23R_06042014  | Total/NA  | Water  | 353.2  |            |
| 680-101996-7      | PDMW-33R2_06042014 | Total/NA  | Water  | 353.2  |            |
| 680-101996-8      | PDMW-48_06042014   | Total/NA  | Water  | 353.2  |            |
| 680-101996-9      | PDMW-32R_06042014  | Total/NA  | Water  | 353.2  |            |
| 680-101996-10     | EW-01_06042014     | Total/NA  | Water  | 353.2  |            |
| 680-101996-10 MS  | EW-01_06042014     | Total/NA  | Water  | 353.2  |            |
| 680-101996-10 MSD | EW-01_06042014     | Total/NA  | Water  | 353.2  |            |
| 680-101996-11     | PDMW-50_06042014   | Total/NA  | Water  | 353.2  |            |
| LCS 680-332632/16 | Lab Control Sample | Total/NA  | Water  | 353.2  |            |
| MB 680-332632/13  | Method Blank       | Total/NA  | Water  | 353.2  |            |

## Analysis Batch: 333396

| Lab Sample ID     | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|-------------------|--------------------|-----------|--------|--------|------------|
| 680-101996-1      | PDMW-07P_06042014  | Total/NA  | Water  | 350.1  | _          |
| 680-101996-2      | PDMW-46_06042014   | Total/NA  | Water  | 350.1  |            |
| 680-101996-3      | MW-201_06042014    | Total/NA  | Water  | 350.1  |            |
| 680-101996-4      | PDMW-19P_06042014  | Total/NA  | Water  | 350.1  |            |
| 680-101996-5      | PDMW-47_06042014   | Total/NA  | Water  | 350.1  |            |
| 680-101996-6      | PDMW-23R_06042014  | Total/NA  | Water  | 350.1  |            |
| 680-101996-7      | PDMW-33R2_06042014 | Total/NA  | Water  | 350.1  |            |
| 680-101996-8      | PDMW-48_06042014   | Total/NA  | Water  | 350.1  |            |
| 680-101996-9      | PDMW-32R_06042014  | Total/NA  | Water  | 350.1  |            |
| 680-101996-10     | EW-01_06042014     | Total/NA  | Water  | 350.1  |            |
| 680-101996-10 MS  | EW-01_06042014     | Total/NA  | Water  | 350.1  |            |
| 680-101996-10 MSD | EW-01_06042014     | Total/NA  | Water  | 350.1  |            |
| 680-101996-11     | PDMW-50_06042014   | Total/NA  | Water  | 350.1  |            |
| LCS 680-333396/4  | Lab Control Sample | Total/NA  | Water  | 350.1  |            |
| MB 680-333396/5   | Method Blank       | Total/NA  | Water  | 350.1  |            |

4

0

Ω

9

10

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Client Sample ID: PDMW-07P\_06042014

Date Collected: 06/04/14 09:45

Date Received: 06/05/14 09:04

Lab Sample ID: 680-101996-1

Matrix: Water

Dil Initial Final Batch Prepared Batch Batch Prep Type Type Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA 8260B 333526 06/11/14 14:12 CAR TAL SAV Analysis 5 mL 5 mL Instrument ID: CMSAD 252.9 mL Total/NA Prep 3520C 0.5 mL 333327 06/10/14 15:11 RBS TAL SAV Total/NA Analysis 8270D 252.9 mL 0.5 mL 333838 06/12/14 18:32 LEG TAL SAV Instrument ID: CMSN Total/NA 3010A 50 mL 50 mL 332730 06/06/14 10:16 BJB TAL SAV Prep Total/NA 50 mL 333550 06/10/14 17:26 BCB TAL SAV Analysis 6010C 50 mL 1 Instrument ID: ICPE Total/NA Analysis 350.1 333396 JME TAL SAV 10 2 mL 2 mL 06/10/14 11:17 Instrument ID: KONELAB1

2 mL

2 mL

332632

Client Sample ID: PDMW-46\_06042014

Analysis

353.2

Instrument ID: LACHAT2

Date Collected: 06/04/14 09:30

Date Received: 06/05/14 09:04

Total/NA

Lab Sample ID: 680-101996-2

06/05/14 17:12

**Matrix: Water** 

TAL SAV

|           | Batch    | Batch            |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|----------|------------------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method           | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8260B            |     | 1      | 5 mL     | 5 mL   | 333526 | 06/11/14 14:35 | CAR     | TAL SAV |
|           | Instrume | ent ID: CMSAD    |     |        |          |        |        |                |         |         |
| Total/NA  | Prep     | 3520C            |     |        | 259.2 mL | 0.5 mL | 333327 | 06/10/14 15:11 | RBS     | TAL SAV |
| Total/NA  | Analysis | 8270D            |     | 1      | 259.2 mL | 0.5 mL | 333838 | 06/12/14 18:55 | LEG     | TAL SAV |
|           | Instrume | ent ID: CMSN     |     |        |          |        |        |                |         |         |
| Total/NA  | Prep     | 3010A            |     |        | 50 mL    | 50 mL  | 332730 | 06/06/14 10:16 | BJB     | TAL SAV |
| Total/NA  | Analysis | 6010C            |     | 1      | 50 mL    | 50 mL  | 333550 | 06/10/14 17:34 | BCB     | TAL SAV |
|           | Instrume | ent ID: ICPE     |     |        |          |        |        |                |         |         |
| Total/NA  | Analysis | 350.1            |     | 2      | 2 mL     | 2 mL   | 333396 | 06/10/14 09:44 | JME     | TAL SAV |
|           | Instrume | ent ID: KONELAB1 |     |        |          |        |        |                |         |         |
| Total/NA  | Analysis | 353.2            |     | 1      | 2 mL     | 2 mL   | 332632 | 06/05/14 17:13 | GRX     | TAL SAV |
|           | Instrume | ent ID: LACHAT2  |     |        |          |        |        |                |         |         |

Client Sample ID: MW-201\_06042014

Date Collected: 06/04/14 10:40

Date Received: 06/05/14 09:04

| Lab Sample ID: 680-101996-3 |
|-----------------------------|
|-----------------------------|

Matrix: Water

| _         | Batch    | Batch         |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8260B         |     | 1      | 5 mL     | 5 mL   | 333526 | 06/11/14 14:58 | CAR     | TAL SAV |
|           | Instrum  | ent ID: CMSAD |     |        |          |        |        |                |         |         |
| Total/NA  | Prep     | 3520C         |     |        | 249.5 mL | 0.5 mL | 333327 | 06/10/14 15:11 | RBS     | TAL SAV |
| Total/NA  | Analysis | 8270D         |     | 1      | 249.5 mL | 0.5 mL | 333838 | 06/12/14 19:18 | LEG     | TAL SAV |
|           | Instrum  | ent ID: CMSN  |     |        |          |        |        |                |         |         |
| Total/NA  | Prep     | 3010A         |     |        | 50 mL    | 50 mL  | 332912 | 06/07/14 09:43 | BJB     | TAL SAV |

TestAmerica Savannah

Page 28 of 37

3

E

7

9

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Client Sample ID: MW-201\_06042014

Lab Sample ID: 680-101996-3 Date Collected: 06/04/14 10:40

Matrix: Water

Date Received: 06/05/14 09:04

|           | Batch                | Batch                     |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|---------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                    | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis             | 6010C                     |     | 1      | 50 mL   | 50 mL  | 333550 | 06/10/14 18:16 | BCB     | TAL SAV |
|           | Instrume             | ent ID: ICPE              |     |        |         |        |        |                |         |         |
| Total/NA  | Analysis<br>Instrume | 350.1<br>ent ID: KONELAB1 |     | 10     | 2 mL    | 2 mL   | 333396 | 06/10/14 09:34 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>ent ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 332632 | 06/05/14 17:15 | GRX     | TAL SAV |

Client Sample ID: PDMW-19P\_06042014 Lab Sample ID: 680-101996-4

Date Collected: 06/04/14 10:55 Matrix: Water

Date Received: 06/05/14 09:04

|           | Batch                | Batch                     |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|---------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                    | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis<br>Instrume | 8260B<br>ent ID: CMSAD    |     | 1      | 5 mL    | 5 mL   | 333526 | 06/11/14 15:21 | CAR     | TAL SAV |
| Total/NA  | Prep                 | 3520C                     |     |        | 254 mL  | 0.5 mL | 333327 | 06/10/14 15:11 | RBS     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 8270D<br>ent ID: CMSN     |     | 1      | 254 mL  | 0.5 mL | 333838 | 06/12/14 19:42 | LEG     | TAL SAV |
| Total/NA  | Prep                 | 3010A                     |     |        | 50 mL   | 50 mL  | 332912 | 06/07/14 09:43 | BJB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 6010C<br>ent ID: ICPE     |     | 1      | 50 mL   | 50 mL  | 333550 | 06/10/14 18:21 | BCB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>ent ID: KONELAB1 |     | 5      | 2 mL    | 2 mL   | 333396 | 06/10/14 11:17 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>ent ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 332632 | 06/05/14 17:18 | GRX     | TAL SAV |

Client Sample ID: PDMW-47\_06042014 Lab Sample ID: 680-101996-5

Date Collected: 06/04/14 11:45 **Matrix: Water** Date Received: 06/05/14 09:04

|           | Batch                | Batch                     |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|---------------------------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Туре                 | Method                    | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis<br>Instrume | 8260B<br>ent ID: CMSAD    |     | 1      | 5 mL     | 5 mL   | 333526 | 06/11/14 15:44 | CAR     | TAL SAV |
| Total/NA  | Prep                 | 3520C                     |     |        | 260.3 mL | 0.5 mL | 333327 | 06/10/14 15:11 | RBS     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 8270D<br>ent ID: CMSN     |     | 1      | 260.3 mL | 0.5 mL | 333838 | 06/12/14 20:05 | LEG     | TAL SAV |
| Total/NA  | Prep                 | 3010A                     |     |        | 50 mL    | 50 mL  | 332912 | 06/07/14 09:43 | BJB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 6010C<br>ent ID: ICPE     |     | 1      | 50 mL    | 50 mL  | 333550 | 06/10/14 18:25 | BCB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>ent ID: KONELAB1 |     | 50     | 2 mL     | 2 mL   | 333396 | 06/10/14 09:44 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>ent ID: LACHAT2  |     | 1      | 2 mL     | 2 mL   | 332632 | 06/05/14 17:19 | GRX     | TAL SAV |

TestAmerica Savannah

Page 29 of 37

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: CSX Hutchinson Island VRP

Lab Sample ID: 680-101996-6

Matrix: Water

Client Sample ID: PDMW-23R\_06042014

Date Collected: 06/04/14 12:45 Date Received: 06/05/14 09:04

|           | Batch    | Batch            |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|----------|------------------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method           | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8260B            |     | 1      | 5 mL     | 5 mL   | 333526 | 06/11/14 16:08 | CAR     | TAL SAV |
|           | Instrume | ent ID: CMSAD    |     |        |          |        |        |                |         |         |
| Total/NA  | Prep     | 3520C            |     |        | 245.1 mL | 0.5 mL | 333327 | 06/10/14 15:11 | RBS     | TAL SAV |
| Total/NA  | Analysis | 8270D            |     | 1      | 245.1 mL | 0.5 mL | 333838 | 06/12/14 20:28 | LEG     | TAL SAV |
|           | Instrume | ent ID: CMSN     |     |        |          |        |        |                |         |         |
| Total/NA  | Prep     | 3010A            |     |        | 50 mL    | 50 mL  | 332912 | 06/07/14 09:43 | BJB     | TAL SAV |
| Total/NA  | Analysis | 6010C            |     | 1      | 50 mL    | 50 mL  | 333550 | 06/10/14 18:29 | BCB     | TAL SAV |
|           | Instrume | ent ID: ICPE     |     |        |          |        |        |                |         |         |
| Total/NA  | Analysis | 350.1            |     | 2      | 2 mL     | 2 mL   | 333396 | 06/10/14 09:44 | JME     | TAL SAV |
|           | Instrume | ent ID: KONELAB1 |     |        |          |        |        |                |         |         |
| Total/NA  | Analysis | 353.2            |     | 1      | 2 mL     | 2 mL   | 332632 | 06/05/14 17:21 | GRX     | TAL SAV |
|           | Instrume | ent ID: LACHAT2  |     |        |          |        |        |                |         |         |

Client Sample ID: PDMW-33R2\_06042014

Lab Sample ID: 680-101996-7 Date Collected: 06/04/14 13:15

**Matrix: Water** 

Date Received: 06/05/14 09:04

|           | Batch                | Batch                     |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|---------------------------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                    | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis<br>Instrume | 8260B<br>ent ID: CMSAD    |     | 1      | 5 mL     | 5 mL   | 333526 | 06/11/14 16:31 | CAR     | TAL SAV |
| Total/NA  | Prep                 | 3520C                     |     |        | 258.3 mL | 0.5 mL | 333327 | 06/10/14 15:11 | RBS     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 8270D<br>ent ID: CMSN     |     | 1      | 258.3 mL | 0.5 mL | 333838 | 06/12/14 20:51 | LEG     | TAL SAV |
| Total/NA  | Prep                 | 3010A                     |     |        | 50 mL    | 50 mL  | 332912 | 06/07/14 09:43 | BJB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 6010C<br>ent ID: ICPE     |     | 1      | 50 mL    | 50 mL  | 333550 | 06/10/14 18:34 | ВСВ     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>ent ID: KONELAB1 |     | 10     | 2 mL     | 2 mL   | 333396 | 06/10/14 09:34 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>ent ID: LACHAT2  |     | 1      | 2 mL     | 2 mL   | 332632 | 06/05/14 17:22 | GRX     | TAL SAV |

Client Sample ID: PDMW-48\_06042014

Date Collected: 06/04/14 14:35

|           | Batch    | Batch            |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method           | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 350.1            |     | 20     | 2 mL    | 2 mL   | 333396 | 06/10/14 10:03 | JME     | TAL SAV |
|           | Instrume | ent ID: KONELAB1 |     |        |         |        |        |                |         |         |
| Total/NA  | Analysis | 353.2            |     | 1      | 2 mL    | 2 mL   | 332632 | 06/05/14 17:23 | GRX     | TAL SAV |
|           | Instrume | ent ID: LACHAT2  |     |        |         |        |        |                |         |         |

Lab Sample ID: 680-101996-8

**Matrix: Water** 

Page 30 of 37

6/20/2014

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: CSX Hutchinson Island VRP

Client Sample ID: PDMW-32R\_06042014

Date Collected: 06/04/14 15:20 Date Received: 06/05/14 09:04

Lab Sample ID: 680-101996-9

**Matrix: Water** 

Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis 8260B 5 mL 5 mL 333526 06/11/14 16:54 CAR TAL SAV Instrument ID: CMSAD Total/NA 3520C 253.4 mL 0.5 mL 333327 06/10/14 15:11 RBS TAL SAV Prep Total/NA Analysis 8270D 253.4 mL 0.5 mL 333838 06/12/14 21:14 LEG TAL SAV Instrument ID: CMSN Total/NA Prep 3010A 50 mL 50 mL 332912 06/07/14 09:43 BJB TAL SAV Total/NA 50 mL 333550 всв TAL SAV Analysis 6010C 1 50 mL 06/10/14 18:38 Instrument ID: ICPE Total/NA Analysis 350.1 10 2 mL 2 mL 333396 06/10/14 11:41 **JME** TAL SAV Instrument ID: KONELAB1 Total/NA Analysis 353.2 2 mL 2 mL 332632 06/05/14 17:24 GRX TAL SAV Instrument ID: LACHAT2

Client Sample ID: EW-01\_06042014

Date Collected: 06/04/14 15:09

Date Received: 06/05/14 09:04

Lab Sample ID: 680-101996-10

**Matrix: Water** 

|           | Batch    | Batch            |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|----------|------------------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method           | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8260B            |     | 1      | 5 mL     | 5 mL   | 333526 | 06/11/14 17:17 | CAR     | TAL SAV |
|           | Instrume | ent ID: CMSAD    |     |        |          |        |        |                |         |         |
| Total/NA  | Prep     | 3520C            |     |        | 248.5 mL | 0.5 mL | 333327 | 06/10/14 15:11 | RBS     | TAL SAV |
| Total/NA  | Analysis | 8270D            |     | 1      | 248.5 mL | 0.5 mL | 333622 | 06/11/14 23:07 | SMC     | TAL SAV |
|           | Instrume | ent ID: CMSE     |     |        |          |        |        |                |         |         |
| Total/NA  | Prep     | 3010A            |     |        | 50 mL    | 50 mL  | 332912 | 06/07/14 09:43 | BJB     | TAL SAV |
| Total/NA  | Analysis | 6010C            |     | 1      | 50 mL    | 50 mL  | 333550 | 06/10/14 18:42 | BCB     | TAL SAV |
|           | Instrume | ent ID: ICPE     |     |        |          |        |        |                |         |         |
| Total/NA  | Analysis | 350.1            |     | 1000   | 2 mL     | 2 mL   | 333396 | 06/10/14 11:41 | JME     | TAL SAV |
|           | Instrume | ent ID: KONELAB1 |     |        |          |        |        |                |         |         |
| Total/NA  | Analysis | 353.2            |     | 1      | 2 mL     | 2 mL   | 332632 | 06/05/14 17:08 | GRX     | TAL SAV |
|           | Instrume | ent ID: LACHAT2  |     |        |          |        |        |                |         |         |

Client Sample ID: PDMW-50\_06042014

Date Collected: 06/04/14 16:25

Date Received: 06/05/14 09:04

| Lab Sample I | ID: 680-101996-11 |
|--------------|-------------------|
|              | Matrix: Water     |

| _         | Batch    | Batch           |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-----------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method          | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 350.1           |     | 5      | 2 mL    | 2 mL   | 333396 | 06/10/14 09:54 | JME     | TAL SAV |
|           | Instrum  | ent ID: KONELAI | 31  |        |         |        |        |                |         |         |
| Total/NA  | Analysis | 353.2           |     | 1      | 2 mL    | 2 mL   | 332632 | 06/05/14 17:25 | GRX     | TAL SAV |
|           | Instrum  | ent ID: LACHAT2 | 2   |        |         |        |        |                |         |         |

## **Lab Chronicle**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-101996-1

Client Sample ID: TRIPBLANK\_06042014

Lab Sample ID: 680-101996-12 Date Collected: 06/04/14 00:00 Matrix: Water

Date Received: 06/05/14 09:04

|           | Batch    | Batch         |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8260B         |     | 1      | 5 mL    | 5 mL   | 333526 | 06/11/14 13:02 | CAR     | TAL SAV |
|           | Instrum  | ent ID: CMSAD |     |        |         |        |        |                |         |         |

#### Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

## **Laboratory: TestAmerica Savannah**

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

| AFCEE DoD ELAP |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SAVLAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 100/150 45005  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 399.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 02-28-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| ISO/IEC 17025  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 399.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 02-28-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| State Program  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 06-30-14 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| State Program  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 88-0692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 01-31-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| NELAP          | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3217CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 07-31-14 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| State Program  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12-31-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| State Program  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PH-0161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 03-31-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| NELAP          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E87052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 06-30-14 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| State Program  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 06-30-14 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| State Program  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 06-30-14 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| State Program  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 803                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 06-30-14 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| State Program  | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 09-005r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 04-16-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| State Program  | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 06-30-14 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| NELAP          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11-30-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| State Program  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 06-30-14 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| State Program  | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 07-01-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| State Program  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 90084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12-31-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| State Program  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 02-28-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| NELAP          | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 06-30-14 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| NELAP          | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LA140023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12-31-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| State Program  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GA00006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 08-16-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| State Program  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12-31-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| State Program  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M-GA006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 06-30-14 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| State Program  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9925                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 06-30-14 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| State Program  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 06-30-14 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| State Program  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CERT0081                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 01-01-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| State Program  | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TestAmerica-Savannah                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 06-30-14 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| NELAP          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GA769                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 06-30-14 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| State Program  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 06-30-14 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| NELAP          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10842                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 03-31-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| State Program  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12-31-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| State Program  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 07-31-14 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| State Program  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 08-31-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| NELAP          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 68-00474                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 06-30-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| State Program  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GA00006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12-31-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| State Program  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 98001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 06-30-14 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| State Program  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TN02961                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 06-30-14 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| NELAP          | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T104704185-08-TX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11-30-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Federal        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SAV 3-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 06-11-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| NELAP          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 460161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 06-14-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| State Program  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 06-10-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| State Program  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 06-30-14 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| State Program  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9950C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12-31-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| State Program  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 999819810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 08-31-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                | State Program State Program NELAP State Program NELAP State Program | State Program       8         State Program       1         NELAP       4         State Program       4         State Program       4         State Program       9         State Program       9         NELAP       5         State Program       5         State Program       4         State Program       4         NELAP       6         NELAP       6         NELAP       6         State Program       1         State Program       3         State Program       5         State Program       4         State Program       8         State Program       7         NELAP       2         State Program       6         NELAP       2         State Program       4         State Program       4 | State Program         8         N/A           State Program         1         PH-0161           NELAP         4         E87052           State Program         4         N/A           State Program         4         N/A           State Program         9         09-005r           State Program         9         N/A           NELAP         5         200022           State Program         5         N/A           State Program         7         353           State Program         4         90084           State Program         4         18           NELAP         6         30690           NELAP         6         LA140023           State Program         1         GA000006           State Program         1         GA000006           State Program         3         250           State Program         5         9925           State Program         4         N/A           State Program         5         9925           State Program         7         TestAmerica-Savannah           NELAP         2         GA769           State Program <td< td=""></td<> |  |

6

8

9

11

12

 $<sup>\</sup>ensuremath{^{\star}}$  Certification renewal pending - certification considered valid.

# **Method Summary**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-101996-1

| Method | Method Description                     | Protocol | Laboratory |
|--------|----------------------------------------|----------|------------|
| 8260B  | Volatile Organic Compounds (GC/MS)     | SW846    | TAL SAV    |
| 8270D  | Semivolatile Organic Compounds (GC/MS) | SW846    | TAL SAV    |
| 6010C  | Metals (ICP)                           | SW846    | TAL SAV    |
| 350.1  | Nitrogen, Ammonia                      | MCAWW    | TAL SAV    |
| 353.2  | Nitrogen, Nitrate-Nitrite              | MCAWW    | TAL SAV    |

#### Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

### Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Λ

6

8

10

77

| # 000       | SHIPMENT INFORMATION                                                                                                                            | Shipment Method:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LAD COMIC                                                        | Shipment Tracking No:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Project #: 6-4300 -5240       | PM: Pat Harrison     | pat. hartson @ omec.com | 74) 658-1374 Fax  |                  | VI VSIS                |                       |               |                           | A CONTRACTOR OF THE CONTRACTOR |                         |                    |                   |                       |                  | Á)                   | oojsn      | ) of C            | nis4C           | 966                | 0-101              | 89               |                                                 | MS/MSD     | Comments & Special Analytical Requirements: |                  | 1,40.6 280, 280, 1 | Custody Seal # LAB Log Number # | CSXT WITH ORIGINAL (                        |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------|-------------------------|-------------------|------------------|------------------------|-----------------------|---------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------|-------------------|-----------------------|------------------|----------------------|------------|-------------------|-----------------|--------------------|--------------------|------------------|-------------------------------------------------|------------|---------------------------------------------|------------------|--------------------|---------------------------------|---------------------------------------------|
|             | -354-7858 F: 912-352-0165<br>P: 330-497-9396 F: 330-497-0772                                                                                    | F: 813-885-7049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 550-4/8-26/1                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | <u>d</u>             | 00)                     | 9)                | 0 0              | METHODS FOR ANALYSIS   | <i>P</i> 2'!          | N'            | 70                        | <u>ا</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 51<br>X                 | ¥<br>11<br>2       | 12                | 49]                   | XXX              | XXX                  | ××××       | XXX               | XXX             | XXXX               | ××××               |                  | XXX                                             | CXXXX      | 55,20 h                                     | ,3               | ·                  | Custody Intact                  | UST BE SUBMITTED TO                         |
|             |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 350-4/4-1001<br>P: 71¢ ¢01.96                                    | r. / 16-691-200<br>08-534-5200 F:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RMATION                       | EST                  | 2d Ste                  | 1 20              | Note ■ M &       | Pres.                  | Code                  |               | ٦                         | اره<br>ا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 701                     |                    | Matrix C          | Code 4                | X<br>X<br>M<br>M | <  ×  ∞9             | X X M9     | ×  ×  の9          | ×  ×  σ9        | CM X               | ト<br>×<br>の9       | %<br>X<br>X      | <u>×   ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ </u> | SW X X     | Date Filme                                  | Date/Time        | Date/Time:         | LAB USE:                        | INVOICE M                                   |
|             | Savannah, GA 31404 P.                                                                                                                           | 100, Tampa, FL 33634                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pensacola, FL 32514 P                                            | 106, Ammerst, NY 14226<br>Sity Park, IL 60466 P: 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CONSULTANT INFORMATION        | COMPANY EC E         | Address:                | City, State, Zip, |                  | Sodium Thiosulfate Pre | = Sodium Hydroxide Co | Joinsi I - CI |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r Solid                 |                    | Filtered Type Ma  | _                     | 0 9 N            | 9 7                  | 8 8 N      | N 6 6             |                 | N 6 6              | 9 ク ス              | N 6 6            | 9<br>9<br>1                                     | 9 2        |                                             |                  |                    | 26                              |                                             |
| INFORMATION | StestAmerica Savannah - 5102 LaRoche Avenue, Savannah, GA 31404 P: 912 TestAmerica North Canton - 4101 Shirffel Drive NW North Canton. OH 44720 | U restAmerica Tampa - 6712 Benjamin Road, Suite 100, Tampa, FL 33634                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TestAmerica Pensacola - 3355 McLemore Drive, Pensacola, FL 32514 | Li restamenta bunano - 10 Hazelwood Drive, Sulle 10o, Animerst, nr. 14220 - 17, 10-931-2000 - 17, 10-931 - 2000 - 2, 10-931 - 2000 - 2, 10-931 - 2000 - 2, 10-931 - 2000 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, 10-931 - 2, | of Origin)                    |                      |                         | 8915MR C          | 3 = Sulfur       | 4 =                    | വ വ                   | 110           | ) <u>(</u>                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Water SOL = Other Solid |                    | le Collection Fil | Time Sampler Y        | 0945 PG 1        |                      | 1840 JJ A  | 1055 PC           | SF              | 1245 25            | 1315 P6            | 1435 SF /        | 1520 PC                                         | 1509 55    | Received By:                                | Received By:     | Received By:       | Lab Remarks: 680 - 10199        |                                             |
| LABORATORY  | TestAmerica Savar                                                                                                                               | TestAmerica Tamp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TestAmerica Pens                                                 | TestAmerica Burra TestAmerica Chica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Proj. State (State of Origin) | Proj. City: Savannah |                         | WWW.1138          | Preservative C   | 0 = No Preservatives   | 1 = Hydrochloric Acid | Matrix Codes  | GW = Groundwater          | WW = Waste Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SW = Surface \          |                    | Sample            | Date                  | 71 23 9          | 7 7 9                | h1/h/9     | h11 h12           | 111119          | 刊119               | h1]H 9             | 6414             | ナニオラ                                            | િપિષિ      | O750                                        | HO:00 /          |                    | 40,60                           | 1                                           |
|             | ט                                                                                                                                               | 5 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | בכר                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                      | QV                      | 7 8               | 13 Days          | , sh                   | Days                  |               |                           | ed, Format:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                    | Containers        | Number &<br>Type      | 9                | 0                    | <b>ሪ</b> ጉ | Ь                 | ь               | Ь                  | Ь                  | B                | 0                                               | 27         | Date/Times                                  | Pate/Time://C    | 1.5                | Date/Time/                      | eles .                                      |
|             |                                                                                                                                                 | TO VICE OF THE CONTRACT OF THE |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RMATION                       | 2418514P             | Sam Ross                | Hutchinson Islan  |                  | Specify # Days         | Standard 14 Days      | Jan Salas     | ]                         | EDD Required, Format:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | NO                 |                   | Sample Identification | DAP_06042014     | P1024090_            | h102h090   | 41064000-         | PMM-47-06042014 | h102h090-          | Hochogo-E          | 41064000-        | 3-06042014                                      | 4100 40    |                                             | 188              |                    | 1                               | ABORATORY WITH SAME                         |
|             | 257                                                                                                                                             | 3<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TRANSPORTATION                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CSXT PROJECT INFORMATION      | ي                    | CSXT Project Name:      | CSXT Contact:     | Turnaround Time: | 1 Day Rush             | 2 Day Rush            | Deliverables  | CSXT Standard (I evel II) | Level III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Level IV                | SAMPLE INFORMATION |                   | Sample Ide            | PDMM-07P         | 41024090 - 94 - MWQ4 | MW-201_    | hiocho90-991-mwag | th-mwad         | PD MW-33R-06042014 | PDMW-33R2-06042014 | 41064090-84-MMG9 | PDMM-32R                                        | EW-01,0604 | Relinquished Bill                           | Relinquisted By: | Relinquished By:   | Received By Laboyatory:         | ORIGINAL - RETURNTO LABORATORY WITH SAMPLES |

TAL-6006 (0509) pat, harrison @amec.com LAB USE Comments & Special Analytical Requirements: Lab Carrer 6-4300-5240 LAB Log Number COMMENTS Pat Harrison 1848)(58-137 SHIPMENT INFORMATION INVOICE MUST BE SUBMITTED TO CSXT WITH ORIGINAL COC Shipment Tracking No: Shipment Method: # OOO Custody Seal # Project #: METHODS FOR ANALYSIS Email: ₽₩ TestAmerica Savannah - 5102 LaRoche Avenue, Savannah, GA 31404 P: 912-354-7858 F: 912-352-0165
DiestAmerica North Canton - 4101 Shuffel Drive NW, North Canton, OH 44720 P: 330-497-9396 F: 330-497-0772 Custody Intact □ TestAmerica Tampa - 6712 Benjamin Road, Suite 100, Tampa, FL 33634 P: 813-885-7427 F: 813-885-7049 □ TestAmerica Pensacola - 3355 McLemore Drive, Pensacola, FL 32514 P: 850-474-1001 F: 850-478-2671 □ TestAmerica Buffalo - 10 Hazelwood Drive, Suite 106, Amherst, NY 14228 P: 716-691-2600 F: 716-961-7991 □ TestAmerica Chicago - 2417 Bond Street, University Park, IL 60466 P: 708-534-5200 F: 708-534-5211 Stc 100 X3T8 3721 Date/Time; LAB USE: Date/Time: **®**ate/Time: d CONSULTANT INFORMATION Note # 四百 3 Adyrigh Coll Pres. Code <u>র</u> Code Matrix LIQ = Liquid City State Zip: 16 Comp or Grab Company Type Lab Remarks: 10199 1 9 4 = Sodium Thiosulfate 5 = Sodium Hydroxide SOL = Other Solid Filtered Sampler Y or N 3 = Sulfuric Acid Z Z SL = Sludge SO = Soil 6 = Other 0 = 0il ST 17 F ENW1138915MR Proj. City: SAVONDAN Received By: Received By: Received By 529 Sample Collection Proj. State (State of Origin) Time Preservative Codes: 0 = No Preservatives 1 = Hydrochloric Acid SW = Surface Water GW = Groundwater WW = Waste Water Matrix Codes: 70,60 2 = Nitric Acid カニカラ ナニ/ト/9 Date Number & Containers Date/Time: Hutchingon Island EDD Required, Format: 3 ત્યુ Date/Time: Date/Time ISI' CHAIN OF Standard 6-13 Days CUSTODY Standard 14 Days
Other ORIGINAL - RETURN TO LABORATORY WITH SAMPLES Specify # Days Other Deliv: TRIPBLANK-06042017 \$DMW-50\_06042014 CSXT Project Number: 9415545 San Ross CSXT PROJECT INFORMATION Sample Identification Deliverables: SAMPLE INFORMATION **TRANSPORTATION** Turnaround Time: CSXT Project Name: 1 Day Rush 2 Day Rush 3 Day Rush By Labora Level III Level IV Relinquished By CSXT Contact:

# **Login Sample Receipt Checklist**

Client: AMEC Environment & Infrastructure, Inc.

Job Number: 680-101996-1

Login Number: 101996 List Source: TestAmerica Savannah

List Number: 1

Creator: Kicklighter, Marilyn D

| Question                                                                                                  | Answer | Comment |
|-----------------------------------------------------------------------------------------------------------|--------|---------|
| Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td> | N/A    |         |
| The cooler's custody seal, if present, is intact.                                                         | True   |         |
| Sample custody seals, if present, are intact.                                                             | True   |         |
| The cooler or samples do not appear to have been compromised or tampered with.                            | True   |         |
| Samples were received on ice.                                                                             | True   |         |
| Cooler Temperature is acceptable.                                                                         | True   |         |
| Cooler Temperature is recorded.                                                                           | True   |         |
| COC is present.                                                                                           | True   |         |
| COC is filled out in ink and legible.                                                                     | True   |         |
| COC is filled out with all pertinent information.                                                         | True   |         |
| Is the Field Sampler's name present on COC?                                                               | N/A    |         |
| There are no discrepancies between the containers received and the COC.                                   | True   |         |
| Samples are received within Holding Time.                                                                 | True   |         |
| Sample containers have legible labels.                                                                    | True   |         |
| Containers are not broken or leaking.                                                                     | True   |         |
| Sample collection date/times are provided.                                                                | True   |         |
| Appropriate sample containers are used.                                                                   | True   |         |
| Sample bottles are completely filled.                                                                     | True   |         |
| Sample Preservation Verified.                                                                             | True   |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs                          | True   |         |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").                           | True   |         |
| Multiphasic samples are not present.                                                                      | True   |         |
| Samples do not require splitting or compositing.                                                          | True   |         |
| Residual Chlorine Checked.                                                                                | N/A    |         |
|                                                                                                           |        |         |

2

4

6

9

10

11



THE LEADER IN ENVIRONMENTAL TESTING

# ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

TestAmerica Job ID: 680-102049-1

Client Project/Site: CSX Hutchinson Island VRP

### For:

AMEC Environment & Infrastructure, Inc. 2677 Buford Highway Atlanta, Georgia 30324

Attn: Mr. Steve Foley

Sida Horey

Authorized for release by: 6/20/2014 5:58:22 PM

Lisa Harvey, Project Manager II (912)354-7858 e.3221

lisa.harvey@testamericainc.com

----- LINKS -----

Review your project results through
Total Access

**Have a Question?** 



Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Job ID: 680-102049-1

Laboratory: TestAmerica Savannah

Narrative

### **CASE NARRATIVE**

Client: AMEC Environment & Infrastructure, Inc.
Project: CSX Hutchinson Island VRP
Report Number: 680-102049-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

#### RECEIPT

The samples were received on 6/6/2014 8:35 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 3 coolers at receipt time were 5.2° C, 5.4° C and 5.8° C.

### VOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples SW-04-LOW\_06052014 (680-102049-1), SW-03-LOW\_06052014 (680-102049-2), TMW-01\_06052014 (680-102049-3), SW-01-LOW\_06052014 (680-102049-4), SW-02-LOW\_06052014 (680-102049-5), PDMW-26T\_06052014 (680-102049-6), MW-3R\_06052014 (680-102049-7), PDMW-10R\_06052014 (680-102049-9), PDMW-13P\_06052014 (680-102049-11), SW-03-HIGH\_06052014 (680-102049-12), SW-04-HIGH\_06052014 (680-102049-13), SW-02-HIGH\_06052014 (680-102049-14), SW-01-HIGH\_06052014 (680-102049-15) and TRIPBLANK\_06052014 (680-102049-16) were analyzed for Volatile Organic Compounds (GC-MS) in accordance with EPA SW-846 Method 8260B.

Method(s) 8260B: The following sample(s) were collected in properly preserved vials for analysis of volatile organic compounds (VOCs). However, the pH was outside the required criteria when verified by the laboratory, and corrective action was not possible: PDMW-26T\_06052014 (680-102049-6), TMW-01\_06052014 (680-102049-3).

Sample TMW-01\_06052014 (680-102049-3)[2X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

### SEMIVOLATILE ORGANIC COMPOUNDS (AQUEOUS)

Samples SW-04-LOW\_06052014 (680-102049-1), SW-03-LOW\_06052014 (680-102049-2), TMW-01\_06052014 (680-102049-3), SW-01-LOW\_06052014 (680-102049-4), SW-02-LOW\_06052014 (680-102049-5), PDMW-26T\_06052014 (680-102049-6), MW-3R\_06052014 (680-102049-7), PDMW-10R\_06052014 (680-102049-9), PDMW-13P\_06052014 (680-102049-11), SW-03-HIGH\_06052014 (680-102049-12), SW-04-HIGH\_06052014 (680-102049-13), SW-02-HIGH\_06052014 (680-102049-14) and SW-01-HIGH\_06052014 (680-102049-15) were analyzed for Semivolatile Organic Compounds (Aqueous) in accordance with EPA SW-846 Method 8270D.

Method(s) 8270D: The %RPD of the laboratory control sample (LCS) and laboratory control standard duplicate (LCSD) for preparation batch 333829 recovered outside control limits for the following analytes: acenapthylene.

#### **METALS (ICP)**

Samples SW-04-LOW\_06052014 (680-102049-1), SW-03-LOW\_06052014 (680-102049-2), SW-01-LOW\_06052014 (680-102049-4), SW-02-LOW\_06052014 (680-102049-5), SW-03-HIGH\_06052014 (680-102049-12), SW-04-HIGH\_06052014 (680-102049-13), SW-02-HIGH\_06052014 (680-102049-14) and SW-01-HIGH\_06052014 (680-102049-15) were analyzed for Metals (ICP) in accordance with EPA SW-846 Method 6010C.

#### METALS (ICP)

Samples TMW-01\_06052014 (680-102049-3), PDMW-26T\_06052014 (680-102049-6), MW-3R\_06052014 (680-102049-7), PDMW-10R\_06052014 (680-102049-9) and PDMW-13P\_06052014 (680-102049-11) were analyzed for Metals (ICP) in accordance with EPA SW-846 Method 6010C.

### <u>ALKALINITY</u>

4

2

\_

8

1 N

11

### **Case Narrative**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-102049-1

4

### Job ID: 680-102049-1 (Continued)

### Laboratory: TestAmerica Savannah (Continued)

Samples SW-04-LOW\_06052014 (680-102049-1), SW-03-LOW\_06052014 (680-102049-2), SW-01-LOW\_06052014 (680-102049-4), SW-02-LOW\_06052014 (680-102049-5), SW-03-HIGH\_06052014 (680-102049-12), SW-04-HIGH\_06052014 (680-102049-13), SW-02-HIGH\_06052014 (680-102049-14) and SW-01-HIGH\_06052014 (680-102049-15) were analyzed for alkalinity in accordance with EPA Method 310.1.

### **AMMONIA**

Samples SW-04-LOW\_06052014 (680-102049-1), SW-03-LOW\_06052014 (680-102049-2), TMW-01\_06052014 (680-102049-3), SW-01-LOW\_06052014 (680-102049-4), SW-02-LOW\_06052014 (680-102049-5), PDMW-26T\_06052014 (680-102049-6), MW-3R\_06052014 (680-102049-7), PDMW-52\_06052014 (680-102049-8), PDMW-10R\_06052014 (680-102049-9), DUP-03\_06052014 (680-102049-10), PDMW-13P\_06052014 (680-102049-11), SW-03-HIGH\_06052014 (680-102049-12), SW-04-HIGH\_06052014 (680-102049-13), SW-02-HIGH\_06052014 (680-102049-14) and SW-01-HIGH\_06052014 (680-102049-15) were analyzed for ammonia in accordance with EPA Method 350.1.

Samples TMW-01\_06052014 (680-102049-3)[2000X], SW-01-LOW\_06052014 (680-102049-4)[2X], SW-02-LOW\_06052014 (680-102049-5)[2X], PDMW-26T\_06052014 (680-102049-6)[500X], MW-3R\_06052014 (680-102049-7)[5X], PDMW-52\_06052014 (680-102049-8)[10X], PDMW-10R\_06052014 (680-102049-9)[10X], DUP-03\_06052014 (680-102049-10)[5X] and PDMW-13P\_06052014 (680-102049-11)[2X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

#### **NITRATE-NITRITE AS NITROGEN**

Samples SW-04-LOW\_06052014 (680-102049-1), SW-03-LOW\_06052014 (680-102049-2), TMW-01\_06052014 (680-102049-3), SW-01-LOW\_06052014 (680-102049-4), SW-02-LOW\_06052014 (680-102049-5), PDMW-26T\_06052014 (680-102049-6), MW-3R\_06052014 (680-102049-7), PDMW-52\_06052014 (680-102049-8), PDMW-10R\_06052014 (680-102049-9), DUP-03\_06052014 (680-102049-10), PDMW-13P\_06052014 (680-102049-11), SW-03-HIGH\_06052014 (680-102049-12), SW-04-HIGH\_06052014 (680-102049-13), SW-02-HIGH\_06052014 (680-102049-14) and SW-01-HIGH\_06052014 (680-102049-15) were analyzed for nitrate-nitrite as nitrogen in accordance with EPA Method 353.2.

Sample TMW-01\_06052014 (680-102049-3)[250X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

4

5

7

8

1 በ

11

# **Definitions/Glossary**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-102049-1

**Qualifiers** 

**GC/MS VOA** 

Qualifier **Qualifier Description** 

Ū Indicates the analyte was analyzed for but not detected.

GC/MS Semi VOA

Qualifier **Qualifier Description** U Indicates the analyte was analyzed for but not detected.

RPD of the LCS and LCSD exceeds the control limits

**Metals** 

Qualifier **Qualifier Description** 

Indicates the analyte was analyzed for but not detected.

**General Chemistry** 

Qualifier **Qualifier Description** 

Indicates the analyte was analyzed for but not detected.

**Glossary** 

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid **CNF** Contains no Free Liquid

DER Duplicate error ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision level concentration DLC MDA Minimum detectable activity **EDL Estimated Detection Limit** MDC Minimum detectable concentration

MDL Method Detection Limit ML Minimum Level (Dioxin)

NC Not Calculated

Not detected at the reporting limit (or MDL or EDL if shown) ND

**PQL Practical Quantitation Limit** 

**Quality Control** QC RER Relative error ratio

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) TFO

Page 4 of 61

# **Sample Summary**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-102049-1

| Lab Sample ID                | Client Sample ID    | Matrix | Collected      | Received       |
|------------------------------|---------------------|--------|----------------|----------------|
| 680-102049-1                 | SW-04-LOW_06052014  | Water  | 06/05/14 09:30 | 06/06/14 08:35 |
| 680-102049-2                 | SW-03-LOW_06052014  | Water  | 06/05/14 09:40 | 06/06/14 08:35 |
| 680-102049-3 TMW-01_06052014 |                     | Water  | 06/05/14 09:55 | 06/06/14 08:35 |
| 680-102049-4                 | SW-01-LOW_06052014  | Water  | 06/05/14 10:40 | 06/06/14 08:35 |
| 680-102049-5                 | SW-02-LOW_06052014  | Water  | 06/05/14 10:45 | 06/06/14 08:35 |
| 680-102049-6                 | PDMW-26T_06052014   | Water  | 06/05/14 11:35 | 06/06/14 08:35 |
| 680-102049-7                 | MW-3R_06052014      | Water  | 06/05/14 13:25 | 06/06/14 08:35 |
| 680-102049-8                 | PDMW-52_06052014    | Water  | 06/05/14 12:50 | 06/06/14 08:35 |
| 680-102049-9                 | PDMW-10R_06052014   | Water  | 06/05/14 13:05 | 06/06/14 08:35 |
| 680-102049-10                | DUP-03_06052014     | Water  | 06/05/14 00:00 | 06/06/14 08:35 |
| 680-102049-11                | PDMW-13P_06052014   | Water  | 06/05/14 14:50 | 06/06/14 08:35 |
| 680-102049-12                | SW-03-HIGH_06052014 | Water  | 06/05/14 14:25 | 06/06/14 08:35 |
| 680-102049-13                | SW-04-HIGH_06052014 | Water  | 06/05/14 14:45 | 06/06/14 08:35 |
| 680-102049-14                | SW-02-HIGH_06052014 | Water  | 06/05/14 15:15 | 06/06/14 08:35 |
| 680-102049-15                | SW-01-HIGH_06052014 | Water  | 06/05/14 15:30 | 06/06/14 08:35 |
| 680-102049-16                | TRIPBLANK 06052014  | Water  | 06/05/14 00:00 | 06/06/14 08:35 |

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-102049-1

Lab Sample ID: 680-102049-1

Client Sample ID: SW-04-LOW\_06052014

Date Collected: 06/05/14 09:30 Date Received: 06/06/14 08:35

Matrix: Water

| Analyte                     | Result | Qualifier | RL  | MDL | Unit | D | Prepared | Analyzed       | Dil Fa |
|-----------------------------|--------|-----------|-----|-----|------|---|----------|----------------|--------|
| Acetone                     | 25     | U         | 25  |     | ug/L |   |          | 06/13/14 14:31 |        |
| Benzene                     | 1.0    | U         | 1.0 |     | ug/L |   |          | 06/13/14 14:31 |        |
| Bromodichloromethane        | 1.0    | U         | 1.0 |     | ug/L |   |          | 06/13/14 14:31 |        |
| Bromoform                   | 1.0    | U         | 1.0 |     | ug/L |   |          | 06/13/14 14:31 |        |
| Bromomethane                | 5.0    | U         | 5.0 |     | ug/L |   |          | 06/13/14 14:31 |        |
| 2-Butanone                  | 10     | U         | 10  |     | ug/L |   |          | 06/13/14 14:31 |        |
| Carbon disulfide            | 2.0    | U         | 2.0 |     | ug/L |   |          | 06/13/14 14:31 |        |
| Carbon tetrachloride        | 1.0    | U         | 1.0 |     | ug/L |   |          | 06/13/14 14:31 |        |
| Chlorobenzene               | 1.0    | U         | 1.0 |     | ug/L |   |          | 06/13/14 14:31 |        |
| Chloroethane                | 5.0    | U         | 5.0 |     | ug/L |   |          | 06/13/14 14:31 |        |
| Chloroform                  | 1.0    | U         | 1.0 |     | ug/L |   |          | 06/13/14 14:31 |        |
| Chloromethane               | 1.0    | U         | 1.0 |     | ug/L |   |          | 06/13/14 14:31 |        |
| cis-1,2-Dichloroethene      | 1.0    | U         | 1.0 |     | ug/L |   |          | 06/13/14 14:31 |        |
| cis-1,3-Dichloropropene     | 1.0    | U         | 1.0 |     | ug/L |   |          | 06/13/14 14:31 |        |
| Cyclohexane                 | 1.0    | U         | 1.0 |     | ug/L |   |          | 06/13/14 14:31 |        |
| Dibromochloromethane        | 1.0    | U         | 1.0 |     | ug/L |   |          | 06/13/14 14:31 |        |
| 1,2-Dibromo-3-Chloropropane | 1.0    | U         | 1.0 |     | ug/L |   |          | 06/13/14 14:31 |        |

| Bromoform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0 U | 1.0 | ug/L | 06/13/14 14:31 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|------|----------------|
| Bromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.0 U | 5.0 | ug/L | 06/13/14 14:31 |
| 2-Butanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10 U  | 10  | ug/L | 06/13/14 14:31 |
| Carbon disulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.0 U | 2.0 | ug/L | 06/13/14 14:31 |
| Carbon tetrachloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0 U | 1.0 | ug/L | 06/13/14 14:31 |
| Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.0 U | 1.0 | ug/L | 06/13/14 14:31 |
| Chloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.0 U | 5.0 | ug/L | 06/13/14 14:31 |
| Chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0 U | 1.0 | ug/L | 06/13/14 14:31 |
| Chloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.0 U | 1.0 | ug/L | 06/13/14 14:31 |
| cis-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0 U | 1.0 | ug/L | 06/13/14 14:31 |
| cis-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0 U | 1.0 | ug/L | 06/13/14 14:31 |
| Cyclohexane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.0 U | 1.0 | ug/L | 06/13/14 14:31 |
| Dibromochloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0 U | 1.0 | ug/L | 06/13/14 14:31 |
| 1,2-Dibromo-3-Chloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.0 U | 1.0 | ug/L | 06/13/14 14:31 |
| 1,2-Dibromoethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0 U | 1.0 | ug/L | 06/13/14 14:31 |
| 1,2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0 U | 1.0 | ug/L | 06/13/14 14:31 |
| 1,3-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0 U | 1.0 | ug/L | 06/13/14 14:31 |
| 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0 U | 1.0 | ug/L | 06/13/14 14:31 |
| Dichlorodifluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0 U | 1.0 | ug/L | 06/13/14 14:31 |
| 1,1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0 U | 1.0 | ug/L | 06/13/14 14:31 |
| 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0 U | 1.0 | ug/L | 06/13/14 14:31 |
| 1,1-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0 U | 1.0 | ug/L | 06/13/14 14:31 |
| 1,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0 U | 1.0 | ug/L | 06/13/14 14:31 |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.0 U | 1.0 | ug/L | 06/13/14 14:31 |
| 2-Hexanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10 U  | 10  | ug/L | 06/13/14 14:31 |
| Isopropylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.0 U | 1.0 | ug/L | 06/13/14 14:31 |
| Methyl acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0 U | 1.0 | ug/L | 06/13/14 14:31 |
| Methylcyclohexane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0 U | 1.0 | ug/L | 06/13/14 14:31 |
| Methylene Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.0 U | 5.0 | ug/L | 06/13/14 14:31 |
| 4-Methyl-2-pentanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 U  | 10  | ug/L | 06/13/14 14:31 |
| Methyl tert-butyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 U  | 10  | ug/L | 06/13/14 14:31 |
| Styrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0 U | 1.0 | ug/L | 06/13/14 14:31 |
| 1,1,2,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0 U | 1.0 | ug/L | 06/13/14 14:31 |
| Tetrachloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0 U | 1.0 | ug/L | 06/13/14 14:31 |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0 U | 1.0 | ug/L | 06/13/14 14:31 |
| trans-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0 U | 1.0 | ug/L | 06/13/14 14:31 |
| trans-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0 U | 1.0 | ug/L | 06/13/14 14:31 |
| 1,2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0 U | 1.0 | ug/L | 06/13/14 14:31 |
| 1,1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0 U | 1.0 | ug/L | 06/13/14 14:31 |
| 1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0 U | 1.0 | ug/L | 06/13/14 14:31 |
| Trichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0 U | 1.0 | ug/L | 06/13/14 14:31 |
| Trichlorofluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0 U | 1.0 | ug/L | 06/13/14 14:31 |
| 1,1,2-Trichloro-1,2,2-trifluoroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0 U | 1.0 | ug/L | 06/13/14 14:31 |
| Vinyl chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0 U | 1.0 | ug/L | 06/13/14 14:31 |
| Xylenes, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.0 U | 2.0 | ug/L | 06/13/14 14:31 |
| I and the second |       |     |      |                |

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-102049-1

Client Sample ID: SW-04-LOW\_06052014

Date Collected: 06/05/14 09:30 Date Received: 06/06/14 08:35 Lab Sample ID: 680-102049-1

Matrix: Water

| Surrogate            | %Recovery | Qualifier | Limits   | Prepared | Analyzed       | Dil Fac |
|----------------------|-----------|-----------|----------|----------|----------------|---------|
| 4-Bromofluorobenzene | 99        |           | 70 - 130 |          | 06/13/14 14:31 | 1       |
| Dibromofluoromethane | 100       |           | 70 - 130 |          | 06/13/14 14:31 | 1       |
| Toluene-d8 (Surr)    | 98        |           | 70 - 130 |          | 06/13/14 14:31 | 1       |

| Dibioinionadioinicularic    | 100              |            | 70 - 700 |     |       |   |                | 00/10/14 14.01 |                   |
|-----------------------------|------------------|------------|----------|-----|-------|---|----------------|----------------|-------------------|
| Toluene-d8 (Surr)           | 98               |            | 70 - 130 |     |       |   |                | 06/13/14 14:31 |                   |
| Method: 8270D - Semivolatil | e Organic Compou | nds (GC/MS | S)       |     |       |   |                |                |                   |
| Analyte                     |                  | Qualifier  | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fa            |
| Acenaphthene                | 10               | U          | 10       |     | ug/L  |   | 06/12/14 15:41 | 06/16/14 15:38 |                   |
| Acenaphthylene              | 10               | U *        | 10       |     | ug/L  |   | 06/12/14 15:41 | 06/16/14 15:38 |                   |
| Anthracene                  | 10               | U          | 10       |     | ug/L  |   | 06/12/14 15:41 | 06/16/14 15:38 |                   |
| Benzo[a]anthracene          | 10               | U          | 10       |     | ug/L  |   | 06/12/14 15:41 | 06/16/14 15:38 |                   |
| Benzo[a]pyrene              | 10               | U          | 10       |     | ug/L  |   | 06/12/14 15:41 | 06/16/14 15:38 |                   |
| Benzo[b]fluoranthene        | 10               | U          | 10       |     | ug/L  |   | 06/12/14 15:41 | 06/16/14 15:38 |                   |
| Benzo[g,h,i]perylene        | 10               | U          | 10       |     | ug/L  |   | 06/12/14 15:41 | 06/16/14 15:38 |                   |
| Benzo[k]fluoranthene        | 10               | U          | 10       |     | ug/L  |   | 06/12/14 15:41 | 06/16/14 15:38 |                   |
| Chrysene                    | 10               | U          | 10       |     | ug/L  |   | 06/12/14 15:41 | 06/16/14 15:38 |                   |
| Dibenz(a,h)anthracene       | 10               | U          | 10       |     | ug/L  |   | 06/12/14 15:41 | 06/16/14 15:38 | · · · · · · · · · |
| Fluoranthene                | 10               | U          | 10       |     | ug/L  |   | 06/12/14 15:41 | 06/16/14 15:38 |                   |
| Fluorene                    | 10               | U          | 10       |     | ug/L  |   | 06/12/14 15:41 | 06/16/14 15:38 |                   |
| Indeno[1,2,3-cd]pyrene      | 10               | U          | 10       |     | ug/L  |   | 06/12/14 15:41 | 06/16/14 15:38 |                   |
| 1-Methylnaphthalene         | 10               | U          | 10       |     | ug/L  |   | 06/12/14 15:41 | 06/16/14 15:38 |                   |
| 2-Methylnaphthalene         | 10               | U          | 10       |     | ug/L  |   | 06/12/14 15:41 | 06/16/14 15:38 |                   |
| Naphthalene                 | 10               | U          | 10       |     | ug/L  |   | 06/12/14 15:41 | 06/16/14 15:38 |                   |
| Phenanthrene                | 10               | U          | 10       |     | ug/L  |   | 06/12/14 15:41 | 06/16/14 15:38 |                   |
| Pyrene                      | 10               | U          | 10       |     | ug/L  |   | 06/12/14 15:41 | 06/16/14 15:38 | •                 |
| Surrogate                   | %Recovery        | Qualifier  | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fa            |
| 2-Fluorobiphenyl            | 94               |            | 38 - 130 |     |       |   | 06/12/14 15:41 | 06/16/14 15:38 |                   |
| Nitrobenzene-d5 (Surr)      | 99               |            | 39 - 130 |     |       |   | 06/12/14 15:41 | 06/16/14 15:38 |                   |
| Terphenyl-d14 (Surr)        | 94               |            | 10 - 143 |     |       |   | 06/12/14 15:41 | 06/16/14 15:38 |                   |
| Method: 6010C - Metals (ICP | •                |            |          |     |       |   |                |                |                   |
| Analyte                     |                  | Qualifier  | RL       | MDL |       | D | Prepared       | Analyzed       | Dil Fa            |
| Arsenic                     |                  | U          | 20       |     | ug/L  |   | 06/07/14 11:38 | 06/17/14 18:48 | •                 |
| Chromium                    | 10               |            | 10       |     | ug/L  |   | 06/07/14 11:38 | 06/17/14 18:48 | •                 |
| Nickel                      | 40               | U          | 40       |     | ug/L  |   | 06/07/14 11:38 | 06/17/14 18:48 |                   |
| Lead                        | 10               | U          | 10       |     | ug/L  |   | 06/07/14 11:38 | 06/17/14 18:48 | •                 |
| Zinc                        | 20               | U          | 20       |     | ug/L  |   | 06/07/14 11:38 | 06/17/14 18:48 | •                 |
| General Chemistry           |                  |            |          |     |       |   |                |                |                   |
| Analyte                     |                  | Qualifier  | RL       | MDL |       | D | Prepared       | Analyzed       | Dil Fa            |
| Ammonia                     | 1.9              |            | 0.050    |     | mg/L  |   |                | 06/13/14 16:29 |                   |
| Nitrate as N                | 0.28             |            | 0.050    |     | mg/L  |   |                | 06/06/14 16:25 | •                 |
|                             |                  |            | D.       | DI. | Unit  | D | Duamanad       | Analyzad       | Dil Fa            |
| Analyte                     | Result           | Qualifier  | RL       | KL  | UIIIL | U | Prepared       | Analyzed       | DII Fa            |

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-102049-1

Client Sample ID: SW-03-LOW\_06052014

Date Collected: 06/05/14 09:40 Date Received: 06/06/14 08:35 Lab Sample ID: 680-102049-2

Matrix: Water

| Analyte                               |     | Qualifier | RL  | MDL |      | D | Prepared | Analyzed       | Dil Fa |
|---------------------------------------|-----|-----------|-----|-----|------|---|----------|----------------|--------|
| Acetone                               | 25  | U         | 25  |     | ug/L |   |          | 06/13/14 14:55 |        |
| Benzene                               | 1.0 | U         | 1.0 |     | ug/L |   |          | 06/13/14 14:55 |        |
| Bromodichloromethane                  | 1.0 | U         | 1.0 |     | ug/L |   |          | 06/13/14 14:55 |        |
| Bromoform                             | 1.0 | U         | 1.0 |     | ug/L |   |          | 06/13/14 14:55 |        |
| Bromomethane                          | 5.0 | U         | 5.0 |     | ug/L |   |          | 06/13/14 14:55 |        |
| 2-Butanone                            | 10  |           | 10  |     | ug/L |   |          | 06/13/14 14:55 |        |
| Carbon disulfide                      | 2.0 |           | 2.0 |     | ug/L |   |          | 06/13/14 14:55 |        |
| Carbon tetrachloride                  | 1.0 | U         | 1.0 |     | ug/L |   |          | 06/13/14 14:55 |        |
| Chlorobenzene                         | 1.0 |           | 1.0 |     | ug/L |   |          | 06/13/14 14:55 |        |
| Chloroethane                          | 5.0 | U         | 5.0 |     | ug/L |   |          | 06/13/14 14:55 |        |
| Chloroform                            | 1.0 | U         | 1.0 |     | ug/L |   |          | 06/13/14 14:55 |        |
| Chloromethane                         | 1.0 | U         | 1.0 |     | ug/L |   |          | 06/13/14 14:55 |        |
| cis-1,2-Dichloroethene                | 1.0 | U         | 1.0 |     | ug/L |   |          | 06/13/14 14:55 |        |
| cis-1,3-Dichloropropene               | 1.0 |           | 1.0 |     | ug/L |   |          | 06/13/14 14:55 |        |
| Cyclohexane                           | 1.0 |           | 1.0 |     | ug/L |   |          | 06/13/14 14:55 |        |
| Dibromochloromethane                  | 1.0 | U         | 1.0 |     | ug/L |   |          | 06/13/14 14:55 |        |
| 1,2-Dibromo-3-Chloropropane           | 1.0 | U         | 1.0 |     | ug/L |   |          | 06/13/14 14:55 |        |
| 1,2-Dibromoethane                     | 1.0 | U         | 1.0 |     | ug/L |   |          | 06/13/14 14:55 |        |
| 1,2-Dichlorobenzene                   | 1.0 | U         | 1.0 |     | ug/L |   |          | 06/13/14 14:55 |        |
| 1,3-Dichlorobenzene                   | 1.0 | U         | 1.0 |     | ug/L |   |          | 06/13/14 14:55 |        |
| 1,4-Dichlorobenzene                   | 1.0 | U         | 1.0 |     | ug/L |   |          | 06/13/14 14:55 |        |
| Dichlorodifluoromethane               | 1.0 | U         | 1.0 |     | ug/L |   |          | 06/13/14 14:55 |        |
| 1,1-Dichloroethane                    | 1.0 | U         | 1.0 |     | ug/L |   |          | 06/13/14 14:55 |        |
| 1,2-Dichloroethane                    | 1.0 | U         | 1.0 |     | ug/L |   |          | 06/13/14 14:55 |        |
| 1,1-Dichloroethene                    | 1.0 | U         | 1.0 |     | ug/L |   |          | 06/13/14 14:55 |        |
| 1,2-Dichloropropane                   | 1.0 | U         | 1.0 |     | ug/L |   |          | 06/13/14 14:55 |        |
| Ethylbenzene                          | 1.0 | U         | 1.0 |     | ug/L |   |          | 06/13/14 14:55 |        |
| 2-Hexanone                            | 10  | U         | 10  |     | ug/L |   |          | 06/13/14 14:55 |        |
| Isopropylbenzene                      | 1.0 | U         | 1.0 |     | ug/L |   |          | 06/13/14 14:55 |        |
| Methyl acetate                        | 1.0 | U         | 1.0 |     | ug/L |   |          | 06/13/14 14:55 |        |
| Methylcyclohexane                     | 1.0 | U         | 1.0 |     | ug/L |   |          | 06/13/14 14:55 |        |
| Methylene Chloride                    | 5.0 | U         | 5.0 |     | ug/L |   |          | 06/13/14 14:55 |        |
| 4-Methyl-2-pentanone                  | 10  | U         | 10  |     | ug/L |   |          | 06/13/14 14:55 |        |
| Methyl tert-butyl ether               | 10  | U         | 10  |     | ug/L |   |          | 06/13/14 14:55 |        |
| Styrene                               | 1.0 | U         | 1.0 |     | ug/L |   |          | 06/13/14 14:55 |        |
| 1,1,2,2-Tetrachloroethane             | 1.0 | U         | 1.0 |     | ug/L |   |          | 06/13/14 14:55 |        |
| Tetrachloroethene                     | 1.0 | U         | 1.0 |     | ug/L |   |          | 06/13/14 14:55 |        |
| Toluene                               | 1.0 | U         | 1.0 |     | ug/L |   |          | 06/13/14 14:55 |        |
| trans-1,2-Dichloroethene              | 1.0 | U         | 1.0 |     | ug/L |   |          | 06/13/14 14:55 |        |
| trans-1,3-Dichloropropene             | 1.0 | U         | 1.0 |     | ug/L |   |          | 06/13/14 14:55 |        |
| 1,2,4-Trichlorobenzene                | 1.0 | U         | 1.0 |     | ug/L |   |          | 06/13/14 14:55 |        |
| 1,1,1-Trichloroethane                 | 1.0 | U         | 1.0 |     | ug/L |   |          | 06/13/14 14:55 |        |
| 1,1,2-Trichloroethane                 | 1.0 | U         | 1.0 |     | ug/L |   |          | 06/13/14 14:55 |        |
| Trichloroethene                       | 1.0 | U         | 1.0 |     | ug/L |   |          | 06/13/14 14:55 |        |
| Trichlorofluoromethane                | 1.0 | U         | 1.0 |     | ug/L |   |          | 06/13/14 14:55 |        |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 1.0 | U         | 1.0 |     | ug/L |   |          | 06/13/14 14:55 |        |
| Vinyl chloride                        | 1.0 | U         | 1.0 |     | ug/L |   |          | 06/13/14 14:55 |        |
| Xylenes, Total                        | 2.0 | U         | 2.0 |     | ug/L |   |          | 06/13/14 14:55 |        |

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-102049-1

Lab Sample ID: 680-102049-2

ib Sample ib. 000-102049-2

Matrix: Water

Client Sample ID: SW-03-LOW\_06052014

Date Collected: 06/05/14 09:40 Date Received: 06/06/14 08:35

| Surrogate            | %Recovery | Qualifier | Limits   | Prepared | Analyzed       | Dil Fac |
|----------------------|-----------|-----------|----------|----------|----------------|---------|
| 4-Bromofluorobenzene | 98        |           | 70 - 130 |          | 06/13/14 14:55 | 1       |
| Dibromofluoromethane | 98        |           | 70 - 130 |          | 06/13/14 14:55 | 1       |
| Toluene-d8 (Surr)    | 100       |           | 70 - 130 |          | 06/13/14 14:55 | 1       |

| Toluene-d8 (Surr)                 | 100            |           | 70 - 130 |     |      |               |                | 06/13/14 14:55 | 1       |
|-----------------------------------|----------------|-----------|----------|-----|------|---------------|----------------|----------------|---------|
| -<br>Method: 8270D - Semivolatile | Organic Compou | nds (GC/M | S)       |     |      |               |                |                |         |
| Analyte                           | Result         | Qualifier | RL       | MDL | Unit | D             | Prepared       | Analyzed       | Dil Fac |
| Acenaphthene                      | 9.6            | U         | 9.6      |     | ug/L |               | 06/12/14 15:41 | 06/16/14 16:03 | 1       |
| Acenaphthylene                    | 9.6            | U *       | 9.6      |     | ug/L |               | 06/12/14 15:41 | 06/16/14 16:03 | 1       |
| Anthracene                        | 9.6            | U         | 9.6      |     | ug/L |               | 06/12/14 15:41 | 06/16/14 16:03 | 1       |
| Benzo[a]anthracene                | 9.6            | U         | 9.6      |     | ug/L |               | 06/12/14 15:41 | 06/16/14 16:03 | 1       |
| Benzo[a]pyrene                    | 9.6            | U         | 9.6      |     | ug/L |               | 06/12/14 15:41 | 06/16/14 16:03 | 1       |
| Benzo[b]fluoranthene              | 9.6            | U         | 9.6      |     | ug/L |               | 06/12/14 15:41 | 06/16/14 16:03 | 1       |
| Benzo[g,h,i]perylene              | 9.6            | U         | 9.6      |     | ug/L |               | 06/12/14 15:41 | 06/16/14 16:03 | 1       |
| Benzo[k]fluoranthene              | 9.6            | U         | 9.6      |     | ug/L |               | 06/12/14 15:41 | 06/16/14 16:03 | 1       |
| Chrysene                          | 9.6            | U         | 9.6      |     | ug/L |               | 06/12/14 15:41 | 06/16/14 16:03 | 1       |
| Dibenz(a,h)anthracene             | 9.6            | U         | 9.6      |     | ug/L |               | 06/12/14 15:41 | 06/16/14 16:03 | 1       |
| Fluoranthene                      | 9.6            | U         | 9.6      |     | ug/L |               | 06/12/14 15:41 | 06/16/14 16:03 | 1       |
| Fluorene                          | 9.6            | U         | 9.6      |     | ug/L |               | 06/12/14 15:41 | 06/16/14 16:03 | 1       |
| Indeno[1,2,3-cd]pyrene            | 9.6            | U         | 9.6      |     | ug/L |               | 06/12/14 15:41 | 06/16/14 16:03 | 1       |
| 1-Methylnaphthalene               | 9.6            | U         | 9.6      |     | ug/L |               | 06/12/14 15:41 | 06/16/14 16:03 | 1       |
| 2-Methylnaphthalene               | 9.6            | U         | 9.6      |     | ug/L |               | 06/12/14 15:41 | 06/16/14 16:03 | 1       |
| Naphthalene                       | 9.6            |           | 9.6      |     | ug/L |               | 06/12/14 15:41 | 06/16/14 16:03 | 1       |
| Phenanthrene                      | 9.6            | U         | 9.6      |     | ug/L |               | 06/12/14 15:41 | 06/16/14 16:03 | 1       |
| Pyrene                            | 9.6            | U         | 9.6      |     | ug/L |               | 06/12/14 15:41 | 06/16/14 16:03 | 1       |
| Surrogate                         | %Recovery      | Qualifier | Limits   |     |      |               | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl                  | 77             | -         | 38 - 130 |     |      |               | 06/12/14 15:41 | 06/16/14 16:03 | 1       |
| Nitrobenzene-d5 (Surr)            | 83             |           | 39 - 130 |     |      |               | 06/12/14 15:41 | 06/16/14 16:03 | 1       |
| Terphenyl-d14 (Surr)              | 79             |           | 10 - 143 |     |      |               | 06/12/14 15:41 | 06/16/14 16:03 | 1       |
| -<br>Method: 6010C - Metals (ICP) | - Dissolved    |           |          |     |      |               |                |                |         |
| Analyte                           | Result         | Qualifier | RL       | MDL | Unit | D             | Prepared       | Analyzed       | Dil Fac |
| Arsenic                           | 20             | U         | 20       |     | ug/L |               | 06/07/14 11:38 | 06/17/14 18:53 | 1       |
| Chromium                          | 10             | U         | 10       |     | ug/L |               | 06/07/14 11:38 | 06/17/14 18:53 | 1       |
| Nickel                            | 40             | U         | 40       |     | ug/L |               | 06/07/14 11:38 | 06/17/14 18:53 | 1       |
| Lead                              | 10             | U         | 10       |     | ug/L |               | 06/07/14 11:38 | 06/17/14 18:53 | 1       |
| Zinc                              | 20             | U         | 20       |     | ug/L |               | 06/07/14 11:38 | 06/17/14 18:53 | 1       |
| General Chemistry                 |                |           |          |     |      |               |                |                |         |
| Analyte                           | Result         | Qualifier | RL       | MDL | Unit | D             | Prepared       | Analyzed       | Dil Fac |
| Ammonia                           | 1.7            |           | 0.050    |     | mg/L | <del></del> _ |                | 06/13/14 12:39 | 1       |
| Nitrate as N                      | 0.26           |           | 0.050    |     | mg/L |               |                | 06/06/14 16:26 | 1       |
| Analyte                           | Result         | Qualifier | RL       | RL  |      | D             | Prepared       | Analyzed       | Dil Fac |
| Alkalinity                        | 160            |           | 5.0      |     | mg/L |               |                | 06/12/14 21:27 | 1       |

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-102049-1

Lab Sample ID: 680-102049-3

**Matrix: Water** 

# Client Sample ID: TMW-01\_06052014

Date Collected: 06/05/14 09:55 Date Received: 06/06/14 08:35

| Analyte                              | Result | Qualifier | RL  | MDL Unit | D | Prepared                              | Analyzed       | Dil Fa |
|--------------------------------------|--------|-----------|-----|----------|---|---------------------------------------|----------------|--------|
| Acetone                              | 50     | U         | 50  | ug/L     |   | · · · · · · · · · · · · · · · · · · · | 06/13/14 15:20 |        |
| Benzene                              | 81     |           | 2.0 | ug/L     |   |                                       | 06/13/14 15:20 |        |
| Bromodichloromethane                 | 2.0    | U         | 2.0 | ug/L     |   |                                       | 06/13/14 15:20 |        |
| Bromoform                            | 2.0    | U         | 2.0 | ug/L     |   |                                       | 06/13/14 15:20 |        |
| Bromomethane                         | 10     | U         | 10  | ug/L     |   |                                       | 06/13/14 15:20 |        |
| 2-Butanone                           | 20     | U         | 20  | ug/L     |   |                                       | 06/13/14 15:20 |        |
| Carbon disulfide                     | 4.0    | U         | 4.0 | ug/L     |   |                                       | 06/13/14 15:20 |        |
| Carbon tetrachloride                 | 2.0    | U         | 2.0 | ug/L     |   |                                       | 06/13/14 15:20 |        |
| Chlorobenzene                        | 2.0    | U         | 2.0 | ug/L     |   |                                       | 06/13/14 15:20 |        |
| Chloroethane                         | 10     | U         | 10  | ug/L     |   |                                       | 06/13/14 15:20 |        |
| Chloroform                           | 2.0    | U         | 2.0 | ug/L     |   |                                       | 06/13/14 15:20 |        |
| Chloromethane                        | 2.0    | U         | 2.0 | ug/L     |   |                                       | 06/13/14 15:20 |        |
| is-1,2-Dichloroethene                | 2.0    | U         | 2.0 | ug/L     |   |                                       | 06/13/14 15:20 |        |
| is-1,3-Dichloropropene               | 2.0    | U         | 2.0 | ug/L     |   |                                       | 06/13/14 15:20 |        |
| yclohexane                           | 6.6    |           | 2.0 | ug/L     |   |                                       | 06/13/14 15:20 |        |
| ibromochloromethane                  | 2.0    | U         | 2.0 | ug/L     |   |                                       | 06/13/14 15:20 |        |
| ,2-Dibromo-3-Chloropropane           | 2.0    | U         | 2.0 | ug/L     |   |                                       | 06/13/14 15:20 |        |
| ,2-Dibromoethane                     | 2.0    | U         | 2.0 | ug/L     |   |                                       | 06/13/14 15:20 |        |
| 2-Dichlorobenzene                    | 2.0    | U         | 2.0 | ug/L     |   |                                       | 06/13/14 15:20 |        |
| ,3-Dichlorobenzene                   | 2.0    | U         | 2.0 | ug/L     |   |                                       | 06/13/14 15:20 |        |
| 4-Dichlorobenzene                    | 2.0    | U         | 2.0 | ug/L     |   |                                       | 06/13/14 15:20 |        |
| ichlorodifluoromethane               | 2.0    | Ü         | 2.0 | ug/L     |   |                                       | 06/13/14 15:20 |        |
| .1-Dichloroethane                    | 2.0    | U         | 2.0 | ug/L     |   |                                       | 06/13/14 15:20 |        |
| ,2-Dichloroethane                    | 2.0    | U         | 2.0 | ug/L     |   |                                       | 06/13/14 15:20 |        |
| ,1-Dichloroethene                    | 2.0    | U         | 2.0 | ug/L     |   |                                       | 06/13/14 15:20 |        |
| ,2-Dichloropropane                   | 2.0    | U         | 2.0 | ug/L     |   |                                       | 06/13/14 15:20 |        |
| thylbenzene                          | 2.0    | U         | 2.0 | ug/L     |   |                                       | 06/13/14 15:20 |        |
| -Hexanone                            | 20     | U         | 20  | ug/L     |   |                                       | 06/13/14 15:20 |        |
| sopropylbenzene                      | 43     |           | 2.0 | ug/L     |   |                                       | 06/13/14 15:20 |        |
| lethyl acetate                       | 2.0    | U         | 2.0 | ug/L     |   |                                       | 06/13/14 15:20 |        |
| lethylcyclohexane                    | 3.2    |           | 2.0 | ug/L     |   |                                       | 06/13/14 15:20 |        |
| lethylene Chloride                   |        | U         | 10  | ug/L     |   |                                       | 06/13/14 15:20 |        |
| -Methyl-2-pentanone                  | 20     | U         | 20  | ug/L     |   |                                       | 06/13/14 15:20 |        |
| lethyl tert-butyl ether              | 20     | U         | 20  | ug/L     |   |                                       | 06/13/14 15:20 |        |
| tyrene                               | 2.0    | U         | 2.0 | ug/L     |   |                                       | 06/13/14 15:20 |        |
| ,1,2,2-Tetrachloroethane             | 2.0    | U         | 2.0 | ug/L     |   |                                       | 06/13/14 15:20 |        |
| etrachloroethene                     | 2.0    | U         | 2.0 | ug/L     |   |                                       | 06/13/14 15:20 |        |
| oluene                               | 2.0    | U         | 2.0 | ug/L     |   |                                       | 06/13/14 15:20 |        |
| ans-1,2-Dichloroethene               | 2.0    | U         | 2.0 | ug/L     |   |                                       | 06/13/14 15:20 |        |
| ans-1,3-Dichloropropene              | 2.0    | U         | 2.0 | ug/L     |   |                                       | 06/13/14 15:20 |        |
| ,2,4-Trichlorobenzene                | 2.0    |           | 2.0 | ug/L     |   |                                       | 06/13/14 15:20 |        |
| ,1,1-Trichloroethane                 | 2.0    |           | 2.0 | ug/L     |   |                                       | 06/13/14 15:20 |        |
| ,1,2-Trichloroethane                 | 2.0    |           | 2.0 | ug/L     |   |                                       | 06/13/14 15:20 |        |
| richloroethene                       | 2.0    |           | 2.0 | ug/L     |   |                                       | 06/13/14 15:20 |        |
| richlorofluoromethane                | 2.0    |           | 2.0 | ug/L     |   |                                       | 06/13/14 15:20 |        |
| ,1,2-Trichloro-1,2,2-trifluoroethane | 2.0    |           | 2.0 | ug/L     |   |                                       | 06/13/14 15:20 |        |
| /inyl chloride                       | 2.0    |           | 2.0 | ug/L     |   |                                       | 06/13/14 15:20 |        |
| (ylenes, Total                       | 250    |           | 4.0 | ug/L     |   |                                       | 06/13/14 15:20 |        |

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-102049-1

Client Sample ID: TMW-01\_06052014

Date Collected: 06/05/14 09:55 Date Received: 06/06/14 08:35 Lab Sample ID: 680-102049-3

Matrix: Water

| Surrogate                                 | %Recovery | Qualifier                | Limits   |      |      |   | Prepared       | Analyzed       | Dil Fac |
|-------------------------------------------|-----------|--------------------------|----------|------|------|---|----------------|----------------|---------|
| 4-Bromofluorobenzene                      | 99        |                          | 70 - 130 |      |      |   |                | 06/13/14 15:20 | 2       |
| Dibromofluoromethane                      | 91        |                          | 70 - 130 |      |      |   |                | 06/13/14 15:20 | 2       |
| Toluene-d8 (Surr)                         | 107       |                          | 70 - 130 |      |      |   |                | 06/13/14 15:20 | 2       |
| Method: 8270D - Semivolatile C<br>Analyte |           | inds (GC/MS<br>Qualifier | S)<br>RL | MDL  | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Acenaphthene                              | 9.8       |                          | 9.8      | WIDE | ug/L |   | 06/12/14 15:41 | 06/16/14 16:27 | 1       |
| Acenaphthylene                            |           | U *                      | 9.8      |      | ug/L |   | 06/12/14 15:41 | 06/16/14 16:27 | 1       |
| Anthracene                                | 9.8       | U                        | 9.8      |      | ug/L |   | 06/12/14 15:41 | 06/16/14 16:27 | 1       |
| Benzo[a]anthracene                        | 9.8       | U                        | 9.8      |      | ug/L |   | 06/12/14 15:41 | 06/16/14 16:27 | 1       |
| Benzo[a]pyrene                            | 9.8       | U                        | 9.8      |      | ug/L |   | 06/12/14 15:41 | 06/16/14 16:27 | 1       |
| Danzalhiftuaranthana                      | 0.0       | 11                       | 0.0      |      | /1   |   | 06/10/14 15:41 | 06/46/44 46:07 | 4       |

| Acenaphthene           | 9.8 | U   | 9.8 | ug/L | 06/12/14 15:41 | 06/16/14 16:27 | - |
|------------------------|-----|-----|-----|------|----------------|----------------|---|
| Acenaphthylene         | 9.8 | U * | 9.8 | ug/L | 06/12/14 15:41 | 06/16/14 16:27 | • |
| Anthracene             | 9.8 | U   | 9.8 | ug/L | 06/12/14 15:41 | 06/16/14 16:27 | • |
| Benzo[a]anthracene     | 9.8 | U   | 9.8 | ug/L | 06/12/14 15:41 | 06/16/14 16:27 | • |
| Benzo[a]pyrene         | 9.8 | U   | 9.8 | ug/L | 06/12/14 15:41 | 06/16/14 16:27 | • |
| Benzo[b]fluoranthene   | 9.8 | U   | 9.8 | ug/L | 06/12/14 15:41 | 06/16/14 16:27 | • |
| Benzo[g,h,i]perylene   | 9.8 | U   | 9.8 | ug/L | 06/12/14 15:41 | 06/16/14 16:27 | • |
| Benzo[k]fluoranthene   | 9.8 | U   | 9.8 | ug/L | 06/12/14 15:41 | 06/16/14 16:27 | • |
| Chrysene               | 9.8 | U   | 9.8 | ug/L | 06/12/14 15:41 | 06/16/14 16:27 | • |
| Dibenz(a,h)anthracene  | 9.8 | U   | 9.8 | ug/L | 06/12/14 15:41 | 06/16/14 16:27 | • |
| Fluoranthene           | 9.8 | U   | 9.8 | ug/L | 06/12/14 15:41 | 06/16/14 16:27 | • |
| Fluorene               | 9.8 | U   | 9.8 | ug/L | 06/12/14 15:41 | 06/16/14 16:27 | • |
| Indeno[1,2,3-cd]pyrene | 9.8 | U   | 9.8 | ug/L | 06/12/14 15:41 | 06/16/14 16:27 | • |
| 1-Methylnaphthalene    | 15  |     | 9.8 | ug/L | 06/12/14 15:41 | 06/16/14 16:27 | • |
| 2-Methylnaphthalene    | 15  |     | 9.8 | ug/L | 06/12/14 15:41 | 06/16/14 16:27 | • |
| Naphthalene            | 39  |     | 9.8 | ug/L | 06/12/14 15:41 | 06/16/14 16:27 | • |
| Phenanthrene           | 9.8 | U   | 9.8 | ug/L | 06/12/14 15:41 | 06/16/14 16:27 | • |
| Pyrene                 | 9.8 | U   | 9.8 | ug/L | 06/12/14 15:41 | 06/16/14 16:27 | • |
|                        |     |     |     |      |                |                |   |

| Surrogate              | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|----------------|----------------|---------|
| 2-Fluorobiphenyl       | 86        |           | 38 - 130 | 06/12/14 15:41 | 06/16/14 16:27 | 1       |
| Nitrobenzene-d5 (Surr) | 105       |           | 39 - 130 | 06/12/14 15:41 | 06/16/14 16:27 | 1       |
| Terphenyl-d14 (Surr)   | 40        |           | 10 - 143 | 06/12/14 15:41 | 06/16/14 16:27 | 1       |

| Method: 6010C - Metals (ICP) |        |           |    |     |      |   |                |                |         |
|------------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte                      | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                      | 95     |           | 20 |     | ug/L |   | 06/11/14 11:17 | 06/12/14 21:03 | 1       |
| Chromium                     | 17     |           | 10 |     | ug/L |   | 06/11/14 11:17 | 06/12/14 21:03 | 1       |
| Lead                         | 10     | U         | 10 |     | ug/L |   | 06/11/14 11:17 | 06/12/14 21:03 | 1       |
| Nickel                       | 40     | U         | 40 |     | ug/L |   | 06/11/14 11:17 | 06/12/14 21:03 | 1       |
| Zinc                         | 72     |           | 20 |     | ug/L |   | 06/11/14 11:17 | 06/12/14 21:03 | 1       |

| General Chemistry |        |           |     |     |      |   |          |                |         |
|-------------------|--------|-----------|-----|-----|------|---|----------|----------------|---------|
| Analyte           | Result | Qualifier | RL  | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Ammonia           | 2600   |           | 100 |     | mg/L |   |          | 06/13/14 17:23 | 2000    |
| Nitrate as N      | 170    |           | 13  |     | mg/L |   |          | 06/06/14 16:32 | 250     |

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-102049-1

Client Sample ID: SW-01-LOW\_06052014

Date Collected: 06/05/14 10:40 Date Received: 06/06/14 08:35 Lab Sample ID: 680-102049-4

Matrix: Water

| Analyte                               |     | Qualifier | RL  | MDL Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------------------|-----|-----------|-----|----------|---|----------|----------------|---------|
| Acetone                               | 25  | U         | 25  | ug/L     |   |          | 06/13/14 15:44 | 1       |
| Benzene                               | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 15:44 | 1       |
| Bromodichloromethane                  | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 15:44 | 1       |
| Bromoform                             | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 15:44 | 1       |
| Bromomethane                          | 5.0 | U         | 5.0 | ug/L     |   |          | 06/13/14 15:44 | 1       |
| 2-Butanone                            | 10  | U         | 10  | ug/L     |   |          | 06/13/14 15:44 | 1       |
| Carbon disulfide                      | 2.0 | U         | 2.0 | ug/L     |   |          | 06/13/14 15:44 | 1       |
| Carbon tetrachloride                  | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 15:44 | 1       |
| Chlorobenzene                         | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 15:44 | 1       |
| Chloroethane                          | 5.0 | U         | 5.0 | ug/L     |   |          | 06/13/14 15:44 | 1       |
| Chloroform                            | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 15:44 | 1       |
| Chloromethane                         | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 15:44 | 1       |
| cis-1,2-Dichloroethene                | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 15:44 | 1       |
| cis-1,3-Dichloropropene               | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 15:44 | 1       |
| Cyclohexane                           | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 15:44 | 1       |
| Dibromochloromethane                  | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 15:44 | 1       |
| 1,2-Dibromo-3-Chloropropane           | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 15:44 | 1       |
| 1,2-Dibromoethane                     | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 15:44 | 1       |
| 1,2-Dichlorobenzene                   | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 15:44 | 1       |
| 1,3-Dichlorobenzene                   | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 15:44 | 1       |
| 1,4-Dichlorobenzene                   | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 15:44 | 1       |
| Dichlorodifluoromethane               | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 15:44 | 1       |
| 1,1-Dichloroethane                    | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 15:44 | 1       |
| 1,2-Dichloroethane                    | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 15:44 | 1       |
| 1,1-Dichloroethene                    | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 15:44 | 1       |
| 1,2-Dichloropropane                   | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 15:44 | 1       |
| Ethylbenzene                          | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 15:44 | 1       |
| 2-Hexanone                            | 10  | U         | 10  | ug/L     |   |          | 06/13/14 15:44 | 1       |
| Isopropylbenzene                      | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 15:44 | 1       |
| Methyl acetate                        | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 15:44 | 1       |
| Methylcyclohexane                     | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 15:44 | 1       |
| Methylene Chloride                    | 5.0 | U         | 5.0 | ug/L     |   |          | 06/13/14 15:44 | 1       |
| 4-Methyl-2-pentanone                  | 10  | U         | 10  | ug/L     |   |          | 06/13/14 15:44 | 1       |
| Methyl tert-butyl ether               | 10  | U         | 10  | ug/L     |   |          | 06/13/14 15:44 | 1       |
| Styrene                               | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 15:44 | 1       |
| 1,1,2,2-Tetrachloroethane             | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 15:44 | 1       |
| Tetrachloroethene                     | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 15:44 | 1       |
| Toluene                               | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 15:44 | 1       |
| trans-1,2-Dichloroethene              | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 15:44 | 1       |
| trans-1,3-Dichloropropene             | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 15:44 | 1       |
| 1,2,4-Trichlorobenzene                | 1.0 |           | 1.0 | ug/L     |   |          | 06/13/14 15:44 | 1       |
| 1,1,1-Trichloroethane                 | 1.0 |           | 1.0 | ug/L     |   |          | 06/13/14 15:44 | 1       |
| 1,1,2-Trichloroethane                 | 1.0 |           | 1.0 | ug/L     |   |          | 06/13/14 15:44 | 1       |
| Trichloroethene                       | 1.0 |           | 1.0 | ug/L     |   |          | 06/13/14 15:44 |         |
| Trichlorofluoromethane                | 1.0 |           | 1.0 | ug/L     |   |          | 06/13/14 15:44 |         |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 1.0 |           | 1.0 | ug/L     |   |          | 06/13/14 15:44 | 1       |
| Vinyl chloride                        | 1.0 |           | 1.0 | ug/L     |   |          | 06/13/14 15:44 | 1       |
| Xylenes, Total                        | 2.0 |           | 2.0 | ug/L     |   |          | 06/13/14 15:44 | 1       |

Limits

%Recovery Qualifier

10 U

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-102049-1

Client Sample ID: SW-01-LOW\_06052014

Date Collected: 06/05/14 10:40 Date Received: 06/06/14 08:35

Surrogate

Dibenz(a,h)anthracene

Indeno[1,2,3-cd]pyrene

1-Methylnaphthalene

2-Methylnaphthalene

Fluoranthene

Naphthalene

Phenanthrene

Fluorene

Lab Sample ID: 680-102049-4

Prepared

06/12/14 15:41

06/12/14 15:41

06/12/14 15:41

06/12/14 15:41

06/12/14 15:41

06/12/14 15:41

06/12/14 15:41

06/12/14 15:41

Matrix: Water

Analyzed

06/16/14 17:16

06/16/14 17:16

06/16/14 17:16

06/16/14 17:16

06/16/14 17:16

06/16/14 17:16

06/16/14 17:16

06/16/14 17:16

| 4-Bromofluorobenzene              | 99             |             | 70 - 130 |     |      |   |                | 06/13/14 15:44 | 1       |
|-----------------------------------|----------------|-------------|----------|-----|------|---|----------------|----------------|---------|
| Dibromofluoromethane              | 99             |             | 70 - 130 |     |      |   |                | 06/13/14 15:44 | 1       |
| Toluene-d8 (Surr)                 | 104            |             | 70 - 130 |     |      |   |                | 06/13/14 15:44 | 1       |
| -<br>Method: 8270D - Semivolatile | Organic Compou | ınds (GC/MS | S)       |     |      |   |                |                |         |
| Analyte                           | Result         | Qualifier   | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Acenaphthene                      | 10             | U           | 10       |     | ug/L |   | 06/12/14 15:41 | 06/16/14 17:16 | 1       |
| Acenaphthylene                    | 10             | U *         | 10       |     | ug/L |   | 06/12/14 15:41 | 06/16/14 17:16 | 1       |
| Anthracene                        | 10             | U           | 10       |     | ug/L |   | 06/12/14 15:41 | 06/16/14 17:16 | 1       |
| Benzo[a]anthracene                | 10             | U           | 10       |     | ug/L |   | 06/12/14 15:41 | 06/16/14 17:16 | 1       |
| Benzo[a]pyrene                    | 10             | U           | 10       |     | ug/L |   | 06/12/14 15:41 | 06/16/14 17:16 | 1       |
| Benzo[b]fluoranthene              | 10             | U           | 10       |     | ug/L |   | 06/12/14 15:41 | 06/16/14 17:16 | 1       |
| Benzo[g,h,i]perylene              | 10             | U           | 10       |     | ug/L |   | 06/12/14 15:41 | 06/16/14 17:16 | 1       |
| Benzo[k]fluoranthene              | 10             | U           | 10       |     | ug/L |   | 06/12/14 15:41 | 06/16/14 17:16 | 1       |
| Chrysene                          | 10             | U           | 10       |     | ug/L |   | 06/12/14 15:41 | 06/16/14 17:16 | 1       |
|                                   |                |             |          |     |      |   |                |                |         |

10

10

10

10

10

10

10

10

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

|   | Pyrene                 | 10 U              | 10         | ug/L | 06/12/14 15:41 | 06/16/14 17:16 | 1       |
|---|------------------------|-------------------|------------|------|----------------|----------------|---------|
| 5 | Surrogate              | %Recovery Qualifi | ier Limits |      | Prepared       | Analyzed       | Dil Fac |
| 2 | 2-Fluorobiphenyl       | 100               | 38 - 130   |      | 06/12/14 15:41 | 06/16/14 17:16 | 1       |
| 1 | Nitrobenzene-d5 (Surr) | 110               | 39 - 130   |      | 06/12/14 15:41 | 06/16/14 17:16 | 1       |
| 7 | Terphenyl-d14 (Surr)   | 122               | 10 - 143   |      | 06/12/14 15:41 | 06/16/14 17:16 | 1       |

| Analyte  | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|----------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Arsenic  | 20     | U         | 20 |     | ug/L |   | 06/07/14 11:38 | 06/17/14 18:57 | 1       |
| Chromium | 10     | U         | 10 |     | ug/L |   | 06/07/14 11:38 | 06/17/14 18:57 | 1       |
| Nickel   | 40     | U         | 40 |     | ug/L |   | 06/07/14 11:38 | 06/17/14 18:57 | 1       |
| Lead     | 10     | U         | 10 |     | ug/L |   | 06/07/14 11:38 | 06/17/14 18:57 | 1       |
| Zinc     | 20     | U         | 20 |     | ug/L |   | 06/07/14 11:38 | 06/17/14 18:57 | 1       |

| General Chemistry |        |           |       |     |      |   |          |                |         |
|-------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Analyte           | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Ammonia           | 1.4    |           | 0.10  |     | mg/L |   |          | 06/13/14 16:46 | 2       |
| Nitrate as N      | 0.32   |           | 0.050 |     | mg/L |   |          | 06/06/14 16:33 | 1       |
| Analyte           | Result | Qualifier | RL    | RL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| Alkalinity        | 160    |           | 5.0   |     | mg/L |   |          | 06/12/14 21:42 | 1       |
|                   |        |           |       |     |      |   |          |                |         |

Dil Fac

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-102049-1

Client Sample ID: SW-02-LOW\_06052014

Date Collected: 06/05/14 10:45 Date Received: 06/06/14 08:35 Lab Sample ID: 680-102049-5

Matrix: Water

| Analyte                               | Result     | Qualifier | RL         | MDL Unit | D Prepared | Analyzed       | Dil F |
|---------------------------------------|------------|-----------|------------|----------|------------|----------------|-------|
| Acetone                               | 25         | U         | 25         | ug/L     |            | 06/13/14 16:08 |       |
| Benzene                               | 1.0        | U         | 1.0        | ug/L     |            | 06/13/14 16:08 |       |
| Bromodichloromethane                  | 1.0        | U         | 1.0        | ug/L     |            | 06/13/14 16:08 |       |
| 3romoform Sromoform                   | 1.0        | U         | 1.0        | ug/L     |            | 06/13/14 16:08 |       |
| Bromomethane                          | 5.0        | U         | 5.0        | ug/L     |            | 06/13/14 16:08 |       |
| 2-Butanone                            | 10         | U         | 10         | ug/L     |            | 06/13/14 16:08 |       |
| Carbon disulfide                      | 2.0        | U         | 2.0        | ug/L     |            | 06/13/14 16:08 |       |
| Carbon tetrachloride                  | 1.0        | U         | 1.0        | ug/L     |            | 06/13/14 16:08 |       |
| Chlorobenzene                         | 1.0        | U         | 1.0        | ug/L     |            | 06/13/14 16:08 |       |
| Chloroethane                          | 5.0        | U         | 5.0        | ug/L     |            | 06/13/14 16:08 |       |
| Chloroform                            | 1.0        | U         | 1.0        | ug/L     |            | 06/13/14 16:08 |       |
| Chloromethane                         | 1.0        | U         | 1.0        | ug/L     |            | 06/13/14 16:08 |       |
| cis-1,2-Dichloroethene                | 1.0        |           | 1.0        | ug/L     |            | 06/13/14 16:08 |       |
| cis-1,3-Dichloropropene               | 1.0        | U         | 1.0        | ug/L     |            | 06/13/14 16:08 |       |
| Cyclohexane                           | 1.0        | U         | 1.0        | ug/L     |            | 06/13/14 16:08 |       |
| Dibromochloromethane                  | 1.0        | U         | 1.0        | ug/L     |            | 06/13/14 16:08 |       |
| ,2-Dibromo-3-Chloropropane            | 1.0        | U         | 1.0        | ug/L     |            | 06/13/14 16:08 |       |
| ,2-Dibromoethane                      | 1.0        | U         | 1.0        | ug/L     |            | 06/13/14 16:08 |       |
| ,2-Dichlorobenzene                    | 1.0        |           | 1.0        | ug/L     |            | 06/13/14 16:08 |       |
| ,3-Dichlorobenzene                    | 1.0        |           | 1.0        | ug/L     |            | 06/13/14 16:08 |       |
| ,4-Dichlorobenzene                    | 1.0        |           | 1.0        | ug/L     |            | 06/13/14 16:08 |       |
| Dichlorodifluoromethane               | 1.0        |           | 1.0        | ug/L     |            | 06/13/14 16:08 |       |
| ,1-Dichloroethane                     | 1.0        |           | 1.0        | ug/L     |            | 06/13/14 16:08 |       |
| ,2-Dichloroethane                     | 1.0        |           | 1.0        | ug/L     |            | 06/13/14 16:08 |       |
| ,1-Dichloroethene                     | 1.0        |           | 1.0        | ug/L     |            | 06/13/14 16:08 |       |
| ,2-Dichloropropane                    | 1.0        |           | 1.0        | ug/L     |            | 06/13/14 16:08 |       |
| Ethylbenzene                          | 1.0        |           | 1.0        | ug/L     |            | 06/13/14 16:08 |       |
| ?-Hexanone                            | 10         |           | 10         | ug/L     |            | 06/13/14 16:08 |       |
| sopropylbenzene                       | 1.0        |           | 1.0        | ug/L     |            | 06/13/14 16:08 |       |
| Nethyl acetate                        | 1.0        |           | 1.0        | ug/L     |            | 06/13/14 16:08 |       |
| Methylcyclohexane                     | 1.0        |           | 1.0        | ug/L     |            | 06/13/14 16:08 |       |
| Methylene Chloride                    | 5.0        |           | 5.0        | ug/L     |            | 06/13/14 16:08 |       |
| -Methyl-2-pentanone                   | 10         |           | 10         | ug/L     |            | 06/13/14 16:08 |       |
| Methyl tert-butyl ether               | 10         |           | 10         | ug/L     |            | 06/13/14 16:08 |       |
| Styrene                               | 1.0        |           | 1.0        | ug/L     |            | 06/13/14 16:08 |       |
| ,1,2,2-Tetrachloroethane              | 1.0        |           | 1.0        |          |            | 06/13/14 16:08 |       |
| etrachloroethene                      | 1.0        |           | 1.0        | ug/L     |            | 06/13/14 16:08 |       |
| oluene                                | 1.0        |           |            | ug/L     |            | 06/13/14 16:08 |       |
|                                       | 1.0        |           | 1.0        | ug/L     |            |                |       |
| rans-1,2-Dichloroethene               |            |           | 1.0        | ug/L     |            | 06/13/14 16:08 |       |
| rans-1,3-Dichloropropene              | 1.0        |           | 1.0        | ug/L     |            | 06/13/14 16:08 |       |
| ,2,4-Trichlorobenzene                 | 1.0        |           | 1.0        | ug/L     |            | 06/13/14 16:08 |       |
| ,1,1-Trichloroethane                  | 1.0        |           | 1.0        | ug/L     |            | 06/13/14 16:08 |       |
| ,1,2-Trichloroethane                  | 1.0        |           | 1.0        | ug/L     |            | 06/13/14 16:08 |       |
| richloroethene                        | 1.0        |           | 1.0        | ug/L     |            | 06/13/14 16:08 |       |
| Frichlorofluoromethane                | 1.0        |           | 1.0        | ug/L     |            | 06/13/14 16:08 |       |
| I,1,2-Trichloro-1,2,2-trifluoroethane | 1.0        |           | 1.0        | ug/L     |            | 06/13/14 16:08 |       |
| /inyl chloride                        | 1.0<br>2.0 |           | 1.0<br>2.0 | ug/L     |            | 06/13/14 16:08 |       |

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Client Sample ID: SW-02-LOW\_06052014

TestAmerica Job ID: 680-102049-1

Lab Sample ID: 680-102049-5

ib Sample 1D. 000-102049-3

Matrix: Water

Date Collected: 06/05/14 10:45 Date Received: 06/06/14 08:35

| Surrogate            | %Recovery | Qualifier | Limits   | Prepared | Analyzed       | Dil Fac |
|----------------------|-----------|-----------|----------|----------|----------------|---------|
| 4-Bromofluorobenzene | 98        |           | 70 - 130 |          | 06/13/14 16:08 | 1       |
| Dibromofluoromethane | 98        |           | 70 - 130 |          | 06/13/14 16:08 | 1       |
| Toluene-d8 (Surr)    | 97        |           | 70 - 130 |          | 06/13/14 16:08 | 1       |

| Toluene-d8 (Surr)                        | 97         |            | 70 - 130 |     |      |   |                | 06/13/14 16:08 | 1       |
|------------------------------------------|------------|------------|----------|-----|------|---|----------------|----------------|---------|
| Method: 8270D - Semivolatile Orga        | nic Compou | nds (GC/MS | S)       |     |      |   |                |                |         |
| Analyte                                  | Result     | Qualifier  | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Acenaphthene                             | 9.7        | U          | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 17:41 | 1       |
| Acenaphthylene                           | 9.7        | U *        | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 17:41 | 1       |
| Anthracene                               | 9.7        | U          | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 17:41 | 1       |
| Benzo[a]anthracene                       | 9.7        | U          | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 17:41 | 1       |
| Benzo[a]pyrene                           | 9.7        | U          | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 17:41 | 1       |
| Benzo[b]fluoranthene                     | 9.7        | U          | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 17:41 | 1       |
| Benzo[g,h,i]perylene                     | 9.7        | U          | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 17:41 | 1       |
| Benzo[k]fluoranthene                     | 9.7        | U          | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 17:41 | 1       |
| Chrysene                                 | 9.7        | U          | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 17:41 | 1       |
| Dibenz(a,h)anthracene                    | 9.7        | U          | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 17:41 | 1       |
| Fluoranthene                             | 9.7        | U          | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 17:41 | 1       |
| Fluorene                                 | 9.7        | U          | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 17:41 | 1       |
| Indeno[1,2,3-cd]pyrene                   | 9.7        | U          | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 17:41 | 1       |
| 1-Methylnaphthalene                      | 9.7        | U          | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 17:41 | 1       |
| 2-Methylnaphthalene                      | 9.7        | U          | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 17:41 | 1       |
| Naphthalene                              | 9.7        | U          | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 17:41 | 1       |
| Phenanthrene                             | 9.7        | U          | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 17:41 | 1       |
| Pyrene                                   | 9.7        | U          | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 17:41 | 1       |
| Surrogate                                | %Recovery  | Qualifier  | Limits   |     |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl                         | 92         |            | 38 - 130 |     |      |   | 06/12/14 15:41 | 06/16/14 17:41 | 1       |
| Nitrobenzene-d5 (Surr)                   | 102        |            | 39 - 130 |     |      |   | 06/12/14 15:41 | 06/16/14 17:41 | 1       |
| Terphenyl-d14 (Surr)                     | 100        |            | 10 - 143 |     |      |   | 06/12/14 15:41 | 06/16/14 17:41 | 1       |
| -<br>Method: 6010C - Metals (ICP) - Diss | olved      |            |          |     |      |   |                |                |         |
| Analyte                                  | Result     | Qualifier  | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                                  | 20         | U          | 20       |     | ug/L |   | 06/07/14 11:38 | 06/17/14 19:02 | 1       |
| Chromium                                 | 10         | U          | 10       |     | ug/L |   | 06/07/14 11:38 | 06/17/14 19:02 | 1       |
| Nickel                                   | 40         | U          | 40       |     | ug/L |   | 06/07/14 11:38 | 06/17/14 19:02 | 1       |
| Lead                                     | 10         | U          | 10       |     | ug/L |   | 06/07/14 11:38 | 06/17/14 19:02 | 1       |
| Zinc<br>-                                | 20         | U          | 20       |     | ug/L |   | 06/07/14 11:38 | 06/17/14 19:02 | 1       |
| General Chemistry                        |            |            |          |     |      |   |                |                |         |
| Analyte                                  |            | Qualifier  | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Ammonia                                  | 1.6        |            | 0.10     |     | mg/L |   |                | 06/13/14 16:46 | 2       |
| Nitrate as N                             | 0.22       |            | 0.050    |     | mg/L |   |                | 06/06/14 16:34 | 1       |
| Analyte                                  | Result     | Qualifier  | RL       | RL  | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Alkalinity                               | 170        |            | 5.0      |     | mg/L |   |                | 06/12/14 21:34 | 1       |

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-102049-1

Lab Sample ID: 680-102049-6

Client Sample ID: PDMW-26T\_06052014

Date Collected: 06/05/14 11:35 Matrix: Water Date Received: 06/06/14 08:35

Method: 8260B - Volatile Organic Compounds (GC/MS)

| Analyte                               | Result | Qualifier | RL  | MDL Unit | D Prepared | Analyzed       | Dil Fac |
|---------------------------------------|--------|-----------|-----|----------|------------|----------------|---------|
| Acetone                               | 25     | U         | 25  | ug/L     |            | 06/13/14 16:32 | 1       |
| Benzene                               | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 16:32 | 1       |
| Bromodichloromethane                  | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 16:32 | 1       |
| Bromoform                             | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 16:32 | 1       |
| Bromomethane                          | 5.0    | U         | 5.0 | ug/L     |            | 06/13/14 16:32 | 1       |
| 2-Butanone                            | 10     | U         | 10  | ug/L     |            | 06/13/14 16:32 | 1       |
| Carbon disulfide                      | 2.0    | U         | 2.0 | ug/L     |            | 06/13/14 16:32 | 1       |
| Carbon tetrachloride                  | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 16:32 | 1       |
| Chlorobenzene                         | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 16:32 | 1       |
| Chloroethane                          | 5.0    | U         | 5.0 | ug/L     |            | 06/13/14 16:32 | 1       |
| Chloroform                            | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 16:32 | 1       |
| Chloromethane                         | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 16:32 | 1       |
| cis-1,2-Dichloroethene                | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 16:32 | 1       |
| cis-1,3-Dichloropropene               | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 16:32 | 1       |
| Cyclohexane                           | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 16:32 | 1       |
| Dibromochloromethane                  | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 16:32 | 1       |
| 1,2-Dibromo-3-Chloropropane           | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 16:32 | 1       |
| 1,2-Dibromoethane                     | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 16:32 | 1       |
| 1,2-Dichlorobenzene                   | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 16:32 | 1       |
| 1,3-Dichlorobenzene                   | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 16:32 | 1       |
| 1,4-Dichlorobenzene                   | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 16:32 | 1       |
| Dichlorodifluoromethane               | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 16:32 | 1       |
| 1,1-Dichloroethane                    | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 16:32 | 1       |
| 1,2-Dichloroethane                    | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 16:32 | 1       |
| 1,1-Dichloroethene                    | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 16:32 | 1       |
| 1,2-Dichloropropane                   | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 16:32 | 1       |
| Ethylbenzene                          | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 16:32 | 1       |
| 2-Hexanone                            | 10     | U         | 10  | ug/L     |            | 06/13/14 16:32 | 1       |
| Isopropylbenzene                      | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 16:32 | 1       |
| Methyl acetate                        | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 16:32 | 1       |
| Methylcyclohexane                     | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 16:32 | 1       |
| Methylene Chloride                    | 5.0    | U         | 5.0 | ug/L     |            | 06/13/14 16:32 | 1       |
| 4-Methyl-2-pentanone                  | 10     | U         | 10  | ug/L     |            | 06/13/14 16:32 | 1       |
| Methyl tert-butyl ether               | 10     | U         | 10  | ug/L     |            | 06/13/14 16:32 | 1       |
| Styrene                               | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 16:32 | 1       |
| 1,1,2,2-Tetrachloroethane             | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 16:32 | 1       |
| Tetrachloroethene                     | 1.0    |           | 1.0 | ug/L     |            | 06/13/14 16:32 | 1       |
| Toluene                               | 1.0    |           | 1.0 | ug/L     |            | 06/13/14 16:32 | 1       |
| trans-1,2-Dichloroethene              | 1.0    |           | 1.0 | ug/L     |            | 06/13/14 16:32 | 1       |
| trans-1,3-Dichloropropene             | 1.0    |           | 1.0 | ug/L     |            | 06/13/14 16:32 | 1       |
| 1,2,4-Trichlorobenzene                | 1.0    |           | 1.0 | ug/L     |            | 06/13/14 16:32 | 1       |
| 1,1,1-Trichloroethane                 | 1.0    |           | 1.0 | ug/L     |            | 06/13/14 16:32 | 1       |
| 1,1,2-Trichloroethane                 | 1.0    |           | 1.0 | ug/L     |            | 06/13/14 16:32 |         |
| Trichloroethene                       | 1.0    |           | 1.0 | ug/L     |            | 06/13/14 16:32 | 1       |
| Trichlorofluoromethane                | 1.0    |           | 1.0 | ug/L     |            | 06/13/14 16:32 | 1       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 1.0    |           | 1.0 | ug/L     |            | 06/13/14 16:32 |         |
| Vinyl chloride                        | 1.0    |           | 1.0 | ug/L     |            | 06/13/14 16:32 | 1       |
| Xylenes, Total                        | 2.0    |           | 2.0 | ug/L     |            | 06/13/14 16:32 | 1       |

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-102049-1

Client Sample ID: PDMW-26T\_06052014

Date Collected: 06/05/14 11:35 Date Received: 06/06/14 08:35 Lab Sample ID: 680-102049-6

Matrix: Water

| Surrogate            | %Recovery | Qualifier | Limits   | Prepared Analyzed | Dil Fac |
|----------------------|-----------|-----------|----------|-------------------|---------|
| 4-Bromofluorobenzene | 99        |           | 70 - 130 | 06/13/14 16:32    | 1       |
| Dibromofluoromethane | 100       |           | 70 - 130 | 06/13/14 16:32    | 1       |
| Toluene-d8 (Surr)    | 103       |           | 70 - 130 | 06/13/14 16:32    | 1       |

| Dibromonuoromemane               | 100          |            | 70 - 130 |     |      |   |                | 06/13/14 16.32 |       |
|----------------------------------|--------------|------------|----------|-----|------|---|----------------|----------------|-------|
| Toluene-d8 (Surr)                | 103          |            | 70 - 130 |     |      |   |                | 06/13/14 16:32 |       |
| Method: 8270D - Semivolatile Org | ganic Compou | nds (GC/MS | 3)       |     |      |   |                |                |       |
| Analyte                          | -            | Qualifier  | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil F |
| Acenaphthene                     | 9.8          | U          | 9.8      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:06 |       |
| Acenaphthylene                   | 9.8          | U *        | 9.8      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:06 |       |
| Anthracene                       | 9.8          | U          | 9.8      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:06 |       |
| Benzo[a]anthracene               | 9.8          | U          | 9.8      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:06 |       |
| Benzo[a]pyrene                   | 9.8          | U          | 9.8      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:06 |       |
| Benzo[b]fluoranthene             | 9.8          | U          | 9.8      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:06 |       |
| Benzo[g,h,i]perylene             | 9.8          | U          | 9.8      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:06 |       |
| Benzo[k]fluoranthene             | 9.8          | U          | 9.8      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:06 |       |
| Chrysene                         | 9.8          | U          | 9.8      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:06 |       |
| Dibenz(a,h)anthracene            | 9.8          | U          | 9.8      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:06 |       |
| Fluoranthene                     | 9.8          | U          | 9.8      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:06 |       |
| Fluorene                         | 9.8          | U          | 9.8      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:06 |       |
| Indeno[1,2,3-cd]pyrene           | 9.8          | U          | 9.8      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:06 |       |
| 1-Methylnaphthalene              | 9.8          | U          | 9.8      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:06 |       |
| 2-Methylnaphthalene              | 9.8          | U          | 9.8      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:06 |       |
| Naphthalene                      | 9.8          | U          | 9.8      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:06 |       |
| Phenanthrene                     | 9.8          | U          | 9.8      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:06 |       |
| Pyrene                           | 9.8          | U          | 9.8      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:06 |       |
| Surrogate                        | %Recovery    | Qualifier  | Limits   |     |      |   | Prepared       | Analyzed       | Dil F |
| 2-Fluorobiphenyl                 | 107          |            | 38 - 130 |     |      |   | 06/12/14 15:41 | 06/16/14 18:06 |       |
| Nitrobenzene-d5 (Surr)           | 115          |            | 39 - 130 |     |      |   | 06/12/14 15:41 | 06/16/14 18:06 |       |
| Terphenyl-d14 (Surr)             | 74           |            | 10 - 143 |     |      |   | 06/12/14 15:41 | 06/16/14 18:06 |       |
| Method: 6010C - Metals (ICP)     |              |            |          |     |      |   |                |                |       |
| Analyte                          | Result       | Qualifier  | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil F |
| Arsenic                          | 25           |            | 20       |     | ug/L |   | 06/07/14 09:43 | 06/10/14 19:51 |       |
| Chromium                         | 10           | U          | 10       |     | ug/L |   | 06/07/14 09:43 | 06/10/14 19:51 |       |
| Lead                             | 10           | U          | 10       |     | ug/L |   | 06/07/14 09:43 | 06/10/14 19:51 |       |
| Nickel                           | 40           | U          | 40       |     | ug/L |   | 06/07/14 09:43 | 06/10/14 19:51 |       |
| Zinc                             | 20           | U          | 20       |     | ug/L |   | 06/07/14 09:43 | 06/10/14 19:51 |       |
| General Chemistry                |              |            |          |     |      |   |                |                |       |
| Analyte                          | Result       | Qualifier  | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil F |
| Ammonia                          | 600          |            | 25       |     | mg/L |   |                | 06/13/14 16:37 | 5     |
| Nitrate as N                     | 1.1          |            | 0.050    |     | mg/L |   |                | 06/06/14 16:38 |       |

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-102049-1

Lab Sample ID: 680-102049-7

Matrix: Water

# Client Sample ID: MW-3R\_06052014

Date Collected: 06/05/14 13:25 Date Received: 06/06/14 08:35

| Method: 8260B - Volatile Organ           |        |           |     |     |      | _   |          |                | 5".5                                  |
|------------------------------------------|--------|-----------|-----|-----|------|-----|----------|----------------|---------------------------------------|
| Analyte                                  | Result | Qualifier | RL  | MDL |      | D _ | Prepared | Analyzed       | Dil Fac                               |
| Acetone                                  |        |           | 25  |     | ug/L |     |          | 06/13/14 16:57 | 1                                     |
| Benzene                                  | 1.0    |           | 1.0 |     | ug/L |     |          | 06/13/14 16:57 | 1                                     |
| Bromodichloromethane                     | 1.0    |           | 1.0 |     | ug/L |     |          | 06/13/14 16:57 |                                       |
| Bromoform                                | 1.0    |           | 1.0 |     | ug/L |     |          | 06/13/14 16:57 | 1                                     |
| Bromomethane                             | 5.0    |           | 5.0 |     | ug/L |     |          | 06/13/14 16:57 | 1                                     |
| 2-Butanone                               | 10     |           | 10  |     | ug/L |     |          | 06/13/14 16:57 |                                       |
| Carbon disulfide                         | 2.0    |           | 2.0 |     | ug/L |     |          | 06/13/14 16:57 | 1                                     |
| Carbon tetrachloride                     | 1.0    |           | 1.0 |     | ug/L |     |          | 06/13/14 16:57 | 1                                     |
| Chlorobenzene                            | 1.0    |           | 1.0 |     | ug/L |     |          | 06/13/14 16:57 | 1                                     |
| Chloroethane                             | 5.0    |           | 5.0 |     | ug/L |     |          | 06/13/14 16:57 | 1                                     |
| Chloroform                               | 1.0    | U         | 1.0 |     | ug/L |     |          | 06/13/14 16:57 | 1                                     |
| Chloromethane                            | 1.0    | U         | 1.0 |     | ug/L |     |          | 06/13/14 16:57 |                                       |
| cis-1,2-Dichloroethene                   | 1.0    |           | 1.0 |     | ug/L |     |          | 06/13/14 16:57 | 1                                     |
| cis-1,3-Dichloropropene                  | 1.0    | U         | 1.0 |     | ug/L |     |          | 06/13/14 16:57 | 1                                     |
| Cyclohexane                              | 1.0    | U         | 1.0 |     | ug/L |     |          | 06/13/14 16:57 | 1                                     |
| Dibromochloromethane                     | 1.0    | U         | 1.0 |     | ug/L |     |          | 06/13/14 16:57 | 1                                     |
| 1,2-Dibromo-3-Chloropropane              | 1.0    | U         | 1.0 |     | ug/L |     |          | 06/13/14 16:57 | 1                                     |
| 1,2-Dibromoethane                        | 1.0    | U         | 1.0 |     | ug/L |     |          | 06/13/14 16:57 | 1                                     |
| 1,2-Dichlorobenzene                      | 1.0    | U         | 1.0 |     | ug/L |     |          | 06/13/14 16:57 | 1                                     |
| 1,3-Dichlorobenzene                      | 1.0    | U         | 1.0 |     | ug/L |     |          | 06/13/14 16:57 | 1                                     |
| 1,4-Dichlorobenzene                      | 1.0    | U         | 1.0 |     | ug/L |     |          | 06/13/14 16:57 | 1                                     |
| Dichlorodifluoromethane                  | 1.0    | U         | 1.0 |     | ug/L |     |          | 06/13/14 16:57 | 1                                     |
| 1,1-Dichloroethane                       | 1.0    | U         | 1.0 |     | ug/L |     |          | 06/13/14 16:57 | 1                                     |
| 1,2-Dichloroethane                       | 1.0    | U         | 1.0 |     | ug/L |     |          | 06/13/14 16:57 | 1                                     |
| 1,1-Dichloroethene                       | 1.0    | U         | 1.0 |     | ug/L |     |          | 06/13/14 16:57 | 1                                     |
| 1,2-Dichloropropane                      | 1.0    | U         | 1.0 |     | ug/L |     |          | 06/13/14 16:57 | 1                                     |
| Ethylbenzene                             | 1.0    | U         | 1.0 |     | ug/L |     |          | 06/13/14 16:57 | 1                                     |
| 2-Hexanone                               | 10     | U         | 10  |     | ug/L |     |          | 06/13/14 16:57 | 1                                     |
| sopropylbenzene                          | 1.0    | U         | 1.0 |     | ug/L |     |          | 06/13/14 16:57 | 1                                     |
| Methyl acetate                           | 1.0    | U         | 1.0 |     | ug/L |     |          | 06/13/14 16:57 | 1                                     |
| Methylcyclohexane                        | 1.0    | U         | 1.0 |     | ug/L |     |          | 06/13/14 16:57 |                                       |
| Methylene Chloride                       | 5.0    | U         | 5.0 |     | ug/L |     |          | 06/13/14 16:57 | 1                                     |
| 4-Methyl-2-pentanone                     | 10     | U         | 10  |     | ug/L |     |          | 06/13/14 16:57 | 1                                     |
| Methyl tert-butyl ether                  | 10     |           | 10  |     | ug/L |     |          | 06/13/14 16:57 | 1                                     |
| Styrene                                  | 1.0    |           | 1.0 |     | ug/L |     |          | 06/13/14 16:57 | 1                                     |
| 1,1,2,2-Tetrachloroethane                | 1.0    |           | 1.0 |     | ug/L |     |          | 06/13/14 16:57 | 1                                     |
| Tetrachloroethene                        | 1.0    |           | 1.0 |     | ug/L |     |          | 06/13/14 16:57 | · · · · · · · · · · · · · · · · · · · |
| Toluene                                  | 1.0    |           | 1.0 |     | ug/L |     |          | 06/13/14 16:57 | 1                                     |
| trans-1,2-Dichloroethene                 | 1.0    |           | 1.0 |     | ug/L |     |          | 06/13/14 16:57 | 1                                     |
| rans-1,3-Dichloropropene                 | 1.0    |           | 1.0 |     | ug/L |     |          | 06/13/14 16:57 | ·                                     |
| 1,2,4-Trichlorobenzene                   | 1.0    |           | 1.0 |     | ug/L |     |          | 06/13/14 16:57 | 1                                     |
| 1,1,1-Trichloroethane                    | 1.0    |           | 1.0 |     |      |     |          | 06/13/14 16:57 | 1                                     |
|                                          | 1.0    |           |     |     | ug/L |     |          |                |                                       |
| 1,1,2-Trichloroethane<br>Trichloroethene |        |           | 1.0 |     | ug/L |     |          | 06/13/14 16:57 | 1                                     |
|                                          | 1.0    |           | 1.0 |     | ug/L |     |          | 06/13/14 16:57 | 1                                     |
| Trichlorofluoromethane                   | 1.0    |           | 1.0 |     | ug/L |     |          | 06/13/14 16:57 | 1                                     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane    | 1.0    |           | 1.0 |     | ug/L |     |          | 06/13/14 16:57 | 1                                     |
| Vinyl chloride                           | 1.0    | U         | 1.0 |     | ug/L |     |          | 06/13/14 16:57 | 1                                     |

TestAmerica Savannah

3

5

<u>'</u>

9

11

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-102049-1

Client Sample ID: MW-3R\_06052014

Date Collected: 06/05/14 13:25 Date Received: 06/06/14 08:35 Lab Sample ID: 680-102049-7

Matrix: Water

| Surrogate            | %Recovery | Qualifier | Limits   | Prepared | Analyzed       | Dil Fac |
|----------------------|-----------|-----------|----------|----------|----------------|---------|
| 4-Bromofluorobenzene | 97        |           | 70 - 130 |          | 06/13/14 16:57 | 1       |
| Dibromofluoromethane | 97        |           | 70 - 130 |          | 06/13/14 16:57 | 1       |
| Toluene-d8 (Surr)    | 99        |           | 70 - 130 |          | 06/13/14 16:57 | 1       |

| Dibromofluoromethane         | 97             |            | 70 - 130 |     |      |   |                | 06/13/14 16:57 |       |
|------------------------------|----------------|------------|----------|-----|------|---|----------------|----------------|-------|
| Toluene-d8 (Surr)            | 99             |            | 70 - 130 |     |      |   |                | 06/13/14 16:57 |       |
| Method: 8270D - Semivolatile | Organic Compou | nds (GC/MS | 3)       |     |      |   |                |                |       |
| Analyte                      |                | Qualifier  | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil F |
| Acenaphthene                 | 10             | U          | 10       |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:30 |       |
| Acenaphthylene               | 10             | U *        | 10       |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:30 |       |
| Anthracene                   | 10             | U          | 10       |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:30 |       |
| Benzo[a]anthracene           | 10             | U          | 10       |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:30 |       |
| Benzo[a]pyrene               | 10             | U          | 10       |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:30 |       |
| Benzo[b]fluoranthene         | 10             | U          | 10       |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:30 |       |
| Benzo[g,h,i]perylene         | 10             |            | 10       |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:30 |       |
| Benzo[k]fluoranthene         | 10             | U          | 10       |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:30 |       |
| Chrysene                     | 10             | U          | 10       |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:30 |       |
| Dibenz(a,h)anthracene        | 10             |            | 10       |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:30 |       |
| Fluoranthene                 | 10             | U          | 10       |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:30 |       |
| Fluorene                     | 10             | U          | 10       |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:30 |       |
| Indeno[1,2,3-cd]pyrene       | 10             |            | 10       |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:30 |       |
| 1-Methylnaphthalene          | 10             | U          | 10       |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:30 |       |
| 2-Methylnaphthalene          | 10             | U          | 10       |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:30 |       |
| Naphthalene                  | 10             |            | 10       |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:30 |       |
| Phenanthrene                 | 10             |            | 10       |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:30 |       |
| Pyrene                       | 10             | U          | 10       |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:30 |       |
| Surrogate                    | %Recovery      | Qualifier  | Limits   |     |      |   | Prepared       | Analyzed       | Dil F |
| 2-Fluorobiphenyl             | 94             |            | 38 - 130 |     |      |   | 06/12/14 15:41 | 06/16/14 18:30 | -     |
| Nitrobenzene-d5 (Surr)       | 98             |            | 39 - 130 |     |      |   | 06/12/14 15:41 | 06/16/14 18:30 |       |
| Terphenyl-d14 (Surr)         | 102            |            | 10 - 143 |     |      |   | 06/12/14 15:41 | 06/16/14 18:30 |       |
| Method: 6010C - Metals (ICP) |                |            |          |     |      |   |                |                |       |
| Analyte                      | Result         | Qualifier  | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil F |
| Arsenic                      | 20             | U          | 20       |     | ug/L |   | 06/07/14 09:43 | 06/10/14 19:55 |       |
| Chromium                     | 10             | U          | 10       |     | ug/L |   | 06/07/14 09:43 | 06/10/14 19:55 |       |
| Lead                         | 10             | U          | 10       |     | ug/L |   | 06/07/14 09:43 | 06/10/14 19:55 |       |
| Nickel                       | 40             | U          | 40       |     | ug/L |   | 06/07/14 09:43 | 06/10/14 19:55 |       |
| Zinc                         | 20             | U          | 20       |     | ug/L |   | 06/07/14 09:43 | 06/10/14 19:55 |       |
| General Chemistry            |                |            |          |     |      |   |                |                |       |
| Analyte                      | Result         | Qualifier  | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil F |
| Ammonia                      | 3.9            |            | 0.25     | ·   | mg/L |   |                | 06/13/14 16:46 |       |
| Nitrate as N                 | 0.050          | 11         | 0.050    |     | mg/L |   |                | 06/06/14 16:39 |       |

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-102049-1

Client Sample ID: PDMW-52\_06052014

Date Received: 06/06/14 08:35

Lab Sample ID: 680-102049-8 Date Collected: 06/05/14 12:50

Matrix: Water

| General Chemistry Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia                   | 11     |           | 0.50  |     | mg/L |   |          | 06/13/14 14:56 | 10      |
| Nitrate as N              | 0.050  | U         | 0.050 |     | ma/L |   |          | 06/06/14 16:40 | 1       |

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-102049-1

Client Sample ID: PDMW-10R\_06052014

Date Collected: 06/05/14 13:05 Date Received: 06/06/14 08:35 Lab Sample ID: 680-102049-9

Matrix: Water

| Analyte                               |     | Qualifier | RL  | MDL Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------------------|-----|-----------|-----|----------|---|----------|----------------|---------|
| Acetone                               | 25  | U         | 25  | ug/L     |   |          | 06/13/14 17:21 | 1       |
| Benzene                               | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 17:21 | 1       |
| Bromodichloromethane                  | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 17:21 | 1       |
| Bromoform                             | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 17:21 | 1       |
| Bromomethane                          | 5.0 | U         | 5.0 | ug/L     |   |          | 06/13/14 17:21 | 1       |
| 2-Butanone                            | 10  | U         | 10  | ug/L     |   |          | 06/13/14 17:21 | 1       |
| Carbon disulfide                      | 2.0 | U         | 2.0 | ug/L     |   |          | 06/13/14 17:21 | 1       |
| Carbon tetrachloride                  | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 17:21 | 1       |
| Chlorobenzene                         | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 17:21 | 1       |
| Chloroethane                          | 5.0 | U         | 5.0 | ug/L     |   |          | 06/13/14 17:21 | 1       |
| Chloroform                            | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 17:21 | 1       |
| Chloromethane                         | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 17:21 | 1       |
| cis-1,2-Dichloroethene                | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 17:21 | 1       |
| cis-1,3-Dichloropropene               | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 17:21 | 1       |
| Cyclohexane                           | 1.0 |           | 1.0 | ug/L     |   |          | 06/13/14 17:21 | 1       |
| Dibromochloromethane                  | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 17:21 | 1       |
| 1,2-Dibromo-3-Chloropropane           | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 17:21 | 1       |
| 1,2-Dibromoethane                     | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 17:21 | 1       |
| 1,2-Dichlorobenzene                   | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 17:21 | 1       |
| 1,3-Dichlorobenzene                   | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 17:21 | 1       |
| 1,4-Dichlorobenzene                   | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 17:21 | •       |
| Dichlorodifluoromethane               | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 17:21 | 1       |
| 1,1-Dichloroethane                    | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 17:21 | 1       |
| 1,2-Dichloroethane                    | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 17:21 | 1       |
| 1,1-Dichloroethene                    | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 17:21 | 1       |
| 1,2-Dichloropropane                   | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 17:21 | 1       |
| Ethylbenzene                          | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 17:21 | •       |
| 2-Hexanone                            | 10  | U         | 10  | ug/L     |   |          | 06/13/14 17:21 | 1       |
| Isopropylbenzene                      | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 17:21 | 1       |
| Methyl acetate                        | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 17:21 | 1       |
| Methylcyclohexane                     | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 17:21 | 1       |
| Methylene Chloride                    | 5.0 | U         | 5.0 | ug/L     |   |          | 06/13/14 17:21 | 1       |
| 4-Methyl-2-pentanone                  | 10  | U         | 10  | ug/L     |   |          | 06/13/14 17:21 | 1       |
| Methyl tert-butyl ether               | 10  | U         | 10  | ug/L     |   |          | 06/13/14 17:21 | 1       |
| Styrene                               | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 17:21 | 1       |
| 1,1,2,2-Tetrachloroethane             | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 17:21 | 1       |
| Tetrachloroethene                     | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 17:21 |         |
| Toluene                               | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 17:21 | 1       |
| trans-1,2-Dichloroethene              | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 17:21 | 1       |
| trans-1,3-Dichloropropene             | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 17:21 | 1       |
| 1,2,4-Trichlorobenzene                | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 17:21 | 1       |
| 1,1,1-Trichloroethane                 | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 17:21 | 1       |
| 1,1,2-Trichloroethane                 | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 17:21 | 1       |
| Trichloroethene                       | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 17:21 |         |
| Trichlorofluoromethane                | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 17:21 |         |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 17:21 |         |
| Vinyl chloride                        | 1.0 |           | 1.0 | ug/L     |   |          | 06/13/14 17:21 | 1       |
| Xylenes, Total                        | 2.0 |           | 2.0 | ug/L     |   |          | 06/13/14 17:21 | 1       |

TestAmerica Savannah

4

6

1

9

11

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-102049-1

Client Sample ID: PDMW-10R\_06052014

Date Collected: 06/05/14 13:05 Date Received: 06/06/14 08:35 Lab Sample ID: 680-102049-9

Matrix: Water

| Surrogate            | %Recovery | Qualifier | Limits   | Prepared Ana | lyzed Dil Fac | ; |
|----------------------|-----------|-----------|----------|--------------|---------------|---|
| 4-Bromofluorobenzene | 98        |           | 70 - 130 | 06/13/       | 14 17:21 1    | į |
| Dibromofluoromethane | 100       |           | 70 - 130 | 06/13/       | 14 17:21 1    | 1 |
| Toluene-d8 (Surr)    | 99        |           | 70 - 130 | 06/13/       | 14 17:21 1    | ! |

| Dibiomonaoromounano                   | 100          |            | , 0 = , 00 |     |      |   |                | 00, 10, 11, 11, 21 |        |
|---------------------------------------|--------------|------------|------------|-----|------|---|----------------|--------------------|--------|
| Toluene-d8 (Surr)                     | 99           |            | 70 - 130   |     |      |   |                | 06/13/14 17:21     |        |
| :<br>Method: 8270D - Semivolatile Org | nanic Compou | nds (GC/MS | 3)         |     |      |   |                |                    |        |
| Analyte                               | •            | Qualifier  | RL         | MDL | Unit | D | Prepared       | Analyzed           | Dil Fa |
| Acenaphthene                          | 9.8          | U          | 9.8        |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:54     |        |
| Acenaphthylene                        | 9.8          | U *        | 9.8        |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:54     |        |
| Anthracene                            | 9.8          | U          | 9.8        |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:54     |        |
| Benzo[a]anthracene                    | 9.8          | U          | 9.8        |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:54     |        |
| Benzo[a]pyrene                        | 9.8          | U          | 9.8        |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:54     |        |
| Benzo[b]fluoranthene                  | 9.8          | U          | 9.8        |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:54     |        |
| Benzo[g,h,i]perylene                  | 9.8          | U          | 9.8        |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:54     |        |
| Benzo[k]fluoranthene                  | 9.8          | U          | 9.8        |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:54     |        |
| Chrysene                              | 9.8          | U          | 9.8        |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:54     |        |
| Dibenz(a,h)anthracene                 | 9.8          | U          | 9.8        |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:54     |        |
| Fluoranthene                          | 9.8          | U          | 9.8        |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:54     |        |
| Fluorene                              | 9.8          | U          | 9.8        |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:54     |        |
| Indeno[1,2,3-cd]pyrene                | 9.8          | U          | 9.8        |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:54     |        |
| 1-Methylnaphthalene                   | 9.8          | U          | 9.8        |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:54     |        |
| 2-Methylnaphthalene                   | 9.8          | U          | 9.8        |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:54     |        |
| Naphthalene                           | 9.8          | U          | 9.8        |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:54     |        |
| Phenanthrene                          | 9.8          | U          | 9.8        |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:54     |        |
| Pyrene                                | 9.8          | U          | 9.8        |     | ug/L |   | 06/12/14 15:41 | 06/16/14 18:54     |        |
| Surrogate                             | %Recovery    | Qualifier  | Limits     |     |      |   | Prepared       | Analyzed           | Dil Fa |
| 2-Fluorobiphenyl                      | 92           |            | 38 - 130   |     |      |   | 06/12/14 15:41 | 06/16/14 18:54     |        |
| Nitrobenzene-d5 (Surr)                | 106          |            | 39 - 130   |     |      |   | 06/12/14 15:41 | 06/16/14 18:54     |        |
| Terphenyl-d14 (Surr)                  | 69           |            | 10 - 143   |     |      |   | 06/12/14 15:41 | 06/16/14 18:54     |        |
| Method: 6010C - Metals (ICP)          |              |            |            |     |      |   |                |                    |        |
| Analyte                               | Result       | Qualifier  | RL         | MDL | Unit | D | Prepared       | Analyzed           | Dil Fa |
| Arsenic                               | 20           | U          | 20         |     | ug/L |   | 06/07/14 09:43 | 06/10/14 19:59     |        |
| Chromium                              | 10           | U          | 10         |     | ug/L |   | 06/07/14 09:43 | 06/10/14 19:59     |        |
| Lead                                  | 10           | U          | 10         |     | ug/L |   | 06/07/14 09:43 | 06/10/14 19:59     |        |
| Nickel                                | 40           | U          | 40         |     | ug/L |   | 06/07/14 09:43 | 06/10/14 19:59     |        |
| Zinc                                  | 20           | U          | 20         |     | ug/L |   | 06/07/14 09:43 | 06/10/14 19:59     |        |
| General Chemistry                     |              |            |            |     |      |   |                |                    |        |
| Analyte                               | Result       | Qualifier  | RL         | MDL | Unit | D | Prepared       | Analyzed           | Dil Fa |
| Ammonia                               | 13           |            | 0.50       |     | mg/L |   |                | 06/13/14 15:06     | 1      |
| Nitrate as N                          | 0.050        |            | 0.050      |     | mg/L |   |                | 06/06/14 16:42     |        |

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Client Sample ID: DUP-03\_06052014

TestAmerica Job ID: 680-102049-1

Lab Sample ID: 680-102049-10

Matrix: Water

Date Collected: 06/05/14 00:00 Date Received: 06/06/14 08:35

| General Chemistry Analyte | Result | Qualifier | RL    | MDL ( | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------|--------|-----------|-------|-------|------|---|----------|----------------|---------|
| Ammonia                   | 8.8    |           | 0.25  | r     | mg/L |   |          | 06/13/14 15:16 | 5       |
| Nitrate as N              | 0.050  | U         | 0.050 | r     | mg/L |   |          | 06/06/14 16:43 | 1       |

<del>ا</del>

0

9

11

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-102049-1

Client Sample ID: PDMW-13P\_06052014

Date Collected: 06/05/14 14:50 Date Received: 06/06/14 08:35 Lab Sample ID: 680-102049-11

Matrix: Water

| Analyte                              |     | Qualifier | RL  | MDL Unit     | D Prepared | Analyzed                         | Dil F |
|--------------------------------------|-----|-----------|-----|--------------|------------|----------------------------------|-------|
| Acetone                              | 25  | U         | 25  | ug/L         |            | 06/13/14 17:45                   |       |
| Benzene                              | 1.0 | U         | 1.0 | ug/L         |            | 06/13/14 17:45                   |       |
| Bromodichloromethane                 | 1.0 | U         | 1.0 | ug/L         |            | 06/13/14 17:45                   |       |
| Bromoform                            | 1.0 | U         | 1.0 | ug/L         |            | 06/13/14 17:45                   |       |
| Bromomethane                         | 5.0 | U         | 5.0 | ug/L         |            | 06/13/14 17:45                   |       |
| 2-Butanone                           | 10  | U         | 10  | ug/L         |            | 06/13/14 17:45                   |       |
| Carbon disulfide                     | 2.0 | U         | 2.0 | ug/L         |            | 06/13/14 17:45                   |       |
| Carbon tetrachloride                 | 1.0 | U         | 1.0 | ug/L         |            | 06/13/14 17:45                   |       |
| Chlorobenzene                        | 1.0 | U         | 1.0 | ug/L         |            | 06/13/14 17:45                   |       |
| Chloroethane                         | 5.0 | U         | 5.0 | ug/L         |            | 06/13/14 17:45                   |       |
| Chloroform                           | 1.0 | U         | 1.0 | ug/L         |            | 06/13/14 17:45                   |       |
| Chloromethane                        | 1.0 | U         | 1.0 | ug/L         |            | 06/13/14 17:45                   |       |
| sis-1,2-Dichloroethene               | 1.0 |           | 1.0 | ug/L         |            | 06/13/14 17:45                   |       |
| is-1,3-Dichloropropene               | 1.0 |           | 1.0 | ug/L         |            | 06/13/14 17:45                   |       |
| Cyclohexane                          | 1.0 |           | 1.0 | ug/L         |            | 06/13/14 17:45                   |       |
| Dibromochloromethane                 | 1.0 |           | 1.0 | ug/L         |            | 06/13/14 17:45                   |       |
| ,2-Dibromo-3-Chloropropane           | 1.0 |           | 1.0 | ug/L         |            | 06/13/14 17:45                   |       |
| ,2-Dibromoethane                     | 1.0 |           | 1.0 | ug/L         |            | 06/13/14 17:45                   |       |
| ,2-Dichlorobenzene                   | 1.0 |           | 1.0 | ug/L         |            | 06/13/14 17:45                   |       |
| ,3-Dichlorobenzene                   | 1.0 |           | 1.0 | ug/L         |            | 06/13/14 17:45                   |       |
| ,4-Dichlorobenzene                   | 1.0 |           | 1.0 | ug/L         |            | 06/13/14 17:45                   |       |
| Dichlorodifluoromethane              | 1.0 |           | 1.0 | ug/L         |            | 06/13/14 17:45                   |       |
| ,1-Dichloroethane                    | 1.0 |           | 1.0 | ug/L         |            | 06/13/14 17:45                   |       |
| ,2-Dichloroethane                    | 1.0 |           | 1.0 | ug/L         |            | 06/13/14 17:45                   |       |
| ,1-Dichloroethene                    | 1.0 |           | 1.0 | ug/L         |            | 06/13/14 17:45                   |       |
| ,2-Dichloropropane                   | 1.0 |           | 1.0 | ug/L         |            | 06/13/14 17:45                   |       |
| Ethylbenzene                         | 1.0 |           | 1.0 | ug/L         |            | 06/13/14 17:45                   |       |
| -Hexanone                            | 10  |           | 10  | ug/L         |            | 06/13/14 17:45                   |       |
| sopropylbenzene                      | 1.0 |           | 1.0 | ug/L         |            | 06/13/14 17:45                   |       |
| Methyl acetate                       | 1.0 |           | 1.0 | ug/L         |            | 06/13/14 17:45                   |       |
| Methylcyclohexane                    | 1.0 |           | 1.0 | <del>.</del> |            | 06/13/14 17:45                   |       |
| • •                                  | 5.0 |           | 5.0 | ug/L         |            | 06/13/14 17:45                   |       |
| Methyl 2 partonage                   |     |           |     | ug/L         |            |                                  |       |
| -Methyl-2-pentanone                  | 10  |           | 10  | ug/L         |            | 06/13/14 17:45                   |       |
| Methyl tert-butyl ether              | 10  |           | 10  | ug/L         |            | 06/13/14 17:45<br>06/13/14 17:45 |       |
| Styrene                              | 1.0 |           | 1.0 | ug/L         |            |                                  |       |
| ,1,2,2-Tetrachloroethane             | 1.0 |           | 1.0 | ug/L         |            | 06/13/14 17:45                   |       |
| etrachloroethene                     | 1.0 |           | 1.0 | ug/L         |            | 06/13/14 17:45                   |       |
| oluene                               | 1.0 |           | 1.0 | ug/L         |            | 06/13/14 17:45                   |       |
| ans-1,2-Dichloroethene               | 1.0 |           | 1.0 | ug/L         |            | 06/13/14 17:45                   |       |
| ans-1,3-Dichloropropene              | 1.0 |           | 1.0 | ug/L         |            | 06/13/14 17:45                   |       |
| ,2,4-Trichlorobenzene                | 1.0 |           | 1.0 | ug/L         |            | 06/13/14 17:45                   |       |
| ,1,1-Trichloroethane                 | 1.0 |           | 1.0 | ug/L         |            | 06/13/14 17:45                   |       |
| ,1,2-Trichloroethane                 | 1.0 |           | 1.0 | ug/L         |            | 06/13/14 17:45                   |       |
| richloroethene                       | 1.0 |           | 1.0 | ug/L         |            | 06/13/14 17:45                   |       |
| richlorofluoromethane                | 1.0 |           | 1.0 | ug/L         |            | 06/13/14 17:45                   |       |
| ,1,2-Trichloro-1,2,2-trifluoroethane | 1.0 |           | 1.0 | ug/L         |            | 06/13/14 17:45                   |       |
| 'inyl chloride                       | 1.0 | U         | 1.0 | ug/L         |            | 06/13/14 17:45                   |       |

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-102049-1

\_\_

Client Sample ID: PDMW-13P\_06052014

Date Collected: 06/05/14 14:50 Date Received: 06/06/14 08:35

Nitrate as N

Lab Sample ID: 680-102049-11

Matrix: Water

|   | Surrogate            | %Recovery | Qualifier | Limits   | Prepared | Analyzed       | Dil Fac |
|---|----------------------|-----------|-----------|----------|----------|----------------|---------|
|   | 4-Bromofluorobenzene | 96        |           | 70 - 130 |          | 06/13/14 17:45 | 1       |
|   | Dibromofluoromethane | 98        |           | 70 - 130 |          | 06/13/14 17:45 | 1       |
| L | Toluene-d8 (Surr)    | 99        |           | 70 - 130 |          | 06/13/14 17:45 | 1       |

| Dibromofluoromethane                  | 98           |           | 70 - 130 |     |      |   |                | 06/13/14 17:45 | 1       |
|---------------------------------------|--------------|-----------|----------|-----|------|---|----------------|----------------|---------|
| Toluene-d8 (Surr)                     | 99           |           | 70 - 130 |     |      |   |                | 06/13/14 17:45 | 1       |
| _<br>Method: 8270D - Semivolatile Org | nanic Compou | nds (GC/M | S)       |     |      |   |                |                |         |
| Analyte                               | •            | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Acenaphthene                          | 9.7          | U         | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 19:18 | 1       |
| Acenaphthylene                        | 9.7          | U *       | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 19:18 | 1       |
| Anthracene                            | 9.7          | U         | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 19:18 | 1       |
| Benzo[a]anthracene                    | 9.7          | U         | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 19:18 | 1       |
| Benzo[a]pyrene                        | 9.7          | U         | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 19:18 | 1       |
| Benzo[b]fluoranthene                  | 9.7          | U         | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 19:18 | 1       |
| Benzo[g,h,i]perylene                  | 9.7          | U         | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 19:18 | 1       |
| Benzo[k]fluoranthene                  | 9.7          | U         | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 19:18 | 1       |
| Chrysene                              | 9.7          | U         | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 19:18 | 1       |
| Dibenz(a,h)anthracene                 | 9.7          | U         | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 19:18 | 1       |
| Fluoranthene                          | 9.7          | U         | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 19:18 | 1       |
| Fluorene                              | 9.7          | U         | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 19:18 | 1       |
| Indeno[1,2,3-cd]pyrene                | 9.7          | U         | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 19:18 | 1       |
| 1-Methylnaphthalene                   | 9.7          | U         | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 19:18 | 1       |
| 2-Methylnaphthalene                   | 9.7          | U         | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 19:18 | 1       |
| Naphthalene                           | 9.7          | U         | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 19:18 | 1       |
| Phenanthrene                          | 9.7          | U         | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 19:18 | 1       |
| Pyrene                                | 9.7          | U         | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 19:18 | 1       |
| Surrogate                             | %Recovery    | Qualifier | Limits   |     |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl                      | 80           |           | 38 - 130 |     |      |   | 06/12/14 15:41 | 06/16/14 19:18 | 1       |
| Nitrobenzene-d5 (Surr)                | 87           |           | 39 - 130 |     |      |   | 06/12/14 15:41 | 06/16/14 19:18 | 1       |
| Terphenyl-d14 (Surr)                  | 89           |           | 10 - 143 |     |      |   | 06/12/14 15:41 | 06/16/14 19:18 | 1       |
| Method: 6010C - Metals (ICP)          |              |           |          |     |      |   |                |                |         |
| Analyte                               | Result       | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                               | 20           | U         | 20       |     | ug/L |   | 06/07/14 09:43 | 06/10/14 20:03 | 1       |
| Chromium                              | 10           | U         | 10       |     | ug/L |   | 06/07/14 09:43 | 06/10/14 20:03 | 1       |
| Lead                                  | 21           |           | 10       |     | ug/L |   | 06/07/14 09:43 | 06/10/14 20:03 | 1       |
| Nickel                                | 40           | U         | 40       |     | ug/L |   | 06/07/14 09:43 | 06/10/14 20:03 | 1       |
| Zinc                                  | 20           | U         | 20       |     | ug/L |   | 06/07/14 09:43 | 06/10/14 20:03 | 1       |
| -<br>General Chemistry                |              |           |          |     |      |   |                |                |         |
| Analyte                               | Result       | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Ammonia                               | 1.9          | -         | 0.10     |     | mg/L |   |                | 06/13/14 17:11 | 2       |
|                                       |              |           |          |     |      |   |                |                |         |

06/06/14 16:44

0.050

mg/L

0.21

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-102049-1

Client Sample ID: SW-03-HIGH\_06052014

Date Collected: 06/05/14 14:25 Date Received: 06/06/14 08:35 Lab Sample ID: 680-102049-12

Matrix: Water

| Analyte                               | Result | Qualifier | RL  | MDL Unit | D Prepared | Analyzed       | Dil F |
|---------------------------------------|--------|-----------|-----|----------|------------|----------------|-------|
| Acetone                               | 25     | U         | 25  | ug/L     |            | 06/13/14 18:10 |       |
| Benzene                               | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 18:10 |       |
| Bromodichloromethane                  | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 18:10 |       |
| Bromoform                             | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 18:10 |       |
| Bromomethane                          | 5.0    | U         | 5.0 | ug/L     |            | 06/13/14 18:10 |       |
| 2-Butanone                            | 10     | U         | 10  | ug/L     |            | 06/13/14 18:10 |       |
| Carbon disulfide                      | 2.0    | U         | 2.0 | ug/L     |            | 06/13/14 18:10 |       |
| Carbon tetrachloride                  | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 18:10 |       |
| Chlorobenzene                         | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 18:10 |       |
| Chloroethane                          | 5.0    | U         | 5.0 | ug/L     |            | 06/13/14 18:10 |       |
| Chloroform                            | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 18:10 |       |
| Chloromethane                         | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 18:10 |       |
| cis-1,2-Dichloroethene                | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 18:10 |       |
| cis-1,3-Dichloropropene               | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 18:10 |       |
| Cyclohexane                           | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 18:10 |       |
| Dibromochloromethane                  | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 18:10 |       |
| 1,2-Dibromo-3-Chloropropane           | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 18:10 |       |
| 1,2-Dibromoethane                     | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 18:10 |       |
| I,2-Dichlorobenzene                   | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 18:10 |       |
| 1,3-Dichlorobenzene                   | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 18:10 |       |
| I,4-Dichlorobenzene                   | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 18:10 |       |
| Dichlorodifluoromethane               | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 18:10 |       |
| I,1-Dichloroethane                    | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 18:10 |       |
| 1,2-Dichloroethane                    | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 18:10 |       |
| I,1-Dichloroethene                    | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 18:10 |       |
| 1,2-Dichloropropane                   | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 18:10 |       |
| Ethylbenzene                          | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 18:10 |       |
| 2-Hexanone                            | 10     | U         | 10  | ug/L     |            | 06/13/14 18:10 |       |
| sopropylbenzene                       | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 18:10 |       |
| Methyl acetate                        | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 18:10 |       |
| Methylcyclohexane                     | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 18:10 |       |
| Methylene Chloride                    | 5.0    | U         | 5.0 | ug/L     |            | 06/13/14 18:10 |       |
| 1-Methyl-2-pentanone                  | 10     | U         | 10  | ug/L     |            | 06/13/14 18:10 |       |
| Methyl tert-butyl ether               | 10     | U         | 10  | ug/L     |            | 06/13/14 18:10 |       |
| Styrene                               | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 18:10 |       |
| I,1,2,2-Tetrachloroethane             | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 18:10 |       |
| Tetrachloroethene                     | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 18:10 |       |
| Гoluene                               | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 18:10 |       |
| rans-1,2-Dichloroethene               | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 18:10 |       |
| rans-1,3-Dichloropropene              | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 18:10 |       |
| 1,2,4-Trichlorobenzene                | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 18:10 |       |
| I,1,1-Trichloroethane                 | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 18:10 |       |
| I,1,2-Trichloroethane                 | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 18:10 |       |
| Trichloroethene                       | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 18:10 |       |
| Trichlorofluoromethane                | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 18:10 |       |
| I,1,2-Trichloro-1,2,2-trifluoroethane | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 18:10 |       |
| /inyl chloride                        | 1.0    | U         | 1.0 | ug/L     |            | 06/13/14 18:10 |       |
| Kylenes, Total                        | 2.0    | U         | 2.0 | ug/L     |            | 06/13/14 18:10 |       |

TestAmerica Savannah

\_

6

8

9

11

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-102049-1

Client Sample ID: SW-03-HIGH\_06052014

Date Collected: 06/05/14 14:25 Date Received: 06/06/14 08:35

Alkalinity

Lab Sample ID: 680-102049-12

Matrix: Water

| Surrogate            | %Recovery | Qualifier Limits | Prepared | Analyzed       | Dil Fac |
|----------------------|-----------|------------------|----------|----------------|---------|
| 4-Bromofluorobenzene | 99        | 70 - 130         |          | 06/13/14 18:10 | 1       |
| Dibromofluoromethane | 98        | 70 - 130         |          | 06/13/14 18:10 | 1       |
| Toluene-d8 (Surr)    | 102       | 70 - 130         |          | 06/13/14 18:10 | 1       |

| Method: 8270D - Semivolatile Org       | janic Compou | nds (GC/M | S)       |     |      |   |                |                |         |
|----------------------------------------|--------------|-----------|----------|-----|------|---|----------------|----------------|---------|
| Analyte                                |              | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Acenaphthene                           | 9.7          | U         | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 19:42 | 1       |
| Acenaphthylene                         | 9.7          | U *       | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 19:42 | 1       |
| Anthracene                             | 9.7          | U         | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 19:42 | 1       |
| Benzo[a]anthracene                     | 9.7          | U         | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 19:42 | 1       |
| Benzo[a]pyrene                         | 9.7          | U         | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 19:42 | 1       |
| Benzo[b]fluoranthene                   | 9.7          | U         | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 19:42 | 1       |
| Benzo[g,h,i]perylene                   | 9.7          | U         | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 19:42 | 1       |
| Benzo[k]fluoranthene                   | 9.7          | U         | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 19:42 | 1       |
| Chrysene                               | 9.7          | U         | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 19:42 | 1       |
| Dibenz(a,h)anthracene                  | 9.7          | U         | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 19:42 | 1       |
| Fluoranthene                           | 9.7          | U         | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 19:42 | 1       |
| Fluorene                               | 9.7          | U         | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 19:42 | 1       |
| Indeno[1,2,3-cd]pyrene                 | 9.7          | U         | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 19:42 | 1       |
| 1-Methylnaphthalene                    | 9.7          | U         | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 19:42 | 1       |
| 2-Methylnaphthalene                    | 9.7          | U         | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 19:42 | 1       |
| Naphthalene                            | 9.7          | U         | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 19:42 | 1       |
| Phenanthrene                           | 9.7          | U         | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 19:42 | 1       |
| Pyrene                                 | 9.7          | U         | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/16/14 19:42 | 1       |
| Surrogate                              | %Recovery    | Qualifier | Limits   |     |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl                       | 97           | -         | 38 - 130 |     |      |   | 06/12/14 15:41 | 06/16/14 19:42 | 1       |
| Nitrobenzene-d5 (Surr)                 | 107          |           | 39 - 130 |     |      |   | 06/12/14 15:41 | 06/16/14 19:42 | 1       |
| Terphenyl-d14 (Surr)                   | 104          |           | 10 - 143 |     |      |   | 06/12/14 15:41 | 06/16/14 19:42 | 1       |
| -<br>Method: 6010C - Metals (ICP) - Di | ssolved      |           |          |     |      |   |                |                |         |
| Analyte                                | Result       | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                                | 20           | U         | 20       |     | ug/L |   | 06/07/14 11:38 | 06/17/14 19:07 | 1       |
| Chromium                               | 10           | U         | 10       |     | ug/L |   | 06/07/14 11:38 | 06/17/14 19:07 | 1       |
| Nickel                                 | 40           | U         | 40       |     | ug/L |   | 06/07/14 11:38 | 06/17/14 19:07 | 1       |
| Lead                                   | 10           | U         | 10       |     | ug/L |   | 06/07/14 11:38 | 06/17/14 19:07 | 1       |
| Zinc                                   | 20           | U         | 20       |     | ug/L |   | 06/07/14 11:38 | 06/17/14 19:07 | 1       |
| -<br>General Chemistry                 |              |           |          |     |      |   |                |                |         |
| Analyte                                | Result       | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Ammonia                                | 0.31         |           | 0.050    |     | mg/L |   |                | 06/13/14 12:21 | 1       |
| Nitrate as N                           | 0.36         |           | 0.050    |     | mg/L |   |                | 06/06/14 16:45 | 1       |
| Analyte                                | Result       | Qualifier | RL       | RL  | Unit | D | Prepared       | Analyzed       | Dil Fac |

06/15/14 22:12

5.0

67

mg/L

3

4

^

1

9

11

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-102049-1

C30 (ITICITICA 000 ID. 000 102043 1

Client Sample ID: SW-04-HIGH\_06052014

Date Collected: 06/05/14 14:45 Date Received: 06/06/14 08:35 Lab Sample ID: 680-102049-13

Matrix: Water

| Analyte                                     | Result | Qualifier | RL  | MDL Unit     | D | Prepared | Analyzed       | Dil Fa |
|---------------------------------------------|--------|-----------|-----|--------------|---|----------|----------------|--------|
| Acetone                                     | 25     |           | 25  | ug/L         |   | <u> </u> | 06/13/14 18:34 |        |
| Benzene                                     | 1.0    | U         | 1.0 | ug/L         |   |          | 06/13/14 18:34 |        |
| Bromodichloromethane                        | 1.0    | U         | 1.0 | ug/L         |   |          | 06/13/14 18:34 |        |
| Bromoform                                   | 1.0    | U         | 1.0 | ug/L         |   |          | 06/13/14 18:34 |        |
| Bromomethane                                | 5.0    | U         | 5.0 | ug/L         |   |          | 06/13/14 18:34 |        |
| 2-Butanone                                  | 10     | U         | 10  | ug/L         |   |          | 06/13/14 18:34 |        |
| Carbon disulfide                            | 2.0    |           | 2.0 | ug/L         |   |          | 06/13/14 18:34 |        |
| Carbon tetrachloride                        | 1.0    | U         | 1.0 | ug/L         |   |          | 06/13/14 18:34 |        |
| Chlorobenzene                               | 1.0    | U         | 1.0 | ug/L         |   |          | 06/13/14 18:34 |        |
| Chloroethane                                | 5.0    |           | 5.0 | ug/L         |   |          | 06/13/14 18:34 |        |
| Chloroform                                  | 1.0    |           | 1.0 | ug/L         |   |          | 06/13/14 18:34 |        |
| Chloromethane                               | 1.0    |           | 1.0 | ug/L         |   |          | 06/13/14 18:34 |        |
| cis-1,2-Dichloroethene                      | 1.0    |           | 1.0 | ug/L         |   |          | 06/13/14 18:34 |        |
| cis-1,3-Dichloropropene                     | 1.0    |           | 1.0 | ug/L         |   |          | 06/13/14 18:34 |        |
| Cyclohexane                                 | 1.0    |           | 1.0 | ug/L         |   |          | 06/13/14 18:34 |        |
| Dibromochloromethane                        | 1.0    |           | 1.0 | ug/L<br>ug/L |   |          | 06/13/14 18:34 |        |
| 1,2-Dibromo-3-Chloropropane                 | 1.0    |           | 1.0 | ug/L         |   |          | 06/13/14 18:34 |        |
| 1,2-Dibromoethane                           | 1.0    |           | 1.0 | ug/L<br>ug/L |   |          | 06/13/14 18:34 |        |
| 1,2-Dichlorobenzene                         | 1.0    |           | 1.0 |              |   |          | 06/13/14 18:34 |        |
| 1,3-Dichlorobenzene                         | 1.0    |           | 1.0 | ug/L<br>ug/L |   |          | 06/13/14 18:34 |        |
|                                             | 1.0    |           | 1.0 | _            |   |          | 06/13/14 18:34 |        |
| 1,4-Dichlorobenzene Dichlorodifluoromethane | 1.0    |           |     | ug/L         |   |          | 06/13/14 18:34 |        |
|                                             |        |           | 1.0 | ug/L         |   |          |                |        |
| 1,1-Dichloroethane                          | 1.0    |           | 1.0 | ug/L         |   |          | 06/13/14 18:34 |        |
| 1,2-Dichloroethane                          | 1.0    |           | 1.0 | ug/L         |   |          | 06/13/14 18:34 |        |
| 1,1-Dichloroethene                          | 1.0    |           | 1.0 | ug/L         |   |          | 06/13/14 18:34 |        |
| 1,2-Dichloropropane                         | 1.0    |           | 1.0 | ug/L         |   |          | 06/13/14 18:34 |        |
| Ethylbenzene                                | 1.0    |           | 1.0 | ug/L         |   |          | 06/13/14 18:34 |        |
| 2-Hexanone                                  | 10     |           | 10  | ug/L         |   |          | 06/13/14 18:34 |        |
| Isopropylbenzene                            | 1.0    |           | 1.0 | ug/L         |   |          | 06/13/14 18:34 |        |
| Methyl acetate                              | 1.0    |           | 1.0 | ug/L         |   |          | 06/13/14 18:34 |        |
| Methylcyclohexane                           | 1.0    |           | 1.0 | ug/L         |   |          | 06/13/14 18:34 |        |
| Methylene Chloride                          | 5.0    |           | 5.0 | ug/L         |   |          | 06/13/14 18:34 |        |
| 4-Methyl-2-pentanone                        | 10     |           | 10  | ug/L         |   |          | 06/13/14 18:34 |        |
| Methyl tert-butyl ether                     | 10     |           | 10  | ug/L         |   |          | 06/13/14 18:34 |        |
| Styrene                                     | 1.0    |           | 1.0 | ug/L         |   |          | 06/13/14 18:34 |        |
| 1,1,2,2-Tetrachloroethane                   | 1.0    |           | 1.0 | ug/L         |   |          | 06/13/14 18:34 |        |
| Tetrachloroethene                           | 1.0    | U         | 1.0 | ug/L         |   |          | 06/13/14 18:34 |        |
| Toluene                                     | 1.0    | U         | 1.0 | ug/L         |   |          | 06/13/14 18:34 |        |
| trans-1,2-Dichloroethene                    | 1.0    | U         | 1.0 | ug/L         |   |          | 06/13/14 18:34 |        |
| trans-1,3-Dichloropropene                   | 1.0    | U         | 1.0 | ug/L         |   |          | 06/13/14 18:34 |        |
| 1,2,4-Trichlorobenzene                      | 1.0    | U         | 1.0 | ug/L         |   |          | 06/13/14 18:34 |        |
| 1,1,1-Trichloroethane                       | 1.0    | U         | 1.0 | ug/L         |   |          | 06/13/14 18:34 |        |
| 1,1,2-Trichloroethane                       | 1.0    | U         | 1.0 | ug/L         |   |          | 06/13/14 18:34 |        |
| Trichloroethene                             | 1.0    | U         | 1.0 | ug/L         |   |          | 06/13/14 18:34 |        |
| Trichlorofluoromethane                      | 1.0    | U         | 1.0 | ug/L         |   |          | 06/13/14 18:34 |        |
| 1,1,2-Trichloro-1,2,2-trifluoroethane       | 1.0    | U         | 1.0 | ug/L         |   |          | 06/13/14 18:34 |        |
| Vinyl chloride                              | 1.0    | U         | 1.0 | ug/L         |   |          | 06/13/14 18:34 |        |
| Xylenes, Total                              | 2.0    | U         | 2.0 | ug/L         |   |          | 06/13/14 18:34 |        |

TestAmerica Savannah

\_

0

8

**3** 

1 1

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Client Sample ID: SW-04-HIGH\_06052014

Lab Sample ID: 680-102049-13 Date Collected: 06/05/14 14:45

Matrix: Water

Date Received: 06/06/14 08:35

Analyte

**Alkalinity** 

| Surrogate            | %Recovery | Qualifier | Limits   | Prepared | Analyzed       | Dil Fac |
|----------------------|-----------|-----------|----------|----------|----------------|---------|
| 4-Bromofluorobenzene | 99        |           | 70 - 130 |          | 06/13/14 18:34 | 1       |
| Dibromofluoromethane | 98        |           | 70 - 130 |          | 06/13/14 18:34 | 1       |
| Toluene-d8 (Surr)    | 99        |           | 70 - 130 |          | 06/13/14 18:34 | 1       |

| - Toluene-uo (Sun)               | 99            |                | 70 - 130 |      |              |          |                         | 00/13/14 10.34          | ,                       |
|----------------------------------|---------------|----------------|----------|------|--------------|----------|-------------------------|-------------------------|-------------------------|
| Method: 8270D - Semivolatil      |               |                |          | Mari |              | _        |                         |                         | D.: E                   |
| Analyte                          |               | Qualifier<br>U |          | MDL  | Unit<br>ug/L | D        | Prepared 06/12/14 15:41 | Analyzed 06/16/14 20:07 | Dil Fac                 |
| Acenaphthene Acenaphthylene      |               |                | 10       |      | ug/L<br>ug/L |          | 06/12/14 15:41          | 06/16/14 20:07          | 1                       |
| Anthracene                       | 10            |                | 10       |      | ug/L<br>ug/L |          | 06/12/14 15:41          | 06/16/14 20:07          | 1                       |
|                                  | 10            |                | 10       |      |              |          | 06/12/14 15:41          |                         | · · · · · · · · · · · 1 |
| Benzo[a]anthracene               | 10            |                | 10       |      | ug/L         |          |                         | 06/16/14 20:07          | 1                       |
| Benzo[a]pyrene                   | 10            |                | 10       |      | ug/L         |          | 06/12/14 15:41          | 06/16/14 20:07          | 1                       |
| Benzo[b]fluoranthene             |               |                |          |      | ug/L         |          | 06/12/14 15:41          | 06/16/14 20:07          |                         |
| Benzo[g,h,i]perylene             | 10            |                | 10       |      | ug/L         |          | 06/12/14 15:41          | 06/16/14 20:07          | 1                       |
| Benzo[k]fluoranthene             | 10            |                | 10       |      | ug/L         |          | 06/12/14 15:41          | 06/16/14 20:07          | 1                       |
| Chrysene                         | 10            |                | 10       |      | ug/L         |          | 06/12/14 15:41          | 06/16/14 20:07          |                         |
| Dibenz(a,h)anthracene            | 10            |                | 10       |      | ug/L         |          | 06/12/14 15:41          | 06/16/14 20:07          | 1                       |
| Fluoranthene                     | 10            |                | 10       |      | ug/L         |          | 06/12/14 15:41          | 06/16/14 20:07          | 1                       |
| Fluorene                         | 10            |                | 10       |      | ug/L         |          | 06/12/14 15:41          | 06/16/14 20:07          | 1                       |
| Indeno[1,2,3-cd]pyrene           | 10            |                | 10       |      | ug/L         |          | 06/12/14 15:41          | 06/16/14 20:07          | 1                       |
| 1-Methylnaphthalene              | 10            |                | 10       |      | ug/L         |          | 06/12/14 15:41          | 06/16/14 20:07          | 1                       |
| 2-Methylnaphthalene              | 10            | U              | 10       |      | ug/L         |          | 06/12/14 15:41          | 06/16/14 20:07          | 1                       |
| Naphthalene                      | 10            | U              | 10       |      | ug/L         |          | 06/12/14 15:41          | 06/16/14 20:07          | 1                       |
| Phenanthrene                     | 10            | U              | 10       |      | ug/L         |          | 06/12/14 15:41          | 06/16/14 20:07          | 1                       |
| Pyrene                           | 10            | U              | 10       |      | ug/L         |          | 06/12/14 15:41          | 06/16/14 20:07          | 1                       |
| Surrogate                        | %Recovery     | Qualifier      | Limits   |      |              |          | Prepared                | Analyzed                | Dil Fac                 |
| 2-Fluorobiphenyl                 | 98            |                | 38 - 130 |      |              |          | 06/12/14 15:41          | 06/16/14 20:07          | 1                       |
| Nitrobenzene-d5 (Surr)           | 109           |                | 39 - 130 |      |              |          | 06/12/14 15:41          | 06/16/14 20:07          | 1                       |
| Terphenyl-d14 (Surr)             | 98            |                | 10 - 143 |      |              |          | 06/12/14 15:41          | 06/16/14 20:07          | 1                       |
| -<br>Method: 6010C - Metals (ICP | ) - Dissolved |                |          |      |              |          |                         |                         |                         |
| Analyte                          | Result        | Qualifier      | RL       | MDL  | Unit         | D        | Prepared                | Analyzed                | Dil Fac                 |
| Arsenic                          | 20            | U              | 20       |      | ug/L         |          | 06/07/14 11:38          | 06/17/14 19:11          | 1                       |
| Chromium                         | 10            | U              | 10       |      | ug/L         |          | 06/07/14 11:38          | 06/17/14 19:11          | 1                       |
| Nickel                           | 40            | U              | 40       |      | ug/L         |          | 06/07/14 11:38          | 06/17/14 19:11          | 1                       |
| Lead                             | 10            | U              | 10       |      | ug/L         |          | 06/07/14 11:38          | 06/17/14 19:11          | 1                       |
| Zinc                             | 20            | U              | 20       |      | ug/L         |          | 06/07/14 11:38          | 06/17/14 19:11          | 1                       |
| -                                |               |                |          |      |              |          |                         |                         |                         |
| <b>General Chemistry</b>         |               |                |          |      |              |          |                         |                         |                         |
| General Chemistry<br>Analyte     | Result        | Qualifier      | RL       | MDL  | Unit         | D        | Prepared                | Analyzed                | Dil Fac                 |
| •                                | Result 0.39   | Qualifier      | RL       | MDL  | Unit<br>mg/L | <u>D</u> | Prepared                | Analyzed 06/13/14 12:21 | Dil Fac                 |

Analyzed

06/15/14 22:06

Dil Fac

RL

5.0

RL Unit

mg/L

D

Prepared

Result Qualifier

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-102049-1

Client Sample ID: SW-02-HIGH\_06052014

Date Collected: 06/05/14 15:15 Date Received: 06/06/14 08:35 Lab Sample ID: 680-102049-14

Matrix: Water

| Analyte                               |     | Qualifier | RL  | MDL Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------------------|-----|-----------|-----|----------|---|----------|----------------|---------|
| Acetone                               | 25  | U         | 25  | ug/L     |   |          | 06/13/14 18:58 | 1       |
| Benzene                               | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 18:58 | 1       |
| Bromodichloromethane                  | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 18:58 | 1       |
| Bromoform                             | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 18:58 | 1       |
| Bromomethane                          | 5.0 | U         | 5.0 | ug/L     |   |          | 06/13/14 18:58 | 1       |
| 2-Butanone                            | 10  | U         | 10  | ug/L     |   |          | 06/13/14 18:58 | 1       |
| Carbon disulfide                      | 2.0 | U         | 2.0 | ug/L     |   |          | 06/13/14 18:58 | 1       |
| Carbon tetrachloride                  | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 18:58 | 1       |
| Chlorobenzene                         | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 18:58 | 1       |
| Chloroethane                          | 5.0 | U         | 5.0 | ug/L     |   |          | 06/13/14 18:58 | 1       |
| Chloroform                            | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 18:58 | 1       |
| Chloromethane                         | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 18:58 | 1       |
| cis-1,2-Dichloroethene                | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 18:58 | 1       |
| cis-1,3-Dichloropropene               | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 18:58 | 1       |
| Cyclohexane                           | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 18:58 | 1       |
| Dibromochloromethane                  | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 18:58 | 1       |
| 1,2-Dibromo-3-Chloropropane           | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 18:58 | 1       |
| 1,2-Dibromoethane                     | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 18:58 | 1       |
| 1,2-Dichlorobenzene                   | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 18:58 | 1       |
| 1,3-Dichlorobenzene                   | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 18:58 | 1       |
| 1,4-Dichlorobenzene                   | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 18:58 | 1       |
| Dichlorodifluoromethane               | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 18:58 | ,       |
| 1,1-Dichloroethane                    | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 18:58 |         |
| 1,2-Dichloroethane                    | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 18:58 |         |
| 1,1-Dichloroethene                    | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 18:58 | 1       |
| 1,2-Dichloropropane                   | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 18:58 |         |
| Ethylbenzene                          | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 18:58 | •       |
| 2-Hexanone                            | 10  | U         | 10  | ug/L     |   |          | 06/13/14 18:58 | 1       |
| Isopropylbenzene                      | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 18:58 | 1       |
| Methyl acetate                        | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 18:58 | 1       |
| Methylcyclohexane                     | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 18:58 | 1       |
| Methylene Chloride                    | 5.0 | U         | 5.0 | ug/L     |   |          | 06/13/14 18:58 | 1       |
| 4-Methyl-2-pentanone                  | 10  | U         | 10  | ug/L     |   |          | 06/13/14 18:58 | 1       |
| Methyl tert-butyl ether               | 10  | U         | 10  | ug/L     |   |          | 06/13/14 18:58 | 1       |
| Styrene                               | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 18:58 | 1       |
| 1,1,2,2-Tetrachloroethane             | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 18:58 | 1       |
| Tetrachloroethene                     | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 18:58 | 1       |
| Toluene                               | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 18:58 | 1       |
| trans-1,2-Dichloroethene              | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 18:58 | 1       |
| trans-1,3-Dichloropropene             | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 18:58 | 1       |
| 1,2,4-Trichlorobenzene                | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 18:58 | 1       |
| 1,1,1-Trichloroethane                 | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 18:58 |         |
| 1,1,2-Trichloroethane                 | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 18:58 | 1       |
| Trichloroethene                       | 1.0 |           | 1.0 | ug/L     |   |          | 06/13/14 18:58 |         |
| Trichlorofluoromethane                | 1.0 | U         | 1.0 | ug/L     |   |          | 06/13/14 18:58 |         |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 1.0 |           | 1.0 | ug/L     |   |          | 06/13/14 18:58 |         |
| Vinyl chloride                        | 1.0 |           | 1.0 | ug/L     |   |          | 06/13/14 18:58 |         |
| Xylenes, Total                        | 2.0 |           | 2.0 | ug/L     |   |          | 06/13/14 18:58 | 1       |

Limits

70 - 130

70 - 130

%Recovery Qualifier

98

97

20 U

Result Qualifier

Result Qualifier

0.12

0.37

45

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-102049-1

Client Sample ID: SW-02-HIGH\_06052014

Date Collected: 06/05/14 15:15 Date Received: 06/06/14 08:35

Surrogate

Zinc

Analyte

Analyte

Alkalinity

**Ammonia** 

Nitrate as N

**General Chemistry** 

4-Bromofluorobenzene

Dibromofluoromethane

Lab Sample ID: 680-102049-14

Prepared

. Matrix: Water

Analyzed

06/13/14 18:58

06/13/14 18:58

Dil Fac

1

| Toluene-d8 (Surr)                | 100                |             | 70 - 130   |     |      |   |                | 06/13/14 18:58 |        |
|----------------------------------|--------------------|-------------|------------|-----|------|---|----------------|----------------|--------|
| Method: 8270D - Semivolati       | ile Organic Compou | ınds (GC/MS | <b>S</b> ) |     |      |   |                |                |        |
| Analyte                          | Result             | Qualifier   | RL         | MDL | Unit | D | Prepared       | Analyzed       | Dil Fa |
| Acenaphthene                     | 9.5                | U           | 9.5        |     | ug/L |   | 06/12/14 15:41 | 06/16/14 20:30 |        |
| Acenaphthylene                   | 9.5                | U *         | 9.5        |     | ug/L |   | 06/12/14 15:41 | 06/16/14 20:30 |        |
| Anthracene                       | 9.5                | U           | 9.5        |     | ug/L |   | 06/12/14 15:41 | 06/16/14 20:30 |        |
| Benzo[a]anthracene               | 9.5                | U           | 9.5        |     | ug/L |   | 06/12/14 15:41 | 06/16/14 20:30 |        |
| Benzo[a]pyrene                   | 9.5                | U           | 9.5        |     | ug/L |   | 06/12/14 15:41 | 06/16/14 20:30 |        |
| Benzo[b]fluoranthene             | 9.5                | U           | 9.5        |     | ug/L |   | 06/12/14 15:41 | 06/16/14 20:30 |        |
| Benzo[g,h,i]perylene             | 9.5                | U           | 9.5        |     | ug/L |   | 06/12/14 15:41 | 06/16/14 20:30 |        |
| Benzo[k]fluoranthene             | 9.5                | U           | 9.5        |     | ug/L |   | 06/12/14 15:41 | 06/16/14 20:30 |        |
| Chrysene                         | 9.5                | U           | 9.5        |     | ug/L |   | 06/12/14 15:41 | 06/16/14 20:30 |        |
| Dibenz(a,h)anthracene            | 9.5                | U           | 9.5        |     | ug/L |   | 06/12/14 15:41 | 06/16/14 20:30 |        |
| Fluoranthene                     | 9.5                | U           | 9.5        |     | ug/L |   | 06/12/14 15:41 | 06/16/14 20:30 |        |
| Fluorene                         | 9.5                | U           | 9.5        |     | ug/L |   | 06/12/14 15:41 | 06/16/14 20:30 |        |
| Indeno[1,2,3-cd]pyrene           | 9.5                | U           | 9.5        |     | ug/L |   | 06/12/14 15:41 | 06/16/14 20:30 |        |
| 1-Methylnaphthalene              | 9.5                | U           | 9.5        |     | ug/L |   | 06/12/14 15:41 | 06/16/14 20:30 |        |
| 2-Methylnaphthalene              | 9.5                | U           | 9.5        |     | ug/L |   | 06/12/14 15:41 | 06/16/14 20:30 |        |
| Naphthalene                      | 9.5                | U           | 9.5        |     | ug/L |   | 06/12/14 15:41 | 06/16/14 20:30 |        |
| Phenanthrene                     | 9.5                | U           | 9.5        |     | ug/L |   | 06/12/14 15:41 | 06/16/14 20:30 |        |
| Pyrene                           | 9.5                | U           | 9.5        |     | ug/L |   | 06/12/14 15:41 | 06/16/14 20:30 |        |
| Surrogate                        | %Recovery          | Qualifier   | Limits     |     |      |   | Prepared       | Analyzed       | Dil Fa |
| 2-Fluorobiphenyl                 | 109                |             | 38 - 130   |     |      |   | 06/12/14 15:41 | 06/16/14 20:30 |        |
| Nitrobenzene-d5 (Surr)           | 113                |             | 39 - 130   |     |      |   | 06/12/14 15:41 | 06/16/14 20:30 |        |
| Terphenyl-d14 (Surr)             | 101                |             | 10 - 143   |     |      |   | 06/12/14 15:41 | 06/16/14 20:30 |        |
| -<br>Method: 6010C - Metals (ICI | P) - Dissolved     |             |            |     |      |   |                |                |        |
| Analyte                          | Result             | Qualifier   | RL         | MDL | Unit | D | Prepared       | Analyzed       | Dil Fa |
| Arsenic                          | 20                 | U           | 20         |     | ug/L |   | 06/07/14 11:38 | 06/17/14 19:16 |        |
| Chromium                         | 10                 | U           | 10         |     | ug/L |   | 06/07/14 11:38 | 06/17/14 19:16 |        |
| Nickel                           | 40                 | U           | 40         |     | ug/L |   | 06/07/14 11:38 | 06/17/14 19:16 |        |
| Lead                             | 10                 | U           | 10         |     | ug/L |   | 06/07/14 11:38 | 06/17/14 19:16 |        |
|                                  |                    |             |            |     |      |   |                |                |        |

20

RL

0.050

0.050

RL

5.0

ug/L

mg/L

mg/L

mg/L

MDL Unit

RL Unit

06/07/14 11:38

Prepared

Prepared

D

D

06/17/14 19:16

Analyzed

06/13/14 12:21

06/06/14 16:54

Analyzed

06/16/14 00:06

Dil Fac

Dil Fac

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-102049-1

Lab Sample ID: 680-102049-15

Client Sample ID: SW-01-HIGH\_06052014

Date Collected: 06/05/14 15:30
Date Received: 06/06/14 08:35

Matrix: Water

| Mothod: 8260B - Volatile Organic Compounds | CCIME |
|--------------------------------------------|-------|

| Analyte                               | Result Qualifier | RL  | MDL Unit     | D Prepared | Analyzed       | Dil Fa |
|---------------------------------------|------------------|-----|--------------|------------|----------------|--------|
| Acetone                               | 25 U             | 25  | ug/L         |            | 06/13/14 19:23 |        |
| Benzene                               | 1.0 U            | 1.0 | ug/L         |            | 06/13/14 19:23 |        |
| Bromodichloromethane                  | 1.0 U            | 1.0 | ug/L         |            | 06/13/14 19:23 |        |
| Bromoform                             | 1.0 U            | 1.0 | ug/L         |            | 06/13/14 19:23 |        |
| Bromomethane                          | 5.0 U            | 5.0 | ug/L         |            | 06/13/14 19:23 |        |
| 2-Butanone                            | 10 U             | 10  | ug/L         |            | 06/13/14 19:23 |        |
| Carbon disulfide                      | 2.0 U            | 2.0 | ug/L         |            | 06/13/14 19:23 |        |
| Carbon tetrachloride                  | 1.0 U            | 1.0 | ug/L         |            | 06/13/14 19:23 |        |
| Chlorobenzene                         | 1.0 U            | 1.0 | ug/L         |            | 06/13/14 19:23 |        |
| Chloroethane                          | 5.0 U            | 5.0 | ug/L         |            | 06/13/14 19:23 |        |
| Chloroform                            | 1.0 U            | 1.0 | ug/L         |            | 06/13/14 19:23 |        |
| Chloromethane                         | 1.0 U            | 1.0 | ug/L         |            | 06/13/14 19:23 |        |
| cis-1,2-Dichloroethene                | 1.0 U            | 1.0 | ug/L         |            | 06/13/14 19:23 |        |
| cis-1,3-Dichloropropene               | 1.0 U            | 1.0 | ug/L         |            | 06/13/14 19:23 |        |
| Cyclohexane                           | 1.0 U            | 1.0 | ug/L         |            | 06/13/14 19:23 |        |
| Dibromochloromethane                  | 1.0 U            | 1.0 | ug/L         |            | 06/13/14 19:23 |        |
| 1,2-Dibromo-3-Chloropropane           | 1.0 U            | 1.0 | ug/L         |            | 06/13/14 19:23 |        |
| 1,2-Dibromoethane                     | 1.0 U            | 1.0 | ug/L         |            | 06/13/14 19:23 |        |
| 1,2-Dichlorobenzene                   | 1.0 U            | 1.0 | ug/L         |            | 06/13/14 19:23 |        |
| 1,3-Dichlorobenzene                   | 1.0 U            | 1.0 | ug/L         |            | 06/13/14 19:23 |        |
| 1.4-Dichlorobenzene                   | 1.0 U            | 1.0 | ug/L         |            | 06/13/14 19:23 |        |
| Dichlorodifluoromethane               | 1.0 U            | 1.0 | ug/L         |            | 06/13/14 19:23 |        |
| 1,1-Dichloroethane                    | 1.0 U            | 1.0 | ug/L         |            | 06/13/14 19:23 |        |
| 1,2-Dichloroethane                    | 1.0 U            | 1.0 | ug/L         |            | 06/13/14 19:23 |        |
| 1,1-Dichloroethene                    | 1.0 U            | 1.0 | ug/L         |            | 06/13/14 19:23 |        |
| 1,2-Dichloropropane                   | 1.0 U            | 1.0 | ug/L         |            | 06/13/14 19:23 |        |
| Ethylbenzene                          | 1.0 U            | 1.0 | ug/L         |            | 06/13/14 19:23 |        |
| 2-Hexanone                            | 1.0 U            | 1.0 | <del>.</del> |            | 06/13/14 19:23 |        |
|                                       | 1.0 U            | 1.0 | ug/L         |            | 06/13/14 19:23 |        |
| Isopropylbenzene                      | 1.0 U            |     | ug/L         |            |                |        |
| Methyl acetate                        |                  | 1.0 | ug/L         |            | 06/13/14 19:23 |        |
| Methylcyclohexane                     | 1.0 U            | 1.0 | ug/L         |            | 06/13/14 19:23 |        |
| Methylene Chloride                    | 5.0 U            | 5.0 | ug/L         |            | 06/13/14 19:23 |        |
| 4-Methyl-2-pentanone                  | 10 U             | 10  | ug/L         |            | 06/13/14 19:23 |        |
| Methyl tert-butyl ether               | 10 U             | 10  | ug/L         |            | 06/13/14 19:23 |        |
| Styrene                               | 1.0 U            | 1.0 | ug/L         |            | 06/13/14 19:23 |        |
| 1,1,2,2-Tetrachloroethane             | 1.0 U            | 1.0 | ug/L         |            | 06/13/14 19:23 |        |
| Tetrachloroethene                     | 1.0 U            | 1.0 | ug/L         |            | 06/13/14 19:23 |        |
| Toluene                               | 1.0 U            | 1.0 | ug/L         |            | 06/13/14 19:23 |        |
| trans-1,2-Dichloroethene              | 1.0 U            | 1.0 | ug/L         |            | 06/13/14 19:23 |        |
| trans-1,3-Dichloropropene             | 1.0 U            | 1.0 | ug/L         |            | 06/13/14 19:23 |        |
| 1,2,4-Trichlorobenzene                | 1.0 U            | 1.0 | ug/L         |            | 06/13/14 19:23 |        |
| 1,1,1-Trichloroethane                 | 1.0 U            | 1.0 | ug/L         |            | 06/13/14 19:23 |        |
| 1,1,2-Trichloroethane                 | 1.0 U            | 1.0 | ug/L         |            | 06/13/14 19:23 |        |
| Trichloroethene                       | 1.0 U            | 1.0 | ug/L         |            | 06/13/14 19:23 |        |
| Trichlorofluoromethane                | 1.0 U            | 1.0 | ug/L         |            | 06/13/14 19:23 |        |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 1.0 U            | 1.0 | ug/L         |            | 06/13/14 19:23 |        |
| Vinyl chloride                        | 1.0 U            | 1.0 | ug/L         |            | 06/13/14 19:23 |        |
| Xylenes, Total                        | 2.0 U            | 2.0 | ug/L         |            | 06/13/14 19:23 |        |

TestAmerica Savannah

4

6

8

Limits

70 - 130

70 - 130

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-102049-1

Client Sample ID: SW-01-HIGH\_06052014

%Recovery

98

98

Result Qualifier

Result Qualifier

0.44

0.34

43

Qualifier

Date Collected: 06/05/14 15:30 Date Received: 06/06/14 08:35

Surrogate

Analyte

Analyte

Alkalinity

**Ammonia** 

Nitrate as N

4-Bromofluorobenzene

Dibromofluoromethane

Lab Sample ID: 680-102049-15

Prepared

Matrix: Water

Analyzed

06/13/14 19:23

06/13/14 19:23

Dil Fac

1

| 2.0.0                       | • • • • • • • • • • • • • • • • • • • • |            |          |     |      |   |                | 00, 10, 11, 10,20 |        |
|-----------------------------|-----------------------------------------|------------|----------|-----|------|---|----------------|-------------------|--------|
| Toluene-d8 (Surr)           | 101                                     |            | 70 - 130 |     |      |   |                | 06/13/14 19:23    |        |
| Method: 8270D - Semivolati  | le Organic Compou                       | inds (GC/M | S)       |     |      |   |                |                   |        |
| Analyte                     |                                         | Qualifier  | RL       | MDL | Unit | D | Prepared       | Analyzed          | Dil Fa |
| Acenaphthene                | 10                                      | U          | 10       |     | ug/L |   | 06/12/14 15:41 | 06/16/14 20:55    |        |
| Acenaphthylene              | 10                                      | U *        | 10       |     | ug/L |   | 06/12/14 15:41 | 06/16/14 20:55    |        |
| Anthracene                  | 10                                      | U          | 10       |     | ug/L |   | 06/12/14 15:41 | 06/16/14 20:55    |        |
| Benzo[a]anthracene          | 10                                      | U          | 10       |     | ug/L |   | 06/12/14 15:41 | 06/16/14 20:55    |        |
| Benzo[a]pyrene              | 10                                      | U          | 10       |     | ug/L |   | 06/12/14 15:41 | 06/16/14 20:55    |        |
| Benzo[b]fluoranthene        | 10                                      | U          | 10       |     | ug/L |   | 06/12/14 15:41 | 06/16/14 20:55    |        |
| Benzo[g,h,i]perylene        | 10                                      | U          | 10       |     | ug/L |   | 06/12/14 15:41 | 06/16/14 20:55    |        |
| Benzo[k]fluoranthene        | 10                                      | U          | 10       |     | ug/L |   | 06/12/14 15:41 | 06/16/14 20:55    |        |
| Chrysene                    | 10                                      | U          | 10       |     | ug/L |   | 06/12/14 15:41 | 06/16/14 20:55    |        |
| Dibenz(a,h)anthracene       | 10                                      | U          | 10       |     | ug/L |   | 06/12/14 15:41 | 06/16/14 20:55    |        |
| Fluoranthene                | 10                                      | U          | 10       |     | ug/L |   | 06/12/14 15:41 | 06/16/14 20:55    |        |
| Fluorene                    | 10                                      | U          | 10       |     | ug/L |   | 06/12/14 15:41 | 06/16/14 20:55    |        |
| Indeno[1,2,3-cd]pyrene      | 10                                      | U          | 10       |     | ug/L |   | 06/12/14 15:41 | 06/16/14 20:55    |        |
| 1-Methylnaphthalene         | 10                                      | U          | 10       |     | ug/L |   | 06/12/14 15:41 | 06/16/14 20:55    |        |
| 2-Methylnaphthalene         | 10                                      | U          | 10       |     | ug/L |   | 06/12/14 15:41 | 06/16/14 20:55    |        |
| Naphthalene                 | 10                                      | U          | 10       |     | ug/L |   | 06/12/14 15:41 | 06/16/14 20:55    |        |
| Phenanthrene                | 10                                      | U          | 10       |     | ug/L |   | 06/12/14 15:41 | 06/16/14 20:55    |        |
| Pyrene                      | 10                                      | U          | 10       |     | ug/L |   | 06/12/14 15:41 | 06/16/14 20:55    |        |
| Surrogate                   | %Recovery                               | Qualifier  | Limits   |     |      |   | Prepared       | Analyzed          | Dil Fa |
| 2-Fluorobiphenyl            | 87                                      |            | 38 - 130 |     |      |   | 06/12/14 15:41 | 06/16/14 20:55    | -      |
| Nitrobenzene-d5 (Surr)      | 97                                      |            | 39 - 130 |     |      |   | 06/12/14 15:41 | 06/16/14 20:55    |        |
| Terphenyl-d14 (Surr)        | 98                                      |            | 10 - 143 |     |      |   | 06/12/14 15:41 | 06/16/14 20:55    |        |
| Method: 6010C - Metals (ICF | P) - Dissolved                          |            |          |     |      |   |                |                   |        |
| Analyte                     |                                         | Qualifier  | RL       | MDL | Unit | D | Prepared       | Analyzed          | Dil Fa |
| Arsenic                     | 20                                      | U          | 20       |     | ug/L |   | 06/07/14 11:38 | 06/17/14 19:21    |        |
| Chromium                    | 10                                      | U          | 10       |     | ug/L |   | 06/07/14 11:38 | 06/17/14 19:21    |        |
| Nickel                      | 40                                      | U          | 40       |     | ug/L |   | 06/07/14 11:38 | 06/17/14 19:21    |        |
| Lead                        | 10                                      | U          | 10       |     | ug/L |   | 06/07/14 11:38 | 06/17/14 19:21    |        |
| Zinc                        | 20                                      | U          | 20       |     | ug/L |   | 06/07/14 11:38 | 06/17/14 19:21    |        |
| General Chemistry           |                                         |            |          |     |      |   |                |                   |        |
|                             |                                         |            |          |     |      |   |                |                   |        |

Analyzed

06/13/14 12:21

06/06/14 17:11

Analyzed

06/16/14 00:13

RL

0.050

0.050

RL

5.0

MDL Unit

RL Unit

mg/L

mg/L

mg/L

D

D

Prepared

Prepared

Dil Fac

Dil Fac

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-102049-1

Client Sample ID: TRIPBLANK\_06052014

Date Collected: 06/05/14 00:00 Date Received: 06/06/14 08:35 Lab Sample ID: 680-102049-16

Matrix: Water

| Analyte                               |     | Qualifier | RL  | MDL Unit | D Prepared | Analyzed       | Dil Fac |
|---------------------------------------|-----|-----------|-----|----------|------------|----------------|---------|
| Acetone                               | 25  | U         | 25  | ug/L     |            | 06/13/14 12:56 | •       |
| Benzene                               | 1.0 | U         | 1.0 | ug/L     |            | 06/13/14 12:56 | •       |
| Bromodichloromethane                  | 1.0 | U         | 1.0 | ug/L     |            | 06/13/14 12:56 | •       |
| Bromoform                             | 1.0 | U         | 1.0 | ug/L     |            | 06/13/14 12:56 |         |
| Bromomethane                          | 5.0 | U         | 5.0 | ug/L     |            | 06/13/14 12:56 | •       |
| 2-Butanone                            | 10  | U         | 10  | ug/L     |            | 06/13/14 12:56 | •       |
| Carbon disulfide                      | 2.0 | U         | 2.0 | ug/L     |            | 06/13/14 12:56 |         |
| Carbon tetrachloride                  | 1.0 | U         | 1.0 | ug/L     |            | 06/13/14 12:56 | •       |
| Chlorobenzene                         | 1.0 | U         | 1.0 | ug/L     |            | 06/13/14 12:56 | ,       |
| Chloroethane                          | 5.0 | U         | 5.0 | ug/L     |            | 06/13/14 12:56 |         |
| Chloroform                            | 1.0 | U         | 1.0 | ug/L     |            | 06/13/14 12:56 |         |
| Chloromethane                         | 1.0 | U         | 1.0 | ug/L     |            | 06/13/14 12:56 |         |
| cis-1,2-Dichloroethene                | 1.0 | U         | 1.0 | ug/L     |            | 06/13/14 12:56 |         |
| cis-1,3-Dichloropropene               | 1.0 | U         | 1.0 | ug/L     |            | 06/13/14 12:56 |         |
| Cyclohexane                           | 1.0 | U         | 1.0 | ug/L     |            | 06/13/14 12:56 |         |
| Dibromochloromethane                  | 1.0 | U         | 1.0 | ug/L     |            | 06/13/14 12:56 |         |
| 1,2-Dibromo-3-Chloropropane           | 1.0 | U         | 1.0 | ug/L     |            | 06/13/14 12:56 | •       |
| 1,2-Dibromoethane                     | 1.0 | U         | 1.0 | ug/L     |            | 06/13/14 12:56 | •       |
| 1,2-Dichlorobenzene                   | 1.0 | U         | 1.0 | ug/L     |            | 06/13/14 12:56 | ,       |
| 1,3-Dichlorobenzene                   | 1.0 | U         | 1.0 | ug/L     |            | 06/13/14 12:56 |         |
| 1,4-Dichlorobenzene                   | 1.0 | U         | 1.0 | ug/L     |            | 06/13/14 12:56 |         |
| Dichlorodifluoromethane               | 1.0 | U         | 1.0 | ug/L     |            | 06/13/14 12:56 | •       |
| 1,1-Dichloroethane                    | 1.0 | U         | 1.0 | ug/L     |            | 06/13/14 12:56 |         |
| 1,2-Dichloroethane                    | 1.0 | U         | 1.0 | ug/L     |            | 06/13/14 12:56 |         |
| 1,1-Dichloroethene                    | 1.0 | U         | 1.0 | ug/L     |            | 06/13/14 12:56 |         |
| 1,2-Dichloropropane                   | 1.0 | U         | 1.0 | ug/L     |            | 06/13/14 12:56 |         |
| Ethylbenzene                          | 1.0 | U         | 1.0 | ug/L     |            | 06/13/14 12:56 |         |
| 2-Hexanone                            | 10  | U         | 10  | ug/L     |            | 06/13/14 12:56 |         |
| Isopropylbenzene                      | 1.0 | U         | 1.0 | ug/L     |            | 06/13/14 12:56 |         |
| Methyl acetate                        | 1.0 | U         | 1.0 | ug/L     |            | 06/13/14 12:56 |         |
| Methylcyclohexane                     | 1.0 | U         | 1.0 | ug/L     |            | 06/13/14 12:56 |         |
| Methylene Chloride                    | 5.0 | U         | 5.0 | ug/L     |            | 06/13/14 12:56 |         |
| 4-Methyl-2-pentanone                  | 10  | U         | 10  | ug/L     |            | 06/13/14 12:56 |         |
| Methyl tert-butyl ether               | 10  | U         | 10  | ug/L     |            | 06/13/14 12:56 |         |
| Styrene                               | 1.0 | U         | 1.0 | ug/L     |            | 06/13/14 12:56 |         |
| 1,1,2,2-Tetrachloroethane             | 1.0 | U         | 1.0 | ug/L     |            | 06/13/14 12:56 |         |
| Tetrachloroethene                     | 1.0 | U         | 1.0 | ug/L     |            | 06/13/14 12:56 |         |
| Toluene                               | 1.0 | U         | 1.0 | ug/L     |            | 06/13/14 12:56 |         |
| trans-1,2-Dichloroethene              | 1.0 | U         | 1.0 | ug/L     |            | 06/13/14 12:56 |         |
| trans-1,3-Dichloropropene             | 1.0 | U         | 1.0 | ug/L     |            | 06/13/14 12:56 |         |
| 1,2,4-Trichlorobenzene                | 1.0 |           | 1.0 | ug/L     |            | 06/13/14 12:56 |         |
| 1,1,1-Trichloroethane                 | 1.0 |           | 1.0 | ug/L     |            | 06/13/14 12:56 |         |
| 1,1,2-Trichloroethane                 | 1.0 |           | 1.0 | ug/L     |            | 06/13/14 12:56 |         |
| Trichloroethene                       | 1.0 |           | 1.0 | ug/L     |            | 06/13/14 12:56 |         |
| Trichlorofluoromethane                | 1.0 |           | 1.0 | ug/L     |            | 06/13/14 12:56 |         |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 1.0 |           | 1.0 | ug/L     |            | 06/13/14 12:56 |         |
| Vinyl chloride                        | 1.0 |           | 1.0 | ug/L     |            | 06/13/14 12:56 | ,       |
| Xylenes, Total                        | 2.0 |           | 2.0 | ug/L     |            | 06/13/14 12:56 | ,       |

TestAmerica Savannah

4

6

9

11

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-102049-1

Client Sample ID: TRIPBLANK\_06052014

Date Collected: 06/05/14 00:00 Date Received: 06/06/14 08:35 Lab Sample ID: 680-102049-16

Matrix: Water

| Surrogate            | %Recovery | Qualifier | Limits   |   | Prepared | Analyzed       | Dil Fac |
|----------------------|-----------|-----------|----------|---|----------|----------------|---------|
| 4-Bromofluorobenzene | 99        |           | 70 - 130 | _ |          | 06/13/14 12:56 | 1       |
| Dibromofluoromethane | 99        |           | 70 - 130 |   |          | 06/13/14 12:56 | 1       |
| Toluene-d8 (Surr)    | 98        |           | 70 - 130 |   |          | 06/13/14 12:56 | 1       |

5

J

8

9

11

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

#### Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-334022/7

**Matrix: Water** 

Client Sample ID: Method Blank Prep Type: Total/NA

|                                           | MB         | MB        |     |          |   |          |                                  |        |
|-------------------------------------------|------------|-----------|-----|----------|---|----------|----------------------------------|--------|
| Analyte                                   | Result     | Qualifier | RL  | MDL Unit | D | Prepared | Analyzed                         | Dil Fa |
| Acetone                                   | 25         | U –       | 25  | ug/L     |   |          | 06/13/14 11:04                   |        |
| Benzene                                   | 1.0        | U         | 1.0 | ug/L     |   |          | 06/13/14 11:04                   |        |
| Bromodichloromethane                      | 1.0        | U         | 1.0 | ug/L     |   |          | 06/13/14 11:04                   |        |
| Bromoform                                 | 1.0        | U         | 1.0 | ug/L     |   |          | 06/13/14 11:04                   |        |
| Bromomethane                              | 5.0        | U         | 5.0 | ug/L     |   |          | 06/13/14 11:04                   |        |
| 2-Butanone                                | 10         | U         | 10  | ug/L     |   |          | 06/13/14 11:04                   |        |
| Carbon disulfide                          | 2.0        | U         | 2.0 | ug/L     |   |          | 06/13/14 11:04                   |        |
| Carbon tetrachloride                      | 1.0        | U         | 1.0 | ug/L     |   |          | 06/13/14 11:04                   |        |
| Chlorobenzene                             | 1.0        | U         | 1.0 | ug/L     |   |          | 06/13/14 11:04                   |        |
| Chloroethane                              | 5.0        | U         | 5.0 | ug/L     |   |          | 06/13/14 11:04                   |        |
| Chloroform                                | 1.0        | U         | 1.0 | ug/L     |   |          | 06/13/14 11:04                   |        |
| Chloromethane                             | 1.0        | U         | 1.0 | ug/L     |   |          | 06/13/14 11:04                   |        |
| cis-1,2-Dichloroethene                    | 1.0        | U         | 1.0 | ug/L     |   |          | 06/13/14 11:04                   |        |
| cis-1,3-Dichloropropene                   | 1.0        | U         | 1.0 | ug/L     |   |          | 06/13/14 11:04                   |        |
| Cyclohexane                               | 1.0        | U         | 1.0 | ug/L     |   |          | 06/13/14 11:04                   |        |
| Dibromochloromethane                      | 1.0        |           | 1.0 | ug/L     |   |          | 06/13/14 11:04                   |        |
| 1,2-Dibromo-3-Chloropropane               | 1.0        | U         | 1.0 | ug/L     |   |          | 06/13/14 11:04                   |        |
| 1,2-Dibromoethane                         | 1.0        | U         | 1.0 | ug/L     |   |          | 06/13/14 11:04                   |        |
| 1,2-Dichlorobenzene                       | 1.0        | U         | 1.0 | ug/L     |   |          | 06/13/14 11:04                   |        |
| 1,3-Dichlorobenzene                       | 1.0        |           | 1.0 | ug/L     |   |          | 06/13/14 11:04                   |        |
| 1,4-Dichlorobenzene                       | 1.0        | U         | 1.0 | ug/L     |   |          | 06/13/14 11:04                   |        |
| Dichlorodifluoromethane                   | 1.0        |           | 1.0 | ug/L     |   |          | 06/13/14 11:04                   |        |
| 1,1-Dichloroethane                        | 1.0        |           | 1.0 | ug/L     |   |          | 06/13/14 11:04                   |        |
| 1,2-Dichloroethane                        | 1.0        |           | 1.0 | ug/L     |   |          | 06/13/14 11:04                   |        |
| 1,1-Dichloroethene                        | 1.0        |           | 1.0 | ug/L     |   |          | 06/13/14 11:04                   |        |
| 1,2-Dichloropropane                       | 1.0        |           | 1.0 | ug/L     |   |          | 06/13/14 11:04                   |        |
| Ethylbenzene                              | 1.0        |           | 1.0 | ug/L     |   |          | 06/13/14 11:04                   |        |
| 2-Hexanone                                | 10         |           | 10  | ug/L     |   |          | 06/13/14 11:04                   |        |
| Isopropylbenzene                          | 1.0        |           | 1.0 | ug/L     |   |          | 06/13/14 11:04                   |        |
| Methyl acetate                            | 1.0        |           | 1.0 | ug/L     |   |          | 06/13/14 11:04                   |        |
| Methylcyclohexane                         | 1.0        |           | 1.0 | ug/L     |   |          | 06/13/14 11:04                   |        |
| Methylene Chloride                        | 5.0        |           | 5.0 | ug/L     |   |          | 06/13/14 11:04                   |        |
| 4-Methyl-2-pentanone                      | 10         |           | 10  | ug/L     |   |          | 06/13/14 11:04                   |        |
| Methyl tert-butyl ether                   | 10         |           | 10  | ug/L     |   |          | 06/13/14 11:04                   |        |
| Styrene                                   | 1.0        |           | 1.0 | ug/L     |   |          | 06/13/14 11:04                   |        |
| 1,1,2,2-Tetrachloroethane                 | 1.0        |           | 1.0 | ug/L     |   |          | 06/13/14 11:04                   |        |
| Tetrachloroethene                         | 1.0        |           | 1.0 | ug/L     |   |          | 06/13/14 11:04                   |        |
| Toluene                                   | 1.0        |           | 1.0 | ug/L     |   |          | 06/13/14 11:04                   |        |
| trans-1,2-Dichloroethene                  | 1.0        |           | 1.0 | ug/L     |   |          | 06/13/14 11:04                   |        |
| trans-1,3-Dichloropropene                 | 1.0        |           | 1.0 | ug/L     |   |          | 06/13/14 11:04                   |        |
| 1,2,4-Trichlorobenzene                    | 1.0        |           | 1.0 |          |   |          | 06/13/14 11:04                   |        |
| , ,                                       | 1.0        |           | 1.0 | ug/L     |   |          | 06/13/14 11:04                   |        |
| 1,1,1-Trichloroethane                     |            |           |     | ug/L     |   |          |                                  |        |
| 1,1,2-Trichloroethane                     | 1.0        |           | 1.0 | ug/L     |   |          | 06/13/14 11:04                   |        |
| Trichloroethene<br>Trichlorofluoromethane | 1.0        |           | 1.0 | ug/L     |   |          | 06/13/14 11:04                   |        |
|                                           | 1.0        |           | 1.0 | ug/L     |   |          | 06/13/14 11:04                   |        |
| 1,1,2-Trichloro-1,2,2-trifluoroethane     | 1.0        |           | 1.0 | ug/L     |   |          | 06/13/14 11:04                   |        |
| Vinyl chloride<br>Xylenes, Total          | 1.0<br>2.0 |           | 1.0 | ug/L     |   |          | 06/13/14 11:04<br>06/13/14 11:04 |        |

TestAmerica Savannah

Page 36 of 61

6

3

4

7

8

10

1 1

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: CSX Hutchinson Island VRP

#### Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-334022/7

Lab Sample ID: LCS 680-334022/4

**Matrix: Water** 

Analysis Batch: 334022

Client Sample ID: Method Blank

**Prep Type: Total/NA** 

|                      | MB        | MB        |          |          |                |         |
|----------------------|-----------|-----------|----------|----------|----------------|---------|
| Surrogate            | %Recovery | Qualifier | Limits   | Prepared | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene | 98        |           | 70 - 130 |          | 06/13/14 11:04 | 1       |
| Dibromofluoromethane | 100       |           | 70 - 130 |          | 06/13/14 11:04 | 1       |
| Toluene-d8 (Surr)    | 102       |           | 70 - 130 |          | 06/13/14 11:04 | 1       |

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA

| Analysis | Batcn: | 334022 |
|----------|--------|--------|
|          |        |        |

**Matrix: Water** 

|                             | Spike | LCS    | LCS       |      |   |      | %Rec.               |
|-----------------------------|-------|--------|-----------|------|---|------|---------------------|
| Analyte                     | Added | Result | Qualifier | Unit | D | %Rec | Limits              |
| Acetone                     | 100   | 92.9   |           | ug/L |   | 93   | 39 - 162            |
| Benzene                     | 50.0  | 46.6   |           | ug/L |   | 93   | 74 - 123            |
| Bromodichloromethane        | 50.0  | 52.1   |           | ug/L |   | 104  | 72 _ 129            |
| Bromoform                   | 50.0  | 53.2   |           | ug/L |   | 106  | 60 - 134            |
| Bromomethane                | 50.0  | 62.2   |           | ug/L |   | 124  | 10 _ 171            |
| 2-Butanone                  | 100   | 82.7   |           | ug/L |   | 83   | 55 <sub>-</sub> 142 |
| Carbon disulfide            | 50.0  | 47.2   |           | ug/L |   | 94   | 63 _ 142            |
| Carbon tetrachloride        | 50.0  | 55.2   |           | ug/L |   | 110  | 70 <sub>-</sub> 131 |
| Chlorobenzene               | 50.0  | 46.6   |           | ug/L |   | 93   | 79 - 120            |
| Chloroethane                | 50.0  | 60.0   |           | ug/L |   | 120  | 47 - 148            |
| Chloroform                  | 50.0  | 51.8   |           | ug/L |   | 104  | 76 <sub>-</sub> 128 |
| Chloromethane               | 50.0  | 47.0   |           | ug/L |   | 94   | 47 - 151            |
| cis-1,2-Dichloroethene      | 50.0  | 47.5   |           | ug/L |   | 95   | 78 <sub>-</sub> 127 |
| cis-1,3-Dichloropropene     | 50.0  | 52.7   |           | ug/L |   | 105  | 73 - 128            |
| Cyclohexane                 | 50.0  | 46.9   |           | ug/L |   | 94   | 68 <sub>-</sub> 137 |
| Dibromochloromethane        | 50.0  | 59.1   |           | ug/L |   | 118  | 63 - 134            |
| 1,2-Dibromo-3-Chloropropane | 50.0  | 55.7   |           | ug/L |   | 111  | 57 <sub>-</sub> 126 |
| 1,2-Dibromoethane           | 50.0  | 47.3   |           | ug/L |   | 95   | 75 <sub>-</sub> 127 |
| 1,2-Dichlorobenzene         | 50.0  | 43.4   |           | ug/L |   | 87   | 77 - 124            |
| 1,3-Dichlorobenzene         | 50.0  | 44.8   |           | ug/L |   | 90   | 79 <sub>-</sub> 123 |
| 1,4-Dichlorobenzene         | 50.0  | 44.1   |           | ug/L |   | 88   | 76 <sub>-</sub> 124 |
| Dichlorodifluoromethane     | 50.0  | 50.6   |           | ug/L |   | 101  | 41 - 165            |
| 1,1-Dichloroethane          | 50.0  | 49.4   |           | ug/L |   | 99   | 69 - 132            |
| 1,2-Dichloroethane          | 50.0  | 43.8   |           | ug/L |   | 88   | 75 - 120            |
| 1,1-Dichloroethene          | 50.0  | 50.7   |           | ug/L |   | 101  | 73 <sub>-</sub> 134 |
| 1,2-Dichloropropane         | 50.0  | 46.3   |           | ug/L |   | 93   | 71 <sub>-</sub> 126 |
| Ethylbenzene                | 50.0  | 47.7   |           | ug/L |   | 95   | 78 <sub>-</sub> 125 |
| 2-Hexanone                  | 100   | 82.9   |           | ug/L |   | 83   | 52 <sub>-</sub> 149 |
| Isopropylbenzene            | 50.0  | 48.2   |           | ug/L |   | 96   | 72 - 129            |
| Methyl acetate              | 50.0  | 48.9   |           | ug/L |   | 98   | 26 - 182            |
| Methylcyclohexane           | 50.0  | 49.3   |           | ug/L |   | 99   | 72 - 133            |
| Methylene Chloride          | 50.0  | 47.5   |           | ug/L |   | 95   | 79 <sub>-</sub> 124 |
| 4-Methyl-2-pentanone        | 100   | 82.7   |           | ug/L |   | 83   | 51 <sub>-</sub> 143 |
| Methyl tert-butyl ether     | 100   | 101    |           | ug/L |   | 101  | 76 <sub>-</sub> 126 |
| Styrene                     | 50.0  | 46.6   |           | ug/L |   | 93   | 75 <sub>-</sub> 129 |
| 1,1,2,2-Tetrachloroethane   | 50.0  | 45.4   |           | ug/L |   | 91   | 71 _ 127            |
| Tetrachloroethene           | 50.0  | 50.8   |           | ug/L |   | 102  | 77 <sub>-</sub> 128 |
| Toluene                     | 50.0  | 46.0   |           | ug/L |   | 92   | 77 <sub>-</sub> 125 |
| trans-1,2-Dichloroethene    | 50.0  | 49.5   |           | ug/L |   | 99   | 78 - 130            |

TestAmerica Savannah

6/20/2014

Page 37 of 61

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-334022/4

Matrix: Water Analysis Batch: 334022 Client Sample ID: Lab Control Sample Prep Type: Total/NA

|                                     | Spike | LCS    | LCS       |      |   |      | %Rec.    |  |
|-------------------------------------|-------|--------|-----------|------|---|------|----------|--|
| Analyte                             | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| trans-1,3-Dichloropropene           | 50.0  | 53.0   | -         | ug/L |   | 106  | 72 _ 127 |  |
| 1,2,4-Trichlorobenzene              | 50.0  | 45.4   |           | ug/L |   | 91   | 67 _ 134 |  |
| 1,1,1-Trichloroethane               | 50.0  | 52.8   |           | ug/L |   | 106  | 76 - 126 |  |
| 1,1,2-Trichloroethane               | 50.0  | 45.3   |           | ug/L |   | 91   | 69 _ 127 |  |
| Trichloroethene                     | 50.0  | 50.0   |           | ug/L |   | 100  | 80 - 120 |  |
| Trichlorofluoromethane              | 50.0  | 53.4   |           | ug/L |   | 107  | 66 - 144 |  |
| 1,1,2-Trichloro-1,2,2-trifluoroetha | 50.0  | 52.2   |           | ug/L |   | 104  | 72 _ 139 |  |
| ne                                  |       |        |           |      |   |      |          |  |
| Vinyl chloride                      | 50.0  | 49.0   |           | ug/L |   | 98   | 58 - 141 |  |
| Xylenes, Total                      | 150   | 142    |           | ug/L |   | 95   | 80 - 124 |  |

LCS LCS

| Surrogate            | %Recovery | Qualifier | Limits   |
|----------------------|-----------|-----------|----------|
| 4-Bromofluorobenzene | 91        |           | 70 - 130 |
| Dibromofluoromethane | 102       |           | 70 - 130 |
| Toluene-d8 (Surr)    | 92        |           | 70 - 130 |

Lab Sample ID: LCSD 680-334022/5

**Matrix: Water** 

Analysis Batch: 334022

| Client Sample ID: Lab | <b>Control Sample Dup</b> |
|-----------------------|---------------------------|
|                       | Prep Type: Total/NA       |

|                             | Spike | LCSD   | LCSD      |      |   |      | %Rec.    |     | RPD   |
|-----------------------------|-------|--------|-----------|------|---|------|----------|-----|-------|
| Analyte                     | Added | Result | Qualifier | Unit | D | %Rec | Limits   | RPD | Limit |
| Acetone                     | 100   | 87.3   |           | ug/L |   | 87   | 39 - 162 | 6   | 50    |
| Benzene                     | 50.0  | 45.7   |           | ug/L |   | 91   | 74 - 123 | 2   | 30    |
| Bromodichloromethane        | 50.0  | 53.2   |           | ug/L |   | 106  | 72 - 129 | 2   | 30    |
| Bromoform                   | 50.0  | 54.7   |           | ug/L |   | 109  | 60 - 134 | 3   | 30    |
| Bromomethane                | 50.0  | 62.5   |           | ug/L |   | 125  | 10 - 171 | 1   | 50    |
| 2-Butanone                  | 100   | 77.2   |           | ug/L |   | 77   | 55 - 142 | 7   | 30    |
| Carbon disulfide            | 50.0  | 45.7   |           | ug/L |   | 91   | 63 - 142 | 3   | 30    |
| Carbon tetrachloride        | 50.0  | 57.6   |           | ug/L |   | 115  | 70 - 131 | 4   | 30    |
| Chlorobenzene               | 50.0  | 47.2   |           | ug/L |   | 94   | 79 - 120 | 1   | 30    |
| Chloroethane                | 50.0  | 50.8   |           | ug/L |   | 102  | 47 - 148 | 17  | 40    |
| Chloroform                  | 50.0  | 44.6   |           | ug/L |   | 89   | 76 - 128 | 15  | 30    |
| Chloromethane               | 50.0  | 41.2   |           | ug/L |   | 82   | 47 - 151 | 13  | 30    |
| cis-1,2-Dichloroethene      | 50.0  | 42.8   |           | ug/L |   | 86   | 78 - 127 | 10  | 30    |
| cis-1,3-Dichloropropene     | 50.0  | 54.1   |           | ug/L |   | 108  | 73 - 128 | 3   | 30    |
| Cyclohexane                 | 50.0  | 47.6   |           | ug/L |   | 95   | 68 - 137 | 2   | 30    |
| Dibromochloromethane        | 50.0  | 60.3   |           | ug/L |   | 121  | 63 - 134 | 2   | 50    |
| 1,2-Dibromo-3-Chloropropane | 50.0  | 56.3   |           | ug/L |   | 113  | 57 - 126 | 1   | 50    |
| 1,2-Dibromoethane           | 50.0  | 49.3   |           | ug/L |   | 99   | 75 - 127 | 4   | 30    |
| 1,2-Dichlorobenzene         | 50.0  | 43.9   |           | ug/L |   | 88   | 77 - 124 | 1   | 30    |
| 1,3-Dichlorobenzene         | 50.0  | 44.6   |           | ug/L |   | 89   | 79 - 123 | 0   | 30    |
| 1,4-Dichlorobenzene         | 50.0  | 44.9   |           | ug/L |   | 90   | 76 - 124 | 2   | 30    |
| Dichlorodifluoromethane     | 50.0  | 45.0   |           | ug/L |   | 90   | 41 - 165 | 12  | 50    |
| 1,1-Dichloroethane          | 50.0  | 44.2   |           | ug/L |   | 88   | 69 - 132 | 11  | 30    |
| 1,2-Dichloroethane          | 50.0  | 44.6   |           | ug/L |   | 89   | 75 - 120 | 2   | 30    |
| 1,1-Dichloroethene          | 50.0  | 46.3   |           | ug/L |   | 93   | 73 - 134 | 9   | 30    |
| 1,2-Dichloropropane         | 50.0  | 46.5   |           | ug/L |   | 93   | 71 - 126 | 1   | 30    |
| Ethylbenzene                | 50.0  | 47.9   |           | ug/L |   | 96   | 78 - 125 | 0   | 30    |

TestAmerica Savannah

Page 38 of 61

\_

3

4

O

0

10

11

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

# Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-334022/5

**Matrix: Water** 

Analysis Batch: 334022

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

|                                     | Spike | LCSD   | LCSD      |      |   |      | %Rec.    |     | RPD   |
|-------------------------------------|-------|--------|-----------|------|---|------|----------|-----|-------|
| Analyte                             | Added | Result | Qualifier | Unit | D | %Rec | Limits   | RPD | Limit |
| 2-Hexanone                          | 100   | 87.5   |           | ug/L |   | 88   | 52 - 149 | 5   | 30    |
| Isopropylbenzene                    | 50.0  | 49.3   |           | ug/L |   | 99   | 72 - 129 | 2   | 30    |
| Methyl acetate                      | 50.0  | 45.3   |           | ug/L |   | 91   | 26 - 182 | 7   | 30    |
| Methylcyclohexane                   | 50.0  | 50.1   |           | ug/L |   | 100  | 72 - 133 | 2   | 30    |
| Methylene Chloride                  | 50.0  | 42.3   |           | ug/L |   | 85   | 79 - 124 | 12  | 30    |
| 4-Methyl-2-pentanone                | 100   | 87.9   |           | ug/L |   | 88   | 51 - 143 | 6   | 30    |
| Methyl tert-butyl ether             | 100   | 94.3   |           | ug/L |   | 94   | 76 - 126 | 7   | 30    |
| Styrene                             | 50.0  | 47.8   |           | ug/L |   | 96   | 75 - 129 | 3   | 30    |
| 1,1,2,2-Tetrachloroethane           | 50.0  | 46.5   |           | ug/L |   | 93   | 71 - 127 | 2   | 30    |
| Tetrachloroethene                   | 50.0  | 51.0   |           | ug/L |   | 102  | 77 - 128 | 0   | 30    |
| Toluene                             | 50.0  | 46.7   |           | ug/L |   | 93   | 77 - 125 | 2   | 30    |
| trans-1,2-Dichloroethene            | 50.0  | 43.8   |           | ug/L |   | 88   | 78 - 130 | 12  | 30    |
| trans-1,3-Dichloropropene           | 50.0  | 54.6   |           | ug/L |   | 109  | 72 - 127 | 3   | 50    |
| 1,2,4-Trichlorobenzene              | 50.0  | 46.6   |           | ug/L |   | 93   | 67 - 134 | 3   | 30    |
| 1,1,1-Trichloroethane               | 50.0  | 51.6   |           | ug/L |   | 103  | 76 - 126 | 2   | 30    |
| 1,1,2-Trichloroethane               | 50.0  | 46.7   |           | ug/L |   | 93   | 69 - 127 | 3   | 30    |
| Trichloroethene                     | 50.0  | 50.6   |           | ug/L |   | 101  | 80 - 120 | 1   | 30    |
| Trichlorofluoromethane              | 50.0  | 47.9   |           | ug/L |   | 96   | 66 - 144 | 11  | 30    |
| 1,1,2-Trichloro-1,2,2-trifluoroetha | 50.0  | 46.7   |           | ug/L |   | 93   | 72 - 139 | 11  | 30    |
| ne                                  |       |        |           |      |   |      |          |     |       |
| Vinyl chloride                      | 50.0  | 44.1   |           | ug/L |   | 88   | 58 - 141 | 11  | 30    |
| Xylenes, Total                      | 150   | 144    |           | ug/L |   | 96   | 80 - 124 | 1   | 30    |

LCSD LCSD

| Surrogate            | %Recovery | Qualifier | Limits   |
|----------------------|-----------|-----------|----------|
| 4-Bromofluorobenzene | 93        |           | 70 - 130 |
| Dibromofluoromethane | 91        |           | 70 - 130 |
| Toluene-d8 (Surr)    | 93        |           | 70 - 130 |

#### Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-333829/18-A

Matrix: Water

Analysis Batch: 334440

Client Sample ID: Method Blank
Prep Type: Total/NA

**Prep Batch: 333829** 

| Result | Qualifier                                                | RL                                                                                                                     | MDL                                                                                                                     | Unit                                                                                                                                                    | D                                                                                                                                                                                                  | Prepared                                                                                                                                                                                           | Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                            | Dil Fac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10     | U                                                        | 10                                                                                                                     |                                                                                                                         | ug/L                                                                                                                                                    |                                                                                                                                                                                                    | 06/12/14 15:41                                                                                                                                                                                     | 06/16/14 16:51                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10     | U                                                        | 10                                                                                                                     |                                                                                                                         | ug/L                                                                                                                                                    |                                                                                                                                                                                                    | 06/12/14 15:41                                                                                                                                                                                     | 06/16/14 16:51                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10     | U                                                        | 10                                                                                                                     |                                                                                                                         | ug/L                                                                                                                                                    |                                                                                                                                                                                                    | 06/12/14 15:41                                                                                                                                                                                     | 06/16/14 16:51                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10     | U                                                        | 10                                                                                                                     |                                                                                                                         | ug/L                                                                                                                                                    |                                                                                                                                                                                                    | 06/12/14 15:41                                                                                                                                                                                     | 06/16/14 16:51                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10     | U                                                        | 10                                                                                                                     |                                                                                                                         | ug/L                                                                                                                                                    |                                                                                                                                                                                                    | 06/12/14 15:41                                                                                                                                                                                     | 06/16/14 16:51                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10     | U                                                        | 10                                                                                                                     |                                                                                                                         | ug/L                                                                                                                                                    |                                                                                                                                                                                                    | 06/12/14 15:41                                                                                                                                                                                     | 06/16/14 16:51                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10     | U                                                        | 10                                                                                                                     |                                                                                                                         | ug/L                                                                                                                                                    |                                                                                                                                                                                                    | 06/12/14 15:41                                                                                                                                                                                     | 06/16/14 16:51                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10     | U                                                        | 10                                                                                                                     |                                                                                                                         | ug/L                                                                                                                                                    |                                                                                                                                                                                                    | 06/12/14 15:41                                                                                                                                                                                     | 06/16/14 16:51                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10     | U                                                        | 10                                                                                                                     |                                                                                                                         | ug/L                                                                                                                                                    |                                                                                                                                                                                                    | 06/12/14 15:41                                                                                                                                                                                     | 06/16/14 16:51                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10     | U                                                        | 10                                                                                                                     |                                                                                                                         | ug/L                                                                                                                                                    |                                                                                                                                                                                                    | 06/12/14 15:41                                                                                                                                                                                     | 06/16/14 16:51                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10     | U                                                        | 10                                                                                                                     |                                                                                                                         | ug/L                                                                                                                                                    |                                                                                                                                                                                                    | 06/12/14 15:41                                                                                                                                                                                     | 06/16/14 16:51                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10     | U                                                        | 10                                                                                                                     |                                                                                                                         | ug/L                                                                                                                                                    |                                                                                                                                                                                                    | 06/12/14 15:41                                                                                                                                                                                     | 06/16/14 16:51                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10     | U                                                        | 10                                                                                                                     |                                                                                                                         | ug/L                                                                                                                                                    |                                                                                                                                                                                                    | 06/12/14 15:41                                                                                                                                                                                     | 06/16/14 16:51                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | Result Qualifier  10 U  10 U | 10 U 10 | 10 U 10  10 U 10 | 10 U 10 ug/L | 10 U 10 ug/L | 10 U 10 ug/L 06/12/14 15:41 | 10 U 10 ug/L 06/12/14 15:41 06/16/14 16:51 |

TestAmerica Savannah

Page 39 of 61

6/20/2014

3

5

6

8

1 1

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-333829/18-A

**Matrix: Water** 

Analysis Batch: 334440

Client Sample ID: Method Blank Prep Type: Total/NA

**Prep Batch: 333829** 

| ı |                     | MB     | MR        | MD |     |      |   |                |                |         |  |  |  |
|---|---------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|--|--|--|
|   | Analyte             | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |  |  |  |
|   | 1-Methylnaphthalene | 10     | U         | 10 |     | ug/L |   | 06/12/14 15:41 | 06/16/14 16:51 | 1       |  |  |  |
|   | 2-Methylnaphthalene | 10     | U         | 10 |     | ug/L |   | 06/12/14 15:41 | 06/16/14 16:51 | 1       |  |  |  |
| ١ | Naphthalene         | 10     | U         | 10 |     | ug/L |   | 06/12/14 15:41 | 06/16/14 16:51 | 1       |  |  |  |
|   | Phenanthrene        | 10     | U         | 10 |     | ug/L |   | 06/12/14 15:41 | 06/16/14 16:51 | 1       |  |  |  |
|   | Pyrene              | 10     | U         | 10 |     | ug/L |   | 06/12/14 15:41 | 06/16/14 16:51 | 1       |  |  |  |
| ı |                     |        |           |    |     |      |   |                |                |         |  |  |  |

MB MB

| Surrogate              | %Recovery | Qualifier | Limits   | Prepared      | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|---------------|----------------|---------|
| 2-Fluorobiphenyl       | 89        |           | 38 - 130 | 06/12/14 15:4 | 06/16/14 16:51 | 1       |
| Nitrobenzene-d5 (Surr) | 96        |           | 39 - 130 | 06/12/14 15:4 | 06/16/14 16:51 | 1       |
| Terphenyl-d14 (Surr)   | 112       |           | 10 - 143 | 06/12/14 15:4 | 06/16/14 16:51 | 1       |

**Client Sample ID: Lab Control Sample** 

**Prep Type: Total/NA** 

**Matrix: Water** 

Lab Sample ID: LCS 680-333829/19-A

| Analysis Batch: 334440 |       |        |           |      |   |      | Prep Batch: 333829  |
|------------------------|-------|--------|-----------|------|---|------|---------------------|
|                        | Spike | LCS    | LCS       |      |   |      | %Rec.               |
| Analyte                | Added | Result | Qualifier | Unit | D | %Rec | Limits              |
| Acenaphthene           | 100   | 81.9   |           | ug/L |   | 82   | 41 - 99             |
| Acenaphthylene         | 100   | 38.0   |           | ug/L |   | 38   | 32 _ 118            |
| Anthracene             | 100   | 76.0   |           | ug/L |   | 76   | 50 - 103            |
| Benzo[a]anthracene     | 100   | 80.4   |           | ug/L |   | 80   | 53 - 109            |
| Benzo[a]pyrene         | 100   | 62.8   |           | ug/L |   | 63   | 38 - 111            |
| Benzo[b]fluoranthene   | 100   | 78.0   |           | ug/L |   | 78   | 53 - 108            |
| Benzo[g,h,i]perylene   | 100   | 70.4   |           | ug/L |   | 70   | 42 - 114            |
| Benzo[k]fluoranthene   | 100   | 71.2   |           | ug/L |   | 71   | 49 - 108            |
| Chrysene               | 100   | 80.3   |           | ug/L |   | 80   | 54 <sub>-</sub> 111 |
| Dibenz(a,h)anthracene  | 100   | 80.5   |           | ug/L |   | 80   | 48 - 110            |
| Fluoranthene           | 100   | 78.2   |           | ug/L |   | 78   | 48 - 111            |
| Fluorene               | 100   | 82.9   |           | ug/L |   | 83   | 50 - 105            |
| Indeno[1,2,3-cd]pyrene | 100   | 83.8   |           | ug/L |   | 84   | 34 _ 115            |
| 1-Methylnaphthalene    | 100   | 64.2   |           | ug/L |   | 64   | 50 - 130            |
| 2-Methylnaphthalene    | 100   | 64.9   |           | ug/L |   | 65   | 32 - 92             |
| Naphthalene            | 100   | 63.4   |           | ug/L |   | 63   | 29 _ 91             |
| Phenanthrene           | 100   | 79.3   |           | ug/L |   | 79   | 52 - 108            |
| Pyrene                 | 100   | 69.8   |           | ug/L |   | 70   | 50 - 111            |
|                        |       |        |           |      |   |      |                     |

LCS LCS

| Surrogate              | %Recovery | Qualifier | Limits   |
|------------------------|-----------|-----------|----------|
| 2-Fluorobiphenyl       | 110       |           | 38 - 130 |
| Nitrobenzene-d5 (Surr) | 114       |           | 39 - 130 |
| Terphenyl-d14 (Surr)   | 124       |           | 10 - 143 |

Lab Sample ID: LCSD 680-333829/20-A

**Matrix: Water** 

| Analysis Batch: 334440 |  |     |     |        |           |      |   | Prep Batch: 333829 |          |     |       |  |
|------------------------|--|-----|-----|--------|-----------|------|---|--------------------|----------|-----|-------|--|
|                        |  | Sp  | ike | LCSD   | LCSD      |      |   |                    | %Rec.    |     | RPD   |  |
| Analyte                |  | Add | led | Result | Qualifier | Unit | D | %Rec               | Limits   | RPD | Limit |  |
| Acenaphthene           |  |     | 100 | 86.2   |           | ug/L |   | 86                 | 41 - 99  | 5   | 20    |  |
| Acenaphthylene         |  |     | 100 | 76.0   | *         | ug/L |   | 76                 | 32 - 118 | 67  | 20    |  |
| Anthracene             |  |     | 100 | 84.0   |           | ug/L |   | 84                 | 50 - 103 | 10  | 20    |  |

TestAmerica Savannah

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Page 40 of 61

6/20/2014

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

### Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-333829/20-A

**Matrix: Water** 

Analysis Batch: 334440

Client Sample ID: Lab Control Sample Dup

| Prep Type | e: Total/NA |
|-----------|-------------|
| Prep Bat  | ch: 333829  |
| %Rec.     | RPD         |

| / indigoto Butom co i i ic |       |        |           |      |   |      |          |     |       |  |
|----------------------------|-------|--------|-----------|------|---|------|----------|-----|-------|--|
|                            | Spike | LCSD   | LCSD      |      |   |      | %Rec.    |     | RPD   |  |
| Analyte                    | Added | Result | Qualifier | Unit | D | %Rec | Limits   | RPD | Limit |  |
| Benzo[a]anthracene         | 100   | 87.3   |           | ug/L |   | 87   | 53 - 109 | 8   | 40    |  |
| Benzo[a]pyrene             | 100   | 81.9   |           | ug/L |   | 82   | 38 - 111 | 26  | 40    |  |
| Benzo[b]fluoranthene       | 100   | 81.6   |           | ug/L |   | 82   | 53 - 108 | 5   | 50    |  |
| Benzo[g,h,i]perylene       | 100   | 92.8   |           | ug/L |   | 93   | 42 - 114 | 27  | 50    |  |
| Benzo[k]fluoranthene       | 100   | 85.3   |           | ug/L |   | 85   | 49 - 108 | 18  | 40    |  |
| Chrysene                   | 100   | 84.4   |           | ug/L |   | 84   | 54 - 111 | 5   | 50    |  |
| Dibenz(a,h)anthracene      | 100   | 88.4   |           | ug/L |   | 88   | 48 - 110 | 9   | 40    |  |
| Fluoranthene               | 100   | 86.4   |           | ug/L |   | 86   | 48 - 111 | 10  | 40    |  |
| Fluorene                   | 100   | 89.1   |           | ug/L |   | 89   | 50 - 105 | 7   | 20    |  |
| Indeno[1,2,3-cd]pyrene     | 100   | 92.6   |           | ug/L |   | 93   | 34 - 115 | 10  | 40    |  |
| 1-Methylnaphthalene        | 100   | 68.6   |           | ug/L |   | 69   | 50 - 130 | 7   | 50    |  |
| 2-Methylnaphthalene        | 100   | 67.9   |           | ug/L |   | 68   | 32 - 92  | 5   | 30    |  |
| Naphthalene                | 100   | 63.9   |           | ug/L |   | 64   | 29 - 91  | 1   | 40    |  |
| Phenanthrene               | 100   | 84.5   |           | ug/L |   | 84   | 52 - 108 | 6   | 40    |  |
| Pyrene                     | 100   | 82.4   |           | ug/L |   | 82   | 50 - 111 | 17  | 50    |  |
|                            |       |        |           |      |   |      |          |     |       |  |

LCSD LCSD

MR MR

| Surrogate              | %Recovery | Qualifier | Limits   |
|------------------------|-----------|-----------|----------|
| 2-Fluorobiphenyl       | 109       |           | 38 - 130 |
| Nitrobenzene-d5 (Surr) | 106       |           | 39 - 130 |
| Terphenyl-d14 (Surr)   | 129       |           | 10 - 143 |

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 680-332912/1-A

**Matrix: Water** 

Analysis Batch: 333550

Client Sample ID: Method Blank

Prep Type: Total/NA **Prep Batch: 332912** 

|          | IVID   | IVID      |    |     |      |   |                |                |         |
|----------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte  | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic  | 20     | U         | 20 |     | ug/L |   | 06/07/14 09:43 | 06/10/14 18:08 | 1       |
| Chromium | 10     | U         | 10 |     | ug/L |   | 06/07/14 09:43 | 06/10/14 18:08 | 1       |
| Lead     | 10     | U         | 10 |     | ug/L |   | 06/07/14 09:43 | 06/10/14 18:08 | 1       |
| Nickel   | 40     | U         | 40 |     | ug/L |   | 06/07/14 09:43 | 06/10/14 18:08 | 1       |
| Zinc     | 20     | U         | 20 |     | ug/L |   | 06/07/14 09:43 | 06/10/14 18:08 | 1       |

Lab Sample ID: LCS 680-332912/2-A

**Matrix: Water** 

Analysis Batch: 333550

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

**Prep Batch: 332912** 

|          | Spike | LCS    | LCS            |         | %Rec.      |  |
|----------|-------|--------|----------------|---------|------------|--|
| Analyte  | Added | Result | Qualifier Unit | t D %Re | c Limits   |  |
| Arsenic  | 100   | 101    | ug/L           |         | 75 - 125   |  |
| Chromium | 100   | 97.4   | ug/L           | _       | 75 _ 125   |  |
| Lead     | 50.0  | 48.9   | ug/L           | _       | 8 75 - 125 |  |
| Nickel   | 100   | 97.9   | ug/L           | _       | 8 75 - 125 |  |
| Zinc     | 100   | 96.8   | ug/L           | _       | 75 _ 125   |  |

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

#### Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: MB 680-333618/1-A

**Matrix: Water** 

Analysis Batch: 334039

Client Sample ID: Method Blank Prep Type: Total/NA

**Prep Batch: 333618** 

|          | MB     | в мв      |    |     |      |   |                |                |         |  |  |
|----------|--------|-----------|----|-----|------|---|----------------|----------------|---------|--|--|
| Analyte  | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |  |  |
| Arsenic  | 20     | U         | 20 |     | ug/L |   | 06/11/14 11:17 | 06/12/14 20:54 | 1       |  |  |
| Chromium | 10     | U         | 10 |     | ug/L |   | 06/11/14 11:17 | 06/12/14 20:54 | 1       |  |  |
| Lead     | 10     | U         | 10 |     | ug/L |   | 06/11/14 11:17 | 06/12/14 20:54 | 1       |  |  |
| Nickel   | 40     | U         | 40 |     | ug/L |   | 06/11/14 11:17 | 06/12/14 20:54 | 1       |  |  |
| Zinc     | 20     | U         | 20 |     | ug/L |   | 06/11/14 11:17 | 06/12/14 20:54 | 1       |  |  |
|          |        |           |    |     |      |   |                |                |         |  |  |

Lab Sample ID: LCS 680-333618/2-A

Matrix: Water

Analysis Batch: 334039

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA

Prep Batch: 333618

|          | Spike | LCS    | LCS       |      |   |      | %Rec.    |  |
|----------|-------|--------|-----------|------|---|------|----------|--|
| Analyte  | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Arsenic  | 100   | 99.3   |           | ug/L |   | 99   | 75 - 125 |  |
| Chromium | 100   | 95.8   |           | ug/L |   | 96   | 75 - 125 |  |
| Lead     | 50.0  | 48.3   |           | ug/L |   | 97   | 75 - 125 |  |
| Nickel   | 100   | 94.0   |           | ug/L |   | 94   | 75 - 125 |  |
| Zinc     | 100   | 96.7   |           | ug/L |   | 97   | 75 - 125 |  |

Lab Sample ID: 680-102049-3 MS

Matrix: Water

Analysis Batch: 334039

Client Sample ID: TMW-01\_06052014

Prep Type: Total/NA

**Prep Batch: 333618** 

|          | Sample | Sample    | Spike | MS     | MS        |      |   |      | %Rec.               |  |
|----------|--------|-----------|-------|--------|-----------|------|---|------|---------------------|--|
| Analyte  | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits              |  |
| Arsenic  | 95     |           | 100   | 206    |           | ug/L |   | 111  | 75 - 125            |  |
| Chromium | 17     |           | 100   | 120    |           | ug/L |   | 103  | 75 - 125            |  |
| Lead     | 10     | U         | 50.0  | 49.0   |           | ug/L |   | 98   | 75 - 125            |  |
| Nickel   | 40     | U         | 100   | 132    |           | ug/L |   | 98   | 75 - 125            |  |
| Zinc     | 72     |           | 100   | 172    |           | ua/L |   | 100  | 75 <sub>-</sub> 125 |  |

Lab Sample ID: 680-102049-3 MSD

Matrix: Water

Analysis Batch: 334039

Client Sample ID: TMW-01\_06052014

Prep Type: Total/NA

**Prep Batch: 333618** 

| 7 mary or Datom of 1000 |        |           |       |        |           |      |   |      |          |     |       |
|-------------------------|--------|-----------|-------|--------|-----------|------|---|------|----------|-----|-------|
|                         | Sample | Sample    | Spike | MSD    | MSD       |      |   |      | %Rec.    |     | RPD   |
| Analyte                 | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   | RPD | Limit |
| Arsenic                 | 95     |           | 100   | 208    |           | ug/L |   | 113  | 75 - 125 | 1   | 20    |
| Chromium                | 17     |           | 100   | 121    |           | ug/L |   | 104  | 75 - 125 | 1   | 20    |
| Lead                    | 10     | U         | 50.0  | 51.9   |           | ug/L |   | 104  | 75 - 125 | 6   | 20    |
| Nickel                  | 40     | U         | 100   | 134    |           | ug/L |   | 100  | 75 - 125 | 1   | 20    |
| Zinc                    | 72     |           | 100   | 173    |           | ug/L |   | 101  | 75 - 125 | 1   | 20    |
|                         |        |           |       |        |           |      |   |      |          |     |       |

Lab Sample ID: MB 680-332949/1-A

**Matrix: Water** 

Analysis Batch: 334904

Client Sample ID: Method Blank **Prep Type: Total Recoverable** 

**Prep Batch: 332949** 

|          | MB     | MB        |    |     |      |   |                |                |         |
|----------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte  | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic  | 20     | U         | 20 |     | ug/L |   | 06/07/14 11:38 | 06/17/14 17:50 | 1       |
| Chromium | 10     | U         | 10 |     | ug/L |   | 06/07/14 11:38 | 06/17/14 17:50 | 1       |
| Lead     | 10     | U         | 10 |     | ug/L |   | 06/07/14 11:38 | 06/17/14 17:50 | 1       |
| Nickel   | 40     | U         | 40 |     | ug/L |   | 06/07/14 11:38 | 06/17/14 17:50 | 1       |
| Zinc     | 20     | U         | 20 |     | ug/L |   | 06/07/14 11:38 | 06/17/14 17:50 | 1       |
|          |        |           |    |     |      |   |                |                |         |

TestAmerica Savannah

Page 42 of 61

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCS 680-332949/2-A **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total Recoverable** Analysis Batch: 334904

**Prep Batch: 332949** 

|          | Spike | LCS    | LCS       |      |   |      | %Rec.               |  |
|----------|-------|--------|-----------|------|---|------|---------------------|--|
| Analyte  | Added | Result | Qualifier | Unit | D | %Rec | Limits              |  |
| Arsenic  | 100   | 109    |           | ug/L |   | 109  | 75 - 125            |  |
| Chromium | 100   | 108    |           | ug/L |   | 108  | 75 - 125            |  |
| Lead     | 50.0  | 54.4   |           | ug/L |   | 109  | 75 <sub>-</sub> 125 |  |
| Nickel   | 100   | 108    |           | ug/L |   | 108  | 75 <sub>-</sub> 125 |  |
| Zinc     | 100   | 108    |           | ug/L |   | 108  | 75 - 125            |  |
| <b>_</b> |       |        |           |      |   |      |                     |  |

Client Sample ID: SW-01-HIGH\_06052014 Lab Sample ID: 680-102049-15 MS **Matrix: Water Prep Type: Dissolved** Analysis Batch: 334904

**Prep Batch: 332949** 

| , ,      | Sample | Sample    | Spike | MS     | MS        |      |   |      | %Rec.    |  |
|----------|--------|-----------|-------|--------|-----------|------|---|------|----------|--|
| Analyte  | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Arsenic  | 20     | U         | 100   | 119    |           | ug/L |   | 119  | 75 - 125 |  |
| Chromium | 10     | U         | 100   | 104    |           | ug/L |   | 104  | 75 - 125 |  |
| Lead     | 10     | U         | 50.0  | 55.5   |           | ug/L |   | 111  | 75 - 125 |  |
| Nickel   | 40     | U         | 100   | 107    |           | ug/L |   | 100  | 75 - 125 |  |
| Zinc     | 20     | U         | 100   | 108    |           | ug/L |   | 108  | 75 - 125 |  |
| <u> </u> |        |           |       |        |           |      |   |      |          |  |

Lab Sample ID: 680-102049-15 MSD Client Sample ID: SW-01-HIGH\_06052014 **Matrix: Water Prep Type: Dissolved** 

| Analysis Batch: 334904 |        |           |       |        |           |      |   |      | Batch: 3 | : 332949 |       |
|------------------------|--------|-----------|-------|--------|-----------|------|---|------|----------|----------|-------|
|                        | Sample | Sample    | Spike | MSD    | MSD       |      |   |      | %Rec.    |          | RPD   |
| Analyte                | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   | RPD      | Limit |
| Arsenic                | 20     | U         | 100   | 120    |           | ug/L |   | 120  | 75 - 125 | 1        | 20    |
| Chromium               | 10     | U         | 100   | 104    |           | ug/L |   | 104  | 75 - 125 | 0        | 20    |
| Lead                   | 10     | U         | 50.0  | 52.6   |           | ug/L |   | 105  | 75 - 125 | 5        | 20    |
| Nickel                 | 40     | U         | 100   | 106    |           | ug/L |   | 99   | 75 - 125 | 1        | 20    |
| Zinc                   | 20     | U         | 100   | 106    |           | ug/L |   | 106  | 75 - 125 | 2        | 20    |

Method: 310.1 - Alkalinity

Lab Sample ID: MB 680-334026/3 Client Sample ID: Method Blank

**Matrix: Water** Analysis Batch: 334026

Prep Type: Total/NA

мв мв Analyte Result Qualifier RLRL Unit Prepared Analyzed Dil Fac Alkalinity 5.0 U 5.0 mg/L 06/12/14 21:07

Lab Sample ID: LCS 680-334026/4 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 334026

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Alkalinity 250 254 80 - 120 mg/L 102

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

| Method: 310.1 | - Alkalinity | (Continued) |
|---------------|--------------|-------------|
|---------------|--------------|-------------|

Lab Sample ID: MB 680-334396/3 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 334396

мв мв Result Qualifier RL RL Unit D Analyzed Dil Fac Analyte Prepared 5.0 06/15/14 21:23 Alkalinity 5.0 U mg/L

Lab Sample ID: LCS 680-334396/4 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 334396

LCS LCS Spike %Rec. Added Analyte Result Qualifier Unit %Rec Limits Alkalinity 250 229 mg/L 92 80 - 120

Lab Sample ID: LCSD 680-334396/30 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 334396

Spike LCSD LCSD %Rec. RPD Analyte Added Result Qualifier Unit D %Rec Limits **RPD** Limit Alkalinity 250 242 mg/L

Method: 350.1 - Nitrogen, Ammonia

Lab Sample ID: MB 680-334251/51 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 334251

MB MB Analyte Result Qualifier RL MDL Unit Analyzed Dil Fac Prepared 0.050 U 0.050 06/13/14 17:14 Ammonia mg/L

Lab Sample ID: LCS 680-334251/1 Client Sample ID: Lab Control Sample Prep Type: Total/NA

**Matrix: Water** 

Analysis Batch: 334251

Spike LCS LCS %Rec. Added Result Qualifier Limits Analyte Unit %Rec 1.00 Ammonia 0.937 mg/L 94 90 - 110

Lab Sample ID: MB 680-334252/52 Client Sample ID: Method Blank Prep Type: Total/NA

**Matrix: Water** 

Analysis Batch: 334252

мв мв RLAnalyte Result Qualifier MDL Unit D Prepared Analyzed Dil Fac 0.050 Ammonia 0.050 U mg/L 06/13/14 17:14

Lab Sample ID: LCS 680-334252/46 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 334252

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Ammonia 1.00 0.946 mg/L 95 90 - 110

Client Sample ID: Lab Control Sample

Client Sample ID: SW-03-LOW\_06052014

Client Sample ID: Method Blank

**Client Sample ID: Lab Control Sample** 

Client Sample ID: SW-02-HIGH\_06052014

Client Sample ID: SW-02-HIGH\_06052014

Prep Type: Total/NA

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Method: 353.2 - Nitrogen, Nitrate-Nitrite

Lab Sample ID: MB 680-332872/13 Client Sample ID: Method Blank Prep Type: Total/NA

**Matrix: Water** 

Analysis Batch: 332872

мв мв

Result Qualifier RL Analyte MDL Unit D Analyzed Dil Fac Prepared 0.050 06/06/14 16:05 Nitrate as N 0.050 U mg/L

Lab Sample ID: LCS 680-332872/16

**Matrix: Water** 

Analysis Batch: 332872

LCS LCS Spike %Rec. Added Analyte Result Qualifier Unit %Rec Limits Nitrate as N 0.500 0.543 mg/L 109 75 - 125

Lab Sample ID: 680-102049-2 DU

**Matrix: Water** 

Analysis Batch: 332872

DU DU RPD Sample Sample Analyte Result Qualifier Result Qualifier Unit **RPD** Limit Nitrate as N 0.26 0.259 mg/L 30

Lab Sample ID: MB 680-332873/11

**Matrix: Water** 

Analysis Batch: 332873

мв мв

Result Qualifier RL **MDL** Unit Dil Fac Analyte Prepared Analyzed Nitrate as N 0.050 0.050 mg/L 06/06/14 16:46

Lab Sample ID: LCS 680-332873/16

**Matrix: Water** 

Analysis Batch: 332873

Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit Limits %Rec Nitrate as N 0.500 108 0.539 mg/L 75 - 125

Lab Sample ID: 680-102049-14 MS

**Matrix: Water** 

Analysis Batch: 332873

Sample Sample Spike MS MS %Rec. Result Qualifier Analyte Result Qualifier Added Unit %Rec Limits 0.500 96 Nitrate as N 0.37 0.847 mg/L 75 - 125

Lab Sample ID: 680-102049-14 MSD

**Matrix: Water** 

Analysis Batch: 332873

MSD MSD RPD Sample Sample Spike %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Nitrate as N 0.37 0.500 0.848 mg/L 96 75 - 125

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

#### **GC/MS VOA**

#### Analysis Batch: 334022

| Lab Sample ID     | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|-------------------|------------------------|-----------|--------|--------|------------|
| 680-102049-1      | SW-04-LOW_06052014     | Total/NA  | Water  | 8260B  | _          |
| 680-102049-2      | SW-03-LOW_06052014     | Total/NA  | Water  | 8260B  |            |
| 680-102049-3      | TMW-01_06052014        | Total/NA  | Water  | 8260B  |            |
| 680-102049-4      | SW-01-LOW_06052014     | Total/NA  | Water  | 8260B  |            |
| 680-102049-5      | SW-02-LOW_06052014     | Total/NA  | Water  | 8260B  |            |
| 680-102049-6      | PDMW-26T_06052014      | Total/NA  | Water  | 8260B  |            |
| 680-102049-7      | MW-3R_06052014         | Total/NA  | Water  | 8260B  |            |
| 680-102049-9      | PDMW-10R_06052014      | Total/NA  | Water  | 8260B  |            |
| 680-102049-11     | PDMW-13P_06052014      | Total/NA  | Water  | 8260B  |            |
| 680-102049-12     | SW-03-HIGH_06052014    | Total/NA  | Water  | 8260B  |            |
| 680-102049-13     | SW-04-HIGH_06052014    | Total/NA  | Water  | 8260B  |            |
| 680-102049-14     | SW-02-HIGH_06052014    | Total/NA  | Water  | 8260B  |            |
| 680-102049-15     | SW-01-HIGH_06052014    | Total/NA  | Water  | 8260B  |            |
| 680-102049-16     | TRIPBLANK_06052014     | Total/NA  | Water  | 8260B  |            |
| LCS 680-334022/4  | Lab Control Sample     | Total/NA  | Water  | 8260B  |            |
| LCSD 680-334022/5 | Lab Control Sample Dup | Total/NA  | Water  | 8260B  |            |
| MB 680-334022/7   | Method Blank           | Total/NA  | Water  | 8260B  |            |

#### **GC/MS Semi VOA**

#### **Prep Batch: 333829**

| Lab Sample ID        | Client Sample ID       | Prep Type | Matrix | Method | Prep Batcl |
|----------------------|------------------------|-----------|--------|--------|------------|
| 680-102049-1         | SW-04-LOW_06052014     | Total/NA  | Water  | 3520C  |            |
| 680-102049-2         | SW-03-LOW_06052014     | Total/NA  | Water  | 3520C  |            |
| 680-102049-3         | TMW-01_06052014        | Total/NA  | Water  | 3520C  |            |
| 680-102049-4         | SW-01-LOW_06052014     | Total/NA  | Water  | 3520C  |            |
| 680-102049-5         | SW-02-LOW_06052014     | Total/NA  | Water  | 3520C  |            |
| 680-102049-6         | PDMW-26T_06052014      | Total/NA  | Water  | 3520C  |            |
| 680-102049-7         | MW-3R_06052014         | Total/NA  | Water  | 3520C  |            |
| 680-102049-9         | PDMW-10R_06052014      | Total/NA  | Water  | 3520C  |            |
| 680-102049-11        | PDMW-13P_06052014      | Total/NA  | Water  | 3520C  |            |
| 680-102049-12        | SW-03-HIGH_06052014    | Total/NA  | Water  | 3520C  |            |
| 680-102049-13        | SW-04-HIGH_06052014    | Total/NA  | Water  | 3520C  |            |
| 680-102049-14        | SW-02-HIGH_06052014    | Total/NA  | Water  | 3520C  |            |
| 680-102049-15        | SW-01-HIGH_06052014    | Total/NA  | Water  | 3520C  |            |
| LCS 680-333829/19-A  | Lab Control Sample     | Total/NA  | Water  | 3520C  |            |
| LCSD 680-333829/20-A | Lab Control Sample Dup | Total/NA  | Water  | 3520C  |            |
| MB 680-333829/18-A   | Method Blank           | Total/NA  | Water  | 3520C  |            |

#### Analysis Batch: 334440

| Lab Sample ID | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|---------------|--------------------|-----------|--------|--------|------------|
| 680-102049-1  | SW-04-LOW_06052014 | Total/NA  | Water  | 8270D  | 333829     |
| 680-102049-2  | SW-03-LOW_06052014 | Total/NA  | Water  | 8270D  | 333829     |
| 680-102049-3  | TMW-01_06052014    | Total/NA  | Water  | 8270D  | 333829     |
| 680-102049-4  | SW-01-LOW_06052014 | Total/NA  | Water  | 8270D  | 333829     |
| 680-102049-5  | SW-02-LOW_06052014 | Total/NA  | Water  | 8270D  | 333829     |
| 680-102049-6  | PDMW-26T_06052014  | Total/NA  | Water  | 8270D  | 333829     |
| 680-102049-7  | MW-3R_06052014     | Total/NA  | Water  | 8270D  | 333829     |
| 680-102049-9  | PDMW-10R_06052014  | Total/NA  | Water  | 8270D  | 333829     |
| 680-102049-11 | PDMW-13P_06052014  | Total/NA  | Water  | 8270D  | 333829     |

TestAmerica Savannah

Page 46 of 61

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

#### GC/MS Semi VOA (Continued)

# Analysis Batch: 334440 (Continued)

| Lab Sample ID        | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|----------------------|------------------------|-----------|--------|--------|------------|
| 680-102049-12        | SW-03-HIGH_06052014    | Total/NA  | Water  | 8270D  | 333829     |
| 680-102049-13        | SW-04-HIGH_06052014    | Total/NA  | Water  | 8270D  | 333829     |
| 680-102049-14        | SW-02-HIGH_06052014    | Total/NA  | Water  | 8270D  | 333829     |
| 680-102049-15        | SW-01-HIGH_06052014    | Total/NA  | Water  | 8270D  | 333829     |
| LCS 680-333829/19-A  | Lab Control Sample     | Total/NA  | Water  | 8270D  | 333829     |
| LCSD 680-333829/20-A | Lab Control Sample Dup | Total/NA  | Water  | 8270D  | 333829     |
| MB 680-333829/18-A   | Method Blank           | Total/NA  | Water  | 8270D  | 333829     |

#### **Metals**

#### **Prep Batch: 332912**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Bato |
|--------------------|--------------------|-----------|--------|--------|-----------|
| 680-102049-6       | PDMW-26T_06052014  | Total/NA  | Water  | 3010A  | <u> </u>  |
| 680-102049-7       | MW-3R_06052014     | Total/NA  | Water  | 3010A  |           |
| 680-102049-9       | PDMW-10R_06052014  | Total/NA  | Water  | 3010A  |           |
| 680-102049-11      | PDMW-13P_06052014  | Total/NA  | Water  | 3010A  |           |
| LCS 680-332912/2-A | Lab Control Sample | Total/NA  | Water  | 3010A  |           |
| MB 680-332912/1-A  | Method Blank       | Total/NA  | Water  | 3010A  |           |

#### **Prep Batch: 332949**

| Lab Sample ID      | Client Sample ID    | Prep Type         | Matrix | Method | Prep Batch |
|--------------------|---------------------|-------------------|--------|--------|------------|
| 680-102049-1       | SW-04-LOW_06052014  | Dissolved         | Water  | 3005A  |            |
| 680-102049-2       | SW-03-LOW_06052014  | Dissolved         | Water  | 3005A  |            |
| 680-102049-4       | SW-01-LOW_06052014  | Dissolved         | Water  | 3005A  |            |
| 680-102049-5       | SW-02-LOW_06052014  | Dissolved         | Water  | 3005A  |            |
| 680-102049-12      | SW-03-HIGH_06052014 | Dissolved         | Water  | 3005A  |            |
| 680-102049-13      | SW-04-HIGH_06052014 | Dissolved         | Water  | 3005A  |            |
| 680-102049-14      | SW-02-HIGH_06052014 | Dissolved         | Water  | 3005A  |            |
| 680-102049-15      | SW-01-HIGH_06052014 | Dissolved         | Water  | 3005A  |            |
| 680-102049-15 MS   | SW-01-HIGH_06052014 | Dissolved         | Water  | 3005A  |            |
| 680-102049-15 MSD  | SW-01-HIGH_06052014 | Dissolved         | Water  | 3005A  |            |
| LCS 680-332949/2-A | Lab Control Sample  | Total Recoverable | Water  | 3005A  |            |
| MB 680-332949/1-A  | Method Blank        | Total Recoverable | Water  | 3005A  |            |

#### Analysis Batch: 333550

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 680-102049-6       | PDMW-26T_06052014  | Total/NA  | Water  | 6010C  | 332912     |
| 680-102049-7       | MW-3R_06052014     | Total/NA  | Water  | 6010C  | 332912     |
| 680-102049-9       | PDMW-10R_06052014  | Total/NA  | Water  | 6010C  | 332912     |
| 680-102049-11      | PDMW-13P_06052014  | Total/NA  | Water  | 6010C  | 332912     |
| LCS 680-332912/2-A | Lab Control Sample | Total/NA  | Water  | 6010C  | 332912     |
| MB 680-332912/1-A  | Method Blank       | Total/NA  | Water  | 6010C  | 332912     |

#### Prep Batch: 333618

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 680-102049-3       | TMW-01_06052014    | Total/NA  | Water  | 3010A  |            |
| 680-102049-3 MS    | TMW-01_06052014    | Total/NA  | Water  | 3010A  |            |
| 680-102049-3 MSD   | TMW-01_06052014    | Total/NA  | Water  | 3010A  |            |
| LCS 680-333618/2-A | Lab Control Sample | Total/NA  | Water  | 3010A  |            |
| MB 680-333618/1-A  | Method Blank       | Total/NA  | Water  | 3010A  |            |

TestAmerica Savannah

Page 47 of 61

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

#### **Metals (Continued)**

#### Analysis Batch: 334039

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 680-102049-3       | TMW-01_06052014    | Total/NA  | Water  | 6010C  | 333618     |
| 680-102049-3 MS    | TMW-01_06052014    | Total/NA  | Water  | 6010C  | 333618     |
| 680-102049-3 MSD   | TMW-01_06052014    | Total/NA  | Water  | 6010C  | 333618     |
| LCS 680-333618/2-A | Lab Control Sample | Total/NA  | Water  | 6010C  | 333618     |
| MB 680-333618/1-A  | Method Blank       | Total/NA  | Water  | 6010C  | 333618     |

#### Analysis Batch: 334904

| Lab Sample ID      | Client Sample ID    | Prep Type         | Matrix | Method | Prep Batch |
|--------------------|---------------------|-------------------|--------|--------|------------|
| 680-102049-1       | SW-04-LOW_06052014  | Dissolved         | Water  | 6010C  | 332949     |
| 680-102049-2       | SW-03-LOW_06052014  | Dissolved         | Water  | 6010C  | 332949     |
| 680-102049-4       | SW-01-LOW_06052014  | Dissolved         | Water  | 6010C  | 332949     |
| 680-102049-5       | SW-02-LOW_06052014  | Dissolved         | Water  | 6010C  | 332949     |
| 680-102049-12      | SW-03-HIGH_06052014 | Dissolved         | Water  | 6010C  | 332949     |
| 680-102049-13      | SW-04-HIGH_06052014 | Dissolved         | Water  | 6010C  | 332949     |
| 680-102049-14      | SW-02-HIGH_06052014 | Dissolved         | Water  | 6010C  | 332949     |
| 680-102049-15      | SW-01-HIGH_06052014 | Dissolved         | Water  | 6010C  | 332949     |
| 680-102049-15 MS   | SW-01-HIGH_06052014 | Dissolved         | Water  | 6010C  | 332949     |
| 680-102049-15 MSD  | SW-01-HIGH_06052014 | Dissolved         | Water  | 6010C  | 332949     |
| LCS 680-332949/2-A | Lab Control Sample  | Total Recoverable | Water  | 6010C  | 332949     |
| MB 680-332949/1-A  | Method Blank        | Total Recoverable | Water  | 6010C  | 332949     |

### **General Chemistry**

#### Analysis Batch: 332872

| Lab Sample ID     | Client Sample ID    | Prep Type | Matrix | Method | Prep Batcl |
|-------------------|---------------------|-----------|--------|--------|------------|
| 680-102049-1      | SW-04-LOW_06052014  | Total/NA  | Water  | 353.2  | _          |
| 680-102049-2      | SW-03-LOW_06052014  | Total/NA  | Water  | 353.2  |            |
| 680-102049-2 DU   | SW-03-LOW_06052014  | Total/NA  | Water  | 353.2  |            |
| 680-102049-3      | TMW-01_06052014     | Total/NA  | Water  | 353.2  |            |
| 680-102049-4      | SW-01-LOW_06052014  | Total/NA  | Water  | 353.2  |            |
| 680-102049-5      | SW-02-LOW_06052014  | Total/NA  | Water  | 353.2  |            |
| 680-102049-6      | PDMW-26T_06052014   | Total/NA  | Water  | 353.2  |            |
| 680-102049-7      | MW-3R_06052014      | Total/NA  | Water  | 353.2  |            |
| 680-102049-8      | PDMW-52_06052014    | Total/NA  | Water  | 353.2  |            |
| 680-102049-9      | PDMW-10R_06052014   | Total/NA  | Water  | 353.2  |            |
| 680-102049-10     | DUP-03_06052014     | Total/NA  | Water  | 353.2  |            |
| 680-102049-11     | PDMW-13P_06052014   | Total/NA  | Water  | 353.2  |            |
| 680-102049-12     | SW-03-HIGH_06052014 | Total/NA  | Water  | 353.2  |            |
| LCS 680-332872/16 | Lab Control Sample  | Total/NA  | Water  | 353.2  |            |
| MB 680-332872/13  | Method Blank        | Total/NA  | Water  | 353.2  |            |

#### Analysis Batch: 332873

| Lab Sample ID     | Client Sample ID    | Prep Type | Matrix | Method | Prep Batch |
|-------------------|---------------------|-----------|--------|--------|------------|
| 680-102049-13     | SW-04-HIGH_06052014 | Total/NA  | Water  | 353.2  |            |
| 680-102049-14     | SW-02-HIGH_06052014 | Total/NA  | Water  | 353.2  |            |
| 680-102049-14 MS  | SW-02-HIGH_06052014 | Total/NA  | Water  | 353.2  |            |
| 680-102049-14 MSD | SW-02-HIGH_06052014 | Total/NA  | Water  | 353.2  |            |
| 680-102049-15     | SW-01-HIGH_06052014 | Total/NA  | Water  | 353.2  |            |
| LCS 680-332873/16 | Lab Control Sample  | Total/NA  | Water  | 353.2  |            |
| MB 680-332873/11  | Method Blank        | Total/NA  | Water  | 353.2  |            |

TestAmerica Savannah

Page 48 of 61

-

3

4

6

7

\_

10

1

# **QC Association Summary**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-102049-1

# **General Chemistry (Continued)**

# Analysis Batch: 334026

| Lab Sample ID    | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|------------------|--------------------|-----------|--------|--------|------------|
| 680-102049-1     | SW-04-LOW_06052014 | Total/NA  | Water  | 310.1  |            |
| 680-102049-2     | SW-03-LOW_06052014 | Total/NA  | Water  | 310.1  |            |
| 680-102049-4     | SW-01-LOW_06052014 | Total/NA  | Water  | 310.1  |            |
| 680-102049-5     | SW-02-LOW_06052014 | Total/NA  | Water  | 310.1  |            |
| LCS 680-334026/4 | Lab Control Sample | Total/NA  | Water  | 310.1  |            |
| MB 680-334026/3  | Method Blank       | Total/NA  | Water  | 310.1  |            |

### Analysis Batch: 334251

| Lab Sample ID    | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch  |
|------------------|--------------------|-----------|--------|--------|-------------|
| 680-102049-1     | SW-04-LOW_06052014 | Total/NA  | Water  | 350.1  | <del></del> |
| 680-102049-2     | SW-03-LOW_06052014 | Total/NA  | Water  | 350.1  |             |
| 680-102049-3     | TMW-01_06052014    | Total/NA  | Water  | 350.1  |             |
| 680-102049-4     | SW-01-LOW_06052014 | Total/NA  | Water  | 350.1  |             |
| 680-102049-5     | SW-02-LOW_06052014 | Total/NA  | Water  | 350.1  |             |
| 680-102049-6     | PDMW-26T_06052014  | Total/NA  | Water  | 350.1  |             |
| 680-102049-7     | MW-3R_06052014     | Total/NA  | Water  | 350.1  |             |
| 680-102049-8     | PDMW-52_06052014   | Total/NA  | Water  | 350.1  |             |
| LCS 680-334251/1 | Lab Control Sample | Total/NA  | Water  | 350.1  |             |
| MB 680-334251/51 | Method Blank       | Total/NA  | Water  | 350.1  |             |

### Analysis Batch: 334252

| Lab Sample ID     | Client Sample ID    | Prep Type | Matrix | Method | Prep Batch |
|-------------------|---------------------|-----------|--------|--------|------------|
| 680-102049-9      | PDMW-10R_06052014   | Total/NA  | Water  | 350.1  | _          |
| 680-102049-10     | DUP-03_06052014     | Total/NA  | Water  | 350.1  |            |
| 680-102049-11     | PDMW-13P_06052014   | Total/NA  | Water  | 350.1  |            |
| 680-102049-12     | SW-03-HIGH_06052014 | Total/NA  | Water  | 350.1  |            |
| 680-102049-13     | SW-04-HIGH_06052014 | Total/NA  | Water  | 350.1  |            |
| 680-102049-14     | SW-02-HIGH_06052014 | Total/NA  | Water  | 350.1  |            |
| 680-102049-15     | SW-01-HIGH_06052014 | Total/NA  | Water  | 350.1  |            |
| LCS 680-334252/46 | Lab Control Sample  | Total/NA  | Water  | 350.1  |            |
| MB 680-334252/52  | Method Blank        | Total/NA  | Water  | 350.1  |            |

### Analysis Batch: 334396

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| 680-102049-12      | SW-03-HIGH_06052014    | Total/NA  | Water  | 310.1  |            |
| 680-102049-13      | SW-04-HIGH_06052014    | Total/NA  | Water  | 310.1  |            |
| 680-102049-14      | SW-02-HIGH_06052014    | Total/NA  | Water  | 310.1  |            |
| 680-102049-15      | SW-01-HIGH_06052014    | Total/NA  | Water  | 310.1  |            |
| LCS 680-334396/4   | Lab Control Sample     | Total/NA  | Water  | 310.1  |            |
| LCSD 680-334396/30 | Lab Control Sample Dup | Total/NA  | Water  | 310.1  |            |
| MB 680-334396/3    | Method Blank           | Total/NA  | Water  | 310.1  |            |

TestAmerica Savannah

Client: AMEC Environment & Infrastructure, Inc.

Client Sample ID: SW-04-LOW\_06052014

Project/Site: CSX Hutchinson Island VRP

Lab Sample ID: 680-102049-1

Matrix: Water

Date Collected: 06/05/14 09:30 Date Received: 06/06/14 08:35

|           | Batch    | Batch            |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method           | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8260B            |     | 1      | 5 mL    | 5 mL   | 334022 | 06/13/14 14:31 | MMT     | TAL SAV |
|           | Instrum  | ent ID: CMSAC    |     |        |         |        |        |                |         |         |
| Total/NA  | Prep     | 3520C            |     |        | 246 mL  | 0.5 mL | 333829 | 06/12/14 15:41 | RBS     | TAL SAV |
| Total/NA  | Analysis | 8270D            |     | 1      | 246 mL  | 0.5 mL | 334440 | 06/16/14 15:38 | LEG     | TAL SAV |
|           | Instrum  | ent ID: CMSG     |     |        |         |        |        |                |         |         |
| Dissolved | Prep     | 3005A            |     |        | 50 mL   | 50 mL  | 332949 | 06/07/14 11:38 | BJB     | TAL SAV |
| Dissolved | Analysis | 6010C            |     | 1      | 50 mL   | 50 mL  | 334904 | 06/17/14 18:48 | BCB     | TAL SAV |
|           | Instrum  | ent ID: ICPF     |     |        |         |        |        |                |         |         |
| Total/NA  | Analysis | 310.1            |     | 1      |         |        | 334026 | 06/12/14 21:21 | TAR     | TAL SAV |
|           | Instrum  | ent ID: MANTECH  |     |        |         |        |        |                |         |         |
| Total/NA  | Analysis | 350.1            |     | 1      | 2 mL    | 2 mL   | 334251 | 06/13/14 16:29 | JME     | TAL SAV |
|           | Instrum  | ent ID: KONELAB1 |     |        |         |        |        |                |         |         |
| Total/NA  | Analysis | 353.2            |     | 1      | 2 mL    | 2 mL   | 332872 | 06/06/14 16:25 | GRX     | TAL SAV |
|           | Instrum  | ent ID: LACHAT2  |     |        |         |        |        |                |         |         |

Client Sample ID: SW-03-LOW\_06052014 Lab Sample ID: 680-102049-2

Date Collected: 06/05/14 09:40

Date Received: 06/06/14 08:35

|           | Batch                | Batch                     |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|---------------------------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Туре                 | Method                    | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis<br>Instrume | 8260B<br>ent ID: CMSAC    |     | 1      | 5 mL     | 5 mL   | 334022 | 06/13/14 14:55 | MMT     | TAL SAV |
| Total/NA  | Prep                 | 3520C                     |     |        | 259.4 mL | 0.5 mL | 333829 | 06/12/14 15:41 | RBS     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 8270D<br>ent ID: CMSG     |     | 1      | 259.4 mL | 0.5 mL | 334440 | 06/16/14 16:03 | LEG     | TAL SAV |
| Dissolved | Prep                 | 3005A                     |     |        | 50 mL    | 50 mL  | 332949 | 06/07/14 11:38 | BJB     | TAL SAV |
| Dissolved | Analysis<br>Instrume | 6010C<br>ent ID: ICPF     |     | 1      | 50 mL    | 50 mL  | 334904 | 06/17/14 18:53 | BCB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 310.1<br>ent ID: MANTECH  |     | 1      |          |        | 334026 | 06/12/14 21:27 | TAR     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>ent ID: KONELAB1 |     | 1      | 2 mL     | 2 mL   | 334251 | 06/13/14 12:39 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>ent ID: LACHAT2  |     | 1      | 2 mL     | 2 mL   | 332872 | 06/06/14 16:26 | GRX     | TAL SAV |

Client Sample ID: TMW-01\_06052014 Lab Sample ID: 680-102049-3

Date Collected: 06/05/14 09:55

Date Received: 06/06/14 08:35

| Γ |          | Batch     | Batch        |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|---|----------|-----------|--------------|-----|--------|----------|--------|--------|----------------|---------|---------|
| P | гер Туре | Туре      | Method       | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Ŧ | otal/NA  | Analysis  | 8260B        |     | 2      | 5 mL     | 5 mL   | 334022 | 06/13/14 15:20 | MMT     | TAL SAV |
|   |          | Instrumer | nt ID: CMSAC |     |        |          |        |        |                |         |         |
| Т | otal/NA  | Prep      | 3520C        |     |        | 256.4 mL | 0.5 mL | 333829 | 06/12/14 15:41 | RBS     | TAL SAV |

TestAmerica Savannah

Page 50 of 61

Matrix: Water

**Matrix: Water** 

6/20/2014

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: CSX Hutchinson Island VRP

Client Sample ID: TMW-01\_06052014 Lab Sample ID: 680-102049-3

Date Collected: 06/05/14 09:55 Matrix: Water Date Received: 06/06/14 08:35

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis 8270D 256.4 mL 0.5 mL 334440 06/16/14 16:27 LEG TAL SAV Instrument ID: CMSG Total/NA Prep 3010A 50 mL 333618 06/11/14 11:17 SP TAL SAV 50 mL Total/NA 50 mL BCB TAL SAV Analysis 6010C 50 mL 334039 06/12/14 21:03 Instrument ID: ICPF Total/NA Analysis 350.1 2000 2 mL 2 mL 334251 06/13/14 17:23 JME TAL SAV Instrument ID: KONELAB1 Total/NA Analysis 353.2 250 2 mL 332872 06/06/14 16:32 GRX TAL SAV 2 mL Instrument ID: LACHAT2

Client Sample ID: SW-01-LOW\_06052014 Lab Sample ID: 680-102049-4

Date Collected: 06/05/14 10:40 **Matrix: Water** 

Date Received: 06/06/14 08:35

|           | Batch                | Batch                     |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|---------------------------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                    | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis<br>Instrume | 8260B<br>ent ID: CMSAC    |     | 1      | 5 mL     | 5 mL   | 334022 | 06/13/14 15:44 | MMT     | TAL SAV |
| Total/NA  | Prep                 | 3520C                     |     |        | 249.5 mL | 0.5 mL | 333829 | 06/12/14 15:41 | RBS     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 8270D<br>ent ID: CMSG     |     | 1      | 249.5 mL | 0.5 mL | 334440 | 06/16/14 17:16 | LEG     | TAL SAV |
| Dissolved | Prep                 | 3005A                     |     |        | 50 mL    | 50 mL  | 332949 | 06/07/14 11:38 | BJB     | TAL SAV |
| Dissolved | Analysis<br>Instrume | 6010C<br>ent ID: ICPF     |     | 1      | 50 mL    | 50 mL  | 334904 | 06/17/14 18:57 | BCB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 310.1<br>ent ID: MANTECH  |     | 1      |          |        | 334026 | 06/12/14 21:42 | TAR     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>ent ID: KONELAB1 |     | 2      | 2 mL     | 2 mL   | 334251 | 06/13/14 16:46 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>ent ID: LACHAT2  |     | 1      | 2 mL     | 2 mL   | 332872 | 06/06/14 16:33 | GRX     | TAL SAV |

Client Sample ID: SW-02-LOW\_06052014 Lab Sample ID: 680-102049-5

Date Collected: 06/05/14 10:45 Date Received: 06/06/14 08:35

|           | Batch    | Batch         |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8260B         |     | 1      | 5 mL     | 5 mL   | 334022 | 06/13/14 16:08 | MMT     | TAL SAV |
|           | Instrume | ent ID: CMSAC |     |        |          |        |        |                |         |         |
| Total/NA  | Prep     | 3520C         |     |        | 258.9 mL | 0.5 mL | 333829 | 06/12/14 15:41 | RBS     | TAL SAV |
| Total/NA  | Analysis | 8270D         |     | 1      | 258.9 mL | 0.5 mL | 334440 | 06/16/14 17:41 | LEG     | TAL SAV |
|           | Instrume | ent ID: CMSG  |     |        |          |        |        |                |         |         |
| Dissolved | Prep     | 3005A         |     |        | 50 mL    | 50 mL  | 332949 | 06/07/14 11:38 | BJB     | TAL SAV |
| Dissolved | Analysis | 6010C         |     | 1      | 50 mL    | 50 mL  | 334904 | 06/17/14 19:02 | BCB     | TAL SAV |
|           | Instrume | ent ID: ICPF  |     |        |          |        |        |                |         |         |

TestAmerica Savannah

Page 51 of 61

**Matrix: Water** 

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: CSX Hutchinson Island VRP

Client Sample ID: SW-02-LOW\_06052014 Lab Sample ID: 680-102049-5

Date Collected: 06/05/14 10:45 Matrix: Water

Date Received: 06/06/14 08:35

|           | Batch    | Batch            |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method           | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 310.1            |     | 1      | _       | -      | 334026 | 06/12/14 21:34 | TAR     | TAL SAV |
|           | Instrume | ent ID: MANTECH  |     |        |         |        |        |                |         |         |
| Total/NA  | Analysis | 350.1            |     | 2      | 2 mL    | 2 mL   | 334251 | 06/13/14 16:46 | JME     | TAL SAV |
|           | Instrume | ent ID: KONELAB1 |     |        |         |        |        |                |         |         |
| Total/NA  | Analysis | 353.2            |     | 1      | 2 mL    | 2 mL   | 332872 | 06/06/14 16:34 | GRX     | TAL SAV |
|           | Instrume | ent ID: LACHAT2  |     |        |         |        |        |                |         |         |

Client Sample ID: PDMW-26T\_06052014 Lab Sample ID: 680-102049-6

Date Collected: 06/05/14 11:35 Matrix: Water

Date Received: 06/06/14 08:35

|           | Batch                | Batch                     |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|---------------------------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                    | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis<br>Instrume | 8260B<br>ent ID: CMSAC    |     | 1      | 5 mL     | 5 mL   | 334022 | 06/13/14 16:32 | MMT     | TAL SAV |
| Total/NA  | Prep                 | 3520C                     |     |        | 255.9 mL | 0.5 mL | 333829 | 06/12/14 15:41 | RBS     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 8270D<br>ent ID: CMSG     |     | 1      | 255.9 mL | 0.5 mL | 334440 | 06/16/14 18:06 | LEG     | TAL SAV |
| Total/NA  | Prep                 | 3010A                     |     |        | 50 mL    | 50 mL  | 332912 | 06/07/14 09:43 | BJB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 6010C<br>ent ID: ICPE     |     | 1      | 50 mL    | 50 mL  | 333550 | 06/10/14 19:51 | BCB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>ent ID: KONELAB1 |     | 500    | 2 mL     | 2 mL   | 334251 | 06/13/14 16:37 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>ent ID: LACHAT2  |     | 1      | 2 mL     | 2 mL   | 332872 | 06/06/14 16:38 | GRX     | TAL SAV |

Client Sample ID: MW-3R\_06052014 Lab Sample ID: 680-102049-7

Date Collected: 06/05/14 13:25 **Matrix: Water** Date Received: 06/06/14 08:35

|           | Batch                | Batch                     |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|---------------------------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Туре                 | Method                    | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis<br>Instrume | 8260B<br>ent ID: CMSAC    |     | 1      | 5 mL     | 5 mL   | 334022 | 06/13/14 16:57 | MMT     | TAL SAV |
| Total/NA  | Prep                 | 3520C                     |     |        | 246.7 mL | 0.5 mL | 333829 | 06/12/14 15:41 | RBS     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 8270D<br>ent ID: CMSG     |     | 1      | 246.7 mL | 0.5 mL | 334440 | 06/16/14 18:30 | LEG     | TAL SAV |
| Total/NA  | Prep                 | 3010A                     |     |        | 50 mL    | 50 mL  | 332912 | 06/07/14 09:43 | BJB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 6010C<br>ent ID: ICPE     |     | 1      | 50 mL    | 50 mL  | 333550 | 06/10/14 19:55 | BCB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>ent ID: KONELAB1 |     | 5      | 2 mL     | 2 mL   | 334251 | 06/13/14 16:46 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>ent ID: LACHAT2  |     | 1      | 2 mL     | 2 mL   | 332872 | 06/06/14 16:39 | GRX     | TAL SAV |

TestAmerica Savannah

.9-1

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Lab Sample ID: 680-102049-8

Matrix: Water

Client Sample ID: PDMW-52\_06052014 Date Collected: 06/05/14 12:50

Date Received: 06/06/14 08:35

| _         | Batch    | Batch           |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-----------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method          | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 350.1           |     | 10     | 2 mL    | 2 mL   | 334251 | 06/13/14 14:56 | JME     | TAL SAV |
|           | Instrum  | ent ID: KONELAE | 31  |        |         |        |        |                |         |         |
| Total/NA  | Analysis | 353.2           |     | 1      | 2 mL    | 2 mL   | 332872 | 06/06/14 16:40 | GRX     | TAL SAV |
|           | Instrum  | ent ID: LACHAT2 |     |        |         |        |        |                |         |         |

Date Collected: 06/05/14 13:05 Matrix: Water

Date Received: 06/06/14 08:35

|           | Batch    | Batch            |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|----------|------------------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method           | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8260B            |     | 1      | 5 mL     | 5 mL   | 334022 | 06/13/14 17:21 | MMT     | TAL SAV |
|           | Instrume | ent ID: CMSAC    |     |        |          |        |        |                |         |         |
| Total/NA  | Prep     | 3520C            |     |        | 254.2 mL | 0.5 mL | 333829 | 06/12/14 15:41 | RBS     | TAL SAV |
| Total/NA  | Analysis | 8270D            |     | 1      | 254.2 mL | 0.5 mL | 334440 | 06/16/14 18:54 | LEG     | TAL SAV |
|           | Instrume | ent ID: CMSG     |     |        |          |        |        |                |         |         |
| Total/NA  | Prep     | 3010A            |     |        | 50 mL    | 50 mL  | 332912 | 06/07/14 09:43 | BJB     | TAL SAV |
| Total/NA  | Analysis | 6010C            |     | 1      | 50 mL    | 50 mL  | 333550 | 06/10/14 19:59 | BCB     | TAL SAV |
|           | Instrume | ent ID: ICPE     |     |        |          |        |        |                |         |         |
| Total/NA  | Analysis | 350.1            |     | 10     | 2 mL     | 2 mL   | 334252 | 06/13/14 15:06 | JME     | TAL SAV |
|           | Instrume | ent ID: KONELAB1 |     |        |          |        |        |                |         |         |
| Total/NA  | Analysis | 353.2            |     | 1      | 2 mL     | 2 mL   | 332872 | 06/06/14 16:42 | GRX     | TAL SAV |
|           | Instrume | ent ID: LACHAT2  |     |        |          |        |        |                |         |         |

Date Collected: 06/05/14 00:00

Date Received: 06/06/14 08:35

|           | Batch    | Batch           |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-----------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method          | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 350.1           |     | 5      | 2 mL    | 2 mL   | 334252 | 06/13/14 15:16 | JME     | TAL SAV |
|           | Instrum  | ent ID: KONELAE | 31  |        |         |        |        |                |         |         |
| Total/NA  | Analysis | 353.2           |     | 1      | 2 mL    | 2 mL   | 332872 | 06/06/14 16:43 | GRX     | TAL SAV |
|           | Instrum  | ent ID: LACHAT2 | !   |        |         |        |        |                |         |         |

Date Collected: 06/05/14 14:50 Date Received: 06/06/14 08:35

|           | Batch    | Batch         |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8260B         |     | 1      | 5 mL    | 5 mL   | 334022 | 06/13/14 17:45 | MMT     | TAL SAV |
|           | Instrume | ent ID: CMSAC |     |        |         |        |        |                |         |         |
| Total/NA  | Prep     | 3520C         |     |        | 257 mL  | 0.5 mL | 333829 | 06/12/14 15:41 | RBS     | TAL SAV |
| Total/NA  | Analysis | 8270D         |     | 1      | 257 mL  | 0.5 mL | 334440 | 06/16/14 19:18 | LEG     | TAL SAV |
|           | Instrume | ent ID: CMSG  |     |        |         |        |        |                |         |         |

TestAmerica Savannah

Page 53 of 61

5

6

8

10

11

6/20/2014

Matrix: Water

**Matrix: Water** 

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Lab Sample ID: 680-102049-11

Client Sample ID: PDMW-13P\_06052014 Date Collected: 06/05/14 14:50

Matrix: Water

Date Received: 06/06/14 08:35

|           | Batch                | Batch                     |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|---------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                    | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep                 | 3010A                     | _   |        | 50 mL   | 50 mL  | 332912 | 06/07/14 09:43 | BJB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 6010C<br>ent ID: ICPE     |     | 1      | 50 mL   | 50 mL  | 333550 | 06/10/14 20:03 | BCB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>ent ID: KONELAB1 |     | 2      | 2 mL    | 2 mL   | 334252 | 06/13/14 17:11 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>ent ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 332872 | 06/06/14 16:44 | GRX     | TAL SAV |

Client Sample ID: SW-03-HIGH\_06052014 Lab Sample ID: 680-102049-12

Matrix: Water Date Collected: 06/05/14 14:25

Date Received: 06/06/14 08:35

|           | Batch    | Batch            |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|----------|------------------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method           | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8260B            |     | 1      | 5 mL     | 5 mL   | 334022 | 06/13/14 18:10 | MMT     | TAL SAV |
|           | Instrume | ent ID: CMSAC    |     |        |          |        |        |                |         |         |
| Total/NA  | Prep     | 3520C            |     |        | 257.6 mL | 0.5 mL | 333829 | 06/12/14 15:41 | RBS     | TAL SAV |
| Total/NA  | Analysis | 8270D            |     | 1      | 257.6 mL | 0.5 mL | 334440 | 06/16/14 19:42 | LEG     | TAL SAV |
|           | Instrume | ent ID: CMSG     |     |        |          |        |        |                |         |         |
| Dissolved | Prep     | 3005A            |     |        | 50 mL    | 50 mL  | 332949 | 06/07/14 11:38 | BJB     | TAL SAV |
| Dissolved | Analysis | 6010C            |     | 1      | 50 mL    | 50 mL  | 334904 | 06/17/14 19:07 | BCB     | TAL SAV |
|           | Instrume | ent ID: ICPF     |     |        |          |        |        |                |         |         |
| Total/NA  | Analysis | 310.1            |     | 1      |          |        | 334396 | 06/15/14 22:12 | LBH     | TAL SAV |
|           | Instrume | ent ID: MANTECH  |     |        |          |        |        |                |         |         |
| Total/NA  | Analysis | 350.1            |     | 1      | 2 mL     | 2 mL   | 334252 | 06/13/14 12:21 | JME     | TAL SAV |
|           | Instrume | ent ID: KONELAB1 |     |        |          |        |        |                |         |         |
| Total/NA  | Analysis | 353.2            |     | 1      | 2 mL     | 2 mL   | 332872 | 06/06/14 16:45 | GRX     | TAL SAV |
|           | Instrume | ent ID: LACHAT2  |     |        |          |        |        |                |         |         |

Client Sample ID: SW-04-HIGH\_06052014

Lab Sample ID: 680-102049-13 Date Collected: 06/05/14 14:45 **Matrix: Water** 

Date Received: 06/06/14 08:35

|           | Batch    | Batch           |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-----------------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method          | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8260B           |     | 1      | 5 mL     | 5 mL   | 334022 | 06/13/14 18:34 | MMT     | TAL SAV |
|           | Instrume | ent ID: CMSAC   |     |        |          |        |        |                |         |         |
| Total/NA  | Prep     | 3520C           |     |        | 242.8 mL | 0.5 mL | 333829 | 06/12/14 15:41 | RBS     | TAL SAV |
| Total/NA  | Analysis | 8270D           |     | 1      | 242.8 mL | 0.5 mL | 334440 | 06/16/14 20:07 | LEG     | TAL SAV |
|           | Instrume | ent ID: CMSG    |     |        |          |        |        |                |         |         |
| Dissolved | Prep     | 3005A           |     |        | 50 mL    | 50 mL  | 332949 | 06/07/14 11:38 | BJB     | TAL SAV |
| Dissolved | Analysis | 6010C           |     | 1      | 50 mL    | 50 mL  | 334904 | 06/17/14 19:11 | BCB     | TAL SAV |
|           | Instrume | ent ID: ICPF    |     |        |          |        |        |                |         |         |
| Total/NA  | Analysis | 310.1           |     | 1      |          |        | 334396 | 06/15/14 22:06 | LBH     | TAL SAV |
|           | Instrume | ent ID: MANTECH |     |        |          |        |        |                |         |         |

TestAmerica Savannah

Page 54 of 61

Lab Sample ID: 680-102049-13

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: CSX Hutchinson Island VRP

Client Sample ID: SW-04-HIGH\_06052014

Date Collected: 06/05/14 14:45 Matrix: Water

Date Received: 06/06/14 08:35

|           | Batch    | Batch           |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-----------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method          | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 350.1           |     | 1      | 2 mL    | 2 mL   | 334252 | 06/13/14 12:21 | JME     | TAL SAV |
|           | Instrume | ent ID: KONELAE | 31  |        |         |        |        |                |         |         |
| Total/NA  | Analysis | 353.2           |     | 1      | 2 mL    | 2 mL   | 332873 | 06/06/14 17:10 | GRX     | TAL SAV |
|           | Instrume | ent ID: LACHAT2 |     |        |         |        |        |                |         |         |

Lab Sample ID: 680-102049-14 Client Sample ID: SW-02-HIGH\_06052014

Date Collected: 06/05/14 15:15 **Matrix: Water** 

Date Received: 06/06/14 08:35

|           | Batch                | Batch                     |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|---------------------------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                    | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis<br>Instrume | 8260B<br>ent ID: CMSAC    |     | 1      | 5 mL     | 5 mL   | 334022 | 06/13/14 18:58 | MMT     | TAL SAV |
| Total/NA  | Prep                 | 3520C                     |     |        | 262.3 mL | 0.5 mL | 333829 | 06/12/14 15:41 | RBS     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 8270D<br>ent ID: CMSG     |     | 1      | 262.3 mL | 0.5 mL | 334440 | 06/16/14 20:30 | LEG     | TAL SAV |
| Dissolved | Prep                 | 3005A                     |     |        | 50 mL    | 50 mL  | 332949 | 06/07/14 11:38 | BJB     | TAL SAV |
| Dissolved | Analysis<br>Instrume | 6010C<br>ent ID: ICPF     |     | 1      | 50 mL    | 50 mL  | 334904 | 06/17/14 19:16 | BCB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 310.1<br>ent ID: MANTECH  |     | 1      |          |        | 334396 | 06/16/14 00:06 | LBH     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>ent ID: KONELAB1 |     | 1      | 2 mL     | 2 mL   | 334252 | 06/13/14 12:21 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>ent ID: LACHAT2  |     | 1      | 2 mL     | 2 mL   | 332873 | 06/06/14 16:54 | GRX     | TAL SAV |

Client Sample ID: SW-01-HIGH\_06052014 Lab Sample ID: 680-102049-15

Date Collected: 06/05/14 15:30 **Matrix: Water** Date Received: 06/06/14 08:35

|           | Batch    | Batch            |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|----------|------------------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method           | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8260B            |     | 1      | 5 mL     | 5 mL   | 334022 | 06/13/14 19:23 | MMT     | TAL SAV |
|           | Instrume | ent ID: CMSAC    |     |        |          |        |        |                |         |         |
| Total/NA  | Prep     | 3520C            |     |        | 244.7 mL | 0.5 mL | 333829 | 06/12/14 15:41 | RBS     | TAL SAV |
| Total/NA  | Analysis | 8270D            |     | 1      | 244.7 mL | 0.5 mL | 334440 | 06/16/14 20:55 | LEG     | TAL SAV |
|           | Instrume | ent ID: CMSG     |     |        |          |        |        |                |         |         |
| Dissolved | Prep     | 3005A            |     |        | 50 mL    | 50 mL  | 332949 | 06/07/14 11:38 | BJB     | TAL SAV |
| Dissolved | Analysis | 6010C            |     | 1      | 50 mL    | 50 mL  | 334904 | 06/17/14 19:21 | BCB     | TAL SAV |
|           | Instrume | ent ID: ICPF     |     |        |          |        |        |                |         |         |
| Total/NA  | Analysis | 310.1            |     | 1      |          |        | 334396 | 06/16/14 00:13 | LBH     | TAL SAV |
|           | Instrume | ent ID: MANTECH  |     |        |          |        |        |                |         |         |
| Total/NA  | Analysis | 350.1            |     | 1      | 2 mL     | 2 mL   | 334252 | 06/13/14 12:21 | JME     | TAL SAV |
|           | Instrume | ent ID: KONELAB1 |     |        |          |        |        |                |         |         |

TestAmerica Savannah

### **Lab Chronicle**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Client Sample ID: SW-01-HIGH\_06052014

TestAmerica Job ID: 680-102049-1

Lab Sample ID: 680-102049-15

Matrix: Water

Date Collected: 06/05/14 15:30 Date Received: 06/06/14 08:35

Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis 353.2 2 mL 2 mL 332873 06/06/14 17:11 GRX TAL SAV

Instrument ID: LACHAT2

Client Sample ID: TRIPBLANK\_06052014

Lab Sample ID: 680-102049-16 Date Collected: 06/05/14 00:00 Matrix: Water

Date Received: 06/06/14 08:35

Dil Batch Batch Initial Final Batch Prepared Prep Type Type Method Factor Amount Amount Number or Analyzed Run Analyst Lab Total/NA Analysis 8260B 5 mL 5 mL 334022 06/13/14 12:56 MMT TAL SAV Instrument ID: CMSAC

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

# **Laboratory: TestAmerica Savannah**

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

| Authority               | Program       | EPA Region | Certification ID     | Expiration Date |
|-------------------------|---------------|------------|----------------------|-----------------|
|                         | AFCEE         |            | SAVLAB               |                 |
| A2LA                    | DoD ELAP      |            | 399.01               | 02-28-15        |
| A2LA                    | ISO/IEC 17025 |            | 399.01               | 02-28-15        |
| Alabama                 | State Program | 4          | 41450                | 06-30-14 *      |
| Arkansas DEQ            | State Program | 6          | 88-0692              | 01-31-15        |
| California              | NELAP         | 9          | 3217CA               | 07-31-14 *      |
| Colorado                | State Program | 8          | N/A                  | 12-31-14        |
| Connecticut             | State Program | 1          | PH-0161              | 03-31-15        |
| Florida                 | NELAP         | 4          | E87052               | 06-30-14 *      |
| GA Dept. of Agriculture | State Program | 4          | N/A                  | 06-30-14 *      |
| Georgia                 | State Program | 4          | N/A                  | 06-30-14 *      |
| Georgia                 | State Program | 4          | 803                  | 06-30-14 *      |
| Guam                    | State Program | 9          | 09-005r              | 04-16-15        |
| Hawaii                  | State Program | 9          | N/A                  | 06-30-14 *      |
| Illinois                | NELAP         | 5          | 200022               | 11-30-14        |
| Indiana                 | State Program | 5          | N/A                  | 06-30-14 *      |
| lowa                    | State Program | 7          | 353                  | 07-01-15        |
| Kentucky (DW)           | State Program | 4          | 90084                | 12-31-14        |
| Kentucky (UST)          | State Program | 4          | 18                   | 02-28-15        |
| Louisiana               | NELAP         | 6          | 30690                | 06-30-14 *      |
| Louisiana (DW)          | NELAP         | 6          | LA140023             | 12-31-14        |
| Maine                   | State Program | 1          | GA00006              | 08-16-14        |
| Maryland                | State Program | 3          | 250                  | 12-31-14        |
| Massachusetts           | State Program | 1          | M-GA006              | 06-30-14 *      |
| Michigan                | State Program | 5          | 9925                 | 06-30-14 *      |
| Mississippi             | State Program | 4          | N/A                  | 06-30-14 *      |
| Montana                 | State Program | 8          | CERT0081             | 01-01-15        |
| Nebraska                | State Program | 7          | TestAmerica-Savannah | 06-30-14 *      |
| New Jersey              | NELAP         | 2          | GA769                | 06-30-14 *      |
| New Mexico              | State Program | 6          | N/A                  | 06-30-14 *      |
| New York                | NELAP         | 2          | 10842                | 03-31-15        |
| North Carolina DENR     | State Program | 4          | 269                  | 12-31-14        |
| North Carolina DHHS     | State Program | 4          | 13701                | 07-31-14 *      |
| Oklahoma                | State Program | 6          | 9984                 | 08-31-14        |
| Pennsylvania            | NELAP         | 3          | 68-00474             | 06-30-15        |
| Puerto Rico             | State Program | 2          | GA00006              | 12-31-14        |
| South Carolina          | State Program | 4          | 98001                | 06-30-14 *      |
| Tennessee               | State Program | 4          | TN02961              | 06-30-14 *      |
| Texas                   | NELAP         | 6          | T104704185-08-TX     | 11-30-14        |
| USDA                    | Federal       |            | SAV 3-04             | 06-11-17        |
| Virginia                | NELAP         | 3          | 460161               | 06-14-15        |
| Washington              | State Program | 10         | C805                 | 06-10-15        |
| West Virginia DEP       | State Program | 3          | 94                   | 06-30-14 *      |
| West Virginia DHHR      | State Program | 3          | 9950C                | 12-31-14        |
| Wisconsin               | State Program | 5          | 999819810            | 08-31-14        |
| Wyoming                 | State Program | 8          | 8TMS-L               | 06-30-14 *      |

6/20/2014

TestAmerica Savannah

3

6

8

1 ∩

11

 $<sup>\</sup>ensuremath{^{\star}}$  Certification renewal pending - certification considered valid.

# **Method Summary**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-102049-1

| Method | Method Description                     | Protocol | Laboratory |
|--------|----------------------------------------|----------|------------|
| 8260B  | Volatile Organic Compounds (GC/MS)     | SW846    | TAL SAV    |
| 8270D  | Semivolatile Organic Compounds (GC/MS) | SW846    | TAL SAV    |
| 6010C  | Metals (ICP)                           | SW846    | TAL SAV    |
| 310.1  | Alkalinity                             | MCAWW    | TAL SAV    |
| 350.1  | Nitrogen, Ammonia                      | MCAWW    | TAL SAV    |
| 353.2  | Nitrogen, Nitrate-Nitrite              | MCAWW    | TAL SAV    |

#### **Protocol References:**

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

### Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

2

3

4

6

7

8

10

11

| # 200                  | SHIPMENT INFORMATION                             | Shipment Method: Lab Courter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                           | Project 6-4300-5240      | PM: Pat Hamison               | But, havison@ once com           | Pre=3658-13 Fit                    |                                | NALYSIS                              | week to the contract of the co | )              | 4)               | i N                             | 68                                     | 1/k                                 | 16                         | 9                                   | Chain                         | of Cu                  | ustod             | , ××                       | × ×                   |                     |                                       |                    |                     |            | Comments & Special Analytical Requirements: | 3 7 6 6 5         | 0.8(5.2/5.4      | Custody Seal # LAB Log Number | ILL YES LONG # # 1AL-6006 (0509)             |
|------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------|----------------------------------|------------------------------------|--------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------|---------------------------------|----------------------------------------|-------------------------------------|----------------------------|-------------------------------------|-------------------------------|------------------------|-------------------|----------------------------|-----------------------|---------------------|---------------------------------------|--------------------|---------------------|------------|---------------------------------------------|-------------------|------------------|-------------------------------|----------------------------------------------|
|                        | :: n                                             | 0, Tampa, FL 33634 P: 813-885-7427 F: 813-885-7049<br>isacola, FL 32514 P: 850-474-1001 F: 850-478-2671                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ☐ TestAmerica Buffalo - 10 Hazelwood Drive, Suite 106, Amherst, NY 14228 P. 716-961-2600 ③F. 716-961-7991 ☐ TestAmerica Chicago <sub>™</sub> 2417 Bond Street, University Park, IL 60466 P. 708-534-5200 ☐F. 708-534-5211 | CONSULTANT INFORMATION   | Dany: Amec E'8I               | Address; 3500 F2211 Rd St. 100   | City, State Zip: Shruffle, TH 3721 | id Note ** 3   3,0   0   1   2 | iosulfate Pres. METHODS FOR ANALYSIS | Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 된 TIO = Figure | N                | אלמ                             | 700                                    | メラシンの                               |                            | or Grab Code A A C C                | NXXXX MS 9 W                  | X X X X M5 9 (5)       | N 6 6W X X X X X  | (n) 6   Stul ×   X   X   X | 3 6 5W× X XX          | 6 GW X X X X        | X X X X X X X X X X X X X X X X X X X | X X Z S            | 6 6W×XXXX           | × × 39 9 7 | Date/fine: 14 08,0                          | Date/Time: k      | Date/Time:       | 3                             | I LIY8S LINO INVOICE MUST BE SUBMITTED       |
| LABORATORY INFORMATION | TestAmerica Savannah - 5102 LaRoche Avenue, Sav: | ☐ TestAmerica Tampa - 6712 Benjamin Road, Suite 100, Tampa, FL 33634 P: 813-885-7427 ☐ TestAmerica Pensacola - 3355 McLemore Drive, Pensacola, FL 32514 P: 850-474-1001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ☐ TestAmerica Buffalo : 10 Hazelwood Drive, Suite 106, Amherst, NY 14228 P: 716-691-2600 《F: 716-961 ☐ TestAmerica Chicago⇒ 2417 Bond Street, University Park, IL 60466 P: 708-534-5200 《F: 708-534-5211                  |                          | Proj. City: Savonnah Company: |                                  | LWON 1989 SMR City 8               | Codes: 3 = Sulfu               |                                      | 1 = Hydrochloric Acid 5 = Sodium Hydroxide 2 = Nitric Acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | ater             |                                 | SW = Surface Water   SUL = Other Solid | A-tametamenta-estatement estatement | Sample Collection Filtered | Date Time Sampler Y or N            | (1) K   S   S   N (1)   N (1) | (1) K   SCHO   H   10) | 6 15/14 OGSS P6 A | 6/5/14 1040 55 10          | 615114 NO45 SF YW     | 61814 1135 PG N     | 6 15 14 1325 JJ N                     | 615114 1250 SF N   | N 20 2051 1913 1    | 7 51519    | of O Received By: My                        | AS S Received By: | Received By:     | Lab Remarks:                  |                                              |
|                        | CHAIN OF                                         | THE ANCED DE |                                                                                                                                                                                                                           | CSXT PROJECT INFORMATION | CSXT Project Number: 9415575  | CSXT Project Name: Hutchings TSC | `\                                 |                                |                                      | 2 Day Rush X Standard 14 Days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | ndard (Level II) | Level III EDD Required, Format: | LJ Level IV                            | SAMPLE INFORMATION                  |                            | Sample Identification Number & Type | 01 plazsogo-MOT-HO-MS         | 01 H1025090-M07-80-MS  | p 41025090-10-WMT | 01 h1025090-M07-10-M5      | SW-02-10W-06052014 10 | PDMW-26T_06052014 9 | MW-38_06052014 9                      | PDMW-52-06052014 9 | PDMW-108_06052014 9 |            | Refinquished By: Date/Time:                 | Relinquished B.   | Relinquished By: | Received By Laboratory:       | ORIGINAL – RETURN TO LABORATORY WITH SAMPLES |

| # COC #                        | SHIPMENT INFORMATION                                                                   | Shipment Method: Lab Courter                                                                                                                                                   | Shipment Tracking No:                                                                                                                                                       | Project # 6 -4300-5240        | PM: Pat Hanson                                                                                | Email: pat, harrison@omec.com | Sept.                       | <u>م</u> لا       | INALYSIS                   | Vą                      | L 111                  | ができていた。                  | Property of the state of the st | 1/2<br>55<br>50<br>1/2<br>1/2 | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | T T                    |                   | X                 | <u>×</u> ×          | × ×                 | X ×               |             |             |   | Comment:            | 5.8/5.2/5.4         | 640701-089       | stody Seal #            | INVOICE MUST BE SUBMITTED TO CSXT WITH ORIGINAL COC TAL-6006 (0509)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------|-----------------------------|-------------------|----------------------------|-------------------------|------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------|------------------------|-------------------|-------------------|---------------------|---------------------|-------------------|-------------|-------------|---|---------------------|---------------------|------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D-012-254-7858. F-012-359-0165 | Section - 4101 Shuffel Drive NW, North Canton, OH 4720 P. 330-497-9396 P. 330-497-0772 | P: 813-885-7427 F: 813-885-7049<br>P: 850-474-1001 F: 850-478-2671                                                                                                             | 8 P: 716-691-2600 F: 716-961-7991<br>708-534-5200 F: 708-534-5211                                                                                                           | RMATION                       | 8.T                                                                                           | 41 Rd Stc 100                 | 372(1                       | Note - 3 30 0 1 2 | Pres. METHODS FOR ANALYSIS | Code                    | 10                     | 0 <u>)</u>               | 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T WHY CONT                    |                                        |                        | X X X X M         | XXXXMS            | XXXX                | ××××35              | XXXXXXX           | X mo        |             |   | Calle 4 08.00       | Date/Time:          | Date/Time:       | LAB USE: Custody Intact | I L Yes L NO INVOICE MUST BE SUBMITTED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Aumio Sayanah GA 3404          | 31 Shuffel Drive NW, North Canton, OH 44                                               | Tampa - 6712 Benjamin Road, Suite 100, Tampa, FL 33634 P. 813-885-7427 F. 813-885-7049<br>Pensacola - 3355 McLemore Drive, Pensacola, FL 32514 P. 850-474-1001 F. 850-478-2671 | Buffalo - 10 Hazelwood Drive, Suite 106, Amherst, NY 14228 P: 716-691-2600 F: 716-961 Chicago <-2417 Bond Street, University Park, IL 60466 P: 708-534-5200 F: 708-534-5211 | CONSULTANT INFORMATION        | で<br>Company<br>Company<br>に<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の |                               | MR City, State, Zip: The Th | Suff              | _                          | 5 = Sodium Hydroxide Co | SO = Soil LIQ = Liquid | de                       | OI = OII<br>SOL = Other Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               | Filtered Type                          | Sampler Y or N Comp    | PC N G            | SF 製加 C           | 2 (3) (5)           | SK 7(1) G           | J (1) L           | 9 1 1       | e y e<br>de | : | Ch. Le              | y:                  | у:               | (5:                     | TO THE RESIDENCE OF THE CONTROLLED THE RESIDENCE OF THE PROPERTY OF THE PROPER |
| LABORATORY INFORMATION         | TestAmerica North Canton - 410                                                         | ☐ TestAmerica Tampa - 6712 Benj<br>☐ TestAmerica Pensacola - 3355 N                                                                                                            | ☐ TestAmerica Buffalo - 10 Hazely<br>☐ TestAmerica Chicago = 2417 Bo                                                                                                        | Proj. State (State of Origin) | Proj. City: Savennah                                                                          | 1 -                           | ENWON: 35915MR              | Preservati        | 0 = No Preservatives       | 1 = Hydrochloric Acid   | Matrix Codes:          | GW = Groundwater         | WW = Waste Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | rs Sample Collection                   | Da                     | 6/5/2014 1450     | 25H1 HOUS 19      | 6/5/2014 1445       | 4 15 2014           | 6 15/2014 1530    | -  hoods19  |             |   | Received By         | 14 58 > Received By | Received By:     | (M egg) Lab Remarks:    | Ì                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                | CHAIN OF                                                                               | CUSTODY                                                                                                                                                                        |                                                                                                                                                                             | ATION                         | 15575                                                                                         | Hutchingon Isbar              | Ross                        |                   | Specify # Days             | Standard 14 Days        | Other Deliv:           |                          | EDD Required, Format:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               | Containers                             | fication Number & Type |                   | 1_06252014 10     | H_060572014 10      | 4_06052014 1 0      | Q1  hlezsong")    | 06052014 2  |             |   | 114 0800 Date/Time: | Sate frime:         | Date/Time:       | Date/Time OC OF W       | RATORY WITH SAMPLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                | V                                                                                      | NOTTATAOCHO                                                                                                                                                                    | IKAINSI OKIANI                                                                                                                                                              | CSXT PROJECT INFORMATION      | CSXT Project Number: QLSST                                                                    | CSXT Project Name:            | CSXT Contact: SQM           | Turnaround Time:  | 1 Day Rush                 | 2 Day Rush              | Deliverables:          | CSXT Standard (Level II) | Level III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SAMPLE INFORMATION            |                                        | Sample Identification  | PDMW-13P-06052014 | 40-03-HIGH_06520H | H1675090-H91H-H0-M5 | SW-02-H16H_06052014 | HG5090-H91H-10-MS | TRIPBLANK-C |             |   | Relinduished By:    | Helinquished By N   | Relinquished By: | Received By Laborator   | ORIGINAL – RETURN TO LABORATORY WITH SAMPLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

# **Login Sample Receipt Checklist**

Client: AMEC Environment & Infrastructure, Inc.

Job Number: 680-102049-1

Login Number: 102049 List Source: TestAmerica Savannah

List Number: 1

Creator: Conner, Keaton

| Question                                                                                                  | Answer | Comment                                             |
|-----------------------------------------------------------------------------------------------------------|--------|-----------------------------------------------------|
| Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td> | N/A    |                                                     |
| The cooler's custody seal, if present, is intact.                                                         | True   |                                                     |
| Sample custody seals, if present, are intact.                                                             | True   |                                                     |
| The cooler or samples do not appear to have been compromised or tampered with.                            | True   |                                                     |
| Samples were received on ice.                                                                             | True   |                                                     |
| Cooler Temperature is acceptable.                                                                         | True   |                                                     |
| Cooler Temperature is recorded.                                                                           | True   |                                                     |
| COC is present.                                                                                           | True   |                                                     |
| COC is filled out in ink and legible.                                                                     | True   |                                                     |
| COC is filled out with all pertinent information.                                                         | True   |                                                     |
| Is the Field Sampler's name present on COC?                                                               | True   |                                                     |
| There are no discrepancies between the containers received and the COC.                                   | False  | COC mistakenly reads 10 bottles each for -8 and -10 |
| Samples are received within Holding Time.                                                                 | True   |                                                     |
| Sample containers have legible labels.                                                                    | True   |                                                     |
| Containers are not broken or leaking.                                                                     | True   |                                                     |
| Sample collection date/times are provided.                                                                | True   |                                                     |
| Appropriate sample containers are used.                                                                   | True   |                                                     |
| Sample bottles are completely filled.                                                                     | True   |                                                     |
| Sample Preservation Verified.                                                                             | True   |                                                     |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs                          | True   |                                                     |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").                           | True   |                                                     |
| Multiphasic samples are not present.                                                                      | True   |                                                     |
| Samples do not require splitting or compositing.                                                          | True   |                                                     |
| Residual Chlorine Checked.                                                                                | N/A    |                                                     |

3

4

9

10

11



THE LEADER IN ENVIRONMENTAL TESTING

# ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

TestAmerica Job ID: 680-102080-2

Client Project/Site: CSX Hutchinson Island VRP

For:

AMEC Environment & Infrastructure, Inc. 2677 Buford Highway Atlanta, Georgia 30324

Attn: Mr. Steve Foley

Subal Horey

Authorized for release by: 6/24/2014 6:05:27 PM

Lisa Harvey, Project Manager II (912)354-7858 e.3221

lisa.harvey@testamericainc.com

·····LINKS ·······

Review your project results through

Total Access

**Have a Question?** 



Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

### **Case Narrative**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-102080-2

Job ID: 680-102080-2

Laboratory: TestAmerica Savannah

Narrative

#### **CASE NARRATIVE**

Client: AMEC Environment & Infrastructure, Inc.
Project: CSX Hutchinson Island VRP
Report Number: 680-102080-2

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

#### **RECEIPT**

The samples were received on 06/06/2014; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 3.0 C.

### **VOLATILE ORGANIC COMPOUNDS (GC-MS)**

Samples ERB-03-060620214 (680-102080-5) and trip blank\_-03-060620214 (680-102080-6) were analyzed for Volatile Organic Compounds (GC-MS) in accordance with EPA SW-846 Method 8260B.

### SEMIVOLATILE ORGANIC COMPOUNDS (AQUEOUS)

Sample ERB-03-060620214 (680-102080-5) was analyzed for Semivolatile Organic Compounds (Aqueous) in accordance with EPA SW-846 Method 8270D.

Acenaphthylene exceeded the RPD limit for LCSD 680-333823/5-A. Refer to the QC report for details.

#### **METALS (ICP)**

Sample ERB-03-060620214 (680-102080-5) was analyzed for Metals (ICP) in accordance with EPA SW-846 Method 6010C.

#### **AMMONIA**

Samples PDMW-49\_06062014 (680-102080-3), PDMW-51\_06062014 (680-102080-4) and ERB-03-060620214 (680-102080-5) were analyzed for ammonia in accordance with EPA Method 350.1.

Sample PDMW-51\_06062014 (680-102080-4)[5X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

#### **NITRATE-NITRITE AS NITROGEN**

Samples PDMW-49\_06062014 (680-102080-3), PDMW-51\_06062014 (680-102080-4) and ERB-03-060620214 (680-102080-5) were analyzed for nitrate-nitrite as nitrogen in accordance with EPA Method 353.2. The samples were analyzed on 06/10/2014 and 06/11/2014.

Method(s) 353.2: Nitrate has a 48-hour hold time. The following sample(s) was analyzed outside hold time due to laboratory error: PDMW-51\_06062014 (680-102080-4), ERB-03-06062014 (680-102080-5), PDMW-49\_06062014 (680-102080-3).

## **Definitions/Glossary**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-102080-2

### **Qualifiers**

### **GC/MS VOA**

Qualifier **Qualifier Description** 

Ū Indicates the analyte was analyzed for but not detected.

#### GC/MS Semi VOA

Qualifier **Qualifier Description** U Indicates the analyte was analyzed for but not detected. RPD of the LCS and LCSD exceeds the control limits

### **Metals**

Qualifier **Qualifier Description** 

Indicates the analyte was analyzed for but not detected.

#### **General Chemistry**

Qualifier **Qualifier Description** Н Sample was prepped or analyzed beyond the specified holding time

Indicates the analyte was analyzed for but not detected.

### **Glossary**

U

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CNF Contains no Free Liquid

DER Duplicate error ratio (normalized absolute difference)

Dilution Factor Dil Fac

Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample DL, RA, RE, IN

DLC Decision level concentration MDA Minimum detectable activity EDL Estimated Detection Limit MDC Minimum detectable concentration

MDL Method Detection Limit ML Minimum Level (Dioxin)

NC Not Calculated

Not detected at the reporting limit (or MDL or EDL if shown) ND

**PQL Practical Quantitation Limit** 

QC **Quality Control RER** Relative error ratio

Reporting Limit or Requested Limit (Radiochemistry) RL

**RPD** Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TFF TEQ Toxicity Equivalent Quotient (Dioxin)

TestAmerica Savannah

6/24/2014

# **Sample Summary**

Matrix

Water

Water

Water

Water

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Client Sample ID

PDMW-49\_06062014

PDMW-51\_06062014

ERB-03-060620214

trip blank\_-03-060620214

Lab Sample ID

680-102080-3

680-102080-4

680-102080-5

680-102080-6

TestAmerica Job ID: 680-102080-2

| Collected      | Received       |
|----------------|----------------|
| 06/06/14 10:25 | 06/06/14 12:45 |
| 06/06/14 10:46 | 06/06/14 12:45 |

06/06/14 10:45

06/06/14 00:00

3

4

5

06/06/14 12:45

06/06/14 12:45

6

8

9

10

# **Client Sample Results**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Client Sample ID: PDMW-49\_06062014

TestAmerica Job ID: 680-102080-2

Lab Sample ID: 680-102080-3

Matrix: Water

Date Collected: 06/06/14 10:25 Date Received: 06/06/14 12:45

**General Chemistry** Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 0.42 0.050 mg/L 06/13/14 12:31 Ammonia Nitrate as N 0.050 UH 0.050 06/11/14 17:26 mg/L

5

0

10

11

# **Client Sample Results**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Client Sample ID: PDMW-51\_06062014

TestAmerica Job ID: 680-102080-2

Lab Sample ID: 680-102080-4

Matrix: Water

Date Collected: 06/06/14 10:46 Date Received: 06/06/14 12:45

|   | General Chemistry |        |           |       |     |      |   |          |                |         |
|---|-------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
|   | Analyte           | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|   | Ammonia           | 7.0    |           | 0.25  |     | mg/L |   |          | 06/13/14 16:46 | 5       |
| Į | Nitrate as N      | 0.050  | UH        | 0.050 |     | mg/L |   |          | 06/10/14 16:24 | 1       |

\_

\_

9

10

11

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: CSX Hutchinson Island VRP

Client Sample ID: ERB-03-060620214 Lab Sample ID: 680-102080-5

Date Collected: 06/06/14 10:45 Matrix: Water

Date Received: 06/06/14 12:45

| Analyte              | Result    | Qualifier | RL       | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|----------------------|-----------|-----------|----------|-----|------|---|----------|----------------|---------|
| Benzene              | 1.0       | U         | 1.0      |     | ug/L |   |          | 06/11/14 18:04 | 1       |
| Ethylbenzene         | 1.0       | U         | 1.0      |     | ug/L |   |          | 06/11/14 18:04 | 1       |
| Toluene              | 1.0       | U         | 1.0      |     | ug/L |   |          | 06/11/14 18:04 | 1       |
| Xylenes, Total       | 2.0       | U         | 2.0      |     | ug/L |   |          | 06/11/14 18:04 | 1       |
| Surrogate            | %Recovery | Qualifier | Limits   |     |      |   | Prepared | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene | 94        |           | 70 - 130 |     |      | - |          | 06/11/14 18:04 | 1       |
| Dibromofluoromethane | 93        |           | 70 - 130 |     |      |   |          | 06/11/14 18:04 | 1       |
| Toluene-d8 (Surr)    | 102       |           | 70 - 130 |     |      |   |          | 06/11/14 18:04 | 1       |

| Analyte                | Result    | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|-----|------|---|----------------|----------------|---------|
| Acenaphthene           | 9.7       | U         | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/17/14 11:26 | 1       |
| Acenaphthylene         | 9.7       | U *       | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/17/14 11:26 | 1       |
| Anthracene             | 9.7       | U         | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/17/14 11:26 | 1       |
| Benzo[a]anthracene     | 9.7       | U         | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/17/14 11:26 | 1       |
| Benzo[a]pyrene         | 9.7       | U         | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/17/14 11:26 | 1       |
| Benzo[b]fluoranthene   | 9.7       | U         | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/17/14 11:26 | 1       |
| Benzo[g,h,i]perylene   | 9.7       | U         | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/17/14 11:26 | 1       |
| Benzo[k]fluoranthene   | 9.7       | U         | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/17/14 11:26 | 1       |
| Chrysene               | 9.7       | U         | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/17/14 11:26 | 1       |
| Dibenz(a,h)anthracene  | 9.7       | U         | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/17/14 11:26 | 1       |
| Fluoranthene           | 9.7       | U         | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/17/14 11:26 | 1       |
| Fluorene               | 9.7       | U         | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/17/14 11:26 | 1       |
| Indeno[1,2,3-cd]pyrene | 9.7       | U         | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/17/14 11:26 | 1       |
| 1-Methylnaphthalene    | 9.7       | U         | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/17/14 11:26 | 1       |
| 2-Methylnaphthalene    | 9.7       | U         | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/17/14 11:26 | 1       |
| Naphthalene            | 9.7       | U         | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/17/14 11:26 | 1       |
| Phenanthrene           | 9.7       | U         | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/17/14 11:26 | 1       |
| Pyrene                 | 9.7       | U         | 9.7      |     | ug/L |   | 06/12/14 15:41 | 06/17/14 11:26 | 1       |
| Surrogate              | %Recovery | Qualifier | Limits   |     |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl       | 74        |           | 38 - 130 |     |      |   | 06/12/14 15:41 | 06/17/14 11:26 | 1       |
| Nitrobenzene-d5 (Surr) | 83        |           | 39 - 130 |     |      |   | 06/12/14 15:41 | 06/17/14 11:26 | 1       |

| Terphenyl-d14 (Surr)         | 111    |           | 10 - 143 |     |      |   | 06/12/14 15:41 | 06/17/14 11:26 | 1       |
|------------------------------|--------|-----------|----------|-----|------|---|----------------|----------------|---------|
| Method: 6010C - Metals (ICP) |        |           |          |     |      | _ |                |                |         |
| Analyte                      | Result | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                      | 20     | U         | 20       |     | ug/L |   | 06/11/14 11:17 | 06/12/14 21:43 | 1       |
| Chromium                     | 10     | U         | 10       |     | ug/L |   | 06/11/14 11:17 | 06/12/14 21:43 | 1       |
| Lead                         | 10     | U         | 10       |     | ug/L |   | 06/11/14 11:17 | 06/12/14 21:43 | 1       |
| Nickel                       | 40     | U         | 40       |     | ug/L |   | 06/11/14 11:17 | 06/12/14 21:43 | 1       |
| Zinc<br>-                    | 20     | U         | 20       |     | ug/L |   | 06/11/14 11:17 | 06/12/14 21:43 | 1       |
| General Chemistry            |        |           |          |     |      |   |                |                |         |
| Analyte                      | Result | Qualifier | RI       | MDI | Unit | n | Prenared       | Δnalvzed       | Dil Fac |

| Analyte      | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|--------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia      | 0.050  | U         | 0.050 |     | mg/L |   |          | 06/13/14 12:31 | 1       |
| Nitrate as N | 0.14   | H         | 0.050 |     | mg/L |   |          | 06/10/14 16:16 | 1       |

TestAmerica Savannah

# **Client Sample Results**

Client: AMEC Environment & Infrastructure, Inc.

TestAmerica Job ID: 680-102080-2

Project/Site: CSX Hutchinson Island VRP

Client Sample ID: trip blank\_-03-060620214

Lab Sample ID: 680-102080-6

Matrix: Water

Date Collected: 06/06/14 00:00 Date Received: 06/06/14 12:45

| Method: 8260B - Volatile Organ | ic Compounds | (GC/MS)   |          |     |      |   |          |                |         |
|--------------------------------|--------------|-----------|----------|-----|------|---|----------|----------------|---------|
| Analyte                        | Result       | Qualifier | RL       | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Benzene                        | 1.0          | U         | 1.0      |     | ug/L |   |          | 06/11/14 12:39 | 1       |
| Ethylbenzene                   | 1.0          | U         | 1.0      |     | ug/L |   |          | 06/11/14 12:39 | 1       |
| Toluene                        | 1.0          | U         | 1.0      |     | ug/L |   |          | 06/11/14 12:39 | 1       |
| Xylenes, Total                 | 2.0          | U         | 2.0      |     | ug/L |   |          | 06/11/14 12:39 | 1       |
| Surrogate                      | %Recovery    | Qualifier | Limits   |     |      |   | Prepared | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene           | 93           |           | 70 - 130 |     |      | - |          | 06/11/14 12:39 | 1       |
| Dibromofluoromethane           | 98           |           | 70 - 130 |     |      |   |          | 06/11/14 12:39 | 1       |
| Toluene-d8 (Surr)              | 102          |           | 70 - 130 |     |      |   |          | 06/11/14 12:39 | 1       |

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

# Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-333526/8

**Matrix: Water** 

Analysis Batch: 333526

Client Sample ID: Method Blank

Prep Type: Total/NA

|                | IVID   | IVID      |     |     |      |   |          |                |         |
|----------------|--------|-----------|-----|-----|------|---|----------|----------------|---------|
| Analyte        | Result | Qualifier | RL  | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Benzene        | 1.0    | U         | 1.0 |     | ug/L |   |          | 06/11/14 11:42 | 1       |
| Ethylbenzene   | 1.0    | U         | 1.0 |     | ug/L |   |          | 06/11/14 11:42 | 1       |
| Toluene        | 1.0    | U         | 1.0 |     | ug/L |   |          | 06/11/14 11:42 | 1       |
| Xylenes, Total | 2.0    | U         | 2.0 |     | ug/L |   |          | 06/11/14 11:42 | 1       |
|                |        |           |     |     |      |   |          |                |         |

MB MB Limits Surrogate %Recovery Qualifier Prepared Analyzed Dil Fac 70 - 130 4-Bromofluorobenzene 96 06/11/14 11:42 Dibromofluoromethane 101 70 - 130 06/11/14 11:42 Toluene-d8 (Surr) 70 - 130 06/11/14 11:42 104

Lab Sample ID: LCS 680-333526/4

**Matrix: Water** 

Analysis Batch: 333526

Client Sample ID: Lab Control Sample Prep Type: Total/NA

|                | Spike | LCS    | LCS       |      |   |      | %Rec.    |
|----------------|-------|--------|-----------|------|---|------|----------|
| Analyte        | Added | Result | Qualifier | Unit | D | %Rec | Limits   |
| Benzene        | 50.0  | 51.3   |           | ug/L |   | 103  | 74 - 123 |
| Ethylbenzene   | 50.0  | 49.2   |           | ug/L |   | 98   | 78 - 125 |
| Toluene        | 50.0  | 50.9   |           | ug/L |   | 102  | 77 - 125 |
| Xylenes, Total | 150   | 145    |           | ug/L |   | 96   | 80 - 124 |

LCS LCS Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene 96 70 - 130 Dibromofluoromethane 108 70 - 130 Toluene-d8 (Surr) 103 70 - 130

Lab Sample ID: LCSD 680-333526/6

**Matrix: Water** 

Analysis Batch: 333526

| Client Sample ID: Lab | <b>Control Sample Dup</b> |
|-----------------------|---------------------------|
|                       | Prep Type: Total/NA       |

|                | Spike | LCSD   | LCSD      |      |   |      | %Rec.               |     | RPD   |
|----------------|-------|--------|-----------|------|---|------|---------------------|-----|-------|
| Analyte        | Added | Result | Qualifier | Unit | D | %Rec | Limits              | RPD | Limit |
| Benzene        | 50.0  | 49.1   |           | ug/L |   | 98   | 74 - 123            | 4   | 30    |
| Ethylbenzene   | 50.0  | 46.6   |           | ug/L |   | 93   | 78 <sub>-</sub> 125 | 6   | 30    |
| Toluene        | 50.0  | 47.0   |           | ug/L |   | 94   | 77 - 125            | 8   | 30    |
| Xylenes, Total | 150   | 140    |           | ug/L |   | 93   | 80 - 124            | 3   | 30    |

|                      | LCSD      | LCSD      |          |
|----------------------|-----------|-----------|----------|
| Surrogate            | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene | 93        |           | 70 - 130 |
| Dibromofluoromethane | 106       |           | 70 - 130 |
| Toluene-d8 (Surr)    | 97        |           | 70 - 130 |

TestAmerica Savannah

6/24/2014

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-333823/3-A

**Matrix: Water** 

Analysis Batch: 334386

Client Sample ID: Method Blank **Prep Type: Total/NA** 

Prep Batch: 333823

|                        | MB     | MB        |    |     |      |   |                |                |         |  |
|------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|--|
| Analyte                | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |  |
| Acenaphthene           | 10     | U         | 10 |     | ug/L |   | 06/12/14 15:41 | 06/16/14 16:41 | 1       |  |
| Acenaphthylene         | 10     | U         | 10 |     | ug/L |   | 06/12/14 15:41 | 06/16/14 16:41 | 1       |  |
| Anthracene             | 10     | U         | 10 |     | ug/L |   | 06/12/14 15:41 | 06/16/14 16:41 | 1       |  |
| Benzo[a]anthracene     | 10     | U         | 10 |     | ug/L |   | 06/12/14 15:41 | 06/16/14 16:41 | 1       |  |
| Benzo[a]pyrene         | 10     | U         | 10 |     | ug/L |   | 06/12/14 15:41 | 06/16/14 16:41 | 1       |  |
| Benzo[b]fluoranthene   | 10     | U         | 10 |     | ug/L |   | 06/12/14 15:41 | 06/16/14 16:41 | 1       |  |
| Benzo[g,h,i]perylene   | 10     | U         | 10 |     | ug/L |   | 06/12/14 15:41 | 06/16/14 16:41 | 1       |  |
| Benzo[k]fluoranthene   | 10     | U         | 10 |     | ug/L |   | 06/12/14 15:41 | 06/16/14 16:41 | 1       |  |
| Chrysene               | 10     | U         | 10 |     | ug/L |   | 06/12/14 15:41 | 06/16/14 16:41 | 1       |  |
| Dibenz(a,h)anthracene  | 10     | U         | 10 |     | ug/L |   | 06/12/14 15:41 | 06/16/14 16:41 | 1       |  |
| Fluoranthene           | 10     | U         | 10 |     | ug/L |   | 06/12/14 15:41 | 06/16/14 16:41 | 1       |  |
| Fluorene               | 10     | U         | 10 |     | ug/L |   | 06/12/14 15:41 | 06/16/14 16:41 | 1       |  |
| Indeno[1,2,3-cd]pyrene | 10     | U         | 10 |     | ug/L |   | 06/12/14 15:41 | 06/16/14 16:41 | 1       |  |
| 1-Methylnaphthalene    | 10     | U         | 10 |     | ug/L |   | 06/12/14 15:41 | 06/16/14 16:41 | 1       |  |
| 2-Methylnaphthalene    | 10     | U         | 10 |     | ug/L |   | 06/12/14 15:41 | 06/16/14 16:41 | 1       |  |
| Naphthalene            | 10     | U         | 10 |     | ug/L |   | 06/12/14 15:41 | 06/16/14 16:41 | 1       |  |
| Phenanthrene           | 10     | U         | 10 |     | ug/L |   | 06/12/14 15:41 | 06/16/14 16:41 | 1       |  |
| Pyrene                 | 10     | U         | 10 |     | ug/L |   | 06/12/14 15:41 | 06/16/14 16:41 | 1       |  |

мв мв

| Surrogate              | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|----------------|----------------|---------|
| 2-Fluorobiphenyl       | 100       |           | 38 - 130 | 06/12/14 15:41 | 06/16/14 16:41 | 1       |
| Nitrobenzene-d5 (Surr) | 107       |           | 39 - 130 | 06/12/14 15:41 | 06/16/14 16:41 | 1       |
| Terphenvl-d14 (Surr)   | 128       |           | 10 - 143 | 06/12/14 15:41 | 06/16/14 16:41 | 1       |

Lab Sample ID: LCS 680-333823/4-A

**Matrix: Water** 

Analysis Batch: 334386

| Client | Sample | ID: | l ah | Control | Sample |
|--------|--------|-----|------|---------|--------|
| CHEIL  | Sample | ID. | Lab  | COILLIO | Sample |

Prep Type: Total/NA

**Prep Batch: 333823** 

| Analysis balcii. 334300 |       |        |           |      |   |      | Prep ball           | ii. 333023 |
|-------------------------|-------|--------|-----------|------|---|------|---------------------|------------|
|                         | Spike | LCS    | LCS       |      |   |      | %Rec.               |            |
| Analyte                 | Added | Result | Qualifier | Unit | D | %Rec | Limits              |            |
| Acenaphthene            | 100   | 66.7   |           | ug/L |   | 67   | 41 - 99             |            |
| Acenaphthylene          | 100   | 55.0   |           | ug/L |   | 55   | 32 _ 118            |            |
| Anthracene              | 100   | 76.3   |           | ug/L |   | 76   | 50 - 103            |            |
| Benzo[a]anthracene      | 100   | 78.3   |           | ug/L |   | 78   | 53 _ 109            |            |
| Benzo[a]pyrene          | 100   | 72.7   |           | ug/L |   | 73   | 38 _ 111            |            |
| Benzo[b]fluoranthene    | 100   | 86.3   |           | ug/L |   | 86   | 53 _ 108            |            |
| Benzo[g,h,i]perylene    | 100   | 77.5   |           | ug/L |   | 77   | 42 _ 114            |            |
| Benzo[k]fluoranthene    | 100   | 73.8   |           | ug/L |   | 74   | 49 - 108            |            |
| Chrysene                | 100   | 78.1   |           | ug/L |   | 78   | 54 <sub>-</sub> 111 |            |
| Dibenz(a,h)anthracene   | 100   | 85.3   |           | ug/L |   | 85   | 48 - 110            |            |
| Fluoranthene            | 100   | 80.7   |           | ug/L |   | 81   | 48 - 111            |            |
| Fluorene                | 100   | 75.8   |           | ug/L |   | 76   | 50 <sub>-</sub> 105 |            |
| Indeno[1,2,3-cd]pyrene  | 100   | 82.9   |           | ug/L |   | 83   | 34 - 115            |            |
| 1-Methylnaphthalene     | 100   | 63.9   |           | ug/L |   | 64   | 50 - 130            |            |
| 2-Methylnaphthalene     | 100   | 62.8   |           | ug/L |   | 63   | 32 - 92             |            |
| Naphthalene             | 100   | 63.5   |           | ug/L |   | 64   | 29 - 91             |            |
| Phenanthrene            | 100   | 74.8   |           | ug/L |   | 75   | 52 - 108            |            |
| Pyrene                  | 100   | 74.3   |           | ug/L |   | 74   | 50 - 111            |            |
|                         |       |        |           |      |   |      |                     |            |

TestAmerica Savannah

Page 10 of 20

6/24/2014

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

# Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-333823/4-A

Lab Sample ID: LCSD 680-333823/5-A

**Matrix: Water** 

Analysis Batch: 334386

**Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Prep Batch: 333823

LCS LCS

| Surrogate              | %Recovery | Qualifier | Limits   |
|------------------------|-----------|-----------|----------|
| 2-Fluorobiphenyl       | 98        |           | 38 - 130 |
| Nitrobenzene-d5 (Surr) | 102       |           | 39 - 130 |
| Terphenyl-d14 (Surr)   | 116       |           | 10 - 143 |

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

**Prep Batch: 333823** 

**Matrix: Water** 

Analysis Batch: 334386

| Analysis Baton: 00-1000 |       |        |           |      |   |      | i rop Baton. c      |     | 00020 |
|-------------------------|-------|--------|-----------|------|---|------|---------------------|-----|-------|
|                         | Spike | LCSD   | LCSD      |      |   |      | %Rec.               |     | RPD   |
| Analyte                 | Added | Result | Qualifier | Unit | D | %Rec | Limits              | RPD | Limit |
| Acenaphthene            | 100   | 63.9   |           | ug/L |   | 64   | 41 - 99             | 4   | 20    |
| Acenaphthylene          | 100   | 38.8   | *         | ug/L |   | 39   | 32 _ 118            | 34  | 20    |
| Anthracene              | 100   | 78.7   |           | ug/L |   | 79   | 50 - 103            | 3   | 20    |
| Benzo[a]anthracene      | 100   | 83.9   |           | ug/L |   | 84   | 53 - 109            | 7   | 40    |
| Benzo[a]pyrene          | 100   | 71.8   |           | ug/L |   | 72   | 38 _ 111            | 1   | 40    |
| Benzo[b]fluoranthene    | 100   | 89.6   |           | ug/L |   | 90   | 53 - 108            | 4   | 50    |
| Benzo[g,h,i]perylene    | 100   | 78.3   |           | ug/L |   | 78   | 42 - 114            | 1   | 50    |
| Benzo[k]fluoranthene    | 100   | 70.7   |           | ug/L |   | 71   | 49 - 108            | 4   | 40    |
| Chrysene                | 100   | 81.3   |           | ug/L |   | 81   | 54 - 111            | 4   | 50    |
| Dibenz(a,h)anthracene   | 100   | 85.2   |           | ug/L |   | 85   | 48 - 110            | 0   | 40    |
| Fluoranthene            | 100   | 85.2   |           | ug/L |   | 85   | 48 - 111            | 6   | 40    |
| Fluorene                | 100   | 78.5   |           | ug/L |   | 79   | 50 <sub>-</sub> 105 | 3   | 20    |
| Indeno[1,2,3-cd]pyrene  | 100   | 86.7   |           | ug/L |   | 87   | 34 - 115            | 5   | 40    |
| 1-Methylnaphthalene     | 100   | 63.2   |           | ug/L |   | 63   | 50 - 130            | 1   | 50    |
| 2-Methylnaphthalene     | 100   | 61.2   |           | ug/L |   | 61   | 32 - 92             | 2   | 30    |
| Naphthalene             | 100   | 60.5   |           | ug/L |   | 61   | 29 - 91             | 5   | 40    |
| Phenanthrene            | 100   | 77.9   |           | ug/L |   | 78   | 52 - 108            | 4   | 40    |
| Pyrene                  | 100   | 76.9   |           | ug/L |   | 77   | 50 - 111            | 3   | 50    |
|                         |       |        |           |      |   |      |                     |     |       |

LCSD LCSD

| Surrogate              | %Recovery | Qualifier | Limits   |
|------------------------|-----------|-----------|----------|
| 2-Fluorobiphenyl       | 90        |           | 38 - 130 |
| Nitrobenzene-d5 (Surr) | 97        |           | 39 - 130 |
| Terphenyl-d14 (Surr)   | 120       |           | 10 - 143 |

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 680-333618/1-A

**Matrix: Water** 

Analysis Batch: 334039

| Client Sample ID: Method Blank |
|--------------------------------|
| Prep Type: Total/NA            |
|                                |

Prep Batch: 333618

|          | MB     | MB        |    |     |      |   |                |                |         |
|----------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte  | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic  | 20     | U         | 20 |     | ug/L |   | 06/11/14 11:17 | 06/12/14 20:54 | 1       |
| Chromium | 10     | U         | 10 |     | ug/L |   | 06/11/14 11:17 | 06/12/14 20:54 | 1       |
| Lead     | 10     | U         | 10 |     | ug/L |   | 06/11/14 11:17 | 06/12/14 20:54 | 1       |
| Nickel   | 40     | U         | 40 |     | ug/L |   | 06/11/14 11:17 | 06/12/14 20:54 | 1       |
| Zinc     | 20     | U         | 20 |     | ug/L |   | 06/11/14 11:17 | 06/12/14 20:54 | 1       |

TestAmerica Savannah

94

75 - 125

75 - 125

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

# Method: 6010C - Metals (ICP) (Continued)

| Lab Sample ID: LCS 680-333618/2-A | ab Sample ID: LCS 680-333618/2-A CI |        |           |      |   | Client Sample ID: Lab Control Sample |                     |             |
|-----------------------------------|-------------------------------------|--------|-----------|------|---|--------------------------------------|---------------------|-------------|
| Matrix: Water                     |                                     |        |           |      |   |                                      | Prep Typ            | e: Total/NA |
| Analysis Batch: 334039            |                                     |        |           |      |   |                                      | Prep Ba             | tch: 333618 |
|                                   | Spike                               | LCS    | LCS       |      |   |                                      | %Rec.               |             |
| Analyte                           | Added                               | Result | Qualifier | Unit | D | %Rec                                 | Limits              |             |
| Arsenic                           | 100                                 | 99.3   |           | ug/L |   | 99                                   | 75 _ 125            |             |
| Chromium                          | 100                                 | 95.8   |           | ug/L |   | 96                                   | 75 <sub>-</sub> 125 |             |
| Lead                              | 50.0                                | 48.3   |           | ug/L |   | 97                                   | 75 _ 125            |             |

94.0

96.7

ug/L

ug/L

100

100

### Method: 350.1 - Nitrogen, Ammonia

Nickel

Zinc

Lab Sample ID: MB 680-334252/52 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA Analysis Batch: 334252 мв мв Result Qualifier RL MDL Unit Analyte D Prepared Analyzed Dil Fac 06/13/14 17:14 Ammonia 0.050 U 0.050 mg/L

Lab Sample ID: LCS 680-334252/46 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA Analysis Batch: 334252 Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Ammonia 1.00 0.946 90 - 110 mg/L

### Method: 353.2 - Nitrogen, Nitrate-Nitrite

Lab Sample ID: MB 680-333489/11 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA Analysis Batch: 333489 MR MR

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Nitrate as N 0.050 U 0.050 06/10/14 16:11 mg/L

Lab Sample ID: LCS 680-333489/14 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

**Analysis Batch: 333489** 

|              |      | Spike | LCS    | LCS       |      |   |      | %Rec.    |  |
|--------------|------|-------|--------|-----------|------|---|------|----------|--|
| Analyte      |      | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Nitrate as N | <br> | 0.500 | 0.541  |           | mg/L |   | 108  | 75 - 125 |  |

Lab Sample ID: LLCS 680-333489/13 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 333489

|              | Spike  | LLCS   | LLCS      |      |   |      | %Rec.    |  |
|--------------|--------|--------|-----------|------|---|------|----------|--|
| Analyte      | Added  | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Nitrate as N | 0.0500 | 0.0598 |           | mg/L | _ | 120  | 50 - 150 |  |

TestAmerica Savannah

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Method: 353.2 - Nitrogen, Nitrate-Nitrite (Continued)

Lab Sample ID: 680-102080-5 MS Client Sample ID: ERB-03-060620214 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 333489

Sample Sample Spike MS MS %Rec. Result Qualifier Added Analyte Result Qualifier Limits Unit D %Rec Nitrate as N 0.500 107 75 - 125 0.14 H 0.671 mg/L

Lab Sample ID: 680-102080-5 MSD Client Sample ID: ERB-03-060620214 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 333489

Sample Sample MSD MSD %Rec. RPD Spike Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Nitrate as N 0.14 H 0.500 0.665 mg/L 106 75 - 125

Lab Sample ID: MB 680-333748/12 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 333748

мв мв Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Nitrate as N 0.050 U 0.050 06/11/14 17:05 mg/L

Lab Sample ID: LCS 680-333748/11 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 333748

Spike LCS LCS %Rec. Analyte Added Result Qualifier Limits Unit %Rec Nitrate as N 0.500 0.544 109 mg/L 75 - 125

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

**GC/MS VOA** 

Analysis Batch: 333526

| Client Sample ID       | Prep Type                                                                         | Matrix                                                                                                                | Method                                                                                                                                        | Prep Batch                                                                                                                                                                                                                                                                                          |
|------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ERB-03-060620214       | Total/NA                                                                          | Water                                                                                                                 | 8260B                                                                                                                                         |                                                                                                                                                                                                                                                                                                     |
| trip blank03-060620214 | Total/NA                                                                          | Water                                                                                                                 | 8260B                                                                                                                                         |                                                                                                                                                                                                                                                                                                     |
| Lab Control Sample     | Total/NA                                                                          | Water                                                                                                                 | 8260B                                                                                                                                         |                                                                                                                                                                                                                                                                                                     |
| Lab Control Sample Dup | Total/NA                                                                          | Water                                                                                                                 | 8260B                                                                                                                                         |                                                                                                                                                                                                                                                                                                     |
| Method Blank           | Total/NA                                                                          | Water                                                                                                                 | 8260B                                                                                                                                         |                                                                                                                                                                                                                                                                                                     |
| -                      | ERB-03-060620214 trip blank03-060620214 Lab Control Sample Lab Control Sample Dup | ERB-03-060620214 Total/NA trip blank03-060620214 Total/NA Lab Control Sample Total/NA Lab Control Sample Dup Total/NA | ERB-03-060620214 Total/NA Water trip blank03-060620214 Total/NA Water Lab Control Sample Total/NA Water Lab Control Sample Dup Total/NA Water | ERB-03-060620214         Total/NA         Water         8260B           trip blank03-060620214         Total/NA         Water         8260B           Lab Control Sample         Total/NA         Water         8260B           Lab Control Sample Dup         Total/NA         Water         8260B |

### GC/MS Semi VOA

Prep Batch: 333823

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|---------------------|------------------------|-----------|--------|--------|------------|
| 680-102080-5        | ERB-03-060620214       | Total/NA  | Water  | 3520C  |            |
| LCS 680-333823/4-A  | Lab Control Sample     | Total/NA  | Water  | 3520C  |            |
| LCSD 680-333823/5-A | Lab Control Sample Dup | Total/NA  | Water  | 3520C  |            |
| MB 680-333823/3-A   | Method Blank           | Total/NA  | Water  | 3520C  |            |

Analysis Batch: 334386

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|---------------------|------------------------|-----------|--------|--------|------------|
| LCS 680-333823/4-A  | Lab Control Sample     | Total/NA  | Water  | 8270D  | 333823     |
| LCSD 680-333823/5-A | Lab Control Sample Dup | Total/NA  | Water  | 8270D  | 333823     |
| MB 680-333823/3-A   | Method Blank           | Total/NA  | Water  | 8270D  | 333823     |

Analysis Batch: 334608

| Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method | Prep Batch |
|---------------|------------------|-----------|--------|--------|------------|
| 680-102080-5  | ERB-03-060620214 | Total/NA  | Water  | 8270D  | 333823     |

### **Metals**

Prep Batch: 333618

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 680-102080-5       | ERB-03-060620214   | Total/NA  | Water  | 3010A  |            |
| LCS 680-333618/2-A | Lab Control Sample | Total/NA  | Water  | 3010A  |            |
| MB 680-333618/1-A  | Method Blank       | Total/NA  | Water  | 3010A  |            |

Analysis Batch: 334039

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 680-102080-5       | ERB-03-060620214   | Total/NA  | Water  | 6010C  | 333618     |
| LCS 680-333618/2-A | Lab Control Sample | Total/NA  | Water  | 6010C  | 333618     |
| MB 680-333618/1-A  | Method Blank       | Total/NA  | Water  | 6010C  | 333618     |

# **General Chemistry**

Analysis Batch: 333489

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 680-102080-4       | PDMW-51_06062014   | Total/NA  | Water  | 353.2  |            |
| 680-102080-5       | ERB-03-060620214   | Total/NA  | Water  | 353.2  |            |
| 680-102080-5 MS    | ERB-03-060620214   | Total/NA  | Water  | 353.2  |            |
| 680-102080-5 MSD   | ERB-03-060620214   | Total/NA  | Water  | 353.2  |            |
| LCS 680-333489/14  | Lab Control Sample | Total/NA  | Water  | 353.2  |            |
| LLCS 680-333489/13 | Lab Control Sample | Total/NA  | Water  | 353.2  |            |
| MB 680-333489/11   | Method Blank       | Total/NA  | Water  | 353.2  |            |

TestAmerica Savannah

Page 14 of 20

- 3

4

<u>၂</u>

7

O

10

11

12

# **QC Association Summary**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-102080-2

#### 2

# **General Chemistry (Continued)**

# Analysis Batch: 333748

| Lab Sample ID     | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|-------------------|--------------------|-----------|--------|--------|------------|
| 680-102080-3      | PDMW-49_06062014   | Total/NA  | Water  | 353.2  |            |
| LCS 680-333748/11 | Lab Control Sample | Total/NA  | Water  | 353.2  |            |
| MB 680-333748/12  | Method Blank       | Total/NA  | Water  | 353.2  |            |

### Analysis Batch: 334252

| Lab Sample ID     | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|-------------------|--------------------|-----------|--------|--------|------------|
| 680-102080-3      | PDMW-49_06062014   | Total/NA  | Water  | 350.1  |            |
| 680-102080-4      | PDMW-51_06062014   | Total/NA  | Water  | 350.1  |            |
| 680-102080-5      | ERB-03-060620214   | Total/NA  | Water  | 350.1  |            |
| LCS 680-334252/46 | Lab Control Sample | Total/NA  | Water  | 350.1  |            |
| MB 680-334252/52  | Method Blank       | Total/NA  | Water  | 350.1  |            |

3

6

7

8

9

10

44

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Lab Sample ID: 680-102080-3

Client Sample ID: PDMW-49\_06062014 Date Collected: 06/06/14 10:25

Date Received: 06/06/14 12:45

**Matrix: Water** 

|           | Batch    | Batch           |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-----------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method          | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 350.1           |     | 1      | 2 mL    | 2 mL   | 334252 | 06/13/14 12:31 | JME     | TAL SAV |
|           | Instrume | ent ID: KONELAB | 1   |        |         |        |        |                |         |         |
| Total/NA  | Analysis | 353.2           |     | 1      | 2 mL    | 2 mL   | 333748 | 06/11/14 17:26 | GRX     | TAL SAV |
|           | Instrume | ent ID: LACHAT2 |     |        |         |        |        |                |         |         |

Client Sample ID: PDMW-51\_06062014

Lab Sample ID: 680-102080-4

**Matrix: Water** 

Date Collected: 06/06/14 10:46 Date Received: 06/06/14 12:45

|           | Batch                | Batch                     |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|---------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                    | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis<br>Instrume | 350.1<br>ent ID: KONELAB1 |     | 5      | 2 mL    | 2 mL   | 334252 | 06/13/14 16:46 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>ent ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 333489 | 06/10/14 16:24 | GRX     | TAL SAV |

Client Sample ID: ERB-03-060620214

Lab Sample ID: 680-102080-5

**Matrix: Water** 

Date Collected: 06/06/14 10:45 Date Received: 06/06/14 12:45

|           | Batch    | Batch            |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|----------|------------------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method           | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8260B            |     | 1      | 5 mL     | 5 mL   | 333526 | 06/11/14 18:04 | CAR     | TAL SAV |
|           | Instrume | ent ID: CMSAD    |     |        |          |        |        |                |         |         |
| Total/NA  | Prep     | 3520C            |     |        | 256.9 mL | 0.5 mL | 333823 | 06/12/14 15:41 | RBS     | TAL SAV |
| Total/NA  | Analysis | 8270D            |     | 1      | 256.9 mL | 0.5 mL | 334608 | 06/17/14 11:26 | SMC     | TAL SAV |
|           | Instrume | ent ID: CMST     |     |        |          |        |        |                |         |         |
| Total/NA  | Prep     | 3010A            |     |        | 50 mL    | 50 mL  | 333618 | 06/11/14 11:17 | SP      | TAL SAV |
| Total/NA  | Analysis | 6010C            |     | 1      | 50 mL    | 50 mL  | 334039 | 06/12/14 21:43 | BCB     | TAL SAV |
|           | Instrume | ent ID: ICPF     |     |        |          |        |        |                |         |         |
| Total/NA  | Analysis | 350.1            |     | 1      | 2 mL     | 2 mL   | 334252 | 06/13/14 12:31 | JME     | TAL SAV |
|           | Instrume | ent ID: KONELAB1 |     |        |          |        |        |                |         |         |
| Total/NA  | Analysis | 353.2            |     | 1      | 2 mL     | 2 mL   | 333489 | 06/10/14 16:16 | GRX     | TAL SAV |
|           | Instrume | ent ID: LACHAT2  |     |        |          |        |        |                |         |         |

Client Sample ID: trip blank\_-03-060620214

Lab Sample ID: 680-102080-6

**Matrix: Water** 

Date Collected: 06/06/14 00:00 Date Received: 06/06/14 12:45

Batch Batch Dil Initial Final Batch Prepared Method Run or Analyzed Prep Type Type Factor Amount Amount Number Analyst Lab Total/NA Analysis 8260B 5 mL 5 mL 333526 06/11/14 12:39 CAR TAL SAV Instrument ID: CMSAD

**Laboratory References:** 

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

TestAmerica Savannah

# **Certification Summary**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-102080-2

# **Laboratory: TestAmerica Savannah**

The certifications listed below are applicable to this report.

| Authority | Program       | EPA Region | Certification ID | <b>Expiration Date</b> |
|-----------|---------------|------------|------------------|------------------------|
| Georgia   | State Program | 4          | 803              | 06-30-14 *             |

4

5

7

ŏ

9

10

11

 $<sup>\</sup>ensuremath{^{\star}}$  Certification renewal pending - certification considered valid.

# **Method Summary**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-102080-2

| Method | Method Description                     | Protocol | Laboratory |
|--------|----------------------------------------|----------|------------|
| 8260B  | Volatile Organic Compounds (GC/MS)     | SW846    | TAL SAV    |
| 8270D  | Semivolatile Organic Compounds (GC/MS) | SW846    | TAL SAV    |
| 6010C  | Metals (ICP)                           | SW846    | TAL SAV    |
| 350.1  | Nitrogen, Ammonia                      | MCAWW    | TAL SAV    |
| 353.2  | Nitrogen, Nitrate-Nitrite              | MCAWW    | TAL SAV    |

#### Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

### Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

6

- 5

4

7

8

3

10

11

|                        | ATION                                                                                                                                                                                                    | 300de                                                                                                                                                                                                            |                                                                                                                                                                                                              | 0-4300-524D                   | BON                            | pat. harrison@omec.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A STANDARD S | COMMENTS LABUSE    |                      |                                         | ewo e         |                          |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                       |                                        |           |                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Comments & Special Analytical Requirements: |                  |                  | LAB Log Number              |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------|-----------------------------------------|---------------|--------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------|----------------------------------------|-----------|-----------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------|------------------|-----------------------------|
| 3                      | SHIPMENT INFORMATION                                                                                                                                                                                     | Shipment Method: Drop                                                                                                                                                                                            | Shipment Tracking No:                                                                                                                                                                                        | ct #:                         | 72                             | Email: pat. hal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Phyle 78 - 13 FX 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | MALYSIS              |                                         |               |                          |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                       |                                        |           |                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Comments & Specia                           |                  | 30%              | Custody Seal#               |
|                        | 858 F; 912-352-0165<br>10-497-9396 F: 330-497-0772                                                                                                                                                       | 5-7427 F; 813-885-7049<br>1001 F; 850-478-2671                                                                                                                                                                   | 391-2600 F; 716-961-7991<br>00 F; 708-534-5211                                                                                                                                                               | N                             | EST                            | 00 7S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | シギタリ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ं                  | METHODS FOR ANALYSIS | V erg                                   |               |                          | 101<br>X<br>101<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>10 | ٠H<br>۲۰                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | il.                    | (                     | ×                                      | X         | X<br>X<br>X     | X                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Date/Time/                                  | Date/Time: /     | Date/Time:       | LAB USE: Custody Intact     |
|                        | TostAmerica Savannah - 5102 LaRoche Avenue, Savannah, GA 31404 P. 912-354-7858 F. 912-352-0166  TostAmerica North Canton - 4101 Shuffel Drive NW, North Canton, OH 44720 P. 330-497-9396 F. 330-497-0772 | ☐ TestAmerica Tampa - 6712 Benjamin Road, Suite 100, Jampa; FL 33634 — P. 813-885-7427 —F. 813-885-704<br>☐ TestAmerica Pensacola - 3355 McLemore Drive, Pensacola, FL 32514 — P. 850-474-1001 — F. 860-478-2671 | ☐ TestAmerica Butfalo - 10 Hazalwood Drive, Suite 106, Ámherst, NY 14228 P. 716-691-2600 F. 716-961-7991 ☐ TestAmerica Chicago - 2417 Bond Street, University Park, IL 60466 P. 708-534-5200 F. 708-534-5211 | CONSULTANT INFORMATION        | Company: AMEC E                | Address: Per Rad Rad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | City, State, Zip., A. L. | Acid Note 1        | sulfate              | Hydroxide Code                          | LIQ = Liquid  |                          |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Filtered Type Matrix   | YorN Comp Code        | X 03 9 7                               | X 109 5 1 | N 6 6W          | 7 PM                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )     | Oa               | Da               | (X) (V) 1 0                 |
| LABORATORY INFORMATION | nnah - 5102 LaRoche Avenue, S<br>h Canton - 4101 Shuffel Drive N                                                                                                                                         | pa - 6712 Benjamin Road, Suìte<br>sacola - 3355 McLemore Drive, l                                                                                                                                                | D TestAmerica Butfalo - 10 Hazelwood Drive, Suite 106, Âmherst, MY 1 TestAmerica Chicago - 2417 Bond Street, University Park; IL 60466                                                                       | of Origin) CA CC              |                                | The state of the s | 28 ISAR C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ĮŽ                 |                      | ric Acid 5 = Sodium Hydroxide 6 = Other | SO = Soil     |                          | Water Ot = Oil Water SOL = Other Solid                                 | WATER AND AND ADDRESS OF THE PARTY OF THE PA | Sample Collection Fill | Sampler               | 1035 SF                                | 10 % O 31 | 1045 SF 1       | Contracts Contracts |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ALL MANAGEMENT OF THE PARTY OF |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Received By:                                | 19               | Received By:     | Lab Remarks:                |
| LABOHATORY             | TestAmerica Sava TestAmerica Nort                                                                                                                                                                        | ☐ TestAmerica Tam☐ TestAmerica Pen                                                                                                                                                                               | TestAmerica Buff                                                                                                                                                                                             | Proj. State (State of Origin) | Proj. City:                    | West to be a second of the sec |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 0 = No Preservatives | 1 = Hydrochloric Acid 2 = Nitric Acid   | Matrix Codes: | GW = Groundwater         | WW = Waste Water                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                      | Ö                     | 7:13/9                                 | 300       | 7 7 9           | 6/6/14              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AND |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 272                                         | - alexandra des  |                  | 3                           |
|                        | CHAIN OF                                                                                                                                                                                                 | CUSTODY                                                                                                                                                                                                          | -<br>)<br>-                                                                                                                                                                                                  |                               | 54                             | 75/24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Standard 6-13 Days | Specify # Days       | Standard 14 Days<br>Other               | Other Deliv:  |                          | EDD Required, Format:                                                  | STATE OF THE PROPERTY OF THE P | Containers             | Number & Type         | 10000000000000000000000000000000000000 |           | 5               | 7<br>2<br>0         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | <br>THE PROPERTY OF THE PROPERTY O | Date/Tigne:                                 | Date/Time:       | Date/Time:       | Date/Time                   |
|                        |                                                                                                                                                                                                          |                                                                                                                                                                                                                  | IKANSPORTALION                                                                                                                                                                                               | CSXT PROJECT INFORMATION      | CSXT Project Number: QH I 5575 | CSXT Project Name: HAHDINSON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CSXT Contact: Som Ross                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | ,                    | M(O                                     |               | CSXT Standard (Level II) | Level III ED                                                           | SAMPLE INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        | Sample Identification | PIOG000-94-WMGF                        |           | ER8-03_06062014 |                     | Academic and a second a second and a second |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Relinquished By:                            | Refinquished By: | Relinquished By: | Received By Language Date/1 |

# **Login Sample Receipt Checklist**

Client: AMEC Environment & Infrastructure, Inc.

Job Number: 680-102080-2

Login Number: 102080 List Source: TestAmerica Savannah

List Number: 1

Creator: Kicklighter, Marilyn D

| Question                                                                                                  | Answer | Comment |
|-----------------------------------------------------------------------------------------------------------|--------|---------|
| Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td> | N/A    |         |
| The cooler's custody seal, if present, is intact.                                                         | True   |         |
| Sample custody seals, if present, are intact.                                                             | True   |         |
| The cooler or samples do not appear to have been compromised or tampered with.                            | True   |         |
| Samples were received on ice.                                                                             | True   |         |
| Cooler Temperature is acceptable.                                                                         | True   |         |
| Cooler Temperature is recorded.                                                                           | True   |         |
| COC is present.                                                                                           | True   |         |
| COC is filled out in ink and legible.                                                                     | True   |         |
| COC is filled out with all pertinent information.                                                         | True   |         |
| Is the Field Sampler's name present on COC?                                                               | N/A    |         |
| There are no discrepancies between the containers received and the COC.                                   | True   |         |
| Samples are received within Holding Time.                                                                 | True   |         |
| Sample containers have legible labels.                                                                    | True   |         |
| Containers are not broken or leaking.                                                                     | True   |         |
| Sample collection date/times are provided.                                                                | True   |         |
| Appropriate sample containers are used.                                                                   | True   |         |
| Sample bottles are completely filled.                                                                     | True   |         |
| Sample Preservation Verified.                                                                             | True   |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs                          | True   |         |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").                           | True   |         |
| Multiphasic samples are not present.                                                                      | True   |         |
| Samples do not require splitting or compositing.                                                          | True   |         |
| Residual Chlorine Checked.                                                                                | N/A    |         |

8

\_\_\_

4 4



THE LEADER IN ENVIRONMENTAL TESTING

# ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

TestAmerica Job ID: 680-104723-1

Client Project/Site: CSX Hutchinson Island VRP

#### For:

AMEC Environment & Infrastructure, Inc. 2677 Buford Highway Atlanta, Georgia 30324

Attn: Mr. Steve Foley

Authorized for relea

Authorized for release by: 9/11/2014 5:59:50 PM

Lisa Harvey, Project Manager II (912)354-7858 e.3221

lisa.harvey@testamericainc.com

.....LINKS .....

Review your project results through

Total Access

**Have a Question?** 



Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

### **Case Narrative**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-104723-1

Job ID: 680-104723-1

Laboratory: TestAmerica Savannah

Narrative

#### **CASE NARRATIVE**

Client: AMEC Environment & Infrastructure, Inc.
Project: CSX Hutchinson Island VRP
Report Number: 680-104723-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

No analytical or quality issues were noted, other than those described below or in the Definitions/Glossary page.

#### **RECEIPT**

The samples were received on 08/28/2014; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 2.0 C.

#### **METALS (ICP)**

Sample PDMW-13P\_08272014 (680-104723-6) was analyzed for Metals (ICP) in accordance with EPA SW-846 Method 6010C.

#### METALS (ICP

Sample PDMW-13P\_08272014 (680-104723-6) was analyzed for Metals (ICP) in accordance with EPA SW-846 Method 6010C.

#### **TOTAL ORGANIC CARBON (TOC)**

Samples HA-01 (3.5-4.0) (680-104723-1), HA-02 (2.5-3.0) (680-104723-2), HA-02 (5.5-6.0) (680-104723-3), HA-03 (2.0-2.5) (680-104723-4) and HA-03 (4.5-5.0) (680-104723-5) were analyzed for Total Organic Carbon (TOC) in accordance with EPA SW-846 9060A.

#### PERCENT SOLIDS/MOISTURE

Samples HA-01 (3.5-4.0) (680-104723-1), HA-02 (2.5-3.0) (680-104723-2), HA-02 (5.5-6.0) (680-104723-3), HA-03 (2.0-2.5) (680-104723-4) and HA-03 (4.5-5.0) (680-104723-5) were analyzed for Percent Solids/Moisture in accordance with TestAmerica SOP.

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

2

ı

\_\_\_\_\_

9

10

11

# **Definitions/Glossary**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-104723-1

### **Qualifiers**

### **Metals**

U Indicates the analyte was analyzed for but not detected.

### **General Chemistry**

U Indicates the analyte was analyzed for but not detected.

### **Glossary**

| Abbreviation   | These commonly used abbreviations may or may not be present in this report.                                 |
|----------------|-------------------------------------------------------------------------------------------------------------|
| ¤              | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |
| %R             | Percent Recovery                                                                                            |
| CFL            | Contains Free Liquid                                                                                        |
| CNF            | Contains no Free Liquid                                                                                     |
| DER            | Duplicate error ratio (normalized absolute difference)                                                      |
| Dil Fac        | Dilution Factor                                                                                             |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |
| DLC            | Decision level concentration                                                                                |
| MDA            | Minimum detectable activity                                                                                 |
| EDL            | Estimated Detection Limit                                                                                   |
|                |                                                                                                             |

EDL Estimated Detection Limit

MDC Minimum detectable concentration

MDL Method Detection Limit

ML Minimum Level (Dioxin)
NC Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control
RER Relative error ratio

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

9/11/2014

# **Sample Summary**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-104723-1

| Lab Sample ID | Client Sample ID  | Matrix | Collected      | Received       |
|---------------|-------------------|--------|----------------|----------------|
| 680-104723-1  | HA-01 (3.5-4.0)   | Solid  | 08/27/14 12:30 | 08/28/14 09:30 |
| 680-104723-2  | HA-02 (2.5-3.0)   | Solid  | 08/27/14 14:30 | 08/28/14 09:30 |
| 680-104723-3  | HA-02 (5.5-6.0)   | Solid  | 08/27/14 15:00 | 08/28/14 09:30 |
| 680-104723-4  | HA-03 (2.0-2.5)   | Solid  | 08/27/14 15:55 | 08/28/14 09:30 |
| 680-104723-5  | HA-03 (4.5-5.0)   | Solid  | 08/27/14 16:10 | 08/28/14 09:30 |
| 680-104723-6  | PDMW-13P_08272014 | Water  | 08/27/14 11:20 | 08/28/14 09:30 |

3

4

5

O

8

9

10

11

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Client Sample ID: HA-01 (3.5-4.0)

TestAmerica Job ID: 680-104723-1

Lab Sample ID: 680-104723-1

Matrix: Solid

Date Collected: 08/27/14 12:30 Date Received: 08/28/14 09:30

\_ General Chemistry - ASTM Leach

AnalyteResult<br/>Total Organic Carbon - QuadResult<br/>UQualifier<br/>URL<br/>1.0MDL<br/>1.0Unit<br/>mg/LD<br/>Mg/LPrepared<br/>09/08/14 15:07Analyzed<br/>09/08/14 15:07Dil Fac<br/>09/08/14 15:07

5

J

6

Я

9

11

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-104723-1

Client Sample ID: HA-02 (2.5-3.0)

Lab Sample ID: 680-104723-2

Matrix: Solid

Date Collected: 08/27/14 14:30 Date Received: 08/28/14 09:30

**General Chemistry - ASTM Leach Analyte** 

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

Total Organic Carbon - Quad 1.4 1.0 mg/L 09/08/14 15:33 1

7

0

9

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Client Sample ID: HA-02 (5.5-6.0)

TestAmerica Job ID: 680-104723-1

Lab Sample ID: 680-104723-3

Date Collected: 08/27/14 15:00 Matrix: Solid

Date Received: 08/28/14 09:30

| General Chemistry - ASTM Leach |        |           |     |     |      |   |          |                |         |
|--------------------------------|--------|-----------|-----|-----|------|---|----------|----------------|---------|
| Analyte                        | Result | Qualifier | RL  | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Total Organic Carbon - Quad    | 5.3    |           | 1.0 |     | mg/L |   |          | 09/08/14 15:58 | 1       |

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Client Sample ID: HA-03 (2.0-2.5)

TestAmerica Job ID: 680-104723-1

Lab Sample ID: 680-104723-4

Matrix: Solid

Date Collected: 08/27/14 15:55 Date Received: 08/28/14 09:30

|   | <b>General Chemistry - ASTM Leach</b> |        |           |     |     |      |   |          |                |         |
|---|---------------------------------------|--------|-----------|-----|-----|------|---|----------|----------------|---------|
|   | Analyte                               | Result | Qualifier | RL  | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| l | Total Organic Carbon - Quad           | 7.0    |           | 1.0 |     | mg/L |   |          | 09/08/14 16:24 | 1       |

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-104723-1

09/08/14 16:51

Client Sample ID: HA-03 (4.5-5.0)

Lab Sample ID: 680-104723-5

Matrix: Solid

Date Collected: 08/27/14 16:10 Date Received: 08/28/14 09:30

**Total Organic Carbon - Quad** 

| Γ                              |          |           |    |     |      |   |          |          |         |
|--------------------------------|----------|-----------|----|-----|------|---|----------|----------|---------|
| General Chemistry - ASTM Leach |          |           |    |     |      |   |          |          |         |
| Analyte                        | Result ( | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac |

1.0

9.3

mg/L

5

6

8

3

11

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Client Sample ID: PDMW-13P\_08272014

TestAmerica Job ID: 680-104723-1

Lab Sample ID: 680-104723-6

Matrix: Water

Date Collected: 08/27/14 11:20 Date Received: 08/28/14 09:30

| Method: 6010C - Metals (ICP) |                  |    |          |   |                |                |         |
|------------------------------|------------------|----|----------|---|----------------|----------------|---------|
| Analyte                      | Result Qualifier | RL | MDL Unit | D | Prepared       | Analyzed       | Dil Fac |
| Lead                         | 23               | 10 | ug/L     |   | 09/10/14 12:52 | 09/11/14 11:13 | 1       |

| Method: 6010C - Metals (ICP) - Dis | solved           |    |          |   |                |                |         |  |
|------------------------------------|------------------|----|----------|---|----------------|----------------|---------|--|
| Analyte                            | Result Qualifier | RL | MDL Unit | D | Prepared       | Analyzed       | Dil Fac |  |
| Lead                               |                  | 10 | ug/l     |   | 09/10/14 13:06 | 09/11/14 12:00 | 1       |  |

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

| Method: | 6010C | - Metals | (ICP) |
|---------|-------|----------|-------|
|---------|-------|----------|-------|

Analyte

Lead

Lead

Lead

Lab Sample ID: MB 680-348266/1-A Client Sample ID: Method Blank **Matrix: Water** 

Prep Type: Total/NA **Prep Batch: 348266** 

Prep Batch: 348272

Analysis Batch: 348494 мв мв

Result Qualifier RL MDL Unit D Dil Fac Prepared Analyzed 10 09/10/14 12:52 09/11/14 10:11 10 U ug/L

ug/L

ug/L

105

107

75 - 125

75 - 125

Lab Sample ID: LCS 680-348266/2-A Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA Analysis Batch: 348494 Prep Batch: 348266

LCS LCS Spike Result Qualifier Analyte Added Unit %Rec Limits

50.0

Lab Sample ID: MB 680-348272/1-A Client Sample ID: Method Blank **Matrix: Water Prep Type: Total Recoverable** 

52.7

53.4

Analysis Batch: 348494

мв мв Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 10 U 10 09/10/14 13:06 09/11/14 11:37 Lead ug/L

**Client Sample ID: Lab Control Sample** Lab Sample ID: LCS 680-348272/2-A **Matrix: Water Prep Type: Total Recoverable** Analysis Batch: 348494 Prep Batch: 348272

LCS LCS Spike %Rec. Added Analyte Result Qualifier Unit %Rec Limits

50.0

Lab Sample ID: LCSD 680-348272/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Water Prep Type: Total Recoverable** Analysis Batch: 348494 **Prep Batch: 348272** Spike LCSD LCSD %Rec. RPD

Added Limit Analyte Result Qualifier Unit D Limits RPD %Rec 50.0 50.4 Lead 101 75 - 125 20 ug/L

#### Method: 9060A - Organic Carbon, Total (TOC)

Lab Sample ID: MB 180-117391/6 Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 117391

мв мв Result Qualifier RLDil Fac Analyte MDL Unit Prepared Analyzed Total Organic Carbon - Quad 1.0 U 1.0 mg/L 09/08/14 14:33

Lab Sample ID: LCS 180-117391/4 **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 117391

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Total Organic Carbon - Quad 20.0 19.3 mg/L 96 80 - 120

TestAmerica Savannah

### **QC Sample Results**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-104723-1

Method: 9060A - Organic Carbon, Total (TOC) (Continued)

| Lab Sample ID: LCSD 180-117391/5 | Client Sample ID: Lab Control Sample Dup |
|----------------------------------|------------------------------------------|
| Matrix: Solid                    | Prep Type: Total/NA                      |
|                                  |                                          |

**Analysis Batch: 117391** 

| -                           | Spike | LCSD   | LCSD      |      |   |      | %Rec.    |     | RPD   |
|-----------------------------|-------|--------|-----------|------|---|------|----------|-----|-------|
| Analyte                     | Added | Result | Qualifier | Unit | D | %Rec | Limits   | RPD | Limit |
| Total Organic Carbon - Quad | 20.0  | 19.2   |           | mg/L |   | 96   | 80 - 120 | 0   | 20    |

Lab Sample ID: LB3 180-117159/6-A **Client Sample ID: Method Blank** Matrix: Solid **Prep Type: ASTM Leach** 

Analysis Batch: 117391

| -                           | LB3    | LB3       |     |     |      |   |          |                |         |
|-----------------------------|--------|-----------|-----|-----|------|---|----------|----------------|---------|
| Analyte                     | Result | Qualifier | RL  | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Total Organic Carbon - Quad | 1.0    | U         | 1.0 |     | mg/L |   |          | 09/08/14 17:16 | 1       |

TestAmerica Job ID: 680-104723-1

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

#### **Metals**

### **Prep Batch: 348266**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 680-104723-6       | PDMW-13P_08272014  | Total/NA  | Water  | 3010A  |            |
| LCS 680-348266/2-A | Lab Control Sample | Total/NA  | Water  | 3010A  |            |
| MB 680-348266/1-A  | Method Blank       | Total/NA  | Water  | 3010A  |            |

### **Prep Batch: 348272**

| Lab Sample ID       | Client Sample ID       | Prep Type         | Matrix | Method | Prep Batch |
|---------------------|------------------------|-------------------|--------|--------|------------|
| 680-104723-6        | PDMW-13P_08272014      | Dissolved         | Water  | 3005A  |            |
| LCS 680-348272/2-A  | Lab Control Sample     | Total Recoverable | Water  | 3005A  |            |
| LCSD 680-348272/3-A | Lab Control Sample Dup | Total Recoverable | Water  | 3005A  |            |
| MB 680-348272/1-A   | Method Blank           | Total Recoverable | Water  | 3005A  |            |

### Analysis Batch: 348494

| Lab Sample ID       | Client Sample ID       | Prep Type         | Matrix | Method | Prep Batch |
|---------------------|------------------------|-------------------|--------|--------|------------|
| 680-104723-6        | PDMW-13P_08272014      | Dissolved         | Water  | 6010C  | 348272     |
| 680-104723-6        | PDMW-13P_08272014      | Total/NA          | Water  | 6010C  | 348266     |
| LCS 680-348266/2-A  | Lab Control Sample     | Total/NA          | Water  | 6010C  | 348266     |
| LCS 680-348272/2-A  | Lab Control Sample     | Total Recoverable | Water  | 6010C  | 348272     |
| LCSD 680-348272/3-A | Lab Control Sample Dup | Total Recoverable | Water  | 6010C  | 348272     |
| MB 680-348266/1-A   | Method Blank           | Total/NA          | Water  | 6010C  | 348266     |
| MB 680-348272/1-A   | Method Blank           | Total Recoverable | Water  | 6010C  | 348272     |

### **General Chemistry**

### Analysis Batch: 116615

| Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method | Prep Batch |
|---------------|------------------|-----------|--------|--------|------------|
| 680-104723-1  | HA-01 (3.5-4.0)  | Total/NA  | Solid  | 2540G  |            |
| 680-104723-2  | HA-02 (2.5-3.0)  | Total/NA  | Solid  | 2540G  |            |
| 680-104723-3  | HA-02 (5.5-6.0)  | Total/NA  | Solid  | 2540G  |            |
| 680-104723-4  | HA-03 (2.0-2.5)  | Total/NA  | Solid  | 2540G  |            |
| 680-104723-5  | HA-03 (4.5-5.0)  | Total/NA  | Solid  | 2540G  |            |

#### Leach Batch: 117159

| Lab Sample ID      | Client Sample ID | Prep Type  | Matrix | Method   | Prep Batch |
|--------------------|------------------|------------|--------|----------|------------|
| 680-104723-1       | HA-01 (3.5-4.0)  | ASTM Leach | Solid  | D3987-85 |            |
| 680-104723-2       | HA-02 (2.5-3.0)  | ASTM Leach | Solid  | D3987-85 |            |
| 680-104723-3       | HA-02 (5.5-6.0)  | ASTM Leach | Solid  | D3987-85 |            |
| 680-104723-4       | HA-03 (2.0-2.5)  | ASTM Leach | Solid  | D3987-85 |            |
| 680-104723-5       | HA-03 (4.5-5.0)  | ASTM Leach | Solid  | D3987-85 |            |
| LB3 180-117159/6-A | Method Blank     | ASTM Leach | Solid  | D3987-85 |            |

### Analysis Batch: 117391

| Lab Sample ID      | Client Sample ID       | Prep Type  | Matrix | Method | Prep Batch |
|--------------------|------------------------|------------|--------|--------|------------|
| 680-104723-1       | HA-01 (3.5-4.0)        | ASTM Leach | Solid  | 9060A  | 117159     |
| 680-104723-2       | HA-02 (2.5-3.0)        | ASTM Leach | Solid  | 9060A  | 117159     |
| 680-104723-3       | HA-02 (5.5-6.0)        | ASTM Leach | Solid  | 9060A  | 117159     |
| 680-104723-4       | HA-03 (2.0-2.5)        | ASTM Leach | Solid  | 9060A  | 117159     |
| 680-104723-5       | HA-03 (4.5-5.0)        | ASTM Leach | Solid  | 9060A  | 117159     |
| LB3 180-117159/6-A | Method Blank           | ASTM Leach | Solid  | 9060A  | 117159     |
| LCS 180-117391/4   | Lab Control Sample     | Total/NA   | Solid  | 9060A  |            |
| LCSD 180-117391/5  | Lab Control Sample Dup | Total/NA   | Solid  | 9060A  |            |

TestAmerica Savannah

9/11/2014

Page 13 of 22

9

4

J

7

0

# **QC Association Summary**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-104723-1

**General Chemistry (Continued)** 

Analysis Batch: 117391 (Continued)

| Lab Sample ID   | Client Sample ID | Prep Type | Matrix | Method | Prep Batch |
|-----------------|------------------|-----------|--------|--------|------------|
| MB 180-117391/6 | Method Blank     | Total/NA  | Solid  | 9060A  |            |

4

4

5

7

0

10

11

4.6

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Lab Sample ID: 680-104723-1

Lab Sample ID: 680-104723-2

Lab Sample ID: 680-104723-3

**Matrix: Solid** 

**Matrix: Solid** 

**Matrix: Solid** 

Client Sample ID: HA-01 (3.5-4.0) Date Collected: 08/27/14 12:30

Date Received: 08/28/14 09:30

|            | Batch    | Batch           |     | Dil    | Initial    | Final   | Batch  | Prepared       |         |         |
|------------|----------|-----------------|-----|--------|------------|---------|--------|----------------|---------|---------|
| Prep Type  | Type     | Method          | Run | Factor | Amount     | Amount  | Number | or Analyzed    | Analyst | Lab     |
| Total/NA   | Analysis | 2540G           |     | 1      |            |         | 116615 | 08/30/14 13:30 | NAK     | TAL PIT |
|            | Instrum  | ent ID: NOEQUIP |     |        |            |         |        |                |         |         |
| ASTM Leach | Leach    | D3987-85        |     |        | 00100.12 g | 2000 mL | 117159 | 09/05/14 12:22 | JWS     | TAL PIT |
| ASTM Leach | Analysis | 9060A           |     | 1      |            |         | 117391 | 09/08/14 15:07 | CLL     | TAL PIT |
|            | Instrum  | ent ID: TOC1030 |     |        |            |         |        |                |         |         |

Client Sample ID: HA-02 (2.5-3.0)

| <b>Date Collected</b> | l: 08/27/14 14: | :30    |     |        |         |        |        |             |         | Matrix: Solid |
|-----------------------|-----------------|--------|-----|--------|---------|--------|--------|-------------|---------|---------------|
| Date Received         | : 08/28/14 09:  | 30     |     |        |         |        |        |             |         |               |
|                       | Batch           | Batch  |     | Dil    | Initial | Final  | Batch  | Prepared    |         |               |
| Pren Tyne             | Tyne            | Method | Run | Factor | Amount  | Amount | Number | or Analyzed | Δnalvst | l ah          |

|            |          |                 |     |        |            |         |        | •              |         |         |
|------------|----------|-----------------|-----|--------|------------|---------|--------|----------------|---------|---------|
| Prep Type  | Type     | Method          | Run | Factor | Amount     | Amount  | Number | or Analyzed    | Analyst | Lab     |
| Total/NA   | Analysis | 2540G           |     | 1      |            |         | 116615 | 08/30/14 13:30 | NAK     | TAL PIT |
|            | Instrum  | ent ID: NOEQUIP |     |        |            |         |        |                |         |         |
| ASTM Leach | Leach    | D3987-85        |     |        | 00100.02 g | 2000 mL | 117159 | 09/05/14 12:22 | JWS     | TAL PIT |
| ASTM Leach | Analysis | 9060A           |     | 1      |            |         | 117391 | 09/08/14 15:33 | CLL     | TAL PIT |
|            | Instrum  | ent ID: TOC1030 |     |        |            |         |        |                |         |         |

Client Sample ID: HA-02 (5.5-6.0)

Date Collected: 08/27/14 15:00

Date Received: 08/28/14 09:30

|            | Batch    | Batch           |     | Dil    | Initial    | Final   | Batch  | Prepared       |         |         |
|------------|----------|-----------------|-----|--------|------------|---------|--------|----------------|---------|---------|
| Prep Type  | Type     | Method          | Run | Factor | Amount     | Amount  | Number | or Analyzed    | Analyst | Lab     |
| Total/NA   | Analysis | 2540G           |     | 1      |            |         | 116615 | 08/30/14 13:30 | NAK     | TAL PIT |
|            | Instrum  | ent ID: NOEQUIP |     |        |            |         |        |                |         |         |
| ASTM Leach | Leach    | D3987-85        |     |        | 00100.33 q | 2000 mL | 117159 | 09/05/14 12:22 | JWS     | TAL PIT |

Client Sample ID: HA-03 (2.0-2.5)

Date Collected: 08/27/14 15:55

Date Received: 08/28/14 09:30

| Client Sample | o ID∙ HΔ-03 | (2 0-2 5)       |            |         |        | Lah Sample     | 1D: 68 | 20-104723-4 |  |
|---------------|-------------|-----------------|------------|---------|--------|----------------|--------|-------------|--|
|               | Instrume    | ent ID: TOC1030 |            |         |        |                |        |             |  |
| ASTM Leach    | Analysis    | 9060A           | 1          |         | 117391 | 09/08/14 15:58 | CLL    | TAL PIT     |  |
| ASTM Leach    | Leach       | D3987-85        | 00100.33 g | 2000 mL | 11/159 | 09/05/14 12:22 | JWS    | TAL PIT     |  |

| Prep Type<br>Total/NA | Batch Type Analysis Instrume | Batch  Method  2540G  ent ID: NOEQUIP | Run | Dil<br>Factor | Initial<br>Amount | Final<br>Amount | <b>Number</b> 116615 | Prepared<br>or Analyzed<br>08/30/14 13:30 | Analyst<br>NAK | Lab<br>TAL PIT |
|-----------------------|------------------------------|---------------------------------------|-----|---------------|-------------------|-----------------|----------------------|-------------------------------------------|----------------|----------------|
| ASTM Leach            | Leach                        | D3987-85                              |     |               | 00100.06 g        | 2000 mL         | 117159               | 09/05/14 12:22                            | JWS            | TAL PIT        |
| ASTM Leach            | Analysis<br>Instrum          | 9060A<br>ent ID: TOC1030              |     | 1             |                   |                 | 117391               | 09/08/14 16:24                            | CLL            | TAL PIT        |

TestAmerica Savannah

#### **Lab Chronicle**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-104723-1

Client Sample ID: HA-03 (4.5-5.0)

Lab Sample ID: 680-104723-5

Date Collected: 08/27/14 16:10 Date Received: 08/28/14 09:30

Matrix: Solid

|            | Batch    | Batch           |     | Dil    | Initial    | Final   | Batch  | Prepared       |         |         |
|------------|----------|-----------------|-----|--------|------------|---------|--------|----------------|---------|---------|
| Prep Type  | Туре     | Method          | Run | Factor | Amount     | Amount  | Number | or Analyzed    | Analyst | Lab     |
| Total/NA   | Analysis | 2540G           | _   | 1      |            |         | 116615 | 08/30/14 13:30 | NAK     | TAL PIT |
|            | Instrum  | ent ID: NOEQUIP |     |        |            |         |        |                |         |         |
| ASTM Leach | Leach    | D3987-85        |     |        | 00100.02 g | 2000 mL | 117159 | 09/05/14 12:22 | JWS     | TAL PIT |
| ASTM Leach | Analysis | 9060A           |     | 1      |            |         | 117391 | 09/08/14 16:51 | CLL     | TAL PIT |
|            | Instrum  | ent ID: TOC1030 |     |        |            |         |        |                |         |         |

Lab Sample ID: 680-104723-6

Client Sample ID: PDMW-13P\_08272014

Matrix: Water

Date Collected: 08/27/14 11:20 Date Received: 08/28/14 09:30

|           | Batch    | Batch        |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|--------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method       | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Dissolved | Prep     | 3005A        |     |        | 50 mL   | 50 mL  | 348272 | 09/10/14 13:06 | SP      | TAL SAV |
| Dissolved | Analysis | 6010C        |     | 1      | 50 mL   | 50 mL  | 348494 | 09/11/14 12:00 | BCB     | TAL SAV |
|           | Instrume | ent ID: ICPF |     |        |         |        |        |                |         |         |
| Total/NA  | Prep     | 3010A        |     |        | 50 mL   | 50 mL  | 348266 | 09/10/14 12:52 | SP      | TAL SAV |
| Total/NA  | Analysis | 6010C        |     | 1      | 50 mL   | 50 mL  | 348494 | 09/11/14 11:13 | BCB     | TAL SAV |
|           | Instrume | ent ID: ICPF |     |        |         |        |        |                |         |         |

#### **Laboratory References:**

TAL PIT = TestAmerica Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

# **Certification Summary**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-104723-1

### **Laboratory: TestAmerica Savannah**

The certifications listed below are applicable to this report.

| Authority | Program       | EPA Region | Certification ID | Expiration Date |
|-----------|---------------|------------|------------------|-----------------|
| Georgia   | State Program | 4          | 803              | 06-30-15        |

### Laboratory: TestAmerica Pittsburgh

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

| Authority              | Program       | EPA Region | Certification ID | Expiration Date |
|------------------------|---------------|------------|------------------|-----------------|
| Arkansas DEQ           | State Program | 6          | 88-0690          | 06-27-15        |
| California             | State Program | 9          | 2891             | 03-31-15        |
| Connecticut            | State Program | 1          | PH-0688          | 09-30-14 *      |
| Florida                | NELAP         | 4          | E871008          | 06-30-15        |
| Illinois               | NELAP         | 5          | 002602           | 06-30-15        |
| Kansas                 | NELAP         | 7          | E-10350          | 01-31-15        |
| Louisiana              | NELAP         | 6          | 04041            | 06-30-15        |
| New Hampshire          | NELAP         | 1          | 203011           | 04-04-15        |
| New Jersey             | NELAP         | 2          | PA005            | 06-30-15        |
| New York               | NELAP         | 2          | 11182            | 03-31-15        |
| North Carolina (WW/SW) | State Program | 4          | 434              | 12-31-14        |
| Pennsylvania           | NELAP         | 3          | 02-00416         | 04-30-15        |
| South Carolina         | State Program | 4          | 89014            | 04-30-15        |
| Texas                  | NELAP         | 6          | T104704528       | 03-31-15        |
| US Fish & Wildlife     | Federal       |            | LE94312A-1       | 11-30-14        |
| USDA                   | Federal       |            | P330-10-00139    | 05-23-16        |
| Utah                   | NELAP         | 8          | STLP             | 05-31-15        |
| Virginia               | NELAP         | 3          | 460189           | 09-14-14 *      |
| West Virginia DEP      | State Program | 3          | 142              | 01-31-15        |
| Wisconsin              | State Program | 5          | 998027800        | 08-31-14 *      |

9/11/2014

TestAmerica Savannah

Page 17 of 22

9

3

4

6

8

9

<sup>\*</sup> Certification renewal pending - certification considered valid.

# **Method Summary**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-104723-1

| Method | Method Description          | Protocol | Laboratory |
|--------|-----------------------------|----------|------------|
| 6010C  | Metals (ICP)                | SW846    | TAL SAV    |
| 2540G  | SM 2540G                    | SM22     | TAL PIT    |
| 9060A  | Organic Carbon, Total (TOC) | SW846    | TAL PIT    |

#### Protocol References:

SM22 = SM22

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

#### Laboratory References:

TAL PIT = TestAmerica Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058 TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

6

10

7 7

| . coc#                        | 0772 SHIPMENT INFORMATION                                                                                | Anna Maria                                                                                                                                                                                    | Shipment Tracking No:                                                                                                                                                                                        | HAES-00EH-9, policy           | PM: Pat Harrison                 | Stloo Email pat, harrison @american | Phone 78 1658-1374       | COMMENTS LAB USE       | IR ANALYSIS          |                                        |                   |                          |                                     |                    |                      |                       |                |                 |                |               |                 |  | to said | Crain of Co | 280-104 6 | ments & Special Analytical Requirements: |                  |                  | ct Custody Seal # LAB Log Number # # |
|-------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------|-------------------------------------|--------------------------|------------------------|----------------------|----------------------------------------|-------------------|--------------------------|-------------------------------------|--------------------|----------------------|-----------------------|----------------|-----------------|----------------|---------------|-----------------|--|---------|-------------|-----------|------------------------------------------|------------------|------------------|--------------------------------------|
| 54-7959 E-019-959-0165        | : 330-497-9396 F: 330-497-                                                                               | -885-7427 F: 813-885-7049<br>74-1001 F: 850-478-2671                                                                                                                                          | 16-691-2600 F; 716-961-799<br>-5200 F: 708-534-5211                                                                                                                                                          | NOI                           | ESI                              | 2                                   | 18                       | 0                      | METHODS FOR ANALYSIS | WC                                     | ) <sub>2</sub> )C |                          | , 5                                 | 0                  |                      |                       | X              | 4               |                | ×             | X               |  |         |             |           | Date/Time:                               | Date/Time:       | Date/Time:       | LAB USE: Custody Intact              |
| Savanah GA 31404 D: 012-3     | TestAmerica North Canton - 4101 Shuffel Drive NW, North Canton, OH 44720 P. 330-497-9396 F. 330-497-0772 | ı tampa - 6.772 Benjamın Hoad, Sutte 100, Tampa, FL 33654 - 17: 813-885-7427 - 17: 813-885-70<br>I Pensacola - 3355 McLemore Drive, Pensacola, FL 32514 - 17: 850-474-1001 - 17: 850-478-2671 | ☐ TestAmerica Buffalo - 10 Hazelwood Drive, Sulte 106, Amherst, NY 14228 P: 716-691-2600 F: 716-961-7991 ☐ TestAmerica Chicago - 2417 Bond Street, Linversity Park, IL 60466 P: 708-534-5200 F: 708-534-5211 | CONSULTANT INFORMATION        | Company: Amec                    | Address: 3800 Ezell                 | City, State, Zip: hville | Sulfuric Acid Note     |                      | 5 = Sodium Hydroxide Code<br>6 = Other | LIQ = Liquid      |                          | her Solid                           |                    | Filtered Type Matrix | YorN Comp Code        | S 9 N          | S               | S 9 7          | 5 9 2         | S 9 7           |  |         |             |           |                                          |                  |                  | 3.0.6                                |
| Savannah - 5102 LaBoche Avenu | orth Canton - 4101 Shuffel Driv                                                                          | mpa - 6712 Benjamin Road, St<br>nsacola - 3355 McLemore Driv                                                                                                                                  | ifalo - 10 Hazelwood Drive, Su<br>icago - 2417 Bond Street, Univ                                                                                                                                             | te of Origin)                 |                                  |                                     | endina                   | 3 = Sulfur             |                      |                                        |                   | dwater SL = Sludge       | L                                   |                    | Sample Collection    | Sampler               | 1230 35        | 1430 35         | 1 1500 35      | 1585 33       | 1610 55         |  |         |             |           | Received By:                             | Received By:     | Received By:     | Lab Remarks: 723                     |
| Toet/merica Sa                | TestAmerica No                                                                                           | U lestAmerica la<br>U TestAmerica Pe                                                                                                                                                          | ☐ TestAmerica Bu<br>☐ TestAmerica Ch                                                                                                                                                                         | Proj. State (State of Origin) | Proj. City: So                   |                                     | MON: P                   | Preservative Codes:    | 0 = No Preservatives | 1 = Hydrochloric Acid 2 = Nitric Acid  | Matrix Codes:     | GW = Groundwater         | WW = Waste Water SW = Surface Water |                    |                      | Da                    | F1 152/38      | P1/62/8         | 18/24/14       | 18/22/14      | 18/27/14        |  |         |             |           | 0061 HILT                                |                  |                  | 9.30 108                             |
|                               | IAIN OF                                                                                                  | CUSTODY                                                                                                                                                                                       |                                                                                                                                                                                                              |                               | 75                               | n Island                            |                          | Standard 6-13 Days     | Specify # Days       | Standard 14 Days<br>Other              | Other Deliv:      |                          | EDD Required, Format:               |                    | Containers           | Number & Type         | 7              | -               | _              | (             |                 |  |         |             |           | Date(Time: )H                            | Date/Time:       | Date/Time:       | OE DIMENTING                         |
|                               |                                                                                                          | TRANSPORTATION                                                                                                                                                                                |                                                                                                                                                                                                              | CSXT PROJECT INFORMATION      | CSXT Project Number: 9 4 (SS 7 号 | CSXT Project Name: Hutchinson       | CSXT Contact: Sam Ross   | Turnaround Time: Stand | •                    | 2 Day Rush X Standa 3 Day Rush Other   |                   | CSXT Standard (Level II) | Level III EDD R                     | SAMPLE INFORMATION |                      | Sample Identification | 44-01 (3,5-4,0 | HA-02 (8,5-3.0) | HA-02 (5.5-6.0 | 4A-03 (20-25) | HA-03 (4,5-5,0) |  |         |             |           | Relinquished By:                         | Relinquished By: | Relinquished By: | Received By Laboratory:              |

|                        | ORMATION                                                                                                                                                                                                 | FELEX                                              | No:                                              | 1330 - 5244                      | AM(so)               | Patharran gamerion            | 3-13-x Fax        | COMMENTS LAB USE    |                        |                       |              |                           | ing gi genigandere    |                    |                      | e planing de Access   |                   |              |                                        |  |  |        | Comments & Special Analytical Requirements: |                  |                  | LAB Log Number<br>#    |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------|----------------------------------|----------------------|-------------------------------|-------------------|---------------------|------------------------|-----------------------|--------------|---------------------------|-----------------------|--------------------|----------------------|-----------------------|-------------------|--------------|----------------------------------------|--|--|--------|---------------------------------------------|------------------|------------------|------------------------|
| #<br>000               |                                                                                                                                                                                                          | and the same                                       | Shipment Tracking No:                            | Project #: 6 - 4390              | PM: Pat Harrison     | Ensithar<br>Pathar            | (1548) (58-137    |                     | NALYSIS                |                       |              |                           |                       |                    |                      |                       |                   |              | ************************************** |  |  |        | Comments & S                                | <b>T</b>         | <b>T</b>         | Custody Seal #         |
|                        | LestAmerica Savannan - 5102 Lahocre Avenue, Savannan, GA 31404 P. 912-834-7688 F. 912-832-0166  TestAmerica North Carton - 4101 Shuffel Drive NW, North Carton, OH 44702 P. 330-497-9396 F. 330-497-0772 | F: 813-885-7049<br>F: 850-478-2671                 | 600 F: 716-961-7991<br>F: 708-534-5211           |                                  | 1+                   | Str. 100                      | 721               | الع                 | METHODS FOR ANALYSIS   |                       | 9            |                           | P-20                  | 110                | 55                   | \Q                    | ×                 |              |                                        |  |  | 04 you | ne:                                         | ne:              | ne:              | E: Custody Intact      |
|                        | 2-354-7858<br>P: 330-49                                                                                                                                                                                  | 813-885-742                                        | 534-5200                                         | IATION                           | 日本十                  | RA S                          | di                | Ø                   | _                      |                       | , i          | 9                         | <u>d</u> 1            |                    | PQ                   | L                     | X                 | LOS DO TOTAL |                                        |  |  |        | Date/Time:                                  | Date/Time:       | Date/Time:       | LAB USE:               |
|                        | vannan, GA 31404 P: 91<br>/, North Canton, OH 44720                                                                                                                                                      | 00, lampa, FL 33634 P:<br>ensacola, FL 32514 P: 85 | 06, Amherst, NY 14228<br>y Park, IL 60466 P: 708 | CONSULTANT INFORMATION           | Company: PMEC        | Address: 52ell                | 11                | oid Note            |                        | ydroxide Code         |              | LIQ = Liquid              | ciio                  |                    | Filtered Type Matrix | Comp<br>or Grab       | M9 9 /            |              |                                        |  |  |        |                                             |                  |                  | 14723                  |
| ATION                  | LaKocne Avenue, So<br>101 Shuffel Drive NV                                                                                                                                                               | njamin Road, Suite 1<br>McLemore Drive, P          | ilwood Drive, Suite 1<br>Iond Street, Universi   | 00 AS                            |                      |                               |                   | 3 = Sulfuric Acid   | 4 = Sodium Thiosulfate | 5 = Sodium Hydroxide  |              | SO = Soil                 | 01 = 0il              | 00F = 01181        |                      | Sampler               | 155 7             |              |                                        |  |  |        | By:                                         | By:              | By:              | Lab Remarks:           |
| NFORM                  | annan - 5102<br>th Canton - 4                                                                                                                                                                            | ipa - 6712 Be<br>sacola - 3355                     | ialo - 10 Haze<br>cago - 2417 B                  | e of Origin)                     | 8                    |                               | pendina           | Codes:              | vatives                | ric Acid              |              | :<br>water                | Nater<br>Water        | a diagram          | Sample Collection    | Time                  | 1130              |              |                                        |  |  |        | Received By:                                | Received By:     | Received By:     | Lab Rem                |
| LABORATORY INFORMATION | TestAmerica Sava                                                                                                                                                                                         | U lestAmerica lam U TestAmerica Pens               | ☐ TestAmerica Buff<br>☐ TestAmerica Chio         | Proj. State (State of Origin) GA | Proj. City Savanah   |                               | LWON: Pe          | Preservative Codes: | 0 = No Preservatives   | 1 = Hydrochloric Acid |              | Matrix Codes:             | WW = Waste Water      | On the             | Sample               | Date                  | 41/tz/8           |              |                                        |  |  |        | 00/6]                                       |                  |                  | 20 20                  |
|                        |                                                                                                                                                                                                          |                                                    |                                                  |                                  |                      | Island                        |                   | 3 Days              | /s                     | Days                  |              |                           | d, Format:            |                    | Containers           | Number &<br>Type      | 2                 |              |                                        |  |  |        | Date/Time: PA                               | Date/Time:       | Date/Time:       | Date/Fime 9:30         |
|                        | CHAIN OF                                                                                                                                                                                                 | CUSTODY                                            |                                                  | ATION                            | 9415575              | ١'                            | R055              | Standard 6-13 Days  | Specify # Days         | Standard 14 Days      |              | Other Deliv:              | EDD Required, Format: |                    |                      | ication               | 78272014          |              |                                        |  |  |        | 2                                           |                  |                  | 18612 4                |
|                        | メソし                                                                                                                                                                                                      | TRANSPORTATION                                     |                                                  | CSXT PROJECT INFORMATION         | CSXT Project Number: | CSXT Project Name: Hutchinson | CSXT Contact: Sam | Turnaround Time:    | 1 Day Rush             | 2 Day Rush            | and a second | CSXT Standard (I evel II) | Level III             | SAMPLE INFORMATION |                      | Sample Identification | PDMW-13P_08272014 |              | :                                      |  |  | -      | Relinquished By:                            | Relinquished By: | Relinquished By: | Received By Laboratory |

### **Login Sample Receipt Checklist**

Client: AMEC Environment & Infrastructure, Inc.

Job Number: 680-104723-1

Login Number: 104723 List Source: TestAmerica Savannah

List Number: 1

Creator: White, Menica R

| Creator. Writte, interitor ix                                                                             |        |         |
|-----------------------------------------------------------------------------------------------------------|--------|---------|
| Question                                                                                                  | Answer | Comment |
| Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td> | N/A    |         |
| The cooler's custody seal, if present, is intact.                                                         | True   |         |
| Sample custody seals, if present, are intact.                                                             | True   |         |
| The cooler or samples do not appear to have been compromised or tampered with.                            | True   |         |
| Samples were received on ice.                                                                             | True   |         |
| Cooler Temperature is acceptable.                                                                         | True   |         |
| Cooler Temperature is recorded.                                                                           | True   |         |
| COC is present.                                                                                           | True   |         |
| COC is filled out in ink and legible.                                                                     | True   |         |
| COC is filled out with all pertinent information.                                                         | True   |         |
| Is the Field Sampler's name present on COC?                                                               | N/A    |         |
| There are no discrepancies between the containers received and the COC.                                   | True   |         |
| Samples are received within Holding Time.                                                                 | True   |         |
| Sample containers have legible labels.                                                                    | True   |         |
| Containers are not broken or leaking.                                                                     | True   |         |
| Sample collection date/times are provided.                                                                | True   |         |
| Appropriate sample containers are used.                                                                   | True   |         |
| Sample bottles are completely filled.                                                                     | True   |         |
| Sample Preservation Verified.                                                                             | True   |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs                          | True   |         |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").                           | N/A    |         |
| Multiphasic samples are not present.                                                                      | True   |         |
| Samples do not require splitting or compositing.                                                          | True   |         |
| Residual Chlorine Checked.                                                                                | N/A    |         |

3

4

8

10

11

### **Login Sample Receipt Checklist**

Client: AMEC Environment & Infrastructure, Inc.

Job Number: 680-104723-1

List Source: TestAmerica Pittsburgh
List Number: 2
List Creation: 08/29/14 11:47 AM

Creator: Butcher, Ryan M

| Question                                                                                                   | Answer | Comment |
|------------------------------------------------------------------------------------------------------------|--------|---------|
| Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td> | True   |         |
| The cooler's custody seal, if present, is intact.                                                          | True   |         |
| Sample custody seals, if present, are intact.                                                              | True   |         |
| The cooler or samples do not appear to have been compromised or tampered with.                             | True   |         |
| Samples were received on ice.                                                                              | True   |         |
| Cooler Temperature is acceptable.                                                                          | True   |         |
| Cooler Temperature is recorded.                                                                            | True   |         |
| COC is present.                                                                                            | True   |         |
| COC is filled out in ink and legible.                                                                      | True   |         |
| COC is filled out with all pertinent information.                                                          | True   |         |
| Is the Field Sampler's name present on COC?                                                                | True   |         |
| There are no discrepancies between the containers received and the COC.                                    | True   |         |
| Samples are received within Holding Time.                                                                  | True   |         |
| Sample containers have legible labels.                                                                     | True   |         |
| Containers are not broken or leaking.                                                                      | True   |         |
| Sample collection date/times are provided.                                                                 | True   |         |
| Appropriate sample containers are used.                                                                    | True   |         |
| Sample bottles are completely filled.                                                                      | True   |         |
| Sample Preservation Verified.                                                                              | True   |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs                           | True   |         |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").                            | True   |         |
| Multiphasic samples are not present.                                                                       | True   |         |
| Samples do not require splitting or compositing.                                                           | True   |         |
| Residual Chlorine Checked.                                                                                 | N/A    |         |

2

0

10

11



THE LEADER IN ENVIRONMENTAL TESTING

# **ANALYTICAL REPORT**

TestAmerica Laboratories, Inc.

TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

TestAmerica Job ID: 680-106890-1

Client Project/Site: CSX Hutchinson Island VRP

For:

AMEC Environment & Infrastructure, Inc. 2677 Buford Highway Atlanta, Georgia 30324

Attn: Mr. Steve Foley

Authorized for release

Authorized for release by: 11/12/2014 12:52:04 PM

Lisa Harvey, Project Manager II (912)354-7858 e.3221

lisa.harvey@testamericainc.com

.....LINKS .....

Review your project results through

Total Access

**Have a Question?** 



Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

#### **Case Narrative**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-106890-1

Job ID: 680-106890-1

Laboratory: TestAmerica Savannah

Narrative

#### **CASE NARRATIVE**

Client: AMEC Environment & Infrastructure, Inc.
Project: CSX Hutchinson Island VRP
Report Number: 680-106890-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

No analytical or quality issues were noted, other than those described below or in the Definitions/Glossary page.

#### <u>RECEIPT</u>

The samples were received on 11/4/2014 9:20 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.4° C.

#### **METALS (ICP)**

Samples PDMW-46\_11032014 (680-106890-1), PDMW-19P\_11032014 (680-106890-2), PDMW-30P\_11032014 (680-106890-3), MW-1\_11032014 (680-106890-4), PDMW-45R\_11032014 (680-106890-5) and MW-2\_11042014 (680-106890-6) were analyzed for Metals (ICP) in accordance with EPA SW-846 Method 6010C.

#### **AMMONIA**

Samples PDMW-46\_11032014 (680-106890-1), PDMW-19P\_11032014 (680-106890-2), PDMW-30P\_11032014 (680-106890-3), MW-1\_11032014 (680-106890-4), PDMW-45R\_11032014 (680-106890-5) and MW-2\_11042014 (680-106890-6) were analyzed for ammonia in accordance with EPA Method 350.1. The samples were analyzed on 11/06/2014.

Ammonia recovery is outside criteria high for the MS and MSD of sample PDMW-19P\_11032014 (680-106890-2) in batch 680-357501.

Samples PDMW-46\_11032014 (680-106890-1)[2X], PDMW-19P\_11032014 (680-106890-2)[5X], PDMW-30P\_11032014 (680-106890-3) [2X], MW-1\_11032014 (680-106890-4)[20X], PDMW-45R\_11032014 (680-106890-5)[5X] and MW-2\_11042014 (680-106890-6)[20X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

#### **NITRATE-NITRITE AS NITROGEN**

Samples PDMW-46\_11032014 (680-106890-1), PDMW-19P\_11032014 (680-106890-2), PDMW-30P\_11032014 (680-106890-3), MW-1\_11032014 (680-106890-4), PDMW-45R\_11032014 (680-106890-5) and MW-2\_11042014 (680-106890-6) were analyzed for nitrate-nitrite as nitrogen in accordance with EPA Method 353.2.

1

### **Definitions/Glossary**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-106890-1

### **Qualifiers**

#### **Metals**

| Qualifier | Qualifier | Description | n |
|-----------|-----------|-------------|---|
|           |           |             |   |

Indicates the analyte was analyzed for but not detected.

#### **General Chemistry**

| Qualifier | Qualifier Description                                                                                                                                     |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| U         | Indicates the analyte was analyzed for but not detected.                                                                                                  |
| 4         | MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable. |

### **Glossary**

| <u>,</u>       |                                                                                                             |
|----------------|-------------------------------------------------------------------------------------------------------------|
| Abbreviation   | These commonly used abbreviations may or may not be present in this report.                                 |
| ¤              | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |
| %R             | Percent Recovery                                                                                            |
| CFL            | Contains Free Liquid                                                                                        |
| CNF            | Contains no Free Liquid                                                                                     |
| DER            | Duplicate error ratio (normalized absolute difference)                                                      |
| Dil Fac        | Dilution Factor                                                                                             |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |
| DLC            | Decision level concentration                                                                                |
| MDA            | Minimum detectable activity                                                                                 |
| EDL            | Estimated Detection Limit                                                                                   |
| MDC            | Minimum detectable concentration                                                                            |

Method Detection Limit MDL MLMinimum Level (Dioxin)

NC Not Calculated

Not detected at the reporting limit (or MDL or EDL if shown) ND

PQL **Practical Quantitation Limit** 

QC **Quality Control** RER Relative error ratio

RLReporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points RPD

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) TEQ

TestAmerica Savannah

Page 3 of 19

# **Sample Summary**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-106890-1

| Lab Sample ID | Client Sample ID  | Matrix | Collected      | Received       |
|---------------|-------------------|--------|----------------|----------------|
| 680-106890-1  | PDMW-46_11032014  | Water  | 11/03/14 14:15 | 11/04/14 09:20 |
| 680-106890-2  | PDMW-19P_11032014 | Water  | 11/03/14 14:35 | 11/04/14 09:20 |
| 680-106890-3  | PDMW-30P_11032014 | Water  | 11/03/14 15:31 | 11/04/14 09:20 |
| 680-106890-4  | MW-1_11032014     | Water  | 11/03/14 15:55 | 11/04/14 09:20 |
| 680-106890-5  | PDMW-45R_11032014 | Water  | 11/03/14 17:03 | 11/04/14 09:20 |
| 680-106890-6  | MW-2_11042014     | Water  | 11/04/14 08:30 | 11/04/14 09:20 |

3

4

6

10

11

4.6

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Client Sample ID: PDMW-46\_11032014

TestAmerica Job ID: 680-106890-1

Lab Sample ID: 680-106890-1

Matrix: Water

Date Collected: 11/03/14 14:15 Date Received: 11/04/14 09:20

| Method: 6010C - Metals (ICP) |        |           |    |     |      |   |                |                |         |
|------------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte                      | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                      | 20     | U         | 20 |     | ug/L |   | 11/07/14 14:19 | 11/10/14 17:19 | 1       |
| Lead                         | 10     | U         | 10 |     | ug/L |   | 11/07/14 14:19 | 11/10/14 17:19 | 1       |
| _                            |        |           |    |     |      |   |                |                |         |

| General Chemistry Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia                   | 2.2    |           | 0.10  |     | mg/L |   |          | 11/06/14 17:39 | 2       |
| Nitrate as N              | 0.050  | U         | 0.050 |     | mg/L |   |          | 11/04/14 16:12 | 1       |

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Nitrate as N

TestAmerica Job ID: 680-106890-1

11/04/14 16:13

Date Collected: 11/03/14 14:35

Date Received: 11/04/14 09:20

Matrix: Water

| Method: 6010C - Metals (ICP) |        |           |      |     |      |   |                |                |         |
|------------------------------|--------|-----------|------|-----|------|---|----------------|----------------|---------|
| Analyte                      | Result | Qualifier | RL   | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                      |        | U         | 20   |     | ug/L |   | 11/07/14 14:19 | 11/10/14 17:41 | 1       |
| Lead                         | 10     | U         | 10   |     | ug/L |   | 11/07/14 14:19 | 11/10/14 17:41 | 1       |
| Nickel                       | 40     | U         | 40   |     | ug/L |   | 11/07/14 14:19 | 11/10/14 17:41 | 1       |
| General Chemistry            |        |           |      |     |      |   |                |                |         |
| Analyte                      | Result | Qualifier | RL   | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Ammonia                      | 4.5    |           | 0.25 |     | mg/L |   |                | 11/06/14 17:49 | 5       |

0.050

mg/L

0.050 U

TestAmerica Savannah

3

5

7

9

10

11

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-106890-1

\_\_\_\_\_

Client Sample ID: PDMW-30P\_11032014

Date Collected: 11/03/14 15:31 Date Received: 11/04/14 09:20 Lab Sample ID: 680-106890-3

Matrix: Water

| Method: 6010C - Metals (ICP) |        |           |    |     |      |   |                |                |         |
|------------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte                      | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                      | 20     | U         | 20 |     | ug/L |   | 11/07/14 14:19 | 11/10/14 17:46 | 1       |
| Lead                         | 10     | U         | 10 |     | ug/L |   | 11/07/14 14:19 | 11/10/14 17:46 | 1       |
|                              |        |           |    |     |      |   |                |                |         |

| General Chemistry<br>Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia                      | 2.2    |           | 0.10  |     | mg/L |   |          | 11/06/14 17:39 | 2       |
| Nitrate as N                 | 0.050  | U         | 0.050 |     | ma/L |   |          | 11/04/14 16:14 | 1       |

8

4.0

11

Client: AMEC Environment & Infrastructure, Inc.

TestAmerica Job ID: 680-106890-1

Project/Site: CSX Hutchinson Island VRP

Client Sample ID: MW-1\_11032014 Lab Sample ID: 680-106890-4 Date Collected: 11/03/14 15:55

**Matrix: Water** 

Date Received: 11/04/14 09:20

| Method: 6010C - Metals (ICP) |        |           |    |     |      |   |                |                |         |
|------------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte                      | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                      | 20     | U         | 20 |     | ug/L |   | 11/07/14 14:19 | 11/10/14 17:51 | 1       |
| Lead                         | 10     | U         | 10 |     | ug/L |   | 11/07/14 14:19 | 11/10/14 17:51 | 1       |
|                              |        |           |    |     |      |   |                |                |         |

| General Chemistry  Analyte | Result Qualifier | RL    | MDL Unit | D Prepared | Analyzed       | Dil Fac |
|----------------------------|------------------|-------|----------|------------|----------------|---------|
| Ammonia                    | 25               | 1.0   | mg/L     |            | 11/06/14 18:35 | 20      |
| Nitrate as N               | 0.050 U          | 0.050 | ma/L     |            | 11/04/14 16:15 | 1       |

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-106890-1

Client Sample ID: PDMW-45R\_11032014

Date Collected: 11/03/14 17:03 Date Received: 11/04/14 09:20 Lab Sample ID: 680-106890-5

Matrix: Water

| Method: 6010C - Metals (ICP) |        |           |    |     |      |   |                |                |         |
|------------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte                      | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                      | 20     | U         | 20 |     | ug/L |   | 11/07/14 14:19 | 11/10/14 18:04 | 1       |
| Lead                         | 10     | U         | 10 |     | ug/L |   | 11/07/14 14:19 | 11/10/14 18:04 | 1       |
| Nickel                       | 40     | U         | 40 |     | ug/L |   | 11/07/14 14:19 | 11/10/14 18:04 | 1       |

| General Chemistry Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia                   | 4.7    |           | 0.25  |     | mg/L |   |          | 11/06/14 17:59 | 5       |
| Nitrate as N              | 0.050  | U         | 0.050 |     | mg/L |   |          | 11/04/14 16:16 | 1       |

7

8

9

10

. .

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-106890-1

Client Sample ID: MW-2\_11042014

Date Collected: 11/04/14 08:30 Date Received: 11/04/14 09:20 Lab Sample ID: 680-106890-6

**Matrix: Water** 

| Arsenic 20 U 20 ug/L 11/07/14 14:19 11/10/14 18:09 | Method: 6010C - Metals (ICP) |        |           |    |     |      |   |                |                |         |
|----------------------------------------------------|------------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
|                                                    | Analyte                      | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Lead 10 U 10 ug/L 11/07/14 14:19 11/10/14 18:09    | Arsenic                      | 20     | U         | 20 |     | ug/L |   | 11/07/14 14:19 | 11/10/14 18:09 | 1       |
| g ·                                                | Lead                         | 10     | U         | 10 |     | ug/L |   | 11/07/14 14:19 | 11/10/14 18:09 | 1       |

| General Chemistry<br>Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia                      | 23     |           | 1.0   |     | mg/L |   |          | 11/06/14 18:35 | 20      |
| Nitrate as N                 | 0.050  | U         | 0.050 |     | ma/L |   |          | 11/04/14 16:20 | 1       |

7

8

9

10

TestAmerica Job ID: 680-106890-1

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 680-357578/1-A

**Matrix: Water** 

Analysis Batch: 358031

| Client Sam | ole | ID: | Meth | lod | Blank  |  |
|------------|-----|-----|------|-----|--------|--|
|            | Dro | n T | vno: | Tot | al/NIA |  |

Prep Type: Total/NA **Prep Batch: 357578** 

**Prep Batch: 357578** 

|         | MB     | MR        |    |     |      |   |                |                |         |
|---------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic | 20     | U         | 20 |     | ug/L |   | 11/07/14 14:19 | 11/10/14 17:10 | 1       |
| Lead    | 10     | U         | 10 |     | ug/L |   | 11/07/14 14:19 | 11/10/14 17:10 | 1       |
| Nickel  | 40     | U         | 40 |     | ug/L |   | 11/07/14 14:19 | 11/10/14 17:10 | 1       |

Lab Sample ID: LCS 680-357578/2-A Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 358031

|         | Spike | LCS    | LCS       |      |   |      | %Rec.    |  |
|---------|-------|--------|-----------|------|---|------|----------|--|
| Analyte | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Arsenic | 100   | 101    |           | ug/L |   | 101  | 80 - 120 |  |
| Lead    | 500   | 486    |           | ug/L |   | 97   | 80 - 120 |  |
| Nickel  | 100   | 98.4   |           | ug/L |   | 98   | 80 - 120 |  |

Lab Sample ID: 680-106890-1 MS Client Sample ID: PDMW-46\_11032014

**Matrix: Water** 

Analysis Batch: 358031

Prep Type: Total/NA **Prep Batch: 357578** 

|         | Sample | Sample    | Spike | MS     | MS        |      |   |      | %Rec.    |  |
|---------|--------|-----------|-------|--------|-----------|------|---|------|----------|--|
| Analyte | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Arsenic | 20     | U         | 100   | 109    |           | ug/L |   | 101  | 75 - 125 |  |
| Lead    | 10     | U         | 500   | 492    |           | ug/L |   | 98   | 75 - 125 |  |
| Nickel  | 40     | U         | 100   | 108    |           | ug/L |   | 98   | 75 - 125 |  |

Lab Sample ID: 680-106890-1 MSD Client Sample ID: PDMW-46\_11032014 Prep Type: Total/NA

**Matrix: Water** 

Analyte Arsenic Lead Nickel

Analysis Batch: 35803

| 31 |        |           |       |        |           |      |   |      | Prep     | Batch: 3 | 57578 |  |
|----|--------|-----------|-------|--------|-----------|------|---|------|----------|----------|-------|--|
|    | Sample | Sample    | Spike | MSD    | MSD       |      |   |      | %Rec.    |          | RPD   |  |
|    | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   | RPD      | Limit |  |
|    | 20     | U         | 100   | 107    |           | ug/L |   | 99   | 75 - 125 | 2        | 20    |  |
|    | 10     | U         | 500   | 480    |           | ug/L |   | 96   | 75 - 125 | 3        | 20    |  |
|    | 40     | U         | 100   | 105    |           | ug/L |   | 96   | 75 - 125 | 2        | 20    |  |

Method: 350.1 - Nitrogen, Ammonia

Lab Sample ID: MB 680-357501/15

**Matrix: Water** 

Analysis Batch: 357501

Client Sample ID: Method Blank Prep Type: Total/NA

Analyte Result Qualifier RL MDL Unit Dil Fac Prepared Analyzed Ammonia 0.050 U 0.050 mg/L 11/06/14 16:59

Lab Sample ID: LCS 680-357501/16 Client Sample ID: Lab Control Sample

MR MR

**Matrix: Water** 

Analysis Batch: 357501

| , <b>, .</b> | Spike | LCS    | LCS       |      |   |      | %Rec.    |  |
|--------------|-------|--------|-----------|------|---|------|----------|--|
| Analyte      | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Ammonia      | 1.00  | 1.00   |           | mg/L |   | 100  | 90 - 110 |  |

TestAmerica Savannah

11/12/2014

Prep Type: Total/NA

TestAmerica Job ID: 680-106890-1

Client Sample ID: PDMW-19P\_11032014

Client Sample ID: PDMW-19P\_11032014

Client Sample ID: Method Blank

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: CSX Hutchinson Island VRP

Method: 350.1 - Nitrogen, Ammonia (Continued)

Lab Sample ID: 680-106890-2 MS

**Matrix: Water** 

Analyte

Ammonia

Analysis Batch: 357501

Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier %Rec Limits Unit D 1.00 90 - 110 4.5 5.68 4 mg/L 115

Lab Sample ID: 680-106890-2 MSD

**Matrix: Water** 

Analysis Batch: 357501

| 7 maryolo Batom cor cor | Sample | Sample    | Spike | MSD    | MSD       |      |   |      | %Rec.    |     | RPD   |
|-------------------------|--------|-----------|-------|--------|-----------|------|---|------|----------|-----|-------|
| Analyte                 | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   | RPD | Limit |
| Ammonia                 | 4.5    |           | 1.00  | 5.70   | 4         | mg/L |   | 116  | 90 - 110 | 0   | 30    |

Method: 353.2 - Nitrogen, Nitrate-Nitrite

Lab Sample ID: MB 680-356938/13

**Matrix: Water** 

Analysis Batch: 356938

мв мв

| Analyte      | Result | Qualifier | RL    | MDL Unit | D | Prepared | Analyzed       | Dil Fac |
|--------------|--------|-----------|-------|----------|---|----------|----------------|---------|
| Nitrate as N | 0.050  | U         | 0.050 | mg/L     |   |          | 11/04/14 15:51 | 1       |

Lab Sample ID: LCS 680-356938/16

**Matrix: Water** 

Analysis Batch: 356938

|              | Spike | LCS    | LCS       |      |   |      | %Rec.    |  |
|--------------|-------|--------|-----------|------|---|------|----------|--|
| Analyte      | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Nitrate as N | 0.500 | 0.513  |           | mg/L |   | 103  | 75 - 125 |  |

TestAmerica Savannah

TestAmerica Job ID: 680-106890-1

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

**Metals** 

**Prep Batch: 357578** 

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 680-106890-1       | PDMW-46_11032014   | Total/NA  | Water  | 3010A  |            |
| 680-106890-1 MS    | PDMW-46_11032014   | Total/NA  | Water  | 3010A  |            |
| 680-106890-1 MSD   | PDMW-46_11032014   | Total/NA  | Water  | 3010A  |            |
| 680-106890-2       | PDMW-19P_11032014  | Total/NA  | Water  | 3010A  |            |
| 680-106890-3       | PDMW-30P_11032014  | Total/NA  | Water  | 3010A  |            |
| 680-106890-4       | MW-1_11032014      | Total/NA  | Water  | 3010A  |            |
| 680-106890-5       | PDMW-45R_11032014  | Total/NA  | Water  | 3010A  |            |
| 680-106890-6       | MW-2_11042014      | Total/NA  | Water  | 3010A  |            |
| LCS 680-357578/2-A | Lab Control Sample | Total/NA  | Water  | 3010A  |            |
| MB 680-357578/1-A  | Method Blank       | Total/NA  | Water  | 3010A  |            |

Analysis Batch: 358031

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 680-106890-1       | PDMW-46_11032014   | Total/NA  | Water  | 6010C  | 357578     |
| 680-106890-1 MS    | PDMW-46_11032014   | Total/NA  | Water  | 6010C  | 357578     |
| 680-106890-1 MSD   | PDMW-46_11032014   | Total/NA  | Water  | 6010C  | 357578     |
| 680-106890-2       | PDMW-19P_11032014  | Total/NA  | Water  | 6010C  | 357578     |
| 680-106890-3       | PDMW-30P_11032014  | Total/NA  | Water  | 6010C  | 357578     |
| 680-106890-4       | MW-1_11032014      | Total/NA  | Water  | 6010C  | 357578     |
| 680-106890-5       | PDMW-45R_11032014  | Total/NA  | Water  | 6010C  | 357578     |
| 680-106890-6       | MW-2_11042014      | Total/NA  | Water  | 6010C  | 357578     |
| LCS 680-357578/2-A | Lab Control Sample | Total/NA  | Water  | 6010C  | 357578     |
| MB 680-357578/1-A  | Method Blank       | Total/NA  | Water  | 6010C  | 357578     |

### **General Chemistry**

Analysis Batch: 356938

| Lab Sample ID     | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|-------------------|--------------------|-----------|--------|--------|------------|
| 680-106890-1      | PDMW-46_11032014   | Total/NA  | Water  | 353.2  | _          |
| 680-106890-2      | PDMW-19P_11032014  | Total/NA  | Water  | 353.2  |            |
| 680-106890-3      | PDMW-30P_11032014  | Total/NA  | Water  | 353.2  |            |
| 680-106890-4      | MW-1_11032014      | Total/NA  | Water  | 353.2  |            |
| 680-106890-5      | PDMW-45R_11032014  | Total/NA  | Water  | 353.2  |            |
| 680-106890-6      | MW-2_11042014      | Total/NA  | Water  | 353.2  |            |
| LCS 680-356938/16 | Lab Control Sample | Total/NA  | Water  | 353.2  |            |
| MB 680-356938/13  | Method Blank       | Total/NA  | Water  | 353.2  |            |

Analysis Batch: 357501

| Lab Sample ID     | Client Sample ID   | Prep Type | Matrix | Method | Prep Batc |
|-------------------|--------------------|-----------|--------|--------|-----------|
| 680-106890-1      | PDMW-46_11032014   | Total/NA  | Water  | 350.1  |           |
| 680-106890-2      | PDMW-19P_11032014  | Total/NA  | Water  | 350.1  |           |
| 680-106890-2 MS   | PDMW-19P_11032014  | Total/NA  | Water  | 350.1  |           |
| 680-106890-2 MSD  | PDMW-19P_11032014  | Total/NA  | Water  | 350.1  |           |
| 680-106890-3      | PDMW-30P_11032014  | Total/NA  | Water  | 350.1  |           |
| 680-106890-4      | MW-1_11032014      | Total/NA  | Water  | 350.1  |           |
| 680-106890-5      | PDMW-45R_11032014  | Total/NA  | Water  | 350.1  |           |
| 680-106890-6      | MW-2_11042014      | Total/NA  | Water  | 350.1  |           |
| LCS 680-357501/16 | Lab Control Sample | Total/NA  | Water  | 350.1  |           |
| MB 680-357501/15  | Method Blank       | Total/NA  | Water  | 350.1  |           |

TestAmerica Savannah

Page 13 of 19

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Lab Sample ID: 680-106890-1

Matrix: Water

Matrix: Water

**Matrix: Water** 

**Matrix: Water** 

Client Sample ID: PDMW-46\_11032014

Date Collected: 11/03/14 14:15 Date Received: 11/04/14 09:20

|           | Batch                | Batch                     |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|---------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                    | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep                 | 3010A                     |     |        | 50 mL   | 50 mL  | 357578 | 11/07/14 14:19 | SP      | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 6010C<br>ent ID: ICPF     |     | 1      | 50 mL   | 50 mL  | 358031 | 11/10/14 17:19 | BCB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>ent ID: KONELAB1 |     | 2      | 2 mL    | 2 mL   | 357501 | 11/06/14 17:39 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>ent ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 356938 | 11/04/14 16:12 | GRX     | TAL SAV |

Client Sample ID: PDMW-19P\_11032014 Lab Sample ID: 680-106890-2

Date Collected: 11/03/14 14:35

Date Received: 11/04/14 09:20

|           | Batch               | Batch                     |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|---------------------|---------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                | Method                    | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep                | 3010A                     |     |        | 50 mL   | 50 mL  | 357578 | 11/07/14 14:19 | SP      | TAL SAV |
| Total/NA  | Analysis<br>Instrum | 6010C<br>ent ID: ICPF     |     | 1      | 50 mL   | 50 mL  | 358031 | 11/10/14 17:41 | BCB     | TAL SAV |
| Total/NA  | Analysis<br>Instrum | 350.1<br>ent ID: KONELAB1 |     | 5      | 2 mL    | 2 mL   | 357501 | 11/06/14 17:49 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrum | 353.2<br>ent ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 356938 | 11/04/14 16:13 | GRX     | TAL SAV |

Client Sample ID: PDMW-30P\_11032014 Lab Sample ID: 680-106890-3

Date Collected: 11/03/14 15:31 Date Received: 11/04/14 09:20

|           | Batch                | Batch                     |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|---------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                    | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep                 | 3010A                     |     |        | 50 mL   | 50 mL  | 357578 | 11/07/14 14:19 | SP      | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 6010C<br>ent ID: ICPF     |     | 1      | 50 mL   | 50 mL  | 358031 | 11/10/14 17:46 | BCB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>ent ID: KONELAB1 |     | 2      | 2 mL    | 2 mL   | 357501 | 11/06/14 17:39 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>ent ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 356938 | 11/04/14 16:14 | GRX     | TAL SAV |

Client Sample ID: MW-1\_11032014 Lab Sample ID: 680-106890-4

Date Collected: 11/03/14 15:55 Date Received: 11/04/14 09:20

|           | Batch    | Batch        |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|--------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method       | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 3010A        |     |        | 50 mL   | 50 mL  | 357578 | 11/07/14 14:19 | SP      | TAL SAV |
| Total/NA  | Analysis | 6010C        |     | 1      | 50 mL   | 50 mL  | 358031 | 11/10/14 17:51 | BCB     | TAL SAV |
|           | Instrum  | ent ID: ICPF |     |        |         |        |        |                |         |         |

TestAmerica Savannah

Page 14 of 19

11/12/2014

#### **Lab Chronicle**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-106890-1

Client Sample ID: MW-1\_11032014

Lab Sample ID: 680-106890-4 Date Collected: 11/03/14 15:55

Matrix: Water

Date Received: 11/04/14 09:20

|           | Batch    | Batch                    |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|--------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method                   | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 350.1                    |     | 20     | 2 mL    | 2 mL   | 357501 | 11/06/14 18:35 | JME     | TAL SAV |
|           | Instrume | ent ID: KONELAE          | 31  |        |         |        |        |                |         |         |
| Total/NA  | Analysis | 353.2<br>ent ID: LACHAT2 | •   | 1      | 2 mL    | 2 mL   | 356938 | 11/04/14 16:15 | GRX     | TAL SAV |

Client Sample ID: PDMW-45R\_11032014 Lab Sample ID: 680-106890-5

Date Collected: 11/03/14 17:03 **Matrix: Water** 

Date Received: 11/04/14 09:20

|           | Batch                | Batch                     |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|---------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                    | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep                 | 3010A                     |     |        | 50 mL   | 50 mL  | 357578 | 11/07/14 14:19 | SP      | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 6010C<br>ent ID: ICPF     |     | 1      | 50 mL   | 50 mL  | 358031 | 11/10/14 18:04 | ВСВ     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>ent ID: KONELAB1 |     | 5      | 2 mL    | 2 mL   | 357501 | 11/06/14 17:59 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>ent ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 356938 | 11/04/14 16:16 | GRX     | TAL SAV |

Client Sample ID: MW-2\_11042014 Lab Sample ID: 680-106890-6

Date Collected: 11/04/14 08:30 Matrix: Water

Date Received: 11/04/14 09:20

|           | Batch               | Batch                     |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|---------------------|---------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                | Method                    | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep                | 3010A                     |     |        | 50 mL   | 50 mL  | 357578 | 11/07/14 14:19 | SP      | TAL SAV |
| Total/NA  | Analysis<br>Instrum | 6010C<br>ent ID: ICPF     |     | 1      | 50 mL   | 50 mL  | 358031 | 11/10/14 18:09 | ВСВ     | TAL SAV |
| Total/NA  | Analysis<br>Instrum | 350.1<br>ent ID: KONELAB1 |     | 20     | 2 mL    | 2 mL   | 357501 | 11/06/14 18:35 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrum | 353.2<br>ent ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 356938 | 11/04/14 16:20 | GRX     | TAL SAV |

#### Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

TestAmerica Savannah

11/12/2014

# **Certification Summary**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-106890-1

### **Laboratory: TestAmerica Savannah**

The certifications listed below are applicable to this report.

| Authority | Program       | EPA Region | Certification ID | Expiration Date |
|-----------|---------------|------------|------------------|-----------------|
| Georgia   | State Program | 4          | 803              | 06-30-15        |

4

5

\_

9

10

11

# **Method Summary**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-106890-1

| Method Description        | Protocol                       | Laboratory                                 |
|---------------------------|--------------------------------|--------------------------------------------|
| Metals (ICP)              | SW846                          | TAL SAV                                    |
| Nitrogen, Ammonia         | MCAWW                          | TAL SAV                                    |
| Nitrogen, Nitrate-Nitrite | MCAWW                          | TAL SAV                                    |
|                           | Metals (ICP) Nitrogen, Ammonia | Metals (ICP) SW846 Nitrogen, Ammonia MCAWW |

#### **Protocol References:**

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

#### Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

6

1

\_\_

10

1 1

| CSX CHAIN OF                                 |                  | TestAmerica Sava                                                                                                                                                                                                                                               | ınah - 5102 LaRor                                           | che Avenue, S                                     | savannah, GA ?                                    | 31404 P. 91                                | O 25/1_7859                                                                                                 | E- 019-259-0165 | 10 0165                                                      |                       |                                             |                     |           |
|----------------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------|-----------------------|---------------------------------------------|---------------------|-----------|
|                                              |                  | TestAmerica Nortl                                                                                                                                                                                                                                              | Canton - 4101 St                                            | Tuffel Drive N                                    | W, North Canto                                    | on, OH 44720                               | P: 330-49                                                                                                   | 77-9396 F       | -534-7550 F. 312-532-0163<br>P: 330-497-9396 F: 330-497-0772 |                       | SHIPMENT INFORMATION                        | 7                   |           |
| TRANSPORTATION CUSTODY                       |                  | ☐ festAmerica Tampa - 6712 Benjamin Road, Suite 100, Tampa, FL 33634 P: 813-885-7427 ☐ festAmerica Pensacola - 3355 McLemore Drive, Pensacola, FL 32514 P: 850-474-1001 ☐ festAmerica Buffalo - 10 Hazelwood Drive, Suite 106, Amherst, NY 14228 P: 716-691-26 | a - 6712 Benjamir<br>acola - 3355 McLe<br>lo - 10 Hazelwood | n Road, Suite<br>imore Drive, F<br>Drive, Suite 1 | 100, Tampa, F<br>Pensacola, FL (<br>106, Amherst. | L 33634 P: 8<br>32514 P: 85i<br>NY 14228 P | P: 813-885-7427<br>P: 850-474-1001 F: 850-474-1001 F: 850-474-1001 F: 850-474-1001 F: 850-474-1001 F: 85000 |                 | F: 813-885-7049<br>: 850-478-2671<br>) F: 716-961-7991       | Shipment Method:      | othod:                                      |                     |           |
|                                              |                  | 🗖 řestAmerica Chicago - 2417 Bond Street, University Park, IL 60466 🛭 P. 708-534-5200                                                                                                                                                                          | go - 2417 Bond S                                            | treet, Univers                                    | ity Park, IL 60                                   | 466 P: 708-,                               | 534-5200                                                                                                    | 708             | -5211                                                        | Snipment tracking No. | acking No:                                  |                     |           |
| CSXT PROJECT INFORMATION                     |                  | Proj. State (State of Origin)                                                                                                                                                                                                                                  | of Origin) GA                                               |                                                   | CONSULTANT INFORMATION                            | T INFORM                                   | IATION                                                                                                      |                 |                                                              | Project #.(           | Project #6-4300-5344                        | かんで                 |           |
| CSXT Project Number: 9415575                 |                  | Proj. City: Sai                                                                                                                                                                                                                                                | Savennah                                                    | Col                                               | Company:                                          | Amec E                                     | ERI                                                                                                         | 1,              |                                                              | PM: Pact              | Pat Harrison                                | ٠, ح                |           |
| OSXT Project Name: Hutchinson Islan          | annested)        | 1 1                                                                                                                                                                                                                                                            |                                                             | Adr                                               | Address: OO                                       | Ereli                                      | 1 Rd                                                                                                        | ま               | 001                                                          | Pat. ha               | pat, harrison@amec.com                      | Mec. Co             | <b>\</b>  |
|                                              | FNYOOOE          | 5E54 NOMIC                                                                                                                                                                                                                                                     | 885MR                                                       | Æ.Z                                               | City State, Zip: 1 L                              | 11- IN                                     | co.                                                                                                         | 1124            |                                                              | Phope 3               | 声51-959(                                    | 草                   |           |
| Turnaround Time: Standard 6-13 Days          | 3 Days           | 8                                                                                                                                                                                                                                                              | Codes: 3=                                                   | Sulfur                                            | \cid                                              | 4 ~                                        | c∩<br><b>1</b>                                                                                              | B,3 3           | 6                                                            |                       | COMMENTS                                    | IENTS               | LAB USE   |
| I                                            | /s               | 0 = No Preservatives                                                                                                                                                                                                                                           | 4                                                           | = Sodium Thiosulfate                              | hiosulfate                                        | Pres.                                      |                                                                                                             | METH            | DDS FOR                                                      | METHODS FOR ANALYSIS  |                                             |                     |           |
| 2 Day Rush Standard 14 Days 3 Day Rush Other | Days             | 1 = Hydrochloric Acid<br>2 = Nitric Acid                                                                                                                                                                                                                       |                                                             | 5 = Sodium Hydroxide<br>6 = Other                 | -lydroxide                                        | Code                                       |                                                                                                             |                 |                                                              |                       |                                             |                     | ;         |
| Dejiverables: Other Deliv:                   |                  | Matrix Codes:                                                                                                                                                                                                                                                  |                                                             | SO = Soil                                         |                                                   | LIQ = Liquid                               |                                                                                                             |                 |                                                              |                       |                                             |                     |           |
| idard (Level II)                             |                  | GW = Groundwater                                                                                                                                                                                                                                               |                                                             | SL = Sludge                                       |                                                   |                                            | જ                                                                                                           |                 |                                                              |                       | -                                           | 680-                | 1111111   |
| Level III C. EDD Required; Format: Level IV  | d, Format:       | WW = Waste Water<br>SW = Surface Water                                                                                                                                                                                                                         |                                                             | OI = Oil<br>SOL = Other Solid                     | Solid                                             |                                            | JUG                                                                                                         | 24.20           |                                                              |                       |                                             | -1068               | 6 W L U   |
| SAMPLE INFORMATION                           |                  |                                                                                                                                                                                                                                                                |                                                             | ļ                                                 |                                                   |                                            | w                                                                                                           | <b>J</b>        |                                                              |                       |                                             | 390                 |           |
|                                              | Containers       | Sample                                                                                                                                                                                                                                                         | Sample Collection                                           | E E                                               | Filtered Type                                     | oe Matrix                                  | -                                                                                                           | :11<br>:21      | 11:                                                          | 10                    |                                             | Cha                 |           |
| Sample Identification                        | Number &<br>Type | Date                                                                                                                                                                                                                                                           |                                                             | Sampler Y o                                       | YorN Comp                                         | mp Code                                    |                                                                                                             | 7               | }                                                            |                       | -                                           | in of G             |           |
| PDMW-46_11032014                             | 4 poly           | 7 12 12                                                                                                                                                                                                                                                        | 14 15 tr.                                                   | A Det                                             | 9                                                 | 3                                          | ×                                                                                                           | ×               | X                                                            |                       |                                             | Custo               |           |
| PDMW-19P-11032014                            |                  | ॥ औप                                                                                                                                                                                                                                                           | 1435 P                                                      | PLB N                                             | 1 6                                               | 6W                                         | ×                                                                                                           | X               | XX                                                           |                       |                                             | dy                  |           |
| POMW-30P-11032014                            | H poly           | गाउंग                                                                                                                                                                                                                                                          | 1531 ]                                                      | J55 *                                             | K 6                                               | اناع ا                                     | ×                                                                                                           | X               | ×                                                            |                       |                                             |                     |           |
| MW-1-11032014                                | 4 poly           | માં કો ાવ                                                                                                                                                                                                                                                      | 15S5 F                                                      | y 96                                              | ist le                                            | 16W                                        | ×                                                                                                           | XX              | ×                                                            |                       |                                             |                     |           |
| 3                                            | المرابع          | แไรให้                                                                                                                                                                                                                                                         | 1703 ]                                                      | 335                                               | 9 7                                               | 16W                                        | ×                                                                                                           | ネ               | ×                                                            |                       |                                             |                     | )         |
| Mw-2-11042014                                | 4 6004           | 11/5/11                                                                                                                                                                                                                                                        | 10880                                                       | pe 1                                              | <i>S</i> ≥                                        | 3                                          | ×                                                                                                           | ×               | X                                                            |                       |                                             |                     |           |
|                                              |                  |                                                                                                                                                                                                                                                                |                                                             |                                                   |                                                   |                                            | 1                                                                                                           |                 |                                                              |                       |                                             |                     | :         |
|                                              |                  |                                                                                                                                                                                                                                                                |                                                             |                                                   |                                                   |                                            |                                                                                                             |                 |                                                              |                       |                                             |                     |           |
| U                                            |                  |                                                                                                                                                                                                                                                                |                                                             |                                                   |                                                   |                                            |                                                                                                             |                 | •                                                            |                       |                                             |                     |           |
| 1 CV Mappet                                  | Date/Time:       | 0050                                                                                                                                                                                                                                                           | Received By:                                                |                                                   |                                                   |                                            | Date/Time:                                                                                                  | me:             |                                                              | Comment               | Comments & Special Analytical Requirements: | alytical Requ       | irements: |
| Hermonished Harman                           | Date/Time: //    | 00607                                                                                                                                                                                                                                                          | Received By:                                                | Į                                                 |                                                   |                                            | Date/Time:                                                                                                  | me:             |                                                              |                       |                                             |                     |           |
| Relinquished By:                             | Date/Time:       |                                                                                                                                                                                                                                                                | Received By:                                                | 3                                                 | - JAR                                             | (                                          | Date/Time:                                                                                                  | me.) 14         | 9920                                                         |                       |                                             | ٠.                  |           |
| Received By Laboratory:                      | Date/Time:       |                                                                                                                                                                                                                                                                | Lab Remarks: 680 - 1068%                                    | 106890                                            | /a.4                                              | J                                          | LAB USE:                                                                                                    |                 | Custody Intact                                               | Custody Se            | Seal# LAB                                   | LAB Log Number<br># |           |

## **Login Sample Receipt Checklist**

Client: AMEC Environment & Infrastructure, Inc.

Job Number: 680-106890-1

Login Number: 106890 List Source: TestAmerica Savannah

List Number: 1

Creator: Conner, Keaton

| ordatori domini, reactori                                                                       |                |
|-------------------------------------------------------------------------------------------------|----------------|
| Question                                                                                        | Answer Comment |
| Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> | N/A            |
| The cooler's custody seal, if present, is intact.                                               | True           |
| Sample custody seals, if present, are intact.                                                   | True           |
| The cooler or samples do not appear to have been compromised or tampered with.                  | True           |
| Samples were received on ice.                                                                   | True           |
| Cooler Temperature is acceptable.                                                               | True           |
| Cooler Temperature is recorded.                                                                 | True           |
| COC is present.                                                                                 | True           |
| COC is filled out in ink and legible.                                                           | True           |
| COC is filled out with all pertinent information.                                               | True           |
| Is the Field Sampler's name present on COC?                                                     | True           |
| There are no discrepancies between the containers received and the COC.                         | True           |
| Samples are received within Holding Time.                                                       | True           |
| Sample containers have legible labels.                                                          | True           |
| Containers are not broken or leaking.                                                           | True           |
| Sample collection date/times are provided.                                                      | True           |
| Appropriate sample containers are used.                                                         | True           |
| Sample bottles are completely filled.                                                           | True           |
| Sample Preservation Verified.                                                                   | True           |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs                | True           |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").                 | N/A            |
| Multiphasic samples are not present.                                                            | True           |
| Samples do not require splitting or compositing.                                                | True           |
| Residual Chlorine Checked.                                                                      | N/A            |
|                                                                                                 |                |

3

4

6

8

10

11



THE LEADER IN ENVIRONMENTAL TESTING

# ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

TestAmerica Job ID: 680-106920-1

Client Project/Site: CSX Hutchinson Island VRP

### For:

AMEC Environment & Infrastructure, Inc. 2677 Buford Highway Atlanta, Georgia 30324

Attn: Mr. Steve Foley

Sida Hosey

Authorized for release by: 11/13/2014 6:11:12 PM

Lisa Harvey, Project Manager II (912)354-7858 e.3221

lisa.harvey@testamericainc.com

.....LINKS .....

Review your project results through
Total Access

**Have a Question?** 



Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

#### **Case Narrative**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-106920-1

Job ID: 680-106920-1

Laboratory: TestAmerica Savannah

Narrative

#### **CASE NARRATIVE**

Client: AMEC Environment & Infrastructure, Inc.
Project: CSX Hutchinson Island VRP
Report Number: 680-106920-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

No additional analytical or quality issues were noted, other than those described below or in the Definitions/Glossary page.

#### **RECEIPT**

The samples were received on 11/5/2014 8:30 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 4.2° C.

#### **VOLATILE ORGANIC COMPOUNDS (GC-MS)**

Samples PDMW-48\_11042014 (680-106920-7) and TRIP\_BLANK\_11042014 (680-106920-10) were analyzed for Volatile Organic Compounds (GC-MS) in accordance with EPA SW-846 Method 8260B.

Method(s) 8260B: The matrix spike and matrix spike duplicate were double spiked with internal standards. Internal standards recovered double as would be expected, but spiked analytes are within control limits when adjustment is made for the double spike.

### SEMIVOLATILE ORGANIC COMPOUNDS (AQUEOUS)

Sample PDMW-48\_11042014 (680-106920-7) was analyzed for Semivolatile Organic Compounds (Aqueous) in accordance with EPA SW-846 Method 8270D.

#### **METALS (ICP)**

Samples PDMW-33R2\_11042014 (680-106920-1), PDMW-47\_11042014 (680-106920-2), TMW-4R\_11042014 (680-106920-5), PDMW-7P\_11042014 (680-106920-6), PDMW-48\_11042014 (680-106920-7), EW-1\_11042014 (680-106920-8) and MW-202\_11042014 (680-106920-9) were analyzed for Metals (ICP) in accordance with EPA SW-846 Method 6010C.

#### <u>AMMONIA</u>

Samples PDMW-33R2\_11042014 (680-106920-1), PDMW-47\_11042014 (680-106920-2), PDMW-49\_11042014 (680-106920-3), PDMW-53\_11042014 (680-106920-4), TMW-4R\_11042014 (680-106920-5), PDMW-7P\_11042014 (680-106920-6), PDMW-48\_11042014 (680-106920-7), EW-1\_11042014 (680-106920-8) and MW-202\_11042014 (680-106920-9) were analyzed for ammonia in accordance with EPA Method 350.1.

Samples PDMW-33R2\_11042014 (680-106920-1)[10X], PDMW-47\_11042014 (680-106920-2)[100X], PDMW-53\_11042014 (680-106920-4)[5X], TMW-4R\_11042014 (680-106920-5)[5X], PDMW-7P\_11042014 (680-106920-6)[10X], PDMW-48\_11042014 (680-106920-7)[20X] and EW-1\_11042014 (680-106920-8)[500X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

#### **NITRATE-NITRITE AS NITROGEN**

Samples PDMW-33R2\_11042014 (680-106920-1), PDMW-47\_11042014 (680-106920-2), PDMW-49\_11042014 (680-106920-3), PDMW-53\_11042014 (680-106920-4), TMW-4R\_11042014 (680-106920-5), PDMW-7P\_11042014 (680-106920-6), PDMW-48\_11042014 (680-106920-7), EW-1\_11042014 (680-106920-8) and MW-202\_11042014 (680-106920-9) were analyzed for nitrate-nitrite as nitrogen in accordance with EPA Method 353.2.

2

4

8

1 1

### **Definitions/Glossary**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-106920-1

**Qualifiers** 

**GC/MS VOA** 

U Indicates the analyte was analyzed for but not detected.

GC/MS Semi VOA

Qualifier Qualifier Description

U Indicates the analyte was analyzed for but not detected.

**Metals** 

U Indicates the analyte was analyzed for but not detected.

**General Chemistry** 

U Indicates the analyte was analyzed for but not detected.

**Glossary** 

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery

CFL Contains Free Liquid

CNF Contains no Free Liquid

DER Duplicate error ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision level concentration
MDA Minimum detectable activity
EDL Estimated Detection Limit
MDC Minimum detectable concentration

MDL Method Detection Limit
ML Minimum Level (Dioxin)

NC Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control
RER Relative error ratio

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

3

4

5

6

8

9

10

44

46

### **Sample Summary**

Water

Water

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Client Sample ID

PDMW-33R2\_11042014

PDMW-47\_11042014

PDMW-49\_11042014

PDMW-53\_11042014

TMW-4R\_11042014

PDMW-7P\_11042014

PDMW-48\_11042014

EW-1\_11042014

MW-202\_11042014

TRIP\_BLANK\_11042014

Lab Sample ID

680-106920-1

680-106920-2

680-106920-3

680-106920-4

680-106920-5

680-106920-6

680-106920-7

680-106920-8

680-106920-9

680-106920-10

TestAmerica Job ID: 680-106920-1

| Matrix | Collected      | Received       |
|--------|----------------|----------------|
| Water  | 11/04/14 10:27 | 11/05/14 08:30 |
| Water  | 11/04/14 11:49 | 11/05/14 08:30 |
| Water  | 11/04/14 14:57 | 11/05/14 08:30 |
| Water  | 11/04/14 16:30 | 11/05/14 08:30 |
| Water  | 11/04/14 09:50 | 11/05/14 08:30 |
| Water  | 11/04/14 11:25 | 11/05/14 08:30 |
| Water  | 11/04/14 14:25 | 11/05/14 08:30 |
| Water  | 11/04/14 15:55 | 11/05/14 08:30 |

11/04/14 17:00

11/04/14 00:00

3

4

6

7

11/05/14 08:30

11/05/14 08:30

Ö

4 4

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-106920-1

Client Sample ID: PDMW-33R2\_11042014

Lab Sample ID: 680-106920-1 Date Collected: 11/04/14 10:27

Matrix: Water

Date Received: 11/05/14 08:30

| Method: 6010C - Metals (ICP) |        |           |    |     |      |   |                |                |         |
|------------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte                      | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                      | 20     | U         | 20 |     | ug/L |   | 11/07/14 14:19 | 11/10/14 18:22 | 1       |
| Lead                         | 10     | U         | 10 |     | ug/L |   | 11/07/14 14:19 | 11/10/14 18:22 | 1       |
| <u> </u>                     |        |           |    |     |      |   |                |                |         |

| General Chemistry<br>Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia                      | 20     |           | 0.50  |     | mg/L |   |          | 11/07/14 09:38 | 10      |
| Nitrate as N                 | 0.050  | U         | 0.050 |     | mg/L |   |          | 11/05/14 16:32 | 1       |

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-106920-1

\_\_\_\_\_

Client Sample ID: PDMW-47\_11042014

Date Collected: 11/04/14 11:49 Date Received: 11/05/14 08:30 Lab Sample ID: 680-106920-2

Matrix: Water

| Method: 6010C - Metals (ICP) |        |           |    |     |      |   |                |                |         |
|------------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte                      | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                      | 20     | U         | 20 |     | ug/L |   | 11/07/14 14:19 | 11/10/14 18:26 | 1       |
| Lead                         | 10     | U         | 10 |     | ug/L |   | 11/07/14 14:19 | 11/10/14 18:26 | 1       |
|                              |        |           |    |     |      |   |                |                |         |

| General Chemistry<br>Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia                      | 110    |           | 5.0   |     | mg/L |   |          | 11/07/14 09:18 | 100     |
| Nitrate as N                 | 0.050  | U         | 0.050 |     | mg/L |   |          | 11/05/14 16:36 | 1       |

5

6

\_\_\_\_\_\_

10

11

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-106920-1

Client Sample ID: PDMW-49\_11042014

Lab Sample ID: 680-106920-3 Date Collected: 11/04/14 14:57

Matrix: Water

Date Received: 11/05/14 08:30

| General Chemistry |        |           |       |     |      |   |          |                |         |
|-------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Analyte           | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Ammonia           | 1.7    |           | 0.050 |     | mg/L |   |          | 11/07/14 09:11 | 1       |
| Nitrate as N      | 0.050  | U         | 0.050 |     | mg/L |   |          | 11/05/14 16:38 | 1       |

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-106920-1

Client Sample ID: PDMW-53\_11042014

Lab Sample ID: 680-106920-4 Date Collected: 11/04/14 16:30

Matrix: Water

Date Received: 11/05/14 08:30

| General Chemistry |        |           |       |     |      |   |          |                |         |
|-------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Analyte           | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Ammonia           | 5.5    |           | 0.25  |     | mg/L |   |          | 11/07/14 09:48 | 5       |
| Nitrate as N      | 0.050  | U         | 0.050 |     | mg/L |   |          | 11/05/14 16:42 | 1       |

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Client Sample ID: TMW-4R\_11042014

Date Collected: 11/04/14 09:50

Date Received: 11/05/14 08:30

TestAmerica Job ID: 680-106920-1

Lab Sample ID: 680-106920-5

**Matrix: Water** 

| Prepared | Analyzed | Dil Fac |  |
|----------|----------|---------|--|

| Method: 6010C - Metals (ICP) |        |           |    |        |      |                |                |         |
|------------------------------|--------|-----------|----|--------|------|----------------|----------------|---------|
| Analyte                      | Result | Qualifier | RL | MDL Un | it D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                      | 20     | U         | 20 | ug/    | /L   | 11/07/14 14:19 | 11/10/14 18:31 | 1       |
| Lead                         | 10     | U         | 10 | ug/    | /L   | 11/07/14 14:19 | 11/10/14 18:31 | 1       |
|                              |        |           |    |        |      |                |                |         |
| General Chemistry            |        |           |    |        |      |                |                |         |

| General Chemistry |        |           |       |     |      |   |          |                |         |
|-------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Analyte           | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Ammonia           | 7.8    |           | 0.25  |     | mg/L |   |          | 11/07/14 09:48 | 5       |
| Nitrate as N      | 0.050  | U         | 0.050 |     | mg/L |   |          | 11/05/14 16:43 | 1       |

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-106920-1

\_\_\_\_

Client Sample ID: PDMW-7P\_11042014

Date Collected: 11/04/14 11:25

Lab Sample ID: 680-106920-6

Matrix: Water

Date Received: 11/05/14 08:30

| Method: 6010C - Metals (ICP) |        |           |    |       |      |   |                |                |         |
|------------------------------|--------|-----------|----|-------|------|---|----------------|----------------|---------|
| Analyte                      | Result | Qualifier | RL | MDL U | Jnit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                      | 20     | U         | 20 | U     | ıg/L |   | 11/07/14 14:19 | 11/10/14 18:35 | 1       |
| Lead                         | 10     | U         | 10 | U     | ıg/L |   | 11/07/14 14:19 | 11/10/14 18:35 | 1       |

| General Chemistry<br>Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia                      | 16     |           | 0.50  |     | mg/L |   |          | 11/07/14 09:48 | 10      |
| Nitrate as N                 | 0.050  | U         | 0.050 |     | mg/L |   |          | 11/05/14 16:44 | 1       |

5

6

8

40

*A A* 

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-106920-1

Client Sample ID: PDMW-48\_11042014

Lab Sample ID: 680-106920-7 Date Collected: 11/04/14 14:25

Matrix: Water

Date Received: 11/05/14 08:30

| Analyte                      | Result    | Qualifier | RL       | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|-----|------|---|----------|----------------|---------|
| Benzene                      | 1.0       | U         | 1.0      |     | ug/L |   |          | 11/10/14 00:22 | 1       |
| Ethylbenzene                 | 1.0       | U         | 1.0      |     | ug/L |   |          | 11/10/14 00:22 | 1       |
| Toluene                      | 1.0       | U         | 1.0      |     | ug/L |   |          | 11/10/14 00:22 | 1       |
| Xylenes, Total               | 2.0       | U         | 2.0      |     | ug/L |   |          | 11/10/14 00:22 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits   |     |      |   | Prepared | Analyzed       | Dil Fac |
| Toluene-d8 (Surr)            | 94        |           | 70 - 130 |     |      | - |          | 11/10/14 00:22 | 1       |
| 1,2-Dichloroethane-d4 (Surr) | 91        |           | 70 - 130 |     |      |   |          | 11/10/14 00:22 | 1       |
| Dibromofluoromethane (Surr)  | 100       |           | 70 - 130 |     |      |   |          | 11/10/14 00:22 | 1       |
| 4-Bromofluorobenzene (Surr)  | 111       |           | 70 - 130 |     |      |   |          | 11/10/14 00:22 | 1       |

| Analyte                | Result    | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|-----|------|---|----------------|----------------|---------|
| Acenaphthene           | 9.8       | U         | 9.8      |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:00 | 1       |
| Acenaphthylene         | 9.8       | U         | 9.8      |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:00 | 1       |
| Anthracene             | 9.8       | U         | 9.8      |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:00 | 1       |
| Benzo[a]anthracene     | 9.8       | U         | 9.8      |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:00 | 1       |
| Benzo[a]pyrene         | 9.8       | U         | 9.8      |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:00 | 1       |
| Benzo[b]fluoranthene   | 9.8       | U         | 9.8      |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:00 | 1       |
| Benzo[g,h,i]perylene   | 9.8       | U         | 9.8      |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:00 | 1       |
| Benzo[k]fluoranthene   | 9.8       | U         | 9.8      |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:00 | 1       |
| Chrysene               | 9.8       | U         | 9.8      |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:00 | 1       |
| Dibenz(a,h)anthracene  | 9.8       | U         | 9.8      |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:00 | 1       |
| Fluoranthene           | 9.8       | U         | 9.8      |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:00 | 1       |
| Fluorene               | 9.8       | U         | 9.8      |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:00 | 1       |
| Indeno[1,2,3-cd]pyrene | 9.8       | U         | 9.8      |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:00 | 1       |
| 1-Methylnaphthalene    | 9.8       | U         | 9.8      |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:00 | 1       |
| 2-Methylnaphthalene    | 9.8       | U         | 9.8      |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:00 | 1       |
| Naphthalene            | 9.8       | U         | 9.8      |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:00 | 1       |
| Phenanthrene           | 9.8       | U         | 9.8      |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:00 | 1       |
| Pyrene                 | 9.8       | U         | 9.8      |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:00 | 1       |
| Surrogate              | %Recovery | Qualifier | Limits   |     |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl       |           |           | 32 - 114 |     |      |   | 11/10/14 15:53 | 11/11/14 18:00 |         |

| Surrogate              | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | DII Fac |  |
|------------------------|-----------|-----------|----------|----------------|----------------|---------|--|
| 2-Fluorobiphenyl       | 59        |           | 32 - 114 | 11/10/14 15:53 | 11/11/14 18:00 | 1       |  |
| Nitrobenzene-d5 (Surr) | 68        |           | 30 - 117 | 11/10/14 15:53 | 11/11/14 18:00 | 1       |  |
| Terphenyl-d14 (Surr)   | 78        |           | 10 - 132 | 11/10/14 15:53 | 11/11/14 18:00 | 1       |  |
|                        |           |           |          |                |                |         |  |

| Method: 6010C - Metals (ICP) |        |           |    |     |      |   |                |                |         |  |
|------------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|--|
| Analyte                      | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |  |
| Arsenic                      |        | U         | 20 |     | ug/L |   | 11/07/14 14:19 | 11/10/14 18:40 | 1       |  |
| Chromium                     | 10     | U         | 10 |     | ug/L |   | 11/07/14 14:19 | 11/10/14 18:40 | 1       |  |
| Lead                         | 10     | U         | 10 |     | ug/L |   | 11/07/14 14:19 | 11/10/14 18:40 | 1       |  |
| Nickel                       | 40     | U         | 40 |     | ug/L |   | 11/07/14 14:19 | 11/10/14 18:40 | 1       |  |
| Zinc                         | 20     | U         | 20 |     | ug/L |   | 11/07/14 14:19 | 11/10/14 18:40 | 1       |  |

| General Chemistry Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia                   | 22     |           | 1.0   |     | mg/L |   |          | 11/07/14 10:31 | 20      |
| Nitrate as N              | 0.050  | U         | 0.050 |     | mg/L |   |          | 11/05/14 16:45 | 1       |

TestAmerica Savannah

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Client Sample ID: EW-1\_11042014

TestAmerica Job ID: 680-106920-1

11/05/14 16:46

Lab Sample ID: 680-106920-8

Matrix: Water

Date Collected: 11/04/14 15:55 Date Received: 11/05/14 08:30

Nitrate as N

| Method: 6010C - Metals (ICP) |          |           |    |     |      |   |                |                |         |
|------------------------------|----------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte                      | Result C | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                      | 20       |           | 20 |     | ug/L |   | 11/07/14 14:19 | 11/10/14 18:44 | 1       |
| Chromium                     | 13       |           | 10 |     | ug/L |   | 11/07/14 14:19 | 11/10/14 18:44 | 1       |
| Lead                         | 10 L     | J         | 10 |     | ug/L |   | 11/07/14 14:19 | 11/10/14 18:44 | 1       |
| Nickel                       | 100      |           | 40 |     | ug/L |   | 11/07/14 14:19 | 11/10/14 18:44 | 1       |
| Zinc                         | 470      |           | 20 |     | ug/L |   | 11/07/14 14:19 | 11/10/14 18:44 | 1       |
| General Chemistry            |          |           |    |     |      |   |                |                |         |
| Analyte                      | Result C | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Ammonia                      | 540      |           | 25 |     | mg/L |   |                | 11/07/14 09:48 | 500     |

0.050

mg/L

0.29

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-106920-1

Client Sample ID: MW-202\_11042014

Date Collected: 11/04/14 17:00

Lab Sample ID: 680-106920-9 Matrix: Water

Date Received: 11/05/14 08:30

| Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|---------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Arsenic | 20     | U         | 20 |     | ug/L |   | 11/07/14 14:19 | 11/10/14 18:58 | 1       |
| Nickel  | 40     | U         | 40 |     | ug/L |   | 11/07/14 14:19 | 11/10/14 18:58 | 1       |
| Lead    | 10     | U         | 10 |     | ug/L |   | 11/07/14 14:19 | 11/10/14 18:58 | 1       |
| Zinc    | 20     | U         | 20 |     | ug/L |   | 11/07/14 14:19 | 11/10/14 18:58 | 1       |

| General Chemistry Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia                   | 1.0    |           | 0.050 |     | mg/L |   |          | 11/07/14 09:11 | 1       |
| Nitrate as N              | 0.050  | U         | 0.050 |     | mg/L |   |          | 11/05/14 16:48 | 1       |

5

6

0

10

44

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-106920-1

Client Sample ID: TRIP\_BLANK\_11042014

Lab Sample ID: 680-106920-10 Date Collected: 11/04/14 00:00 **Matrix: Water** 

Date Received: 11/05/14 08:30

| Analyte                      | Result    | Qualifier | RL       | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|-----|------|---|----------|----------------|---------|
| Benzene                      | 1.0       | U         | 1.0      |     | ug/L |   |          | 11/10/14 23:40 | 1       |
| Ethylbenzene                 | 1.0       | U         | 1.0      |     | ug/L |   |          | 11/10/14 23:40 | 1       |
| Toluene                      | 1.0       | U         | 1.0      |     | ug/L |   |          | 11/10/14 23:40 | 1       |
| Xylenes, Total               | 2.0       | U         | 2.0      |     | ug/L |   |          | 11/10/14 23:40 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits   |     |      |   | Prepared | Analyzed       | Dil Fac |
| Toluene-d8 (Surr)            | 97        |           | 70 - 130 |     |      | - |          | 11/10/14 23:40 | 1       |
| 1,2-Dichloroethane-d4 (Surr) | 88        |           | 70 - 130 |     |      |   |          | 11/10/14 23:40 | 1       |
| Dibromofluoromethane (Surr)  | 101       |           | 70 - 130 |     |      |   |          | 11/10/14 23:40 | 1       |
| 4-Bromofluorobenzene (Surr)  | 103       |           | 70 - 130 |     |      |   |          | 11/10/14 23:40 |         |

TestAmerica Savannah

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

### Method: 8260B - Volatile Organic Compounds (GC/MS)

MR MR

Lab Sample ID: MB 680-357964/8

**Matrix: Water** 

Analysis Batch: 357964

| Client Samp | ple ID | : Meth | od Blank |
|-------------|--------|--------|----------|
|             | Prep   | Type:  | Total/NA |

|                | IND    | IVID      |     |     |      |   |          |                |         |
|----------------|--------|-----------|-----|-----|------|---|----------|----------------|---------|
| Analyte        | Result | Qualifier | RL  | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Benzene        | 1.0    | U         | 1.0 |     | ug/L |   |          | 11/10/14 23:19 | 1       |
| Ethylbenzene   | 1.0    | U         | 1.0 |     | ug/L |   |          | 11/10/14 23:19 | 1       |
| Toluene        | 1.0    | U         | 1.0 |     | ug/L |   |          | 11/10/14 23:19 | 1       |
| Xylenes, Total | 2.0    | U         | 2.0 |     | ug/L |   |          | 11/10/14 23:19 | 1       |
|                |        |           |     |     |      |   |          |                |         |

MB MB Limits Surrogate Qualifier Prepared Dil Fac %Recovery Analyzed Toluene-d8 (Surr) 100 70 - 130 11/10/14 23:19 70 - 130 1,2-Dichloroethane-d4 (Surr) 87 11/10/14 23:19 70 - 130 11/10/14 23:19 Dibromofluoromethane (Surr) 106 4-Bromofluorobenzene (Surr) 105 70 - 130 11/10/14 23:19

Lab Sample ID: LCS 680-357964/4

**Matrix: Water** 

Analysis Batch: 357964

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA

|                | Spike | LCS    | LCS       |      |   |      | %Rec.    |  |
|----------------|-------|--------|-----------|------|---|------|----------|--|
| Analyte        | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Benzene        | 50.0  | 45.5   |           | ug/L |   | 91   | 74 - 123 |  |
| Ethylbenzene   | 50.0  | 49.1   |           | ug/L |   | 98   | 78 - 125 |  |
| Toluene        | 50.0  | 44.4   |           | ug/L |   | 89   | 77 - 125 |  |
| Xylenes, Total | 100   | 102    |           | ug/L |   | 102  | 80 - 124 |  |

LCS LCS Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 70 - 130 101 1,2-Dichloroethane-d4 (Surr) 98 70 - 130 Dibromofluoromethane (Surr) 92 70 - 130 70 - 130 4-Bromofluorobenzene (Surr) 109

Lab Sample ID: LCSD 680-357964/5

**Matrix: Water** 

Analysis Batch: 357964

| Client S | Sampl | e ID: | Lab | Con  | trol | Samp   | le C | )up |
|----------|-------|-------|-----|------|------|--------|------|-----|
|          |       |       |     | Prep | Ту   | pe: To | tal/ | NA  |

%Rec. RPD

| Analyte        | Added | Result | Qualifier | Unit | D | %Rec | Limits   | RPD | Limit |
|----------------|-------|--------|-----------|------|---|------|----------|-----|-------|
| Benzene        | 50.0  | 44.3   |           | ug/L |   | 89   | 74 - 123 | 3   | 30    |
| Ethylbenzene   | 50.0  | 49.0   |           | ug/L |   | 98   | 78 - 125 | 0   | 30    |
| Toluene        | 50.0  | 43.9   |           | ug/L |   | 88   | 77 - 125 | 1   | 30    |
| Xylenes, Total | 100   | 102    |           | ug/L |   | 102  | 80 - 124 | 0   | 30    |
| ICSD ICSD      |       |        |           |      |   |      |          |     |       |

LCSD LCSD

Spike

|                              | LCSD      | LCSD      |          |
|------------------------------|-----------|-----------|----------|
| Surrogate                    | %Recovery | Qualifier | Limits   |
| Toluene-d8 (Surr)            | 99        |           | 70 - 130 |
| 1,2-Dichloroethane-d4 (Surr) | 97        |           | 70 - 130 |
| Dibromofluoromethane (Surr)  | 95        |           | 70 - 130 |
| 4-Bromofluorobenzene (Surr)  | 107       |           | 70 - 130 |

TestAmerica Savannah

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

### Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-357797/10-A

**Matrix: Water** 

Analysis Batch: 358280

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 357797

|                        | MB     | MB        |    |     |      |   |                |                |         |
|------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte                | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Acenaphthene           | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/12/14 13:03 | 1       |
| Acenaphthylene         | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/12/14 13:03 | 1       |
| Anthracene             | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/12/14 13:03 | 1       |
| Benzo[a]anthracene     | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/12/14 13:03 | 1       |
| Benzo[a]pyrene         | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/12/14 13:03 | 1       |
| Benzo[b]fluoranthene   | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/12/14 13:03 | 1       |
| Benzo[g,h,i]perylene   | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/12/14 13:03 | 1       |
| Benzo[k]fluoranthene   | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/12/14 13:03 | 1       |
| Chrysene               | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/12/14 13:03 | 1       |
| Dibenz(a,h)anthracene  | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/12/14 13:03 | 1       |
| Fluoranthene           | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/12/14 13:03 | 1       |
| Fluorene               | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/12/14 13:03 | 1       |
| Indeno[1,2,3-cd]pyrene | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/12/14 13:03 | 1       |
| 1-Methylnaphthalene    | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/12/14 13:03 | 1       |
| 2-Methylnaphthalene    | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/12/14 13:03 | 1       |
| Naphthalene            | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/12/14 13:03 | 1       |
| Phenanthrene           | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/12/14 13:03 | 1       |
| Pyrene                 | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/12/14 13:03 | 1       |
|                        |        |           |    |     |      |   |                |                |         |

MB MB

| Surrogate              | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|----------------|----------------|---------|
| 2-Fluorobiphenyl       | 61        |           | 32 - 114 | 11/10/14 15:53 | 11/12/14 13:03 | 1       |
| Nitrobenzene-d5 (Surr) | 70        |           | 30 - 117 | 11/10/14 15:53 | 11/12/14 13:03 | 1       |
| Terphenyl-d14 (Surr)   | 106       |           | 10 - 132 | 11/10/14 15:53 | 11/12/14 13:03 | 1       |

Lab Sample ID: LCS 680-357797/11-A

**Matrix: Water** 

Analysis Batch: 357998

| Client | Sample | ID: Lab | o Control | Sample |
|--------|--------|---------|-----------|--------|
|--------|--------|---------|-----------|--------|

Prep Type: Total/NA Prep Batch: 357797

| 7 min. j 0:0 = mio::: 00:000 |       |        |           |      |   |      |          |
|------------------------------|-------|--------|-----------|------|---|------|----------|
|                              | Spike | LCS    | LCS       |      |   |      | %Rec.    |
| Analyte                      | Added | Result | Qualifier | Unit | D | %Rec | Limits   |
| Acenaphthene                 | 100   | 59.3   |           | ug/L |   | 59   | 32 - 107 |
| Acenaphthylene               | 100   | 60.3   |           | ug/L |   | 60   | 10 - 119 |
| Anthracene                   | 100   | 66.1   |           | ug/L |   | 66   | 38 - 112 |
| Benzo[a]anthracene           | 100   | 66.5   |           | ug/L |   | 66   | 36 - 115 |
| Benzo[a]pyrene               | 100   | 65.3   |           | ug/L |   | 65   | 13 - 120 |
| Benzo[b]fluoranthene         | 100   | 65.4   |           | ug/L |   | 65   | 32 _ 117 |
| Benzo[g,h,i]perylene         | 100   | 62.4   |           | ug/L |   | 62   | 21 - 118 |
| Benzo[k]fluoranthene         | 100   | 65.7   |           | ug/L |   | 66   | 28 - 125 |
| Chrysene                     | 100   | 65.2   |           | ug/L |   | 65   | 36 - 113 |
| Dibenz(a,h)anthracene        | 100   | 63.5   |           | ug/L |   | 64   | 32 - 115 |
| Fluoranthene                 | 100   | 69.8   |           | ug/L |   | 70   | 41 - 113 |
| Fluorene                     | 100   | 62.3   |           | ug/L |   | 62   | 39 _ 115 |
| Indeno[1,2,3-cd]pyrene       | 100   | 56.4   |           | ug/L |   | 56   | 16 - 119 |
| 1-Methylnaphthalene          | 100   | 53.9   |           | ug/L |   | 54   | 26 - 94  |
| 2-Methylnaphthalene          | 100   | 54.4   |           | ug/L |   | 54   | 24 - 92  |
| Naphthalene                  | 100   | 50.5   |           | ug/L |   | 50   | 24 - 85  |
| Phenanthrene                 | 100   | 65.1   |           | ug/L |   | 65   | 40 - 114 |
| Pyrene                       | 100   | 66.6   |           | ug/L |   | 67   | 29 - 118 |

TestAmerica Savannah

Page 16 of 27

9

3

5

7

9

10

4 6

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

## Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-357797/11-A

**Matrix: Water** 

Analysis Batch: 357998

**Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Prep Batch: 357797

LCS LCS

| Surrogate              | %Recovery | Qualifier | Limits   |
|------------------------|-----------|-----------|----------|
| 2-Fluorobiphenyl       | 58        |           | 32 - 114 |
| Nitrobenzene-d5 (Surr) | 60        |           | 30 - 117 |
| Terphenyl-d14 (Surr)   | 91        |           | 10 - 132 |

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 680-357578/1-A

**Matrix: Water** 

Analysis Batch: 358031 MD MD Client Sample ID: Method Blank

Prep Type: Total/NA

**Prep Batch: 357578** 

|          | IVID   | IVID      |    |     |      |   |                |                |         |
|----------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte  | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic  | 20     | U         | 20 |     | ug/L |   | 11/07/14 14:19 | 11/10/14 17:10 | 1       |
| Chromium | 10     | U         | 10 |     | ug/L |   | 11/07/14 14:19 | 11/10/14 17:10 | 1       |
| Lead     | 10     | U         | 10 |     | ug/L |   | 11/07/14 14:19 | 11/10/14 17:10 | 1       |
| Nickel   | 40     | U         | 40 |     | ug/L |   | 11/07/14 14:19 | 11/10/14 17:10 | 1       |
| Zinc     | 20     | U         | 20 |     | ug/L |   | 11/07/14 14:19 | 11/10/14 17:10 | 1       |
|          |        |           |    |     |      |   |                |                |         |

Lab Sample ID: LCS 680-357578/2-A Client Sample ID: Lab Control Sample

**Matrix: Water** 

Analysis Batch: 358031

Prep Type: Total/NA

**Prep Batch: 357578** 

|          | Spike | LCS    | LCS       |      |   |      | %Rec.    |  |
|----------|-------|--------|-----------|------|---|------|----------|--|
| Analyte  | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Arsenic  | 100   | 101    |           | ug/L |   | 101  | 80 - 120 |  |
| Chromium | 100   | 100    |           | ug/L |   | 100  | 80 - 120 |  |
| Lead     | 500   | 486    |           | ug/L |   | 97   | 80 - 120 |  |
| Nickel   | 100   | 98.4   |           | ug/L |   | 98   | 80 - 120 |  |
| Zinc     | 100   | 97.6   |           | ug/L |   | 98   | 80 - 120 |  |

Method: 350.1 - Nitrogen, Ammonia

Lab Sample ID: MB 680-357503/5 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 357503

| -       | MB     | MB        |       |     |      |   |          |                |         |
|---------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Ammonia | 0.050  | U         | 0.050 |     | mg/L |   |          | 11/06/14 16:31 | 1       |

Lab Sample ID: LCS 680-357503/4 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

**Matrix: Water** 

Analysis Batch: 357503

|         |  | Spike | LCS    | LCS       |      |   |      | %Rec.    |  |
|---------|--|-------|--------|-----------|------|---|------|----------|--|
| Analyte |  | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Ammonia |  | 1.00  | 0.997  |           | mg/L | _ | 100  | 90 - 110 |  |

TestAmerica Savannah

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Method: 353.2 - Nitrogen, Nitrate-Nitrite

Lab Sample ID: MB 680-357132/13

Lab Sample ID: LCS 680-357132/16

Client Sample ID: Method Blank

Prep Type: Total/NA

мв мв Result Qualifier RL MDL Unit D Analyzed Dil Fac Prepared 0.050 11/05/14 16:27 0.050 U mg/L

mg/L

**Client Sample ID: Lab Control Sample** 

75 - 125

Prep Type: Total/NA

Analysis Batch: 357132

Analysis Batch: 357132

**Matrix: Water** 

Analyte

Nitrate as N

**Matrix: Water** 

LCS LCS %Rec. Spike Added Analyte Result Qualifier Unit %Rec Limits Nitrate as N 0.500 0.516 mg/L 103 75 - 125

Lab Sample ID: 680-106920-1 MS Client Sample ID: PDMW-33R2\_11042014 Prep Type: Total/NA

**Matrix: Water** 

Analysis Batch: 357132 Spike MS MS %Rec. Sample Sample

Result Qualifier Analyte Added Result Qualifier Unit %Rec Limits Nitrate as N 0.050 U 0.500 0.460 75 \_ 125 mg/L

Lab Sample ID: 680-106920-1 MSD Client Sample ID: PDMW-33R2\_11042014 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 357132

RPD Sample Sample Spike MSD MSD %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Limit Nitrate as N 0.050 U 0.500 0.465 93

Lab Sample ID: 680-106920-2 DU Client Sample ID: PDMW-47\_11042014 Prep Type: Total/NA

**Matrix: Water** 

Analysis Batch: 357132

DU DU Sample Sample RPD Result Qualifier Result Qualifier RPD Limit Analyte Unit Nitrate as N 0.050 Ū 0.050 Ū mg/L NC 30

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

**GC/MS VOA** 

Analysis Batch: 357964

| Lab Sample ID     | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|-------------------|------------------------|-----------|--------|--------|------------|
| 680-106920-7      | PDMW-48_11042014       | Total/NA  | Water  | 8260B  |            |
| 680-106920-10     | TRIP_BLANK_11042014    | Total/NA  | Water  | 8260B  |            |
| LCS 680-357964/4  | Lab Control Sample     | Total/NA  | Water  | 8260B  |            |
| LCSD 680-357964/5 | Lab Control Sample Dup | Total/NA  | Water  | 8260B  |            |
| MB 680-357964/8   | Method Blank           | Total/NA  | Water  | 8260B  |            |

### GC/MS Semi VOA

**Prep Batch: 357797** 

| Lab Sample ID       | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|---------------------|--------------------|-----------|--------|--------|------------|
| 680-106920-7        | PDMW-48_11042014   | Total/NA  | Water  | 3520C  |            |
| LCS 680-357797/11-A | Lab Control Sample | Total/NA  | Water  | 3520C  |            |
| MB 680-357797/10-A  | Method Blank       | Total/NA  | Water  | 3520C  |            |

Analysis Batch: 357998

| Lab Sample ID       | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|---------------------|--------------------|-----------|--------|--------|------------|
| 680-106920-7        | PDMW-48_11042014   | Total/NA  | Water  | 8270D  | 357797     |
| LCS 680-357797/11-A | Lab Control Sample | Total/NA  | Water  | 8270D  | 357797     |

Analysis Batch: 358280

| Lab Sample ID      | Client Sample ID | Prep Type | Matrix | Method | Prep Batch |
|--------------------|------------------|-----------|--------|--------|------------|
| MB 680-357797/10-A | Method Blank     | Total/NA  | Water  | 8270D  | 357797     |

### **Metals**

**Prep Batch: 357578** 

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 680-106920-1       | PDMW-33R2_11042014 | Total/NA  | Water  | 3010A  | <u> </u>   |
| 680-106920-2       | PDMW-47_11042014   | Total/NA  | Water  | 3010A  |            |
| 680-106920-5       | TMW-4R_11042014    | Total/NA  | Water  | 3010A  |            |
| 680-106920-6       | PDMW-7P_11042014   | Total/NA  | Water  | 3010A  |            |
| 680-106920-7       | PDMW-48_11042014   | Total/NA  | Water  | 3010A  |            |
| 680-106920-8       | EW-1_11042014      | Total/NA  | Water  | 3010A  |            |
| 680-106920-9       | MW-202_11042014    | Total/NA  | Water  | 3010A  |            |
| LCS 680-357578/2-A | Lab Control Sample | Total/NA  | Water  | 3010A  |            |
| MB 680-357578/1-A  | Method Blank       | Total/NA  | Water  | 3010A  |            |

### Analysis Batch: 358031

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 680-106920-1       | PDMW-33R2_11042014 | Total/NA  | Water  | 6010C  | 357578     |
| 680-106920-2       | PDMW-47_11042014   | Total/NA  | Water  | 6010C  | 357578     |
| 680-106920-5       | TMW-4R_11042014    | Total/NA  | Water  | 6010C  | 357578     |
| 680-106920-6       | PDMW-7P_11042014   | Total/NA  | Water  | 6010C  | 357578     |
| 680-106920-7       | PDMW-48_11042014   | Total/NA  | Water  | 6010C  | 357578     |
| 680-106920-8       | EW-1_11042014      | Total/NA  | Water  | 6010C  | 357578     |
| 680-106920-9       | MW-202_11042014    | Total/NA  | Water  | 6010C  | 357578     |
| LCS 680-357578/2-A | Lab Control Sample | Total/NA  | Water  | 6010C  | 357578     |
| MB 680-357578/1-A  | Method Blank       | Total/NA  | Water  | 6010C  | 357578     |

TestAmerica Savannah

Page 19 of 27

3

4

6

7

10

11

12

## **QC Association Summary**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-106920-1

### **General Chemistry**

### Analysis Batch: 357132

| Lab Sample ID     | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|-------------------|--------------------|-----------|--------|--------|------------|
| 680-106920-1      | PDMW-33R2_11042014 | Total/NA  | Water  | 353.2  |            |
| 680-106920-1 MS   | PDMW-33R2_11042014 | Total/NA  | Water  | 353.2  |            |
| 680-106920-1 MSD  | PDMW-33R2_11042014 | Total/NA  | Water  | 353.2  |            |
| 680-106920-2      | PDMW-47_11042014   | Total/NA  | Water  | 353.2  |            |
| 680-106920-2 DU   | PDMW-47_11042014   | Total/NA  | Water  | 353.2  |            |
| 680-106920-3      | PDMW-49_11042014   | Total/NA  | Water  | 353.2  |            |
| 680-106920-4      | PDMW-53_11042014   | Total/NA  | Water  | 353.2  |            |
| 680-106920-5      | TMW-4R_11042014    | Total/NA  | Water  | 353.2  |            |
| 680-106920-6      | PDMW-7P_11042014   | Total/NA  | Water  | 353.2  |            |
| 680-106920-7      | PDMW-48_11042014   | Total/NA  | Water  | 353.2  |            |
| 680-106920-8      | EW-1_11042014      | Total/NA  | Water  | 353.2  |            |
| 680-106920-9      | MW-202_11042014    | Total/NA  | Water  | 353.2  |            |
| LCS 680-357132/16 | Lab Control Sample | Total/NA  | Water  | 353.2  |            |
| MB 680-357132/13  | Method Blank       | Total/NA  | Water  | 353.2  |            |

### Analysis Batch: 357503

| Lab Sample ID    | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|------------------|--------------------|-----------|--------|--------|------------|
| 680-106920-1     | PDMW-33R2_11042014 | Total/NA  | Water  | 350.1  | _          |
| 680-106920-2     | PDMW-47_11042014   | Total/NA  | Water  | 350.1  |            |
| 680-106920-3     | PDMW-49_11042014   | Total/NA  | Water  | 350.1  |            |
| 680-106920-4     | PDMW-53_11042014   | Total/NA  | Water  | 350.1  |            |
| 680-106920-5     | TMW-4R_11042014    | Total/NA  | Water  | 350.1  |            |
| 680-106920-6     | PDMW-7P_11042014   | Total/NA  | Water  | 350.1  |            |
| 680-106920-7     | PDMW-48_11042014   | Total/NA  | Water  | 350.1  |            |
| 680-106920-8     | EW-1_11042014      | Total/NA  | Water  | 350.1  |            |
| 680-106920-9     | MW-202_11042014    | Total/NA  | Water  | 350.1  |            |
| LCS 680-357503/4 | Lab Control Sample | Total/NA  | Water  | 350.1  |            |
| MB 680-357503/5  | Method Blank       | Total/NA  | Water  | 350.1  |            |

3

4

7

10

11

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Client Sample ID: PDMW-33R2\_11042014

Lab Sample ID: 680-106920-1

Date Collected: 11/04/14 10:27 Date Received: 11/05/14 08:30 Matrix: Water

Batch Dil Initial Final Batch Batch Prepared **Prep Type** Type Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Prep 3010A 50 mL 357578 11/07/14 14:19 SP TAL SAV 50 mL Total/NA TAL SAV Analysis 6010C 50 mL 50 mL 358031 11/10/14 18:22 BCB 1 Instrument ID: ICPF Total/NA Analysis 350.1 10 2 mL 2 mL 357503 11/07/14 09:38 **JME** TAL SAV Instrument ID: KONELAB1 Total/NA Analysis 353.2 2 mL 2 mL 357132 11/05/14 16:32 GRX TAL SAV Instrument ID: LACHAT2

Date Collected: 11/04/14 11:49 Matrix: Water

Date Received: 11/05/14 08:30

|           | Batch    | Batch            |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method           | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 3010A            |     |        | 50 mL   | 50 mL  | 357578 | 11/07/14 14:19 | SP      | TAL SAV |
| Total/NA  | Analysis | 6010C            |     | 1      | 50 mL   | 50 mL  | 358031 | 11/10/14 18:26 | BCB     | TAL SAV |
|           | Instrum  | ent ID: ICPF     |     |        |         |        |        |                |         |         |
| Total/NA  | Analysis | 350.1            |     | 100    | 2 mL    | 2 mL   | 357503 | 11/07/14 09:18 | JME     | TAL SAV |
|           | Instrum  | ent ID: KONELAB1 |     |        |         |        |        |                |         |         |
| Total/NA  | Analysis | 353.2            |     | 1      | 2 mL    | 2 mL   | 357132 | 11/05/14 16:36 | GRX     | TAL SAV |
|           | Instrum  | ent ID: LACHAT2  |     |        |         |        |        |                |         |         |

Client Sample ID: PDMW-49\_11042014 Lab Sample ID: 680-106920-3

Date Collected: 11/04/14 14:57 Date Received: 11/05/14 08:30

Batch Dil Initial Batch Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis 350.1 2 mL 2 mL 357503 11/07/14 09:11 JME TAL SAV Instrument ID: KONELAB1 Total/NA Analysis 353.2 2 mL 357132 11/05/14 16:38 GRX TAL SAV 2 mL Instrument ID: LACHAT2

Date Collected: 11/04/14 16:30 Date Received: 11/05/14 08:30

| Prep Type Total/NA | Batch Type Analysis | Batch  Method  350.1     | Run | Factor 5 | Amount 2 mL | Final Amount 2 mL | Batch Number 357503 | Prepared<br>or Analyzed<br>11/07/14 09:48 | Analyst<br>JME | Lab TAL SAV |
|--------------------|---------------------|--------------------------|-----|----------|-------------|-------------------|---------------------|-------------------------------------------|----------------|-------------|
| Total/NA           | Analysis            | 353.2<br>ent ID: LACHAT2 |     | 1        | 2 mL        | 2 mL              | 357132              | 11/05/14 16:42                            | GRX            | TAL SAV     |

TestAmerica Savannah

Ė

6

8

9

11

12

Matrix: Water

**Matrix: Water** 

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: CSX Hutchinson Island VRP

Client Sample ID: TMW-4R\_11042014 Lab Sample ID: 680-106920-5

Date Collected: 11/04/14 09:50 Matrix: Water Date Received: 11/05/14 08:30

Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Prep 3010A 50 mL 50 mL 357578 11/07/14 14:19 SP TAL SAV Total/NA 6010C 358031 50 mL 50 mL 11/10/14 18:31 BCB TAL SAV Analysis 1 Instrument ID: ICPF Total/NA Analysis 350.1 5 2 mL 2 mL 357503 11/07/14 09:48 JME TAL SAV Instrument ID: KONELAB1 Total/NA Analysis 353.2 2 mL 2 mL 357132 11/05/14 16:43 GRX TAL SAV Instrument ID: LACHAT2

Client Sample ID: PDMW-7P\_11042014 Lab Sample ID: 680-106920-6

Date Collected: 11/04/14 11:25 Matrix: Water

Date Received: 11/05/14 08:30

|           | Batch                | Batch                     |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|---------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре                 | Method                    | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep                 | 3010A                     |     |        | 50 mL   | 50 mL  | 357578 | 11/07/14 14:19 | SP      | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 6010C<br>ent ID: ICPF     |     | 1      | 50 mL   | 50 mL  | 358031 | 11/10/14 18:35 | ВСВ     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>ent ID: KONELAB1 |     | 10     | 2 mL    | 2 mL   | 357503 | 11/07/14 09:48 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>ent ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 357132 | 11/05/14 16:44 | GRX     | TAL SAV |

Client Sample ID: PDMW-48\_11042014 Lab Sample ID: 680-106920-7

Date Collected: 11/04/14 14:25 **Matrix: Water** 

Date Received: 11/05/14 08:30

|           | Batch    | Batch            |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|----------|------------------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method           | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8260B            |     | 1      | 5 mL     | 5 mL   | 357964 | 11/10/14 00:22 | CAR     | TAL SAV |
|           | Instrume | ent ID: CMSB     |     |        |          |        |        |                |         |         |
| Total/NA  | Prep     | 3520C            |     |        | 255.3 mL | 0.5 mL | 357797 | 11/10/14 15:53 | RBS     | TAL SAV |
| Total/NA  | Analysis | 8270D            |     | 1      | 255.3 mL | 0.5 mL | 357998 | 11/11/14 18:00 | LEG     | TAL SAV |
|           | Instrume | ent ID: CMSE     |     |        |          |        |        |                |         |         |
| Total/NA  | Prep     | 3010A            |     |        | 50 mL    | 50 mL  | 357578 | 11/07/14 14:19 | SP      | TAL SAV |
| Total/NA  | Analysis | 6010C            |     | 1      | 50 mL    | 50 mL  | 358031 | 11/10/14 18:40 | BCB     | TAL SAV |
|           | Instrume | ent ID: ICPF     |     |        |          |        |        |                |         |         |
| Total/NA  | Analysis | 350.1            |     | 20     | 2 mL     | 2 mL   | 357503 | 11/07/14 10:31 | JME     | TAL SAV |
|           | Instrume | ent ID: KONELAB1 |     |        |          |        |        |                |         |         |
| Total/NA  | Analysis | 353.2            |     | 1      | 2 mL     | 2 mL   | 357132 | 11/05/14 16:45 | GRX     | TAL SAV |
|           | Instrume | ent ID: LACHAT2  |     |        |          |        |        |                |         |         |

TestAmerica Savannah

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Client Sample ID: EW-1\_11042014

Lab Sample ID: 680-106920-8

Matrix: Water

Date Collected: 11/04/14 15:55 Date Received: 11/05/14 08:30

|           | Batch                | Batch                     |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|---------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                    | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep                 | 3010A                     |     |        | 50 mL   | 50 mL  | 357578 | 11/07/14 14:19 | SP      | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 6010C<br>ent ID: ICPF     |     | 1      | 50 mL   | 50 mL  | 358031 | 11/10/14 18:44 | BCB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>ent ID: KONELAB1 |     | 500    | 2 mL    | 2 mL   | 357503 | 11/07/14 09:48 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>ent ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 357132 | 11/05/14 16:46 | GRX     | TAL SAV |

Client Sample ID: MW-202\_11042014 Lab Sample ID: 680-106920-9

Date Collected: 11/04/14 17:00 Matrix: Water

Date Received: 11/05/14 08:30

|           | Batch                | Batch                     |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|---------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                    | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep                 | 3010A                     |     |        | 50 mL   | 50 mL  | 357578 | 11/07/14 14:19 | SP      | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 6010C<br>ent ID: ICPF     |     | 1      | 50 mL   | 50 mL  | 358031 | 11/10/14 18:58 | ВСВ     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>ent ID: KONELAB1 |     | 1      | 2 mL    | 2 mL   | 357503 | 11/07/14 09:11 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>ent ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 357132 | 11/05/14 16:48 | GRX     | TAL SAV |

Client Sample ID: TRIP\_BLANK\_11042014 Lab Sample ID: 680-106920-10

Date Collected: 11/04/14 00:00

Date Received: 11/05/14 08:30

|           | Batch    | Batch        |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|--------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method       | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8260B        |     | 1      | 5 mL    | 5 mL   | 357964 | 11/10/14 23:40 | CAR     | TAL SAV |
|           | Instrume | ent ID: CMSB |     |        |         |        |        |                |         |         |

#### Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

TestAmerica Savannah

11/13/2014

**Matrix: Water** 

## **Certification Summary**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-106920-1

### **Laboratory: TestAmerica Savannah**

The certifications listed below are applicable to this report.

| Authority | Program       | EPA Region | Certification ID | <b>Expiration Date</b> |
|-----------|---------------|------------|------------------|------------------------|
| Georgia   | State Program | 4          | 803              | 06-30-15               |

5

9

10

## **Method Summary**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-106920-1

| Method | Method Description                     | Protocol | Laboratory |
|--------|----------------------------------------|----------|------------|
| 8260B  | Volatile Organic Compounds (GC/MS)     | SW846    | TAL SAV    |
| 8270D  | Semivolatile Organic Compounds (GC/MS) | SW846    | TAL SAV    |
| 6010C  | Metals (ICP)                           | SW846    | TAL SAV    |
| 350.1  | Nitrogen, Ammonia                      | MCAWW    | TAL SAV    |
| 353.2  | Nitrogen, Nitrate-Nitrite              | MCAWW    | TAL SAV    |

#### Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

#### Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

9

4

6

0

10

44

## **Login Sample Receipt Checklist**

Client: AMEC Environment & Infrastructure, Inc.

Job Number: 680-106920-1

Login Number: 106920 List Source: TestAmerica Savannah

List Number: 1

Creator: Conner, Keaton

| Question                                                                                                  | Answer Comme | nt |
|-----------------------------------------------------------------------------------------------------------|--------------|----|
| Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td> | N/A          |    |
| The cooler's custody seal, if present, is intact.                                                         | True         |    |
| Sample custody seals, if present, are intact.                                                             | True         |    |
| The cooler or samples do not appear to have been compromised or tampered with.                            | True         |    |
| Samples were received on ice.                                                                             | True         |    |
| Cooler Temperature is acceptable.                                                                         | True         |    |
| Cooler Temperature is recorded.                                                                           | True         |    |
| COC is present.                                                                                           | True         |    |
| COC is filled out in ink and legible.                                                                     | True         |    |
| COC is filled out with all pertinent information.                                                         | True         |    |
| Is the Field Sampler's name present on COC?                                                               | True         |    |
| There are no discrepancies between the containers received and the COC.                                   | True         |    |
| Samples are received within Holding Time.                                                                 | True         |    |
| Sample containers have legible labels.                                                                    | True         |    |
| Containers are not broken or leaking.                                                                     | True         |    |
| Sample collection date/times are provided.                                                                | True         |    |
| Appropriate sample containers are used.                                                                   | True         |    |
| Sample bottles are completely filled.                                                                     | True         |    |
| Sample Preservation Verified.                                                                             | True         |    |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs                          | True         |    |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").                           | True         |    |
| Multiphasic samples are not present.                                                                      | True         |    |
| Samples do not require splitting or compositing.                                                          | True         |    |
| Residual Chlorine Checked.                                                                                | N/A          |    |

2

4

6

8

10

11



THE LEADER IN ENVIRONMENTAL TESTING

# ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

TestAmerica Job ID: 680-106992-1

Client Project/Site: CSX Hutchinson Island VRP

For:

AMEC Environment & Infrastructure, Inc. 2677 Buford Highway Atlanta, Georgia 30324

Attn: Mr. Steve Foley

Subal Horey

Authorized for release by: 11/18/2014 3:49:21 PM

Lisa Harvey, Project Manager II (912)354-7858 e.3221

lisa.harvey@testamericainc.com

·····LINKS ······

Review your project results through

Total Access

**Have a Question?** 



Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Job ID: 680-106992-1

Laboratory: TestAmerica Savannah

Narrative

#### **CASE NARRATIVE**

Client: AMEC Environment & Infrastructure, Inc.
Project: CSX Hutchinson Island VRP
Report Number: 680-106992-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

No additional analytical or quality issues were noted, other than those described below or in the Definitions/Glossary page.

#### RECEIPT

The samples were received on 11/6/2014 9:55 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 2.8° C and 2.8° C.

PDMW-24T\_11052014 (680-106992-5): A container for dissolved lead and total lead were received. The lab was instructed to run both analyses.

#### **VOLATILE ORGANIC COMPOUNDS (GC-MS)**

Samples TMW-1\_11052014 (680-106992-6), DUP-1\_11052014 (680-106992-7) and TRIP-BLANK\_11052014 (680-106992-12) were analyzed for Volatile Organic Compounds (GC-MS) in accordance with EPA SW-846 Method 8260B.

Method(s) 8260B: The following sample were collected in properly preserved vials for analysis of volatile organic compounds (VOCs). However, the pH was outside the required criteria when verified by the laboratory DUP-1\_11052014 (680-106992-7), TMW-1\_11052014 (680-106992-6), TMW-1\_11052014 (680-106992-6 MS), TMW-1\_11052014 (680-106992-6 MSD).

Samples TMW-1\_11052014 (680-106992-6)[5X] and DUP-1\_11052014 (680-106992-7)[5X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

#### SEMIVOLATILE ORGANIC COMPOUNDS (AQUEOUS)

Samples PDMW-40R\_11052014 (680-106992-1), MW-204\_11052014 (680-106992-2), TMW-1\_11052014 (680-106992-6) and DUP-1\_11052014 (680-106992-7) were analyzed for Semivolatile Organic Compounds (Aqueous) in accordance with EPA SW-846 Method 8270D.

Method(s) 3520C: Samples took more then 2 mL of 1:1 Sulfuric Acid to get to <2.

Naphthalene recovery is outside criteria high for the MSD of sample TMW-1\_11052014 (680-106992-6) in batch 680-357998.

Refer to the QC report for details.

#### **METALS (ICP)**

Samples PDMW-24T\_11052014 (680-106992-5), PDMW-13P\_11052014 (680-106992-10) and DUP-2\_11052014 (680-106992-11) were analyzed for Metals (ICP) in accordance with EPA SW-846 Method 6010C.

### METALS (ICP)

Samples PDMW-23R\_11052014 (680-106992-3), MW-3R\_11052014 (680-106992-4), PDMW-24T\_11052014 (680-106992-5), TMW-1\_11052014 (680-106992-6), DUP-1\_11052014 (680-106992-7), PDMW-8R\_11052014 (680-106992-8), PDMW-10R\_11052014 (680-106992-9), PDMW-13P\_11052014 (680-106992-10) and DUP-2\_11052014 (680-106992-11) were analyzed for Metals (ICP) in accordance with EPA SW-846 Method 6010C.

7

9

10

11

#### **Case Narrative**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-106992-1

4

Job ID: 680-106992-1 (Continued)

#### Laboratory: TestAmerica Savannah (Continued)

Arsenic recovery is outside criteria low for the MSD of sample TMW-1\_11052014 (680-106992-6) in batch 680-358681. Arsenic and Chromium exceeded the RPD limit.

Refer to the QC report for details.

#### **AMMONIA**

Samples PDMW-40R\_11052014 (680-106992-1), MW-204\_11052014 (680-106992-2), PDMW-23R\_11052014 (680-106992-3), MW-3R\_11052014 (680-106992-4), TMW-1\_11052014 (680-106992-6), DUP-1\_11052014 (680-106992-7), PDMW-8R\_11052014 (680-106992-8), PDMW-10R\_11052014 (680-106992-9), PDMW-13P\_11052014 (680-106992-10) and DUP-2\_11052014 (680-106992-11) were analyzed for ammonia in accordance with EPA Method 350.1.

Ammonia is outside recovery criteria low for the MS and MSD of sample PDMW-23R\_11052014 (680-106992-3) in batch 680-358344.

Ammonia is outside recovery criteria high for the MS and MSD of sample TMW-1\_11052014 (680-106992-6) in batch 680-358344.

Refer to the QC report for details.

Samples PDMW-40R\_11052014 (680-106992-1)[50X], MW-204\_11052014 (680-106992-2)[500X], PDMW-23R\_11052014 (680-106992-3)[10X], MW-3R\_11052014 (680-106992-4)[5X], TMW-1\_11052014 (680-106992-6)[5000X], DUP-1\_11052014 (680-106992-7)[2000X], PDMW-8R\_11052014 (680-106992-8)[50X], PDMW-10R\_11052014 (680-106992-9)[10X] and DUP-2\_11052014 (680-106992-1)[2X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

#### **NITRATE-NITRITE AS NITROGEN**

Samples PDMW-40R\_11052014 (680-106992-1), MW-204\_11052014 (680-106992-2), PDMW-23R\_11052014 (680-106992-3), MW-3R\_11052014 (680-106992-4), TMW-1\_11052014 (680-106992-6), DUP-1\_11052014 (680-106992-7), PDMW-8R\_11052014 (680-106992-8), PDMW-10R\_11052014 (680-106992-9), PDMW-13P\_11052014 (680-106992-10) and DUP-2\_11052014 (680-106992-11) were analyzed for nitrate-nitrite as nitrogen in accordance with EPA Method 353.2.

Samples TMW-1\_11052014 (680-106992-6)[500X] and DUP-1\_11052014 (680-106992-7)[500X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

4

7

0

10

11

## **Definitions/Glossary**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-106992-1

### **Qualifiers**

### **GC/MS VOA**

| Qualifici Qualifici Docoriptio | Qualifier | Qualifier Descriptio |
|--------------------------------|-----------|----------------------|
| Qualifier Qualifier Boootipao  | Qualifier | Qualifier Descriptio |

Indicates the analyte was analyzed for but not detected.

### GC/MS Semi VOA

| Qualifier | Qualifier Description                                    |
|-----------|----------------------------------------------------------|
| U         | Indicates the analyte was analyzed for but not detected. |
| F1        | MS and/or MSD Recovery exceeds the control limits        |

### **Metals**

| Qualifier | Qualifier Description                                    |
|-----------|----------------------------------------------------------|
| U         | Indicates the analyte was analyzed for but not detected. |
| F1        | MS and/or MSD Recovery exceeds the control limits        |
| F2        | MS/MSD RPD exceeds control limits                        |
|           |                                                          |

### **General Chemistry**

| Qualifier | Qualifier Description                                    |
|-----------|----------------------------------------------------------|
| U         | Indicates the analyte was analyzed for but not detected. |
| F1        | MS and/or MSD Recovery exceeds the control limits        |
|           |                                                          |

These commonly used abbreviations may or may not be present in this report.

## Glossary Abbreviation

| ,              |                                                                                                             |
|----------------|-------------------------------------------------------------------------------------------------------------|
| ¤              | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |
| %R             | Percent Recovery                                                                                            |
| CFL            | Contains Free Liquid                                                                                        |
| CNF            | Contains no Free Liquid                                                                                     |
| DER            | Duplicate error ratio (normalized absolute difference)                                                      |
| Dil Fac        | Dilution Factor                                                                                             |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |
| DLC            | Decision level concentration                                                                                |
| MDA            | Minimum detectable activity                                                                                 |
| EDL            | Estimated Detection Limit                                                                                   |
| MDC            | Minimum detectable concentration                                                                            |
| MDL            | Method Detection Limit                                                                                      |
| ML             | Minimum Level (Dioxin)                                                                                      |
| NC             | Not Calculated                                                                                              |
| ND             | Not detected at the reporting limit (or MDL or EDL if shown)                                                |
| PQL            | Practical Quantitation Limit                                                                                |
| QC             | Quality Control                                                                                             |
| RER            | Relative error ratio                                                                                        |
| RL             | Reporting Limit or Requested Limit (Radiochemistry)                                                         |
| RPD            | Relative Percent Difference, a measure of the relative difference between two points                        |
| TEF            | Toxicity Equivalent Factor (Dioxin)                                                                         |
| TEQ            | Toxicity Equivalent Quotient (Dioxin)                                                                       |

Page 4 of 38

## **Sample Summary**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-106992-1

| Lab Sample ID | Client Sample ID    | Matrix | Collected      | Received       |
|---------------|---------------------|--------|----------------|----------------|
| 680-106992-1  | PDMW-40R_11052014   | Water  | 11/05/14 09:30 | 11/06/14 09:55 |
| 680-106992-2  | MW-204_11052014     | Water  | 11/05/14 09:20 | 11/06/14 09:55 |
| 680-106992-3  | PDMW-23R_11052014   | Water  | 11/05/14 10:35 | 11/06/14 09:55 |
| 680-106992-4  | MW-3R_11052014      | Water  | 11/05/14 14:48 | 11/06/14 09:55 |
| 680-106992-5  | PDMW-24T_11052014   | Water  | 11/05/14 17:07 | 11/06/14 09:55 |
| 680-106992-6  | TMW-1_11052014      | Water  | 11/05/14 15:20 | 11/06/14 09:55 |
| 680-106992-7  | DUP-1_11052014      | Water  | 11/05/14 00:00 | 11/06/14 09:55 |
| 680-106992-8  | PDMW-8R_11052014    | Water  | 11/05/14 10:25 | 11/06/14 09:55 |
| 680-106992-9  | PDMW-10R_11052014   | Water  | 11/05/14 11:15 | 11/06/14 09:55 |
| 680-106992-10 | PDMW-13P_11052014   | Water  | 11/05/14 13:50 | 11/06/14 09:55 |
| 680-106992-11 | DUP-2_11052014      | Water  | 11/05/14 00:00 | 11/06/14 09:55 |
| 680-106992-12 | TRIP-BLANK_11052014 | Water  | 11/05/14 00:00 | 11/06/14 09:55 |

•

4

6

7

8

9

10

11

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-106992-1

Lab Sample ID: 680-106992-1

Client Sample ID: PDMW-40R\_11052014

Date Collected: 11/05/14 09:30 **Matrix: Water** Date Received: 11/06/14 09:55

| Analyte                | Result    | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|-----|------|---|----------------|----------------|---------|
| Acenaphthene           |           | U         | 10       |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:25 | 1       |
| Acenaphthylene         | 10        | U         | 10       |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:25 | 1       |
| Anthracene             | 10        | U         | 10       |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:25 | 1       |
| Benzo[a]anthracene     | 10        | U         | 10       |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:25 | 1       |
| Benzo[a]pyrene         | 10        | U         | 10       |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:25 | 1       |
| Benzo[b]fluoranthene   | 10        | U         | 10       |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:25 | 1       |
| Benzo[g,h,i]perylene   | 10        | U         | 10       |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:25 | 1       |
| Benzo[k]fluoranthene   | 10        | U         | 10       |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:25 | 1       |
| Chrysene               | 10        | U         | 10       |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:25 | 1       |
| Dibenz(a,h)anthracene  | 10        | U         | 10       |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:25 | 1       |
| Fluoranthene           | 10        | U         | 10       |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:25 | 1       |
| Fluorene               | 10        | U         | 10       |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:25 | 1       |
| Indeno[1,2,3-cd]pyrene | 10        | U         | 10       |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:25 | 1       |
| 1-Methylnaphthalene    | 10        | U         | 10       |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:25 | 1       |
| 2-Methylnaphthalene    | 10        | U         | 10       |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:25 | 1       |
| Naphthalene            | 10        | U         | 10       |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:25 | 1       |
| Phenanthrene           | 10        | U         | 10       |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:25 | 1       |
| Pyrene                 | 10        | U         | 10       |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:25 | 1       |
| Surrogate              | %Recovery | Qualifier | Limits   |     |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl       | 54        |           | 32 - 114 |     |      |   | 11/10/14 15:53 | 11/11/14 18:25 | 1       |
| Nitrobenzene-d5 (Surr) | 60        |           | 30 - 117 |     |      |   | 11/10/14 15:53 | 11/11/14 18:25 | 1       |
| Terphenyl-d14 (Surr)   | 83        |           | 10 - 132 |     |      |   | 11/10/14 15:53 | 11/11/14 18:25 | 1       |

| General Chemistry |        |           |       |     |      |   |          |                |         |
|-------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Analyte           | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Ammonia           | 44     |           | 2.5   |     | mg/L |   |          | 11/12/14 11:50 | 50      |
| Nitrate as N      | 0.050  | U         | 0.050 |     | mg/L |   |          | 11/06/14 16:04 | 1       |

TestAmerica Savannah

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-106992-1

Client Sample ID: MW-204\_11052014

Date Collected: 11/05/14 09:20 Date Received: 11/06/14 09:55

Nitrate as N

Lab Sample ID: 680-106992-2

Matrix: Water

| Analyte                | Result    | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|-----|------|---|----------------|----------------|---------|
| Acenaphthene           | 10        | U         | 10       |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:51 | 1       |
| Acenaphthylene         | 10        | U         | 10       |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:51 | 1       |
| Anthracene             | 10        | U         | 10       |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:51 | 1       |
| Benzo[a]anthracene     | 10        | U         | 10       |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:51 | 1       |
| Benzo[a]pyrene         | 10        | U         | 10       |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:51 | 1       |
| Benzo[b]fluoranthene   | 10        | U         | 10       |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:51 | 1       |
| Benzo[g,h,i]perylene   | 10        | U         | 10       |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:51 | 1       |
| Benzo[k]fluoranthene   | 10        | U         | 10       |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:51 | 1       |
| Chrysene               | 10        | U         | 10       |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:51 | 1       |
| Dibenz(a,h)anthracene  | 10        | U         | 10       |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:51 | 1       |
| Fluoranthene           | 10        | U         | 10       |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:51 | 1       |
| Fluorene               | 10        | U         | 10       |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:51 | 1       |
| Indeno[1,2,3-cd]pyrene | 10        | U         | 10       |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:51 | 1       |
| 1-Methylnaphthalene    | 10        | U         | 10       |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:51 | 1       |
| 2-Methylnaphthalene    | 10        | U         | 10       |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:51 | 1       |
| Naphthalene            | 10        | U         | 10       |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:51 | 1       |
| Phenanthrene           | 10        | U         | 10       |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:51 | 1       |
| Pyrene                 | 10        | U         | 10       |     | ug/L |   | 11/10/14 15:53 | 11/11/14 18:51 | 1       |
| Surrogate              | %Recovery | Qualifier | Limits   |     |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl       | 51        |           | 32 - 114 |     |      |   | 11/10/14 15:53 | 11/11/14 18:51 | 1       |
| Nitrobenzene-d5 (Surr) | 51        |           | 30 - 117 |     |      |   | 11/10/14 15:53 | 11/11/14 18:51 | 1       |
| Terphenyl-d14 (Surr)   | 78        |           | 10 - 132 |     |      |   | 11/10/14 15:53 | 11/11/14 18:51 | 1       |
| General Chemistry      |           |           |          |     |      |   |                |                |         |
| Analyte                | Result    | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Ammonia                | 340       |           | 25       |     | mg/L |   |                | 11/12/14 11:30 | 500     |

0.050

mg/L

0.050 U

TestAmerica Savannah

11/06/14 16:06

2

А

5

7

\_

10

11

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-106992-1

Client Sample ID: PDMW-23R\_11052014

Lab Sample ID: 680-106992-3

Date Collected: 11/05/14 10:35 Matrix: Water

Date Received: 11/06/14 09:55

|   | Method: 6010C - Metals (ICP) |        |           |    |     |      |   |                |                |         |
|---|------------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
|   | Analyte                      | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|   | Arsenic                      | 20     | U         | 20 |     | ug/L |   | 11/11/14 10:47 | 11/13/14 19:45 | 1       |
|   | Lead                         | 10     | U         | 10 |     | ug/L |   | 11/11/14 10:47 | 11/13/14 19:45 | 1       |
| Ē |                              |        |           |    |     |      |   |                |                |         |
| Ĺ | General Chemistry            |        |           |    |     |      |   |                |                |         |

| General Chemistry |          |           |       |     |      |   |          |                |         |
|-------------------|----------|-----------|-------|-----|------|---|----------|----------------|---------|
| Analyte           | Result ( | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Ammonia           | 2.3      |           | 0.50  |     | mg/L |   |          | 11/12/14 11:30 | 10      |
| Nitrate as N      | 0.050 U  | U         | 0.050 |     | mg/L |   |          | 11/06/14 15:40 | 1       |

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Client Sample ID: MW-3R\_11052014

TestAmerica Job ID: 680-106992-1

Lab Sample ID: 680-106992-4

Matrix: Water

Date Collected: 11/05/14 14:48 Date Received: 11/06/14 09:55

| Method: 6010C - Metals (ICP) |        |           |    |     |      |   |                |                |         |
|------------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte                      | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                      | 20     | U         | 20 |     | ug/L |   | 11/11/14 10:47 | 11/13/14 20:15 | 1       |
| Nickel                       | 40     | U         | 40 |     | ug/L |   | 11/11/14 10:47 | 11/13/14 20:15 | 1       |
| Lead                         | 10     | U         | 10 |     | ug/L |   | 11/11/14 10:47 | 11/13/14 20:15 | 1       |
| Zinc                         | 20     | U         | 20 |     | ug/L |   | 11/11/14 10:47 | 11/13/14 20:15 | 1       |

| General Chemistry |        |           |       |     |      | _ |          |                |         |
|-------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Analyte           | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Ammonia           | 6.5    |           | 0.25  |     | mg/L |   |          | 11/11/14 21:00 | 5       |
| Nitrate as N      | 0.050  | U         | 0.050 |     | mg/L |   |          | 11/06/14 16:07 | 1       |

0

8

9

10

11

19

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Client Sample ID: PDMW-24T\_11052014

TestAmerica Job ID: 680-106992-1

Lab Sample ID: 680-106992-5

. Matrix: Water

Date Collected: 11/05/14 17:07 Date Received: 11/06/14 09:55

 Method: 6010C - Metals (ICP)

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Lead
 10
 U
 10
 ug/L
 11/11/14 10:47
 11/13/14 20:19
 1

 Method: 6010C - Metals (ICP) - Dissolved

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Lead
 10
 U
 10
 ug/L
 11/11/14 14:28
 11/13/14 17:52
 1

6

8

40

11

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-106992-1

Client Sample ID: TMW-1\_11052014

Date Received: 11/06/14 09:55

Lab Sample ID: 680-106992-6 Date Collected: 11/05/14 15:20 **Matrix: Water** 

| Analyte                      | Result    | Qualifier | RL       | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|-----|------|---|----------|----------------|---------|
| Benzene                      | 80        |           | 5.0      |     | ug/L |   |          | 11/11/14 14:01 | 5       |
| Ethylbenzene                 | 5.0       | U         | 5.0      |     | ug/L |   |          | 11/11/14 14:01 | 5       |
| Toluene                      | 5.0       | U         | 5.0      |     | ug/L |   |          | 11/11/14 14:01 | 5       |
| Xylenes, Total               | 420       |           | 10       |     | ug/L |   |          | 11/11/14 14:01 | 5       |
| Surrogate                    | %Recovery | Qualifier | Limits   |     |      |   | Prepared | Analyzed       | Dil Fac |
| Toluene-d8 (Surr)            | 101       |           | 70 - 130 |     |      |   |          | 11/11/14 14:01 | 5       |
| 1,2-Dichloroethane-d4 (Surr) | 81        |           | 70 - 130 |     |      |   |          | 11/11/14 14:01 | 5       |
| Dibromofluoromethane (Surr)  | 91        |           | 70 - 130 |     |      |   |          | 11/11/14 14:01 | 5       |
| 4-Bromofluorobenzene (Surr)  | 110       |           | 70 - 130 |     |      |   |          | 11/11/14 14:01 | 5       |

| Analyte                | Result    | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|-----|------|---|----------------|----------------|---------|
| Acenaphthene           | 9.7       | U         | 9.7      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 20:43 | 1       |
| Acenaphthylene         | 9.7       | U         | 9.7      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 20:43 | 1       |
| Anthracene             | 9.7       | U         | 9.7      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 20:43 | 1       |
| Benzo[a]anthracene     | 9.7       | U         | 9.7      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 20:43 | 1       |
| Benzo[a]pyrene         | 9.7       | U         | 9.7      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 20:43 | 1       |
| Benzo[b]fluoranthene   | 9.7       | U         | 9.7      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 20:43 | 1       |
| Benzo[g,h,i]perylene   | 9.7       | U         | 9.7      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 20:43 | 1       |
| Benzo[k]fluoranthene   | 9.7       | U         | 9.7      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 20:43 | 1       |
| Chrysene               | 9.7       | U         | 9.7      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 20:43 | 1       |
| Dibenz(a,h)anthracene  | 9.7       | U         | 9.7      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 20:43 | 1       |
| Fluoranthene           | 9.7       | U         | 9.7      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 20:43 | 1       |
| Fluorene               | 9.7       | U         | 9.7      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 20:43 | 1       |
| Indeno[1,2,3-cd]pyrene | 9.7       | U         | 9.7      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 20:43 | 1       |
| 1-Methylnaphthalene    | 12        |           | 9.7      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 20:43 | 1       |
| 2-Methylnaphthalene    | 16        |           | 9.7      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 20:43 | 1       |
| Naphthalene            | 44        |           | 9.7      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 20:43 | 1       |
| Phenanthrene           | 9.7       | U         | 9.7      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 20:43 | 1       |
| Pyrene                 | 9.7       | U         | 9.7      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 20:43 | 1       |
| Surrogate              | %Recovery | Qualifier | Limits   |     |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl       | 57        |           | 32 - 114 |     |      |   | 11/10/14 15:53 | 11/13/14 20:43 | 1       |
| Nitrobenzene-d5 (Surr) | 56        |           | 30 - 117 |     |      |   | 11/10/14 15:53 | 11/13/14 20:43 | 1       |
| Terphenyl-d14 (Surr)   | 54        |           | 10 - 132 |     |      |   | 11/10/14 15:53 | 11/13/14 20:43 | 1       |

| Analyte  | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|----------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Arsenic  | 130    |           | 20 |     | ug/L |   | 11/12/14 10:58 | 11/13/14 13:15 | 1       |
| Chromium | 26     |           | 10 |     | ug/L |   | 11/12/14 10:58 | 11/13/14 13:15 | 1       |
| Lead     | 10     | U         | 10 |     | ug/L |   | 11/12/14 10:58 | 11/13/14 13:15 | 1       |
| Nickel   | 41     |           | 40 |     | ug/L |   | 11/12/14 10:58 | 11/13/14 13:15 | 1       |
| Zinc     | 97     |           | 20 |     | ug/L |   | 11/12/14 10:58 | 11/13/14 13:15 | 1       |

| Zinc                         | 97     |           | 20  |     | ug/L |   | 11/12/14 10.56 | 11/13/14 13.13 |         |
|------------------------------|--------|-----------|-----|-----|------|---|----------------|----------------|---------|
| General Chemistry<br>Analyte | Result | Qualifier | RL  | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Ammonia                      | 3800   |           | 250 |     | mg/L |   |                | 11/12/14 12:35 | 5000    |
| Nitrate as N                 | 120    |           | 25  |     | mg/L |   |                | 11/06/14 15:44 | 500     |

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-106992-1

Client Sample ID: DUP-1\_11052014

Date Received: 11/06/14 09:55

Lab Sample ID: 680-106992-7 Date Collected: 11/05/14 00:00 Matrix: Water

| Analyte                      | Result    | Qualifier | RL       | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|-----|------|---|----------|----------------|---------|
| Benzene                      | 77        |           | 5.0      |     | ug/L |   |          | 11/11/14 14:23 | 5       |
| Ethylbenzene                 | 5.0       | U         | 5.0      |     | ug/L |   |          | 11/11/14 14:23 | 5       |
| Toluene                      | 5.0       | U         | 5.0      |     | ug/L |   |          | 11/11/14 14:23 | 5       |
| Xylenes, Total               | 420       |           | 10       |     | ug/L |   |          | 11/11/14 14:23 | 5       |
| Surrogate                    | %Recovery | Qualifier | Limits   |     |      |   | Prepared | Analyzed       | Dil Fac |
| Toluene-d8 (Surr)            | 99        |           | 70 - 130 |     |      | - |          | 11/11/14 14:23 | 5       |
| 1,2-Dichloroethane-d4 (Surr) | 79        |           | 70 - 130 |     |      |   |          | 11/11/14 14:23 | 5       |
| Dibromofluoromethane (Surr)  | 90        |           | 70 - 130 |     |      |   |          | 11/11/14 14:23 | 5       |
| 4-Bromofluorobenzene (Surr)  | 115       |           | 70 - 130 |     |      |   |          | 11/11/14 14:23 |         |

| Analyte                | Result    | Qualifier | RL     | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|--------|-----|------|---|----------------|----------------|---------|
| Acenaphthene           | 9.8       | U         | 9.8    |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:08 | 1       |
| Acenaphthylene         | 9.8       | U         | 9.8    |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:08 | 1       |
| Anthracene             | 9.8       | U         | 9.8    |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:08 | 1       |
| Benzo[a]anthracene     | 9.8       | U         | 9.8    |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:08 | 1       |
| Benzo[a]pyrene         | 9.8       | U         | 9.8    |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:08 | 1       |
| Benzo[b]fluoranthene   | 9.8       | U         | 9.8    |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:08 | 1       |
| Benzo[g,h,i]perylene   | 9.8       | U         | 9.8    |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:08 | 1       |
| Benzo[k]fluoranthene   | 9.8       | U         | 9.8    |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:08 | 1       |
| Chrysene               | 9.8       | U         | 9.8    |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:08 | 1       |
| Dibenz(a,h)anthracene  | 9.8       | U         | 9.8    |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:08 | 1       |
| Fluoranthene           | 9.8       | U         | 9.8    |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:08 | 1       |
| Fluorene               | 9.8       | U         | 9.8    |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:08 | 1       |
| Indeno[1,2,3-cd]pyrene | 9.8       | U         | 9.8    |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:08 | 1       |
| 1-Methylnaphthalene    | 12        |           | 9.8    |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:08 | 1       |
| 2-Methylnaphthalene    | 16        |           | 9.8    |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:08 | 1       |
| Naphthalene            | 40        |           | 9.8    |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:08 | 1       |
| Phenanthrene           | 9.8       | U         | 9.8    |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:08 | 1       |
| Pyrene                 | 9.8       | U         | 9.8    |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:08 | 1       |
| Surrogate              | %Recovery | Qualifier | Limits |     |      |   | Prepared       | Analyzed       | Dil Fac |

| S  | urrogate              | %Recovery | Qualifier | Limits   |   | Prepared      | Analyzed       | Dil Fac |  |
|----|-----------------------|-----------|-----------|----------|---|---------------|----------------|---------|--|
| 2- | Fluorobiphenyl        | 59        |           | 32 - 114 | 1 | 1/10/14 15:53 | 11/13/14 21:08 | 1       |  |
| N  | itrobenzene-d5 (Surr) | 55        |           | 30 - 117 | 1 | 1/10/14 15:53 | 11/13/14 21:08 | 1       |  |
| T  | erphenyl-d14 (Surr)   | 69        |           | 10 - 132 | 1 | 1/10/14 15:53 | 11/13/14 21:08 | 1       |  |

| Method: 6010C - Metals (ICP) |        |           |    |     |      |   |                |                |         |
|------------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte                      | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                      | 150    |           | 20 |     | ug/L |   | 11/12/14 10:58 | 11/13/14 13:37 | 1       |
| Chromium                     | 30     |           | 10 |     | ug/L |   | 11/12/14 10:58 | 11/13/14 13:37 | 1       |
| Lead                         | 10     | U         | 10 |     | ug/L |   | 11/12/14 10:58 | 11/13/14 13:37 | 1       |
| Nickel                       | 40     | U         | 40 |     | ug/L |   | 11/12/14 10:58 | 11/13/14 13:37 | 1       |
| Zinc                         | 94     |           | 20 |     | ug/L |   | 11/12/14 10:58 | 11/13/14 13:37 | 1       |
|                              |        |           |    |     |      |   |                |                |         |

| Zinc                       | 94     |           | 20  |       | ug/L |   | 11/12/14 10.56 | 11/13/14 13.37 | '       |
|----------------------------|--------|-----------|-----|-------|------|---|----------------|----------------|---------|
| General Chemistry  Analyte | Popult | Qualifier | RL  | MDL   | Unit | Б | Prepared       | Anglyzod       | Dil Fac |
| Analyte                    | Resuit | Qualifier |     | IVIDL |      | D | Prepareu       | Analyzed       |         |
| Ammonia                    | 3900   |           | 100 |       | mg/L |   |                | 11/12/14 12:09 | 2000    |
| Nitrate as N               | 100    |           | 25  |       | mg/L |   |                | 11/06/14 15:56 | 500     |

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Client Sample ID: PDMW-8R\_11052014

TestAmerica Job ID: 680-106992-1

Lab Sample ID: 680-106992-8

Matrix: Water

Date Received: 11/06/14 09:55

Date Collected: 11/05/14 10:25

| Method: 6010C - Metals (ICP) |        |           |       |     |      |   |                |                |         |
|------------------------------|--------|-----------|-------|-----|------|---|----------------|----------------|---------|
| Analyte                      | Result | Qualifier | RL    | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                      | 20     | U         | 20    |     | ug/L |   | 11/11/14 10:47 | 11/13/14 20:23 | 1       |
| Lead                         | 10     | U         | 10    |     | ug/L |   | 11/11/14 10:47 | 11/13/14 20:23 | 1       |
| Nickel                       | 40     | U         | 40    |     | ug/L |   | 11/11/14 10:47 | 11/13/14 20:23 | 1       |
| General Chemistry            |        |           |       |     |      |   |                |                |         |
| Analyte                      | Result | Qualifier | RL    | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Ammonia                      | 94     |           | 2.5   |     | mg/L |   |                | 11/11/14 21:00 | 50      |
| Nitrate as N                 | 0.050  | U         | 0.050 |     | mg/L |   |                | 11/06/14 16:08 | 1       |

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-106992-1

Client Sample ID: PDMW-10R\_11052014

Date Collected: 11/05/14 11:15 Date Received: 11/06/14 09:55 Lab Sample ID: 680-106992-9

Matrix: Water

| Method: 6010C - Metals (ICP) |        |           |       |     |      |   |                |                |         |
|------------------------------|--------|-----------|-------|-----|------|---|----------------|----------------|---------|
| Analyte                      | Result | Qualifier | RL    | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                      | 20     | U         | 20    |     | ug/L |   | 11/11/14 10:47 | 11/13/14 20:28 | 1       |
| Lead                         | 10     | U         | 10    |     | ug/L |   | 11/11/14 10:47 | 11/13/14 20:28 | 1       |
| Nickel                       | 40     | U         | 40    |     | ug/L |   | 11/11/14 10:47 | 11/13/14 20:28 | 1       |
| General Chemistry            |        |           |       |     |      |   |                |                |         |
| Analyte                      | Result | Qualifier | RL    | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Ammonia                      | 12     |           | 0.50  |     | mg/L |   |                | 11/11/14 21:00 | 10      |
| Nitrate as N                 | 0.050  | U         | 0.050 |     | mg/L |   |                | 11/06/14 16:09 | 1       |

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-106992-1

Client Sample ID: PDMW-13P\_11052014

Date Collected: 11/05/14 13:50

Date Received: 11/06/14 09:55

Lab Sample ID: 680-106992-10

**Matrix: Water** 

| Analyte                        | Result    | Qualifier | RL | MDL | Unit         | D        | Prepared                | Analyzed                | Dil Fac |
|--------------------------------|-----------|-----------|----|-----|--------------|----------|-------------------------|-------------------------|---------|
| Arsenic                        | 20        | U         | 20 |     | ug/L         |          | 11/11/14 10:47          | 11/13/14 20:32          | 1       |
| Nickel                         | 40        | U         | 40 |     | ug/L         |          | 11/11/14 10:47          | 11/13/14 20:32          | 1       |
| Lead                           | 33        |           | 10 |     | ug/L         |          | 11/11/14 10:47          | 11/13/14 20:32          | 1       |
| Zinc                           | 20        | U         | 20 |     | ug/L         |          | 11/11/14 10:47          | 11/13/14 20:32          | 1       |
| Method: 6010C - Metals (ICP)   | ,         | Qualifier | RI | MDI | Unit         | n        | Prenared                | <b>∆</b> nalvzed        | Dil Fa  |
| Analyte                        | Result    | Qualifier | RL | MDL |              | D        | Prepared                | Analyzed                | Dil Fac |
| •                              | ,         |           | RL | MDL | Unit<br>ug/L | <u>D</u> | Prepared 11/11/14 14:28 | Analyzed 11/13/14 17:56 | Dil Fac |
| Analyte                        | Result    |           |    | MDL |              | <u>D</u> |                         |                         | Dil Fac |
| Analyte<br>Lead                | Result 10 |           |    |     |              | <u>D</u> |                         |                         | Dil Fac |
| Analyte Lead General Chemistry | Result 10 | U         | 10 |     | ug/L         |          | 11/11/14 14:28          | 11/13/14 17:56          | 1       |

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-106992-1

Client Sample ID: DUP-2\_11052014

Lab Sample ID: 680-106992-11 Date Collected: 11/05/14 00:00

**Matrix: Water** 

Date Received: 11/06/14 09:55

| Method: 6010C - Metals (ICP) Analyte | Result | Qualifier | RL | MDL Unit | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|--------|-----------|----|----------|---|----------------|----------------|---------|
| Arsenic                              | 20     | U         | 20 | ug/L     |   | 11/11/14 10:47 | 11/13/14 20:36 | 1       |
| Nickel                               | 40     | U         | 40 | ug/L     |   | 11/11/14 10:47 | 11/13/14 20:36 | 1       |
| Lead                                 | 39     |           | 10 | ug/L     |   | 11/11/14 10:47 | 11/13/14 20:36 | 1       |
| Zinc                                 | 20     | U         | 20 | ug/L     |   | 11/11/14 10:47 | 11/13/14 20:36 | 1       |

| Method: 6010C - Metals (ICP) - Diss | solved |           |    |     |      |   |                |                |         |
|-------------------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte                             | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Lead                                | 10     | U         | 10 |     | ug/L |   | 11/11/14 14:28 | 11/13/14 18:00 | 1       |

| General Chemistry Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia                   | 2.2    |           | 0.10  |     | mg/L |   |          | 11/12/14 12:00 | 2       |
| Nitrate as N              | 0.050  | U         | 0.050 |     | mg/L |   |          | 11/06/14 16:13 | 1       |

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-106992-1

Client Sample ID: TRIP-BLANK\_11052014

Lab Sample ID: 680-106992-12 Date Collected: 11/05/14 00:00 **Matrix: Water** 

Date Received: 11/06/14 09:55

| Analyte                      | Result    | Qualifier | RL       | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|-----|------|---|----------|----------------|---------|
| Benzene                      | 1.0       | U         | 1.0      |     | ug/L |   |          | 11/11/14 16:51 | 1       |
| Ethylbenzene                 | 1.0       | U         | 1.0      |     | ug/L |   |          | 11/11/14 16:51 | 1       |
| Toluene                      | 1.0       | U         | 1.0      |     | ug/L |   |          | 11/11/14 16:51 | 1       |
| Xylenes, Total               | 2.0       | U         | 2.0      |     | ug/L |   |          | 11/11/14 16:51 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits   |     |      |   | Prepared | Analyzed       | Dil Fac |
| Toluene-d8 (Surr)            | 100       |           | 70 - 130 |     |      | _ |          | 11/11/14 16:51 | 1       |
| 1,2-Dichloroethane-d4 (Surr) | 83        |           | 70 - 130 |     |      |   |          | 11/11/14 16:51 | 1       |
| Dibromofluoromethane (Surr)  | 92        |           | 70 - 130 |     |      |   |          | 11/11/14 16:51 | 1       |
| 4-Bromofluorobenzene (Surr)  | 129       |           | 70 - 130 |     |      |   |          | 11/11/14 16:51 | 1       |

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

### Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-357980/7

**Matrix: Water** 

Analysis Batch: 357980

Client Sample ID: Method Blank

Prep Type: Total/NA

|                | MB     | MR        |     |     |      |   |          |                |         |
|----------------|--------|-----------|-----|-----|------|---|----------|----------------|---------|
| Analyte        | Result | Qualifier | RL  | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Benzene        | 1.0    | U         | 1.0 |     | ug/L |   |          | 11/11/14 11:40 | 1       |
| Ethylbenzene   | 1.0    | U         | 1.0 |     | ug/L |   |          | 11/11/14 11:40 | 1       |
| Toluene        | 1.0    | U         | 1.0 |     | ug/L |   |          | 11/11/14 11:40 | 1       |
| Xylenes, Total | 2.0    | U         | 2.0 |     | ug/L |   |          | 11/11/14 11:40 | 1       |
|                |        |           |     |     |      |   |          |                |         |

MB MB Limits Surrogate Qualifier Prepared Dil Fac %Recovery Analyzed 70 - 130 Toluene-d8 (Surr) 99 11/11/14 11:40 82 70 - 130 1,2-Dichloroethane-d4 (Surr) 11/11/14 11:40 Dibromofluoromethane (Surr) 99 70 - 130 11/11/14 11:40 4-Bromofluorobenzene (Surr) 70 - 130 11/11/14 11:40 124

Spike

Added

50.0

50.0

50.0

100

104

ug/L

Lab Sample ID: LCS 680-357980/3

**Matrix: Water** 

Analyte

Benzene

Toluene

Ethylbenzene

Xylenes, Total

Analysis Batch: 357980

**Client Sample ID: Lab Control Sample** Prep Type: Total/NA

80 - 124

LCS LCS %Rec. Result Qualifier Unit %Rec Limits 51.5 103 74 - 123 ug/L 50.1 ug/L 100 78 - 125 49.9 100 77 - 125 ug/L

104

|                              | LCS       | LCS       |          |
|------------------------------|-----------|-----------|----------|
| Surrogate                    | %Recovery | Qualifier | Limits   |
| Toluene-d8 (Surr)            | 102       |           | 70 - 130 |
| 1,2-Dichloroethane-d4 (Surr) | 105       |           | 70 - 130 |
| Dibromofluoromethane (Surr)  | 103       |           | 70 - 130 |
| 4-Bromofluorobenzene (Surr)  | 109       |           | 70 - 130 |

Lab Sample ID: LCSD 680-357980/4

**Matrix: Water** 

Analysis Batch: 357980

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

| •              | Spike | LCSD   | LCSD      |      |   |      | %Rec.    |     | RPD   |  |
|----------------|-------|--------|-----------|------|---|------|----------|-----|-------|--|
| Analyte        | Added | Result | Qualifier | Unit | D | %Rec | Limits   | RPD | Limit |  |
| Benzene        | 50.0  | 51.8   |           | ug/L |   | 104  | 74 - 123 | 1   | 30    |  |
| Ethylbenzene   | 50.0  | 51.2   |           | ug/L |   | 102  | 78 - 125 | 2   | 30    |  |
| Toluene        | 50.0  | 49.7   |           | ug/L |   | 99   | 77 - 125 | 0   | 30    |  |
| Xylenes, Total | 100   | 107    |           | ug/L |   | 107  | 80 - 124 | 2   | 30    |  |

|                              | LCSD      | LCSD      |          |
|------------------------------|-----------|-----------|----------|
| Surrogate                    | %Recovery | Qualifier | Limits   |
| Toluene-d8 (Surr)            | 106       |           | 70 - 130 |
| 1,2-Dichloroethane-d4 (Surr) | 105       |           | 70 - 130 |
| Dibromofluoromethane (Surr)  | 104       |           | 70 - 130 |
| 4-Bromofluorobenzene (Surr)  | 108       |           | 70 - 130 |

TestAmerica Savannah

Page 18 of 38

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 680-106992-6 MS

**Matrix: Water** 

Analysis Batch: 357980

Client Sample ID: TMW-1\_11052014

Prep Type: Total/NA

|   |                | Sample | Sample    | Spike | MS     | MS        |      |   |      | %Rec.    |  |
|---|----------------|--------|-----------|-------|--------|-----------|------|---|------|----------|--|
|   | Analyte        | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
|   | Benzene        | 80     |           | 250   | 287    |           | ug/L |   | 83   | 74 - 123 |  |
|   | Ethylbenzene   | 5.0    | U         | 250   | 242    |           | ug/L |   | 95   | 78 - 125 |  |
|   | Toluene        | 5.0    | U         | 250   | 223    |           | ug/L |   | 89   | 77 - 125 |  |
|   | Xylenes, Total | 420    |           | 500   | 916    |           | ug/L |   | 98   | 80 - 124 |  |
| 1 |                |        |           |       |        |           |      |   |      |          |  |

MS MS Surrogate Qualifier Limits %Recovery Toluene-d8 (Surr) 102 70 - 130 70 - 130 1,2-Dichloroethane-d4 (Surr) 92 70 - 130 Dibromofluoromethane (Surr) 89 4-Bromofluorobenzene (Surr) 70 - 130 109

Lab Sample ID: 680-106992-6 MSD

**Matrix: Water** 

Analysis Batch: 357980

Client Sample ID: TMW-1\_11052014 Prep Type: Total/NA

| Alialysis Datcil. 33/300 |        |           |       |        |           |      |   |      |                     |     |       |  |
|--------------------------|--------|-----------|-------|--------|-----------|------|---|------|---------------------|-----|-------|--|
|                          | Sample | Sample    | Spike | MSD    | MSD       |      |   |      | %Rec.               |     | RPD   |  |
| Analyte                  | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits              | RPD | Limit |  |
| Benzene                  | 80     |           | 250   | 287    |           | ug/L |   | 83   | 74 - 123            | 0   | 30    |  |
| Ethylbenzene             | 5.0    | U         | 250   | 249    |           | ug/L |   | 98   | 78 <sub>-</sub> 125 | 3   | 30    |  |
| Toluene                  | 5.0    | U         | 250   | 224    |           | ug/L |   | 89   | 77 - 125            | 0   | 30    |  |
| Xylenes, Total           | 420    |           | 500   | 939    |           | ug/L |   | 103  | 80 _ 124            | 3   | 30    |  |

MSD MSD Surrogate Qualifier %Recovery 104 70 - 130 Toluene-d8 (Surr) 1,2-Dichloroethane-d4 (Surr) 94 70 - 130 Dibromofluoromethane (Surr) 91 70 - 130 70 - 130 4-Bromofluorobenzene (Surr) 108

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-357797/10-A

**Matrix: Water** 

Analysis Batch: 358280

Client Sample ID: Method Blank Prep Type: Total/NA **Prep Batch: 357797** 

|                        | MB     | MB        |    |     |      |   |                |                |         |
|------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte                | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Acenaphthene           | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/12/14 13:03 | 1       |
| Acenaphthylene         | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/12/14 13:03 | 1       |
| Anthracene             | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/12/14 13:03 | 1       |
| Benzo[a]anthracene     | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/12/14 13:03 | 1       |
| Benzo[a]pyrene         | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/12/14 13:03 | 1       |
| Benzo[b]fluoranthene   | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/12/14 13:03 | 1       |
| Benzo[g,h,i]perylene   | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/12/14 13:03 | 1       |
| Benzo[k]fluoranthene   | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/12/14 13:03 | 1       |
| Chrysene               | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/12/14 13:03 | 1       |
| Dibenz(a,h)anthracene  | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/12/14 13:03 | 1       |
| Fluoranthene           | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/12/14 13:03 | 1       |
| Fluorene               | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/12/14 13:03 | 1       |
| Indeno[1,2,3-cd]pyrene | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/12/14 13:03 | 1       |

TestAmerica Savannah

Page 19 of 38

11/18/2014

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-357797/10-A

**Matrix: Water** 

Analysis Batch: 358280

Client Sample ID: Method Blank **Prep Type: Total/NA** 

**Prep Batch: 357797** 

|                     | MB     | MB        |    |     |      |   |                |                |         |
|---------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte             | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| 1-Methylnaphthalene | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/12/14 13:03 | 1       |
| 2-Methylnaphthalene | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/12/14 13:03 | 1       |
| Naphthalene         | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/12/14 13:03 | 1       |
| Phenanthrene        | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/12/14 13:03 | 1       |
| Pyrene              | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/12/14 13:03 | 1       |
|                     |        |           |    |     |      |   |                |                |         |

MB MB

| Surrogate              | %Recovery | Qualifier | Limits   | Prepared    | d Analyzed          |
|------------------------|-----------|-----------|----------|-------------|---------------------|
| 2-Fluorobiphenyl       | 61        |           | 32 - 114 | 11/10/14 15 | 5:53 11/12/14 13:03 |
| Nitrobenzene-d5 (Surr) | 70        |           | 30 - 117 | 11/10/14 15 | 5:53 11/12/14 13:03 |
| Terphenyl-d14 (Surr)   | 106       |           | 10 - 132 | 11/10/14 15 | 5:53 11/12/14 13:03 |

Client Sample ID: Method Blank Prep Type: Total/NA **Prep Batch: 357797** 

Analysis Batch: 358569

**Matrix: Water** 

Lab Sample ID: MB 680-357797/10-A

| Analysis Batom 500000  |        |           |    |     |      |   |                | i rop Batom    | 001101  |
|------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
|                        | MB     | MB        |    |     |      |   |                |                |         |
| Analyte                | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Acenaphthene           | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/13/14 19:55 | 1       |
| Acenaphthylene         | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/13/14 19:55 | 1       |
| Anthracene             | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/13/14 19:55 | 1       |
| Benzo[a]anthracene     | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/13/14 19:55 | 1       |
| Benzo[a]pyrene         | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/13/14 19:55 | 1       |
| Benzo[b]fluoranthene   | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/13/14 19:55 | 1       |
| Benzo[g,h,i]perylene   | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/13/14 19:55 | 1       |
| Benzo[k]fluoranthene   | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/13/14 19:55 | 1       |
| Chrysene               | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/13/14 19:55 | 1       |
| Dibenz(a,h)anthracene  | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/13/14 19:55 | 1       |
| Fluoranthene           | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/13/14 19:55 | 1       |
| Fluorene               | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/13/14 19:55 | 1       |
| Indeno[1,2,3-cd]pyrene | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/13/14 19:55 | 1       |
| 1-Methylnaphthalene    | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/13/14 19:55 | 1       |
| 2-Methylnaphthalene    | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/13/14 19:55 | 1       |
| Naphthalene            | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/13/14 19:55 | 1       |
| Phenanthrene           | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/13/14 19:55 | 1       |
| Pyrene                 | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/13/14 19:55 | 1       |
|                        |        |           |    |     |      |   |                |                |         |

мв мв

| Surrogate              | %Recovery | Qualifier | Limits   | Prepared      | Analyzed         | Dil Fac |
|------------------------|-----------|-----------|----------|---------------|------------------|---------|
| 2-Fluorobiphenyl       | 65        |           | 32 - 114 | 11/10/14 15:5 | 3 11/13/14 19:55 | 1       |
| Nitrobenzene-d5 (Surr) | 60        |           | 30 - 117 | 11/10/14 15:5 | 3 11/13/14 19:55 | 1       |
| Terphenyl-d14 (Surr)   | 109       |           | 10 - 132 | 11/10/14 15:5 | 3 11/13/14 19:55 | 1       |

Lab Sample ID: LCS 680-357797/11-A

**Matrix: Water** 

Analysis Batch: 357998

| Client | Sample | ID: Lab Control Sample |
|--------|--------|------------------------|
|        |        | Prep Type: Total/NA    |
|        |        | Prep Batch: 357797     |
|        |        | %Rec.                  |
| D      | % Boo  | Limite                 |

|                | Spike | LUS      | LCS            |   |      | %Rec.    |  |
|----------------|-------|----------|----------------|---|------|----------|--|
| Analyte        | Added | l Result | Qualifier Unit | D | %Rec | Limits   |  |
| Acenaphthene   | 100   | 59.3     | ug/L           |   | 59   | 32 - 107 |  |
| Acenaphthylene | 100   | 60.3     | ug/L           |   | 60   | 10 - 119 |  |
| Anthracene     | 100   | 66.1     | ug/L           |   | 66   | 38 - 112 |  |

TestAmerica Savannah

Page 20 of 38

Dil Fac

11/18/2014

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

## Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-357797/11-A

**Matrix: Water** 

Naphthalene

Phenanthrene

Pyrene

**Analysis Batch: 357998** 

Client Sample ID: Lab Control Sample Prep Type: Total/NA **Prep Batch: 357797** 

|                        | Spike | LCS    | LCS       |      |   |      | %Rec.    |
|------------------------|-------|--------|-----------|------|---|------|----------|
| Analyte                | Added | Result | Qualifier | Unit | D | %Rec | Limits   |
| Benzo[a]anthracene     | 100   | 66.5   |           | ug/L |   | 66   | 36 - 115 |
| Benzo[a]pyrene         | 100   | 65.3   |           | ug/L |   | 65   | 13 - 120 |
| Benzo[b]fluoranthene   | 100   | 65.4   |           | ug/L |   | 65   | 32 - 117 |
| Benzo[g,h,i]perylene   | 100   | 62.4   |           | ug/L |   | 62   | 21 - 118 |
| Benzo[k]fluoranthene   | 100   | 65.7   |           | ug/L |   | 66   | 28 - 125 |
| Chrysene               | 100   | 65.2   |           | ug/L |   | 65   | 36 - 113 |
| Dibenz(a,h)anthracene  | 100   | 63.5   |           | ug/L |   | 64   | 32 - 115 |
| Fluoranthene           | 100   | 69.8   |           | ug/L |   | 70   | 41 - 113 |
| Fluorene               | 100   | 62.3   |           | ug/L |   | 62   | 39 - 115 |
| Indeno[1,2,3-cd]pyrene | 100   | 56.4   |           | ug/L |   | 56   | 16 - 119 |
| 1-Methylnaphthalene    | 100   | 53.9   |           | ug/L |   | 54   | 26 - 94  |
| 2-Methylnaphthalene    | 100   | 54.4   |           | ug/L |   | 54   | 24 - 92  |

50.5

65.1

66.6

ug/L

ug/L

ug/L

100

100

100

LCS LCS

| Surrogate              | %Recovery Qualifie | er Limits |
|------------------------|--------------------|-----------|
| 2-Fluorobiphenyl       | 58                 | 32 - 114  |
| Nitrobenzene-d5 (Surr) | 60                 | 30 - 117  |
| Terphenyl-d14 (Surr)   | 91                 | 10 - 132  |

%Recovery

63

Qualifier

Lab Sample ID: 680-106992-6 MS

**Matrix: Water** 

Surrogate

2-Fluorobiphenyl

Analysis Batch: 357998

Client Sample ID: TMW-1 11052014 Prep Type: Total/NA

24 - 85

40 - 114

29 - 118

50

65

67

Prep Batch: 357797

Sample Sample Spike MS MS %Rec. Result Qualifier Analyte Added Result Qualifier Unit %Rec Limits Acenaphthene 9.7 U 94.9 62.9 ug/L 66 32 - 107 Acenaphthylene 9.7 U 94.9 53.6 ug/L 56 10 - 119 U 94.9 59.2 62 38 - 112 Anthracene 9.7 ug/L Benzo[a]anthracene 9.7 U 94.9 49.2 ug/L 52 36 - 115 Benzo[a]pyrene 94.9 43 9.7 U 40.9 ug/L 13 - 120Benzo[b]fluoranthene 94.9 39.4 ug/L 42 32 - 117 9.7 U Benzo[g,h,i]perylene 9.7 U 94.9 38.9 ug/L 41 21 - 118 Benzo[k]fluoranthene 9.7 U 94.9 40.7 ug/L 43 28 - 125 Chrysene 9.7 U 94 9 47 2 ug/L 50 36 - 113 Dibenz(a,h)anthracene U 94.9 35.6 ug/L 38 32 - 115 Fluoranthene 94.9 60.4 64 41 - 113 9.7 U ug/L Fluorene 9.7 U 94.9 69.0 ug/L 73 39 - 115 Indeno[1,2,3-cd]pyrene 9.7 94.9 35.3 ug/L 37 16 - 119 1-Methylnaphthalene 12 94.9 64.5 ug/L 54 26 \_ 94 2-Methylnaphthalene 16 94.9 66.9 ug/L 56 24 - 92 Naphthalene 94.9 92.0 ug/L 52 24 - 85 44 71 Phenanthrene 9.7 U 94.9 67.3 ug/L 40 - 114 Pyrene 9.7 U 94.9 60.8 ug/L 29 - 118 MS MS

TestAmerica Savannah

Limits 32 - 114

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

### Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 680-106992-6 MS

**Matrix: Water** 

Analysis Batch: 357998

Client Sample ID: TMW-1\_11052014

29 - 118

Client Sample ID: Method Blank

Prep Type: Total/NA

**Prep Batch: 358064** 

50

**Prep Type: Total/NA** 

**Prep Batch: 357797** 

Prep Type: Total/NA

|                        | MS        | MS        |          |
|------------------------|-----------|-----------|----------|
| Surrogate              | %Recovery | Qualifier | Limits   |
| Nitrobenzene-d5 (Surr) | 64        |           | 30 - 117 |
| Terphenyl-d14 (Surr)   | 53        |           | 10 - 132 |

Lab Sample ID: 680-106992-6 MSD Client Sample ID: TMW-1\_11052014

**Matrix: Water** 

|                        | Samnle  |           |       |        |           |      |   |      |          | Batch: 3 |       |
|------------------------|---------|-----------|-------|--------|-----------|------|---|------|----------|----------|-------|
|                        | Janipie | Sample    | Spike | MSD    | MSD       |      |   |      | %Rec.    |          | RPD   |
| Analyte                | Result  | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   | RPD      | Limit |
| Acenaphthene           | 9.7     | U         | 93.0  | 58.2   |           | ug/L |   | 63   | 32 - 107 | 8        | 20    |
| Acenaphthylene         | 9.7     | U         | 93.0  | 54.2   |           | ug/L |   | 58   | 10 - 119 | 1        | 20    |
| Anthracene             | 9.7     | U         | 93.0  | 55.8   |           | ug/L |   | 60   | 38 - 112 | 6        | 20    |
| Benzo[a]anthracene     | 9.7     | U         | 93.0  | 46.1   |           | ug/L |   | 50   | 36 - 115 | 6        | 40    |
| Benzo[a]pyrene         | 9.7     | U         | 93.0  | 38.3   |           | ug/L |   | 41   | 13 - 120 | 7        | 40    |
| Benzo[b]fluoranthene   | 9.7     | U         | 93.0  | 38.9   |           | ug/L |   | 42   | 32 - 117 | 1        | 50    |
| Benzo[g,h,i]perylene   | 9.7     | U         | 93.0  | 36.5   |           | ug/L |   | 39   | 21 - 118 | 6        | 50    |
| Benzo[k]fluoranthene   | 9.7     | U         | 93.0  | 35.4   |           | ug/L |   | 38   | 28 - 125 | 14       | 40    |
| Chrysene               | 9.7     | U         | 93.0  | 44.6   |           | ug/L |   | 48   | 36 - 113 | 6        | 50    |
| Dibenz(a,h)anthracene  | 9.7     | U         | 93.0  | 32.9   |           | ug/L |   | 35   | 32 - 115 | 8        | 40    |
| Fluoranthene           | 9.7     | U         | 93.0  | 54.3   |           | ug/L |   | 58   | 41 - 113 | 11       | 40    |
| Fluorene               | 9.7     | U         | 93.0  | 63.2   |           | ug/L |   | 68   | 39 - 115 | 9        | 20    |
| Indeno[1,2,3-cd]pyrene | 9.7     | U         | 93.0  | 33.0   |           | ug/L |   | 35   | 16 - 119 | 7        | 40    |
| 1-Methylnaphthalene    | 12      |           | 93.0  | 67.4   |           | ug/L |   | 58   | 26 - 94  | 4        | 50    |
| 2-Methylnaphthalene    | 16      |           | 93.0  | 71.4   |           | ug/L |   | 62   | 24 - 92  | 6        | 30    |
| Naphthalene            | 44      |           | 93.0  | 129    | F1        | ug/L |   | 93   | 24 - 85  | 34       | 40    |
| Phenanthrene           | 9.7     | U         | 93.0  | 61.6   |           | ug/L |   | 66   | 40 - 114 | 9        | 40    |

93.0

58.6

ug/L

|                        | MSD       | MSD       |          |
|------------------------|-----------|-----------|----------|
| Surrogate              | %Recovery | Qualifier | Limits   |
| 2-Fluorobiphenyl       | 60        |           | 32 - 114 |
| Nitrobenzene-d5 (Surr) | 61        |           | 30 - 117 |
| Ternhenyl-d14 (Surr)   | 57        |           | 10 132   |

9.7 U

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 680-358064/1-A

**Matrix: Water** 

Pyrene

Analysis Batch: 358678

|         | MB     | MB        |    |     |      |   |                |                |         |
|---------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic | 20     | U         | 20 |     | ug/L |   | 11/11/14 10:47 | 11/13/14 19:36 | 1       |
| Lead    | 10     | U         | 10 |     | ug/L |   | 11/11/14 10:47 | 11/13/14 19:36 | 1       |
| Nickel  | 40     | U         | 40 |     | ug/L |   | 11/11/14 10:47 | 11/13/14 19:36 | 1       |
| Zinc    | 20     | U         | 20 |     | ug/L |   | 11/11/14 10:47 | 11/13/14 19:36 | 1       |

TestAmerica Savannah

Page 22 of 38

11/18/2014

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

2

Method: 6010C - Metals (ICP) (Continued)

| Lab Sample ID: LCS 680-358064/2-A |       |         | Client Sample ID: Lab Control Sample |
|-----------------------------------|-------|---------|--------------------------------------|
| Matrix: Water                     |       |         | Prep Type: Total/NA                  |
| Analysis Batch: 358678            |       |         | Prep Batch: 358064                   |
|                                   | Snika | ICS ICS | %Pac                                 |

|         | Spike | LCS    | LCS       |      |   |      | %Rec.    |  |
|---------|-------|--------|-----------|------|---|------|----------|--|
| Analyte | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Arsenic | 100   | 101    |           | ug/L |   | 101  | 80 - 120 |  |
| Lead    | 500   | 492    |           | ug/L |   | 98   | 80 - 120 |  |
| Nickel  | 100   | 101    |           | ug/L |   | 101  | 80 - 120 |  |
| Zinc    | 100   | 104    |           | ug/L |   | 104  | 80 - 120 |  |

Lab Sample ID: 680-106992-3 MS

Matrix: Water

Analysis Batch: 358678

Sample Sample Spike MS MS

Client Sample ID: PDMW-23R\_11052014

Prep Type: Total/NA

Prep Batch: 358064

%Rec.

|         | Sample | Sample    | Spike | MS     | MS        |      |   |      | %Rec.    |  |
|---------|--------|-----------|-------|--------|-----------|------|---|------|----------|--|
| Analyte | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Arsenic | 20     | U         | 100   | 112    |           | ug/L |   | 101  | 75 - 125 |  |
| Lead    | 10     | U         | 500   | 484    |           | ug/L |   | 97   | 75 - 125 |  |

Lab Sample ID: 680-106992-3 MSD Client Sample ID: PDMW-23R\_11052014 **Matrix: Water** Prep Type: Total/NA Analysis Batch: 358678 Prep Batch: 358064 MSD MSD Sample Sample Spike %Rec. RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Limit Arsenic 20 U 100 116 ug/L 104 75 - 125 20 Lead 10 U 500 480 ug/L 96 75 - 125 20

Lab Sample ID: MB 680-358284/1-A

Matrix: Water

Prep Type: Total/NA

Analysis Batch: 358681

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 358284

MB MB

|          | IIID   | IVID      |    |     |      |   |                |                |         |
|----------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte  | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic  | 20     | U         | 20 |     | ug/L |   | 11/12/14 10:58 | 11/13/14 13:06 | 1       |
| Chromium | 10     | U         | 10 |     | ug/L |   | 11/12/14 10:58 | 11/13/14 13:06 | 1       |
| Lead     | 10     | U         | 10 |     | ug/L |   | 11/12/14 10:58 | 11/13/14 13:06 | 1       |
| Nickel   | 40     | U         | 40 |     | ug/L |   | 11/12/14 10:58 | 11/13/14 13:06 | 1       |
| Zinc     | 20     | U         | 20 |     | ug/L |   | 11/12/14 10:58 | 11/13/14 13:06 | 1       |
|          |        |           |    |     |      |   |                |                |         |

| Zinc                              | 20 U | 20 | ug/L | 11/12/14 10:58  | 11/13/14 13:06    | 1     |
|-----------------------------------|------|----|------|-----------------|-------------------|-------|
| Lab Sample ID: LCS 680-358284/2-/ | A    |    |      | Client Sample I | D: Lab Control Sa | ample |
| Matrix: Water                     |      |    |      |                 | Prep Type: Tot    | al/NA |
| Analysis Patch: 259691            |      |    |      |                 | Drop Patch: 2     | E0201 |

| Analysis Batch. 000001 |       |        |           |      |   |      | i icp i  | Julcii. 000204 |
|------------------------|-------|--------|-----------|------|---|------|----------|----------------|
|                        | Spike | LCS    | LCS       |      |   |      | %Rec.    |                |
| Analyte                | Added | Result | Qualifier | Unit | D | %Rec | Limits   |                |
| Arsenic                | 100   | 97.9   |           | ug/L |   | 98   | 80 - 120 |                |
| Chromium               | 100   | 101    |           | ug/L |   | 101  | 80 - 120 |                |
| Lead                   | 500   | 488    |           | ug/L |   | 98   | 80 - 120 |                |
| Nickel                 | 100   | 99.9   |           | ug/L |   | 100  | 80 - 120 |                |
| Zinc                   | 100   | 101    |           | ug/L |   | 101  | 80 - 120 |                |

| Lab Sample ID: 680-106992-6 MS |        |           |       |        |           |      | Clie | ent Sam |          | W-1_11052014  |
|--------------------------------|--------|-----------|-------|--------|-----------|------|------|---------|----------|---------------|
| Matrix: Water                  |        |           |       |        |           |      |      |         | Prep 1   | ype: Total/NA |
| Analysis Batch: 358681         |        |           |       |        |           |      |      |         | Prep     | Batch: 358284 |
|                                | Sample | Sample    | Spike | MS     | MS        |      |      |         | %Rec.    |               |
| Analyte                        | Result | Qualifier | Added | Result | Qualifier | Unit | D    | %Rec    | Limits   |               |
| Arsenic                        | 130    |           | 100   | 247    |           | ug/L |      | 118     | 75 - 125 |               |

TestAmerica Savannah

Page 23 of 38

7

9

11

12

11/18/2014

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: 680-106992-6 MS

Lab Sample ID: 680-106992-6 MSD

**Matrix: Water** 

Analysis Batch: 358681

Client Sample ID: TMW-1\_11052014 Prep Type: Total/NA

**Prep Batch: 358284** 

| Sample         | Sample    | Spike | MS     | MS        |      |   |      | %Rec.    |  |
|----------------|-----------|-------|--------|-----------|------|---|------|----------|--|
| Analyte Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Chromium 26    |           | 100   | 130    |           | ug/L |   | 103  | 75 - 125 |  |
| Lead 10        | U         | 500   | 484    |           | ug/L |   | 97   | 75 - 125 |  |
| Nickel 41      |           | 100   | 136    |           | ug/L |   | 96   | 75 - 125 |  |
| Zinc 97        |           | 100   | 200    |           | ug/L |   | 103  | 75 - 125 |  |

Client Sample ID: TMW-1\_11052014

**Matrix: Water** 

Analysis Batch: 358681

Prep Type: Total/NA Prep Batch: 358284

| Alialysis Dalcii. 33000 i |        |           |       |        |           |      |   |      | Prep i   | Salcii. S | 30204 |
|---------------------------|--------|-----------|-------|--------|-----------|------|---|------|----------|-----------|-------|
|                           | Sample | Sample    | Spike | MSD    | MSD       |      |   |      | %Rec.    |           | RPD   |
| Analyte                   | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   | RPD       | Limit |
| Arsenic                   | 130    |           | 100   | 178    | F1 F2     | ug/L |   | 50   | 75 - 125 | 32        | 20    |
| Chromium                  | 26     |           | 100   | 105    | F2        | ug/L |   | 79   | 75 - 125 | 21        | 20    |
| Lead                      | 10     | U         | 500   | 430    |           | ug/L |   | 86   | 75 - 125 | 12        | 20    |
| Nickel                    | 41     |           | 100   | 123    |           | ug/L |   | 83   | 75 - 125 | 10        | 20    |
| Zinc                      | 97     |           | 100   | 180    |           | ug/L |   | 83   | 75 - 125 | 10        | 20    |
|                           |        |           |       |        |           |      |   |      |          |           |       |

Lab Sample ID: MB 680-358110/1-A Client Sample ID: Method Blank **Matrix: Water Prep Type: Total Recoverable** 

**Prep Batch: 358110** 

Analysis Batch: 358681 мв мв

Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Lead 10 U 10 ug/L 11/11/14 14:28 11/13/14 17:02

Lab Sample ID: LCS 680-358110/2-A

**Matrix: Water** 

Analysis Batch: 358681

**Client Sample ID: Lab Control Sample Prep Type: Total Recoverable** 

**Prep Batch: 358110** 

Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit %Rec Limits Lead 500 495 80 - 120 ug/L

Method: 350.1 - Nitrogen, Ammonia

Lab Sample ID: MB 680-358344/39

**Matrix: Water** 

**Matrix: Water** 

Analysis Batch: 358344

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB

Result Qualifier Analyte RL MDL Unit Dil Fac Prepared Analyzed 0.050 0.050 U 11/12/14 12:00 Ammonia mg/L

Lab Sample ID: LCS 680-358344/38

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 358344

Spike LCS LCS %Rec. Analyte babbA Result Qualifier Unit %Rec Limits Ammonia 1.00 0.998 mg/L 100 90 - 110

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Method: 350.1 - Nitrogen, Ammonia (Continued)

Lab Sample ID: 680-106992-3 MS Client Sample ID: PDMW-23R\_11052014 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 358344

Sample Sample Spike MS MS %Rec. Added Result Qualifier Analyte Result Qualifier Limits Unit %Rec 10.0 90 - 110 Ammonia 2.3 8.56 F1 mg/L 63

Lab Sample ID: 680-106992-3 MSD Client Sample ID: PDMW-23R\_11052014 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 358344

Sample Sample Spike MSD MSD %Rec. **RPD** Result Qualifier Result Qualifier Analyte Added Unit %Rec Limits RPD Limit Ammonia 2.3 10.0 9.72 F1 mg/L 90 - 110

Lab Sample ID: 680-106992-6 MS Client Sample ID: TMW-1\_11052014 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 358344

MS MS Spike %Rec. Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits 3800 1000 4890 F1 Ammonia mg/L 111 90 - 110

Lab Sample ID: 680-106992-6 MSD Client Sample ID: TMW-1\_11052014 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 358344

RPD Sample Sample Spike MSD MSD %Rec. Added Analyte Result Qualifier Result Qualifier Unit %Rec Limits Limit 3800 1000 4030 F1 Ammonia mg/L 26 90 \_ 110 30

Method: 353.2 - Nitrogen, Nitrate-Nitrite

Lab Sample ID: MB 680-357378/13 Client Sample ID: Method Blank Prep Type: Total/NA

**Matrix: Water** 

Analysis Batch: 357378

MR MR Result Qualifier RLMDL Unit Prepared Dil Fac Analyte Analyzed 0.050 0.050 Nitrate as N U mg/L 11/06/14 15:36

**Client Sample ID: Lab Control Sample** Lab Sample ID: LCS 680-357378/16 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 357378

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits Nitrate as N 0.500 0.483 mg/L 97 75 - 125

Lab Sample ID: 680-106992-3 MS Client Sample ID: PDMW-23R\_11052014 Prep Type: Total/NA

**Matrix: Water** 

| Analysis Batch: 35/3/8 |        |           |       |        |           |      |   |      |          |  |
|------------------------|--------|-----------|-------|--------|-----------|------|---|------|----------|--|
|                        | Sample | Sample    | Spike | MS     | MS        |      |   |      | %Rec.    |  |
| Analyte                | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Nitrate as N           | 0.050  | U         | 0.500 | 0.454  |           | mg/L |   | 91   | 75 - 125 |  |

## **QC Sample Results**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-106992-1

### Method: 353.2 - Nitrogen, Nitrate-Nitrite (Continued)

| Lab Sample ID: 680-106992-3 MSD Matrix: Water | )      |           |       |        |           | (    | Client S | ample II | D: PDMW-2<br>Prep T | 3R_110<br>ype: To |        |
|-----------------------------------------------|--------|-----------|-------|--------|-----------|------|----------|----------|---------------------|-------------------|--------|
| Analysis Batch: 357378                        |        |           |       |        |           |      |          |          | •                   | •                 |        |
| •                                             | Sample | Sample    | Spike | MSD    | MSD       |      |          |          | %Rec.               |                   | RPD    |
| Analyte                                       | Result | Qualifier | Added | Result | Qualifier | Unit | D        | %Rec     | Limits              | RPD               | Limit  |
| Nitrate as N                                  | 0.050  | U         | 0.500 | 0.456  |           | mg/L |          | 91       | 75 - 125            | 0                 | 30     |
| Lab Sample ID: 680-106992-6 MS                |        |           |       |        |           |      | Clie     | ent Sam  | ple ID: TMV         | V-1 110           | 52014  |
| Matrix: Water                                 |        |           |       |        |           |      |          |          | Prep T              | ype: To           | tal/NA |
| Analysis Batch: 357378                        |        |           |       |        |           |      |          |          | •                   | •                 |        |
| •                                             | Sample | Sample    | Spike | MS     | MS        |      |          |          | %Rec.               |                   |        |
| Analyte                                       | Result | Qualifier | Added | Result | Qualifier | Unit | D        | %Rec     | Limits              |                   |        |
| Nitrate as N                                  | 120    |           | 250   | 328    |           | mg/L |          | 81       | 75 - 125            |                   |        |

Lab Sample ID: 680-106992-6 MSD Client Sample ID: TMW-1\_11052014 **Prep Type: Total/NA** 

**Matrix: Water** 

Analysis Batch: 357378

| -            | Sample | Sample    | Spike | MSD    | MSD       |      |   |      | %Rec.    |     | RPD   |
|--------------|--------|-----------|-------|--------|-----------|------|---|------|----------|-----|-------|
| Analyte      | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   | RPD | Limit |
| Nitrate as N | 120    |           | 250   | 326    |           | mg/L |   | 81   | 75 - 125 | 0   | 30    |

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

### **GC/MS VOA**

Analysis Batch: 357980

| Lab Sample ID     | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|-------------------|------------------------|-----------|--------|--------|------------|
| 680-106992-6      | TMW-1_11052014         | Total/NA  | Water  | 8260B  |            |
| 680-106992-6 MS   | TMW-1_11052014         | Total/NA  | Water  | 8260B  |            |
| 680-106992-6 MSD  | TMW-1_11052014         | Total/NA  | Water  | 8260B  |            |
| 680-106992-7      | DUP-1_11052014         | Total/NA  | Water  | 8260B  |            |
| 680-106992-12     | TRIP-BLANK_11052014    | Total/NA  | Water  | 8260B  |            |
| LCS 680-357980/3  | Lab Control Sample     | Total/NA  | Water  | 8260B  |            |
| LCSD 680-357980/4 | Lab Control Sample Dup | Total/NA  | Water  | 8260B  |            |
| MB 680-357980/7   | Method Blank           | Total/NA  | Water  | 8260B  |            |

### GC/MS Semi VOA

### **Prep Batch: 357797**

| Lab Sample ID       | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|---------------------|--------------------|-----------|--------|--------|------------|
| 680-106992-1        | PDMW-40R_11052014  | Total/NA  | Water  | 3520C  |            |
| 680-106992-2        | MW-204_11052014    | Total/NA  | Water  | 3520C  |            |
| 680-106992-6        | TMW-1_11052014     | Total/NA  | Water  | 3520C  |            |
| 680-106992-6 MS     | TMW-1_11052014     | Total/NA  | Water  | 3520C  |            |
| 680-106992-6 MSD    | TMW-1_11052014     | Total/NA  | Water  | 3520C  |            |
| 680-106992-7        | DUP-1_11052014     | Total/NA  | Water  | 3520C  |            |
| LCS 680-357797/11-A | Lab Control Sample | Total/NA  | Water  | 3520C  |            |
| MB 680-357797/10-A  | Method Blank       | Total/NA  | Water  | 3520C  |            |

### Analysis Batch: 357998

| Lab Sample ID       | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|---------------------|--------------------|-----------|--------|--------|------------|
| 680-106992-1        | PDMW-40R_11052014  | Total/NA  | Water  | 8270D  | 357797     |
| 680-106992-2        | MW-204_11052014    | Total/NA  | Water  | 8270D  | 357797     |
| 680-106992-6 MS     | TMW-1_11052014     | Total/NA  | Water  | 8270D  | 357797     |
| 680-106992-6 MSD    | TMW-1_11052014     | Total/NA  | Water  | 8270D  | 357797     |
| LCS 680-357797/11-A | Lab Control Sample | Total/NA  | Water  | 8270D  | 357797     |

### Analysis Batch: 358280

| Lab Sample ID      | Client Sample ID | Prep Type | Matrix | Method | Prep Batch |
|--------------------|------------------|-----------|--------|--------|------------|
| MB 680-357797/10-A | Method Blank     | Total/NA  | Water  | 8270D  | 357797     |

### Analysis Batch: 358569

| Lab Sample ID      | Client Sample ID | Prep Type | Matrix | Method | Prep Batch |
|--------------------|------------------|-----------|--------|--------|------------|
| 680-106992-6       | TMW-1_11052014   | Total/NA  | Water  | 8270D  | 357797     |
| 680-106992-7       | DUP-1_11052014   | Total/NA  | Water  | 8270D  | 357797     |
| MB 680-357797/10-A | Method Blank     | Total/NA  | Water  | 8270D  | 357797     |

#### **Metals**

### **Prep Batch: 358064**

| Lab Sample ID    | Client Sample ID  | Prep Type | Matrix | Method | Prep Batch |
|------------------|-------------------|-----------|--------|--------|------------|
| 680-106992-3     | PDMW-23R_11052014 | Total/NA  | Water  | 3010A  |            |
| 680-106992-3 MS  | PDMW-23R_11052014 | Total/NA  | Water  | 3010A  |            |
| 680-106992-3 MSD | PDMW-23R_11052014 | Total/NA  | Water  | 3010A  |            |
| 680-106992-4     | MW-3R_11052014    | Total/NA  | Water  | 3010A  |            |
| 680-106992-5     | PDMW-24T_11052014 | Total/NA  | Water  | 3010A  |            |
| 680-106992-8     | PDMW-8R_11052014  | Total/NA  | Water  | 3010A  |            |

TestAmerica Savannah

Page 27 of 38

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

4

### **Metals (Continued)**

### Prep Batch: 358064 (Continued)

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 680-106992-9       | PDMW-10R_11052014  | Total/NA  | Water  | 3010A  |            |
| 680-106992-10      | PDMW-13P_11052014  | Total/NA  | Water  | 3010A  |            |
| 680-106992-11      | DUP-2_11052014     | Total/NA  | Water  | 3010A  |            |
| LCS 680-358064/2-A | Lab Control Sample | Total/NA  | Water  | 3010A  |            |
| MB 680-358064/1-A  | Method Blank       | Total/NA  | Water  | 3010A  |            |

### **Prep Batch: 358110**

| Lab Sample ID      | Client Sample ID   | Prep Type         | Matrix | Method | Prep Batcl |
|--------------------|--------------------|-------------------|--------|--------|------------|
| 680-106992-5       | PDMW-24T_11052014  | Dissolved         | Water  | 3005A  |            |
| 680-106992-10      | PDMW-13P_11052014  | Dissolved         | Water  | 3005A  |            |
| 680-106992-11      | DUP-2_11052014     | Dissolved         | Water  | 3005A  |            |
| LCS 680-358110/2-A | Lab Control Sample | Total Recoverable | Water  | 3005A  |            |
| MB 680-358110/1-A  | Method Blank       | Total Recoverable | Water  | 3005A  |            |

#### **Prep Batch: 358284**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 680-106992-6       | TMW-1_11052014     | Total/NA  | Water  | 3010A  |            |
| 680-106992-6 MS    | TMW-1_11052014     | Total/NA  | Water  | 3010A  |            |
| 680-106992-6 MSD   | TMW-1_11052014     | Total/NA  | Water  | 3010A  |            |
| 680-106992-7       | DUP-1_11052014     | Total/NA  | Water  | 3010A  |            |
| LCS 680-358284/2-A | Lab Control Sample | Total/NA  | Water  | 3010A  |            |
| MB 680-358284/1-A  | Method Blank       | Total/NA  | Water  | 3010A  |            |

### Analysis Batch: 358678

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 680-106992-3       | PDMW-23R_11052014  | Total/NA  | Water  | 6010C  | 358064     |
| 680-106992-3 MS    | PDMW-23R_11052014  | Total/NA  | Water  | 6010C  | 358064     |
| 680-106992-3 MSD   | PDMW-23R_11052014  | Total/NA  | Water  | 6010C  | 358064     |
| 680-106992-4       | MW-3R_11052014     | Total/NA  | Water  | 6010C  | 358064     |
| 680-106992-5       | PDMW-24T_11052014  | Total/NA  | Water  | 6010C  | 358064     |
| 680-106992-8       | PDMW-8R_11052014   | Total/NA  | Water  | 6010C  | 358064     |
| 680-106992-9       | PDMW-10R_11052014  | Total/NA  | Water  | 6010C  | 358064     |
| 680-106992-10      | PDMW-13P_11052014  | Total/NA  | Water  | 6010C  | 358064     |
| 680-106992-11      | DUP-2_11052014     | Total/NA  | Water  | 6010C  | 358064     |
| LCS 680-358064/2-A | Lab Control Sample | Total/NA  | Water  | 6010C  | 358064     |
| MB 680-358064/1-A  | Method Blank       | Total/NA  | Water  | 6010C  | 358064     |

## Analysis Batch: 358681

| Lab Sample ID      | Client Sample ID   | Prep Type         | Matrix | Method | Prep Batch |
|--------------------|--------------------|-------------------|--------|--------|------------|
| 680-106992-5       | PDMW-24T_11052014  | Dissolved         | Water  | 6010C  | 358110     |
| 680-106992-6       | TMW-1_11052014     | Total/NA          | Water  | 6010C  | 358284     |
| 680-106992-6 MS    | TMW-1_11052014     | Total/NA          | Water  | 6010C  | 358284     |
| 680-106992-6 MSD   | TMW-1_11052014     | Total/NA          | Water  | 6010C  | 358284     |
| 680-106992-7       | DUP-1_11052014     | Total/NA          | Water  | 6010C  | 358284     |
| 680-106992-10      | PDMW-13P_11052014  | Dissolved         | Water  | 6010C  | 358110     |
| 680-106992-11      | DUP-2_11052014     | Dissolved         | Water  | 6010C  | 358110     |
| LCS 680-358110/2-A | Lab Control Sample | Total Recoverable | Water  | 6010C  | 358110     |
| LCS 680-358284/2-A | Lab Control Sample | Total/NA          | Water  | 6010C  | 358284     |
| MB 680-358110/1-A  | Method Blank       | Total Recoverable | Water  | 6010C  | 358110     |
| MB 680-358284/1-A  | Method Blank       | Total/NA          | Water  | 6010C  | 358284     |

TestAmerica Savannah

Page 28 of 38

2

4

6

\_

9

10

11

12

anchea Cavanna

## **QC Association Summary**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-106992-1

6

## **General Chemistry**

### Analysis Batch: 357378

| Lab Sample ID     | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|-------------------|--------------------|-----------|--------|--------|------------|
| 680-106992-1      | PDMW-40R_11052014  | Total/NA  | Water  | 353.2  | _          |
| 680-106992-2      | MW-204_11052014    | Total/NA  | Water  | 353.2  |            |
| 680-106992-3      | PDMW-23R_11052014  | Total/NA  | Water  | 353.2  |            |
| 680-106992-3 MS   | PDMW-23R_11052014  | Total/NA  | Water  | 353.2  |            |
| 680-106992-3 MSD  | PDMW-23R_11052014  | Total/NA  | Water  | 353.2  |            |
| 680-106992-4      | MW-3R_11052014     | Total/NA  | Water  | 353.2  |            |
| 680-106992-6      | TMW-1_11052014     | Total/NA  | Water  | 353.2  |            |
| 680-106992-6 MS   | TMW-1_11052014     | Total/NA  | Water  | 353.2  |            |
| 680-106992-6 MSD  | TMW-1_11052014     | Total/NA  | Water  | 353.2  |            |
| 680-106992-7      | DUP-1_11052014     | Total/NA  | Water  | 353.2  |            |
| 680-106992-8      | PDMW-8R_11052014   | Total/NA  | Water  | 353.2  |            |
| 680-106992-9      | PDMW-10R_11052014  | Total/NA  | Water  | 353.2  |            |
| 680-106992-10     | PDMW-13P_11052014  | Total/NA  | Water  | 353.2  |            |
| 680-106992-11     | DUP-2_11052014     | Total/NA  | Water  | 353.2  |            |
| LCS 680-357378/16 | Lab Control Sample | Total/NA  | Water  | 353.2  |            |
| MB 680-357378/13  | Method Blank       | Total/NA  | Water  | 353.2  |            |

#### Analysis Batch: 358344

| Lab Sample ID     | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|-------------------|--------------------|-----------|--------|--------|------------|
| 680-106992-1      | PDMW-40R_11052014  | Total/NA  | Water  | 350.1  | _          |
| 680-106992-2      | MW-204_11052014    | Total/NA  | Water  | 350.1  |            |
| 680-106992-3      | PDMW-23R_11052014  | Total/NA  | Water  | 350.1  |            |
| 680-106992-3 MS   | PDMW-23R_11052014  | Total/NA  | Water  | 350.1  |            |
| 680-106992-3 MSD  | PDMW-23R_11052014  | Total/NA  | Water  | 350.1  |            |
| 680-106992-4      | MW-3R_11052014     | Total/NA  | Water  | 350.1  |            |
| 680-106992-6      | TMW-1_11052014     | Total/NA  | Water  | 350.1  |            |
| 680-106992-6 MS   | TMW-1_11052014     | Total/NA  | Water  | 350.1  |            |
| 680-106992-6 MSD  | TMW-1_11052014     | Total/NA  | Water  | 350.1  |            |
| 680-106992-7      | DUP-1_11052014     | Total/NA  | Water  | 350.1  |            |
| 680-106992-8      | PDMW-8R_11052014   | Total/NA  | Water  | 350.1  |            |
| 680-106992-9      | PDMW-10R_11052014  | Total/NA  | Water  | 350.1  |            |
| 680-106992-10     | PDMW-13P_11052014  | Total/NA  | Water  | 350.1  |            |
| 680-106992-11     | DUP-2_11052014     | Total/NA  | Water  | 350.1  |            |
| LCS 680-358344/38 | Lab Control Sample | Total/NA  | Water  | 350.1  |            |
| MB 680-358344/39  | Method Blank       | Total/NA  | Water  | 350.1  |            |

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Lab Sample ID: 680-106992-1

Matrix: Water

Matrix: Water

**Matrix: Water** 

Client Sample ID: PDMW-40R\_11052014

Date Collected: 11/05/14 09:30 Date Received: 11/06/14 09:55

|           | Batch                | Batch                     |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|---------------------------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                    | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep                 | 3520C                     |     |        | 250.5 mL | 0.5 mL | 357797 | 11/10/14 15:53 | RBS     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 8270D<br>ent ID: CMSE     |     | 1      | 250.5 mL | 0.5 mL | 357998 | 11/11/14 18:25 | LEG     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>ent ID: KONELAB1 |     | 50     | 2 mL     | 2 mL   | 358344 | 11/12/14 11:50 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>ent ID: LACHAT2  |     | 1      | 2 mL     | 2 mL   | 357378 | 11/06/14 16:04 | GRX     | TAL SAV |

Client Sample ID: MW-204\_11052014 Lab Sample ID: 680-106992-2

Date Collected: 11/05/14 09:20

Date Received: 11/06/14 09:55

|           | Batch                | Batch                     |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|---------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                    | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep                 | 3520C                     |     |        | 247 mL  | 0.5 mL | 357797 | 11/10/14 15:53 | RBS     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 8270D<br>ent ID: CMSE     |     | 1      | 247 mL  | 0.5 mL | 357998 | 11/11/14 18:51 | LEG     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>ent ID: KONELAB1 |     | 500    | 2 mL    | 2 mL   | 358344 | 11/12/14 11:30 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>ent ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 357378 | 11/06/14 16:06 | GRX     | TAL SAV |

Client Sample ID: PDMW-23R\_11052014 Lab Sample ID: 680-106992-3

Date Collected: 11/05/14 10:35 Date Received: 11/06/14 09:55

|           | Batch                | Batch                     |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|---------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                    | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep                 | 3010A                     |     |        | 50 mL   | 50 mL  | 358064 | 11/11/14 10:47 | SP      | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 6010C<br>ent ID: ICPE     |     | 1      | 50 mL   | 50 mL  | 358678 | 11/13/14 19:45 | BCB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>ent ID: KONELAB1 |     | 10     | 2 mL    | 2 mL   | 358344 | 11/12/14 11:30 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>ent ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 357378 | 11/06/14 15:40 | GRX     | TAL SAV |

Client Sample ID: MW-3R\_11052014 Lab Sample ID: 680-106992-4

Date Collected: 11/05/14 14:48

Date Received: 11/06/14 09:55

| _         | Batch    | Batch        |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|--------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method       | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 3010A        |     |        | 50 mL   | 50 mL  | 358064 | 11/11/14 10:47 | SP      | TAL SAV |
| Total/NA  | Analysis | 6010C        |     | 1      | 50 mL   | 50 mL  | 358678 | 11/13/14 20:15 | BCB     | TAL SAV |
|           | Instrume | ent ID: ICPE |     |        |         |        |        |                |         |         |

TestAmerica Savannah

Page 30 of 38

11/18/2014

**Matrix: Water** 

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Lab Sample ID: 680-106992-4

Matrix: Water

Client Sample ID: MW-3R\_11052014 Date Collected: 11/05/14 14:48

Date Received: 11/06/14 09:55

|           | Batch    | Batch            |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method           | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 350.1            |     | 5      | 2 mL    | 2 mL   | 358344 | 11/11/14 21:00 | JME     | TAL SAV |
|           | Instrume | ent ID: KONELAB1 |     |        |         |        |        |                |         |         |
| Total/NA  | Analysis | 353.2            |     | 1      | 2 mL    | 2 mL   | 357378 | 11/06/14 16:07 | GRX     | TAL SAV |
|           | Instrume | ent ID: LACHAT2  |     |        |         |        |        |                |         |         |

Client Sample ID: PDMW-24T\_11052014 Lab Sample ID: 680-106992-5

Date Collected: 11/05/14 17:07

Date Received: 11/06/14 09:55

|           | Batch    | Batch        |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|--------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method       | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Dissolved | Prep     | 3005A        |     |        | 50 mL   | 50 mL  | 358110 | 11/11/14 14:28 | SP      | TAL SAV |
| Dissolved | Analysis | 6010C        |     | 1      | 50 mL   | 50 mL  | 358681 | 11/13/14 17:52 | BCB     | TAL SAV |
|           | Instrum  | ent ID: ICPF |     |        |         |        |        |                |         |         |
| Total/NA  | Prep     | 3010A        |     |        | 50 mL   | 50 mL  | 358064 | 11/11/14 10:47 | SP      | TAL SAV |
| Total/NA  | Analysis | 6010C        |     | 1      | 50 mL   | 50 mL  | 358678 | 11/13/14 20:19 | BCB     | TAL SAV |
|           | Instrum  | ent ID: ICPE |     |        |         |        |        |                |         |         |

Lab Sample ID: 680-106992-6 Client Sample ID: TMW-1\_11052014

Date Collected: 11/05/14 15:20

Date Received: 11/06/14 09:55

|           | Batch    | Batch            |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method           | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8260B            |     | 5      | 5 mL    | 5 mL   | 357980 | 11/11/14 14:01 | CAR     | TAL SAV |
|           | Instrume | ent ID: CMSB     |     |        |         |        |        |                |         |         |
| Total/NA  | Prep     | 3520C            |     |        | 259 mL  | 0.5 mL | 357797 | 11/10/14 15:53 | RBS     | TAL SAV |
| Total/NA  | Analysis | 8270D            |     | 1      | 259 mL  | 0.5 mL | 358569 | 11/13/14 20:43 | LEG     | TAL SAV |
|           | Instrume | ent ID: CMST     |     |        |         |        |        |                |         |         |
| Total/NA  | Prep     | 3010A            |     |        | 50 mL   | 50 mL  | 358284 | 11/12/14 10:58 | SP      | TAL SAV |
| Total/NA  | Analysis | 6010C            |     | 1      | 50 mL   | 50 mL  | 358681 | 11/13/14 13:15 | BCB     | TAL SAV |
|           | Instrume | ent ID: ICPF     |     |        |         |        |        |                |         |         |
| Total/NA  | Analysis | 350.1            |     | 5000   | 2 mL    | 2 mL   | 358344 | 11/12/14 12:35 | JME     | TAL SAV |
|           | Instrume | ent ID: KONELAB1 |     |        |         |        |        |                |         |         |
| Total/NA  | Analysis | 353.2            |     | 500    | 2 mL    | 2 mL   | 357378 | 11/06/14 15:44 | GRX     | TAL SAV |
|           | Instrume | ent ID: LACHAT2  |     |        |         |        |        |                |         |         |

Client Sample ID: DUP-1\_11052014

Date Collected: 11/05/14 00:00

Date Received: 11/06/14 09:55

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8260B       |     | 5      | 5 mL    | 5 mL   | 357980 | 11/11/14 14:23 | CAR     | TAL SAV |
|           | Instrume | nt ID: CMSB |     |        |         |        |        |                |         |         |
| Total/NA  | Prep     | 3520C       |     |        | 254 mL  | 0.5 mL | 357797 | 11/10/14 15:53 | RBS     | TAL SAV |

TestAmerica Savannah

Lab Sample ID: 680-106992-7

Page 31 of 38

**Matrix: Water** 

**Matrix: Water** 

Matrix: Water

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Client Sample ID: DUP-1\_11052014

Lab Sample ID: 680-106992-7

Matrix: Water

Date Collected: 11/05/14 00:00 Date Received: 11/06/14 09:55

|           | Batch    | Batch            |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method           | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8270D            |     | 1      | 254 mL  | 0.5 mL | 358569 | 11/13/14 21:08 | LEG     | TAL SAV |
|           | Instrume | ent ID: CMST     |     |        |         |        |        |                |         |         |
| Total/NA  | Prep     | 3010A            |     |        | 50 mL   | 50 mL  | 358284 | 11/12/14 10:58 | SP      | TAL SAV |
| Total/NA  | Analysis | 6010C            |     | 1      | 50 mL   | 50 mL  | 358681 | 11/13/14 13:37 | BCB     | TAL SAV |
|           | Instrume | ent ID: ICPF     |     |        |         |        |        |                |         |         |
| Total/NA  | Analysis | 350.1            |     | 2000   | 2 mL    | 2 mL   | 358344 | 11/12/14 12:09 | JME     | TAL SAV |
|           | Instrume | ent ID: KONELAB1 |     |        |         |        |        |                |         |         |
| Total/NA  | Analysis | 353.2            |     | 500    | 2 mL    | 2 mL   | 357378 | 11/06/14 15:56 | GRX     | TAL SAV |
|           | Instrume | ent ID: LACHAT2  |     |        |         |        |        |                |         |         |

Client Sample ID: PDMW-8R\_11052014

Lab Sample ID: 680-106992-8

Date Collected: 11/05/14 10:25 **Matrix: Water** Date Received: 11/06/14 09:55

|           | Batch               | Batch                     |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|---------------------|---------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                | Method                    | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep                | 3010A                     |     |        | 50 mL   | 50 mL  | 358064 | 11/11/14 10:47 | SP      | TAL SAV |
| Total/NA  | Analysis<br>Instrum | 6010C<br>ent ID: ICPE     |     | 1      | 50 mL   | 50 mL  | 358678 | 11/13/14 20:23 | BCB     | TAL SAV |
| Total/NA  | Analysis<br>Instrum | 350.1<br>ent ID: KONELAB1 |     | 50     | 2 mL    | 2 mL   | 358344 | 11/11/14 21:00 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrum | 353.2<br>ent ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 357378 | 11/06/14 16:08 | GRX     | TAL SAV |

Client Sample ID: PDMW-10R\_11052014 Lab Sample ID: 680-106992-9

Date Collected: 11/05/14 11:15 Matrix: Water

Date Received: 11/06/14 09:55

|           | Batch                | Batch                     |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|---------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                    | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep                 | 3010A                     |     |        | 50 mL   | 50 mL  | 358064 | 11/11/14 10:47 | SP      | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 6010C<br>ent ID: ICPE     |     | 1      | 50 mL   | 50 mL  | 358678 | 11/13/14 20:28 | BCB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>ent ID: KONELAB1 |     | 10     | 2 mL    | 2 mL   | 358344 | 11/11/14 21:00 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>ent ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 357378 | 11/06/14 16:09 | GRX     | TAL SAV |

Client Sample ID: PDMW-13P\_11052014 Lab Sample ID: 680-106992-10

Date Collected: 11/05/14 13:50 **Matrix: Water** 

Date Received: 11/06/14 09:55

| Γ         | Batch | Batch  |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|-------|--------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре  | Method | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Dissolved | Prep  | 3005A  |     |        | 50 mL   | 50 mL  | 358110 | 11/11/14 14:28 | SP      | TAL SAV |

Client: AMEC Environment & Infrastructure, Inc.

Client Sample ID: PDMW-13P\_11052014

Project/Site: CSX Hutchinson Island VRP

Lab Sample ID: 680-106992-10

Matrix: Water

Date Collected: 11/05/14 13:50 Date Received: 11/06/14 09:55

|           | Batch    | Batch            |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method           | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Dissolved | Analysis | 6010C            |     | 1      | 50 mL   | 50 mL  | 358681 | 11/13/14 17:56 | BCB     | TAL SAV |
|           | Instrum  | ent ID: ICPF     |     |        |         |        |        |                |         |         |
| Total/NA  | Prep     | 3010A            |     |        | 50 mL   | 50 mL  | 358064 | 11/11/14 10:47 | SP      | TAL SAV |
| Total/NA  | Analysis | 6010C            |     | 1      | 50 mL   | 50 mL  | 358678 | 11/13/14 20:32 | BCB     | TAL SAV |
|           | Instrum  | ent ID: ICPE     |     |        |         |        |        |                |         |         |
| Total/NA  | Analysis | 350.1            |     | 1      | 2 mL    | 2 mL   | 358344 | 11/12/14 11:21 | JME     | TAL SAV |
|           | Instrum  | ent ID: KONELAB1 |     |        |         |        |        |                |         |         |
| Total/NA  | Analysis | 353.2            |     | 1      | 2 mL    | 2 mL   | 357378 | 11/06/14 16:12 | GRX     | TAL SAV |
|           | Instrum  | ent ID: LACHAT2  |     |        |         |        |        |                |         |         |

Client Sample ID: DUP-2\_11052014

Date Collected: 11/05/14 00:00

Date Received: 11/06/14 09:55

Lab Sample ID: 680-106992-11

Lab Sample ID: 680-106992-12

**Matrix: Water** 

|           | Batch    | Batch            |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method           | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Dissolved | Prep     | 3005A            |     |        | 50 mL   | 50 mL  | 358110 | 11/11/14 14:28 | SP      | TAL SAV |
| Dissolved | Analysis | 6010C            |     | 1      | 50 mL   | 50 mL  | 358681 | 11/13/14 18:00 | BCB     | TAL SAV |
|           | Instrume | ent ID: ICPF     |     |        |         |        |        |                |         |         |
| Total/NA  | Prep     | 3010A            |     |        | 50 mL   | 50 mL  | 358064 | 11/11/14 10:47 | SP      | TAL SAV |
| Total/NA  | Analysis | 6010C            |     | 1      | 50 mL   | 50 mL  | 358678 | 11/13/14 20:36 | BCB     | TAL SAV |
|           | Instrume | ent ID: ICPE     |     |        |         |        |        |                |         |         |
| Total/NA  | Analysis | 350.1            |     | 2      | 2 mL    | 2 mL   | 358344 | 11/12/14 12:00 | JME     | TAL SAV |
|           | Instrume | ent ID: KONELAB1 |     |        |         |        |        |                |         |         |
| Total/NA  | Analysis | 353.2            |     | 1      | 2 mL    | 2 mL   | 357378 | 11/06/14 16:13 | GRX     | TAL SAV |
|           | Instrume | ent ID: LACHAT2  |     |        |         |        |        |                |         |         |

Client Sample ID: TRIP-BLANK\_11052014

Date Collected: 11/05/14 00:00

Date Received: 11/06/14 09:55

|           | Batch    | Batch        | _   | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|--------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method       | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8260B        |     | 1      | 5 mL    | 5 mL   | 357980 | 11/11/14 16:51 | CAR     | TAL SAV |
|           | Instrume | ent ID: CMSB |     |        |         |        |        |                |         |         |

**Laboratory References:** 

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

TestAmerica Savannah

**Matrix: Water** 

## **Certification Summary**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-106992-1

### **Laboratory: TestAmerica Savannah**

The certifications listed below are applicable to this report.

| Authority | Program       | EPA Region | Certification ID | <b>Expiration Date</b> |
|-----------|---------------|------------|------------------|------------------------|
| Georgia   | State Program | 4          | 803              | 06-30-15               |

£

0

9

10

11

## **Method Summary**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-106992-1

| Method | Method Description                     | Protocol | Laboratory |
|--------|----------------------------------------|----------|------------|
| 8260B  | Volatile Organic Compounds (GC/MS)     | SW846    | TAL SAV    |
| 8270D  | Semivolatile Organic Compounds (GC/MS) | SW846    | TAL SAV    |
| 6010C  | Metals (ICP)                           | SW846    | TAL SAV    |
| 350.1  | Nitrogen, Ammonia                      | MCAWW    | TAL SAV    |
| 353.2  | Nitrogen, Nitrate-Nitrite              | MCAWW    | TAL SAV    |

#### Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

#### Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

9

Л

6

8

10

44

15

| # 202                                                                                              | SHIPMENT INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Shipment Method: Lab Counter                                                            | Shipment Tracking No:                                                                                                                                                                                       | たけてらーロのでトージ policy               | PM. Pat Harrison           | Email: barten ance con        | Phone: 8458-137Fax | A A A COMMENTS LABUSE          | NALYSIS              |                                       |               | Cooo Chain of Custody         |                    |                    | ال:<br>ال:           | N<br>O                |                  |                | MS/MSD                   |                 | Pb only.          | XXX MS/MSD                          | ×××         | X Table Subsection | )<br>×             | XX Torac & OSS | Comments & Special Analytical Requirements: | 1-24T & F      | PAMIZYT FO TOTAL & diss. poor | Custody Seal# LAB Log Number 4 | INVOICE MUST BE SUBMITTED TO CSXT WITH ORIGINAL COC TAL-6006 (0509) |
|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------|-------------------------------|--------------------|--------------------------------|----------------------|---------------------------------------|---------------|-------------------------------|--------------------|--------------------|----------------------|-----------------------|------------------|----------------|--------------------------|-----------------|-------------------|-------------------------------------|-------------|--------------------|--------------------|----------------|---------------------------------------------|----------------|-------------------------------|--------------------------------|---------------------------------------------------------------------|
| D. 049 SEA 7050 E. 049 SEO MEEN                                                                    | P: 330-497-9396 F: 330-497-0772<br>13-885-7427 F: 813-885-7049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 74-1001 F: 850-478-2671                                                                 | 16-691-2600 F: 716-961-7991<br>1-5200 F: 708-534-5211                                                                                                                                                       | NOI                              | 万冬十                        | Rd St. 100                    | 6                  | _                              |                      |                                       |               | 11.00<br>11.00                | ×                  | \=                 | 5 t t t t            | S                     | XXX              | XXX            | $\times$                 | XXX             | ×<br>             | $\times$ $\times$ $\times$ $\times$ | XXXX        | X                  | XXXX               | $\times$       | Shir hill                                   | Date/Time: (   | Date/Time:                    | LAB USE: Custody Intact        | IVOICE MUST BE SUBMITTED                                            |
| LABORATORY INFORMATION  Trectamerica Squarms - 5402 - 9Rocks Austria Squarms - CA 34404 - D: 040-9 | Castamenticula avaneminari o 10z Lantonia Areniue, Sarafiniari, GA 51404 F. 1912-3034-1030 T. 1912-3034-10103 A. DissAmerica North Canton. O 10z March Romano, 10z Advancia Sand-4972 D. 1930-49396 F. 330-497-10 T. 1924-3039 E. 1924-3039 C. 1924-3039 E. 1924-3039 | U TestAmerica Pensacola - 3355 McLemore Drive, Pensacola, IR 32514 P. 850-474-1001 F. 8 | □ InstAmerica Buttalo - 10 Hazelwood Drive, Suite 106, Amherst, NY 14228 P: 716-691-2600 F: 716-961     □ TestAmerica Chicago - 2417 Bond Street, University Park, IL 60466 P: 708-534-5200 F: 708-534-5211 | CONSULTANT INFORMATION           | Company: Amee E            | Address: Address: Rd Stock Rd |                    | Sulfuric Acid Note = 3         | •                    | = Sodium Hydroxide Code<br>= Other    | LIQ = Liauid  |                               | SOL = Other Solid  |                    | Filtered Type Matrix | Y or N Comp Code      | N G GW           | N 6 6W         | N 6 60                   | N G GW          | 7 G GW            | W 6 GM                              | W 6 6W      | 79<br>9<br>7       | N 6 6W             | 1 6 GW         |                                             |                |                               | 2,8cc 28cc                     | (3 X)                                                               |
| Savannah - 5102   aBooke Aven                                                                      | North Canton - 4101 Shuffel Dri<br>Tampa - 6712 Benjamin Road, S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pensacola - 3355 McLemore Dr                                                            | Buffalo - 10 Hazelwood Drive, S<br>Chicago - 2417 Bond Street, Un                                                                                                                                           | Proj. State (State of Origin) 6A | avanah                     |                               | 7938               | Preservative Codes: 3 = Sulfur | 4 ∺                  | വ വ                                   | S             |                               |                    |                    | Sample Collection    | Time Sampler          | 0930 55          | 1 0920 PG      | 1 1035 55                | 4 1448 55       | 4 1707 33         | 1 1520 PG                           | 1           | 4 1025 PG          | 1 1115 PG          | 1 1350 PG      | Received By: L. A.                          | Received By:   | Received By:                  | Lab Remarks:                   |                                                                     |
| LABORATO                                                                                           | TestAmerica D TestAmerica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ☐ TestAmerica                                                                           | U lestAmerica  TestAmerica                                                                                                                                                                                  | Proj. State (                    | Proj. City:                | ~                             | ENVOYWEN !!        |                                | 0 = No Preservatives | 1 = Hydrochloric Acid 2 = Nitric Acid | Matrix Codes: | GW = Groundwater              | SW = Surface Water |                    | Containers Sar       | Number & Date<br>Type | 2 POLYER 11/5/14 | Parage 11/5/14 | Poly 11/5/14             | H1/5/11 M       | 11 S 14           | 11/5/114                            | 11   5   11 | 41/5/11 Mad        | aly 1115/114       | ok, 111/5/14   | she m                                       | 13, 69,50 pl   | me:                           | ( MB / M 0955                  |                                                                     |
|                                                                                                    | CHAIN OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CUSTODY                                                                                 |                                                                                                                                                                                                             | IMATION                          | 415575                     | Hutchinson Islan              |                    | Standard 6-13 Days             | Specify # Days       | Standard 14 Days                      | Other Deliv:  | /el II) EDD Required, Format: |                    | 7                  |                      |                       | -11052214 3      | 11052011 3 PA  | PDMW-23R_1105201412 POLY | 11052011 4 POLY | -11052014 2 Polly | -11052014 27                        | 1052014 9   | 11053011 H         | 11052011-7         | 11052014       | Daty Tipe:                                  | Date/          | Date/Time                     | Date/T                         | ORIGINAL - RETURN TO LABORATORY WITH SAMPLES                        |
|                                                                                                    | S<br>C<br>S<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TRANSPORTATION                                                                          |                                                                                                                                                                                                             | CSXT PROJECT INFORMATION         | CSXT Project Number: 94155 | CSXT Project Name: Hu         | CSXT Contact: Sam  |                                | 1 Day Rush           | 2 Day Rush 3 Day Rush                 | Deliverables: | CSXT Standard (Level II)      | ☐ Level IV         | SAMPLE INFORMATION |                      | Sample Identification | PDMW-40R         | mw-204-        | PDMW-23F                 | mw-38-11        | PDMW-24T.         | TMW-1-110                           | DUP-1-110   | PDMW-8R-           | PDMW-10R-110522014 | PAM4,13P.      | Refinduished Bly                            | Reinquished By | Relinquished By:              | Received By/aboratory:         | ORIGINAL – RETURN TO LAI                                            |

| CHAIN OF                                     | 7                | EABORHALIONY INFORMMALION  **Extensional Control of Superior Sevannal, GA 31404 P: 912-354-7858 F: 912-352-0165  **D TestAmerica North Canton - 4101 Shuffel Drive NW, North Canton, OH 44720 P: 330-497-9396 F: 330-497-0772 | AFCHMAI<br>1ah - 5102 LaF<br>Canton - 4101 | Soche Avenue<br>Shuffel Drive                  | s, Savannah,<br>s NW, North   | GA 31404<br>Canton, OH                 | P: 912-35                                                          | 1-7858 F:<br>330-497-9 | 912-352-<br>396 F: 3               | 0165<br>30-497-077            |             | COC #                                                                                                                 | COC # SHIPMENT INFORMATION                          |                                         |
|----------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------|-------------------------------|----------------------------------------|--------------------------------------------------------------------|------------------------|------------------------------------|-------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------|
| USTOD                                        |                  | U BestAmerica Tampa - 6712 Benjamin Road, Suite 100, Tampa, FL 33634 P: 813-885-7427 F: 813-885-7049  U TestAmerica Pensacola - 3355 McLemore Drive, Pensacola, FL 32514 P: 850-474-1001 F: 850-478-2671                      | - 6712 Benjan<br>cola - 3355 Mc            | nin Road, Su<br>Lemore Driv                    | ite 100, Tam<br>e, Pensacola  | pa, FL 3363 <sup>2</sup><br>, FL 32514 | 1 P: 813-885-7427 F: 813-885-70<br>P: 850-474-1001 F: 850-478-2671 | 385-7427<br>4-1001 F   | F: 813-88                          | 15-7049<br>2671               | Shipr       | Shipment Method:                                                                                                      | Labcount                                            | 5                                       |
|                                              |                  | ■ InstAmerica Buttalo - 10 Hazelwood Drive, Suite 106, Amherst, NY 14228 P: 716-691-2600 ■ TestAmerica Chicago - 2417 Bond Street, University Park, IL 60466 P: 708-534-5200 F: 709                                           | o - 10 Hazelwo<br>o - 2417 Bond            | od Drive, Sui<br>I Street, Univ                | te 106, Amh<br>ersity Park, I | erst, NY 142<br>L 60466 P              | 4228 P: 716-691-<br>P: 708-534-5200                                | 691-2600<br>5200 F. 7  | 2600 F: 716-961<br>F: 708-534-5211 | F: 716-961-7991<br>8-534-5211 | Shipr       | Shipment Tracking No:                                                                                                 | ig No:                                              |                                         |
|                                              | ۵                | Proj. State (State of Origin)                                                                                                                                                                                                 | ${f \circ}_{	ext{	inj}}$                   | マ<br>な                                         | CONSULTANT INFORMATION        | ANT INF                                | ORMAT                                                              | N<br>O                 |                                    |                               | Projec      | 199                                                                                                                   | hhで5-02h-9:#polot                                   | ולל                                     |
| CSXT Project Number94155子ら                   | ď.               | Proj. City Savanah                                                                                                                                                                                                            | mah                                        |                                                | Company: Amer E&I             | Ame                                    | 下<br>下                                                             | 87                     | 111                                |                               |             | tat                                                                                                                   | Pat Herison                                         |                                         |
| CSXT Project Name: Hutchinson Islo           | and              |                                                                                                                                                                                                                               |                                            |                                                | Address &                     | 8                                      | Ezzli                                                              | 11 Rd                  | تدا                                | 54 100                        | Emaii       | λt. Σ                                                                                                                 | Email pat harrison @amec, com                       | mec, com                                |
| ROSS                                         | 7                | ENVO00                                                                                                                                                                                                                        | 1000017938                                 |                                                | Oily. State, Zigh, wille, The | ない。                                    | 1                                                                  | ı                      | 3726                               | ردا                           |             | 78)                                                                                                                   | HE-859(8+9)                                         |                                         |
| Standard 6-13 Days                           |                  | Preservative Codes:                                                                                                                                                                                                           |                                            | 3 = Sulfuric Acid                              | Acid                          | Z                                      | Note .                                                             |                        |                                    |                               |             |                                                                                                                       | COMMENTS                                            | LAB USE                                 |
| Specify # Days Standard 14 Days              |                  | 0 = No Preservatives<br>1 = Hydrochloric Acid                                                                                                                                                                                 |                                            | 4 = Sodium Thiosulfate<br>5 = Sodium Hydroxide | Thiosulfa                     |                                        | Pres. Code                                                         | 2                      | ЕТНОГ                              | METHODS FOR ANALYSIS          | ANALYS      | SI                                                                                                                    |                                                     |                                         |
| Other                                        |                  | 2 = Nitric Acid                                                                                                                                                                                                               |                                            | 6 = Other                                      | .                             |                                        |                                                                    |                        |                                    | C                             |             |                                                                                                                       |                                                     |                                         |
| Other Deliv:                                 | 2                | Matrix Codes:                                                                                                                                                                                                                 | ٠                                          | SO = Soil                                      |                               | LIQ = Liquid                           |                                                                    | 7                      |                                    | <u></u>                       |             |                                                                                                                       |                                                     | *************************************** |
| EDD Bosning Egypot                           |                  | GW = Groundwater                                                                                                                                                                                                              |                                            | SL = Sludge                                    | <u>a</u>                      |                                        |                                                                    | 011                    | 9                                  | دح                            |             |                                                                                                                       |                                                     |                                         |
| T redailed, T                                |                  | ww = waste water<br>SW = Surface Water                                                                                                                                                                                        |                                            | Of ≡ Oil<br>SOL = Other Solid                  | er Solid                      |                                        |                                                                    | 15/                    | ا ل                                | vle                           |             |                                                                                                                       |                                                     |                                         |
|                                              |                  |                                                                                                                                                                                                                               |                                            |                                                |                               |                                        | Ī                                                                  | <u>い</u>               | 3                                  | ? S                           |             | (3                                                                                                                    | Jing                                                |                                         |
| ŏ                                            | Containers       | - Sample (                                                                                                                                                                                                                    | Sample Collection                          | 4                                              | Filtered                      | Type N                                 | Matrix                                                             | (!)<br>W               | 40                                 | 3,)<br>5,)                    | <u>', r</u> | ム                                                                                                                     |                                                     |                                         |
| Z                                            | Number &<br>Type | Date                                                                                                                                                                                                                          |                                            | Sampler                                        |                               |                                        | Code                                                               | 7 7                    | <u>'</u>                           | <u>a</u>                      | 1           | <del>2</del>                                                                                                          |                                                     |                                         |
| 3014 E                                       | 5 poly 11        | 11/5/11                                                                                                                                                                                                                       | 1                                          | PG                                             | >                             | 9                                      | (79                                                                | ×                      | ×                                  | Х                             | X           | X                                                                                                                     |                                                     |                                         |
| RIP-BLANK-11052014 2                         | ν.Λ              | 1112114                                                                                                                                                                                                                       | 1                                          | 1                                              | X                             | 1                                      | 1                                                                  |                        |                                    |                               |             | X                                                                                                                     | \$ 4                                                |                                         |
|                                              |                  |                                                                                                                                                                                                                               |                                            |                                                |                               |                                        |                                                                    |                        |                                    |                               |             |                                                                                                                       |                                                     |                                         |
|                                              |                  |                                                                                                                                                                                                                               |                                            |                                                |                               |                                        |                                                                    |                        |                                    |                               |             |                                                                                                                       |                                                     |                                         |
|                                              |                  |                                                                                                                                                                                                                               |                                            |                                                |                               |                                        |                                                                    |                        |                                    |                               |             |                                                                                                                       |                                                     |                                         |
|                                              |                  |                                                                                                                                                                                                                               |                                            |                                                | ,                             |                                        |                                                                    |                        |                                    |                               |             |                                                                                                                       |                                                     |                                         |
|                                              |                  |                                                                                                                                                                                                                               |                                            |                                                |                               |                                        |                                                                    |                        |                                    |                               |             |                                                                                                                       |                                                     |                                         |
|                                              |                  |                                                                                                                                                                                                                               |                                            |                                                |                               |                                        |                                                                    |                        |                                    |                               |             |                                                                                                                       |                                                     |                                         |
|                                              |                  |                                                                                                                                                                                                                               |                                            |                                                |                               |                                        |                                                                    |                        |                                    |                               |             |                                                                                                                       |                                                     |                                         |
|                                              |                  |                                                                                                                                                                                                                               |                                            |                                                |                               |                                        | $\dashv$                                                           |                        |                                    |                               |             |                                                                                                                       |                                                     |                                         |
| Date                                         | 16/14 71         | <u>~</u>                                                                                                                                                                                                                      | Received By                                | a TE                                           | ì                             |                                        |                                                                    | Date/Time:             | 0                                  | 27,45                         | ,           | nents &<br>C <a \alpha_v<="" td=""><td>Comments &amp; Special Analytical Requirements:</td><td>lequirements:</td></a> | Comments & Special Analytical Requirements:         | lequirements:                           |
| Pate                                         | لانسو:///ك       | JSS,"b"                                                                                                                                                                                                                       | Received By:                               | <b>.</b>                                       |                               |                                        | ٥                                                                  | Date/Time:             |                                    | )                             | · ·         | 5P-2                                                                                                                  | DUP- 2 was filters                                  | \$2.                                    |
| Date                                         | Date/Time:       | <del>                                     </del>                                                                                                                                                                              | Received By:                               |                                                |                               |                                        |                                                                    | Date/Time:             |                                    |                               | ,_<br>T     | C C                                                                                                                   | cld,                                                |                                         |
| Date                                         | Date/Time:       | ٥٩٤١                                                                                                                                                                                                                          | Lab Remarks:                               | 2 xac                                          | 25                            | 8                                      | 13                                                                 | LAB USE:               | Custody                            | Custody Intact                | Custo       | Custody Seal #                                                                                                        | LAB Log Nun                                         | LAB Log Number                          |
| ORIGINAL - RETURN TO LABORATORY WITH SAMPLES |                  | 5                                                                                                                                                                                                                             |                                            | 9                                              | ď                             |                                        | Ź                                                                  | OICE ML                | IST BE 9                           | SUBMITTE                      | D TO CS     | XT WITH (                                                                                                             | INVOICE MUST BE SUBMITTED TO CSXT WITH ORIGINAL COC | TAL-6006 (0509)                         |

## **Login Sample Receipt Checklist**

Client: AMEC Environment & Infrastructure, Inc.

Job Number: 680-106992-1

Login Number: 106992 List Source: TestAmerica Savannah

List Number: 1

Creator: Kicklighter, Marilyn D

| oreator. Rickinghter, marnyn b                                                                            |        |         |
|-----------------------------------------------------------------------------------------------------------|--------|---------|
| Question                                                                                                  | Answer | Comment |
| Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td> | N/A    |         |
| The cooler's custody seal, if present, is intact.                                                         | True   |         |
| Sample custody seals, if present, are intact.                                                             | True   |         |
| The cooler or samples do not appear to have been compromised or tampered with.                            | True   |         |
| Samples were received on ice.                                                                             | True   |         |
| Cooler Temperature is acceptable.                                                                         | True   |         |
| Cooler Temperature is recorded.                                                                           | True   |         |
| COC is present.                                                                                           | True   |         |
| COC is filled out in ink and legible.                                                                     | True   |         |
| COC is filled out with all pertinent information.                                                         | True   |         |
| Is the Field Sampler's name present on COC?                                                               | True   |         |
| There are no discrepancies between the containers received and the COC.                                   | True   |         |
| Samples are received within Holding Time.                                                                 | True   |         |
| Sample containers have legible labels.                                                                    | True   |         |
| Containers are not broken or leaking.                                                                     | True   |         |
| Sample collection date/times are provided.                                                                | True   |         |
| Appropriate sample containers are used.                                                                   | True   |         |
| Sample bottles are completely filled.                                                                     | True   |         |
| Sample Preservation Verified.                                                                             | True   |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs                          | True   |         |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").                           | True   |         |
| Multiphasic samples are not present.                                                                      | True   |         |
| Samples do not require splitting or compositing.                                                          | True   |         |
| Residual Chlorine Checked.                                                                                | N/A    |         |



THE LEADER IN ENVIRONMENTAL TESTING

# ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

TestAmerica Job ID: 680-107032-1

Client Project/Site: CSX Hutchinson Island VRP

#### For:

AMEC Environment & Infrastructure, Inc. 2677 Buford Highway Atlanta, Georgia 30324

Attn: Mr. Steve Foley

Subar Horey

Authorized for release by: 11/18/2014 4:41:39 PM

Lisa Harvey, Project Manager II (912)354-7858 e.3221 lisa.harvey@testamericainc.com

····· Links ·····

Review your project results through
Total Access

**Have a Question?** 



Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Job ID: 680-107032-1

Laboratory: TestAmerica Savannah

Narrative

#### **CASE NARRATIVE**

Client: AMEC Environment & Infrastructure, Inc.
Project: CSX Hutchinson Island VRP
Report Number: 680-107032-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

No additional analytical or quality issues were noted, other than those described below or in the Definitions/Glossary page.

#### **RECEIPT**

The samples were received on 11/7/2014 8:30 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 4.6° C and 5.0° C.

#### **VOLATILE ORGANIC COMPOUNDS (GC-MS)**

Samples FB-01\_11062014 (680-107032-16), ERB-01\_11062014 (680-107032-17) and TRIP-BLANK\_11062014 (680-107032-19) were analyzed for Volatile Organic Compounds (GC-MS) in accordance with EPA SW-846 Method 8260B.

#### SEMIVOLATILE ORGANIC COMPOUNDS (AQUEOUS)

Samples FB-01\_11062014 (680-107032-16), ERB-01\_11062014 (680-107032-17) and ERB-02\_11062014 (680-107032-18) were analyzed for Semivolatile Organic Compounds (Aqueous) in accordance with EPA SW-846 Method 8270D.

Method(s) 8270D: Six surrogates are used for this analysis. The laboratory's SOP allows 2 of these surrogates to be outside acceptance criteria without performing re-extraction/re-analysis. The following sample(s) contained an allowable number of surrogate compounds outside limits: FB-01\_11062014 (680-107032-16). These results have been reported and qualified.

#### **METALS (ICP)**

Samples PDMW-29D\_11062014 (680-107032-12), PDMW-26T\_11062014 (680-107032-13), DUP-03\_11062014 (680-107032-14), PDMW-32R\_11062014 (680-107032-15), FB-01\_11062014 (680-107032-16), ERB-01\_11062014 (680-107032-17) and ERB-02\_11062014 (680-107032-18) were analyzed for Metals (ICP) in accordance with EPA SW-846 Method 6010C.

#### **ALKALINITY**

Samples SW-01\_11062014\_HIGH (680-107032-1), SW-02\_11062014\_HIGH (680-107032-2), SW-03\_11062014\_HIGH (680-107032-3), SW-04\_11062014\_HIGH (680-107032-4), SW-01\_11062014\_LOW (680-107032-5), SW-02\_11062014\_LOW (680-107032-6), SW-03\_11062014\_LOW (680-107032-7) and SW-04\_11062014\_LOW (680-107032-8) were analyzed for alkalinity in accordance with EPA Method 310.1.

#### **AMMONIA**

Samples SW-01\_11062014\_HIGH (680-107032-1), SW-02\_11062014\_HIGH (680-107032-2), SW-03\_11062014\_HIGH (680-107032-3), SW-04\_11062014\_HIGH (680-107032-4), SW-01\_11062014\_LOW (680-107032-5), SW-02\_11062014\_LOW (680-107032-6), SW-03\_11062014\_LOW (680-107032-7), SW-04\_11062014\_LOW (680-107032-8), PDMW-51\_11062014 (680-107032-9), PDMW-52\_11062014 (680-107032-10), PDMW-50\_11062014 (680-107032-11), PDMW-29D\_11062014 (680-107032-12), PDMW-26T\_11062014 (680-107032-13), DUP-03\_11062014 (680-107032-14), PDMW-32R\_11062014 (680-107032-15), FB-01\_11062014 (680-107032-16), ERB-01\_11062014 (680-107032-17) and ERB-02\_11062014 (680-107032-18) were analyzed for ammonia in accordance with EPA Method 350.1.

Ammonia recovery is outside criteria high for the MS and MSD of sample PDMW-52\_11062014 (680-107032-10) in batch 680-359110. Refer to the QC report for details.

Samples PDMW-51\_11062014 (680-107032-9)[5X], PDMW-52\_11062014 (680-107032-10)[2X], PDMW-50\_11062014 (680-107032-11) [10X], PDMW-29D\_11062014 (680-107032-12)[10X], PDMW-26T\_11062014 (680-107032-13)[500X], DUP-03\_11062014

6

8

10

11

12

#### **Case Narrative**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-107032-1

i estAmenca Job ID.

### Job ID: 680-107032-1 (Continued)

#### Laboratory: TestAmerica Savannah (Continued)

(680-107032-14)[500X] and PDMW-32R\_11062014 (680-107032-15)[5X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

#### **NITRATE-NITRITE AS NITROGEN**

Samples SW-01\_11062014\_HIGH (680-107032-1), SW-02\_11062014\_HIGH (680-107032-2), SW-03\_11062014\_HIGH (680-107032-3), SW-04\_11062014\_HIGH (680-107032-4), SW-01\_11062014\_LOW (680-107032-5), SW-02\_11062014\_LOW (680-107032-6), SW-03\_11062014\_LOW (680-107032-7), SW-04\_11062014\_LOW (680-107032-8), PDMW-51\_11062014 (680-107032-9), PDMW-52\_11062014 (680-107032-10), PDMW-50\_11062014 (680-107032-11), PDMW-29D\_11062014 (680-107032-12), PDMW-26T\_11062014 (680-107032-13), DUP-03\_11062014 (680-107032-14), PDMW-32R\_11062014 (680-107032-15), FB-01\_11062014 (680-107032-16), ERB-01\_11062014 (680-107032-17) and ERB-02\_11062014 (680-107032-18) were analyzed for nitrate-nitrite as nitrogen in accordance with EPA Method 353.2.

9

4

5

10

11

46

## **Definitions/Glossary**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-107032-1

**Qualifiers** 

**GC/MS VOA** 

U Indicates the analyte was analyzed for but not detected.

**GC/MS Semi VOA** 

U Indicates the analyte was analyzed for but not detected.

X Surrogate is outside control limits

**Metals** 

U Indicates the analyte was analyzed for but not detected.

**General Chemistry** 

Qualifier Description

U Indicates the analyte was analyzed for but not detected.

F1 MS and/or MSD Recovery exceeds the control limits

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery

CFL Contains Free Liquid

CNF Contains no Free Liquid

DER Duplicate error ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision level concentration

MDA Minimum detectable activity

EDL Estimated Detection Limit

MDC Minimum detectable concentration

MDL Method Detection Limit
ML Minimum Level (Dioxin)

NC Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control
RER Relative error ratio

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

2

4

5

6

1

0

10

11

46

# **Sample Summary**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-107032-1

| d    | Received       |   |
|------|----------------|---|
| 9:25 | 11/07/14 08:30 | 4 |
| 9:50 | 11/07/14 08:30 |   |
| 9:45 | 11/07/14 08:30 | E |
| 9:20 | 11/07/14 08:30 | 5 |
| 3:45 | 11/07/14 08:30 |   |
| 1:28 | 11/07/14 08:30 |   |
| 1:35 | 11/07/14 08:30 |   |
| l:15 | 11/07/14 08:30 |   |
| ):35 | 11/07/14 08:30 |   |
| 1:45 | 11/07/14 08:30 | 8 |
| ):51 | 11/07/14 08:30 |   |
| 5:37 | 11/07/14 08:30 | 9 |
| 3:53 | 11/07/14 08:30 |   |
| 0:00 | 11/07/14 08:30 |   |
| 5:30 | 11/07/14 08:30 |   |
| 3:45 | 11/07/14 08:30 |   |
| 7:00 | 11/07/14 08:30 |   |
| 7-20 | 11/07/14 08:30 |   |

| Lab Sample ID | Client Sample ID    | Matrix | Collected      | Received       |
|---------------|---------------------|--------|----------------|----------------|
| 680-107032-1  | SW-01_11062014_HIGH | Water  | 11/06/14 09:25 | 11/07/14 08:30 |
| 680-107032-2  | SW-02_11062014_HIGH | Water  | 11/06/14 09:50 | 11/07/14 08:30 |
| 680-107032-3  | SW-03_11062014_HIGH | Water  | 11/06/14 09:45 | 11/07/14 08:30 |
| 680-107032-4  | SW-04_11062014_HIGH | Water  | 11/06/14 09:20 | 11/07/14 08:30 |
| 680-107032-5  | SW-01_11062014_LOW  | Water  | 11/06/14 13:45 | 11/07/14 08:30 |
| 680-107032-6  | SW-02_11062014_LOW  | Water  | 11/06/14 14:28 | 11/07/14 08:30 |
| 680-107032-7  | SW-03_11062014_LOW  | Water  | 11/06/14 14:35 | 11/07/14 08:30 |
| 680-107032-8  | SW-04_11062014_LOW  | Water  | 11/06/14 14:15 | 11/07/14 08:30 |
| 680-107032-9  | PDMW-51_11062014    | Water  | 11/06/14 10:35 | 11/07/14 08:30 |
| 680-107032-10 | PDMW-52_11062014    | Water  | 11/06/14 11:45 | 11/07/14 08:30 |
| 680-107032-11 | PDMW-50_11062014    | Water  | 11/06/14 10:51 | 11/07/14 08:30 |
| 680-107032-12 | PDMW-29D_11062014   | Water  | 11/06/14 15:37 | 11/07/14 08:30 |
| 680-107032-13 | PDMW-26T_11062014   | Water  | 11/06/14 16:53 | 11/07/14 08:30 |
| 680-107032-14 | DUP-03_11062014     | Water  | 11/06/14 00:00 | 11/07/14 08:30 |
| 680-107032-15 | PDMW-32R_11062014   | Water  | 11/06/14 15:30 | 11/07/14 08:30 |
| 680-107032-16 | FB-01_11062014      | Water  | 11/06/14 16:45 | 11/07/14 08:30 |
| 680-107032-17 | ERB-01_11062014     | Water  | 11/06/14 17:00 | 11/07/14 08:30 |
| 680-107032-18 | ERB-02_11062014     | Water  | 11/06/14 17:20 | 11/07/14 08:30 |
| 680-107032-19 | TRIP-BLANK_11062014 | Water  | 11/06/14 00:00 | 11/07/14 08:30 |
|               |                     |        |                |                |

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Client Sample ID: SW-01\_11062014\_HIGH

TestAmerica Job ID: 680-107032-1

Lab Sample ID: 680-107032-1

Matrice Matrice

Matrix: Water

Date Collected: 11/06/14 09:25 Date Received: 11/07/14 08:30

| General Chemistry Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia                   | 0.16   |           | 0.050 |     | mg/L |   |          | 11/15/14 13:03 | 1       |
| Nitrate as N              | 0.25   |           | 0.050 |     | mg/L |   |          | 11/07/14 11:44 | 1       |
| Analyte                   | Result | Qualifier | RL    | RL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| Alkalinity                | 62     |           | 5.0   |     | mg/L |   |          | 11/13/14 17:01 | 1       |

5

0

10

11

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-107032-1

Client Sample ID: SW-02\_11062014\_HIGH

Lab Sample ID: 680-107032-2 Date Collected: 11/06/14 09:50

Matrix: Water

Date Received: 11/07/14 08:30

| General Chemistry<br>Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia                      | 0.20   |           | 0.050 |     | mg/L |   |          | 11/15/14 13:03 | 1       |
| Nitrate as N                 | 0.24   |           | 0.050 |     | mg/L |   |          | 11/07/14 11:48 | 1       |
| Analyte                      | Result | Qualifier | RL    | RL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| Alkalinity                   | 62     |           | 5.0   |     | mg/L |   |          | 11/13/14 16:54 | 1       |

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-107032-1

Analyzed

11/13/14 16:40

Client Sample ID: SW-03\_11062014\_HIGH

Lab Sample ID: 680-107032-3 Matrix: Water

Date Collected: 11/06/14 09:45 Date Received: 11/07/14 08:30

Analyte

Alkalinity

| General Chemistry |        |           |       |     |      |   |          |                |         |
|-------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Analyte           | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Ammonia           | 0.22   |           | 0.050 |     | mg/L |   |          | 11/15/14 13:03 | 1       |
| Nitrate as N      | 0.25   |           | 0.050 |     | mg/L |   |          | 11/07/14 11:50 | 1       |

RL

5.0

RL Unit

mg/L

D

Prepared

Result Qualifier

60

5

J

7

Dil Fac

8

9

11

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-107032-1

Lab Sample ID: 680-107032-4

Client Sample ID: SW-04\_11062014\_HIGH

Date Collected: 11/06/14 09:20 Matrix: Water Date Received: 11/07/14 08:30

| General Chemistry Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia                   | 0.16   |           | 0.050 |     | mg/L |   |          | 11/15/14 13:13 | 1       |
| Nitrate as N              | 0.24   |           | 0.050 |     | mg/L |   |          | 11/07/14 11:54 | 1       |
| Analyte                   | Result | Qualifier | RL    | RL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| Alkalinity                | 58     |           | 5.0   |     | mg/L |   |          | 11/13/14 17:16 | 1       |

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-107032-1

Client Sample ID: SW-01\_11062014\_LOW

Lab Sample ID: 680-107032-5

Date Collected: 11/06/14 13:45 Date Received: 11/07/14 08:30 . Matrix: Water

| General Chemistry<br>Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia                      | 0.29   |           | 0.050 |     | mg/L |   |          | 11/15/14 13:13 | 1       |
| Nitrate as N                 | 0.12   |           | 0.050 |     | mg/L |   |          | 11/07/14 11:55 | 1       |
| Analyte                      | Result | Qualifier | RL    | RL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| Alkalinity                   | 88     |           | 5.0   |     | mg/L |   |          | 11/13/14 16:48 | 1       |

5

0

9

10

11

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-107032-1

Client Sample ID: SW-02\_11062014\_LOW Date Collected: 11/06/14 14:28

Lab Sample ID: 680-107032-6 Matrix: Water

Date Received: 11/07/14 08:30

| General Chemistry Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia                   | 0.40   |           | 0.050 |     | mg/L |   |          | 11/15/14 13:35 | 1       |
| Nitrate as N              | 0.085  |           | 0.050 |     | mg/L |   |          | 11/07/14 11:56 | 1       |
| Analyte                   | Result | Qualifier | RL    | RL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| Alkalinity                | 87     |           | 5.0   |     | mg/L |   |          | 11/15/14 18:40 | 1       |

6

Ŏ

10

11

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Client Sample ID: SW-03\_11062014\_LOW

TestAmerica Job ID: 680-107032-1

Lab Sample ID: 680-107032-7

Matrix: Water

Date Collected: 11/06/14 14:35 Date Received: 11/07/14 08:30

| General Chemistry Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia                   | 0.19   |           | 0.050 |     | mg/L |   |          | 11/15/14 13:35 | 1       |
| Nitrate as N              | 0.083  |           | 0.050 |     | mg/L |   |          | 11/07/14 12:00 | 1       |
| Analyte                   | Result | Qualifier | RL    | RL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| Alkalinity                | 100    |           | 5.0   |     | mg/L |   |          | 11/15/14 18:48 | 1       |

5

6

9

10

11

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Client Sample ID: SW-04\_11062014\_LOW

TestAmerica Job ID: 680-107032-1

Lab Sample ID: 680-107032-8

Matrix: Water

Date Collected: 11/06/14 14:15 Date Received: 11/07/14 08:30

| General Chemistry Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia                   | 0.13   |           | 0.050 |     | mg/L |   |          | 11/15/14 13:35 | 1       |
| Nitrate as N              | 0.078  |           | 0.050 |     | mg/L |   |          | 11/07/14 12:01 | 1       |
| Analyte                   | Result | Qualifier | RL    | RL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| Alkalinity                | 84     |           | 5.0   |     | mg/L |   |          | 11/15/14 17:05 | 1       |

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-107032-1

Client Sample ID: PDMW-51\_11062014

Date Collected: 11/06/14 10:35 Date Received: 11/07/14 08:30 Lab Sample ID: 680-107032-9

Matrix: Water

| General Chemistry Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia                   | 5.7    |           | 0.25  |     | mg/L |   |          | 11/15/14 13:44 | 5       |
| Nitrate as N              | 0.050  | U         | 0.050 |     | mg/L |   |          | 11/07/14 12:02 | 1       |

E

6

8

9

11

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Client Sample ID: PDMW-52\_11062014

TestAmerica Job ID: 680-107032-1

Lab Sample ID: 680-107032-10

Matrix: Water

Date Collected: 11/06/14 11:45 Date Received: 11/07/14 08:30

| General Chemistry<br>Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia                      | 0.90   |           | 0.10  |     | mg/L |   |          | 11/15/14 13:30 | 2       |
| Nitrate as N                 | 0.050  | U         | 0.050 |     | mg/L |   |          | 11/07/14 12:03 | 1       |

6

Q

9

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Client Sample ID: PDMW-50\_11062014

TestAmerica Job ID: 680-107032-1

Lab Sample ID: 680-107032-11

Matrix: Water

Date Collected: 11/06/14 10:51 Date Received: 11/07/14 08:30

| General Chemistry |        |           |       |     |      |   |          |                |         |
|-------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Analyte           | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Ammonia           | 7.7    |           | 0.50  |     | mg/L |   |          | 11/15/14 13:44 | 10      |
| Nitrate as N      | 0.050  | U         | 0.050 |     | mg/L |   |          | 11/07/14 12:05 | 1       |

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Client Sample ID: PDMW-29D\_11062014

TestAmerica Job ID: 680-107032-1

Lab Sample ID: 680-107032-12

Matrix: Water

Date Collected: 11/06/14 15:37 Date Received: 11/07/14 08:30

| Method: 6010C - Metals (ICP) |        |           |    |     |      |   |                |                |         |
|------------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte                      | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                      | 20     | U         | 20 |     | ug/L |   | 11/11/14 10:47 | 11/13/14 21:28 | 1       |
| Lead                         | 10     | U         | 10 |     | ug/L |   | 11/11/14 10:47 | 11/13/14 21:28 | 1       |
|                              |        |           |    |     |      |   |                |                |         |

| General Chemistry Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia                   | 10     |           | 0.50  |     | mg/L |   |          | 11/15/14 13:44 | 10      |
| Nitrate as N              | 0.050  | U         | 0.050 |     | mg/L |   |          | 11/07/14 12:08 | 1       |

6

q

10

11

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-107032-1

Client Sample ID: PDMW-26T\_11062014

Lab Sample ID: 680-107032-13 Date Collected: 11/06/14 16:53

Matrix: Water

Date Received: 11/07/14 08:30

| Method: 6010C - Metals (ICP) |        |           |    |     |      |   |                |                |         |
|------------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte                      | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                      | 20     | U         | 20 |     | ug/L |   | 11/11/14 10:47 | 11/13/14 21:32 | 1       |
| Lead                         | 10     | U         | 10 |     | ug/L |   | 11/11/14 10:47 | 11/13/14 21:32 | 1       |

| General Chemistry<br>Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia                      | 470    |           | 25    |     | mg/L |   |          | 11/15/14 14:33 | 500     |
| Nitrate as N                 | 0.051  |           | 0.050 |     | mg/L |   |          | 11/07/14 12:09 | 1       |

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-107032-1

Client Sample ID: DUP-03\_11062014

Lab Sample ID: 680-107032-14 Date Collected: 11/06/14 00:00

**Matrix: Water** 

Date Received: 11/07/14 08:30

| Method: 6010C - Metals (ICP) |        |           |    |     |      |   |                |                |         |
|------------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte                      | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                      | 20     | U         | 20 |     | ug/L |   | 11/11/14 10:47 | 11/13/14 21:36 | 1       |
| Lead                         | 10     | U         | 10 |     | ug/L |   | 11/11/14 10:47 | 11/13/14 21:36 | 1       |

| General Chemistry<br>Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia                      | 490    |           | 25    |     | mg/L |   |          | 11/15/14 14:33 | 500     |
| Nitrate as N                 | 0.070  |           | 0.050 |     | mg/L |   |          | 11/07/14 12:10 | 1       |

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-107032-1

Client Sample ID: PDMW-32R\_11062014

Date Collected: 11/06/14 15:30 Date Received: 11/07/14 08:30 Lab Sample ID: 680-107032-15

Matrix: Water

| Method: 6010C - Metals (ICP) |        |           |    |          |   |                |                |         |
|------------------------------|--------|-----------|----|----------|---|----------------|----------------|---------|
| Analyte                      | Result | Qualifier | RL | MDL Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                      | 20     | U         | 20 | ug/L     |   | 11/11/14 10:47 | 11/13/14 21:41 | 1       |
| Nickel                       | 40     | U         | 40 | ug/L     |   | 11/11/14 10:47 | 11/13/14 21:41 | 1       |
| Lead                         | 10     | U         | 10 | ug/L     |   | 11/11/14 10:47 | 11/13/14 21:41 | 1       |
| Zinc                         | 210    |           | 20 | ug/L     |   | 11/11/14 10:47 | 11/13/14 21:41 | 1       |
| _                            |        |           |    |          |   |                |                |         |

| l |  |
|---|--|
| l |  |
|   |  |

| General Chemistry |        |           |       |     |      |   |          |                |         |
|-------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Analyte           | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Ammonia           | 7.0    |           | 0.25  |     | mg/L |   |          | 11/15/14 13:52 | 5       |
| Nitrate as N      | 0.050  | U         | 0.050 |     | mg/L |   |          | 11/07/14 12:12 | 1       |

8

9

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-107032-1

Client Sample ID: FB-01\_11062014

Date Collected: 11/06/14 16:45 Date Received: 11/07/14 08:30 Lab Sample ID: 680-107032-16

. Matrix: Water

| Analyte                      | Result    | Qualifier | RL       | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|-----|------|---|----------|----------------|---------|
| Benzene                      | 1.0       | U         | 1.0      |     | ug/L |   |          | 11/11/14 15:47 | 1       |
| Ethylbenzene                 | 1.0       | U         | 1.0      |     | ug/L |   |          | 11/11/14 15:47 | 1       |
| Toluene                      | 1.0       | U         | 1.0      |     | ug/L |   |          | 11/11/14 15:47 | 1       |
| Xylenes, Total               | 2.0       | U         | 2.0      |     | ug/L |   |          | 11/11/14 15:47 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits   |     |      |   | Prepared | Analyzed       | Dil Fac |
| Toluene-d8 (Surr)            | 97        |           | 70 - 130 |     |      | - |          | 11/11/14 15:47 | 1       |
| 1,2-Dichloroethane-d4 (Surr) | 82        |           | 70 - 130 |     |      |   |          | 11/11/14 15:47 | 1       |
| Dibromofluoromethane (Surr)  | 90        |           | 70 - 130 |     |      |   |          | 11/11/14 15:47 | 1       |
| 4-Bromofluorobenzene (Surr)  | 126       |           | 70 - 130 |     |      |   |          | 11/11/14 15:47 | 1       |

| Analyte                | Result    | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|-----|------|---|----------------|----------------|---------|
| Acenaphthene           | 9.6       | U         | 9.6      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:32 | 1       |
| Acenaphthylene         | 9.6       | U         | 9.6      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:32 | 1       |
| Anthracene             | 9.6       | U         | 9.6      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:32 | 1       |
| Benzo[a]anthracene     | 9.6       | U         | 9.6      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:32 | 1       |
| Benzo[a]pyrene         | 9.6       | U         | 9.6      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:32 | 1       |
| Benzo[b]fluoranthene   | 9.6       | U         | 9.6      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:32 | 1       |
| Benzo[g,h,i]perylene   | 9.6       | U         | 9.6      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:32 | 1       |
| Benzo[k]fluoranthene   | 9.6       | U         | 9.6      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:32 | 1       |
| Chrysene               | 9.6       | U         | 9.6      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:32 | 1       |
| Dibenz(a,h)anthracene  | 9.6       | U         | 9.6      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:32 | 1       |
| Fluoranthene           | 9.6       | U         | 9.6      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:32 | 1       |
| Fluorene               | 9.6       | U         | 9.6      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:32 | 1       |
| Indeno[1,2,3-cd]pyrene | 9.6       | U         | 9.6      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:32 | 1       |
| 1-Methylnaphthalene    | 9.6       | U         | 9.6      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:32 | 1       |
| 2-Methylnaphthalene    | 9.6       | U         | 9.6      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:32 | 1       |
| Naphthalene            | 9.6       | U         | 9.6      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:32 | 1       |
| Phenanthrene           | 9.6       | U         | 9.6      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:32 | 1       |
| Pyrene                 | 9.6       | U         | 9.6      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:32 | 1       |
| Surrogate              | %Recovery | Qualifier | Limits   |     |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl       | 38        |           | 32 - 114 |     |      |   | 11/10/14 15:53 | 11/13/14 21:32 | 1       |
| Nitrobenzene-d5 (Surr) | 24        | X         | 30 - 117 |     |      |   | 11/10/14 15:53 | 11/13/14 21:32 | 1       |
| Terphenyl-d14 (Surr)   | 98        |           | 10 - 132 |     |      |   | 11/10/14 15:53 | 11/13/14 21:32 | 1       |

| Analyte  | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|----------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Arsenic  |        | U         | 20 |     | ug/L |   | 11/12/14 10:58 | 11/13/14 13:42 | 1       |
| Chromium | 10     | U         | 10 |     | ug/L |   | 11/12/14 10:58 | 11/13/14 13:42 | 1       |
| Lead     | 10     | U         | 10 |     | ug/L |   | 11/12/14 10:58 | 11/13/14 13:42 | 1       |
| Nickel   | 40     | U         | 40 |     | ug/L |   | 11/12/14 10:58 | 11/13/14 13:42 | 1       |
| Zinc     | 66     |           | 20 |     | ug/L |   | 11/12/14 10:58 | 11/13/14 13:42 | 1       |

| General Chemistry |        |           |       |     |      |   |          |                |         |
|-------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Analyte           | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Ammonia           | 0.050  | U         | 0.050 |     | mg/L |   |          | 11/15/14 13:03 | 1       |
| Nitrate as N      | 0.17   |           | 0.050 |     | mg/L |   |          | 11/07/14 12:13 | 1       |

TestAmerica Savannah

\_

5

7

q

10

1 1

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-107032-1

Client Sample ID: ERB-01\_11062014

Date Collected: 11/06/14 17:00 Date Received: 11/07/14 08:30

Lab Sample ID: 680-107032-17

**Matrix: Water** 

| Analyte                      | Result    | Qualifier | RL       | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|-----|------|---|----------|----------------|---------|
| Benzene                      | 1.0       | U         | 1.0      |     | ug/L |   |          | 11/11/14 16:09 | 1       |
| Ethylbenzene                 | 1.0       | U         | 1.0      |     | ug/L |   |          | 11/11/14 16:09 | 1       |
| Toluene                      | 1.0       | U         | 1.0      |     | ug/L |   |          | 11/11/14 16:09 | 1       |
| Xylenes, Total               | 2.0       | U         | 2.0      |     | ug/L |   |          | 11/11/14 16:09 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits   |     |      |   | Prepared | Analyzed       | Dil Fac |
| Toluene-d8 (Surr)            | 98        |           | 70 - 130 |     |      | - |          | 11/11/14 16:09 | 1       |
| 1,2-Dichloroethane-d4 (Surr) | 85        |           | 70 - 130 |     |      |   |          | 11/11/14 16:09 | 1       |
| Dibromofluoromethane (Surr)  | 92        |           | 70 - 130 |     |      |   |          | 11/11/14 16:09 | 1       |
| 4-Bromofluorobenzene (Surr)  | 125       |           | 70 - 130 |     |      |   |          | 11/11/14 16:09 | 1       |

| Analyte                | Result    | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|-----|------|---|----------------|----------------|---------|
| Acenaphthene           | 9.8       | U         | 9.8      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:56 | 1       |
| Acenaphthylene         | 9.8       | U         | 9.8      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:56 | 1       |
| Anthracene             | 9.8       | U         | 9.8      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:56 | 1       |
| Benzo[a]anthracene     | 9.8       | U         | 9.8      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:56 | 1       |
| Benzo[a]pyrene         | 9.8       | U         | 9.8      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:56 | 1       |
| Benzo[b]fluoranthene   | 9.8       | U         | 9.8      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:56 | 1       |
| Benzo[g,h,i]perylene   | 9.8       | U         | 9.8      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:56 | 1       |
| Benzo[k]fluoranthene   | 9.8       | U         | 9.8      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:56 | 1       |
| Chrysene               | 9.8       | U         | 9.8      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:56 | 1       |
| Dibenz(a,h)anthracene  | 9.8       | U         | 9.8      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:56 | 1       |
| Fluoranthene           | 9.8       | U         | 9.8      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:56 | 1       |
| Fluorene               | 9.8       | U         | 9.8      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:56 | 1       |
| Indeno[1,2,3-cd]pyrene | 9.8       | U         | 9.8      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:56 | 1       |
| 1-Methylnaphthalene    | 9.8       | U         | 9.8      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:56 | 1       |
| 2-Methylnaphthalene    | 9.8       | U         | 9.8      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:56 | 1       |
| Naphthalene            | 9.8       | U         | 9.8      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:56 | 1       |
| Phenanthrene           | 9.8       | U         | 9.8      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:56 | 1       |
| Pyrene                 | 9.8       | U         | 9.8      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 21:56 | 1       |
| Surrogate              | %Recovery | Qualifier | Limits   |     |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl       | 51        |           | 32 - 114 |     |      |   | 11/10/14 15:53 | 11/13/14 21:56 | 1       |
| Nitrobenzene-d5 (Surr) | 35        |           | 30 - 117 |     |      |   | 11/10/14 15:53 | 11/13/14 21:56 | 1       |

| Surrogate              | %Recovery | Qualifier | Limits   | F   | Prepared    | Analyzed       | Dil Fac |  |
|------------------------|-----------|-----------|----------|-----|-------------|----------------|---------|--|
| 2-Fluorobiphenyl       | 51        |           | 32 - 114 | 11/ | 10/14 15:53 | 11/13/14 21:56 | 1       |  |
| Nitrobenzene-d5 (Surr) | 35        |           | 30 - 117 | 11/ | 10/14 15:53 | 11/13/14 21:56 | 1       |  |
| Terphenyl-d14 (Surr)   | 107       |           | 10 - 132 | 11/ | 10/14 15:53 | 11/13/14 21:56 | 1       |  |

| Method: 6010C - Metals (ICP) |        |           |    |     |      |   |                |                |         |
|------------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte                      | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                      | 20     | U         | 20 |     | ug/L |   | 11/12/14 10:58 | 11/13/14 13:46 | 1       |
| Chromium                     | 10     | U         | 10 |     | ug/L |   | 11/12/14 10:58 | 11/13/14 13:46 | 1       |
| Lead                         | 10     | U         | 10 |     | ug/L |   | 11/12/14 10:58 | 11/13/14 13:46 | 1       |
| Nickel                       | 40     | U         | 40 |     | ug/L |   | 11/12/14 10:58 | 11/13/14 13:46 | 1       |
| Zinc                         | 61     |           | 20 |     | ug/L |   | 11/12/14 10:58 | 11/13/14 13:46 | 1       |

| General Chemistry Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia                   | 0.083  |           | 0.050 |     | mg/L |   |          | 11/15/14 13:21 | 1       |
| Nitrate as N              | 0.17   |           | 0.050 |     | mg/L |   |          | 11/07/14 12:14 | 1       |

TestAmerica Savannah

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-107032-1

Lab Sample ID: 680-107032-18

Client Sample ID: ERB-02\_11062014

Date Collected: 11/06/14 17:20 Matrix: Water
Date Received: 11/07/14 08:30

| Analyte                      | Result    | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|-----|------|---|----------------|----------------|---------|
| Acenaphthene                 | 9.5       | U         | 9.5      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 22:20 | 1       |
| Acenaphthylene               | 9.5       | U         | 9.5      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 22:20 | 1       |
| Anthracene                   | 9.5       | U         | 9.5      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 22:20 | 1       |
| Benzo[a]anthracene           | 9.5       | U         | 9.5      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 22:20 | 1       |
| Benzo[a]pyrene               | 9.5       | U         | 9.5      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 22:20 | 1       |
| Benzo[b]fluoranthene         | 9.5       | U         | 9.5      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 22:20 | 1       |
| Benzo[g,h,i]perylene         | 9.5       | U         | 9.5      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 22:20 | 1       |
| Benzo[k]fluoranthene         | 9.5       | U         | 9.5      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 22:20 | 1       |
| Chrysene                     | 9.5       | U         | 9.5      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 22:20 | 1       |
| Dibenz(a,h)anthracene        | 9.5       | U         | 9.5      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 22:20 | 1       |
| Fluoranthene                 | 9.5       | U         | 9.5      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 22:20 | 1       |
| Fluorene                     | 9.5       | U         | 9.5      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 22:20 | 1       |
| Indeno[1,2,3-cd]pyrene       | 9.5       | U         | 9.5      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 22:20 | 1       |
| 1-Methylnaphthalene          | 9.5       | U         | 9.5      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 22:20 | 1       |
| 2-Methylnaphthalene          | 9.5       | U         | 9.5      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 22:20 | 1       |
| Naphthalene                  | 9.5       | U         | 9.5      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 22:20 | 1       |
| Phenanthrene                 | 9.5       | U         | 9.5      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 22:20 | 1       |
| Pyrene                       | 9.5       | U         | 9.5      |     | ug/L |   | 11/10/14 15:53 | 11/13/14 22:20 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits   |     |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl             | 55        |           | 32 - 114 |     |      |   | 11/10/14 15:53 | 11/13/14 22:20 | 1       |
| Nitrobenzene-d5 (Surr)       | 50        |           | 30 - 117 |     |      |   | 11/10/14 15:53 | 11/13/14 22:20 | 1       |
| Terphenyl-d14 (Surr)         | 104       |           | 10 - 132 |     |      |   | 11/10/14 15:53 | 11/13/14 22:20 | 1       |
| Method: 6010C - Metals (ICP) |           |           |          |     |      |   |                |                |         |
| Analyte                      | Result    | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                      | 20        | U         | 20       |     | ug/L |   | 11/12/14 10:58 | 11/13/14 13:59 | 1       |
| Chromium                     | 10        | H         | 10       |     | ug/L |   | 11/12/14 10:58 | 11/13/14 13:59 | 1       |

| Nitrate as N      | 0.17   |           | 0.050 |     | mg/L |   |                | 11/07/14 12:15 | 1       |
|-------------------|--------|-----------|-------|-----|------|---|----------------|----------------|---------|
| Ammonia           | 0.052  |           | 0.050 |     | mg/L |   |                | 11/15/14 13:03 | 1       |
| Analyte           | Result | Qualifier | RL    | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| General Chemistry |        |           |       |     |      |   |                |                |         |
| Zinc              | 53     |           | 20    | 1   | ug/L |   | 11/12/14 10:58 | 11/13/14 13:59 | 1       |
| Nickel            | 40     | U         | 40    |     | ug/L |   | 11/12/14 10:58 | 11/13/14 13:59 | 1       |
| Lead              | 10     | U         | 10    | 1   | ug/L |   | 11/12/14 10:58 | 11/13/14 13:59 | 1       |
|                   |        |           |       |     |      |   |                |                |         |

TestAmerica Savannah

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-107032-1

Client Sample ID: TRIP-BLANK\_11062014

Lab Sample ID: 680-107032-19 Matrix: Water

Date Collected: 11/06/14 00:00 Date Received: 11/07/14 08:30

| Method: 8260B - Volatile Orga | nic Compounds | (GC/MS)   |          |     |      |   |          |                |         |
|-------------------------------|---------------|-----------|----------|-----|------|---|----------|----------------|---------|
| Analyte                       |               | Qualifier | RL       | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Benzene                       | 1.0           | U         | 1.0      |     | ug/L |   |          | 11/11/14 16:30 | 1       |
| Ethylbenzene                  | 1.0           | U         | 1.0      |     | ug/L |   |          | 11/11/14 16:30 | 1       |
| Toluene                       | 1.0           | U         | 1.0      |     | ug/L |   |          | 11/11/14 16:30 | 1       |
| Xylenes, Total                | 2.0           | U         | 2.0      |     | ug/L |   |          | 11/11/14 16:30 | 1       |
| Surrogate                     | %Recovery     | Qualifier | Limits   |     |      |   | Prepared | Analyzed       | Dil Fac |
| Toluene-d8 (Surr)             | 102           |           | 70 - 130 |     |      | - |          | 11/11/14 16:30 | 1       |
| 1,2-Dichloroethane-d4 (Surr)  | 84            |           | 70 - 130 |     |      |   |          | 11/11/14 16:30 | 1       |
| Dibromofluoromethane (Surr)   | 89            |           | 70 - 130 |     |      |   |          | 11/11/14 16:30 | 1       |
| 4-Bromofluorobenzene (Surr)   | 127           |           | 70 - 130 |     |      |   |          | 11/11/14 16:30 | 1       |

5

6

R

9

10

1

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

# Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-357980/7

**Matrix: Water** 

Analysis Batch: 357980

Client Sample ID: Method Blank

Prep Type: Total/NA

|                | IVID   | IVID      |     |     |      |   |          |                |         |
|----------------|--------|-----------|-----|-----|------|---|----------|----------------|---------|
| Analyte        | Result | Qualifier | RL  | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Benzene        | 1.0    | U         | 1.0 |     | ug/L |   |          | 11/11/14 11:40 | 1       |
| Ethylbenzene   | 1.0    | U         | 1.0 |     | ug/L |   |          | 11/11/14 11:40 | 1       |
| Toluene        | 1.0    | U         | 1.0 |     | ug/L |   |          | 11/11/14 11:40 | 1       |
| Xylenes, Total | 2.0    | U         | 2.0 |     | ug/L |   |          | 11/11/14 11:40 | 1       |
|                |        |           |     |     |      |   |          |                |         |

MB MB Limits Surrogate Qualifier Prepared Dil Fac %Recovery Analyzed 70 - 130 Toluene-d8 (Surr) 99 11/11/14 11:40 82 70 - 130 1,2-Dichloroethane-d4 (Surr) 11/11/14 11:40 Dibromofluoromethane (Surr) 99 70 - 130 11/11/14 11:40 4-Bromofluorobenzene (Surr) 70 - 130 11/11/14 11:40 124

LCS LCS

51.5

50.1

49.9

104

Result Qualifier

ug/L

ug/L

Spike

Added

50.0

50.0

50.0

100

Lab Sample ID: LCS 680-357980/3

**Matrix: Water** 

Analyte

Benzene

Toluene

Ethylbenzene

Xylenes, Total

Analysis Batch: 357980

**Client Sample ID: Lab Control Sample** Prep Type: Total/NA

%Rec. Unit %Rec Limits 103 74 - 123 ug/L ug/L 100 78 - 125

77 - 125

80 - 124

100

104

|                              | LCS       | LCS       |          |
|------------------------------|-----------|-----------|----------|
| Surrogate                    | %Recovery | Qualifier | Limits   |
| Toluene-d8 (Surr)            | 102       |           | 70 - 130 |
| 1,2-Dichloroethane-d4 (Surr) | 105       |           | 70 - 130 |
| Dibromofluoromethane (Surr)  | 103       |           | 70 - 130 |
| 4-Bromofluorobenzene (Surr)  | 109       |           | 70 - 130 |

Lab Sample ID: LCSD 680-357980/4

**Matrix: Water** 

Analysis Batch: 357980

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

|                | Spike | LCSD   | LCSD      |      |   |      | %Rec.    |     | RPD   |
|----------------|-------|--------|-----------|------|---|------|----------|-----|-------|
| Analyte        | Added | Result | Qualifier | Unit | D | %Rec | Limits   | RPD | Limit |
| Benzene        | 50.0  | 51.8   |           | ug/L |   | 104  | 74 - 123 | 1   | 30    |
| Ethylbenzene   | 50.0  | 51.2   |           | ug/L |   | 102  | 78 - 125 | 2   | 30    |
| Toluene        | 50.0  | 49.7   |           | ug/L |   | 99   | 77 - 125 | 0   | 30    |
| Xylenes, Total | 100   | 107    |           | ug/L |   | 107  | 80 - 124 | 2   | 30    |

|                              | LCSD      | LCSD      |          |
|------------------------------|-----------|-----------|----------|
| Surrogate                    | %Recovery | Qualifier | Limits   |
| Toluene-d8 (Surr)            | 106       |           | 70 - 130 |
| 1,2-Dichloroethane-d4 (Surr) | 105       |           | 70 - 130 |
| Dibromofluoromethane (Surr)  | 104       |           | 70 - 130 |
| 4-Bromofluorobenzene (Surr)  | 108       |           | 70 - 130 |

TestAmerica Savannah

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

4

### Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-357797/10-A

**Matrix: Water** 

Analysis Batch: 358569

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 357797

|                                                                                                                | MB     | MB        |    |     |      |   |                |                |         |
|----------------------------------------------------------------------------------------------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte                                                                                                        | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Acenaphthene                                                                                                   | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/13/14 19:55 | 1       |
| Acenaphthylene                                                                                                 | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/13/14 19:55 | 1       |
| Anthracene                                                                                                     | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/13/14 19:55 | 1       |
| Benzo[a]anthracene                                                                                             | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/13/14 19:55 | 1       |
| Benzo[a]pyrene                                                                                                 | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/13/14 19:55 | 1       |
| Benzo[b]fluoranthene                                                                                           | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/13/14 19:55 | 1       |
| Benzo[g,h,i]perylene                                                                                           | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/13/14 19:55 | 1       |
| Benzo[k]fluoranthene                                                                                           | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/13/14 19:55 | 1       |
| Chrysene                                                                                                       | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/13/14 19:55 | 1       |
| Dibenz(a,h)anthracene                                                                                          | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/13/14 19:55 | 1       |
| Fluoranthene                                                                                                   | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/13/14 19:55 | 1       |
| Fluorene                                                                                                       | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/13/14 19:55 | 1       |
| Indeno[1,2,3-cd]pyrene                                                                                         | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/13/14 19:55 | 1       |
| 1-Methylnaphthalene                                                                                            | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/13/14 19:55 | 1       |
| 2-Methylnaphthalene                                                                                            | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/13/14 19:55 | 1       |
| Naphthalene                                                                                                    | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/13/14 19:55 | 1       |
| Phenanthrene                                                                                                   | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/13/14 19:55 | 1       |
| Pyrene                                                                                                         | 10     | U         | 10 |     | ug/L |   | 11/10/14 15:53 | 11/13/14 19:55 | 1       |
| I and the second se |        |           |    |     |      |   |                |                |         |

MB MB

| Surrogate              | %Recovery | Qualifier | Limits   | Pre    | pared    | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|--------|----------|----------------|---------|
| 2-Fluorobiphenyl       | 65        |           | 32 - 114 | 11/10/ | 14 15:53 | 11/13/14 19:55 | 1       |
| Nitrobenzene-d5 (Surr) | 60        |           | 30 - 117 | 11/10/ | 14 15:53 | 11/13/14 19:55 | 1       |
| Terphenvl-d14 (Surr)   | 109       |           | 10 - 132 | 11/10/ | 14 15:53 | 11/13/14 19:55 | 1       |

Lab Sample ID: LCS 680-357797/11-A

**Matrix: Water** 

Analysis Batch: 357998

| Client | Cample | ID. I | 1 a la | Camtual | Camala |
|--------|--------|-------|--------|---------|--------|
| Cilent | Sample | ו :עו | Lab    | Control | Sample |

Prep Type: Total/NA Prep Batch: 357797

| Alialysis Datcii. 33/330 |       |        |           |      |   |      | Fieb Datcii | . 331131 |
|--------------------------|-------|--------|-----------|------|---|------|-------------|----------|
|                          | Spike | LCS    | LCS       |      |   |      | %Rec.       |          |
| Analyte                  | Added | Result | Qualifier | Unit | D | %Rec | Limits      |          |
| Acenaphthene             | 100   | 59.3   |           | ug/L |   | 59   | 32 - 107    |          |
| Acenaphthylene           | 100   | 60.3   |           | ug/L |   | 60   | 10 _ 119    |          |
| Anthracene               | 100   | 66.1   |           | ug/L |   | 66   | 38 - 112    |          |
| Benzo[a]anthracene       | 100   | 66.5   |           | ug/L |   | 66   | 36 _ 115    |          |
| Benzo[a]pyrene           | 100   | 65.3   |           | ug/L |   | 65   | 13 - 120    |          |
| Benzo[b]fluoranthene     | 100   | 65.4   |           | ug/L |   | 65   | 32 _ 117    |          |
| Benzo[g,h,i]perylene     | 100   | 62.4   |           | ug/L |   | 62   | 21 _ 118    |          |
| Benzo[k]fluoranthene     | 100   | 65.7   |           | ug/L |   | 66   | 28 - 125    |          |
| Chrysene                 | 100   | 65.2   |           | ug/L |   | 65   | 36 _ 113    |          |
| Dibenz(a,h)anthracene    | 100   | 63.5   |           | ug/L |   | 64   | 32 - 115    |          |
| Fluoranthene             | 100   | 69.8   |           | ug/L |   | 70   | 41 - 113    |          |
| Fluorene                 | 100   | 62.3   |           | ug/L |   | 62   | 39 _ 115    |          |
| Indeno[1,2,3-cd]pyrene   | 100   | 56.4   |           | ug/L |   | 56   | 16 - 119    |          |
| 1-Methylnaphthalene      | 100   | 53.9   |           | ug/L |   | 54   | 26 - 94     |          |
| 2-Methylnaphthalene      | 100   | 54.4   |           | ug/L |   | 54   | 24 - 92     |          |
| Naphthalene              | 100   | 50.5   |           | ug/L |   | 50   | 24 _ 85     |          |
| Phenanthrene             | 100   | 65.1   |           | ug/L |   | 65   | 40 _ 114    |          |
| Pyrene                   | 100   | 66.6   |           | ug/L |   | 67   | 29 - 118    |          |
|                          |       |        |           |      |   |      |             |          |

TestAmerica Savannah

3

4

6

0

10

11

Project/Site: CSX Hutchinson Island VRP

Client: AMEC Environment & Infrastructure, Inc.

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-357797/11-A

**Matrix: Water** 

Analysis Batch: 357998

**Client Sample ID: Lab Control Sample** Prep Type: Total/NA

**Prep Batch: 357797** 

LCS LCS

| Surrogate              | %Recovery | Qualifier | Limits   |
|------------------------|-----------|-----------|----------|
| 2-Fluorobiphenyl       | 58        |           | 32 - 114 |
| Nitrobenzene-d5 (Surr) | 60        |           | 30 - 117 |
| Terphenyl-d14 (Surr)   | 91        |           | 10 - 132 |

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 680-358064/1-A

**Matrix: Water** 

Analysis Batch: 358678

MD MD

Client Sample ID: Method Blank

Prep Type: Total/NA

**Prep Batch: 358064** 

|         | IVID   | IVID      |    |     |      |   |                |                |         |
|---------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic | 20     | U         | 20 |     | ug/L |   | 11/11/14 10:47 | 11/13/14 19:36 | 1       |
| Lead    | 10     | U         | 10 |     | ug/L |   | 11/11/14 10:47 | 11/13/14 19:36 | 1       |
| Nickel  | 40     | U         | 40 |     | ug/L |   | 11/11/14 10:47 | 11/13/14 19:36 | 1       |
| Zinc    | 20     | U         | 20 |     | ug/L |   | 11/11/14 10:47 | 11/13/14 19:36 | 1       |

Lab Sample ID: LCS 680-358064/2-A

**Matrix: Water** 

Analysis Batch: 358678

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA

Prep Batch: 358064

|         | Spike   | LCS    | LCS       |      |   |      | %Rec.    |       |
|---------|---------|--------|-----------|------|---|------|----------|-------|
| Analyte | Added   | Result | Qualifier | Unit | D | %Rec | Limits   |       |
| Arsenic | <br>100 | 101    |           | ug/L |   | 101  | 80 - 120 | <br>_ |
| Lead    | 500     | 492    |           | ug/L |   | 98   | 80 - 120 |       |
| Nickel  | 100     | 101    |           | ug/L |   | 101  | 80 - 120 |       |
| Zinc    | 100     | 104    |           | ug/L |   | 104  | 80 - 120 |       |

Lab Sample ID: MB 680-358284/1-A

**Matrix: Water** 

Analysis Batch: 358681

Client Sample ID: Method Blank

Prep Type: Total/NA

**Prep Batch: 358284** 

|          | MB     | MB        |    |     |      |   |                | •              |         |
|----------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte  | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic  | 20     | U         | 20 |     | ug/L |   | 11/12/14 10:58 | 11/13/14 13:06 | 1       |
| Chromium | 10     | U         | 10 |     | ug/L |   | 11/12/14 10:58 | 11/13/14 13:06 | 1       |
| Lead     | 10     | U         | 10 |     | ug/L |   | 11/12/14 10:58 | 11/13/14 13:06 | 1       |
| Nickel   | 40     | U         | 40 |     | ug/L |   | 11/12/14 10:58 | 11/13/14 13:06 | 1       |
| Zinc     | 20     | U         | 20 |     | ug/L |   | 11/12/14 10:58 | 11/13/14 13:06 | 1       |

Lab Sample ID: LCS 680-358284/2-A

**Matrix: Water** 

Analysis Batch: 358681

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA

**Prep Batch: 358284** 

| •        | Spike | LCS    | LCS            |        | %Rec.    |  |
|----------|-------|--------|----------------|--------|----------|--|
| Analyte  | Added | Result | Qualifier Unit | D %Rec | Limits   |  |
| Arsenic  | 100   | 97.9   | ug/L           | 98     | 80 - 120 |  |
| Chromium | 100   | 101    | ug/L           | 101    | 80 - 120 |  |
| Lead     | 500   | 488    | ug/L           | 98     | 80 - 120 |  |
| Nickel   | 100   | 99.9   | ug/L           | 100    | 80 - 120 |  |
| 7inc     | 100   | 101    | ua/L           | 101    | 80 - 120 |  |

TestAmerica Savannah

11/18/2014

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

Method: 310.1 - Alkalinity

Lab Sample ID: MB 680-358636/5

Client Sample ID: Method Blank Prep Type: Total/NA

**Matrix: Water** Analysis Batch: 358636

мв мв

Result Qualifier RL RL Unit D Analyzed Dil Fac Analyte Prepared 5.0 11/13/14 15:10 Alkalinity 5.0 U mg/L

Lab Sample ID: LCS 680-358636/6 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 358636

LCS LCS %Rec. Spike Added Analyte Result Qualifier Unit %Rec Limits Alkalinity 250 236 mg/L 94 80 - 120

Lab Sample ID: LCSD 680-358636/32 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

**Matrix: Water** 

Analysis Batch: 358636

Spike LCSD LCSD %Rec. RPD Analyte Added Result Qualifier Unit D %Rec Limits **RPD** Limit 250 228 80 - 120 Alkalinity mg/L

Lab Sample ID: 680-107032-4 DU Client Sample ID: SW-04\_11062014\_HIGH Prep Type: Total/NA

**Matrix: Water** 

Analysis Batch: 358636

DU DU RPD Sample Sample Result Qualifier Analyte Result Qualifier Unit Limit 58 mg/L Alkalinity 59.9 30

Lab Sample ID: MB 680-358981/5 Client Sample ID: Method Blank Prep Type: Total/NA

**Matrix: Water** 

Analysis Batch: 358981

MR MR

Result Qualifier RL Analyte RL Unit D Dil Fac Prepared Analyzed 5.0 Alkalinity 5.0 U mg/L 11/15/14 16:11

Lab Sample ID: LCS 680-358981/6 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

**Matrix: Water** 

Analysis Batch: 358981

Spike LCS LCS %Rec. Result Qualifier Added Analyte Unit %Rec Limits 250 98 Alkalinity 246 mg/L 80 - 120

Lab Sample ID: LCSD 680-358981/30 Client Sample ID: Lab Control Sample Dup

**Matrix: Water** 

Analysis Batch: 358981

LCSD LCSD RPD Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Alkalinity 250 252 mg/L 101 80 - 120

TestAmerica Savannah

Prep Type: Total/NA

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

### Method: 350.1 - Nitrogen, Ammonia

Lab Sample ID: MB 680-359110/11 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 359110

мв мв Result Qualifier Analyte RLMDL Unit D Dil Fac Prepared Analyzed 0.050 11/15/14 13:13 Ammonia 0.050 U mg/L

Lab Sample ID: LCS 680-359110/24 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 359110

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits Ammonia 1.00 1.00 mg/L 100 90 - 110

Lab Sample ID: 680-107032-10 MS Client Sample ID: PDMW-52\_11062014 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 359110

Spike MS MS %Rec. Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Ammonia 0.90 1.00 2.33 F1 144 mg/L 90 - 110

Lab Sample ID: 680-107032-10 MSD Client Sample ID: PDMW-52\_11062014 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 359110

RPD Sample Sample Spike MSD MSD %Rec. Result Qualifier Added Analyte Result Qualifier Unit %Rec Limits Limit 0.90 1.00 2.40 F1 mg/L Ammonia 150 90 - 110 30

Lab Sample ID: 680-107032-18 DU Client Sample ID: ERB-02 11062014 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 359110

Sample Sample DU DU RPD Result Qualifier RPD Analyte Result Qualifier Unit Limit 0.052 0.050 Ū Ammonia mg/L 30

### Method: 353.2 - Nitrogen, Nitrate-Nitrite

Lab Sample ID: MB 680-357560/13 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 357560

мв мв Result Qualifier RLAnalyte MDL Unit Prepared Analyzed Dil Fac Nitrate as N 0.050 U 0.050 mg/L 11/07/14 11:39

Lab Sample ID: LCS 680-357560/16 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

**Matrix: Water** 

Analysis Batch, 257500

| Allalysis Batch. 357500 |       |                |         |        |          |  |
|-------------------------|-------|----------------|---------|--------|----------|--|
|                         | Spike | LCS LCS        |         |        | %Rec.    |  |
| Analyte                 | Added | Result Qualifi | er Unit | D %Rec | Limits   |  |
| Nitrate as N            | 0.500 | 0.474          | mg/L    | 95     | 75 - 125 |  |

### **QC Sample Results**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-107032-1

| Method: 353.2 - Nitrogen | , Nitrate-Nitrite | (Continued) |
|--------------------------|-------------------|-------------|
|--------------------------|-------------------|-------------|

Lab Sample ID: 680-107032-1 MS Client Sample ID: SW-01\_11062014\_HIGH **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 357560

Sample Sample Spike MS MS %Rec. Result Qualifier Added Analyte Result Qualifier %Rec Limits Unit Nitrate as N 0.25 0.500 87 75 - 125 0.690 mg/L

Lab Sample ID: 680-107032-1 MSD Client Sample ID: SW-01\_11062014\_HIGH **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 357560

Sample Sample Spike MSD MSD %Rec. RPD Analyte Result Qualifier Added Result Qualifier Limits Limit Unit RPD Nitrate as N 0.25 0.500 0.691 mg/L 87 75 - 125

Lab Sample ID: 680-107032-2 DU Client Sample ID: SW-02\_11062014\_HIGH **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 357560

DU DU RPD Sample Sample Result Qualifier Limit Analyte Result Qualifier Unit RPD Nitrate as N 0.24 0.237 mg/L 30

# **QC Association Summary**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-107032-1

#### **GC/MS VOA**

Analysis Batch: 357980

| Lab Sample ID     | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|-------------------|------------------------|-----------|--------|--------|------------|
| 680-107032-16     | FB-01_11062014         | Total/NA  | Water  | 8260B  |            |
| 680-107032-17     | ERB-01_11062014        | Total/NA  | Water  | 8260B  |            |
| 680-107032-19     | TRIP-BLANK_11062014    | Total/NA  | Water  | 8260B  |            |
| LCS 680-357980/3  | Lab Control Sample     | Total/NA  | Water  | 8260B  |            |
| LCSD 680-357980/4 | Lab Control Sample Dup | Total/NA  | Water  | 8260B  |            |
| MB 680-357980/7   | Method Blank           | Total/NA  | Water  | 8260B  |            |

### GC/MS Semi VOA

**Prep Batch: 357797** 

| Lab Sample ID       | Client Sample ID   | Prep Type | Matrix | Method | Prep Batc |
|---------------------|--------------------|-----------|--------|--------|-----------|
| 680-107032-16       | FB-01_11062014     | Total/NA  | Water  | 3520C  | _         |
| 680-107032-17       | ERB-01_11062014    | Total/NA  | Water  | 3520C  |           |
| 680-107032-18       | ERB-02_11062014    | Total/NA  | Water  | 3520C  |           |
| LCS 680-357797/11-A | Lab Control Sample | Total/NA  | Water  | 3520C  |           |
| MB 680-357797/10-A  | Method Blank       | Total/NA  | Water  | 3520C  |           |

46

### Analysis Batch: 357998

| Lab Sample ID       | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|---------------------|--------------------|-----------|--------|--------|------------|
| LCS 680-357797/11-A | Lab Control Sample | Total/NA  | Water  | 8270D  | 357797     |

### Analysis Batch: 358569

| Lab Sample ID      | Client Sample ID | Prep Type | Matrix | Method | Prep Batch |
|--------------------|------------------|-----------|--------|--------|------------|
| 680-107032-16      | FB-01_11062014   | Total/NA  | Water  | 8270D  | 357797     |
| 680-107032-17      | ERB-01_11062014  | Total/NA  | Water  | 8270D  | 357797     |
| 680-107032-18      | ERB-02_11062014  | Total/NA  | Water  | 8270D  | 357797     |
| MB 680-357797/10-A | Method Blank     | Total/NA  | Water  | 8270D  | 357797     |

#### **Metals**

### **Prep Batch: 358064**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 680-107032-12      | PDMW-29D_11062014  | Total/NA  | Water  | 3010A  |            |
| 680-107032-13      | PDMW-26T_11062014  | Total/NA  | Water  | 3010A  |            |
| 680-107032-14      | DUP-03_11062014    | Total/NA  | Water  | 3010A  |            |
| 680-107032-15      | PDMW-32R_11062014  | Total/NA  | Water  | 3010A  |            |
| LCS 680-358064/2-A | Lab Control Sample | Total/NA  | Water  | 3010A  |            |
| MB 680-358064/1-A  | Method Blank       | Total/NA  | Water  | 3010A  |            |

### **Prep Batch: 358284**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batc |
|--------------------|--------------------|-----------|--------|--------|-----------|
| 680-107032-16      | FB-01_11062014     | Total/NA  | Water  | 3010A  |           |
| 680-107032-17      | ERB-01_11062014    | Total/NA  | Water  | 3010A  |           |
| 680-107032-18      | ERB-02_11062014    | Total/NA  | Water  | 3010A  |           |
| LCS 680-358284/2-A | Lab Control Sample | Total/NA  | Water  | 3010A  |           |
| MB 680-358284/1-A  | Method Blank       | Total/NA  | Water  | 3010A  |           |

#### Analysis Batch: 358678

| Lab Sample ID | Client Sample ID  | Prep Type | Matrix | Method | Prep Batch |
|---------------|-------------------|-----------|--------|--------|------------|
| 680-107032-12 | PDMW-29D_11062014 | Total/NA  | Water  | 6010C  | 358064     |

TestAmerica Savannah

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

**Metals (Continued)** 

### Analysis Batch: 358678 (Continued)

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 680-107032-13      | PDMW-26T_11062014  | Total/NA  | Water  | 6010C  | 358064     |
| 680-107032-14      | DUP-03_11062014    | Total/NA  | Water  | 6010C  | 358064     |
| 680-107032-15      | PDMW-32R_11062014  | Total/NA  | Water  | 6010C  | 358064     |
| LCS 680-358064/2-A | Lab Control Sample | Total/NA  | Water  | 6010C  | 358064     |
| MB 680-358064/1-A  | Method Blank       | Total/NA  | Water  | 6010C  | 358064     |

### Analysis Batch: 358681

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 680-107032-16      | FB-01_11062014     | Total/NA  | Water  | 6010C  | 358284     |
| 680-107032-17      | ERB-01_11062014    | Total/NA  | Water  | 6010C  | 358284     |
| 680-107032-18      | ERB-02_11062014    | Total/NA  | Water  | 6010C  | 358284     |
| LCS 680-358284/2-A | Lab Control Sample | Total/NA  | Water  | 6010C  | 358284     |
| MB 680-358284/1-A  | Method Blank       | Total/NA  | Water  | 6010C  | 358284     |

### **General Chemistry**

#### Analysis Batch: 357560

| Lab Sample ID     | Client Sample ID    | Prep Type | Matrix | Method | Prep Batcl |
|-------------------|---------------------|-----------|--------|--------|------------|
| 680-107032-1      | SW-01_11062014_HIGH | Total/NA  | Water  | 353.2  |            |
| 680-107032-1 MS   | SW-01_11062014_HIGH | Total/NA  | Water  | 353.2  |            |
| 680-107032-1 MSD  | SW-01_11062014_HIGH | Total/NA  | Water  | 353.2  |            |
| 680-107032-2      | SW-02_11062014_HIGH | Total/NA  | Water  | 353.2  |            |
| 680-107032-2 DU   | SW-02_11062014_HIGH | Total/NA  | Water  | 353.2  |            |
| 680-107032-3      | SW-03_11062014_HIGH | Total/NA  | Water  | 353.2  |            |
| 680-107032-4      | SW-04_11062014_HIGH | Total/NA  | Water  | 353.2  |            |
| 680-107032-5      | SW-01_11062014_LOW  | Total/NA  | Water  | 353.2  |            |
| 680-107032-6      | SW-02_11062014_LOW  | Total/NA  | Water  | 353.2  |            |
| 680-107032-7      | SW-03_11062014_LOW  | Total/NA  | Water  | 353.2  |            |
| 680-107032-8      | SW-04_11062014_LOW  | Total/NA  | Water  | 353.2  |            |
| 680-107032-9      | PDMW-51_11062014    | Total/NA  | Water  | 353.2  |            |
| 680-107032-10     | PDMW-52_11062014    | Total/NA  | Water  | 353.2  |            |
| 680-107032-11     | PDMW-50_11062014    | Total/NA  | Water  | 353.2  |            |
| 680-107032-12     | PDMW-29D_11062014   | Total/NA  | Water  | 353.2  |            |
| 680-107032-13     | PDMW-26T_11062014   | Total/NA  | Water  | 353.2  |            |
| 680-107032-14     | DUP-03_11062014     | Total/NA  | Water  | 353.2  |            |
| 680-107032-15     | PDMW-32R_11062014   | Total/NA  | Water  | 353.2  |            |
| 680-107032-16     | FB-01_11062014      | Total/NA  | Water  | 353.2  |            |
| 680-107032-17     | ERB-01_11062014     | Total/NA  | Water  | 353.2  |            |
| 680-107032-18     | ERB-02_11062014     | Total/NA  | Water  | 353.2  |            |
| LCS 680-357560/16 | Lab Control Sample  | Total/NA  | Water  | 353.2  |            |
| MB 680-357560/13  | Method Blank        | Total/NA  | Water  | 353.2  |            |

### Analysis Batch: 358636

| Lab Sample ID   | Client Sample ID    | Prep Type | Matrix | Method | Prep Batch |
|-----------------|---------------------|-----------|--------|--------|------------|
| 680-107032-1    | SW-01_11062014_HIGH | Total/NA  | Water  | 310.1  |            |
| 680-107032-2    | SW-02_11062014_HIGH | Total/NA  | Water  | 310.1  |            |
| 680-107032-3    | SW-03_11062014_HIGH | Total/NA  | Water  | 310.1  |            |
| 680-107032-4    | SW-04_11062014_HIGH | Total/NA  | Water  | 310.1  |            |
| 680-107032-4 DU | SW-04_11062014_HIGH | Total/NA  | Water  | 310.1  |            |
| 680-107032-5    | SW-01_11062014_LOW  | Total/NA  | Water  | 310.1  |            |

TestAmerica Savannah

Page 32 of 44

2

6

Ŏ

**4** C

11

## **QC Association Summary**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-107032-1

### **General Chemistry (Continued)**

### Analysis Batch: 358636 (Continued)

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| LCS 680-358636/6   | Lab Control Sample     | Total/NA  | Water  | 310.1  |            |
| LCSD 680-358636/32 | Lab Control Sample Dup | Total/NA  | Water  | 310.1  |            |
| MB 680-358636/5    | Method Blank           | Total/NA  | Water  | 310.1  |            |

### Analysis Batch: 358981

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| 680-107032-6       | SW-02_11062014_LOW     | Total/NA  | Water  | 310.1  |            |
| 680-107032-7       | SW-03_11062014_LOW     | Total/NA  | Water  | 310.1  |            |
| 680-107032-8       | SW-04_11062014_LOW     | Total/NA  | Water  | 310.1  |            |
| LCS 680-358981/6   | Lab Control Sample     | Total/NA  | Water  | 310.1  |            |
| LCSD 680-358981/30 | Lab Control Sample Dup | Total/NA  | Water  | 310.1  |            |
| MB 680-358981/5    | Method Blank           | Total/NA  | Water  | 310.1  |            |

### Analysis Batch: 359110

| Lab Sample ID     | Client Sample ID    | Prep Type | Matrix | Method | Prep Batc |
|-------------------|---------------------|-----------|--------|--------|-----------|
| 680-107032-1      | SW-01_11062014_HIGH | Total/NA  | Water  | 350.1  |           |
| 680-107032-2      | SW-02_11062014_HIGH | Total/NA  | Water  | 350.1  |           |
| 680-107032-3      | SW-03_11062014_HIGH | Total/NA  | Water  | 350.1  |           |
| 680-107032-4      | SW-04_11062014_HIGH | Total/NA  | Water  | 350.1  |           |
| 680-107032-5      | SW-01_11062014_LOW  | Total/NA  | Water  | 350.1  |           |
| 680-107032-6      | SW-02_11062014_LOW  | Total/NA  | Water  | 350.1  |           |
| 680-107032-7      | SW-03_11062014_LOW  | Total/NA  | Water  | 350.1  |           |
| 680-107032-8      | SW-04_11062014_LOW  | Total/NA  | Water  | 350.1  |           |
| 680-107032-9      | PDMW-51_11062014    | Total/NA  | Water  | 350.1  |           |
| 680-107032-10     | PDMW-52_11062014    | Total/NA  | Water  | 350.1  |           |
| 680-107032-10 MS  | PDMW-52_11062014    | Total/NA  | Water  | 350.1  |           |
| 680-107032-10 MSD | PDMW-52_11062014    | Total/NA  | Water  | 350.1  |           |
| 680-107032-11     | PDMW-50_11062014    | Total/NA  | Water  | 350.1  |           |
| 680-107032-12     | PDMW-29D_11062014   | Total/NA  | Water  | 350.1  |           |
| 680-107032-13     | PDMW-26T_11062014   | Total/NA  | Water  | 350.1  |           |
| 680-107032-14     | DUP-03_11062014     | Total/NA  | Water  | 350.1  |           |
| 680-107032-15     | PDMW-32R_11062014   | Total/NA  | Water  | 350.1  |           |
| 680-107032-16     | FB-01_11062014      | Total/NA  | Water  | 350.1  |           |
| 680-107032-17     | ERB-01_11062014     | Total/NA  | Water  | 350.1  |           |
| 680-107032-18     | ERB-02_11062014     | Total/NA  | Water  | 350.1  |           |
| 680-107032-18 DU  | ERB-02_11062014     | Total/NA  | Water  | 350.1  |           |
| LCS 680-359110/24 | Lab Control Sample  | Total/NA  | Water  | 350.1  |           |
| MB 680-359110/11  | Method Blank        | Total/NA  | Water  | 350.1  |           |

TestAmerica Savannah

11/18/2014

2

5

7

8

Client: AMEC Environment & Infrastructure, Inc.

Client Sample ID: SW-01\_11062014\_HIGH

Project/Site: CSX Hutchinson Island VRP

Lab Sample ID: 680-107032-1

Matrix: Water

Date Collected: 11/06/14 09:25 Date Received: 11/07/14 08:30

|           | Batch    | Batch            |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method           | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 310.1            |     | 1      |         |        | 358636 | 11/13/14 17:01 | LBH     | TAL SAV |
|           | Instrum  | ent ID: MANTECH  |     |        |         |        |        |                |         |         |
| Total/NA  | Analysis | 350.1            |     | 1      | 2 mL    | 2 mL   | 359110 | 11/15/14 13:03 | JME     | TAL SAV |
|           | Instrum  | ent ID: KONELAB1 |     |        |         |        |        |                |         |         |
| Total/NA  | Analysis | 353.2            |     | 1      | 2 mL    | 2 mL   | 357560 | 11/07/14 11:44 | GRX     | TAL SAV |
|           | Instrum  | ent ID: LACHAT2  |     |        |         |        |        |                |         |         |

Client Sample ID: SW-02\_11062014\_HIGH Lab Sample ID: 680-107032-2

Date Collected: 11/06/14 09:50 Matrix: Water

Date Received: 11/07/14 08:30

|           | Batch               | Batch                     |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|---------------------|---------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                | Method                    | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis<br>Instrum | 310.1<br>ent ID: MANTECH  |     | 1      |         |        | 358636 | 11/13/14 16:54 | LBH     | TAL SAV |
| Total/NA  | Analysis<br>Instrum | 350.1<br>ent ID: KONELAB1 |     | 1      | 2 mL    | 2 mL   | 359110 | 11/15/14 13:03 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrum | 353.2<br>ent ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 357560 | 11/07/14 11:48 | GRX     | TAL SAV |

Client Sample ID: SW-03\_11062014\_HIGH Lab Sample ID: 680-107032-3

Date Collected: 11/06/14 09:45

Date Received: 11/07/14 08:30

|           | Batch    | Batch            |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method           | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 310.1            |     | 1      |         |        | 358636 | 11/13/14 16:40 | LBH     | TAL SAV |
|           | Instrume | ent ID: MANTECH  |     |        |         |        |        |                |         |         |
| Total/NA  | Analysis | 350.1            |     | 1      | 2 mL    | 2 mL   | 359110 | 11/15/14 13:03 | JME     | TAL SAV |
|           | Instrume | ent ID: KONELAB1 |     |        |         |        |        |                |         |         |
| Total/NA  | Analysis | 353.2            |     | 1      | 2 mL    | 2 mL   | 357560 | 11/07/14 11:50 | GRX     | TAL SAV |
|           | Instrume | ent ID: LACHAT2  |     |        |         |        |        |                |         |         |

Client Sample ID: SW-04\_11062014\_HIGH Lab Sample ID: 680-107032-4

Date Collected: 11/06/14 09:20

Date Received: 11/07/14 08:30

| Prep Type Total/NA | Batch Type Analysis Instrume | Batch Method 310.1 ant ID: MANTECH | Run | Factor 1 | Initial<br>Amount | Final<br>Amount | Batch<br>Number<br>358636 | Prepared<br>or Analyzed<br>11/13/14 17:16 | Analyst<br>LBH | Lab<br>TAL SAV |
|--------------------|------------------------------|------------------------------------|-----|----------|-------------------|-----------------|---------------------------|-------------------------------------------|----------------|----------------|
| Total/NA           | Analysis<br>Instrume         | 350.1<br>ent ID: KONELAB1          |     | 1        | 2 mL              | 2 mL            | 359110                    | 11/15/14 13:13                            | JME            | TAL SAV        |
| Total/NA           | Analysis<br>Instrume         | 353.2<br>ent ID: LACHAT2           |     | 1        | 2 mL              | 2 mL            | 357560                    | 11/07/14 11:54                            | GRX            | TAL SAV        |

TestAmerica Savannah

Page 34 of 44

**Matrix: Water** 

**Matrix: Water** 

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: CSX Hutchinson Island VRP

Client Sample ID: SW-01\_11062014\_LOW Lab Sample ID: 680-107032-5

Date Collected: 11/06/14 13:45 **Matrix: Water** Date Received: 11/07/14 08:30

Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis 310.1 358636 11/13/14 16:48 LBH TAL SAV Instrument ID: MANTECH Total/NA 350.1 2 mL 359110 11/15/14 13:13 JME TAL SAV Analysis 1 2 ml Instrument ID: KONELAB1 Total/NA Analysis 353.2 1 2 ml 357560 11/07/14 11:55 GRX TAL SAV 2 ml Instrument ID: LACHAT2

Client Sample ID: SW-02\_11062014\_LOW Lab Sample ID: 680-107032-6

Date Collected: 11/06/14 14:28 Matrix: Water

Date Received: 11/07/14 08:30

|           | Batch                | Batch                     |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|---------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                    | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis<br>Instrume | 310.1<br>ent ID: MANTECH  |     | 1      |         |        | 358981 | 11/15/14 18:40 | LBH     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>ent ID: KONELAB1 |     | 1      | 2 mL    | 2 mL   | 359110 | 11/15/14 13:35 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>ent ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 357560 | 11/07/14 11:56 | GRX     | TAL SAV |

Client Sample ID: SW-03\_11062014\_LOW Lab Sample ID: 680-107032-7

Date Collected: 11/06/14 14:35 **Matrix: Water** 

Date Received: 11/07/14 08:30

|           | Batch    | Batch            |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method           | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 310.1            |     | 1      |         |        | 358981 | 11/15/14 18:48 | LBH     | TAL SAV |
|           | Instrume | ent ID: MANTECH  |     |        |         |        |        |                |         |         |
| Total/NA  | Analysis | 350.1            |     | 1      | 2 mL    | 2 mL   | 359110 | 11/15/14 13:35 | JME     | TAL SAV |
|           | Instrume | ent ID: KONELAB1 |     |        |         |        |        |                |         |         |
| Total/NA  | Analysis | 353.2            |     | 1      | 2 mL    | 2 mL   | 357560 | 11/07/14 12:00 | GRX     | TAL SAV |
|           | Instrume | ent ID: LACHAT2  |     |        |         |        |        |                |         |         |

Client Sample ID: SW-04\_11062014\_LOW Lab Sample ID: 680-107032-8

Date Collected: 11/06/14 14:15 Matrix: Water

Date Received: 11/07/14 08:30

|           | Batch                | Batch                     |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|---------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                    | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis             | 310.1                     |     | 1      |         |        | 358981 | 11/15/14 17:05 | LBH     | TAL SAV |
|           | Instrume             | ent ID: MANTECH           |     |        |         |        |        |                |         |         |
| Total/NA  | Analysis<br>Instrume | 350.1<br>ent ID: KONELAB1 |     | 1      | 2 mL    | 2 mL   | 359110 | 11/15/14 13:35 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>ent ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 357560 | 11/07/14 12:01 | GRX     | TAL SAV |

TestAmerica Savannah

Page 35 of 44

### **Lab Chronicle**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-107032-1

\_\_\_

Client Sample ID: PDMW-51\_11062014

Date Collected: 11/06/14 10:35

Lab Sample ID: 680-107032-9

Matrix: Water

Date Received: 11/07/14 08:30

|           | Batch    | Batch           |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-----------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method          | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 350.1           |     | 5      | 2 mL    | 2 mL   | 359110 | 11/15/14 13:44 | JME     | TAL SAV |
|           | Instrum  | ent ID: KONELAB | 1   |        |         |        |        |                |         |         |
| Total/NA  | Analysis | 353.2           |     | 1      | 2 mL    | 2 mL   | 357560 | 11/07/14 12:02 | GRX     | TAL SAV |
|           | Instrum  | ent ID: LACHAT2 |     |        |         |        |        |                |         |         |

Lab Sample ID: 680-107032-10

Date Collected: 11/06/14 11:45

Date Received: 11/07/14 08:30

Matrix: Water

Prepared

|           | Batch                | Batch                    |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|--------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                   | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis             | 350.1                    |     | 2      | 2 mL    | 2 mL   | 359110 | 11/15/14 13:30 | JME     | TAL SAV |
|           | Instrume             | ent ID: KONELAB          | 1   |        |         |        |        |                |         |         |
| Total/NA  | Analysis<br>Instrume | 353.2<br>ent ID: LACHAT2 |     | 1      | 2 mL    | 2 mL   | 357560 | 11/07/14 12:03 | GRX     | TAL SAV |

Client Sample ID: PDMW-50\_11062014

Client Sample ID: PDMW-52\_11062014

Date Collected: 11/06/14 10:51

Date Received: 11/07/14 08:30

| Lab Sample ID: | 680-10/032-11 |
|----------------|---------------|
|                | Matrix: Water |

Lab Sample ID: 680-107032-12

Matrix: Water

|           | Batch    | Batch           |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-----------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method          | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 350.1           |     | 10     | 2 mL    | 2 mL   | 359110 | 11/15/14 13:44 | JME     | TAL SAV |
|           | Instrume | ent ID: KONELA  | 31  |        |         |        |        |                |         |         |
| Total/NA  | Analysis | 353.2           |     | 1      | 2 mL    | 2 mL   | 357560 | 11/07/14 12:05 | GRX     | TAL SAV |
|           | Instrume | ent ID: LACHAT2 | !   |        |         |        |        |                |         |         |

Client Sample ID: PDMW-29D\_11062014

Date Collected: 11/06/14 15:37

Date Received: 11/07/14 08:30

|           | Batch                | Batch                     |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|---------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                    | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep                 | 3010A                     |     |        | 50 mL   | 50 mL  | 358064 | 11/11/14 10:47 | SP      | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 6010C<br>ent ID: ICPE     |     | 1      | 50 mL   | 50 mL  | 358678 | 11/13/14 21:28 | BCB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>ent ID: KONELAB1 |     | 10     | 2 mL    | 2 mL   | 359110 | 11/15/14 13:44 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>ent ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 357560 | 11/07/14 12:08 | GRX     | TAL SAV |

TestAmerica Savannah

Lab Sample ID: 680-107032-13

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: CSX Hutchinson Island VRP

Client Sample ID: PDMW-26T\_11062014

Date Collected: 11/06/14 16:53 Matrix: Water

Date Received: 11/07/14 08:30

|           | Batch                | Batch                     |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|---------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре                 | Method                    | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep                 | 3010A                     |     |        | 50 mL   | 50 mL  | 358064 | 11/11/14 10:47 | SP      | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 6010C<br>ent ID: ICPE     |     | 1      | 50 mL   | 50 mL  | 358678 | 11/13/14 21:32 | ВСВ     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>ent ID: KONELAB1 |     | 500    | 2 mL    | 2 mL   | 359110 | 11/15/14 14:33 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>ent ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 357560 | 11/07/14 12:09 | GRX     | TAL SAV |

Client Sample ID: DUP-03\_11062014 Lab Sample ID: 680-107032-14

Date Collected: 11/06/14 00:00 Matrix: Water

Date Received: 11/07/14 08:30

|           | Batch                | Batch                     |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|---------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                    | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep                 | 3010A                     |     |        | 50 mL   | 50 mL  | 358064 | 11/11/14 10:47 | SP      | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 6010C<br>ent ID: ICPE     |     | 1      | 50 mL   | 50 mL  | 358678 | 11/13/14 21:36 | BCB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>ent ID: KONELAB1 |     | 500    | 2 mL    | 2 mL   | 359110 | 11/15/14 14:33 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>ent ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 357560 | 11/07/14 12:10 | GRX     | TAL SAV |

Client Sample ID: PDMW-32R\_11062014 Lab Sample ID: 680-107032-15

Date Collected: 11/06/14 15:30

Date Received: 11/07/14 08:30

|           | Batch               | Batch                     |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|---------------------|---------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                | Method                    | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep                | 3010A                     |     |        | 50 mL   | 50 mL  | 358064 | 11/11/14 10:47 | SP      | TAL SAV |
| Total/NA  | Analysis<br>Instrum | 6010C<br>ent ID: ICPE     |     | 1      | 50 mL   | 50 mL  | 358678 | 11/13/14 21:41 | BCB     | TAL SAV |
| Total/NA  | Analysis<br>Instrum | 350.1<br>ent ID: KONELAB1 |     | 5      | 2 mL    | 2 mL   | 359110 | 11/15/14 13:52 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrum | 353.2<br>ent ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 357560 | 11/07/14 12:12 | GRX     | TAL SAV |

Client Sample ID: FB-01\_11062014 Lab Sample ID: 680-107032-16

Date Collected: 11/06/14 16:45 Date Received: 11/07/14 08:30

|           | Batch    | Batch        |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|----------|--------------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method       | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8260B        |     | 1      | 5 mL     | 5 mL   | 357980 | 11/11/14 15:47 | CAR     | TAL SAV |
|           | Instrum  | ent ID: CMSB |     |        |          |        |        |                |         |         |
| Total/NA  | Prep     | 3520C        |     |        | 259.2 mL | 0.5 mL | 357797 | 11/10/14 15:53 | RBS     | TAL SAV |

TestAmerica Savannah

Page 37 of 44

Matrix: Water

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: CSX Hutchinson Island VRP

Client Sample ID: FB-01\_11062014

Lab Sample ID: 680-107032-16

Matrix: Water

Date Collected: 11/06/14 16:45 Date Received: 11/07/14 08:30

|           | Batch    | Batch            |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|----------|------------------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method           | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8270D            |     | 1      | 259.2 mL | 0.5 mL | 358569 | 11/13/14 21:32 | LEG     | TAL SAV |
|           | Instrume | ent ID: CMST     |     |        |          |        |        |                |         |         |
| Total/NA  | Prep     | 3010A            |     |        | 50 mL    | 50 mL  | 358284 | 11/12/14 10:58 | SP      | TAL SAV |
| Total/NA  | Analysis | 6010C            |     | 1      | 50 mL    | 50 mL  | 358681 | 11/13/14 13:42 | BCB     | TAL SAV |
|           | Instrume | ent ID: ICPF     |     |        |          |        |        |                |         |         |
| Total/NA  | Analysis | 350.1            |     | 1      | 2 mL     | 2 mL   | 359110 | 11/15/14 13:03 | JME     | TAL SAV |
|           | Instrume | ent ID: KONELAB1 |     |        |          |        |        |                |         |         |
| Total/NA  | Analysis | 353.2            |     | 1      | 2 mL     | 2 mL   | 357560 | 11/07/14 12:13 | GRX     | TAL SAV |
|           | Instrume | ent ID: LACHAT2  |     |        |          |        |        |                |         |         |

Client Sample ID: ERB-01\_11062014

Date Collected: 11/06/14 17:00

Date Received: 11/07/14 08:30

Lab Sample ID: 680-107032-17

Matrix: Water

|           | Batch    | Batch            |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|----------|------------------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method           | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8260B            |     | 1      | 5 mL     | 5 mL   | 357980 | 11/11/14 16:09 | CAR     | TAL SAV |
|           | Instrume | ent ID: CMSB     |     |        |          |        |        |                |         |         |
| Total/NA  | Prep     | 3520C            |     |        | 254.2 mL | 0.5 mL | 357797 | 11/10/14 15:53 | RBS     | TAL SAV |
| Total/NA  | Analysis | 8270D            |     | 1      | 254.2 mL | 0.5 mL | 358569 | 11/13/14 21:56 | LEG     | TAL SAV |
|           | Instrume | ent ID: CMST     |     |        |          |        |        |                |         |         |
| Total/NA  | Prep     | 3010A            |     |        | 50 mL    | 50 mL  | 358284 | 11/12/14 10:58 | SP      | TAL SAV |
| Total/NA  | Analysis | 6010C            |     | 1      | 50 mL    | 50 mL  | 358681 | 11/13/14 13:46 | BCB     | TAL SAV |
|           | Instrume | ent ID: ICPF     |     |        |          |        |        |                |         |         |
| Total/NA  | Analysis | 350.1            |     | 1      | 2 mL     | 2 mL   | 359110 | 11/15/14 13:21 | JME     | TAL SAV |
|           | Instrume | ent ID: KONELAB1 |     |        |          |        |        |                |         |         |
| Total/NA  | Analysis | 353.2            |     | 1      | 2 mL     | 2 mL   | 357560 | 11/07/14 12:14 | GRX     | TAL SAV |
|           | Instrume | ent ID: LACHAT2  |     |        |          |        |        |                |         |         |

Client Sample ID: ERB-02\_11062014

Date Collected: 11/06/14 17:20

Date Received: 11/07/14 08:30

| Lab | Sample | ID: | 680-107032-18 |
|-----|--------|-----|---------------|
|     |        |     | Madeley Madee |

Matrix: Water

|           | Batch               | Batch                     |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|---------------------|---------------------------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Type                | Method                    | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep                | 3520C                     |     |        | 262.3 mL | 0.5 mL | 357797 | 11/10/14 15:53 | RBS     | TAL SAV |
| Total/NA  | Analysis            | 8270D                     |     | 1      | 262.3 mL | 0.5 mL | 358569 | 11/13/14 22:20 | LEG     | TAL SAV |
|           | Instrum             | ent ID: CMST              |     |        |          |        |        |                |         |         |
| Total/NA  | Prep                | 3010A                     |     |        | 50 mL    | 50 mL  | 358284 | 11/12/14 10:58 | SP      | TAL SAV |
| Total/NA  | Analysis<br>Instrum | 6010C<br>ent ID: ICPF     |     | 1      | 50 mL    | 50 mL  | 358681 | 11/13/14 13:59 | BCB     | TAL SAV |
| Total/NA  | Analysis<br>Instrum | 350.1<br>ent ID: KONELAB1 |     | 1      | 2 mL     | 2 mL   | 359110 | 11/15/14 13:03 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrum | 353.2<br>ent ID: LACHAT2  |     | 1      | 2 mL     | 2 mL   | 357560 | 11/07/14 12:15 | GRX     | TAL SAV |

TestAmerica Savannah

Page 38 of 44

11/18/2014

### **Lab Chronicle**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-107032-1

Lab Sample ID: 680-107032-19

Client Sample ID: TRIP-BLANK\_11062014

Date Collected: 11/06/14 00:00 Matrix: Water

Date Received: 11/07/14 08:30

|           | Batch    | Batch        |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|--------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method       | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8260B        |     | 1      | 5 mL    | 5 mL   | 357980 | 11/11/14 16:30 | CAR     | TAL SAV |
|           | Instrume | ent ID: CMSB |     |        |         |        |        |                |         |         |

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

# **Certification Summary**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-107032-1

#### CON WITCHIOG COD ID. COC 107002 1

### **Laboratory: TestAmerica Savannah**

The certifications listed below are applicable to this report.

| Authority | Program       | EPA Region | Certification ID | Expiration Date |
|-----------|---------------|------------|------------------|-----------------|
| Georgia   | State Program | 4          | 803              | 06-30-15        |

4

5

7

\_

10

11

## **Method Summary**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: CSX Hutchinson Island VRP

TestAmerica Job ID: 680-107032-1

| Method | Method Description                     | Protocol | Laboratory |
|--------|----------------------------------------|----------|------------|
| 8260B  | Volatile Organic Compounds (GC/MS)     | SW846    | TAL SAV    |
| 8270D  | Semivolatile Organic Compounds (GC/MS) | SW846    | TAL SAV    |
| 6010C  | Metals (ICP)                           | SW846    | TAL SAV    |
| 310.1  | Alkalinity                             | MCAWW    | TAL SAV    |
| 350.1  | Nitrogen, Ammonia                      | MCAWW    | TAL SAV    |
| 353.2  | Nitrogen, Nitrate-Nitrite              | MCAWW    | TAL SAV    |

#### **Protocol References:**

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

#### Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

3

4

5

8

9

10

11

| # 200                  | SHIPMENT INFORMATION                                                                                                                                                                                                       | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1-7991 Shipment Tracking No:                                                            | Project #: 6 - 43.00 - 53.44  | Q                            | OD Enail: harrison Agmet Com     | Pre-15-18-13-4         | COMMENTS LABUSE                                  | FOR ANALYSIS  |                                                                                                                               |                         |                              |                                     |                    |                       |                                     |                                       |                            |                          |                               |                           | 680-107032 Chain of Custody |                          |                           |              |                       | OTATE Comments & Special Analytical Requirements:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.6.20                         |                  | LAB USE: Custody Intact Custody Seal # LAB Log Number # |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------|------------------------------|----------------------------------|------------------------|--------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------|-------------------------------------|--------------------|-----------------------|-------------------------------------|---------------------------------------|----------------------------|--------------------------|-------------------------------|---------------------------|-----------------------------|--------------------------|---------------------------|--------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------|---------------------------------------------------------|
|                        | P: 912-354-7858 F:<br>  44720 P: 330-497-9<br>  D: 042-005-7477                                                                                                                                                            | :813-883-7427 F:<br>50-474-1001 F:8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                         | CONSULTANT INFORMATION        | Company: FRI                 | FELL Rd Str (                    | City, State, Zip:      | $3 = Sulfuric Acid$ Note $\Rightarrow 3   3   0$ | Pres. METHODS | 5 = Sodium Hydroxide Code<br>6 = Other_                                                                                       | oil LIQ = Liquid        | ndge (CA)                    | OI = Oil<br>SOL = Other Solid       | 77                 | Filtered Type Matrix  | Y or N Comp Code                    | × × × × × × × × × × × × × × × × × × × | ×××35 3 2 .                | × × × 3 2 2              | × × × 05 9 2                  | XXXX 35 9 N               | XXX PS 9 N                  | N 6 SOXXX                | X X X 05 0 2              | - XX 39 9 コ  | ××33 9 2              | Date Time 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Date/Time:                     | Date/Time:       | 101032                                                  |
| LABORATORY INFORMATION | Set-while it as a savanian - 5 10.2 Lakoone Avenue, savanian, L.A. 514.04 Fill Test-Manica North Canton - 410.1 Shuffel Drive NW, North Canton, 1014.4 Tast-durantica Young 1871.9 Benjamin Book Cuite 101 Tawa - 1 2020.1 | TestAmerica ranipa - 07.12 benjanim road, suite 100, fainpa, FL 33054 P. El TestAmerica Prenacola, FL 32514 P. El TestAmerica P. El | ☐ TestAmerica Burrato - 10 Hazelwood prive, ☐ TestAmerica Chicago - 2417 Bond Street, I | Proj. State (State of Origin) | Proj. City'Savanah           | lend                             | ENVIOSOS117938         | <b>Preservative Codes:</b> 3 = Sulf              | 4             | $\begin{vmatrix} 1 = \text{Hydrochloric Acid} & 5 = \text{Sodiun} \\ 2 = \text{Nitric Acid} & 6 = \text{Other} \end{vmatrix}$ | Matrix Codes: SO = Soil | GW = Groundwater SL = Sludge | WW = Waste Water SW = Surface Water |                    | ers Sample Collection | · & Date Time Sampler               | 4 11/6/14 0925/57                     | 4 11/6/14 OPSO JJ          | 7 11/6/14 OG45 PG        | 11/6/14 0920                  | n 116/14 1345 55          | 4 11/6/14 1428 JS           | 4 11 16/14 1435 PG       | 4 11/6/14 1415 PG         | 11/6/14 1035 | 4 116/14 1145 PG      | Month Mary Mary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 114 08,30 Beamed by:           | : Beceived By:   | 4 8:30 Lab Remarks: 480                                 |
|                        | CHAIN OF                                                                                                                                                                                                                   | TRANSPORTATION CUSTODY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                         | CSXT PROJECT INFORMATION      | CSXT Project Number: 94 5575 | CSXT Project Name: Hutchings Isl | CSXT Contact: Son Ross | Turnaround Time: Standard 6-13 Days              | 7             | 2 Day Rush Standard 14 Days 3 Day Rush                                                                                        | Deliverables:           | CSXT Standard (Level II)     | Level III EDD Required, Format:     | SAMPLE INFORMATION | Containers            | Sample Identification Number & Type | 4-01-11062014-HGH 40-WS               | SW-02_11062014_HIGH 4 poly | 54-03-11062014-HIGH 4214 | 5W-04_1106 2014_HIGH   4 poly | 5W-01-11062014_LOW 4 poly | 5W-02-11062014, LOW 4 poly  | 5W-03_11062014_10W 40014 | 54-04-11062014-LOW 4 with |              | RDMW-52-11062014 3ply | My Maren Marine Desertine of Marine Organization of Marine Organizat | Pinquishe English ( Date/Time: | Relinquished By: | DateTime:                                               |

Comments & Special Analytical Requirements:

X

ì

)

Z

Ì

Ì

11911

a

Shirt To

Received By:

Date/Time:

9

Z

1720 4

و Q O

メメメメ

3 3

3

৩

22

1645 PG

॥/६ मि

11/6/14 1700 PG

X

×

GW

7

4 poly 11/6/14 1530 PG

PDMW-32R-11062014

41062011-10-87

ERB-01-11062014 FRB-02-11062014 TRIP-BLANK-11062014

LAB Log Number INVOICE MUST BE SUBMITTED TO CSXT WITH ORIGINAL COC Custody Seal # Custody Intact LAB USE: Date/Time: 680-107632 Lab Remarks: 8;30 主 Date/Time: **DRN TO LABORATORY WITH SAMPLES** By Laborat

|                                        |                        | ,                | LABORATORY INFORMATION                                                                                                                                                                                       | INFORMAT                          | NO.                               |                                 |                               | l                  |                    |                                 |          |                       |            | *                                                            | #                      |        |            |
|----------------------------------------|------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------|---------------------------------|-------------------------------|--------------------|--------------------|---------------------------------|----------|-----------------------|------------|--------------------------------------------------------------|------------------------|--------|------------|
|                                        |                        | /                | TestAmerica Savannah - 5102 LaBoche Avenue. Savannah. GA 31404                                                                                                                                               | nnah - 5102 La                    | Roche Avenue                      | . Savannah.                     | 1                             | 912-354            | -7858              | P: 912-354-7858 F: 912-352-0165 | 2-0165   | Ī                     |            | ֭֓֞֞֝֜֜֜֜֓֓֓֓֓֓֓֓֓֓֓֜֜֜֓֓֓֓֡֓֜֜֓֓֡֓֓֡֓֜֡֓֡֓֡֓֡֓֡֓֡֓֡֓֡֓֡֡֡֡֡ |                        | ١      |            |
| きじし                                    | HO NIAHO               |                  | TestAmerica North Canton - 4101 Shuffel Drive NW, North Canton, OH 44720 P: 330-497-9396 F: 330-497-0772                                                                                                     | 1 Canton - 410                    | Shuffel Driv                      | e NW, North C                   | anton, 0H 447                 | 20 P:              | 330-497-           | 9396 F                          | 330-49   | -0772                 | SHIPN      | ENT                                                          | SHIPMENT INFORMATION   |        |            |
|                                        |                        | 5                | TestAmerica Tampa - 6712 Benjamin Road, Suite 100, Tampa, FL 33634 P: 813-885-7427 F: 813-885-7049                                                                                                           | a - 6712 Benja                    | min Road, Su                      | te 100, Tamp                    | a, FL 33634                   | P: 813-8           | 85-7427            | F: 813                          | -885-704 |                       |            |                                                              |                        |        |            |
| TRANSPORTATION                         | CUSTODY                | ۵                | ☐ TestAmerica Pensacola - 3355 McLemore Drive, Pensacola, FL 32514 P: 850-474-1001 F: 850-478-2671                                                                                                           | acola - 3355 M                    | cLemore Driv                      | e, Pensacola,                   | FL 32514 P:                   | 850-474            | 1-1001             | F: 850-47                       | 78-2671  |                       | Shipme     | nt Metho                                                     | Shipment Method:       | رو     |            |
|                                        |                        |                  | ☐ TestAmerica Buffalo - 10 Hazelwood Drive, Suite 106, Amherst, MY 14228 P: 716-691-2600 F: 716-961-7991 ☐ TestAmerica Chicago - 2417 Bond Street, University Park, IL 60466 P: 708-534-5200 F: 708-534-5211 | .lo - 10 Hazelw<br>tgo - 2417 Bon | ood Drive, Sui<br>d Street, Univ  | te 106, Amhe<br>ersity Park, II | rst, NY 14228<br>. 60466 P: 7 | P: 716<br>38-534-5 | -691-260<br>200 F: | 00 F: 71<br>708-534             | 6-961-7  | 991                   | Shipme     | Shipment Tracking No:                                        | ing No:                | ,<br>: |            |
| CSXT PROJECT INFORMATION               | IATION                 |                  | Proj. State (State of Origin)                                                                                                                                                                                | of Origin)                        |                                   | CONSULT                         | CONSULTANT INFORMATION        | MATI               | ا<br>ا             |                                 |          |                       | Project #: |                                                              | MC5-0084-9             | 2      | 757        |
| CSXT Project Number: 941SS75           | 115575                 |                  | Proj. City:                                                                                                                                                                                                  | 2                                 |                                   | Sompany:                        | Company: R&L                  | Ø                  | 14                 |                                 |          |                       | Š<br>Ø     | 7                                                            | PM: Pat Harrison       |        | -          |
| CSXT Project Name: Hetechinson Itsland | thinson I              | Sland            |                                                                                                                                                                                                              |                                   |                                   | 15 C                            | 13800 Ezell Rd St-100         | 1                  | 200                | 3                               | 2        |                       | Email:     | بخرا                                                         | nali:                  | 8      | 76. 2. CON |
| CSXT Contact: Sam                      | 5an Ross               | , a              | ZNV6000117938                                                                                                                                                                                                | 11799                             |                                   | N State                         | CHY Btate ZID 1/2 / ZTO 1     | F                  | 13                 | 75                              | ) (      |                       | 4          | 8)6                                                          | P678)658-1374          | 5      | j          |
| Turnaround Time:                       | Standard 6-13 Days     | Days             | Preservative Codes:                                                                                                                                                                                          |                                   | 3 = Sulfuric Acid                 | : Acid                          | No                            | <b>1</b>           | Note <b>■</b> 3 30 | 0                               |          |                       |            | _                                                            | COMMENTS               | TS     | LAB USE    |
| 1 Day Rush                             | Specify # Days         | 8                | 0 = No Preservatives                                                                                                                                                                                         |                                   | 4 = Sodium Thiosulfate            | n Thiosulfa                     | ite Pres.                     | <u>ن</u> ي<br>زي   |                    | METH                            | DDS F    | METHODS FOR ANALYSIS  | ALYSIS     |                                                              |                        |        |            |
| 2 Day Rush 3 Day Rush                  | Standard 14 Days Other | lays             | 1 = Hydrochloric Acid<br>2 = Nitric Acid                                                                                                                                                                     |                                   | 5 = Sodium Hydroxide<br>6 = Other | Hydroxid                        | е Софе                        | <u>ම</u>           |                    |                                 |          |                       |            |                                                              |                        |        |            |
| Deliverables:                          | Other Deliv:           |                  | Matrix Codes:                                                                                                                                                                                                |                                   | SO = Soil                         |                                 | LIQ = Liquid                  |                    |                    |                                 |          |                       |            |                                                              | <del>i construit</del> |        |            |
| CSXT Standard (Level II)               | ()                     |                  | GW = Groundwater                                                                                                                                                                                             |                                   | SL = Sludge                       |                                 |                               | _                  | ~                  |                                 |          |                       |            |                                                              |                        |        |            |
| Level III                              | EDD Required, Format:  | I, Format:       | WW = Waste V                                                                                                                                                                                                 |                                   | 0I = 0i                           |                                 |                               |                    | ما<br>۱۸:          |                                 |          |                       |            |                                                              |                        |        |            |
| Level IV                               |                        |                  | SW = Surface                                                                                                                                                                                                 | Water                             | SOL = Other Solid                 | er Solid                        |                               |                    | 10°                | ₹d                              |          |                       |            | ,X<br>5                                                      | _                      |        |            |
| SAMPLE INFORMATION                     |                        |                  |                                                                                                                                                                                                              |                                   |                                   |                                 |                               | Γ                  | 71<br>W            | 1                               | 1        | 1                     | -          | Ή,                                                           | ~                      |        |            |
|                                        |                        | Containers       | Sample                                                                                                                                                                                                       | e Collection                      |                                   | Filtered                        | Type Matrix                   | ΙΞ                 | ご、                 | S.                              | 1.       | ٨,                    | <b>入</b>   | 1                                                            | 1 (                    |        |            |
| Sample Identification 9                | fication               | Number &<br>Type | Date                                                                                                                                                                                                         | Time                              | Sampler                           | Y or N O                        | Comp<br>or Grab               | de <b>&lt;</b>     | )H                 | A                               | 1        | 2                     | 2          | 8<br>11                                                      | <b>a</b>               |        |            |
|                                        | Hersoll                | 3 poly           | 1119/u                                                                                                                                                                                                       | 1051 33                           | 22                                | 2                               | 9 9                           | (M)                | ×                  | N N                             | 7 X      | M-2-11 (CO) 011 + (M) | 711-6      | *                                                            | No As Pb               | Pa     |            |
|                                        | >_11062014             | 4 poly           | 11 6 [14                                                                                                                                                                                                     | 1537 73                           | 33                                | 7                               | 9                             | ( mg               | <u> </u>           | X                               |          |                       |            |                                                              |                        |        |            |
| Pomes-26T 11062014 4,00/4 11/6/144     | T_ 11062014            | 4,00gh           | गांदियभ                                                                                                                                                                                                      | 1653 23                           | 2                                 | Z                               | 5 5                           | 1 MS               | ×                  | ×                               |          |                       |            |                                                              |                        |        |            |
| DUP-03_1106 2014                       | H108 %                 | they h           | 4 poly 11/6/14                                                                                                                                                                                               | 1                                 | 75                                | Z                               | 9 9                           | ,<br>MS            | メ                  | X                               |          |                       |            |                                                              |                        |        |            |
|                                        |                        |                  | 7 2                                                                                                                                                                                                          | •                                 |                                   |                                 |                               | _                  |                    |                                 |          | İ                     | ŀ          |                                                              |                        | l      |            |

Page 43 of 44

### **Login Sample Receipt Checklist**

Client: AMEC Environment & Infrastructure, Inc.

Job Number: 680-107032-1

Login Number: 107032 List Source: TestAmerica Savannah

List Number: 1

Creator: West, Lauren H

| Question                                                                                                  | Answer | Comment |
|-----------------------------------------------------------------------------------------------------------|--------|---------|
| Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td> | N/A    |         |
| The cooler's custody seal, if present, is intact.                                                         | True   |         |
| Sample custody seals, if present, are intact.                                                             | True   |         |
| The cooler or samples do not appear to have been compromised or tampered with.                            | True   |         |
| Samples were received on ice.                                                                             | True   |         |
| Cooler Temperature is acceptable.                                                                         | True   |         |
| Cooler Temperature is recorded.                                                                           | True   |         |
| COC is present.                                                                                           | True   |         |
| COC is filled out in ink and legible.                                                                     | True   |         |
| COC is filled out with all pertinent information.                                                         | True   |         |
| Is the Field Sampler's name present on COC?                                                               | N/A    |         |
| There are no discrepancies between the containers received and the COC.                                   | True   |         |
| Samples are received within Holding Time.                                                                 | True   |         |
| Sample containers have legible labels.                                                                    | True   |         |
| Containers are not broken or leaking.                                                                     | True   |         |
| Sample collection date/times are provided.                                                                | True   |         |
| Appropriate sample containers are used.                                                                   | True   |         |
| Sample bottles are completely filled.                                                                     | True   |         |
| Sample Preservation Verified.                                                                             | N/A    |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs                          | True   |         |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").                           | N/A    |         |
| Multiphasic samples are not present.                                                                      | True   |         |
| Samples do not require splitting or compositing.                                                          | True   |         |
| Residual Chlorine Checked.                                                                                | N/A    |         |

A

5

6

8

10

11



THE LEADER IN ENVIRONMENTAL TESTING

# ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

TestAmerica Job ID: 680-112658-1

Client Project/Site: CSX GA, Hutchinson Island, VRP

#### For:

AMEC Foster Wheeler E & I, Inc 2677 Buford Highway Atlanta, Georgia 30324

Attn: Aaron Getchell

Sidal Horey

Authorized for release by: 5/21/2015 3:30:06 PM

Lisa Harvey, Project Manager II (912)354-7858 e.3221

lisa.harvey@testamericainc.com

----- LINKS -----

Review your project results through

Total Access

**Have a Question?** 



Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

### **Case Narrative**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112658-1

Job ID: 680-112658-1

**Laboratory: TestAmerica Savannah** 

Narrative

CASE NARRATIVE
Client: AMEC Foster Wheeler E & I, Inc
Project: CSX GA, Hutchinson Island, VRP
Report Number: 680-112658-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

#### RECEIPT

The samples were received on 05/19/2015; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 5.4 C.

#### AMMONIA

Samples PDMW-52\_05182015 (680-112658-1), PDMW-51\_05182015 (680-112658-2) and PDMW-49\_05182015 (680-112658-3) were analyzed for ammonia in accordance with EPA Method 350.1. The samples were analyzed on 05/20/2015.

Sample PDMW-51\_05182015 (680-112658-2)[2X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

### **NITRATE-NITRITE AS NITROGEN**

Samples PDMW-52\_05182015 (680-112658-1), PDMW-51\_05182015 (680-112658-2) and PDMW-49\_05182015 (680-112658-3) were analyzed for nitrate-nitrite as nitrogen in accordance with EPA Method 353.2. The samples were analyzed on 05/19/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

2

3

4

5

6

0

9

10

### **Definitions/Glossary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112658-1

### 4

### **Qualifiers**

### **General Chemistry**

Not Calculated

**Quality Control** 

Relative error ratio

**Practical Quantitation Limit** 

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Not detected at the reporting limit (or MDL or EDL if shown)

Relative Percent Difference, a measure of the relative difference between two points

Reporting Limit or Requested Limit (Radiochemistry)

U Indicates the analyte was analyzed for but not detected.

### **Glossary**

NC

ND PQL

QC

RL

**RER** 

**RPD** 

TEF

**TEQ** 

| Abbreviation   | These commonly used abbreviations may or may not be present in this report.                                 |
|----------------|-------------------------------------------------------------------------------------------------------------|
| ¤              | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |
| %R             | Percent Recovery                                                                                            |
| CFL            | Contains Free Liquid                                                                                        |
| CNF            | Contains no Free Liquid                                                                                     |
| DER            | Duplicate error ratio (normalized absolute difference)                                                      |
| Dil Fac        | Dilution Factor                                                                                             |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |
| DLC            | Decision level concentration                                                                                |
| MDA            | Minimum detectable activity                                                                                 |
| EDL            | Estimated Detection Limit                                                                                   |
| MDC            | Minimum detectable concentration                                                                            |
| MDL            | Method Detection Limit                                                                                      |
| ML             | Minimum Level (Dioxin)                                                                                      |

TestAmerica Savannah

# **Sample Summary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112658-1

| Lab Sample ID | Client Sample ID | Matrix | Collected      | Received       |
|---------------|------------------|--------|----------------|----------------|
| 680-112658-1  | PDMW-52_05182015 | Water  | 05/18/15 14:40 | 05/19/15 08:30 |
| 680-112658-2  | PDMW-51_05182015 | Water  | 05/18/15 16:00 | 05/19/15 08:30 |
| 680-112658-3  | PDMW-49_05182015 | Water  | 05/18/15 16:15 | 05/19/15 08:30 |

9

3

4

9

10

11

# **Method Summary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112658-1

| Method | Method Description        | Protocol | Laboratory |
|--------|---------------------------|----------|------------|
| 350.1  | Nitrogen, Ammonia         | MCAWW    | TAL SAV    |
| 353.2  | Nitrogen, Nitrate-Nitrite | MCAWW    | TAL SAV    |

#### **Protocol References:**

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

#### **Laboratory References:**

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

3

4

9

10

11

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112658-1

Date Collected: 05/18/15 14:40 Matrix: Water

Date Received: 05/19/15 08:30

| General Chemistry Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia                   | 0.58   |           | 0.25  |     | mg/L |   |          | 05/20/15 12:23 | 1       |
| Nitrate as N              | 0.050  | U         | 0.050 |     | mg/L |   |          | 05/19/15 16:29 | 1       |
| Nitrate Nitrite as N      | 0.050  | U         | 0.050 |     | mg/L |   |          | 05/19/15 16:29 | 1       |
| Nitrite as N              | 0.050  | U         | 0.050 |     | mg/L |   |          | 05/19/15 16:29 | 1       |

2

4

6

Q

9

10

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

Nitrate Nitrite as N

Nitrite as N

TestAmerica Job ID: 680-112658-1

05/19/15 16:30

05/19/15 16:30

Date Collected: 05/18/15 16:00 Matrix: Water Date Received: 05/19/15 08:30

**General Chemistry** Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac **Ammonia** 3.0 0.50 mg/L 05/20/15 12:32 Nitrate as N 0.050 U 0.050 mg/L 05/19/15 16:30

0.050

0.050

mg/L

mg/L

0.050 U

0.050 U

6

8

9

10

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112658-1

Lab Sample ID: 680-112658-3

Matrix: Water

Client Sample ID: PDMW-49\_05182015 Date Collected: 05/18/15 16:15

Date Received: 05/19/15 08:30

| General Chemistry Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia                   | 0.63   |           | 0.25  |     | mg/L |   |          | 05/20/15 12:24 | 1       |
| Nitrate as N              | 0.050  | U         | 0.050 |     | mg/L |   |          | 05/19/15 16:31 | 1       |
| Nitrate Nitrite as N      | 0.050  | U         | 0.050 |     | mg/L |   |          | 05/19/15 16:31 | 1       |
| Nitrite as N              | 0.050  | U         | 0.050 |     | mg/L |   |          | 05/19/15 16:31 | 1       |

TestAmerica Job ID: 680-112658-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

estAmenca Job ID. 000-112030-1

### Method: 350.1 - Nitrogen, Ammonia

Lab Sample ID: MB 680-384034/28

Matrix: Water

Client Sample ID: Method Blank
Prep Type: Total/NA

Analysis Batch: 384034

 Analyte
 Result Ammonia
 Qualifier Unit
 RL O.25
 MDL Mg/L
 Unit Mg/L
 D Mprepared Mg/L
 Analyzed Analyzed Mg/L
 Dil Fac Dis/20/15 12:28
 1

Lab Sample ID: LCS 680-384034/35

Client Sample ID: Lab Control Sample
Matrix: Water

Prep Type: Total/NA

Analysis Batch: 384034

 Analyte
 Added Ammonia
 Result 1.00
 Qualifier 0.994
 Unit mg/L
 D 99 90 - 110
 %Rec.

### Method: 353.2 - Nitrogen, Nitrate-Nitrite

Lab Sample ID: MB 680-383888/13

Matrix: Water

Archeric Betch: 202000

**Analysis Batch: 383888** 

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Nitrate as N 0.050 U 0.050 05/19/15 15:42 mg/L Nitrate Nitrite as N 0.050 U 0.050 mg/L 05/19/15 15:42 Nitrite as N 0.050 U 0.050 mg/L 05/19/15 15:42

Lab Sample ID: LCS 680-383888/16

Matrix: Water

Prep Type: Total/NA

**Analysis Batch: 383888** 

|                      | Spike     | LCS    | LCS       |      |   |      | %Rec.    |  |
|----------------------|-----------|--------|-----------|------|---|------|----------|--|
| Analyte              | Added     | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Nitrate as N         | <br>0.500 | 0.545  |           | mg/L |   | 109  | 75 - 125 |  |
| Nitrate Nitrite as N | 1.00      | 1.05   |           | mg/L |   | 105  | 90 - 110 |  |
| Nitrite as N         | 0.500     | 0.509  |           | mg/L |   | 102  | 90 - 110 |  |

5/21/2015

# **QC Association Summary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112658-1

### 3

### **General Chemistry**

**Analysis Batch: 383888** 

| Lab Sample ID     | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|-------------------|--------------------|-----------|--------|--------|------------|
| 680-112658-1      | PDMW-52_05182015   | Total/NA  | Water  | 353.2  |            |
| 680-112658-2      | PDMW-51_05182015   | Total/NA  | Water  | 353.2  |            |
| 680-112658-3      | PDMW-49_05182015   | Total/NA  | Water  | 353.2  |            |
| LCS 680-383888/16 | Lab Control Sample | Total/NA  | Water  | 353.2  |            |
| MB 680-383888/13  | Method Blank       | Total/NA  | Water  | 353.2  |            |

### **Analysis Batch: 384034**

| Lab Sample ID     | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|-------------------|--------------------|-----------|--------|--------|------------|
| 680-112658-1      | PDMW-52_05182015   | Total/NA  | Water  | 350.1  |            |
| 680-112658-2      | PDMW-51_05182015   | Total/NA  | Water  | 350.1  |            |
| 680-112658-3      | PDMW-49_05182015   | Total/NA  | Water  | 350.1  |            |
| LCS 680-384034/35 | Lab Control Sample | Total/NA  | Water  | 350.1  |            |
| MB 680-384034/28  | Method Blank       | Total/NA  | Water  | 350.1  |            |

-

4

5

6

Q

0

10

### **Lab Chronicle**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112658-1

Client Sample ID: PDMW-52 05182015

Lab Sample ID: 680-112658-1

**Matrix: Water** 

Date Collected: 05/18/15 14:40 Date Received: 05/19/15 08:30

|           | Batch                 | Batch                    |       | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|-----------------------|--------------------------|-------|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                  | Method                   | Run   | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis<br>Instrume  | 350.1<br>nt ID: KONELAB1 | <br>1 | 1      | 2 mL    | 2 mL   | 384034 | 05/20/15 12:23 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrumer | 353.2<br>nt ID: LACHAT2  |       | 1      | 2 mL    | 2 mL   | 383888 | 05/19/15 16:29 | GRX     | TAL SAV |

Lab Sample ID: 680-112658-2

Client Sample ID: PDMW-51\_05182015 Date Collected: 05/18/15 16:00 **Matrix: Water** 

Date Received: 05/19/15 08:30

| Prep Type<br>Total/NA | Batch Type Analysis Instrume | Batch<br>Method<br>350.1<br>nt ID: KONELAB | <b>Run</b> 1 | Pactor 2 | Initial<br>Amount<br>2 mL | Final<br>Amount<br>2 mL | Batch<br>Number<br>384034 | Prepared<br>or Analyzed<br>05/20/15 12:32 | Analyst<br>JME | Lab<br>TAL SAV |
|-----------------------|------------------------------|--------------------------------------------|--------------|----------|---------------------------|-------------------------|---------------------------|-------------------------------------------|----------------|----------------|
| Total/NA              | Analysis<br>Instrume         | 353.2<br>nt ID: LACHAT2                    |              | 1        | 2 mL                      | 2 mL                    | 383888                    | 05/19/15 16:30                            | GRX            | TAL SAV        |

Lab Sample ID: 680-112658-3 **Client Sample ID: PDMW-49\_05182015 Matrix: Water** 

Date Collected: 05/18/15 16:15

Date Received: 05/19/15 08:30

| Prep Type | Batch<br>Type        | Batch<br>Method         | Run | Dil<br>Factor | Initial<br>Amount | Final<br>Amount | Batch<br>Number | Prepared<br>or Analyzed | Analyst | Lab     |
|-----------|----------------------|-------------------------|-----|---------------|-------------------|-----------------|-----------------|-------------------------|---------|---------|
| Total/NA  | Analysis<br>Instrume | 350.1<br>nt ID: KONELAB | 1   | 1             | 2 mL              | 2 mL            | 384034          | 05/20/15 12:24          | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>nt ID: LACHAT2 |     | 1             | 2 mL              | 2 mL            | 383888          | 05/19/15 16:31          | GRX     | TAL SAV |

**Laboratory References:** 

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

TestAmerica Savannah

LAB Log Number INVOICE MUST BE SUBMITTED TO CSXT WITH ORIGINAL COC Custody Seal # Custody Intact LAB USE: Lab Remarks: Date/Time: ORIGINAL - RETURN TO LABORATORY WITH SAMPLES Received By Laboratory: 5/21/2015

patihanson@anceful, con LAB USE Comments & Special Analytical Requirements: とているこ Project # 6-4300-5245 COMMENTS PM: Pat Harrissa SHIPMENT INFORMATION (678)658-1374 Shipment Tracking No: Shipment Method: 680-112658 Chain of Custody # 000 METHODS FOR ANALYSIS 1870 EstAmerica Savannah - 5102 LaRoche Avenue, Savannah, 6A 31404 P. 912-354-7858 F. 912-352-0165 □ TestAmerica North Canton - 4101 Shuffel Drive NW, North Canton, OH 44720 P· 330-497-9996 F· 830-497-0772 ☐ TestAmerica Tampa - 6712 Benjamin Road, Sutte 100, Tampa, FL 33634 P: 813-885-7427 F: 813-885-7049 ☐ TestAmerica Pensacola - 3355 Miclemore Drive, Pensacola, FL 32514 P: 850-474-1001 F: 850-478-2671 ☐ TestAmerica Buffalo - 10 Hazalwood Drive, Suite 106, Amherst, NY 14223 P: 716-891-2600 F: 716-861-7991 Company. Armee Foster Wheeler Addes Eall Rd St. 100 City, State, Zig. of all Jay 37211 TestAmerica Chicago - 2417 Bond Street, University Park, IL 60466 P: 708-534-5200 F: 708-534-5211 0/3 0/3 X X 0 CONSULTANT INFORMATION Note 🖚 3 3 60 3 Code Pres. Code Type | Matrix LIQ = Liquid Comp or Grab 9 J S 4 = Sodium Thiosulfate 5 = Sodium Hydroxide Filtered SOL = Other Solid Sampler Y or N 3 = Sulfuric Acid Z て ス SL = Sludge SO = Soll 6 = Other الم 0 = 0 り 5/15/15/1600 96 Proj State (State of Origin) & A LABORATORY INFORMATION FNY COCO 120647 1440 Proj. City: Savarnah 2 Sample Collection 5/18/15/16/5 Time Preservative Codes: 0 = No Preservatives 1 = Hydrochloric Acid SW = Surface Water WW = Waste Water GW = Groundwater 5 18 15 Matrix Codes: 2 = Nitric Acid 07/0 Date 3 poly に置め Island 3 poly 3 poly Containers Number & EDD Required, Format: Date/Time; Date/Time: Standard 6-13 Days CHAIN OF CUSTODY Standard 14 Days Specify # Days 51028150 PDMW-51-05182015 Other Deliv: PMW-52\_05182015 CSXT Project Number: 9415575 CSXT Project Name Hatchinsen Other \_ Ross Deliverables:
CSXT Standard (Level II) **CSXT PROJECT INFORMATION** Sample Identification SAMPLE INFORMATION CSXT Contact Scm PDMW-49 Turnaround Time: 1 Day Rush 2 Day Rush 3 Day Rush Level IV Relinquished By: inquished

# **Login Sample Receipt Checklist**

Client: AMEC Foster Wheeler E & I, Inc Job Number: 680-112658-1

Login Number: 112658 List Source: TestAmerica Savannah

List Number: 1

Creator: White, Menica R

| Creator. Writte, Meriica K                                                                                |        |         |
|-----------------------------------------------------------------------------------------------------------|--------|---------|
| Question                                                                                                  | Answer | Comment |
| Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td> | N/A    |         |
| The cooler's custody seal, if present, is intact.                                                         | True   |         |
| Sample custody seals, if present, are intact.                                                             | True   |         |
| The cooler or samples do not appear to have been compromised or tampered with.                            | True   |         |
| Samples were received on ice.                                                                             | True   |         |
| Cooler Temperature is acceptable.                                                                         | True   |         |
| Cooler Temperature is recorded.                                                                           | True   |         |
| COC is present.                                                                                           | True   |         |
| COC is filled out in ink and legible.                                                                     | True   |         |
| COC is filled out with all pertinent information.                                                         | True   |         |
| Is the Field Sampler's name present on COC?                                                               | N/A    |         |
| There are no discrepancies between the containers received and the COC.                                   | True   |         |
| Samples are received within Holding Time.                                                                 | True   |         |
| Sample containers have legible labels.                                                                    | True   |         |
| Containers are not broken or leaking.                                                                     | True   |         |
| Sample collection date/times are provided.                                                                | True   |         |
| Appropriate sample containers are used.                                                                   | True   |         |
| Sample bottles are completely filled.                                                                     | True   |         |
| Sample Preservation Verified.                                                                             | True   |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs                          | True   |         |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").                           | N/A    |         |
| Multiphasic samples are not present.                                                                      | True   |         |
| Samples do not require splitting or compositing.                                                          | True   |         |
| Residual Chlorine Checked.                                                                                | N/A    |         |
|                                                                                                           |        |         |

4

5

7

9

10

11

# **Certification Summary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112658-1

# Laboratory: TestAmerica Savannah The certifications listed below are applicable to this report.

| Authority | Program       | EPA Region | Certification ID | <b>Expiration Date</b> |
|-----------|---------------|------------|------------------|------------------------|
| Georgia   | State Program | 4          | 803              | 06-30-15               |



THE LEADER IN ENVIRONMENTAL TESTING

# ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

TestAmerica Job ID: 680-112692-1

Client Project/Site: CSX GA, Hutchinson Island, VRP

### For:

AMEC Foster Wheeler E & I, Inc 2677 Buford Highway Atlanta, Georgia 30324

Attn: Aaron Getchell

Sida Hovey

Authorized for release by: 5/26/2015 3:04:36 PM

Lisa Harvey, Project Manager II (912)354-7858 e.3221

lisa.harvey@testamericainc.com

.....LINKS .....

Review your project results through
Total Access

**Have a Question?** 



Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

### **Case Narrative**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112692-1

Job ID: 680-112692-1

**Laboratory: TestAmerica Savannah** 

Narrative

CASE NARRATIVE
Client: AMEC Foster Wheeler E & I, Inc
Project: CSX GA, Hutchinson Island, VRP
Report Number: 680-112692-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

#### RECEIPT

The samples were received on 05/20/2015; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 3.4 C.

A dissolved metals container for ID: PDMW-13P\_05192015 was received, however, was not listed on COC. The lab was instructed to put this sample on hold, pending test results for total metals.

#### **METALS (ICP)**

Samples PDMW-13P\_05192015 (680-112692-1), PDMW-7P\_05192015 (680-112692-2), PDMW-32R\_05192015 (680-112692-3), TMW-4R\_05192015 (680-112692-4), PDMW-23R\_05192015 (680-112692-5), MW-3R\_05192015 (680-112692-7) and MW-2\_05192015 (680-112692-10) were analyzed for Metals (ICP) in accordance with EPA SW-846 Method 6010C. The samples were prepared and analyzed on 05/22/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### **AMMONIA**

Samples PDMW-13P\_05192015 (680-112692-1), PDMW-7P\_05192015 (680-112692-2), PDMW-32R\_05192015 (680-112692-3), TMW-4R\_05192015 (680-112692-4), PDMW-23R\_05192015 (680-112692-5), PDMW-50\_05192015 (680-112692-6), MW-3R\_05192015 (680-112692-7), PDMW-53\_05192015 (680-112692-8), PDMW-48\_05192015 (680-112692-9) and MW-2\_05192015 (680-112692-10) were analyzed for ammonia in accordance with EPA Method 350.1. The samples were analyzed on 05/21/2015.

Samples PDMW-13P\_05192015 (680-112692-1)[2X], PDMW-7P\_05192015 (680-112692-2)[10X], TMW-4R\_05192015 (680-112692-4) [5X], PDMW-50\_05192015 (680-112692-6)[5X], PDMW-48\_05192015 (680-112692-9)[5X] and MW-2\_05192015 (680-112692-10)[10X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### **NITRATE-NITRITE AS NITROGEN**

Samples PDMW-13P\_05192015 (680-112692-1), PDMW-7P\_05192015 (680-112692-2), PDMW-32R\_05192015 (680-112692-3), TMW-4R\_05192015 (680-112692-4), PDMW-23R\_05192015 (680-112692-5), PDMW-50\_05192015 (680-112692-6), MW-3R\_05192015 (680-112692-7), PDMW-53\_05192015 (680-112692-8), PDMW-48\_05192015 (680-112692-9) and MW-2\_05192015 (680-112692-10) were analyzed for nitrate-nitrite as nitrogen in accordance with EPA Method 353.2. The samples were analyzed on 05/20/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

2

-

7

\_

10

11

### **Definitions/Glossary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112692-1

### **Qualifiers**

**Metals** 

U Indicates the analyte was analyzed for but not detected.

**General Chemistry** 

Qualifier Qualifier Description

U Indicates the analyte was analyzed for but not detected.

**Glossary** 

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CNF Contains no Free Liquid

DER Duplicate error ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision level concentration
MDA Minimum detectable activity
EDL Estimated Detection Limit

MDC Minimum detectable concentration

MDL Method Detection Limit
ML Minimum Level (Dioxin)

NC Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control
RER Relative error ratio

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

4

b

1

10

11

# **Sample Summary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112692-1

| Lab Sample ID | Client Sample ID  | Matrix | Collected      | Received       |
|---------------|-------------------|--------|----------------|----------------|
| 680-112692-1  | PDMW-13P_05192015 | Water  | 05/19/15 09:43 | 05/20/15 08:15 |
| 680-112692-2  | PDMW-7P_05192015  | Water  | 05/19/15 09:00 | 05/20/15 08:15 |
| 680-112692-3  | PDMW-32R_05192015 | Water  | 05/19/15 10:56 | 05/20/15 08:15 |
| 680-112692-4  | TMW-4R_05192015   | Water  | 05/19/15 10:05 | 05/20/15 08:15 |
| 680-112692-5  | PDMW-23R_05192015 | Water  | 05/19/15 11:05 | 05/20/15 08:15 |
| 680-112692-6  | PDMW-50_05192015  | Water  | 05/19/15 14:38 | 05/20/15 08:15 |
| 680-112692-7  | MW-3R_05192015    | Water  | 05/19/15 14:50 | 05/20/15 08:15 |
| 680-112692-8  | PDMW-53_05192015  | Water  | 05/19/15 16:08 | 05/20/15 08:15 |
| 680-112692-9  | PDMW-48_05192015  | Water  | 05/19/15 16:25 | 05/20/15 08:15 |
| 680-112692-10 | MW-2_05192015     | Water  | 05/19/15 17:00 | 05/20/15 08:15 |

3

4

6

0

4.6

10

# **Method Summary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112692-1

| Method | Method Description        | Protocol | Laboratory |
|--------|---------------------------|----------|------------|
| 6010C  | Metals (ICP)              | SW846    | TAL SAV    |
| 350.1  | Nitrogen, Ammonia         | MCAWW    | TAL SAV    |
| 353.2  | Nitrogen, Nitrate-Nitrite | MCAWW    | TAL SAV    |

#### **Protocol References:**

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

#### **Laboratory References:**

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

2

A

5

6

8

9

10

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112692-1

Client Sample ID: PDMW-13P\_05192015

Date Collected: 05/19/15 09:43 Date Received: 05/20/15 08:15 Lab Sample ID: 680-112692-1

Matrix: Water

| Method: 6010C - Metals (ICP) Analyte | Result | Qualifier | RL | MDL Unit | D Prepared     | Analyzed       | Dil Fac |
|--------------------------------------|--------|-----------|----|----------|----------------|----------------|---------|
| Arsenic                              | 20     | U         | 20 | ug/L     | 05/22/15 09:35 | 05/22/15 20:30 | 1       |
| Lead                                 | 10     | U         | 10 | ug/L     | 05/22/15 09:35 | 05/22/15 20:30 | 1       |
| Nickel                               | 40     | U         | 40 | ug/L     | 05/22/15 09:35 | 05/22/15 20:30 | 1       |
| Zinc                                 | 20     | U         | 20 | ug/L     | 05/22/15 09:35 | 05/22/15 20:30 | 1       |

| <b>L</b>                     |        |           |       |     |      |   |          |                |         |
|------------------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| General Chemistry<br>Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Ammonia                      | 2.7    |           | 0.50  |     | mg/L |   |          | 05/21/15 09:08 | 2       |
| Nitrate as N                 | 0.050  | U         | 0.050 |     | mg/L |   |          | 05/20/15 14:54 | 1       |
| Nitrate Nitrite as N         | 0.050  | U         | 0.050 |     | mg/L |   |          | 05/20/15 14:54 | 1       |
| Nitrite as N                 | 0.050  | Ü         | 0.050 |     | mg/L |   |          | 05/20/15 14:54 | 1       |

3

5

6

8

9

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112692-1

3

Client Sample ID: PDMW-7P\_05192015

Date Collected: 05/19/15 09:00 Date Received: 05/20/15 08:15

**General Chemistry** 

Analyte

**Ammonia** 

Nitrate as N

Nitrite as N

Nitrate Nitrite as N

Lab Sample ID: 680-112692-2

Matrix: Water

| Method: 6010C - Metals (ICP) |        |           |    |       |        |                |                |         |
|------------------------------|--------|-----------|----|-------|--------|----------------|----------------|---------|
| Analyte                      | Result | Qualifier | RL | MDL U | Unit I | D Prepared     | Analyzed       | Dil Fac |
| Arsenic                      | 20     | U         | 20 | ī     | ug/L   | 05/22/15 09:35 | 05/22/15 21:02 | 1       |
| Lead                         | 10     | U         | 10 | ι     | ug/L   | 05/22/15 09:35 | 05/22/15 21:02 | 1       |

RL

2.5

0.050

0.050

0.050

MDL Unit

mg/L

mg/L

mg/L

mg/L

Result Qualifier

16

0.050 U

0.050 U

0.11

05/20/15 14:58

7

a

10

11

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112692-1

2

Client Sample ID: PDMW-32R\_05192015

Date Collected: 05/19/15 10:56 Date Received: 05/20/15 08:15 Lab Sample ID: 680-112692-3

Matrix: Water

| Method: 6010C - Metals (ICP) Analyte | Result | Qualifier | RL | MDL Ur | nit | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|--------|-----------|----|--------|-----|---|----------------|----------------|---------|
| Arsenic                              | 20     | U         | 20 | ug     | /L  | _ | 05/22/15 09:35 | 05/22/15 21:06 | 1       |
| Lead                                 | 10     | U         | 10 | ug     | /L  |   | 05/22/15 09:35 | 05/22/15 21:06 | 1       |
| Nickel                               | 40     | U         | 40 | ug     | /L  |   | 05/22/15 09:35 | 05/22/15 21:06 | 1       |
| Zinc                                 | 110    |           | 20 | ug     | /L  |   | 05/22/15 09:35 | 05/22/15 21:06 | 1       |

6

| General Chemistry    |        |           |       |     |      |   |          |                |         |
|----------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Analyte              | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Ammonia              | 0.70   |           | 0.25  |     | mg/L |   |          | 05/21/15 08:51 | 1       |
| Nitrate as N         | 0.050  | U         | 0.050 |     | mg/L |   |          | 05/20/15 15:03 | 1       |
| Nitrate Nitrite as N | 0.050  | U         | 0.050 |     | mg/L |   |          | 05/20/15 15:03 | 1       |
| Nitrite as N         | 0.050  | U         | 0.050 |     | mg/L |   |          | 05/20/15 15:03 | 1       |

7

8

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112692-1

Client Sample ID: TMW-4R\_05192015

Date Collected: 05/19/15 10:05 Date Received: 05/20/15 08:15 Lab Sample ID: 680-112692-4

Matrix: Water

Method: 6010C - Metals (ICP) Analyte Result Qualifier RL **MDL** Unit Dil Fac Prepared Analyzed Arsenic 20 U 20 05/22/15 09:35 05/22/15 21:11 ug/L 10 U 10 05/22/15 09:35 05/22/15 21:11 Lead ug/L

| General Chemistry<br>Analyte | Result Qu | ualifier RL | MDL Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-------------|----------|---|----------|----------------|---------|
| Ammonia                      | 6.8       | 1.3         | mg/L     |   |          | 05/21/15 10:09 | 5       |
| Nitrate as N                 | 0.050 U   | 0.050       | mg/L     |   |          | 05/20/15 15:04 | 1       |
| Nitrate Nitrite as N         | 0.050 U   | 0.050       | mg/L     |   |          | 05/20/15 15:04 | 1       |
| Nitrite as N                 | 0.081     | 0.050       | mg/L     |   |          | 05/20/15 15:04 | 1       |

6

ð

10

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112692-1

2

Client Sample ID: PDMW-23R\_05192015

Date Collected: 05/19/15 11:05 Date Received: 05/20/15 08:15 Lab Sample ID: 680-112692-5

Matrix: Water

| Method: 6010C - Metals (ICP) |        |           |    |     |      |   |                |                |         |
|------------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte                      | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                      | 20     | U         | 20 |     | ug/L |   | 05/22/15 09:35 | 05/22/15 21:15 | 1       |
| Lead                         | 10     | U         | 10 |     | ug/L |   | 05/22/15 09:35 | 05/22/15 21:15 | 1       |

6

| General Chemistry Analyte | Result Qualifier | RL    | MDL Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------|------------------|-------|----------|---|----------|----------------|---------|
| Ammonia                   | 1.5              | 0.25  | mg/L     |   |          | 05/21/15 09:17 | 1       |
| Nitrate as N              | 0.050 U          | 0.050 | mg/L     |   |          | 05/20/15 15:05 | 1       |
| Nitrate Nitrite as N      | 0.050 U          | 0.050 | mg/L     |   |          | 05/20/15 15:05 | 1       |
| Nitrite as N              | 0.050 U          | 0.050 | mg/L     |   |          | 05/20/15 15:05 | 1       |

7

0

10

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112692-1

Lab Sample ID: 680-112692-6

Matrix: Water

Client Sample ID: PDMW-50\_05192015

Date Collected: 05/19/15 14:38 Date Received: 05/20/15 08:15

| General Chemistry Analyte | Result Q | ualifier R | L MDL U | Jnit | D Prepared | Analyzed       | Dil Fac |
|---------------------------|----------|------------|---------|------|------------|----------------|---------|
| Ammonia                   | 5.9      | 1.         | 3 m     | ng/L | _          | 05/21/15 10:19 | 5       |
| Nitrate as N              | 0.050 U  | 0.05       | 0 m     | ng/L |            | 05/20/15 15:06 | 1       |
| Nitrate Nitrite as N      | 0.050 U  | 0.05       | 0 m     | ng/L |            | 05/20/15 15:06 | 1       |
| Nitrite as N              | 0.088    | 0.05       | 0 m     | ng/L |            | 05/20/15 15:06 | 1       |

3

6

8

9

44

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112692-1

Client Sample ID: MW-3R\_05192015

Date Collected: 05/19/15 14:50 Date Received: 05/20/15 08:15 Lab Sample ID: 680-112692-7

Matrix: Water

| Method: 6010C - Metals (ICP) Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Arsenic                              | 20     | U         | 20 |     | ug/L |   | 05/22/15 09:35 | 05/22/15 21:20 | 1       |
| Lead                                 | 10     | U         | 10 |     | ug/L |   | 05/22/15 09:35 | 05/22/15 21:20 | 1       |
| Nickel                               | 40     | U         | 40 |     | ug/L |   | 05/22/15 09:35 | 05/22/15 21:20 | 1       |
| Zinc                                 | 89     |           | 20 |     | ug/L |   | 05/22/15 09:35 | 05/22/15 21:20 | 1       |

| General Chemistry<br>Analyte | Result Qu | ualifier RL | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-------------|-----|------|---|----------|----------------|---------|
| Ammonia                      | 1.9       | 0.25        |     | mg/L |   |          | 05/21/15 09:17 | 1       |
| Nitrate as N                 | 0.050 U   | 0.050       |     | mg/L |   |          | 05/20/15 15:07 | 1       |
| Nitrate Nitrite as N         | 0.055     | 0.050       |     | mg/L |   |          | 05/20/15 15:07 | 1       |
| Nitrite as N                 | 0.078     | 0.050       |     | mg/L |   |          | 05/20/15 15:07 | 1       |

3

5

6

8

9

10

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112692-1

Lab Sample ID: 680-112692-8

Matrix: Water

Client Sample ID: PDMW-53\_05192015

Date Collected: 05/19/15 16:08 Date Received: 05/20/15 08:15

| General Chemistry Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia                   | 1.6    |           | 0.25  |     | mg/L |   |          | 05/21/15 09:17 | 1       |
| Nitrate as N              | 0.050  | U         | 0.050 |     | mg/L |   |          | 05/20/15 15:09 | 1       |
| Nitrate Nitrite as N      | 0.050  | U         | 0.050 |     | mg/L |   |          | 05/20/15 15:09 | 1       |
| Nitrite as N              | 0.089  |           | 0.050 |     | mg/L |   |          | 05/20/15 15:09 | 1       |

L

6

8

9

11

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112692-1

Client Sample ID: PDMW-48\_05192015

Lab Sample ID: 680-112692-9

Date Collected: 05/19/15 16:25 Date Received: 05/20/15 08:15

| • | Matrix: | Water |
|---|---------|-------|
|   |         |       |

| General Chemistry Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia                   | 8.5    |           | 1.3   |     | mg/L |   | Tropurcu | 05/21/15 09:35 | 5       |
| Nitrate as N              | 0.050  | U         | 0.050 |     | mg/L |   |          | 05/20/15 15:10 | 1       |
| Nitrate Nitrite as N      | 0.050  | U         | 0.050 |     | mg/L |   |          | 05/20/15 15:10 | 1       |
| Nitrite as N              | 0.19   |           | 0.050 |     | mg/L |   |          | 05/20/15 15:10 | 1       |

6

8

9

10

4.6

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

**Client Sample ID: MW-2\_05192015** 

TestAmerica Job ID: 680-112692-1

Lab Sample ID: 680-112692-10

**Matrix: Water** 

Date Collected: 05/19/15 17:00 Date Received: 05/20/15 08:15

| Method: 6010C - Metals (ICP) |        |           |    |     |      |   |                |                |         |
|------------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte                      | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                      | 20     | U         | 20 |     | ug/L |   | 05/22/15 09:35 | 05/22/15 21:25 | 1       |
| Lead                         | 10     | U         | 10 |     | ug/L |   | 05/22/15 09:35 | 05/22/15 21:25 | 1       |

| General Chemistry<br>Analyte | Result Qu | ualifier RL | MDL Unit | : <b>D</b> | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-------------|----------|------------|----------|----------------|---------|
| Ammonia                      | 13        | 2.5         | mg/L     |            |          | 05/21/15 09:35 | 10      |
| Nitrate as N                 | 0.050 U   | 0.050       | mg/L     | _          |          | 05/20/15 15:11 | 1       |
| Nitrate Nitrite as N         | 0.050 U   | 0.050       | mg/L     | _          |          | 05/20/15 15:11 | 1       |
| Nitrite as N                 | 0.17      | 0.050       | mg/L     | _          |          | 05/20/15 15:11 | 1       |

TestAmerica Job ID: 680-112692-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 680-384313/1-A

Lab Sample ID: LCS 680-384313/2-A

**Matrix: Water** 

Analysis Batch: 384501

**Matrix: Water** 

Client Sample ID: Method Blank Prep Type: Total/NA

**Prep Batch: 384313** 

|         | 1410   | IVID      |    |     |      |   |                |                |         |
|---------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic | 20     | U         | 20 |     | ug/L |   | 05/22/15 09:35 | 05/22/15 20:20 | 1       |
| Lead    | 10     | U         | 10 |     | ug/L |   | 05/22/15 09:35 | 05/22/15 20:20 | 1       |
| Nickel  | 40     | U         | 40 |     | ug/L |   | 05/22/15 09:35 | 05/22/15 20:20 | 1       |
| Zinc    | 20     | U         | 20 |     | ug/L |   | 05/22/15 09:35 | 05/22/15 20:20 | 1       |

MD MD

**Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 384313** 

Analysis Batch: 384501 Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Arsenic 100 96.8 ug/L 97 80 - 120 500 97 Lead 484 ug/L 80 - 120 Nickel 100 100 ug/L 100 80 - 120 Zinc 100 100 ug/L 100 80 - 120

Lab Sample ID: 680-112692-1 MS Client Sample ID: PDMW-13P\_05192015 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 384501

**Prep Batch: 384313** %Rec.

Sample Sample Spike MS MS Analyte Result Qualifier Added Result Qualifier Limits Unit %Rec Arsenic 20 Ū 100 97.4 ug/L 97 75 - 125 ug/L Lead 10 U 500 489 96 75 - 125 Nickel 40 U 100 101 ug/L 101 75 - 125 Zinc 20 U 100 105 ug/L 105 75 - 125

Lab Sample ID: 680-112692-1 MSD Client Sample ID: PDMW-13P 05192015

**Matrix: Water** 

**Analysis Batch: 384501** 

Prep Type: Total/NA Prep Batch: 384313

| , , , , , , , , , , , , , , , , , , , , | Sample | Sample    | Spike | MSD    | MSD       |      |   |      | %Rec.    |     | RPD   |
|-----------------------------------------|--------|-----------|-------|--------|-----------|------|---|------|----------|-----|-------|
| Analyte                                 | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   | RPD | Limit |
| Arsenic                                 | 20     | U         | 100   | 95.5   | -         | ug/L |   | 96   | 75 - 125 | 2   | 20    |
| Lead                                    | 10     | U         | 500   | 490    |           | ug/L |   | 96   | 75 - 125 | 0   | 20    |
| Nickel                                  | 40     | U         | 100   | 100    |           | ug/L |   | 100  | 75 - 125 | 1   | 20    |
| Zinc                                    | 20     | U         | 100   | 107    |           | ug/L |   | 107  | 75 - 125 | 2   | 20    |

Method: 350.1 - Nitrogen, Ammonia

Lab Sample ID: MB 680-384165/34

**Matrix: Water** 

**Analysis Batch: 384165** 

**Client Sample ID: Method Blank** Prep Type: Total/NA

MB MB **Analyte** Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Ammonia 0.25 U 0.25 05/21/15 09:17 mg/L

TestAmerica Savannah

TestAmerica Job ID: 680-112692-1

Prep Type: Total/NA

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

Method: 350.1 - Nitrogen, Ammonia (Continued)

Lab Sample ID: LCS 680-384165/41 **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA** 

**Analysis Batch: 384165** 

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 1.00 Ammonia 1.00 mg/L 100 90 - 110

Lab Sample ID: 680-112692-1 DU Client Sample ID: PDMW-13P 05192015

**Matrix: Water** 

**Analysis Batch: 384165** 

Sample Sample DU DU **RPD Result Qualifier** Analyte Result Qualifier **RPD** Limit Unit Ammonia 2.7 2.74 mg/L 0.4

Lab Sample ID: MB 680-384166/20 **Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA** 

Analysis Batch: 384166

MB MB

Result Qualifier RL MDL Unit Analyte Prepared Analyzed Dil Fac Ammonia 0.25 U 0.25 mg/L 05/21/15 09:25

Lab Sample ID: LCS 680-384166/41 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

**Analysis Batch: 384166** 

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Ammonia 1.00 1.00 100 mg/L 90 - 110

Method: 353.2 - Nitrogen, Nitrate-Nitrite

Lab Sample ID: MB 680-384064/16 **Client Sample ID: Method Blank Prep Type: Total/NA** 

**Matrix: Water** 

**Analysis Batch: 384064** 

|                      | MB     | MR        |       |     |      |   |          |                |         |
|----------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Analyte              | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Nitrate as N         | 0.050  | U         | 0.050 |     | mg/L |   |          | 05/20/15 14:53 | 1       |
| Nitrate Nitrite as N | 0.050  | U         | 0.050 |     | mg/L |   |          | 05/20/15 14:53 | 1       |
| Nitrite as N         | 0.050  | U         | 0.050 |     | mg/L |   |          | 05/20/15 14:53 | 1       |

Lab Sample ID: LCS 680-384064/15 **Client Sample ID: Lab Control Sample Prep Type: Total/NA** 

**Matrix: Water** 

Analysis Batch: 384064

| •                    | S  | pike | LCS    | LCS       |      |   |      | %Rec.    |       |
|----------------------|----|------|--------|-----------|------|---|------|----------|-------|
| Analyte              | Ac | dded | Result | Qualifier | Unit | D | %Rec | Limits   |       |
| Nitrate as N         |    | .500 | 0.538  |           | mg/L |   | 108  | 75 - 125 | <br>- |
| Nitrate Nitrite as N |    | 1.00 | 1.04   |           | mg/L |   | 104  | 90 - 110 |       |
| Nitrite as N         | C  | .500 | 0.504  |           | ma/L |   | 101  | 90 - 110 |       |

Lab Sample ID: 680-112692-1 MS Client Sample ID: PDMW-13P\_05192015 Prep Type: Total/NA

**Matrix: Water** 

Analysis Ratch: 384064

| Alialysis Dalcii. 304004 |        |           |       |        |           |      |   |      |          |      |
|--------------------------|--------|-----------|-------|--------|-----------|------|---|------|----------|------|
|                          | Sample | Sample    | Spike | MS     | MS        |      |   |      | %Rec.    |      |
| Analyte                  | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   |      |
| Nitrate as N             | 0.050  | U         | 0.500 | 0.535  |           | ma/L |   | 107  | 75 - 125 | <br> |

TestAmerica Savannah

Page 17 of 26

### **QC Sample Results**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112692-1

Method: 353.2 - Nitrogen, Nitrate-Nitrite (Continued)

Lab Sample ID: 680-112692-1 MS **Matrix: Water** 

**Analysis Batch: 384064** 

Client Sample ID: PDMW-13P\_05192015

**Prep Type: Total/NA** 

MS MS %Rec. Sample Sample Spike Result Qualifier Added Result Qualifier Analyte Unit D %Rec Limits Nitrate Nitrite as N 0.050 U 1.00 1.04 mg/L 104 90 - 110 0.050 U Nitrite as N 0.500 0.503 mg/L 101 90 - 110

Lab Sample ID: 680-112692-1 MSD Client Sample ID: PDMW-13P\_05192015 **Matrix: Water** 

Prep Type: Total/NA

Analysis Batch: 384064

Sample Sample Spike MSD MSD %Rec. **RPD Analyte** Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit Nitrate as N 0.050 U 0.500 0.533 107 75 - 125 0 30 mg/L Nitrate Nitrite as N 0.050 U 1.00 1.03 mg/L 103 90 - 110 0 10 Nitrite as N 0.050 U 0.500 0.502 mg/L 100 90 - 110 10

Lab Sample ID: 680-112692-2 DU Client Sample ID: PDMW-7P\_05192015 Prep Type: Total/NA

**Matrix: Water** 

Analysis Batch: 384064

| Alialysis Datcil. 304004 |        |           |        |           |      |   |        |       |  |
|--------------------------|--------|-----------|--------|-----------|------|---|--------|-------|--|
|                          | Sample | Sample    | DU     | DU        |      |   |        | RPD   |  |
| Analyte                  | Result | Qualifier | Result | Qualifier | Unit | D | RPD    | Limit |  |
| Nitrate as N             | 0.050  | U         | 0.050  | U         | mg/L |   | <br>NC | 30    |  |
| Nitrate Nitrite as N     | 0.050  | U         | 0.050  | U         | mg/L |   | NC     | 10    |  |
| Nitrite as N             | 0.11   |           | 0.107  |           | mg/L |   | 0.6    | 10    |  |

TestAmerica Job ID: 680-112692-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

### **Metals**

### **Prep Batch: 384313**

| Water<br>Water<br>Water | 3010A<br>3010A<br>3010A |                                                                                 |
|-------------------------|-------------------------|---------------------------------------------------------------------------------|
| Water                   |                         |                                                                                 |
|                         | 3010A                   |                                                                                 |
|                         |                         |                                                                                 |
| Water                   | 3010A                   |                                                                                 |
|                         | Water<br>Water<br>Water | Water         3010A           Water         3010A           Water         3010A |

### **Analysis Batch: 384501**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 680-112692-1       | PDMW-13P_05192015  | Total/NA  | Water  | 6010C  | 384313     |
| 680-112692-1 MS    | PDMW-13P_05192015  | Total/NA  | Water  | 6010C  | 384313     |
| 680-112692-1 MSD   | PDMW-13P_05192015  | Total/NA  | Water  | 6010C  | 384313     |
| 680-112692-2       | PDMW-7P_05192015   | Total/NA  | Water  | 6010C  | 384313     |
| 680-112692-3       | PDMW-32R_05192015  | Total/NA  | Water  | 6010C  | 384313     |
| 680-112692-4       | TMW-4R_05192015    | Total/NA  | Water  | 6010C  | 384313     |
| 680-112692-5       | PDMW-23R_05192015  | Total/NA  | Water  | 6010C  | 384313     |
| 680-112692-7       | MW-3R_05192015     | Total/NA  | Water  | 6010C  | 384313     |
| 680-112692-10      | MW-2_05192015      | Total/NA  | Water  | 6010C  | 384313     |
| LCS 680-384313/2-A | Lab Control Sample | Total/NA  | Water  | 6010C  | 384313     |
| MB 680-384313/1-A  | Method Blank       | Total/NA  | Water  | 6010C  | 384313     |

### **General Chemistry**

### Analysis Batch: 384064

| Lab Sample ID     | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|-------------------|--------------------|-----------|--------|--------|------------|
| 680-112692-1      | PDMW-13P_05192015  | Total/NA  | Water  | 353.2  |            |
| 680-112692-1 MS   | PDMW-13P_05192015  | Total/NA  | Water  | 353.2  |            |
| 680-112692-1 MSD  | PDMW-13P_05192015  | Total/NA  | Water  | 353.2  |            |
| 680-112692-2      | PDMW-7P_05192015   | Total/NA  | Water  | 353.2  |            |
| 680-112692-2 DU   | PDMW-7P_05192015   | Total/NA  | Water  | 353.2  |            |
| 680-112692-3      | PDMW-32R_05192015  | Total/NA  | Water  | 353.2  |            |
| 680-112692-4      | TMW-4R_05192015    | Total/NA  | Water  | 353.2  |            |
| 680-112692-5      | PDMW-23R_05192015  | Total/NA  | Water  | 353.2  |            |
| 680-112692-6      | PDMW-50_05192015   | Total/NA  | Water  | 353.2  |            |
| 680-112692-7      | MW-3R_05192015     | Total/NA  | Water  | 353.2  |            |
| 680-112692-8      | PDMW-53_05192015   | Total/NA  | Water  | 353.2  |            |
| 680-112692-9      | PDMW-48_05192015   | Total/NA  | Water  | 353.2  |            |
| 680-112692-10     | MW-2_05192015      | Total/NA  | Water  | 353.2  |            |
| LCS 680-384064/15 | Lab Control Sample | Total/NA  | Water  | 353.2  |            |
| MB 680-384064/16  | Method Blank       | Total/NA  | Water  | 353.2  |            |

### **Analysis Batch: 384165**

| Lab Sample ID   | Client Sample ID  | Prep Type | Matrix | Method | Prep Batch |
|-----------------|-------------------|-----------|--------|--------|------------|
| 680-112692-1    | PDMW-13P_05192015 | Total/NA  | Water  | 350.1  |            |
| 680-112692-1 DU | PDMW-13P_05192015 | Total/NA  | Water  | 350.1  |            |

TestAmerica Savannah

### **QC Association Summary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112692-1

### **General Chemistry (Continued)**

#### **Analysis Batch: 384165 (Continued)**

| Lab Sample ID     | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|-------------------|--------------------|-----------|--------|--------|------------|
| 680-112692-2      | PDMW-7P_05192015   | Total/NA  | Water  | 350.1  |            |
| 680-112692-3      | PDMW-32R_05192015  | Total/NA  | Water  | 350.1  |            |
| 680-112692-4      | TMW-4R_05192015    | Total/NA  | Water  | 350.1  |            |
| 680-112692-5      | PDMW-23R_05192015  | Total/NA  | Water  | 350.1  |            |
| 680-112692-6      | PDMW-50_05192015   | Total/NA  | Water  | 350.1  |            |
| 680-112692-7      | MW-3R_05192015     | Total/NA  | Water  | 350.1  |            |
| 680-112692-8      | PDMW-53_05192015   | Total/NA  | Water  | 350.1  |            |
| LCS 680-384165/41 | Lab Control Sample | Total/NA  | Water  | 350.1  |            |
| MB 680-384165/34  | Method Blank       | Total/NA  | Water  | 350.1  |            |

#### **Analysis Batch: 384166**

| Lab Sample ID     | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|-------------------|--------------------|-----------|--------|--------|------------|
| 680-112692-9      | PDMW-48_05192015   | Total/NA  | Water  | 350.1  |            |
| 680-112692-10     | MW-2_05192015      | Total/NA  | Water  | 350.1  |            |
| LCS 680-384166/41 | Lab Control Sample | Total/NA  | Water  | 350.1  |            |
| MB 680-384166/20  | Method Blank       | Total/NA  | Water  | 350.1  |            |

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

Lab Sample ID: 680-112692-1

**Matrix: Water** 

Client Sample ID: PDMW-13P\_05192015 Date Collected: 05/19/15 09:43

Date Received: 05/20/15 08:15

|           | Batch                 | Batch                    |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|-----------------------|--------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                  | Method                   | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep                  | 3010A                    |     |        | 50 mL   | 50 mL  | 384313 | 05/22/15 09:35 | BJB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume  | 6010C<br>nt ID: ICPE     |     | 1      | 50 mL   | 50 mL  | 384501 | 05/22/15 20:30 | BCB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume  | 350.1<br>nt ID: KONELAB1 |     | 2      | 2 mL    | 2 mL   | 384165 | 05/21/15 09:08 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrumer | 353.2<br>nt ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 384064 | 05/20/15 14:54 | GRX     | TAL SAV |

Lab Sample ID: 680-112692-2 Client Sample ID: PDMW-7P\_05192015

Date Collected: 05/19/15 09:00 Date Received: 05/20/15 08:15

**Matrix: Water** 

| _         | Batch                 | Batch                    |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|-----------------------|--------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                  | Method                   | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep                  | 3010A                    |     |        | 50 mL   | 50 mL  | 384313 | 05/22/15 09:35 | BJB     | TAL SAV |
| Total/NA  | Analysis<br>Instrumer | 6010C<br>nt ID: ICPE     |     | 1      | 50 mL   | 50 mL  | 384501 | 05/22/15 21:02 | BCB     | TAL SAV |
| Total/NA  | Analysis<br>Instrumer | 350.1<br>nt ID: KONELAB1 |     | 10     | 2 mL    | 2 mL   | 384165 | 05/21/15 09:08 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrumer | 353.2<br>nt ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 384064 | 05/20/15 14:58 | GRX     | TAL SAV |

Client Sample ID: PDMW-32R 05192015 Lab Sample ID: 680-112692-3

Date Collected: 05/19/15 10:56 Date Received: 05/20/15 08:15

|           | Batch                | Batch                    |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|--------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                   | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep                 | 3010A                    |     |        | 50 mL   | 50 mL  | 384313 | 05/22/15 09:35 | BJB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 6010C<br>nt ID: ICPE     |     | 1      | 50 mL   | 50 mL  | 384501 | 05/22/15 21:06 | ВСВ     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>nt ID: KONELAB1 |     | 1      | 2 mL    | 2 mL   | 384165 | 05/21/15 08:51 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>nt ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 384064 | 05/20/15 15:03 | GRX     | TAL SAV |

Lab Sample ID: 680-112692-4 Client Sample ID: TMW-4R 05192015

Date Collected: 05/19/15 10:05 Date Received: 05/20/15 08:15

| Prep Type | Batch<br>Type | Batch<br>Method | Run | Dil<br>Factor | Initial<br>Amount | Final<br>Amount | Batch<br>Number | Prepared or Analyzed | Analyst | Lab     |
|-----------|---------------|-----------------|-----|---------------|-------------------|-----------------|-----------------|----------------------|---------|---------|
| Total/NA  | Prep          | 3010A           |     |               | 50 mL             | 50 mL           | 384313          | 05/22/15 09:35       | BJB     | TAL SAV |
| Total/NA  | Analysis      | 6010C           |     | 1             | 50 mL             | 50 mL           | 384501          | 05/22/15 21:11       | BCB     | TAL SAV |
|           | Instrume      | nt ID: ICPE     |     |               |                   |                 |                 |                      |         |         |

TestAmerica Savannah

**Matrix: Water** 

**Matrix: Water** 

TestAmerica Job ID: 680-112692-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

Client Sample ID: TMW-4R\_05192015

Date Collected: 05/19/15 10:05 Date Received: 05/20/15 08:15

Lab Sample ID: 680-112692-4

**Matrix: Water** 

|           | Batch    | Batch           |             | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-----------------|-------------|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method          | Run         | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 350.1           | <del></del> | 5      | 2 mL    | 2 mL   | 384165 | 05/21/15 10:09 | JME     | TAL SAV |
|           | Instrume | nt ID: KONELAB1 | l<br>       |        |         |        |        |                |         |         |
| Total/NA  | Analysis | 353.2           |             | 1      | 2 mL    | 2 mL   | 384064 | 05/20/15 15:04 | GRX     | TAL SAV |
|           | Instrume | nt ID: LACHAT2  |             |        |         |        |        |                |         |         |

Client Sample ID: PDMW-23R\_05192015 Lab Sample ID: 680-112692-5

Date Collected: 05/19/15 11:05 Date Received: 05/20/15 08:15

**Matrix: Water** 

| Prep Type<br>Total/NA<br>Total/NA | Prep<br>Analysis | Method<br>3010A<br>6010C<br>t ID: ICPE | Run | Dil<br>Factor | Initial<br>Amount<br>50 mL<br>50 mL | Final<br>Amount<br>50 mL<br>50 mL | Batch<br>Number<br>384313<br>384501 | Prepared<br>or Analyzed<br>05/22/15 09:35<br>05/22/15 21:15 |     | Lab<br>TAL SAV<br>TAL SAV |
|-----------------------------------|------------------|----------------------------------------|-----|---------------|-------------------------------------|-----------------------------------|-------------------------------------|-------------------------------------------------------------|-----|---------------------------|
| Total/NA                          | - ,              | 350.1<br>t ID: KONELAB1                |     | 1             | 2 mL                                | 2 mL                              | 384165                              | 05/21/15 09:17                                              | JME | TAL SAV                   |
| Total/NA                          | - ,              | 353.2<br>t ID: LACHAT2                 |     | 1             | 2 mL                                | 2 mL                              | 384064                              | 05/20/15 15:05                                              | GRX | TAL SAV                   |

Client Sample ID: PDMW-50\_05192015 Lab Sample ID: 680-112692-6

Date Collected: 05/19/15 14:38 Date Received: 05/20/15 08:15 **Matrix: Water** 

|           | Batch                | Batch                                |       | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|--------------------------------------|-------|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                               | Run   | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis<br>Instrume | 350.1<br>nt ID: KONELAB <sup>2</sup> | <br>1 | 5      | 2 mL    | 2 mL   | 384165 | 05/21/15 10:19 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>nt ID: LACHAT2              |       | 1      | 2 mL    | 2 mL   | 384064 | 05/20/15 15:06 | GRX     | TAL SAV |

Client Sample ID: MW-3R\_05192015 Lab Sample ID: 680-112692-7

Date Collected: 05/19/15 14:50 Date Received: 05/20/15 08:15

|           | Batch                | Batch                    |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|--------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                   | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep                 | 3010A                    |     |        | 50 mL   | 50 mL  | 384313 | 05/22/15 09:35 | BJB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 6010C<br>nt ID: ICPE     |     | 1      | 50 mL   | 50 mL  | 384501 | 05/22/15 21:20 | BCB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>nt ID: KONELAB1 |     | 1      | 2 mL    | 2 mL   | 384165 | 05/21/15 09:17 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>nt ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 384064 | 05/20/15 15:07 | GRX     | TAL SAV |

TestAmerica Savannah

**Matrix: Water** 

TestAmerica Job ID: 680-112692-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

Client Sample ID: PDMW-53\_05192015

Date Collected: 05/19/15 16:08 Date Received: 05/20/15 08:15

Lab Sample ID: 680-112692-8

**Matrix: Water** 

**Matrix: Water** 

**Matrix: Water** 

|           | Batch    | Batch           |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-----------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method          | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 350.1           |     | 1      | 2 mL    | 2 mL   | 384165 | 05/21/15 09:17 | JME     | TAL SAV |
|           | Instrume | nt ID: KONELAB1 |     |        |         |        |        |                |         |         |
| Total/NA  | Analysis | 353.2           |     | 1      | 2 mL    | 2 mL   | 384064 | 05/20/15 15:09 | GRX     | TAL SAV |
|           | Instrume | nt ID: LACHAT2  |     |        |         |        |        |                |         |         |

Client Sample ID: PDMW-48\_05192015 Lab Sample ID: 680-112692-9

Date Collected: 05/19/15 16:25

Date Received: 05/20/15 08:15

| Dran Time | Batch    | Batch<br>Method | Dum | Dil    | Initial | Final  | Batch<br>Number | Prepared       | Amalust | l ab    |
|-----------|----------|-----------------|-----|--------|---------|--------|-----------------|----------------|---------|---------|
| Prep Type | Type     | wethod          | Run | Factor | Amount  | Amount | Number          | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 350.1           |     | 5      | 2 mL    | 2 mL   | 384166          | 05/21/15 09:35 | JME     | TAL SAV |
|           | Instrume | nt ID: KONELAE  | 31  |        |         |        |                 |                |         |         |
| Total/NA  | Analysis | 353.2           |     | 1      | 2 mL    | 2 mL   | 384064          | 05/20/15 15:10 | GRX     | TAL SAV |
|           | Instrume | nt ID: LACHAT2  | !   |        |         |        |                 |                |         |         |

**Client Sample ID: MW-2\_05192015** Lab Sample ID: 680-112692-10

Date Collected: 05/19/15 17:00

Date Received: 05/20/15 08:15

|           | Batch                | Batch                    |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|--------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                   | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep                 | 3010A                    | =   |        | 50 mL   | 50 mL  | 384313 | 05/22/15 09:35 | BJB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 6010C<br>nt ID: ICPE     |     | 1      | 50 mL   | 50 mL  | 384501 | 05/22/15 21:25 | BCB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>nt ID: KONELAB1 |     | 10     | 2 mL    | 2 mL   | 384166 | 05/21/15 09:35 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>nt ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 384064 | 05/20/15 15:11 | GRX     | TAL SAV |

#### **Laboratory References:**

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

TAL-6006 (0509) aaron.getchell@cmecfus,com LAB USE Comments & Special Analytical Requirements: Cowier 3.0(F)84° 112692 Chain of Custody Project #: 6-4300-5245 LAB Log Number betchel COMMENTS Photograp (256-1541) Fax **1**87 NVOICE MUST BE SUBMITTED TO CSXT WITH ORIGINAL COC SHIPMENT INFORMATION Shipment Tracking No. Shipment Method: PME ARKON K ついて X # 000 Custody Seal # これにて て て METHODS FOR ANALYSIS X Chromium N TestAmerica Savannah - 5102 LaRoche Avenue, Savannah, GA 31404 P. 912-354-7858 F- 912-352-0165 Company. Amee Foster Wheeler Custody Intact ಌ 3 3/63/0 37211 LAB USE: \[ \begin{align\*}
\text{Yes}
\end{align\*} Date/Time: CONSULTANT INFORMATION Note 📭 🕉 Agen Eall Rd いる。場合の大 30 Code 3 3 39 3 Pres. Code Type Matrib LIQ = Liquid Comp or Grab Z ૭ ৩ V ৩ 4 = Sodium Thiosulfate 5 = Sodium Hydroxide SOL = Other Solid Filtered YorN 3 = Sulfuric Acid Z Z Z Z Z Z Z Z Z Z MGLab Remaiks: 80 J SL = Sludge SO = Soil 6 = Other Sampler 0=0 5/19/15/1780 JJ 5/19/15/1005/96 5 1915 1438 20 5/19/15 Ogo PG 5/19/15/1056/27 5/19/15/1105 PG 5/19/15/1450 PG 5/19/15 1608 33 5/19/15 1625 PC 5/19/15 0943 33 Proj. State (State of Origin) 6.A T-10210009011 Received By: Proj City: Sayannah Received By: Received By Sample Collection Time Preservative Codes: 0 = No Preservatives 1 = Hydrochloric Acid SW = Surface Water WW = Waste Water GW = GroundwaterMatrix Codes: 2 = Nrtric Acid 03.10 Date SENSON S Containers Number & CSXT Project Name: Hutchinson Island EDD Required, Format: ole Time; Date/Time: 3 J # ナ J ろり Standard 6-13 Days Т CUSTODY CHAIN OF Standard 14 Days OPICEMAL - RETURN TO LABORATORY WITH SAMPLES Specify # Days PDMW-7P\_05192015 Other Deliv: PDMW-32R-05192015 PDMW-23R\_05192015 PDMW-13P\_05192015 TMW-4R-05192015 MW-38-05192015 PDMW-48-05 192015 PMW-50\_05192015 PDMW-53\_05192015 105192015 CSXT Project Number: 9415575 Other Ross **CSXT PROJECT INFORMATION** CSXT Standard (Level II) Sample Identification Sam SAMPLE INFORMATION Received By Laboratory. **Turnaround Time:** 1 Day Rush 2 Day Rush 3 Day Rush Deliverables: CSXT Contact: Level IV

### **Login Sample Receipt Checklist**

Client: AMEC Foster Wheeler E & I, Inc Job Number: 680-112692-1

Login Number: 112692 List Source: TestAmerica Savannah

List Number: 1

Creator: Banda, Christy S

| Question                                                                                                  | Answer | Comment                                   |
|-----------------------------------------------------------------------------------------------------------|--------|-------------------------------------------|
| Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td> | N/A    |                                           |
| The cooler's custody seal, if present, is intact.                                                         | True   |                                           |
| Sample custody seals, if present, are intact.                                                             | True   |                                           |
| The cooler or samples do not appear to have been compromised or tampered with.                            | True   |                                           |
| Samples were received on ice.                                                                             | True   |                                           |
| Cooler Temperature is acceptable.                                                                         | True   |                                           |
| Cooler Temperature is recorded.                                                                           | True   |                                           |
| COC is present.                                                                                           | True   |                                           |
| COC is filled out in ink and legible.                                                                     | True   |                                           |
| COC is filled out with all pertinent information.                                                         | True   |                                           |
| Is the Field Sampler's name present on COC?                                                               | N/A    |                                           |
| There are no discrepancies between the containers received and the COC.                                   | False  | Received extra samples not listed on COC. |
| Samples are received within Holding Time.                                                                 | True   |                                           |
| Sample containers have legible labels.                                                                    | True   |                                           |
| Containers are not broken or leaking.                                                                     | True   |                                           |
| Sample collection date/times are provided.                                                                | True   |                                           |
| Appropriate sample containers are used.                                                                   | True   |                                           |
| Sample bottles are completely filled.                                                                     | True   |                                           |
| Sample Preservation Verified.                                                                             | True   |                                           |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs                          | True   |                                           |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").                           | N/A    |                                           |
| Multiphasic samples are not present.                                                                      | True   |                                           |
| Samples do not require splitting or compositing.                                                          | True   |                                           |
| Residual Chlorine Checked.                                                                                | N/A    |                                           |
|                                                                                                           |        |                                           |

Δ

5

O

O

10

11

### **Certification Summary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112692-1

# Laboratory: TestAmerica Savannah The certifications listed below are applicable to this report.

| Authority | Program       | <b>EPA</b> Region | Certification ID | <b>Expiration Date</b> |
|-----------|---------------|-------------------|------------------|------------------------|
| Georgia   | State Program | 4                 | 803              | 06-30-15               |



THE LEADER IN ENVIRONMENTAL TESTING

## ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

TestAmerica Job ID: 680-112765-1

Client Project/Site: CSX GA, Hutchinson Island, VRP

#### For:

AMEC Foster Wheeler E & I, Inc 2677 Buford Highway Atlanta, Georgia 30324

Attn: Aaron Getchell

Sida Horey

Authorized for release by: 5/28/2015 4:46:36 PM

Lisa Harvey, Project Manager II (912)354-7858 e.3221

lisa.harvey@testamericainc.com

.....LINKS .....

Review your project results through
Total Access

**Have a Question?** 



Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

#### **Case Narrative**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112765-1

Job ID: 680-112765-1

**Laboratory: TestAmerica Savannah** 

**Narrative** 

#### **CASE NARRATIVE**

Client: AMEC Foster Wheeler E & I, Inc Project: CSX GA, Hutchinson Island, VRP Report Number: 680-112765-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

#### **RECEIPT**

The samples were received on 05/21/2015; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 0.8 C.

#### **METALS (ICP)**

Samples PDMW-10R 05202015 (680-112765-1), PDMW-45R 05202015 (680-112765-2), MW-201 05202015 (680-112765-3), DUP-03 05202015 (680-112765-4), EW-01 05202015 (680-112765-5), DUP-02 05202015 (680-112765-6), MW-1 05202015 (680-112765-7), PDMW-8R 05202015 (680-112765-8), PDMW-19P 05202015 (680-112765-9), PDMW-47 05202015 (680-112765-10), PDMW-46 05202015 (680-112765-11), PDMW-33R2 05202015 (680-112765-12) and PDMW-30P 05202015 (680-112765-13) were analyzed for Metals (ICP) in accordance with EPA SW-846 Method 6010C. The samples were prepared on 05/22/2015 and 05/26/2015 and analyzed on 05/22/2015 and 05/27/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### **AMMONIA**

Samples PDMW-10R 05202015 (680-112765-1), PDMW-45R 05202015 (680-112765-2), MW-201 05202015 (680-112765-3), DUP-03 05202015 (680-112765-4), EW-01 05202015 (680-112765-5), DUP-02 05202015 (680-112765-6), MW-1 05202015 (680-112765-7), PDMW-8R\_05202015 (680-112765-8), PDMW-19P\_05202015 (680-112765-9), PDMW-47\_05202015 (680-112765-10), PDMW-46 05202015 (680-112765-11), PDMW-33R2 05202015 (680-112765-12) and PDMW-30P 05202015 (680-112765-13) were analyzed for ammonia in accordance with EPA Method 350.1. The samples were analyzed on 05/26/2015 and 05/27/2015.

Ammonia recovery is outside criteria high for the MS of sample EW-01 05202015MS (680-112765-5) in batch 680-384906. Non-homogeneity is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits. Refer to the QC report for details.

Samples PDMW-10R 05202015 (680-112765-1)[5X], PDMW-45R 05202015 (680-112765-2)[2X], EW-01 05202015 (680-112765-5) [400X], DUP-02 05202015 (680-112765-6)[200X], MW-1 05202015 (680-112765-7)[20X], PDMW-8R 05202015 (680-112765-8)[50X], PDMW-19P\_05202015 (680-112765-9)[5X], PDMW-47\_05202015 (680-112765-10)[20X], PDMW-33R2\_05202015 (680-112765-12)[10X] and PDMW-30P\_05202015 (680-112765-13)[2X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### **NITRATE-NITRITE AS NITROGEN**

Samples PDMW-10R\_05202015 (680-112765-1), PDMW-45R\_05202015 (680-112765-2), MW-201\_05202015 (680-112765-3), DUP-03 05202015 (680-112765-4), EW-01 05202015 (680-112765-5), DUP-02 05202015 (680-112765-6), MW-1 05202015 (680-112765-7), PDMW-8R 05202015 (680-112765-8), PDMW-19P 05202015 (680-112765-9), PDMW-47 05202015 (680-112765-10), PDMW-46 05202015 (680-112765-11), PDMW-33R2 05202015 (680-112765-12) and PDMW-30P 05202015 (680-112765-13) were analyzed for nitrate-nitrite as nitrogen in accordance with EPA Method 353.2. The samples were analyzed on 05/21/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### **Definitions/Glossary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112765-1

#### **Qualifiers**

#### **Metals**

Qualifier **Qualifier Description** 

Indicates the analyte was analyzed for but not detected.

#### **General Chemistry**

| Qualifier | Qualifier | Description |
|-----------|-----------|-------------|
|           |           |             |

Ū Indicates the analyte was analyzed for but not detected. F1 MS and/or MSD Recovery is outside acceptance limits.

### **Glossary**

| Abbreviation | These commonly used abbreviations may or may not be present in this report |
|--------------|----------------------------------------------------------------------------|
|--------------|----------------------------------------------------------------------------|

¤ Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid **CNF** Contains no Free Liquid

DER Duplicate error ratio (normalized absolute difference)

Dil Fac **Dilution Factor** 

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision level concentration MDA Minimum detectable activity **EDL Estimated Detection Limit** MDC

Minimum detectable concentration

Method Detection Limit MDL ML Minimum Level (Dioxin) NC Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)

**PQL** Practical Quantitation Limit

QC **Quality Control RER** Relative error ratio

Reporting Limit or Requested Limit (Radiochemistry) RL

**RPD** Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TEF **TEQ** Toxicity Equivalent Quotient (Dioxin)

### **Sample Summary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112765-1

| Lab Sample ID | Client Sample ID   | Matrix | Collected      | Received       |
|---------------|--------------------|--------|----------------|----------------|
| 680-112765-1  | PDMW-10R_05202015  | Water  | 05/20/15 11:05 | 05/21/15 08:20 |
| 680-112765-2  | PDMW-45R_05202015  | Water  | 05/20/15 09:25 | 05/21/15 08:20 |
| 680-112765-3  | MW-201_05202015    | Water  | 05/20/15 08:55 | 05/21/15 08:20 |
| 680-112765-4  | DUP-03_05202015    | Water  | 05/20/15 00:00 | 05/21/15 08:20 |
| 680-112765-5  | EW-01_05202015     | Water  | 05/20/15 10:10 | 05/21/15 08:20 |
| 680-112765-6  | DUP-02_05202015    | Water  | 05/20/15 00:00 | 05/21/15 08:20 |
| 680-112765-7  | MW-1_05202015      | Water  | 05/20/15 10:47 | 05/21/15 08:20 |
| 680-112765-8  | PDMW-8R_05202015   | Water  | 05/20/15 13:15 | 05/21/15 08:20 |
| 680-112765-9  | PDMW-19P_05202015  | Water  | 05/20/15 13:25 | 05/21/15 08:20 |
| 680-112765-10 | PDMW-47_05202015   | Water  | 05/20/15 14:36 | 05/21/15 08:20 |
| 680-112765-11 | PDMW-46_05202015   | Water  | 05/20/15 14:50 | 05/21/15 08:20 |
| 680-112765-12 | PDMW-33R2_05202015 | Water  | 05/20/15 15:42 | 05/21/15 08:20 |
| 680-112765-13 | PDMW-30P_05202015  | Water  | 05/20/15 16:00 | 05/21/15 08:20 |

5

6

8

9

### **Method Summary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112765-1

| Method | Method Description        | Protocol | Laboratory |
|--------|---------------------------|----------|------------|
| 6010C  | Metals (ICP)              | SW846    | TAL SAV    |
| 350.1  | Nitrogen, Ammonia         | MCAWW    | TAL SAV    |
| 353.2  | Nitrogen, Nitrate-Nitrite | MCAWW    | TAL SAV    |

#### **Protocol References:**

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

#### **Laboratory References:**

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Client: AMEC Foster Wheeler E & I, Inc

Project/Site: CSX GA, Hutchinson Island, VRP

Client Sample ID: PDMW-10R\_05202015 Lab Sample ID: 680-112765-1

Date Collected: 05/20/15 11:05 **Matrix: Water** 

Date Received: 05/21/15 08:20

| Method: 6010C - Metals (ICP) Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Arsenic                              | 20     | U         | 20 |     | ug/L |   | 05/22/15 09:35 | 05/22/15 22:20 | 1       |
| Lead                                 | 10     | U         | 10 |     | ug/L |   | 05/22/15 09:35 | 05/22/15 22:20 | 1       |
| Nickel                               | 40     | U         | 40 |     | ug/L |   | 05/22/15 09:35 | 05/22/15 22:20 | 1       |

| General Chemistry Analyte | Result ( | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------|----------|-----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia                   | 7.3      |           | 1.3   |     | mg/L |   |          | 05/26/15 16:50 | 5       |
| Nitrate as N              | 0.050 l  | U         | 0.050 |     | mg/L |   |          | 05/21/15 18:14 | 1       |
| Nitrate Nitrite as N      | 0.050 l  | U         | 0.050 |     | mg/L |   |          | 05/21/15 18:14 | 1       |
| Nitrite as N              | 0.050 l  | U         | 0.050 |     | mg/L |   |          | 05/21/15 18:14 | 1       |

TestAmerica Job ID: 680-112765-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112765-1

Client Sample ID: PDMW-45R 05202015

Date Collected: 05/20/15 09:25 Date Received: 05/21/15 08:20

Lab Sample ID: 680-112765-2 **Matrix: Water** 

| Method: 6010C - Metals (ICP) |        |           |    |     |      |   |                |                |         |
|------------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte                      | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                      | 20     | U         | 20 |     | ug/L |   | 05/22/15 09:35 | 05/22/15 22:24 | 1       |
| Lead                         | 10     | U         | 10 |     | ug/L |   | 05/22/15 09:35 | 05/22/15 22:24 | 1       |
| Nickel                       | 40     | U         | 40 |     | ug/L |   | 05/22/15 09:35 | 05/22/15 22:24 | 1       |
|                              |        |           |    |     |      |   |                |                |         |

| General Chemistry Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia                   | 3.6    | -         | 0.50  |     | mg/L |   |          | 05/26/15 17:19 | 2       |
| Nitrate as N              | 0.050  | U         | 0.050 |     | mg/L |   |          | 05/21/15 18:15 | 1       |
| Nitrate Nitrite as N      | 0.050  | U         | 0.050 |     | mg/L |   |          | 05/21/15 18:15 | 1       |
| Nitrite as N              | 0.050  | U         | 0.050 |     | mg/L |   |          | 05/21/15 18:15 | 1       |

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112765-1

Lab Sample ID: 680-112765-3

Matrix: Water

Client Sample ID: MW-201\_05202015 Date Collected: 05/20/15 08:55

Date Received: 05/21/15 08:20

| Method: 6010C - Metals (ICP) Analyte | Result | Qualifier | RL | MDL Un | it D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|--------|-----------|----|--------|------|----------------|----------------|---------|
| Arsenic                              | 20     | U         | 20 | ug/    | L _  | 05/22/15 09:35 | 05/22/15 22:38 | 1       |
| Lead                                 | 10     | U         | 10 | ug/    | L    | 05/22/15 09:35 | 05/22/15 22:38 | 1       |
| Nickel                               | 40     | U         | 40 | ug/    | L    | 05/22/15 09:35 | 05/22/15 22:38 | 1       |
| Zinc                                 | 20     | U         | 20 | ug/    | L    | 05/22/15 09:35 | 05/22/15 22:38 | 1       |

| _                         |        |           |       |     |      |   |          |                |         |
|---------------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| General Chemistry Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Ammonia                   | 1.1    |           | 0.25  |     | mg/L |   |          | 05/26/15 16:15 | 1       |
| Nitrate as N              | 0.050  | U         | 0.050 |     | mg/L |   |          | 05/21/15 18:16 | 1       |
| Nitrate Nitrite as N      | 0.050  | U         | 0.050 |     | mg/L |   |          | 05/21/15 18:16 | 1       |
| Nitrite as N              | 0.050  | U         | 0.050 |     | mg/L |   |          | 05/21/15 18:16 | 1       |

3

5

7

8

9

10

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

**Client Sample ID: DUP-03\_05202015** 

TestAmerica Job ID: 680-112765-1

Lab Sample ID: 680-112765-4

Matrix: Water

Date Collected: 05/20/15 00:00

Date Received: 05/21/15 08:20

| Method: 6010C - Metals (ICP) |        |           |    |          |                |                |         |
|------------------------------|--------|-----------|----|----------|----------------|----------------|---------|
| Analyte                      | Result | Qualifier | RL | MDL Unit | D Prepared     | Analyzed       | Dil Fac |
| Arsenic                      | 20     | U         | 20 | ug/L     | 05/22/15 09:35 | 05/22/15 22:43 | 1       |
| Lead                         | 10     | U         | 10 | ug/L     | 05/22/15 09:35 | 05/22/15 22:43 | 1       |
| Nickel                       | 40     | U         | 40 | ug/L     | 05/22/15 09:35 | 05/22/15 22:43 | 1       |
| Zinc                         | 20     | U         | 20 | ug/L     | 05/22/15 09:35 | 05/22/15 22:43 | 1       |

| 2110                      | 20                                                                  | · ·                                                                                                                                                                | 20                                                                                                                                                                                                       |                                                                                                                                                                                                                                                              | ug/L                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                              | 00/22/10 00:00                                                                                                                                                                                                                                                                                                                         | 00/22/10 22.40                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| General Chemistry Analyte | Result                                                              | Qualifier                                                                                                                                                          | RL                                                                                                                                                                                                       | MDL                                                                                                                                                                                                                                                          | Unit                                                                                                                                                                                                                                     | D                                                                                                                                                                                                                                                                                                                            | Prepared                                                                                                                                                                                                                                                                                                                               | Analyzed                                                                                                                                                                                                                                                                       | Dil Fac                                                                                                                                                                                                                                                                                                                                                                                    |
| Ammonia                   | 1.1                                                                 |                                                                                                                                                                    | 0.25                                                                                                                                                                                                     |                                                                                                                                                                                                                                                              | mg/L                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                        | 05/26/15 16:20                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                          |
| Nitrate as N              | 0.050                                                               | U                                                                                                                                                                  | 0.050                                                                                                                                                                                                    |                                                                                                                                                                                                                                                              | mg/L                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                        | 05/21/15 18:17                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                          |
| Nitrate Nitrite as N      | 0.050                                                               | U                                                                                                                                                                  | 0.050                                                                                                                                                                                                    |                                                                                                                                                                                                                                                              | mg/L                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                        | 05/21/15 18:17                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                          |
| Nitrite as N              | 0.050                                                               | Ü                                                                                                                                                                  | 0.050                                                                                                                                                                                                    |                                                                                                                                                                                                                                                              | mg/L                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                        | 05/21/15 18:17                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                          |
|                           | General Chemistry Analyte Ammonia Nitrate as N Nitrate Nitrite as N | General Chemistry           Analyte         Result           Ammonia         1.1           Nitrate as N         0.050           Nitrate Nitrite as N         0.050 | General Chemistry           Analyte         Result         Qualifier           Ammonia         1.1           Nitrate as N         0.050         U           Nitrate Nitrite as N         0.050         U | General Chemistry           Analyte         Result         Qualifier         RL           Ammonia         1.1         0.25           Nitrate as N         0.050         U         0.050           Nitrate Nitrite as N         0.050         U         0.050 | General Chemistry           Analyte         Result Qualifier         RL MDL           Ammonia         1.1         0.25           Nitrate as N         0.050 U         0.050           Nitrate Nitrite as N         0.050 U         0.050 | General Chemistry           Analyte         Result         Qualifier         RL         MDL         Unit           Ammonia         1.1         0.25         mg/L           Nitrate as N         0.050         U         0.050         mg/L           Nitrate Nitrite as N         0.050         U         0.050         mg/L | General Chemistry           Analyte         Result         Qualifier         RL         MDL         Unit         D           Ammonia         1.1         0.25         mg/L           Nitrate as N         0.050         U         0.050         mg/L           Nitrate Nitrite as N         0.050         U         0.050         mg/L | General Chemistry           Analyte         Result Ammonia         Qualifier         RL D.25         MDL Unit mg/L         D Prepared           Nitrate as N         0.050 U         0.050 mg/L         mg/L           Nitrate Nitrite as N         0.050 U         0.050 mg/L | General Chemistry           Analyte         Result Qualifier         RL 0.25         MDL mg/L         D prepared 0.05/26/15 16:20           Ammonia         1.1         0.25         mg/L         05/26/15 16:20           Nitrate as N         0.050 U         0.050 mg/L         05/21/15 18:17           Nitrate Nitrite as N         0.050 U         0.050 mg/L         05/21/15 18:17 |

3

5

7

0

10

11

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112765-1

Client Sample ID: EW-01\_05202015

Lab Sample ID: 680-112765-5 Date Collected: 05/20/15 10:10 **Matrix: Water** 

Date Received: 05/21/15 08:20

| Method: 6010C - Metals (ICP) Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|--------|-----------|-------|-----|------|---|----------------|----------------|---------|
| Arsenic                              | 20     | U -       | 20    |     | ug/L |   | 05/26/15 10:40 | 05/27/15 13:36 | 1       |
| Chromium                             | 10     | U         | 10    |     | ug/L |   | 05/26/15 10:40 | 05/27/15 13:36 | 1       |
| Lead                                 | 10     | U         | 10    |     | ug/L |   | 05/26/15 10:40 | 05/27/15 13:36 | 1       |
| Nickel                               | 44     |           | 40    |     | ug/L |   | 05/26/15 10:40 | 05/27/15 13:36 | 1       |
| Zinc                                 | 190    |           | 20    |     | ug/L |   | 05/26/15 10:40 | 05/27/15 13:36 | 1       |
| General Chemistry                    |        |           |       |     |      |   |                |                |         |
| Analyte                              | Result | Qualifier | RL    | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Ammonia                              | 320    | F1        | 100   |     | mg/L |   |                | 05/27/15 10:29 | 400     |
| Nitrate as N                         | 0.063  |           | 0.050 |     | mg/L |   |                | 05/21/15 18:18 | 1       |
| Nitrate Nitrite as N                 | 0.065  |           | 0.050 |     | mg/L |   |                | 05/21/15 18:18 | 1       |
| Nitrite as N                         | 0.050  | U         | 0.050 |     | mg/L |   |                | 05/21/15 18:18 | 1       |

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112765-1

Client Sample ID: DUP-02\_05202015

Date Collected: 05/20/15 00:00 Date Received: 05/21/15 08:20 Lab Sample ID: 680-112765-6

. Matrix: Water

| Method: 6010C - Metals (ICP) |        |           |       |     |      | _ |                |                |         |
|------------------------------|--------|-----------|-------|-----|------|---|----------------|----------------|---------|
| Analyte                      | Result | Qualifier | RL    | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                      | 20     | U         | 20    |     | ug/L |   | 05/26/15 10:40 | 05/27/15 13:59 | 1       |
| Chromium                     | 10     | U         | 10    |     | ug/L |   | 05/26/15 10:40 | 05/27/15 13:59 | 1       |
| Lead                         | 10     | U         | 10    |     | ug/L |   | 05/26/15 10:40 | 05/27/15 13:59 | 1       |
| Nickel                       | 44     |           | 40    |     | ug/L |   | 05/26/15 10:40 | 05/27/15 13:59 | 1       |
| Zinc                         | 190    |           | 20    |     | ug/L |   | 05/26/15 10:40 | 05/27/15 13:59 | 1       |
| General Chemistry            |        |           |       |     |      |   |                |                |         |
| Analyte                      | Result | Qualifier | RL    | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Ammonia                      | 260    |           | 50    |     | mg/L |   |                | 05/26/15 18:48 | 200     |
| Nitrate as N                 | 0.097  |           | 0.050 |     | mg/L |   |                | 05/21/15 18:19 | 1       |
| Nitrate Nitrite as N         | 0.10   |           | 0.050 |     | mg/L |   |                | 05/21/15 18:19 | 1       |
| Nitrite as N                 | 0.050  | U         | 0.050 |     | mg/L |   |                | 05/21/15 18:19 | 1       |

2

4

6

0

9

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112765-1

**Client Sample ID: MW-1\_05202015** 

Lab Sample ID: 680-112765-7 Date Collected: 05/20/15 10:47 **Matrix: Water** 

Date Received: 05/21/15 08:20

| Method: 6010C - Metals (ICP) Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Arsenic                              | 20     | U         | 20 |     | ug/L |   | 05/26/15 10:40 | 05/27/15 14:03 | 1       |
| Lead                                 | 10     | U         | 10 |     | ug/L |   | 05/26/15 10:40 | 05/27/15 14:03 | 1       |

| General Chemistry Analyte | Result C | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------|----------|-----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia                   | 21       |           | 5.0   |     | mg/L |   |          | 05/26/15 16:50 | 20      |
| Nitrate as N              | 0.050 L  | J         | 0.050 |     | mg/L |   |          | 05/21/15 18:21 | 1       |
| Nitrate Nitrite as N      | 0.050 L  | J         | 0.050 |     | mg/L |   |          | 05/21/15 18:21 | 1       |
| Nitrite as N              | 0.050 L  | j         | 0.050 |     | mg/L |   |          | 05/21/15 18:21 | 1       |

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

Client Sample ID: PDMW-8R\_05202015

TestAmerica Job ID: 680-112765-1

Lab Sample ID: 680-112765-8

**Matrix: Water** 

| Date Collected: 05/20/15 13:15 |
|--------------------------------|
| Date Received: 05/21/15 08:20  |
|                                |

| Method: 6010C - Metals (ICP) |        |           |    |     |      |   |                |                |         |
|------------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte                      | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                      | 20     | U         | 20 |     | ug/L |   | 05/26/15 10:40 | 05/27/15 14:08 | 1       |
| Lead                         | 10     | U         | 10 |     | ug/L |   | 05/26/15 10:40 | 05/27/15 14:08 | 1       |
| Nickel                       | 40     | U         | 40 |     | ug/L |   | 05/26/15 10:40 | 05/27/15 14:08 | 1       |
|                              |        |           |    |     |      |   |                |                |         |

| General Chemistry<br>Analyte | Result Qualifier | RL    | MDL Unit | D           | Prepared | Analyzed       | Dil Fac |
|------------------------------|------------------|-------|----------|-------------|----------|----------------|---------|
| Ammonia                      | 64               | 13    | mg/L     | <del></del> |          | 05/26/15 17:23 | 50      |
| Nitrate as N                 | 0.050 U          | 0.050 | mg/L     |             |          | 05/21/15 18:22 | 1       |
| Nitrate Nitrite as N         | 0.098            | 0.050 | mg/L     |             |          | 05/21/15 18:22 | 1       |
| Nitrite as N                 | 0.050            | 0.050 | mg/L     |             |          | 05/21/15 18:22 | 1       |

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112765-1

Client Sample ID: PDMW-19P 05202015

Date Collected: 05/20/15 13:25 Date Received: 05/21/15 08:20

Lab Sample ID: 680-112765-9

**Matrix: Water** 

| Method: 6010C - Metals (ICP) Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Arsenic                              | 20     | U         | 20 |     | ug/L |   | 05/26/15 10:40 | 05/27/15 14:21 | 1       |
| Lead                                 | 10     | U         | 10 |     | ug/L |   | 05/26/15 10:40 | 05/27/15 14:21 | 1       |
| Nickel                               | 40     | U         | 40 |     | ug/L |   | 05/26/15 10:40 | 05/27/15 14:21 | 1       |
| <u> </u>                             |        |           |    |     |      |   |                |                |         |

| General Chemistry Analyte | Result Q | ualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------|----------|----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia                   | 4.7      |          | 1.3   |     | mg/L |   |          | 05/26/15 17:00 | 5       |
| Nitrate as N              | 0.050 U  |          | 0.050 |     | mg/L |   |          | 05/21/15 18:25 | 1       |
| Nitrate Nitrite as N      | 0.050 U  |          | 0.050 |     | mg/L |   |          | 05/21/15 18:25 | 1       |
| Nitrite as N              | 0.050 U  |          | 0.050 |     | mg/L |   |          | 05/21/15 18:25 | 1       |

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112765-1

Client Sample ID: PDMW-47\_05202015

Lab Sample ID: 680-112765-10 Date Collected: 05/20/15 14:36

**Matrix: Water** 

Date Received: 05/21/15 08:20

| Method: 6010C - Metals (ICP) |        |           |    |     |      |   |                |                |         |
|------------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte                      | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                      | 20     | U         | 20 |     | ug/L |   | 05/26/15 10:40 | 05/27/15 14:26 | 1       |
| Lead                         | 10     | U         | 10 |     | ug/L |   | 05/26/15 10:40 | 05/27/15 14:26 | 1       |

| General Chemistry<br>Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia                      | 39     |           | 5.0   |     | mg/L |   |          | 05/26/15 17:00 | 20      |
| Nitrate as N                 | 0.050  | U         | 0.050 |     | mg/L |   |          | 05/21/15 18:27 | 1       |
| Nitrate Nitrite as N         | 0.050  | U         | 0.050 |     | mg/L |   |          | 05/21/15 18:27 | 1       |
| Nitrite as N                 | 0.052  |           | 0.050 |     | mg/L |   |          | 05/21/15 18:27 | 1       |

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

Client Sample ID: PDMW-46\_05202015

TestAmerica Job ID: 680-112765-1

Lab Sample ID: 680-112765-11

Matrix: Water

Date Collected: 05/20/15 14:50 Date Received: 05/21/15 08:20

| Method: 6010C - Metals (ICP) |        |           |    |     |      |   |                |                |         |
|------------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte                      | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                      | 20     | U         | 20 |     | ug/L |   | 05/26/15 10:40 | 05/27/15 14:31 | 1       |
| Lead                         | 10     | U         | 10 |     | ug/L |   | 05/26/15 10:40 | 05/27/15 14:31 | 1       |
|                              |        |           |    |     |      |   |                |                |         |

| General Chemistry Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia                   | 0.60   |           | 0.25  | -   | mg/L |   |          | 05/26/15 16:20 | 1       |
| Nitrate as N              | 0.050  | U         | 0.050 | 1   | mg/L |   |          | 05/21/15 18:28 | 1       |
| Nitrate Nitrite as N      | 0.050  | U         | 0.050 | 1   | mg/L |   |          | 05/21/15 18:28 | 1       |
| Nitrite as N              | 0.050  | U         | 0.050 | i   | mg/L |   |          | 05/21/15 18:28 | 1       |

5

7

8

9

10

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

Client Sample ID: PDMW-33R2\_05202015

TestAmerica Job ID: 680-112765-1

Lab Sample ID: 680-112765-12

Matrix: Water

Date Collected: 05/20/15 15:42 Date Received: 05/21/15 08:20

| : 6010C - Metals (ICP) |               |                                |                                                                       |                                                            |                                                                                                                       |                |                                                                                                                                                     |                                                                                                                                 |
|------------------------|---------------|--------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Resu                   | ılt Qualifier | RL                             | MDL                                                                   | Unit                                                       | D                                                                                                                     | Prepared       | Analyzed                                                                                                                                            | Dil Fac                                                                                                                         |
|                        | 20 U          | 20                             |                                                                       | ug/L                                                       |                                                                                                                       | 05/26/15 10:40 | 05/27/15 14:35                                                                                                                                      | 1                                                                                                                               |
|                        | 0 U           | 10                             |                                                                       | ug/L                                                       |                                                                                                                       | 05/26/15 10:40 | 05/27/15 14:35                                                                                                                                      | 1                                                                                                                               |
|                        | Resu          | Result Qualifier   20 U   10 U | Result         Qualifier         RL           20         U         20 | Result 20         Qualifier U         RL 20         MDL 20 | Result         Qualifier         RL         MDL         Unit           20         U         20         0         ug/L |                | Result         Qualifier         RL         MDL         Unit         D         Prepared           20         20         ug/L         05/26/15 10:40 | Result         Qualifier         RL         MDL ug/L         Unit ug/L         D 05/26/15 10:40         Analyzed 05/27/15 14:35 |

| General Chemistry<br>Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia                      | 14     |           | 2.5   |     | mg/L |   |          | 05/26/15 17:00 | 10      |
| Nitrate as N                 | 0.050  | U         | 0.050 |     | mg/L |   |          | 05/21/15 18:29 | 1       |
| Nitrate Nitrite as N         | 0.050  | U         | 0.050 |     | mg/L |   |          | 05/21/15 18:29 | 1       |
| Nitrite as N                 | 0.050  | U         | 0.050 |     | mg/L |   |          | 05/21/15 18:29 | 1       |

8

9

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112765-1

Lab Sample ID: 680-112765-13

**Matrix: Water** 

Client Sample ID: PDMW-30P\_05202015 Date Collected: 05/20/15 16:00 Date Received: 05/21/15 08:20

| Method: 6010C - Metals (ICP) |        |           |    |          |   |             |
|------------------------------|--------|-----------|----|----------|---|-------------|
| Analyte                      | Result | Qualifier | RL | MDL Unit | D | Prepared    |
| Arsenic                      | 20     | U         | 20 | ug/L     |   | 05/26/15 10 |

| Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|---------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Arsenic | 20     | U         | 20 |     | ug/L |   | 05/26/15 10:40 | 05/27/15 14:40 | 1       |
| Lead    | 10     | U         | 10 |     | ug/L |   | 05/26/15 10:40 | 05/27/15 14:40 | 1       |

|   | Seneral Chemistry<br>nalyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|---|-----------------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| A | mmonia                      | 2.0    |           | 0.50  |     | mg/L |   |          | 05/26/15 17:00 | 2       |
| N | itrate as N                 | 0.050  | U         | 0.050 |     | mg/L |   |          | 05/21/15 18:30 | 1       |
| N | itrate Nitrite as N         | 0.050  | U         | 0.050 |     | mg/L |   |          | 05/21/15 18:30 | 1       |
| N | itrite as N                 | 0.050  | U         | 0.050 |     | mg/L |   |          | 05/21/15 18:30 | 1       |

TestAmerica Job ID: 680-112765-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 680-384313/1-A

**Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA** Analysis Batch: 384501 **Prep Batch: 384313** 

| Analyzed         | Dil Fac                                                                          |
|------------------|----------------------------------------------------------------------------------|
| 5 05/22/15 20:20 | 1                                                                                |
| 5 05/22/15 20:20 | 1                                                                                |
| 5 05/22/15 20:20 | 1                                                                                |
| 5 05/22/15 20:20 | 1                                                                                |
| 3                | Analyzed 35 05/22/15 20:20 35 05/22/15 20:20 35 05/22/15 20:20 35 05/22/15 20:20 |

Lab Sample ID: LCS 680-384313/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA Analysis Batch: 384501 **Prep Batch: 384313** Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 100 96.8 97 80 - 120 Arsenic ug/L Lead 500 484 97 ug/L 80 - 120 100 100 Nickel ug/L 100 80 - 120 Zinc 100 100 100 80 - 120 ug/L

Lab Sample ID: MB 680-384639/1-A **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

**Analysis Batch: 384988** 

MR MR

|          | IVID   | IVID      |    |     |      |   |                |                |         |
|----------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte  | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic  | 20     | U         | 20 |     | ug/L |   | 05/26/15 10:40 | 05/27/15 13:27 | 1       |
| Chromium | 10     | U         | 10 |     | ug/L |   | 05/26/15 10:40 | 05/27/15 13:27 | 1       |
| Lead     | 10     | U         | 10 |     | ug/L |   | 05/26/15 10:40 | 05/27/15 13:27 | 1       |
| Nickel   | 40     | U         | 40 |     | ug/L |   | 05/26/15 10:40 | 05/27/15 13:27 | 1       |
| Zinc     | 20     | U         | 20 |     | ug/L |   | 05/26/15 10:40 | 05/27/15 13:27 | 1       |
| <u></u>  |        |           |    |     |      |   |                |                |         |

| Lab Sample ID: LCS 680-384639/2-A<br>Matrix: Water<br>Analysis Batch: 384988 | Spiles | 1.00   | LCS       | Clie | ent Sai | mple ID | Prep Type: Total/N<br>Prep Batch: 3846 | IA |
|------------------------------------------------------------------------------|--------|--------|-----------|------|---------|---------|----------------------------------------|----|
|                                                                              | Spike  | LUS    | LCS       |      |         |         | %Rec.                                  |    |
| Analyte                                                                      | Added  | Result | Qualifier | Unit | D       | %Rec    | Limits                                 |    |
| Arsenic                                                                      | 100    | 99.6   |           | ug/L |         | 100     | 80 - 120                               | _  |
| Chromium                                                                     | 100    | 105    |           | ug/L |         | 105     | 80 - 120                               |    |
| Lead                                                                         | 500    | 509    |           | ug/L |         | 102     | 80 - 120                               |    |
| Nickel                                                                       | 100    | 103    |           | ug/L |         | 103     | 80 - 120                               |    |
| Zinc.                                                                        | 100    | 104    |           | ua/l |         | 104     | 80 - 120                               |    |

| ZIIIC                          | 100 | 104 | ug/L | 104 80 - 120       |              |
|--------------------------------|-----|-----|------|--------------------|--------------|
| Г                              |     |     |      |                    |              |
| Lab Sample ID: 680-112765-5 MS |     |     | Clie | nt Sample ID: EW-0 | 1_05202015   |
| Matrix: Water                  |     |     |      | Prep Tyr           | oe: Total/NA |
| Analysis Ratch: 384088         |     |     |      | Pron Re            | tch: 384630  |

| Analysis Balcii. 304300 | Sample | Sample    | Spike | MS     | MS        |      |   |      | %Rec.    | 304039 |
|-------------------------|--------|-----------|-------|--------|-----------|------|---|------|----------|--------|
| Analyte                 | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   |        |
| Arsenic                 | 20     | U         | 100   | 106    |           | ug/L |   | 98   | 75 - 125 |        |
| Chromium                | 10     | U         | 100   | 109    |           | ug/L |   | 102  | 75 - 125 |        |
| Lead                    | 10     | U         | 500   | 494    |           | ug/L |   | 99   | 75 - 125 |        |
| Nickel                  | 44     |           | 100   | 144    |           | ug/L |   | 99   | 75 - 125 |        |
| Zinc                    | 190    |           | 100   | 292    |           | ug/L |   | 98   | 75 - 125 |        |

TestAmerica Savannah

**Prep Batch: 384639** 

TestAmerica Job ID: 680-112765-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

### Method: 6010C - Metals (ICP) (Continued)

| Lab Sample ID: 680-112765-5 MSD<br>Matrix: Water |        |           |       |        |           |      |   | Sample | D: EW-0<br>Prep Tyl | _   |       |
|--------------------------------------------------|--------|-----------|-------|--------|-----------|------|---|--------|---------------------|-----|-------|
| Analysis Batch: 384988                           | Sample | Sample    | Spike | MSD    | MSD       |      |   |        | Prep Ba<br>%Rec.    |     |       |
| Analyte                                          | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec   | Limits              | RPD | Limit |
| Arsenic                                          | 20     | U         | 100   | 107    |           | ug/L |   | 99     | 75 - 125            | 1   | 20    |
| Chromium                                         | 10     | U         | 100   | 107    |           | ug/L |   | 100    | 75 - 125            | 2   | 20    |
| Lead                                             | 10     | U         | 500   | 485    |           | ug/L |   | 97     | 75 - 125            | 2   | 20    |
| Nickel                                           | 44     |           | 100   | 142    |           | ug/L |   | 98     | 75 - 125            | 1   | 20    |
| Zinc                                             | 190    |           | 100   | 284    |           | ug/L |   | 90     | 75 - 125            | 3   | 20    |

#### Method: 350.1 - Nitrogen, Ammonia

| Lab Sample ID: MB 680-384905 |        |           | Client Sample ID: Method E |     |      |   |          |                |         |  |
|------------------------------|--------|-----------|----------------------------|-----|------|---|----------|----------------|---------|--|
| Matrix: Water                |        |           |                            |     |      |   |          | Prep Type: To  | tal/NA  |  |
| Analysis Batch: 384905       |        |           |                            |     |      |   |          |                |         |  |
| •                            | MB     | MB        |                            |     |      |   |          |                |         |  |
| Analyte                      | Result | Qualifier | RL                         | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |  |
| Ammonia                      | 0.25   | U         | 0.25                       |     | mg/L |   |          | 05/26/15 16:15 | 1       |  |

| Lab Sample ID: LCS 680-384905/30<br>Matrix: Water<br>Analysis Batch: 384905 |          |        |           | Clie | nt Sai | mple ID | : Lab Control S<br>Prep Type: To |  |
|-----------------------------------------------------------------------------|----------|--------|-----------|------|--------|---------|----------------------------------|--|
| Analysis Daten. 304303                                                      | Spike    | LCS    | LCS       |      |        |         | %Rec.                            |  |
| Analyte                                                                     | Added    | Result | Qualifier | Unit | D      | %Rec    | Limits                           |  |
| Ammonia                                                                     | <br>1.00 | 1.00   |           | mg/L |        | 100     | 90 - 110                         |  |

| 7 tilliona                      | 1.00 | 1.00 | mg/L | 100 00-110                     |
|---------------------------------|------|------|------|--------------------------------|
|                                 |      |      |      |                                |
| Lab Sample ID: MB 680-384906/47 |      |      |      | Client Sample ID: Method Blank |
| Matrix: Water                   |      |      |      | Pren Type: Total/NA            |

Analysis Batch: 384906

|         | IAID   | IAID      |      |     |      |   |          |                |         |
|---------|--------|-----------|------|-----|------|---|----------|----------------|---------|
| Analyte | Result | Qualifier | RL   | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Ammonia | 0.25   | U         | 0.25 |     | mg/L |   |          | 05/27/15 10:19 | 1       |

| Lab Sample ID: LCS 680-384906/29<br>Matrix: Water |       |        |           | Clie | nt Sar | nple ID | : Lab Control Sample<br>Prep Type: Total/NA |
|---------------------------------------------------|-------|--------|-----------|------|--------|---------|---------------------------------------------|
| Analysis Batch: 384906                            | Spike | LCS    | LCS       |      |        |         | %Rec.                                       |
|                                                   | Opine | LOO    | LUU       |      |        |         | /orceo.                                     |
| Analyte                                           | Added | Result | Qualifier | Unit | D      | %Rec    | Limits                                      |
| Ammonia                                           | 1 00  | 1 00   |           | ma/l |        | 100     | 90 - 110                                    |

| Lab Sample ID: LCSD 680-384906/21 | Client Sample ID: Lab Control Sample Dup |
|-----------------------------------|------------------------------------------|
| Matrix: Water                     | Prep Type: Total/NA                      |

Analysis Batch: 384906

|         | Spike | e LCSD   | LCSD      |        |   |      | %Rec.    |     | RPD   |
|---------|-------|----------|-----------|--------|---|------|----------|-----|-------|
| Analyte | Added | l Result | Qualifier | Unit I | D | %Rec | Limits   | RPD | Limit |
| Ammonia | 1.00  | 1.00     |           | mg/L   |   | 100  | 90 - 110 | 0   | 30    |

| Lab Sample ID: 680-112769<br>Matrix: Water<br>Analysis Batch: 384906 | 5-5 MS |           |       |        |           |      | Client | Sample | e ID: EW-01_05202015<br>Prep Type: Total/NA |
|----------------------------------------------------------------------|--------|-----------|-------|--------|-----------|------|--------|--------|---------------------------------------------|
| 7 maryolo Batom 004000                                               | Sample | Sample    | Spike | MS     | MS        |      |        |        | %Rec.                                       |
| Analyte                                                              | Result | Qualifier | Added | Result | Qualifier | Unit | D      | %Rec   | Limits                                      |
| Ammonia                                                              | 320    | F1        | 200   | 547    | F1        | mg/L |        | 113    | 90 - 110                                    |

TestAmerica Savannah

5/28/2015

Page 20 of 31

### **QC Sample Results**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112765-1

#### Method: 350.1 - Nitrogen, Ammonia (Continued)

Lab Sample ID: 680-112765-5 MSD

Matrix: Water

Prep Type: Total/NA

**Analysis Batch: 384906** 

|         | Sample | Sample    | Spike | MSD    | MSD       |      |   |      | %Rec.    |     | RPD   |  |
|---------|--------|-----------|-------|--------|-----------|------|---|------|----------|-----|-------|--|
| Analyte | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   | RPD | Limit |  |
| Ammonia | 320    | F1        | 200   | 538    |           | mg/L |   | 108  | 90 - 110 | 2   | 30    |  |

#### Method: 353.2 - Nitrogen, Nitrate-Nitrite

Lab Sample ID: MB 680-384265/13

Client Sample ID: Method Blank
Matrix: Water

Prep Type: Total/NA

Analysis Batch: 384265

MB MB MDL Unit Analyte Result Qualifier RL Prepared Analyzed Dil Fac Nitrate as N 0.050 U 0.050 mg/L 05/21/15 17:28 Nitrate Nitrite as N 0.050 U 0.050 mg/L 05/21/15 17:28 1 Nitrite as N 0.050 U 0.050 mg/L 05/21/15 17:28

Lab Sample ID: LCS 680-384265/16

Matrix: Water

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

**Analysis Batch: 384265** 

|                      | Spike | LCS    | LCS       |      |   |      | %Rec.    |       |
|----------------------|-------|--------|-----------|------|---|------|----------|-------|
| Analyte              | Added | Result | Qualifier | Unit | D | %Rec | Limits   |       |
| Nitrate as N         | 0.500 | 0.561  |           | mg/L |   | 112  | 75 - 125 | <br>- |
| Nitrate Nitrite as N | 1.00  | 1.06   |           | mg/L |   | 106  | 90 - 110 |       |
| Nitrite as N         | 0.500 | 0.502  |           | ma/L |   | 100  | 90 - 110 |       |

4

6

7

8

10

11

### **QC Association Summary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112765-1

#### **Metals**

**Prep Batch: 384313** 

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 680-112765-1       | PDMW-10R_05202015  | Total/NA  | Water  | 3010A  |            |
| 680-112765-2       | PDMW-45R_05202015  | Total/NA  | Water  | 3010A  |            |
| 680-112765-3       | MW-201_05202015    | Total/NA  | Water  | 3010A  |            |
| 680-112765-4       | DUP-03_05202015    | Total/NA  | Water  | 3010A  |            |
| LCS 680-384313/2-A | Lab Control Sample | Total/NA  | Water  | 3010A  |            |
| MB 680-384313/1-A  | Method Blank       | Total/NA  | Water  | 3010A  |            |

#### Analysis Batch: 384501

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 680-112765-1       | PDMW-10R_05202015  | Total/NA  | Water  | 6010C  | 384313     |
| 680-112765-2       | PDMW-45R_05202015  | Total/NA  | Water  | 6010C  | 384313     |
| 680-112765-3       | MW-201_05202015    | Total/NA  | Water  | 6010C  | 384313     |
| 680-112765-4       | DUP-03_05202015    | Total/NA  | Water  | 6010C  | 384313     |
| LCS 680-384313/2-A | Lab Control Sample | Total/NA  | Water  | 6010C  | 384313     |
| MB 680-384313/1-A  | Method Blank       | Total/NA  | Water  | 6010C  | 384313     |

#### **Prep Batch: 384639**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 680-112765-5       | EW-01_05202015     | Total/NA  | Water  | 3010A  | _          |
| 680-112765-5 MS    | EW-01_05202015     | Total/NA  | Water  | 3010A  |            |
| 680-112765-5 MSD   | EW-01_05202015     | Total/NA  | Water  | 3010A  |            |
| 680-112765-6       | DUP-02_05202015    | Total/NA  | Water  | 3010A  |            |
| 680-112765-7       | MW-1_05202015      | Total/NA  | Water  | 3010A  |            |
| 680-112765-8       | PDMW-8R_05202015   | Total/NA  | Water  | 3010A  |            |
| 680-112765-9       | PDMW-19P_05202015  | Total/NA  | Water  | 3010A  |            |
| 680-112765-10      | PDMW-47_05202015   | Total/NA  | Water  | 3010A  |            |
| 680-112765-11      | PDMW-46_05202015   | Total/NA  | Water  | 3010A  |            |
| 680-112765-12      | PDMW-33R2_05202015 | Total/NA  | Water  | 3010A  |            |
| 680-112765-13      | PDMW-30P_05202015  | Total/NA  | Water  | 3010A  |            |
| LCS 680-384639/2-A | Lab Control Sample | Total/NA  | Water  | 3010A  |            |
| MB 680-384639/1-A  | Method Blank       | Total/NA  | Water  | 3010A  |            |

#### **Analysis Batch: 384988**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 680-112765-5       | EW-01_05202015     | Total/NA  | Water  | 6010C  | 384639     |
| 680-112765-5 MS    | EW-01_05202015     | Total/NA  | Water  | 6010C  | 384639     |
| 680-112765-5 MSD   | EW-01_05202015     | Total/NA  | Water  | 6010C  | 384639     |
| 680-112765-6       | DUP-02_05202015    | Total/NA  | Water  | 6010C  | 384639     |
| 680-112765-7       | MW-1_05202015      | Total/NA  | Water  | 6010C  | 384639     |
| 680-112765-8       | PDMW-8R_05202015   | Total/NA  | Water  | 6010C  | 384639     |
| 680-112765-9       | PDMW-19P_05202015  | Total/NA  | Water  | 6010C  | 384639     |
| 680-112765-10      | PDMW-47_05202015   | Total/NA  | Water  | 6010C  | 384639     |
| 680-112765-11      | PDMW-46_05202015   | Total/NA  | Water  | 6010C  | 384639     |
| 680-112765-12      | PDMW-33R2_05202015 | Total/NA  | Water  | 6010C  | 384639     |
| 680-112765-13      | PDMW-30P_05202015  | Total/NA  | Water  | 6010C  | 384639     |
| LCS 680-384639/2-A | Lab Control Sample | Total/NA  | Water  | 6010C  | 384639     |
| MB 680-384639/1-A  | Method Blank       | Total/NA  | Water  | 6010C  | 384639     |

### **QC Association Summary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112765-1

3

### **General Chemistry**

#### Analysis Batch: 384265

| Lab Sample ID     | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|-------------------|--------------------|-----------|--------|--------|------------|
| 680-112765-1      | PDMW-10R_05202015  | Total/NA  | Water  | 353.2  |            |
| 680-112765-2      | PDMW-45R_05202015  | Total/NA  | Water  | 353.2  |            |
| 680-112765-3      | MW-201_05202015    | Total/NA  | Water  | 353.2  |            |
| 680-112765-4      | DUP-03_05202015    | Total/NA  | Water  | 353.2  |            |
| 680-112765-5      | EW-01_05202015     | Total/NA  | Water  | 353.2  |            |
| 680-112765-6      | DUP-02_05202015    | Total/NA  | Water  | 353.2  |            |
| 680-112765-7      | MW-1_05202015      | Total/NA  | Water  | 353.2  |            |
| 680-112765-8      | PDMW-8R_05202015   | Total/NA  | Water  | 353.2  |            |
| 680-112765-9      | PDMW-19P_05202015  | Total/NA  | Water  | 353.2  |            |
| 680-112765-10     | PDMW-47_05202015   | Total/NA  | Water  | 353.2  |            |
| 680-112765-11     | PDMW-46_05202015   | Total/NA  | Water  | 353.2  |            |
| 680-112765-12     | PDMW-33R2_05202015 | Total/NA  | Water  | 353.2  |            |
| 680-112765-13     | PDMW-30P_05202015  | Total/NA  | Water  | 353.2  |            |
| LCS 680-384265/16 | Lab Control Sample | Total/NA  | Water  | 353.2  |            |
| MB 680-384265/13  | Method Blank       | Total/NA  | Water  | 353.2  |            |

#### **Analysis Batch: 384905**

| Lab Sample ID     | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|-------------------|--------------------|-----------|--------|--------|------------|
| 680-112765-1      | PDMW-10R_05202015  | Total/NA  | Water  | 350.1  |            |
| 680-112765-2      | PDMW-45R_05202015  | Total/NA  | Water  | 350.1  |            |
| LCS 680-384905/30 | Lab Control Sample | Total/NA  | Water  | 350.1  |            |
| MB 680-384905/23  | Method Blank       | Total/NA  | Water  | 350.1  |            |

#### **Analysis Batch: 384906**

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| 680-112765-3       | MW-201_05202015        | Total/NA  | Water  | 350.1  |            |
| 680-112765-4       | DUP-03_05202015        | Total/NA  | Water  | 350.1  |            |
| 680-112765-5       | EW-01_05202015         | Total/NA  | Water  | 350.1  |            |
| 680-112765-5 MS    | EW-01_05202015         | Total/NA  | Water  | 350.1  |            |
| 680-112765-5 MSD   | EW-01_05202015         | Total/NA  | Water  | 350.1  |            |
| 680-112765-6       | DUP-02_05202015        | Total/NA  | Water  | 350.1  |            |
| 680-112765-7       | MW-1_05202015          | Total/NA  | Water  | 350.1  |            |
| 680-112765-8       | PDMW-8R_05202015       | Total/NA  | Water  | 350.1  |            |
| 680-112765-9       | PDMW-19P_05202015      | Total/NA  | Water  | 350.1  |            |
| 680-112765-10      | PDMW-47_05202015       | Total/NA  | Water  | 350.1  |            |
| 680-112765-11      | PDMW-46_05202015       | Total/NA  | Water  | 350.1  |            |
| 680-112765-12      | PDMW-33R2_05202015     | Total/NA  | Water  | 350.1  |            |
| 680-112765-13      | PDMW-30P_05202015      | Total/NA  | Water  | 350.1  |            |
| LCS 680-384906/29  | Lab Control Sample     | Total/NA  | Water  | 350.1  |            |
| LCSD 680-384906/21 | Lab Control Sample Dup | Total/NA  | Water  | 350.1  |            |
| MB 680-384906/47   | Method Blank           | Total/NA  | Water  | 350.1  |            |

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

Client Sample ID: PDMW-10R 05202015

Lab Sample ID: 680-112765-1

Date Collected: 05/20/15 11:05

**Matrix: Water** 

Date Received: 05/21/15 08:20

|           | Batch                | Batch                    |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|--------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                   | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep                 | 3010A                    |     |        | 50 mL   | 50 mL  | 384313 | 05/22/15 09:35 | BJB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 6010C<br>nt ID: ICPE     |     | 1      | 50 mL   | 50 mL  | 384501 | 05/22/15 22:20 | BCB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>nt ID: KONELAB1 |     | 5      | 2 mL    | 2 mL   | 384905 | 05/26/15 16:50 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>nt ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 384265 | 05/21/15 18:14 | GRX     | TAL SAV |

Lab Sample ID: 680-112765-2 Client Sample ID: PDMW-45R\_05202015

Date Collected: 05/20/15 09:25

**Matrix: Water** 

Date Received: 05/21/15 08:20

|           | Batch                | Batch                    |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|--------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                   | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep                 | 3010A                    |     |        | 50 mL   | 50 mL  | 384313 | 05/22/15 09:35 | BJB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 6010C<br>nt ID: ICPE     |     | 1      | 50 mL   | 50 mL  | 384501 | 05/22/15 22:24 | ВСВ     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>nt ID: KONELAB1 |     | 2      | 2 mL    | 2 mL   | 384905 | 05/26/15 17:19 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>nt ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 384265 | 05/21/15 18:15 | GRX     | TAL SAV |

Client Sample ID: MW-201 05202015 Lab Sample ID: 680-112765-3

Date Collected: 05/20/15 08:55 Date Received: 05/21/15 08:20

**Matrix: Water** 

| Prep Type Total/NA Total/NA | Batch Type Method Prep 3010A Analysis 6010C               | Run | Factor 1 | Initial Amount 50 mL 50 mL | Final Amount 50 mL 50 mL | Batch<br>Number<br>384313<br>384501 | Prepared<br>or Analyzed<br>05/22/15 09:35<br>05/22/15 22:38 |     | Lab<br>TAL SAV<br>TAL SAV |
|-----------------------------|-----------------------------------------------------------|-----|----------|----------------------------|--------------------------|-------------------------------------|-------------------------------------------------------------|-----|---------------------------|
| Total/NA                    | Instrument ID: ICPE  Analysis 350.1  Instrument ID: KONEL | AB1 | 1        | 2 mL                       | 2 mL                     | 384906                              | 05/26/15 16:15                                              | JME | TAL SAV                   |
| Total/NA                    | Analysis 353.2<br>Instrument ID: LACHA                    | T2  | 1        | 2 mL                       | 2 mL                     | 384265                              | 05/21/15 18:16                                              | GRX | TAL SAV                   |

Lab Sample ID: 680-112765-4 Client Sample ID: DUP-03\_05202015

Date Collected: 05/20/15 00:00 **Matrix: Water** 

Date Received: 05/21/15 08:20

| Prep Type | Batch<br>Type | Batch<br>Method | Run | Dil<br>Factor | Initial<br>Amount | Final<br>Amount | Batch<br>Number | Prepared or Analyzed | Analyst | Lab     |
|-----------|---------------|-----------------|-----|---------------|-------------------|-----------------|-----------------|----------------------|---------|---------|
| Total/NA  | Prep          | 3010A           |     |               | 50 mL             | 50 mL           | 384313          | 05/22/15 09:35       | BJB     | TAL SAV |
| Total/NA  | Analysis      | 6010C           |     | 1             | 50 mL             | 50 mL           | 384501          | 05/22/15 22:43       | BCB     | TAL SAV |
|           | Instrume      | nt ID: ICPE     |     |               |                   |                 |                 |                      |         |         |

TestAmerica Job ID: 680-112765-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

Client Sample ID: DUP-03\_05202015

Date Collected: 05/20/15 00:00 Date Received: 05/21/15 08:20

Lab Sample ID: 680-112765-4

**Matrix: Water** 

|           | Batch                | Batch                   |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|-------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                  | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis             | 350.1                   |     | 1      | 2 mL    | 2 mL   | 384906 | 05/26/15 16:20 | JME     | TAL SAV |
|           | Instrume             | nt ID: KONELAB          | 1   |        |         |        |        |                |         |         |
| Total/NA  | Analysis<br>Instrume | 353.2<br>nt ID: LACHAT2 |     | 1      | 2 mL    | 2 mL   | 384265 | 05/21/15 18:17 | GRX     | TAL SAV |

Lab Sample ID: 680-112765-5 Client Sample ID: EW-01\_05202015

Date Collected: 05/20/15 10:10 **Matrix: Water** Date Received: 05/21/15 08:20

| Prep Type<br>Total/NA<br>Total/NA | Batch Type Prep Analysis Instrumer | Method<br>3010A<br>6010C<br>at ID: ICPE | Run | Dil<br>Factor | Initial Amount 50 mL 50 mL | Final<br>Amount<br>50 mL<br>50 mL | Batch<br>Number<br>384639<br>384988 | Prepared<br>or Analyzed<br>05/26/15 10:40<br>05/27/15 13:36 |     | Lab<br>TAL SAV<br>TAL SAV |
|-----------------------------------|------------------------------------|-----------------------------------------|-----|---------------|----------------------------|-----------------------------------|-------------------------------------|-------------------------------------------------------------|-----|---------------------------|
| Total/NA                          | Analysis<br>Instrumer              | 350.1<br>at ID: KONELAB1                |     | 400           | 2 mL                       | 2 mL                              | 384906                              | 05/27/15 10:29                                              | JME | TAL SAV                   |
| Total/NA                          | Analysis<br>Instrumer              | 353.2<br>at ID: LACHAT2                 |     | 1             | 2 mL                       | 2 mL                              | 384265                              | 05/21/15 18:18                                              | GRX | TAL SAV                   |

Client Sample ID: DUP-02\_05202015 Lab Sample ID: 680-112765-6

Date Collected: 05/20/15 00:00 Date Received: 05/21/15 08:20

|           | Batch                | Batch                    |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|--------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                   | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep                 | 3010A                    |     |        | 50 mL   | 50 mL  | 384639 | 05/26/15 10:40 | CRW     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 6010C<br>nt ID: ICPE     |     | 1      | 50 mL   | 50 mL  | 384988 | 05/27/15 13:59 | ВСВ     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>nt ID: KONELAB1 |     | 200    | 2 mL    | 2 mL   | 384906 | 05/26/15 18:48 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>nt ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 384265 | 05/21/15 18:19 | GRX     | TAL SAV |

Lab Sample ID: 680-112765-7 **Client Sample ID: MW-1\_05202015** 

Date Collected: 05/20/15 10:47 Date Received: 05/21/15 08:20

|           | Batch                | Batch                    |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|--------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                   | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep                 | 3010A                    | =   |        | 50 mL   | 50 mL  | 384639 | 05/26/15 10:40 | CRW     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 6010C<br>nt ID: ICPE     |     | 1      | 50 mL   | 50 mL  | 384988 | 05/27/15 14:03 | BCB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>nt ID: KONELAB1 |     | 20     | 2 mL    | 2 mL   | 384906 | 05/26/15 16:50 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>nt ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 384265 | 05/21/15 18:21 | GRX     | TAL SAV |

TestAmerica Savannah

Page 25 of 31

**Matrix: Water** 

**Matrix: Water** 

5/28/2015

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

Lab Sample ID: 680-112765-8

Client Sample ID: PDMW-8R\_05202015 Date Collected: 05/20/15 13:15 **Matrix: Water** Date Received: 05/21/15 08:20

|           | Batch                | Batch                    |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|--------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                   | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep                 | 3010A                    |     |        | 50 mL   | 50 mL  | 384639 | 05/26/15 10:40 | CRW     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 6010C<br>nt ID: ICPE     |     | 1      | 50 mL   | 50 mL  | 384988 | 05/27/15 14:08 | BCB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>nt ID: KONELAB1 |     | 50     | 2 mL    | 2 mL   | 384906 | 05/26/15 17:23 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>nt ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 384265 | 05/21/15 18:22 | GRX     | TAL SAV |

Client Sample ID: PDMW-19P 05202015 Lab Sample ID: 680-112765-9

Date Collected: 05/20/15 13:25 **Matrix: Water** Date Received: 05/21/15 08:20

Dil Initial Batch **Batch** Final Batch Prepared **Prep Type** Type Method Run **Factor** Amount Amount Number or Analyzed **Analyst** Lab Total/NA 3010A 50 mL 384639 05/26/15 10:40 CRW TAL SAV Prep 50 mL Total/NA Analysis 6010C 50 mL 384988 05/27/15 14:21 BCB TAL SAV 1 50 mL Instrument ID: ICPE Total/NA Analysis 350.1 5 2 mL 2 mL 384906 05/26/15 17:00 JME TAL SAV Instrument ID: KONELAB1 Total/NA Analysis 353.2 2 mL 2 mL 384265 05/21/15 18:25 GRX TAL SAV Instrument ID: LACHAT2

Client Sample ID: PDMW-47 05202015 Lab Sample ID: 680-112765-10

Date Collected: 05/20/15 14:36 **Matrix: Water** Date Received: 05/21/15 08:20

|           | Batch                | Batch                    |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|--------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                   | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep                 | 3010A                    |     |        | 50 mL   | 50 mL  | 384639 | 05/26/15 10:40 | CRW     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 6010C<br>nt ID: ICPE     |     | 1      | 50 mL   | 50 mL  | 384988 | 05/27/15 14:26 | BCB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>nt ID: KONELAB1 |     | 20     | 2 mL    | 2 mL   | 384906 | 05/26/15 17:00 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>nt ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 384265 | 05/21/15 18:27 | GRX     | TAL SAV |

**Client Sample ID: PDMW-46\_05202015** Lab Sample ID: 680-112765-11

Date Collected: 05/20/15 14:50 **Matrix: Water** Date Received: 05/21/15 08:20

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 3010A       |     |        | 50 mL   | 50 mL  | 384639 | 05/26/15 10:40 | CRW     | TAL SAV |
| Total/NA  | Analysis | 6010C       |     | 1      | 50 mL   | 50 mL  | 384988 | 05/27/15 14:31 | BCB     | TAL SAV |
|           | Instrume | nt ID: ICPE |     |        |         |        |        |                |         |         |

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

Client Sample ID: PDMW-46\_05202015

Lab Sample ID: 680-112765-11

Date Collected: 05/20/15 14:50 Date Received: 05/21/15 08:20

**Matrix: Water** 

|           | Batch                | Batch                    |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|--------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                   | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis<br>Instrume | 350.1<br>nt ID: KONELAB1 |     | 1      | 2 mL    | 2 mL   | 384906 | 05/26/15 16:20 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>nt ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 384265 | 05/21/15 18:28 | GRX     | TAL SAV |

Lab Sample ID: 680-112765-12

Client Sample ID: PDMW-33R2\_05202015 Date Collected: 05/20/15 15:42 **Matrix: Water** 

Date Received: 05/21/15 08:20

| Prep Type<br>Total/NA<br>Total/NA | Batch Type Prep Analysis Instrumer | Method<br>3010A<br>6010C<br>nt ID: ICPE | Run | Dil<br>Factor | Initial Amount 50 mL 50 mL | Final Amount 50 mL | Batch<br>Number<br>384639<br>384988 | Prepared<br>or Analyzed<br>05/26/15 10:40<br>05/27/15 14:35 |     | Lab<br>TAL SAV<br>TAL SAV |
|-----------------------------------|------------------------------------|-----------------------------------------|-----|---------------|----------------------------|--------------------|-------------------------------------|-------------------------------------------------------------|-----|---------------------------|
| Total/NA                          | Analysis<br>Instrumer              | 350.1<br>nt ID: KONELAB1                |     | 10            | 2 mL                       | 2 mL               | 384906                              | 05/26/15 17:00                                              | JME | TAL SAV                   |
| Total/NA                          | Analysis<br>Instrumer              | 353.2<br>nt ID: LACHAT2                 |     | 1             | 2 mL                       | 2 mL               | 384265                              | 05/21/15 18:29                                              | GRX | TAL SAV                   |

Client Sample ID: PDMW-30P\_05202015 Lab Sample ID: 680-112765-13

Date Collected: 05/20/15 16:00 **Matrix: Water** Date Received: 05/21/15 08:20

|           | Batch                | Batch                    |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|--------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                   | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep                 | 3010A                    |     |        | 50 mL   | 50 mL  | 384639 | 05/26/15 10:40 | CRW     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 6010C<br>nt ID: ICPE     |     | 1      | 50 mL   | 50 mL  | 384988 | 05/27/15 14:40 | BCB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>nt ID: KONELAB1 |     | 2      | 2 mL    | 2 mL   | 384906 | 05/26/15 17:00 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>nt ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 384265 | 05/21/15 18:30 | GRX     | TAL SAV |

#### **Laboratory References:**

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

| COC# 20, 1 20 2 | HOR<br>G No                                                                                                                                                                                                                                                                                                                                                                                                 | Project #: 6-4300-5245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PM: Aaron Getchell           | Email:           | (18/18)626-1541        | COMMENTS LAB USE         | NALYSIS                      |                                       | garanaku       |                    | رط<br>حوا<br>د        | יי<br>הפסי         | 2 7 7                |                                | ×                | ×                 | Х<br>У<br>У    | XXX              | × ×            | × × ×           | X            | × ×              | ×<br>×            | ×                | Comments & Special Analytical Requirements: | 127105          | )<br>o           | Custody Seal# LAB Log Number # | INVOICE MUST BE SUBMITTED TO CSXT WITH ORIGINAL COC TAL-6006 (050)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------|------------------------|--------------------------|------------------------------|---------------------------------------|----------------|--------------------|-----------------------|--------------------|----------------------|--------------------------------|------------------|-------------------|----------------|------------------|----------------|-----------------|--------------|------------------|-------------------|------------------|---------------------------------------------|-----------------|------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | P: 912-354-7858 F: 912-352-0165<br>4720 P: 330-497-9396 F: 330-497-0772<br>P: 813-885-7427 F: 813-885-7049<br>P: 850-474-1001 F: 850-478-2671<br>28 P: 716-691-2600 F: 716-961-7991<br>708-534-5200 F: 708-534-5211                                                                                                                                                                                         | ION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Amec Fister Wheeler          | Rd Ste 100       | N 37211                |                          | METHODS FOR ANALYSIS         |                                       |                | رر هر<br>و<br>مرد  | 112                   | *S. +! /+! /+!     | 1                    | 1                              | ×<br>×<br>×      | ×<br>×<br>×       | ×<br>×<br>×    | ×<br>×           | ×<br>×<br>×    | ×<br>×<br>×     | ×<br>×<br>×  | ×<br>×<br>×      | ×<br>×<br>×       | ×<br>×<br>×      | Stalles on S                                | Date/Time:      | Date/Time:       | LAB USE: Custody Intact No     | INVOICE MUST BE SUBMITTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                 | P: 912-<br>14720<br>P: 810-<br>P: 850-<br>28 P:<br>708-53                                                                                                                                                                                                                                                                                                                                                   | CONSULTANT INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Company: Amec E              | Addression Ezell | 1, ~                   | ric Acid Note            | 4 = Sodium Thiosulfate Pres. | 5 = Sodium Hydroxide Code 6 = Other   | I LIQ = Liquid | gge                | SOL = Other Solid     |                    | Filtered Type Matrix | Y or N   Comp   Code   or Grab | N 6 6W           | N 6 GW            | <b>以 C G</b> の | <b>い</b> り り ス   | ك<br>ك<br>ك    | N 6 6W          | N 6 6W       | is 6 6W          | N 6 66            | N 6 6W           | Za Za                                       | 8               |                  |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ORY INFORMATION | Savannah - 5102 LaRoche Avenue, Savannah, GA 31404 P. Sorannah - 5102 LaRoche Avenue, Savannah, GA 31404 44: North Canton - 4101 Shuffel Drive NW, North Canton, 0H 44: Tampa - 6712 Benjamin Road, Sulte 100, Tampa, FL 33634 Pensacola - 3355 McLemore Drive, Pensacola, FL 32514 P Buffalo - 10 Hazelwood Drive, Suite 106, Amherst, NY 14228 Chicago - 2417 Bond Street, University Park, IL 60466 P: 7 | Proj. State (State of Origin) (5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Proj. City: Savenne          |                  | 7 47021C               | Codes: 3 = Sulfuric Acid |                              |                                       | SO = Soil      | water SL = Sludge  | <b>.</b>              |                    | Sample Collection    | Time Sampler                   | 1105 PG          | 0925 33           | . 0855 P6      | - PG             | 1010 PG        | ; - P6          | CC FH01      | 1315 27          | 1325              | 1436 JJ          | Received By:                                | Received By:    | Received By:     | Lab Remarks:                   | The state of the s |
| I ARORATOR      | /1                                                                                                                                                                                                                                                                                                                                                                                                          | Proj. State (Stat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Proj. City:                  | _                |                        | Preservat                | 0 = No Preservatives         | 1 = Hydrochloric Acid 2 = Nitric Acid | Matrix Codes:  | GW = Groundwater   |                       |                    |                      | . & Date                       | 5/20/5           | 5/10/15           | 5/2015         | 5/20/15          | 5/20/15        | 5/20/15         | 5/20/15      | 5/20/15          | 5/20/15           | 2/100/12         | In the second                               | 06,3151         |                  | ::                             | And the second s |
|                 | CHAIN OF<br>CUSTODY                                                                                                                                                                                                                                                                                                                                                                                         | Military and the second of the | 75                           | Tisland          |                        | Standard 6-13 Days       | Specify # Days               | Standard 14 Days<br>Other             | Jeliv:         | L                  | EDD Required, Format: |                    | Containers           | Number &<br>Type               | 4 ZIOZ           | 75.4              | 5 4            | 4 SI             | 5 4            | 15 4            | 5 4          | 205 4            | p Sic             | 12 7             | Date/Time:                                  | a ta            | Date/Time        | Date/Time:                     | I SAMPLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                 | CH/<br>TRANSPORTATION CUS                                                                                                                                                                                                                                                                                                                                                                                   | CSXT PROJECT INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CSXT Project Number: 9415575 |                  | CSXT Contact: Som ROSS | ×                        | 1                            |                                       | Deliverables:  | iandard (Level II) | Level IV              | SAMPLE INFORMATION |                      | Sample Identification          | Pry 10R-05202015 | 5(020250 854-MWCA |                | 2019-03-05202015 | EW-01-05202015 | DUP-02-05202015 | mw-1-0520201 | PDMW-8R-05202015 | PDMW-19P-05202015 | PMMW-47-05202015 | Min 5                                       | Relinquisifel M | Relinquished By: | Received By Laboratory:        | ORIGINAL – RETURN TO LABORATORY WITH SAMPLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

## **Login Sample Receipt Checklist**

Client: AMEC Foster Wheeler E & I, Inc Job Number: 680-112765-1

Login Number: 112765 List Source: TestAmerica Savannah

List Number: 1

Creator: Barnett, Eddie T

| oreator. Darriett, Lutile 1                                                                               |        |         |
|-----------------------------------------------------------------------------------------------------------|--------|---------|
| Question                                                                                                  | Answer | Comment |
| Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td> | N/A    |         |
| The cooler's custody seal, if present, is intact.                                                         | True   |         |
| Sample custody seals, if present, are intact.                                                             | True   |         |
| The cooler or samples do not appear to have been compromised or tampered with.                            | True   |         |
| Samples were received on ice.                                                                             | True   |         |
| Cooler Temperature is acceptable.                                                                         | True   |         |
| Cooler Temperature is recorded.                                                                           | True   |         |
| COC is present.                                                                                           | True   |         |
| COC is filled out in ink and legible.                                                                     | True   |         |
| COC is filled out with all pertinent information.                                                         | True   |         |
| Is the Field Sampler's name present on COC?                                                               | True   |         |
| There are no discrepancies between the containers received and the COC.                                   | True   |         |
| Samples are received within Holding Time.                                                                 | True   |         |
| Sample containers have legible labels.                                                                    | True   |         |
| Containers are not broken or leaking.                                                                     | True   |         |
| Sample collection date/times are provided.                                                                | True   |         |
| Appropriate sample containers are used.                                                                   | True   |         |
| Sample bottles are completely filled.                                                                     | True   |         |
| Sample Preservation Verified.                                                                             | True   |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs                          | True   |         |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").                           | N/A    |         |
| Multiphasic samples are not present.                                                                      | True   |         |
| Samples do not require splitting or compositing.                                                          | True   |         |
| Residual Chlorine Checked.                                                                                | N/A    |         |
|                                                                                                           |        |         |

Δ

7

9

10

11

# **Certification Summary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112765-1

### **Laboratory: TestAmerica Savannah**

The certifications listed below are applicable to this report.

| Authority | Program       | <b>EPA</b> Region | Certification ID | <b>Expiration Date</b> |
|-----------|---------------|-------------------|------------------|------------------------|
| Georgia   | State Program | 4                 | 803              | 06-30-15 *             |

A

5

6

8

9

10

11

<sup>\*</sup> Certification renewal pending - certification considered valid.

TestAmerica Savannah



THE LEADER IN ENVIRONMENTAL TESTING

# ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

TestAmerica Job ID: 680-112797-1

Client Project/Site: CSX GA, Hutchinson Island, VRP

#### For:

AMEC Foster Wheeler E & I, Inc 2677 Buford Highway Atlanta, Georgia 30324

Attn: Aaron Getchell

Sion Hovey

Authorized for release by: 6/4/2015 9:54:02 AM

Lisa Harvey, Project Manager II (912)354-7858 e.3221

lisa.harvey@testamericainc.com

.....LINKS .....

Review your project results through
Total Access

**Have a Question?** 



Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

#### **Case Narrative**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112797-1

Job ID: 680-112797-1

Laboratory: TestAmerica Savannah

**Narrative** 

CASE NARRATIVE
Client: AMEC Foster Wheeler E & I, Inc
Project: CSX GA, Hutchinson Island, VRP
Report Number: 680-112797-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

#### RECEIPT

The samples were received on 5/21/2015 4:21 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 4.0° C and 5.2° C.

#### **VOLATILE ORGANIC COMPOUNDS (GC-MS)**

Samples TMW\_1\_05212015 (680-112797-7), DUP\_01\_05212015 (680-112797-8), EB-01\_05212015 (680-112797-9), FB-01\_05212015 (680-112797-10) and Trip Blank (680-112797-16) were analyzed for Volatile Organic Compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 05/28/2015.

Method(s) 8260B: The following samples were collected in properly preserved vials for analysis of volatile organic compounds (VOCs). However, the pH was outside the required criteria when verified by the laboratory: TMW\_1\_05212015 (680-112797-7) and DUP 01 05212015 (680-112797-8). All of the sample vials have HCL stickers.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### **SEMIVOLATILE ORGANIC COMPOUNDS (AQUEOUS)**

Samples TMW\_1\_05212015 (680-112797-7), DUP\_01\_05212015 (680-112797-8), EB-01\_05212015 (680-112797-9) and FB-01\_05212015 (680-112797-10) were analyzed for Semivolatile Organic Compounds (Aqueous) in accordance with EPA SW-846 Method 8270D. The samples were prepared on 05/27/2015 and analyzed on 06/02/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### METALS (ICP)

Samples PDMW-29D\_05212015 (680-112797-5), PDMW-26T\_05212015 (680-112797-6), TMW\_1\_05212015 (680-112797-7), DUP\_01\_05212015 (680-112797-8), EB-01\_05212015 (680-112797-9), FB-01\_05212015 (680-112797-10) and EB-02\_05212015 (680-112797-15) were analyzed for Metals (ICP) in accordance with EPA SW-846 Method 6010C. The samples were prepared on 05/26/2015 and 05/27/2015 and 05/27/2015 and 05/27/2015 and 05/27/2015 and 05/28/2015.

Arsenic failed the recovery criteria low for the MSD of sample TMW\_1\_05212015 (680-112797-7) in batch 680-385189. Refer to the QC report for details.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### **ALKALINITY**

Samples SW-04\_05212015\_LOW (680-112797-1), SW-03\_05212015\_LOW (680-112797-2), SW-02\_05212015\_LOW (680-112797-3), SW-01\_05212015\_LOW (680-112797-4), SW-02\_05212015\_HIGH (680-112797-11), SW-01\_05212015\_HIGH (680-112797-12), SW-03\_05212015\_HIGH (680-112797-13) and SW-04\_05212015\_HIGH (680-112797-14) were analyzed for alkalinity in accordance with EPA Method 310.1. The samples were analyzed on 05/28/2015 and 05/29/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

3

4

5

7

10

11

#### **Case Narrative**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112797-1

#### Job ID: 680-112797-1 (Continued)

#### Laboratory: TestAmerica Savannah (Continued)

#### **AMMONIA**

Samples SW-04\_05212015\_LOW (680-112797-1), SW-03\_05212015\_LOW (680-112797-2), SW-02\_05212015\_LOW (680-112797-3), SW-01\_05212015\_LOW (680-112797-4), PDMW-29D\_05212015 (680-112797-5), PDMW-26T\_05212015 (680-112797-6), TMW\_1\_05212015 (680-112797-7), DUP\_01\_05212015 (680-112797-8), EB-01\_05212015 (680-112797-9), FB-01\_05212015 (680-112797-10), SW-02\_05212015\_HIGH (680-112797-11), SW-01\_05212015\_HIGH (680-112797-12), SW-03\_05212015\_HIGH (680-112797-13), SW-04\_05212015\_HIGH (680-112797-14) and EB-02\_05212015 (680-112797-15) were analyzed for ammonia in accordance with EPA Method 350.1. The samples were analyzed on 05/27/2015.

Method(s) 350.1: The reference method requires samples to be preserved to a pH of <2. The following samples were received with insufficient preservation at a pH of 6: TMW\_1\_05212015 (680-112797-7) and DUP\_01\_05212015 (680-112797-8). The samples were preserved to the appropriate pH in the laboratory.

Ammonia recovery is outside criteria high for the MS of sample TMW 1 05212015 (680-112797-7) in batch 680-384908.

Ammonia recovery is outside criteria low for the MSD of sample TMW 1 05212015 (680-112797-7) in batch 680-384908.

Refer to the QC report for details.

Samples SW-04\_05212015\_LOW (680-112797-1)[2X], PDMW-29D\_05212015 (680-112797-5)[10X], PDMW-26T\_05212015 (680-112797-6)[500X], TMW\_1\_05212015 (680-112797-7)[5000X], DUP\_01\_05212015 (680-112797-8)[2000X] and SW-02\_05212015\_HIGH (680-112797-11)[2X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### **NITRATE-NITRITE AS NITROGEN**

Samples SW-04\_05212015\_LOW (680-112797-1), SW-03\_05212015\_LOW (680-112797-2), SW-02\_05212015\_LOW (680-112797-3), SW-01\_05212015\_LOW (680-112797-4), PDMW-29D\_05212015 (680-112797-5), PDMW-26T\_05212015 (680-112797-6), TMW\_1\_05212015 (680-112797-7), DUP\_01\_05212015 (680-112797-8), EB-01\_05212015 (680-112797-9), FB-01\_05212015 (680-112797-10), SW-02\_05212015\_HIGH (680-112797-11), SW-01\_05212015\_HIGH (680-112797-12), SW-03\_05212015\_HIGH (680-112797-13), SW-04\_05212015\_HIGH (680-112797-14) and EB-02\_05212015 (680-112797-15) were analyzed for nitrate-nitrite as nitrogen in accordance with EPA Method 353.2. The samples were analyzed on 05/21/2015.

Nitrate Nitrite as N and Nitrite as N have recovery outside criteria low for the MS and/or MSD of sample TMW\_1\_05212015 (680-112797-7) in batch 680-384267. Refer to the QC report for details.

Samples TMW\_1\_05212015 (680-112797-7)[1000X] and DUP\_01\_05212015 (680-112797-8)[1000X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

2

4

5

9

10

. .

### **Definitions/Glossary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112797-1

#### **Qualifiers**

#### **GC/MS VOA**

U Indicates the analyte was analyzed for but not detected.

#### GC/MS Semi VOA

Qualifier Qualifier Description

U Indicates the analyte was analyzed for but not detected.

**Metals** 

U Indicates the analyte was analyzed for but not detected.

F1 MS and/or MSD Recovery is outside acceptance limits.

#### **General Chemistry**

Qualifier Description

U Indicates the analyte was analyzed for but not detected.

F1 MS and/or MSD Recovery is outside acceptance limits.

4 MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not

applicable.

#### **Glossary**

Abbreviation These commonly used abbreviations may or may not be present in this report.

Example 2 Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CNF Contains no Free Liquid

DER Duplicate error ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision level concentration
MDA Minimum detectable activity
EDL Estimated Detection Limit

MDC Minimum detectable concentration

MDL Method Detection Limit
ML Minimum Level (Dioxin)

NC Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control
RER Relative error ratio

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TestAmerica Savannah

Page 4 of 48

•

-

Δ

5

6

1

10

4 4

4 6

# **Sample Summary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112797-1

| Lab Sample ID | Client Sample ID    | Matrix | Collected      | Received       |
|---------------|---------------------|--------|----------------|----------------|
| 680-112797-1  | SW-04_05212015_LOW  | Water  | 05/21/15 08:20 | 05/21/15 16:21 |
| 680-112797-2  | SW-03_05212015_LOW  | Water  | 05/21/15 08:45 | 05/21/15 16:21 |
| 680-112797-3  | SW-02_05212015_LOW  | Water  | 05/21/15 09:02 | 05/21/15 16:21 |
| 680-112797-4  | SW-01_05212015_LOW  | Water  | 05/21/15 09:15 | 05/21/15 16:21 |
| 680-112797-5  | PDMW-29D_05212015   | Water  | 05/21/15 10:26 | 05/21/15 16:21 |
| 680-112797-6  | PDMW-26T_05212015   | Water  | 05/21/15 11:32 | 05/21/15 16:21 |
| 680-112797-7  | TMW_1_05212015      | Water  | 05/21/15 10:40 | 05/21/15 16:21 |
| 680-112797-8  | DUP_01_05212015     | Water  | 05/21/15 00:00 | 05/21/15 16:21 |
| 680-112797-9  | EB-01_05212015      | Water  | 05/21/15 12:40 | 05/21/15 16:21 |
| 680-112797-10 | FB-01_05212015      | Water  | 05/21/15 13:00 | 05/21/15 16:21 |
| 680-112797-11 | SW-02_05212015_HIGH | Water  | 05/21/15 12:10 | 05/21/15 16:21 |
| 680-112797-12 | SW-01_05212015_HIGH | Water  | 05/21/15 12:20 | 05/21/15 16:21 |
| 680-112797-13 | SW-03_05212015_HIGH | Water  | 05/21/15 13:00 | 05/21/15 16:21 |
| 680-112797-14 | SW-04_05212015_HIGH | Water  | 05/21/15 13:10 | 05/21/15 16:21 |
| 680-112797-15 | EB-02_05212015      | Water  | 05/21/15 13:30 | 05/21/15 16:21 |
| 680-112797-16 | Trip Blank          | Water  | 05/21/15 00:00 | 05/21/15 16:21 |

# **Method Summary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112797-1

| Method | Method Description                     | Protocol | Laboratory |
|--------|----------------------------------------|----------|------------|
| 8260B  | Volatile Organic Compounds (GC/MS)     | SW846    | TAL SAV    |
| 8270D  | Semivolatile Organic Compounds (GC/MS) | SW846    | TAL SAV    |
| 6010C  | Metals (ICP)                           | SW846    | TAL SAV    |
| 310.1  | Alkalinity                             | MCAWW    | TAL SAV    |
| 350.1  | Nitrogen, Ammonia                      | MCAWW    | TAL SAV    |
| 353.2  | Nitrogen, Nitrate-Nitrite              | MCAWW    | TAL SAV    |

#### **Protocol References:**

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

#### Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

4

5

7

8

9

10

11

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112797-1

Lab Sample ID: 680-112797-1

Matrix: Water

Client Sample ID: SW-04\_05212015\_LOW Date Collected: 05/21/15 08:20

Date Received: 05/21/15 16:21

| General Chemistry Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Alkalinity                | 120    |           | 5.0   |     | mg/L |   |          | 05/28/15 18:02 | 1       |
| Ammonia                   | 1.5    |           | 0.50  |     | mg/L |   |          | 05/27/15 09:59 | 2       |
| Nitrate as N              | 0.17   |           | 0.050 |     | mg/L |   |          | 05/21/15 19:23 | 1       |
| Nitrate Nitrite as N      | 0.27   |           | 0.050 |     | mg/L |   |          | 05/21/15 19:23 | 1       |
| Nitrite as N              | 0.094  |           | 0.050 |     | mg/L |   |          | 05/21/15 19:23 | 1       |

5

7

8

10

11

4.6

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112797-1

Client Sample ID: SW-03\_05212015\_LOW

Lab Sample ID: 680-112797-2 Matrix: Water

05/21/15 19:25

Date Collected: 05/21/15 08:45 Date Received: 05/21/15 16:21

Nitrite as N

| General Chemistry    |                  |       |          |   |          |                |         |
|----------------------|------------------|-------|----------|---|----------|----------------|---------|
| Analyte              | Result Qualifier | RL    | MDL Unit | D | Prepared | Analyzed       | Dil Fac |
| Alkalinity           | 120              | 5.0   | mg/L     |   |          | 05/28/15 18:38 | 1       |
| Ammonia              | 0.80             | 0.25  | mg/L     |   |          | 05/27/15 09:05 | 1       |
| Nitrate as N         | 0.21             | 0.050 | mg/L     |   |          | 05/21/15 19:25 | 1       |
| Nitrate Nitrite as N | 0.23             | 0.050 | mg/L     |   |          | 05/21/15 19:25 | 1       |

0.050

mg/L

0.050 U

3

5

6

9

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112797-1

Client Sample ID: SW-02\_05212015\_LOW Lab Sample ID: 680-112797-3

Date Collected: 05/21/15 09:02 Matrix: Water

Date Collected: 05/21/15 09:02 Matrix: water Date Received: 05/21/15 16:21

| General Chemistry Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Alkalinity                | 130    |           | 5.0   |     | mg/L |   |          | 05/29/15 08:11 | 1       |
| Ammonia                   | 1.5    |           | 0.25  |     | mg/L |   |          | 05/27/15 09:05 | 1       |
| Nitrate as N              | 0.28   |           | 0.050 |     | mg/L |   |          | 05/21/15 19:26 | 1       |
| Nitrate Nitrite as N      | 0.37   |           | 0.050 |     | mg/L |   |          | 05/21/15 19:26 | 1       |
| Nitrite as N              | 0.085  |           | 0.050 |     | mg/L |   |          | 05/21/15 19:26 | 1       |

0

7

8

9

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112797-1

Client Sample ID: SW-01\_05212015\_LOW

Lab Sample ID: 680-112797-4 Date Collected: 05/21/15 09:15 **Matrix: Water** 

| General Chemistry Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Alkalinity                | 77     |           | 5.0   |     | mg/L |   |          | 05/28/15 20:27 | 1       |
| Ammonia                   | 0.62   |           | 0.25  |     | mg/L |   |          | 05/27/15 09:05 | 1       |
| Nitrate as N              | 0.27   |           | 0.050 |     | mg/L |   |          | 05/21/15 19:28 | 1       |
| Nitrate Nitrite as N      | 0.31   |           | 0.050 |     | mg/L |   |          | 05/21/15 19:28 | 1       |
| Nitrite as N              | 0.050  | U         | 0.050 |     | mg/L |   |          | 05/21/15 19:28 | 1       |

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112797-1

Client Sample ID: PDMW-29D\_05212015

Lab Sample ID: 680-112797-5 Date Collected: 05/21/15 10:26 **Matrix: Water** 

| Method: 6010C - Metals (ICP) |        |           |    |     |      |   |                |                |         |
|------------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte                      | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                      | 20     | U         | 20 |     | ug/L |   | 05/26/15 10:40 | 05/27/15 14:44 | 1       |
| Lead                         | 10     | U         | 10 |     | ug/L |   | 05/26/15 10:40 | 05/27/15 14:44 | 1       |

| General Chemistry<br>Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia                      |        |           | 2.5   |     | mg/L |   |          | 05/27/15 11:36 | 10      |
| Nitrate as N                 | 0.050  | U         | 0.050 |     | mg/L |   |          | 05/21/15 19:29 | 1       |
| Nitrate Nitrite as N         | 0.050  | U         | 0.050 |     | mg/L |   |          | 05/21/15 19:29 | 1       |
| Nitrite as N                 | 0.050  | U         | 0.050 |     | mg/L |   |          | 05/21/15 19:29 | 1       |

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112797-1

Client Sample ID: PDMW-26T\_05212015

Date Collected: 05/21/15 11:32 Date Received: 05/21/15 16:21 Lab Sample ID: 680-112797-6

Matrix: Water

| Method: 6010C - Metals (ICP) Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Arsenic                              | 25     |           | 20 |     | ug/L |   | 05/27/15 14:38 | 05/28/15 18:27 | 1       |
| Lead                                 | 10     | U         | 10 |     | ug/L |   | 05/27/15 14:38 | 05/28/15 18:27 | 1       |
|                                      |        |           |    |     |      |   |                |                |         |

| General Chemistry Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia                   | 550    |           | 130   |     | mg/L |   |          | 05/27/15 13:18 | 500     |
| Nitrate as N              | 0.26   |           | 0.050 |     | mg/L |   |          | 05/21/15 19:30 | 1       |
| Nitrate Nitrite as N      | 0.28   |           | 0.050 |     | mg/L |   |          | 05/21/15 19:30 | 1       |
| Nitrite as N              | 0.050  | U         | 0.050 |     | mg/L |   |          | 05/21/15 19:30 | 1       |

\_

6

9

10

11

RL

1.0

1.0

1.0

1.0

Limits

70 - 130

**MDL** Unit

ug/L

ug/L

ug/L

ug/L

D

Prepared

Prepared

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

Client Sample ID: TMW 1 05212015

Method: 8270D - Semivolatile Organic C

Method: 8260B - Volatile Organic Compounds (GC/MS)

Result Qualifier

Qualifier

47

1.0

110

106

%Recovery

1.0 U

Date Collected: 05/21/15 10:40

Date Received: 05/21/15 16:21

Analyte

Toluene

Surrogate

Analyte Acenaphthene

Acenaphthylene

Benzo[a]pyrene

Benzo[b]fluoranthene

Benzo[g,h,i]perylene Benzo[k]fluoranthene

Dibenz(a,h)anthracene

Indeno[1,2,3-cd]pyrene

1-Methylnaphthalene

2-Methylnaphthalene **Naphthalene** 

Anthracene Benzo[a]anthracene

Chrysene

Fluorene

Fluoranthene

Phenanthrene

Pyrene

Surrogate

Analyte

**Arsenic** 

Lead

Nickel

**Zinc** 

Analyte

**Ammonia** 

Nitrate as N

**Nitrate Nitrite as N** 

**Chromium** 

2-Fluorobiphenyl

Nitrobenzene-d5 (Surr)

**General Chemistry** 

Method: 6010C - Metals (ICP)

Terphenyl-d14 (Surr)

Benzene

Ethylbenzene

**Xylenes, Total** 

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

Dibromofluoromethane (Surr)

4-Bromofluorobenzene (Surr)

TestAmerica Job ID: 680-112797-1

Lab Sample ID: 680-112797-7

Analyzed

05/28/15 16:25

05/28/15 16:25

05/28/15 16:25

05/28/15 16:25

Analyzed

05/28/15 16:25

**Matrix: Water** 

Dil Fac

Dil Fac

| ,                                     | 00/20/10 10.20                           |                                  |            |                     |     | 70 - 750     |                      | 700              |
|---------------------------------------|------------------------------------------|----------------------------------|------------|---------------------|-----|--------------|----------------------|------------------|
| 1                                     | 05/28/15 16:25                           |                                  |            |                     |     | 70 - 130     |                      | 119              |
| 1                                     | 05/28/15 16:25                           |                                  |            |                     |     | 70 - 130     |                      | 115              |
| 1                                     | 05/28/15 16:25                           |                                  |            |                     |     | 70 - 130     |                      | 96               |
| Dil Fac                               | Analyzed                                 | Prepared                         | D          | Unit                | MDL | (GC/MS)      | mpounds<br>Qualifier | anic Co          |
| 1                                     | 06/02/15 20:01                           |                                  | _ <u>-</u> | ug/L                |     | 9.7          |                      | 9.7              |
| 1                                     |                                          | 05/27/15 15:58                   |            | ug/L                |     | 9.7          |                      | 9.7              |
| 1                                     |                                          | 05/27/15 15:58                   |            | ug/L                |     | 9.7          |                      | 9.7              |
|                                       |                                          | 05/27/15 15:58                   |            | ug/L                |     | 9.7          |                      | 9.7              |
| 1                                     |                                          | 05/27/15 15:58                   |            | ug/L                |     | 9.7          |                      | 9.7              |
| 1                                     |                                          | 05/27/15 15:58                   |            | ug/L                |     | 9.7          |                      | 9.7              |
|                                       |                                          | 05/27/15 15:58                   |            | ug/L                |     | 9.7          |                      | 9.7              |
| 1                                     |                                          | 05/27/15 15:58                   |            | ug/L                |     | 9.7          |                      | 9.7              |
| 1                                     |                                          | 05/27/15 15:58                   |            | ug/L                |     | 9.7          |                      | 9.7              |
|                                       |                                          | 05/27/15 15:58                   |            | ug/L                |     | 9.7          |                      | 9.7              |
| 1                                     |                                          | 05/27/15 15:58                   |            | ug/L<br>ug/L        |     | 9.7<br>9.7   |                      | 9.7              |
| 1                                     |                                          | 05/27/15 15:58                   |            | ug/L                |     | 9.7          |                      | 9.7              |
| · · · · · · · · · · · · · · · · · · · |                                          | 05/27/15 15:58                   |            | ug/L                |     | 9.7          |                      | 9.7              |
| 1                                     |                                          | 05/27/15 15:58                   |            | ug/L                |     | 9.7          |                      | 9.7              |
| 1                                     |                                          | 05/27/15 15:58                   |            | ug/L                |     | 9.7          |                      | 9.7              |
| · · · · · · · · · · · · · · · · · · · |                                          | 05/27/15 15:58                   |            | ug/L<br>ug/L        |     | 9.7          |                      | 40               |
| 1                                     |                                          | 05/27/15 15:58                   |            | ug/L<br>ug/L        |     | 9.7          | П                    | 9.7              |
| 1                                     |                                          | 05/27/15 15:58                   |            | ug/L<br>ug/L        |     | 9.7          |                      | 9.7              |
| '                                     | 00/02/13 20.01                           | 03/27/13 13.36                   |            | ug/L                |     | 9.1          | U                    | 9.1              |
| Dil Fac                               | Analyzed                                 | Prepared                         |            |                     |     | Limits       | Qualifier            | Recovery         |
| 1                                     | 06/02/15 20:01                           |                                  |            |                     |     | 32 - 114     |                      | 55               |
| 1                                     |                                          | 05/27/15 15:58                   |            |                     |     | 30 - 117     |                      | 65               |
| 1                                     | 06/02/15 20:01                           | 05/27/15 15:58                   |            |                     |     | 10 - 132     |                      | 30               |
| Dil Fac                               | Analyzed                                 | Prepared                         | D          | Unit                | MDL | RL           | Qualifier            | Result           |
| 1                                     |                                          | 05/27/15 14:38                   | <u>-</u>   | ug/L                |     | 20           |                      | 160              |
| 1                                     |                                          | 05/27/15 14:38                   |            | ug/L                |     | 10           |                      | 32               |
| 1                                     | 05/28/15 18:32                           | 05/27/15 14:38                   |            | ug/L                |     | 10           | U                    | 10               |
|                                       |                                          |                                  |            |                     |     |              |                      | 40               |
|                                       | 05/28/15 18:32                           | 05/27/15 14:38                   |            | ua/L                |     | 40           | U                    |                  |
| 1                                     |                                          |                                  |            | ug/L<br>ug/L        |     | 40<br>20     | U                    | 77               |
| 1                                     |                                          | 05/27/15 14:38                   |            |                     |     |              | U                    |                  |
| 1<br>1<br>Dil Fac                     | 05/28/15 18:32  Analyzed                 | 05/27/15 14:38                   | D          | ug/L<br><b>Unit</b> | MDL | 20<br>RL     | Qualifier            | 77 Result        |
| 1<br>1<br>Dil Fac<br>5000             | 05/28/15 18:32  Analyzed  05/27/15 11:27 | 05/27/15 14:38<br>05/27/15 14:38 | <u>D</u>   | ug/L  Unit mg/L     | MDL | 20  RL  1300 |                      | 77  Result  4300 |
| 1<br>1<br>Dil Fac                     | 05/28/15 18:32  Analyzed                 | 05/27/15 14:38<br>05/27/15 14:38 | <u>D</u>   | ug/L<br><b>Unit</b> | MDL | 20<br>RL     | Qualifier            | 77 Result        |

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112797-1

Client Sample ID: TMW\_1\_05212015

Lab Sample ID: 680-112797-7

Matrix: Water

Date Collected: 05/21/15 10:40 Date Received: 05/21/15 16:21

| General | Chemistry | (Continued) |
|---------|-----------|-------------|
| Ochlera |           | (Continued) |

| Analyte      | Result Qualifier | RL | MDL Unit | D | Prepared | Analyzed       | Dil Fac |
|--------------|------------------|----|----------|---|----------|----------------|---------|
| Nitrite as N | 50 U F1          | 50 | mg/L     |   |          | 05/21/15 19:37 | 1000    |

3

5

6

\_\_\_\_\_\_

9

10

11

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

Client Sample ID: DUP\_01\_05212015

Date Collected: 05/21/15 00:00

Date Received: 05/21/15 16:21

**Ammonia** 

Nitrate as N

Nitrate Nitrite as N

TestAmerica Job ID: 680-112797-1

Lab Sample ID: 680-112797-8

**Matrix: Water** 

3

4

6

9

12

| Analyte                      |                | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fa |
|------------------------------|----------------|-----------|----------|-----|------|---|----------------|----------------|--------|
| Benzene                      | 48             |           | 1.0      |     | ug/L |   |                | 05/28/15 16:48 |        |
| Ethylbenzene                 | 1.0            | U         | 1.0      |     | ug/L |   |                | 05/28/15 16:48 |        |
| Toluene                      | 1.0            | U         | 1.0      |     | ug/L |   |                | 05/28/15 16:48 |        |
| Xylenes, Total               | 120            |           | 1.0      |     | ug/L |   |                | 05/28/15 16:48 |        |
| Surrogate                    | %Recovery      | Qualifier | Limits   |     |      |   | Prepared       | Analyzed       | Dil Fa |
| Toluene-d8 (Surr)            | 107            |           | 70 - 130 |     |      |   |                | 05/28/15 16:48 |        |
| 1,2-Dichloroethane-d4 (Surr) | 114            |           | 70 - 130 |     |      |   |                | 05/28/15 16:48 |        |
| Dibromofluoromethane (Surr)  | 112            |           | 70 - 130 |     |      |   |                | 05/28/15 16:48 |        |
| 4-Bromofluorobenzene (Surr)  | 95             |           | 70 - 130 |     |      |   |                | 05/28/15 16:48 |        |
| Method: 8270D - Semivolati   | ile Organic Co | mpounds   | (GC/MS)  |     |      |   |                |                |        |
| Analyte                      |                | Qualifier | ŘL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fa |
| Acenaphthene                 | 9.9            | U         | 9.9      |     | ug/L |   | 05/27/15 15:58 | 06/02/15 20:27 |        |
| Acenaphthylene               | 9.9            | U         | 9.9      |     | ug/L |   | 05/27/15 15:58 | 06/02/15 20:27 |        |
| Anthracene                   | 9.9            | U         | 9.9      |     | ug/L |   | 05/27/15 15:58 | 06/02/15 20:27 |        |
| Benzo[a]anthracene           | 9.9            | U         | 9.9      |     | ug/L |   | 05/27/15 15:58 | 06/02/15 20:27 |        |
| Benzo[a]pyrene               | 9.9            | U         | 9.9      |     | ug/L |   | 05/27/15 15:58 | 06/02/15 20:27 |        |
| Benzo[b]fluoranthene         | 9.9            | U         | 9.9      |     | ug/L |   | 05/27/15 15:58 | 06/02/15 20:27 |        |
| Benzo[g,h,i]perylene         | 9.9            | U         | 9.9      |     | ug/L |   | 05/27/15 15:58 | 06/02/15 20:27 |        |
| Benzo[k]fluoranthene         | 9.9            | U         | 9.9      |     | ug/L |   | 05/27/15 15:58 | 06/02/15 20:27 |        |
| Chrysene                     | 9.9            | U         | 9.9      |     | ug/L |   | 05/27/15 15:58 | 06/02/15 20:27 |        |
| Dibenz(a,h)anthracene        | 9.9            | Ü         | 9.9      |     | ug/L |   | 05/27/15 15:58 | 06/02/15 20:27 |        |
| Fluoranthene                 | 9.9            | U         | 9.9      |     | ug/L |   | 05/27/15 15:58 | 06/02/15 20:27 |        |
| Fluorene                     | 9.9            | U         | 9.9      |     | ug/L |   | 05/27/15 15:58 | 06/02/15 20:27 |        |
| Indeno[1,2,3-cd]pyrene       | 9.9            | U         | 9.9      |     | ug/L |   | 05/27/15 15:58 | 06/02/15 20:27 |        |
| 1-Methylnaphthalene          | 11             |           | 9.9      |     | ug/L |   | 05/27/15 15:58 | 06/02/15 20:27 |        |
| 2-Methylnaphthalene          | 11             |           | 9.9      |     | ug/L |   | 05/27/15 15:58 | 06/02/15 20:27 |        |
| Naphthalene                  | 44             |           | 9.9      |     | ug/L |   | 05/27/15 15:58 | 06/02/15 20:27 |        |
| Phenanthrene                 | 9.9            | U         | 9.9      |     | ug/L |   | 05/27/15 15:58 | 06/02/15 20:27 |        |
| Pyrene                       | 9.9            | U         | 9.9      |     | ug/L |   | 05/27/15 15:58 | 06/02/15 20:27 |        |
| Surrogate                    | %Recovery      | Qualifier | Limits   |     |      |   | Prepared       | Analyzed       | Dil Fa |
| 2-Fluorobiphenyl             | 63             |           | 32 - 114 |     |      |   | 05/27/15 15:58 | 06/02/15 20:27 |        |
| Nitrobenzene-d5 (Surr)       | 70             |           | 30 - 117 |     |      |   | 05/27/15 15:58 | 06/02/15 20:27 |        |
| Terphenyl-d14 (Surr)         | 36             |           | 10 - 132 |     |      |   | 05/27/15 15:58 | 06/02/15 20:27 |        |
| Method: 6010C - Metals (IC   | <b>P</b> )     |           |          |     |      |   |                |                |        |
| Analyte                      |                | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fa |
| Arsenic                      | 140            |           | 20       |     | ug/L |   |                | 05/28/15 18:55 |        |
| Chromium                     | 19             |           | 10       |     | ug/L |   |                | 05/28/15 18:55 |        |
| Lead                         | 10             |           | 10       |     | ug/L |   |                | 05/28/15 18:55 |        |
| Nickel                       | 40             | U         | 40       |     | ug/L |   | 05/27/15 14:38 | 05/28/15 18:55 |        |
| Zinc                         | 72             |           | 20       |     | ug/L |   | 05/27/15 14:38 | 05/28/15 18:55 |        |
| General Chemistry            |                |           |          |     |      |   |                |                |        |
| Analyte                      | Result         | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fa |

TestAmerica Savannah

05/27/15 10:00

05/21/15 19:31

05/21/15 19:31

500

50

50

3700

280

290

mg/L

mg/L

mg/L

2000

1000

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112797-1

**Client Sample ID: DUP\_01\_05212015** 

Lab Sample ID: 680-112797-8

Matrix: Water

Date Collected: 05/21/15 00:00 Date Received: 05/21/15 16:21

General Chemistry (Continued)

E

6

7

8

9

10

111

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

Client Sample ID: EB-01 05212015

Date Collected: 05/21/15 12:40

Date Received: 05/21/15 16:21

TestAmerica Job ID: 680-112797-1

Lab Sample ID: 680-112797-9

**Matrix: Water** 

6

Method: 8260B - Volatile Organic Compounds (GC/MS) RL **MDL** Unit Dil Fac Analyte Result Qualifier D Analyzed Prepared Benzene 1.0 U 1.0 05/28/15 12:39 ug/L Ethylbenzene 1.0 U 05/28/15 12:39 1.0 ug/L Toluene 1.0 U 1.0 ug/L 05/28/15 12:39 ug/L Xylenes, Total 1.0 1.0 05/28/15 12:39 %Recovery Surrogate Qualifier Limits Prepared Dil Fac Analyzed 99 Toluene-d8 (Surr) 70 - 130 05/28/15 12:39 117 70 - 130 05/28/15 12:39 1,2-Dichloroethane-d4 (Surr) Dibromofluoromethane (Surr) 111 70 - 13005/28/15 12:39 4-Bromofluorobenzene (Surr) 95 70 - 130 05/28/15 12:39 Method: 8270D - Semivolatile Organic Compounds (GC/MS) Result Qualifier ŔL **MDL** Unit D Prepared Dil Fac **Analyte** Analyzed 9.8 U 9.8 05/27/15 15:58 Acenaphthene ug/L 06/02/15 20:53 9.8 U Acenaphthylene 9.8 ug/L 05/27/15 15:58 06/02/15 20:53 1 05/27/15 15:58 Anthracene 9.8 U 9.8 ug/L 06/02/15 20:53 1 Benzo[a]anthracene 9.8 U 9.8 ug/L 05/27/15 15:58 06/02/15 20:53 06/02/15 20:53 Benzo[a]pyrene 9.8 U 9.8 ug/L 05/27/15 15:58 06/02/15 20:53 Benzo[b]fluoranthene 98 U 98 ug/L 05/27/15 15:58 9.8 U 9.8 06/02/15 20:53 Benzo[g,h,i]perylene ug/L 05/27/15 15:58 9.8 U 05/27/15 15:58 06/02/15 20:53 Benzo[k]fluoranthene 9.8 ug/L 06/02/15 20:53 Chrysene 98 U 98 ug/L 05/27/15 15:58 Dibenz(a,h)anthracene 9.8 U 9.8 ug/L 05/27/15 15:58 06/02/15 20:53 Fluoranthene 9.8 U 9.8 ug/L 05/27/15 15:58 06/02/15 20:53 Fluorene 9.8 U 98 ug/L 05/27/15 15:58 06/02/15 20:53 9.8 U 9.8 ug/L 05/27/15 15:58 06/02/15 20:53 Indeno[1,2,3-cd]pyrene 1-Methylnaphthalene 9.8 U 9.8 ug/L 05/27/15 15:58 06/02/15 20:53 2-Methylnaphthalene 9.8 U 9.8 ug/L 05/27/15 15:58 06/02/15 20:53 Naphthalene 9.8 U 9.8 ug/L 05/27/15 15:58 06/02/15 20:53 Phenanthrene 9.8 U 9.8 ug/L 05/27/15 15:58 06/02/15 20:53 Pyrene 9.8 U 9.8 ug/L 05/27/15 15:58 06/02/15 20:53 %Recovery Qualifier Limits Dil Fac Surrogate Prepared Analyzed 2-Fluorobiphenyl 71 32 - 114 05/27/15 15:58 06/02/15 20:53 85 Nitrobenzene-d5 (Surr) 30 - 117 05/27/15 15:58 06/02/15 20:53 Terphenyl-d14 (Surr) 77 10 - 132 05/27/15 15:58 06/02/15 20:53 Method: 6010C - Metals (ICP) Result Qualifier Analyte RL MDL Unit Prepared Analyzed Dil Fac 20 Ū 20 Arsenic ug/L 05/26/15 10:40 05/27/15 14:49 Chromium 10 U 10 ug/L 05/26/15 10:40 05/27/15 14:49 Lead 10 U 10 ug/L 05/26/15 10:40 05/27/15 14:49 1 Nickel 40 Ü 40 ug/L 05/26/15 10:40 05/27/15 14:49 Zinc 20 U 20 ug/L 05/26/15 10:40 05/27/15 14:49 **General Chemistry** Result Qualifier RL **MDL** Unit **Analyte** n Prepared Analyzed Dil Fac **Ammonia** 0.31 0.25 mg/L 05/27/15 08:55 Nitrate as N 0.050 U 0.050 mg/L 05/21/15 19:32 1 Nitrate Nitrite as N 0.050 U 0.050 mg/L 05/21/15 19:32

TestAmerica Savannah

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112797-1

**Client Sample ID: EB-01\_05212015** 

Lab Sample ID: 680-112797-9

Date Collected: 05/21/15 12:40 Date Received: 05/21/15 16:21 Matrix: Water

**General Chemistry (Continued)** 

| Analyte      | Result Qualifier | RL    | MDL Unit | D | Prepared | Analyzed       | Dil Fac |
|--------------|------------------|-------|----------|---|----------|----------------|---------|
| Nitrite as N | 0.050 U          | 0.050 | mg/L     |   |          | 05/21/15 19:32 |         |

3

\_\_

10

11

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

**Client Sample ID: FB-01\_05212015** 

Date Collected: 05/21/15 13:00

Date Received: 05/21/15 16:21

**General Chemistry** 

Analyte

Ammonia

Nitrate as N

Nitrate Nitrite as N

TestAmerica Job ID: 680-112797-1

Lab Sample ID: 680-112797-10 Matrix: Water

| Method: 8260B - Volatile Orga<br><sup>Analyte</sup> | Result    | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil F |
|-----------------------------------------------------|-----------|-----------|----------|-----|------|---|----------------|----------------|-------|
| Benzene                                             | 1.0       | U         | 1.0      |     | ug/L |   |                | 05/28/15 13:01 |       |
| Ethylbenzene                                        | 1.0       | U         | 1.0      |     | ug/L |   |                | 05/28/15 13:01 |       |
| Toluene                                             | 1.0       | U         | 1.0      |     | ug/L |   |                | 05/28/15 13:01 |       |
| Xylenes, Total                                      | 1.0       | U         | 1.0      |     | ug/L |   |                | 05/28/15 13:01 |       |
| Surrogate                                           | %Recovery | Qualifier | Limits   |     |      |   | Prepared       | Analyzed       | Dil F |
| Toluene-d8 (Surr)                                   | 98        |           | 70 - 130 |     |      |   |                | 05/28/15 13:01 |       |
| 1,2-Dichloroethane-d4 (Surr)                        | 117       |           | 70 - 130 |     |      |   |                | 05/28/15 13:01 |       |
| Dibromofluoromethane (Surr)                         | 109       |           | 70 - 130 |     |      |   |                | 05/28/15 13:01 |       |
| 4-Bromofluorobenzene (Surr)                         | 94        |           | 70 - 130 |     |      |   |                | 05/28/15 13:01 |       |
| Method: 8270D - Semivolatile                        |           |           |          |     |      | _ |                |                | 5     |
| Analyte                                             |           | Qualifier | RL       | MDL |      | D | Prepared       | Analyzed       | Dil F |
| Acenaphthene                                        | 9.7       |           | 9.7      |     | ug/L |   |                | 06/02/15 21:18 |       |
| Acenaphthylene                                      | 9.7       |           | 9.7      |     | ug/L |   |                | 06/02/15 21:18 |       |
| Anthracene                                          | 9.7       |           | 9.7      |     | ug/L |   |                | 06/02/15 21:18 |       |
| Benzo[a]anthracene                                  | 9.7       | -         | 9.7      |     | ug/L |   |                | 06/02/15 21:18 |       |
| Benzo[a]pyrene                                      | 9.7       |           | 9.7      |     | ug/L |   |                | 06/02/15 21:18 |       |
| Benzo[b]fluoranthene                                | 9.7       |           | 9.7      |     | ug/L |   |                | 06/02/15 21:18 |       |
| Benzo[g,h,i]perylene                                | 9.7       |           | 9.7      |     | ug/L |   |                | 06/02/15 21:18 |       |
| Benzo[k]fluoranthene                                | 9.7       |           | 9.7      |     | ug/L |   |                | 06/02/15 21:18 |       |
| Chrysene                                            | 9.7       |           | 9.7      |     | ug/L |   |                | 06/02/15 21:18 |       |
| Dibenz(a,h)anthracene                               | 9.7       |           | 9.7      |     | ug/L |   | 05/27/15 15:58 | 06/02/15 21:18 |       |
| Fluoranthene                                        | 9.7       | U         | 9.7      |     | ug/L |   | 05/27/15 15:58 | 06/02/15 21:18 |       |
| Fluorene                                            | 9.7       | U         | 9.7      |     | ug/L |   | 05/27/15 15:58 | 06/02/15 21:18 |       |
| ndeno[1,2,3-cd]pyrene                               | 9.7       | U         | 9.7      |     | ug/L |   | 05/27/15 15:58 | 06/02/15 21:18 |       |
| 1-Methylnaphthalene                                 | 9.7       | U         | 9.7      |     | ug/L |   | 05/27/15 15:58 | 06/02/15 21:18 |       |
| 2-Methylnaphthalene                                 | 9.7       | U         | 9.7      |     | ug/L |   | 05/27/15 15:58 | 06/02/15 21:18 |       |
| Naphthalene                                         | 9.7       | U         | 9.7      |     | ug/L |   | 05/27/15 15:58 | 06/02/15 21:18 |       |
| Phenanthrene                                        | 9.7       | U         | 9.7      |     | ug/L |   | 05/27/15 15:58 | 06/02/15 21:18 |       |
| Pyrene                                              | 9.7       | U         | 9.7      |     | ug/L |   | 05/27/15 15:58 | 06/02/15 21:18 |       |
| Surrogate                                           | %Recovery | Qualifier | Limits   |     |      |   | Prepared       | Analyzed       | Dil   |
| 2-Fluorobiphenyl                                    | 69        |           | 32 - 114 |     |      |   | 05/27/15 15:58 |                |       |
| Nitrobenzene-d5 (Surr)                              | 79        |           | 30 - 117 |     |      |   | 05/27/15 15:58 | 06/02/15 21:18 |       |
| Terphenyl-d14 (Surr)                                | 73        |           | 10 - 132 |     |      |   | 05/27/15 15:58 | 06/02/15 21:18 |       |
| Method: 6010C - Metals (ICP)                        |           |           |          |     |      |   |                |                |       |
| Analyte                                             | Result    | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil   |
| Arsenic                                             | 20        | U         | 20       |     | ug/L |   | 05/26/15 10:40 | 05/27/15 14:53 |       |
| Chromium                                            | 10        | U         | 10       |     | ug/L |   | 05/26/15 10:40 | 05/27/15 14:53 |       |
| _ead                                                | 10        | U         | 10       |     | ug/L |   | 05/26/15 10:40 | 05/27/15 14:53 |       |
| Nickel                                              | 40        | U         | 40       |     | ug/L |   | 05/26/15 10:40 | 05/27/15 14:53 |       |
| Zinc                                                | 20        | U         | 20       |     | ug/L |   | 05/26/15 10:40 | 05/27/15 14:53 |       |

TestAmerica Savannah

Analyzed

05/27/15 08:55

05/21/15 19:34

05/21/15 19:34

Prepared

RL

0.25

0.050

0.050

MDL Unit

mg/L

mg/L

mg/L

Result Qualifier

0.25 U

0.050 U

0.050 U

Dil Fac

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

Client Sample ID: FB-01\_05212015

TestAmerica Job ID: 680-112797-1

Lab Sample ID: 680-112797-10

Matrix: Water

Date Collected: 05/21/15 13:00 Date Received: 05/21/15 16:21

General Chemistry (Continued)AnalyteResult<br/>Nitrite as NQualifier<br/>URL<br/>0.050MDL<br/>mg/LUnit<br/>mg/LD<br/>p<br/>mg/LPrepared<br/>0.5/21/15 19:34Analyzed<br/>0.5/21/15 19:34Dil Fac<br/>0.5/21/15 19:34

5

6

9

11

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112797-1

Client Sample ID: SW-02\_05212015\_HIGH

Lab Sample ID: 680-112797-11

Date Collected: 05/21/15 12:10 Date Received: 05/21/15 16:21

| Matrix:  | Water  |
|----------|--------|
| wati ix. | vvalei |

| General Chemistry<br>Analyte | Result ( | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|----------|-----------|-------|-----|------|---|----------|----------------|---------|
| Alkalinity                   | 39       |           | 5.0   |     | mg/L |   |          | 05/28/15 18:16 | 1       |
| Ammonia                      | 0.52     |           | 0.50  |     | mg/L |   |          | 05/27/15 10:19 | 2       |
| Nitrate as N                 | 0.29     |           | 0.050 |     | mg/L |   |          | 05/21/15 19:38 | 1       |
| Nitrate Nitrite as N         | 0.30     |           | 0.050 |     | mg/L |   |          | 05/21/15 19:38 | 1       |
| Nitrite as N                 | 0.050    | U         | 0.050 |     | mg/L |   |          | 05/21/15 19:38 | 1       |

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

Date Received: 05/21/15 16:21

Nitrate Nitrite as N

Nitrite as N

TestAmerica Job ID: 680-112797-1

05/21/15 19:39

05/21/15 19:39

Client Sample ID: SW-01 05212015 HIGH

Lab Sample ID: 680-112797-12 Date Collected: 05/21/15 12:20

mg/L

mg/L

**Matrix: Water** 

Dil Fac

| General Chemistry<br>Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | ı |
|------------------------------|--------|-----------|-------|-----|------|---|----------|----------------|---|
| Alkalinity                   | 39     |           | 5.0   |     | mg/L |   |          | 05/28/15 18:09 |   |
| Ammonia                      | 0.41   |           | 0.25  |     | mg/L |   |          | 05/27/15 08:55 |   |
| Nitrate as N                 | 0.28   |           | 0.050 |     | mg/L |   |          | 05/21/15 19:39 |   |

0.050

0.050

0.29

0.050 U

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112797-1

Client Sample ID: SW-03\_05212015\_HIGH

Lab Sample ID: 680-112797-13 Date Collected: 05/21/15 13:00

**Matrix: Water** 

| General Chemistry Analyte | Result Qualifier | RL    | MDL Unit | D Prepared | Analyzed       | Dil Fac |
|---------------------------|------------------|-------|----------|------------|----------------|---------|
| Alkalinity                | 71               | 5.0   | mg/L     |            | 05/28/15 18:23 | 1       |
| Ammonia                   | 0.91             | 0.25  | mg/L     |            | 05/27/15 09:05 | 1       |
| Nitrate as N              | 0.27             | 0.050 | mg/L     |            | 05/21/15 19:41 | 1       |
| Nitrate Nitrite as N      | 0.32             | 0.050 | mg/L     |            | 05/21/15 19:41 | 1       |
| Nitrite as N              | 0.050 U          | 0.050 | ma/l     |            | 05/21/15 19:41 | 1       |

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112797-1

Client Sample ID: SW-04\_05212015\_HIGH

Lab Sample ID: 680-112797-14 Date Collected: 05/21/15 13:10

**Matrix: Water** 

| General Chemistry Analyte | Result Qua | alifier RL | MDL Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------|------------|------------|----------|---|----------|----------------|---------|
| Alkalinity                | 100        | 5.0        | mg/L     |   |          | 05/28/15 18:31 | 1       |
| Ammonia                   | 0.83       | 0.25       | mg/L     |   |          | 05/27/15 09:05 | 1       |
| Nitrate as N              | 0.25       | 0.050      | mg/L     |   |          | 05/21/15 19:42 | 1       |
| Nitrate Nitrite as N      | 0.31       | 0.050      | mg/L     |   |          | 05/21/15 19:42 | 1       |
| Nitrite as N              | 0.060      | 0.050      | mg/L     |   |          | 05/21/15 19:42 | 1       |

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112797-1

Lab Sample ID: 680-112797-15

**Matrix: Water** 

Client Sample ID: EB-02\_05212015 Date Collected: 05/21/15 13:30

| Result | Qualifier      | RL                 | MDL                           | Unit                          | D                                            | Prepared                                     | Analyzed                                                                                                                                        | Dil Fac                                                                                                                                |
|--------|----------------|--------------------|-------------------------------|-------------------------------|----------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| 20     | U              | 20                 |                               | ug/L                          |                                              | 05/26/15 10:40                               | 05/27/15 15:01                                                                                                                                  | 1                                                                                                                                      |
| 10     | U              | 10                 |                               | ug/L                          |                                              | 05/26/15 10:40                               | 05/27/15 15:01                                                                                                                                  | 1                                                                                                                                      |
| 40     | U              | 40                 |                               | ug/L                          |                                              | 05/26/15 10:40                               | 05/27/15 15:01                                                                                                                                  | 1                                                                                                                                      |
| 20     | U              | 20                 |                               | ug/L                          |                                              | 05/26/15 10:40                               | 05/27/15 15:01                                                                                                                                  | 1                                                                                                                                      |
|        |                |                    |                               |                               |                                              |                                              |                                                                                                                                                 |                                                                                                                                        |
|        | 20<br>10<br>40 | Result   Qualifier | 20 U 20<br>10 U 10<br>40 U 40 | 20 U 20<br>10 U 10<br>40 U 40 | 20 U 20 ug/L<br>10 U 10 ug/L<br>40 U 40 ug/L | 20 U 20 ug/L<br>10 U 10 ug/L<br>40 U 40 ug/L | 20     U     20     ug/L     05/26/15 10:40       10     U     10     ug/L     05/26/15 10:40       40     U     40     ug/L     05/26/15 10:40 | 20 U 20 ug/L 05/26/15 10:40 05/27/15 15:01<br>10 U 10 ug/L 05/26/15 10:40 05/27/15 15:01<br>40 U 40 ug/L 05/26/15 10:40 05/27/15 15:01 |

| General Chemistry Analyte | Result C | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------|----------|-----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia                   | 0.25 L   | J         | 0.25  |     | mg/L |   |          | 05/27/15 09:05 | 1       |
| Nitrate as N              | 0.050 L  | J         | 0.050 |     | mg/L |   |          | 05/21/15 19:43 | 1       |
| Nitrate Nitrite as N      | 0.050 L  | J         | 0.050 |     | mg/L |   |          | 05/21/15 19:43 | 1       |
| Nitrite as N              | 0.050 L  | j         | 0.050 |     | mg/L |   |          | 05/21/15 19:43 | 1       |

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112797-1

Lab Sample ID: 680-112797-16

**Matrix: Water** 

**Client Sample ID: Trip Blank** Date Collected: 05/21/15 00:00

| Analyte                      | Result    | Qualifier | RL       | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|-----|------|---|----------|----------------|---------|
| Benzene                      | 1.0       | U         | 1.0      |     | ug/L |   |          | 05/28/15 11:31 | 1       |
| Ethylbenzene                 | 1.0       | U         | 1.0      |     | ug/L |   |          | 05/28/15 11:31 | 1       |
| Toluene                      | 1.0       | U         | 1.0      |     | ug/L |   |          | 05/28/15 11:31 | 1       |
| Xylenes, Total               | 1.0       | U         | 1.0      |     | ug/L |   |          | 05/28/15 11:31 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits   |     |      |   | Prepared | Analyzed       | Dil Fac |
| Toluene-d8 (Surr)            | 99        |           | 70 - 130 |     |      |   |          | 05/28/15 11:31 | 1       |
| 1,2-Dichloroethane-d4 (Surr) | 117       |           | 70 - 130 |     |      |   |          | 05/28/15 11:31 | 1       |
| Dibromofluoromethane (Surr)  | 112       |           | 70 - 130 |     |      |   |          | 05/28/15 11:31 | 1       |
| 4-Bromofluorobenzene (Surr)  | 96        |           | 70 - 130 |     |      |   |          | 05/28/15 11:31 | 1       |

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

#### Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-384972/9

**Matrix: Water** 

**Analysis Batch: 384972** 

**Client Sample ID: Method Blank** 

Prep Type: Total/NA

| ı |                | IVID   | IVID      |     |     |      |   |          |                |         |
|---|----------------|--------|-----------|-----|-----|------|---|----------|----------------|---------|
|   | Analyte        | Result | Qualifier | RL  | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|   | Benzene        | 1.0    | U         | 1.0 |     | ug/L |   |          | 05/28/15 11:00 | 1       |
| ı | Ethylbenzene   | 1.0    | U         | 1.0 |     | ug/L |   |          | 05/28/15 11:00 | 1       |
|   | Toluene        | 1.0    | U         | 1.0 |     | ug/L |   |          | 05/28/15 11:00 | 1       |
|   | Xylenes, Total | 1.0    | U         | 1.0 |     | ug/L |   |          | 05/28/15 11:00 | 1       |
| ı |                |        |           |     |     |      |   |          |                |         |

MB MB Surrogate %Recovery Qualifier Limits Prepared Dil Fac Analyzed Toluene-d8 (Surr) 98 70 - 130 05/28/15 11:00 1,2-Dichloroethane-d4 (Surr) 115 70 - 130 05/28/15 11:00 Dibromofluoromethane (Surr) 108 70 - 130 05/28/15 11:00 4-Bromofluorobenzene (Surr) 97 70 - 130 05/28/15 11:00

Lab Sample ID: LCS 680-384972/4

**Matrix: Water** 

**Analysis Batch: 384972** 

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA

|                | Spike                              | LCS                                                                                                                     | LCS                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | %Rec.                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Analyte        | Added                              | Result                                                                                                                  | Qualifier Un                                                                                                                                                                  | it D %Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Limits                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                    |
| Benzene        | 50.0                               | 45.7                                                                                                                    | ug/                                                                                                                                                                           | L 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 73 - 131                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                    |
| Ethylbenzene   | 50.0                               | 51.8                                                                                                                    | ug/                                                                                                                                                                           | L 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 80 - 120                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                    |
| Toluene        | 50.0                               | 49.0                                                                                                                    | ug/                                                                                                                                                                           | L 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 80 - 122                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                    |
| Xylenes, Total | 100                                | 108                                                                                                                     | ug/                                                                                                                                                                           | L 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 80 - 120                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                    |
|                | Benzene<br>Ethylbenzene<br>Toluene | Analyte         Added           Benzene         50.0           Ethylbenzene         50.0           Toluene         50.0 | Analyte         Added         Result           Benzene         50.0         45.7           Ethylbenzene         50.0         51.8           Toluene         50.0         49.0 | Analyte         Added         Result Qualifier         Under Und | Analyte         Added Benzene         Result ug/L         Unit ug/L         D 91         %Rec           Benzene         50.0         45.7         ug/L         91           Ethylbenzene         50.0         51.8         ug/L         104           Toluene         50.0         49.0         ug/L         98 | Analyte         Added Benzelle         Result Qualifier         Unit Ug/L         D %Rec Umits         Limits           Benzene         50.0         45.7         ug/L         91         73 - 131           Ethylbenzene         50.0         51.8         ug/L         104         80 - 120           Toluene         50.0         49.0         ug/L         98         80 - 122 |

LCS LCS Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 99 70 - 130 1,2-Dichloroethane-d4 (Surr) 119 70 - 130 Dibromofluoromethane (Surr) 111 70 - 130 4-Bromofluorobenzene (Surr) 70 - 130 99

Lab Sample ID: LCSD 680-384972/5

**Matrix: Water** 

**Analysis Batch: 384972** 

**Client Sample ID: Lab Control Sample Dup** Prep Type: Total/NA

|                | Spike | LCSD   | LCSD      |      |   |      | %Rec.    |     | RPD   |
|----------------|-------|--------|-----------|------|---|------|----------|-----|-------|
| Analyte        | Added | Result | Qualifier | Unit | D | %Rec | Limits   | RPD | Limit |
| Benzene        | 50.0  | 46.5   |           | ug/L |   | 93   | 73 - 131 | 2   | 30    |
| Ethylbenzene   | 50.0  | 52.1   |           | ug/L |   | 104  | 80 - 120 | 1   | 20    |
| Toluene        | 50.0  | 49.5   |           | ug/L |   | 99   | 80 - 122 | 1   | 20    |
| Xylenes, Total | 100   | 109    |           | ug/L |   | 109  | 80 - 120 | 1   | 20    |

|                              | LCSD      | LCSD      |          |
|------------------------------|-----------|-----------|----------|
| Surrogate                    | %Recovery | Qualifier | Limits   |
| Toluene-d8 (Surr)            | 100       |           | 70 - 130 |
| 1,2-Dichloroethane-d4 (Surr) | 119       |           | 70 - 130 |
| Dibromofluoromethane (Surr)  | 110       |           | 70 - 130 |
| 4-Bromofluorobenzene (Surr)  | 102       |           | 70 - 130 |

TestAmerica Savannah

Page 27 of 48

6/4/2015

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

### Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 680-112797-7 MS

**Matrix: Water** 

**Analysis Batch: 384972** 

Client Sample ID: TMW\_1\_05212015

Prep Type: Total/NA

|                | Sample | Sample    | Spike | MS     | MS        |      |   |      | %Rec.    |  |
|----------------|--------|-----------|-------|--------|-----------|------|---|------|----------|--|
| Analyte        | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Benzene        | 47     |           | 50.0  | 92.0   |           | ug/L |   | 90   | 73 - 131 |  |
| Ethylbenzene   | 1.0    | U         | 50.0  | 50.6   |           | ug/L |   | 101  | 80 - 120 |  |
| Toluene        | 1.0    | U         | 50.0  | 49.5   |           | ug/L |   | 99   | 80 - 122 |  |
| Xylenes, Total | 110    |           | 100   | 224    |           | ug/L |   | 111  | 80 - 120 |  |

MS MS Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 70 - 130 100 1,2-Dichloroethane-d4 (Surr) 116 70 - 130 Dibromofluoromethane (Surr) 108 70 - 130 4-Bromofluorobenzene (Surr) 86 70 - 130

Lab Sample ID: 680-112797-7 MSD

**Matrix: Water** 

**Analysis Batch: 384972** 

Client Sample ID: TMW\_1\_05212015

**Prep Type: Total/NA** 

|                | Sample | Sample    | Spike | MSD    | MSD       |      |   |      | %Rec.    |     | RPD   |
|----------------|--------|-----------|-------|--------|-----------|------|---|------|----------|-----|-------|
| Analyte        | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   | RPD | Limit |
| Benzene        | 47     |           | 50.0  | 92.0   |           | ug/L |   | 90   | 73 - 131 | 0   | 30    |
| Ethylbenzene   | 1.0    | U         | 50.0  | 52.7   |           | ug/L |   | 105  | 80 - 120 | 4   | 20    |
| Toluene        | 1.0    | U         | 50.0  | 50.3   |           | ug/L |   | 101  | 80 - 122 | 2   | 20    |
| Xylenes, Total | 110    |           | 100   | 206    |           | ug/L |   | 93   | 80 - 120 | 8   | 20    |
|                |        |           |       |        |           |      |   |      |          |     |       |

|                              | MSD       | MSD       |          |
|------------------------------|-----------|-----------|----------|
| Surrogate                    | %Recovery | Qualifier | Limits   |
| Toluene-d8 (Surr)            | 101       |           | 70 - 130 |
| 1,2-Dichloroethane-d4 (Surr) | 114       |           | 70 - 130 |
| Dibromofluoromethane (Surr)  | 109       |           | 70 - 130 |
| 4-Bromofluorobenzene (Surr)  | 82        |           | 70 - 130 |

#### Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-384797/5-A

**Matrix: Water** 

**Analysis Batch: 385722** 

**Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 384797** 

|                        | MB     | MB        |    |     |      |   |                |                |         |
|------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte                | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Acenaphthene           | 10     | U         | 10 |     | ug/L |   | 05/27/15 15:58 | 06/02/15 18:44 | 1       |
| Acenaphthylene         | 10     | U         | 10 |     | ug/L |   | 05/27/15 15:58 | 06/02/15 18:44 | 1       |
| Anthracene             | 10     | U         | 10 |     | ug/L |   | 05/27/15 15:58 | 06/02/15 18:44 | 1       |
| Benzo[a]anthracene     | 10     | U         | 10 |     | ug/L |   | 05/27/15 15:58 | 06/02/15 18:44 | 1       |
| Benzo[a]pyrene         | 10     | U         | 10 |     | ug/L |   | 05/27/15 15:58 | 06/02/15 18:44 | 1       |
| Benzo[b]fluoranthene   | 10     | U         | 10 |     | ug/L |   | 05/27/15 15:58 | 06/02/15 18:44 | 1       |
| Benzo[g,h,i]perylene   | 10     | U         | 10 |     | ug/L |   | 05/27/15 15:58 | 06/02/15 18:44 | 1       |
| Benzo[k]fluoranthene   | 10     | U         | 10 |     | ug/L |   | 05/27/15 15:58 | 06/02/15 18:44 | 1       |
| Chrysene               | 10     | U         | 10 |     | ug/L |   | 05/27/15 15:58 | 06/02/15 18:44 | 1       |
| Dibenz(a,h)anthracene  | 10     | U         | 10 |     | ug/L |   | 05/27/15 15:58 | 06/02/15 18:44 | 1       |
| Fluoranthene           | 10     | U         | 10 |     | ug/L |   | 05/27/15 15:58 | 06/02/15 18:44 | 1       |
| Fluorene               | 10     | U         | 10 |     | ug/L |   | 05/27/15 15:58 | 06/02/15 18:44 | 1       |
| Indeno[1,2,3-cd]pyrene | 10     | U         | 10 |     | ug/L |   | 05/27/15 15:58 | 06/02/15 18:44 | 1       |

TestAmerica Savannah

Page 28 of 48

6/4/2015

# Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-384797/5-A

Lab Sample ID: LCS 680-384797/6-A

**Matrix: Water** 

**Matrix: Water** 

Analysis Batch: 385722

**Client Sample ID: Method Blank Prep Type: Total/NA** 

**Prep Batch: 384797** 

|                     | IVID   | IVID      |    |     |      |   |                |                |         |
|---------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte             | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| 1-Methylnaphthalene | 10     | U         | 10 |     | ug/L |   | 05/27/15 15:58 | 06/02/15 18:44 | 1       |
| 2-Methylnaphthalene | 10     | U         | 10 |     | ug/L |   | 05/27/15 15:58 | 06/02/15 18:44 | 1       |
| Naphthalene         | 10     | U         | 10 |     | ug/L |   | 05/27/15 15:58 | 06/02/15 18:44 | 1       |
| Phenanthrene        | 10     | U         | 10 |     | ug/L |   | 05/27/15 15:58 | 06/02/15 18:44 | 1       |
| Pyrene              | 10     | U         | 10 |     | ug/L |   | 05/27/15 15:58 | 06/02/15 18:44 | 1       |
|                     |        |           |    |     |      |   |                |                |         |

MD MD

|                        | IVID      | INID      |          |                       |                |         |
|------------------------|-----------|-----------|----------|-----------------------|----------------|---------|
| Surrogate              | %Recovery | Qualifier | Limits   | Prepared              | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl       | 71        |           | 32 - 114 | <u>05/27/15 15:58</u> | 06/02/15 18:44 | 1       |
| Nitrobenzene-d5 (Surr) | 80        |           | 30 - 117 | 05/27/15 15:58        | 06/02/15 18:44 | 1       |
| Terphenyl-d14 (Surr)   | 75        |           | 10 - 132 | 05/27/15 15:58        | 06/02/15 18:44 | 1       |

**Client Sample ID: Lab Control Sample** 

**Prep Type: Total/NA** 

**Prep Batch: 384797** 

| Analysis Batch: 385722 | Spike | LCS    | LCS       |      |   |      | Prep Batch: 384797 %Rec. |
|------------------------|-------|--------|-----------|------|---|------|--------------------------|
| Analyte                | Added | Result | Qualifier | Unit | D | %Rec | Limits                   |
| Acenaphthene           | 100   | 67.4   |           | ug/L |   | 67   | 32 - 107                 |
| Acenaphthylene         | 100   | 62.6   |           | ug/L |   | 63   | 10 - 119                 |
| Anthracene             | 100   | 79.1   |           | ug/L |   | 79   | 38 - 112                 |
| Benzo[a]anthracene     | 100   | 77.0   |           | ug/L |   | 77   | 36 - 115                 |
| Benzo[a]pyrene         | 100   | 72.9   |           | ug/L |   | 73   | 13 - 120                 |
| Benzo[b]fluoranthene   | 100   | 80.2   |           | ug/L |   | 80   | 32 - 117                 |
| Benzo[g,h,i]perylene   | 100   | 76.5   |           | ug/L |   | 76   | 21 - 118                 |
| Benzo[k]fluoranthene   | 100   | 72.5   |           | ug/L |   | 73   | 28 - 125                 |
| Chrysene               | 100   | 71.1   |           | ug/L |   | 71   | 36 - 113                 |
| Dibenz(a,h)anthracene  | 100   | 82.4   |           | ug/L |   | 82   | 32 - 115                 |
| Fluoranthene           | 100   | 83.0   |           | ug/L |   | 83   | 41 - 113                 |
| Fluorene               | 100   | 69.2   |           | ug/L |   | 69   | 39 - 115                 |
| Indeno[1,2,3-cd]pyrene | 100   | 79.1   |           | ug/L |   | 79   | 16 - 119                 |
| 1-Methylnaphthalene    | 100   | 68.7   |           | ug/L |   | 69   | 26 - 94                  |
| 2-Methylnaphthalene    | 100   | 68.2   |           | ug/L |   | 68   | 24 - 92                  |
| Naphthalene            | 100   | 67.8   |           | ug/L |   | 68   | 24 - 85                  |
| Phenanthrene           | 100   | 78.5   |           | ug/L |   | 78   | 40 - 114                 |
| Pyrene                 | 100   | 77.0   |           | ug/L |   | 77   | 29 - 118                 |

LCS LCS

| Surrogate              | %Recovery Qualifier | Limits   |
|------------------------|---------------------|----------|
| 2-Fluorobiphenyl       | 64                  | 32 - 114 |
| Nitrobenzene-d5 (Surr) | 71                  | 30 - 117 |
| Terphenyl-d14 (Surr)   | 70                  | 10 - 132 |

| Lab Sample ID: 680-11279 | 7-7 MS |           |       |        |           |      | Client S | Sample | ID: TMW_ | 1_05212015   |
|--------------------------|--------|-----------|-------|--------|-----------|------|----------|--------|----------|--------------|
| Matrix: Water            |        |           |       |        |           |      |          |        | Prep Ty  | oe: Total/NA |
| Analysis Batch: 385722   |        |           |       |        |           |      |          |        | Prep Ba  | tch: 384797  |
|                          | Sample | Sample    | Spike | MS     | MS        |      |          |        | %Rec.    |              |
| Analyte                  | Result | Qualifier | Added | Result | Qualifier | Unit | D        | %Rec   | Limits   |              |
| Acenaphthene             | 9.7    | U         | 97.8  | 67.9   |           | ug/L |          | 69     | 32 - 107 |              |
| Acenaphthylene           | 9.7    | U         | 97.8  | 57.4   |           | ug/L |          | 59     | 10 - 119 |              |
| Anthracene               | 9.7    | U         | 97.8  | 74.1   |           | ug/L |          | 76     | 38 - 112 |              |
|                          |        |           |       |        |           |      |          |        |          |              |

TestAmerica Savannah

Page 29 of 48

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

### Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 680-112797-7 MS

**Matrix: Water** 

**Analysis Batch: 385722** 

Client Sample ID: TMW\_1\_05212015 **Prep Type: Total/NA** 

**Prep Batch: 384797** 

| Analysis Baton: 500722 | Sample | Sample    | Spike | MS     | MS        |      |   |      | %Rec.    |
|------------------------|--------|-----------|-------|--------|-----------|------|---|------|----------|
| Analyte                | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   |
| Benzo[a]anthracene     | 9.7    | U         | 97.8  | 52.4   | -         | ug/L |   | 54   | 36 - 115 |
| Benzo[a]pyrene         | 9.7    | U         | 97.8  | 43.2   |           | ug/L |   | 44   | 13 - 120 |
| Benzo[b]fluoranthene   | 9.7    | U         | 97.8  | 45.9   |           | ug/L |   | 47   | 32 - 117 |
| Benzo[g,h,i]perylene   | 9.7    | U         | 97.8  | 42.6   |           | ug/L |   | 44   | 21 - 118 |
| Benzo[k]fluoranthene   | 9.7    | U         | 97.8  | 42.2   |           | ug/L |   | 43   | 28 - 125 |
| Chrysene               | 9.7    | U         | 97.8  | 48.3   |           | ug/L |   | 49   | 36 - 113 |
| Dibenz(a,h)anthracene  | 9.7    | U         | 97.8  | 46.4   |           | ug/L |   | 47   | 32 - 115 |
| Fluoranthene           | 9.7    | U         | 97.8  | 70.6   |           | ug/L |   | 72   | 41 - 113 |
| Fluorene               | 9.7    | U         | 97.8  | 67.8   |           | ug/L |   | 69   | 39 - 115 |
| Indeno[1,2,3-cd]pyrene | 9.7    | U         | 97.8  | 48.7   |           | ug/L |   | 50   | 16 - 119 |
| 1-Methylnaphthalene    | 9.7    | U         | 97.8  | 69.0   |           | ug/L |   | 61   | 26 - 94  |
| 2-Methylnaphthalene    | 9.7    | U         | 97.8  | 70.9   |           | ug/L |   | 64   | 24 - 92  |
| Naphthalene            | 40     |           | 97.8  | 96.9   |           | ug/L |   | 58   | 24 - 85  |
| Phenanthrene           | 9.7    | U         | 97.8  | 77.6   |           | ug/L |   | 79   | 40 - 114 |

97.8

62.5

ug/L

MS MS

9.7 U

| Surrogate              | %Recovery Qualifie | r Limits |
|------------------------|--------------------|----------|
| 2-Fluorobiphenyl       | 62                 | 32 - 114 |
| Nitrobenzene-d5 (Surr) | 68                 | 30 - 117 |
| Terphenyl-d14 (Surr)   | 31                 | 10 - 132 |

Lab Sample ID: 680-112797-7 MSD

**Matrix: Water** 

Surrogate

2-Fluorobiphenyl

Pyrene

**Analysis Batch: 385722** 

| Client | Sample | ID: TMW | 1_05212015 |
|--------|--------|---------|------------|
|        |        |         |            |

29 - 118

64

**Prep Type: Total/NA** 

Prep Batch: 384797

| -                      | Sample | Sample    | Spike | MSD    | MSD       |      |   |      | %Rec.    |     | RPD   |
|------------------------|--------|-----------|-------|--------|-----------|------|---|------|----------|-----|-------|
| Analyte                | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   | RPD | Limit |
| Acenaphthene           | 9.7    | U         | 97.4  | 63.1   |           | ug/L |   | 65   | 32 - 107 | 7   | 20    |
| Acenaphthylene         | 9.7    | U         | 97.4  | 52.4   |           | ug/L |   | 54   | 10 - 119 | 9   | 20    |
| Anthracene             | 9.7    | U         | 97.4  | 69.8   |           | ug/L |   | 72   | 38 - 112 | 6   | 20    |
| Benzo[a]anthracene     | 9.7    | U         | 97.4  | 51.7   |           | ug/L |   | 53   | 36 - 115 | 1   | 40    |
| Benzo[a]pyrene         | 9.7    | U         | 97.4  | 41.6   |           | ug/L |   | 43   | 13 - 120 | 4   | 40    |
| Benzo[b]fluoranthene   | 9.7    | U         | 97.4  | 44.8   |           | ug/L |   | 46   | 32 - 117 | 2   | 50    |
| Benzo[g,h,i]perylene   | 9.7    | U         | 97.4  | 41.5   |           | ug/L |   | 43   | 21 - 118 | 3   | 50    |
| Benzo[k]fluoranthene   | 9.7    | U         | 97.4  | 40.0   |           | ug/L |   | 41   | 28 - 125 | 5   | 40    |
| Chrysene               | 9.7    | U         | 97.4  | 46.7   |           | ug/L |   | 48   | 36 - 113 | 3   | 50    |
| Dibenz(a,h)anthracene  | 9.7    | U         | 97.4  | 41.8   |           | ug/L |   | 43   | 32 - 115 | 10  | 40    |
| Fluoranthene           | 9.7    | U         | 97.4  | 65.5   |           | ug/L |   | 67   | 41 - 113 | 7   | 40    |
| Fluorene               | 9.7    | U         | 97.4  | 64.0   |           | ug/L |   | 66   | 39 - 115 | 6   | 20    |
| Indeno[1,2,3-cd]pyrene | 9.7    | U         | 97.4  | 43.9   |           | ug/L |   | 45   | 16 - 119 | 10  | 40    |
| 1-Methylnaphthalene    | 9.7    | U         | 97.4  | 65.0   |           | ug/L |   | 57   | 26 - 94  | 6   | 50    |
| 2-Methylnaphthalene    | 9.7    | U         | 97.4  | 66.6   |           | ug/L |   | 60   | 24 - 92  | 6   | 30    |
| Naphthalene            | 40     |           | 97.4  | 94.7   |           | ug/L |   | 57   | 24 - 85  | 2   | 40    |
| Phenanthrene           | 9.7    | U         | 97.4  | 71.2   |           | ug/L |   | 73   | 40 - 114 | 9   | 40    |
| Pyrene                 | 9.7    | U         | 97.4  | 61.5   |           | ug/L |   | 63   | 29 - 118 | 2   | 50    |
|                        | MSD    | MSD       |       |        |           |      |   |      |          |     |       |

%Recovery Qualifier Limits 54 32 - 114

TestAmerica Savannah

Page 30 of 48

6/4/2015

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 680-112797-7 MSD

**Matrix: Water** 

**Analysis Batch: 385722** 

Client Sample ID: TMW\_1\_05212015 Prep Type: Total/NA

Prep Batch: 384797

MSD MSD

| Surrogate              | %Recovery | Qualifier | Limits   |
|------------------------|-----------|-----------|----------|
| Nitrobenzene-d5 (Surr) | 60        |           | 30 - 117 |
| Terphenyl-d14 (Surr)   | 30        |           | 10 - 132 |

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 680-384639/1-A Client Sample ID: Method Blank

**Matrix: Water** 

**Analysis Batch: 384988** 

Prep Type: Total/NA
Prep Batch: 384639

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 20 U Arsenic 20 05/26/15 10:40 05/27/15 13:27 ug/L Chromium 10 U 10 ug/L 05/26/15 10:40 05/27/15 13:27 Lead 10 U 10 ug/L 05/26/15 10:40 05/27/15 13:27 1 Nickel 40 U 40 ug/L 05/26/15 10:40 05/27/15 13:27 Zinc 20 U 20 05/26/15 10:40 05/27/15 13:27 ug/L

LCS LCS

99.6

105

509

103

104

Result Qualifier

Unit

ug/L

ug/L

ug/L

ug/L

ug/L

Spike

Added

100

100

500

100

100

Lab Sample ID: LCS 680-384639/2-A

**Matrix: Water** 

Analyte

Arsenic

Lead

Nickel

Zinc

Chromium

**Analysis Batch: 384988** 

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 384639

MRec.

D %Rec Limits
100 80 - 120
105 80 - 120
102 80 - 120
103 80 - 120

Lab Sample ID: MB 680-384879/1-A

**Matrix: Water** 

**Analysis Batch: 385189** 

Client Sample ID: Method Blank Prep Type: Total/NA

80 - 120

104

**Prep Batch: 384879** 

|          | MB     | MB        |    |     |      |   |                |                |         |
|----------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte  | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic  | 20     | U         | 20 |     | ug/L |   | 05/27/15 14:38 | 05/28/15 18:18 | 1       |
| Chromium | 10     | U         | 10 |     | ug/L |   | 05/27/15 14:38 | 05/28/15 18:18 | 1       |
| Lead     | 10     | U         | 10 |     | ug/L |   | 05/27/15 14:38 | 05/28/15 18:18 | 1       |
| Nickel   | 40     | U         | 40 |     | ug/L |   | 05/27/15 14:38 | 05/28/15 18:18 | 1       |
| Zinc     | 20     | U         | 20 |     | ug/L |   | 05/27/15 14:38 | 05/28/15 18:18 | 1       |
|          |        |           |    |     |      |   |                |                |         |

Lab Sample ID: LCS 680-384879/2-A

**Matrix: Water** 

Analysis Batch: 385189

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 384879

|          | Spike | LCS    | LCS       |      |   |      | %Rec.    |  |
|----------|-------|--------|-----------|------|---|------|----------|--|
| Analyte  | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Arsenic  | 100   | 97.6   |           | ug/L |   | 98   | 80 - 120 |  |
| Chromium | 100   | 103    |           | ug/L |   | 103  | 80 - 120 |  |
| Lead     | 500   | 492    |           | ug/L |   | 98   | 80 - 120 |  |
| Nickel   | 100   | 102    |           | ug/L |   | 102  | 80 - 120 |  |
| Zinc     | 100   | 102    |           | ug/L |   | 102  | 80 - 120 |  |

TestAmerica Savannah

Page 31 of 48

9

3

6

R

9

11

12

6/4/2015

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

# Method: 6010C - Metals (ICP) (Continued)

| Lab Sample ID: 680-112797<br>Matrix: Water<br>Analysis Batch: 385189 | 7-7 MS |           |       |        |           |      | Client S | Sample | ID: TMW_1_05212015<br>Prep Type: Total/NA<br>Prep Batch: 384879 |
|----------------------------------------------------------------------|--------|-----------|-------|--------|-----------|------|----------|--------|-----------------------------------------------------------------|
| _                                                                    | Sample | Sample    | Spike | MS     | MS        |      |          |        | %Rec.                                                           |
| Analyte                                                              | Result | Qualifier | Added | Result | Qualifier | Unit | D        | %Rec   | Limits                                                          |
| Arsenic                                                              | 160    | F1        | 100   | 250    |           | ug/L |          | 88     | 75 - 125                                                        |
| Chromium                                                             | 32     |           | 100   | 123    |           | ug/L |          | 91     | 75 <sub>-</sub> 125                                             |
| Lead                                                                 | 10     | U         | 500   | 493    |           | ug/L |          | 99     | 75 <sub>-</sub> 125                                             |
| Nickel                                                               | 40     | Ü         | 100   | 128    |           | ug/L |          | 95     | 75 - 125                                                        |
| Zinc                                                                 | 77     |           | 100   | 171    |           | ug/L |          | 94     | 75 - 125                                                        |

| Lab Sample ID: 680-112797-7 MSD  Matrix: Water  Analysis Batch: 385189  Sample Sample Spike MSD MSD |        |           |       |        |           |      | lient S | Sample | ID: TMW_<br>Prep Typ<br>Prep Ba<br>%Rec. | e: Tot | al/NA |
|-----------------------------------------------------------------------------------------------------|--------|-----------|-------|--------|-----------|------|---------|--------|------------------------------------------|--------|-------|
| Analyte                                                                                             | Result | Qualifier | Added | Result | Qualifier | Unit | D       | %Rec   | Limits                                   | RPD    | Limit |
| Arsenic                                                                                             | 160    | F1        | 100   | 227    | F1        | ug/L |         | 65     | 75 - 125                                 | 10     | 20    |
| Chromium                                                                                            | 32     |           | 100   | 120    |           | ug/L |         | 88     | 75 - 125                                 | 3      | 20    |
| Lead                                                                                                | 10     | U         | 500   | 481    |           | ug/L |         | 96     | 75 - 125                                 | 3      | 20    |
| Nickel                                                                                              | 40     | U         | 100   | 125    |           | ug/L |         | 92     | 75 - 125                                 | 2      | 20    |
| Zinc                                                                                                | 77     |           | 100   | 170    |           | ug/L |         | 93     | 75 - 125                                 | 1      | 20    |

### Method: 310.1 - Alkalinity

| Lab Sample ID: MB 680-385163/5 | Client Sample ID: Method Blank |
|--------------------------------|--------------------------------|
| Matrix: Water                  | Prep Type: Total/NA            |
| Analysis Batch: 385163         |                                |
| MR M                           | B                              |

|            | IVID IVID        |     |          |   |          |                |         |
|------------|------------------|-----|----------|---|----------|----------------|---------|
| Analyte    | Result Qualifier | RL  | MDL Unit | D | Prepared | Analyzed       | Dil Fac |
| Alkalinity | 5.0 U            | 5.0 | mg/L     |   |          | 05/28/15 17:47 | 1       |

| Lab Sample ID: LCS 680-385163/6 | Client Sample ID: Lab Control Sample |        |           |      |   |      |                     |  |  |
|---------------------------------|--------------------------------------|--------|-----------|------|---|------|---------------------|--|--|
| Matrix: Water                   |                                      |        |           |      |   |      | Prep Type: Total/NA |  |  |
| Analysis Batch: 385163          |                                      |        |           |      |   |      |                     |  |  |
| _                               | Spike                                | LCS    | LCS       |      |   |      | %Rec.               |  |  |
| Analyte                         | Added                                | Result | Qualifier | Unit | D | %Rec | Limits              |  |  |
| Alkalinity                      | 250                                  | 251    |           | ma/l |   | 100  | 80 120              |  |  |

| Alkalinity                                                                   | 250 | 251 | mg/L         | 100       | 80 - 120                                  |
|------------------------------------------------------------------------------|-----|-----|--------------|-----------|-------------------------------------------|
| Lab Sample ID: LCSD 680-385163/31<br>Matrix: Water<br>Analysis Batch: 385163 |     |     | Client Sampl | e ID: Lab | Control Sample Dup<br>Prep Type: Total/NA |

|            | Spike   | LCSD   | LCSD      |      |   |      | %Rec.    |     | RPD   |
|------------|---------|--------|-----------|------|---|------|----------|-----|-------|
| Analyte    | Added   | Result | Qualifier | Unit | D | %Rec | Limits   | RPD | Limit |
| Alkalinity | <br>250 | 250    |           | mg/L |   | 100  | 80 - 120 | 0   | 30    |

| Lab Sample ID: MB 680-385222/5<br>Matrix: Water |        |           |     |     |      |   | ple ID: Method<br>Prep Type: To |                |         |
|-------------------------------------------------|--------|-----------|-----|-----|------|---|---------------------------------|----------------|---------|
| Analysis Batch: 385222                          |        |           |     |     |      |   |                                 |                |         |
|                                                 | MB     | MB        |     |     |      |   |                                 |                |         |
| Analyte                                         | Result | Qualifier | RL  | MDL | Unit | D | Prepared                        | Analyzed       | Dil Fac |
| Alkalinity                                      | 5.0    | U         | 5.0 |     | mg/L |   |                                 | 05/29/15 06:16 | 1       |

TestAmerica Savannah

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

### Method: 310.1 - Alkalinity (Continued)

| Lab Sample ID: LCS 680-385222/6 | Client Sample ID: Lab Control Sample |
|---------------------------------|--------------------------------------|
| Matrix: Water                   | Prep Type: Total/NA                  |
| 4 1 1 D ( ) 00 TOO              |                                      |

**Analysis Batch: 385222** 

|            | Spike | LCS    | LCS       |      |   |      | %Rec.    |  |
|------------|-------|--------|-----------|------|---|------|----------|--|
| Analyte    | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Alkalinity | 250   | 253    |           | mg/L |   | 101  | 80 - 120 |  |

Lab Sample ID: LCSD 680-385222/32 **Client Sample ID: Lab Control Sample Dup Matrix: Water** Prep Type: Total/NA **Analysis Batch: 385222** Spike LCSD LCSD %Rec. **RPD** RPD Limit Added Result Qualifier Unit Limits Analyte D %Rec 250

### Method: 350.1 - Nitrogen, Ammonia

| Lab Sample ID: MB 680-384907/30 | Client Sample ID: Method Blank |
|---------------------------------|--------------------------------|
| Matrix: Water                   | Prep Type: Total/NA            |
| Analysis Ratch: 384907          |                                |

264

mg/L

106

80 - 120

Analysis Batch: 384907

Alkalinity

|         | IVID   | IVID      |      |          |   |          |                |         |
|---------|--------|-----------|------|----------|---|----------|----------------|---------|
| Analyte | Result | Qualifier | RL   | MDL Unit | D | Prepared | Analyzed       | Dil Fac |
| Ammonia | 0.25   | U         | 0.25 | mg/L     |   |          | 05/27/15 10:19 | 1       |

Lab Sample ID: LCS 680-384907/1 **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA** Analysis Batch: 384907

|         | Spike    | LCS    | LCS       |      |   |      | %Rec.    |  |
|---------|----------|--------|-----------|------|---|------|----------|--|
| Analyte | Added    | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Ammonia | <br>1.00 | 1.01   |           | mg/L |   | 101  | 90 - 110 |  |

Lab Sample ID: LCSD 680-384907/4 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 384907

|         | Spike    | LCSD   | LCSD      |      |   |      | %Rec.    |     | RPD   |  |
|---------|----------|--------|-----------|------|---|------|----------|-----|-------|--|
| Analyte | Added    | Result | Qualifier | Unit | D | %Rec | Limits   | RPD | Limit |  |
| Ammonia | <br>1.00 | 1.02   |           | mg/L | _ | 102  | 90 - 110 | 1   | 30    |  |

Lab Sample ID: MB 680-384908/37 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

Analysis Batch: 384908

|         | MB     | MB        | 3    |          |   |          |                |         |  |  |  |  |
|---------|--------|-----------|------|----------|---|----------|----------------|---------|--|--|--|--|
| Analyte | Result | Qualifier | RL   | MDL Unit | D | Prepared | Analyzed       | Dil Fac |  |  |  |  |
| Ammonia | 0.25   | U         | 0.25 | mg/L     |   |          | 05/27/15 10:19 | 1       |  |  |  |  |

Lab Sample ID: LCS 680-384908/1 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA **Matrix: Water** 

Analysis Batch: 294009

| Analysis batch: 304900 |   |             |           |        |      |          |  |
|------------------------|---|-------------|-----------|--------|------|----------|--|
|                        | 5 | Spike LCS   | LCS       |        |      | %Rec.    |  |
| Analyte                | A | dded Result | Qualifier | Unit D | %Rec | Limits   |  |
| Ammonia                |   | 1.00 1.01   |           | mg/L   | 101  | 90 - 110 |  |

TestAmerica Savannah

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

Method: 350.1 - Nitrogen, Ammonia (Continued)

| Lab Sample ID: LCSD 680-384908/10 | Client Sample ID: Lab Control Sample Dup |
|-----------------------------------|------------------------------------------|
| Matrix: Water                     | Prep Type: Total/NA                      |

Analysis Batch: 384908

|         | Spike    | LCSD   | LCSD      |      |   |      | %Rec.    |     | RPD   |
|---------|----------|--------|-----------|------|---|------|----------|-----|-------|
| Analyte | Added    | Result | Qualifier | Unit | D | %Rec | Limits   | RPD | Limit |
| Ammonia | <br>1.00 | 1.01   |           | mg/L |   | 101  | 90 - 110 | 0   | 30    |

Lab Sample ID: 680-112797-7 MS Client Sample ID: TMW\_1\_05212015 **Matrix: Water Prep Type: Total/NA** 

Analysis Batch: 384908

|         | Sample | Sample    | Spike | MS     | MS        |      |   |      | %Rec.    |  |
|---------|--------|-----------|-------|--------|-----------|------|---|------|----------|--|
| Analyte | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Ammonia | 4300   |           | 100   | 4720   | 4         | mg/L |   | 377  | 90 - 110 |  |

Lab Sample ID: 680-112797-7 MSD Client Sample ID: TMW\_1\_05212015 **Prep Type: Total/NA** 

**Matrix: Water** 

Analysis Batch: 384908

|         | Sample | Sample    | Spike | MSD    | MSD       |      |   |      | %Rec.    |     | RPD   |
|---------|--------|-----------|-------|--------|-----------|------|---|------|----------|-----|-------|
| Analyte | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   | RPD | Limit |
| Ammonia | 4300   |           | 100   | 3830   | 4         | mg/L |   | -512 | 90 - 110 | 21  | 30    |

Lab Sample ID: 680-112797-12 DU Client Sample ID: SW-01\_05212015\_HIGH **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 384908

| Alialysis Datell. 304300 |        |           |        |           |      |   |     |      |      |
|--------------------------|--------|-----------|--------|-----------|------|---|-----|------|------|
|                          | Sample | Sample    | DU     | DU        |      |   |     | R    | RPD  |
| Analyte                  | Result | Qualifier | Result | Qualifier | Unit | D | RPD | ) Li | imit |
| Ammonia                  | 0.41   |           | 0.400  |           | mg/L |   |     |      | 30   |

Method: 353.2 - Nitrogen, Nitrate-Nitrite

Lab Sample ID: MB 680-384267/13 **Client Sample ID: Method Blank** 

**Matrix: Water** 

Analysis Batch: 384267

|                      | IVID   | IVID      |       |     |      |   |          |                |         |
|----------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Analyte              | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Nitrate as N         | 0.050  | U         | 0.050 |     | mg/L |   |          | 05/21/15 17:28 | 1       |
| Nitrate Nitrite as N | 0.050  | U         | 0.050 |     | mg/L |   |          | 05/21/15 17:28 | 1       |
| Nitrite as N         | 0.050  | U         | 0.050 |     | mg/L |   |          | 05/21/15 17:28 | 1       |

Lab Sample ID: LCS 680-384267/16 **Client Sample ID: Lab Control Sample Matrix: Water** 

**Analysis Batch: 384267** 

|                      | ; | Spike | LCS    | LCS       |      |   |      | %Rec.    |       |
|----------------------|---|-------|--------|-----------|------|---|------|----------|-------|
| Analyte              | A | dded  | Result | Qualifier | Unit | D | %Rec | Limits   |       |
| Nitrate as N         |   | 0.500 | 0.561  |           | mg/L |   | 112  | 75 - 125 | <br>_ |
| Nitrate Nitrite as N |   | 1.00  | 1.06   |           | mg/L |   | 106  | 90 - 110 |       |
| Nitrite as N         |   | 0.500 | 0.502  |           | mg/L |   | 100  | 90 - 110 |       |

Lab Sample ID: 680-112797-7 MS Client Sample ID: TMW\_1\_05212015 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 384267

|              | Sample | Sample    | Spike | MS     | MS        |      |   |      | %Rec.    |  |
|--------------|--------|-----------|-------|--------|-----------|------|---|------|----------|--|
| Analyte      | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Nitrate as N | 290    |           | 500   | 730    |           | mg/L |   | 88   | 75 - 125 |  |

TestAmerica Savannah

Page 34 of 48

**Prep Type: Total/NA** 

# **QC Sample Results**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112797-1

Method: 353.2 - Nitrogen, Nitrate-Nitrite (Continued)

Lab Sample ID: 680-112797-7 MS Client Sample ID: TMW\_1\_05212015 **Matrix: Water** Prep Type: Total/NA

**Analysis Batch: 384267** 

|                      | Sample | Sample    | Spike | MS     | MS        |      |   |      | %Rec.    |  |
|----------------------|--------|-----------|-------|--------|-----------|------|---|------|----------|--|
| Analyte              | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Nitrate Nitrite as N | 290    | F1        | 1000  | 1130   | F1        | mg/L |   | 84   | 90 - 110 |  |
| Nitrite as N         | 50     | U F1      | 500   | 405    | F1        | mg/L |   | 81   | 90 - 110 |  |

Lab Sample ID: 680-112797-7 MSD Client Sample ID: TMW\_1\_05212015 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 384267

MSD MSD Sample Sample Spike %Rec. **RPD** Analyte Limits Result Qualifier Added Result Qualifier Unit D %Rec RPD Limit Nitrate as N 290 500 732 mg/L 89 75 - 125 0 30 Nitrate Nitrite as N 290 F1 1000 1140 F1 mg/L 85 90 - 110 0 10 Nitrite as N 50 UF1 500 406 F1 mg/L 90 - 110 10

Lab Sample ID: 680-112797-1 DU Client Sample ID: SW-04\_05212015\_LOW **Matrix: Water** Prep Type: Total/NA

**Analysis Batch: 384267** 

DU DU **RPD** Sample Sample Analyte Result Qualifier Result Qualifier Unit RPD Limit Nitrate as N 0.17 30 0.177 mg/L 3 Nitrate Nitrite as N 0.27 0.270 2 10 mg/L Nitrite as N 0.094 0.0929 mg/L 10

TestAmerica Job ID: 680-112797-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

## **GC/MS VOA**

## Analysis Batch: 384972

| Lab Sample ID     | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|-------------------|------------------------|-----------|--------|--------|------------|
| 680-112797-7      | TMW_1_05212015         | Total/NA  | Water  | 8260B  |            |
| 680-112797-7 MS   | TMW_1_05212015         | Total/NA  | Water  | 8260B  |            |
| 680-112797-7 MSD  | TMW_1_05212015         | Total/NA  | Water  | 8260B  |            |
| 680-112797-8      | DUP_01_05212015        | Total/NA  | Water  | 8260B  |            |
| 680-112797-9      | EB-01_05212015         | Total/NA  | Water  | 8260B  |            |
| 680-112797-10     | FB-01_05212015         | Total/NA  | Water  | 8260B  |            |
| 680-112797-16     | Trip Blank             | Total/NA  | Water  | 8260B  |            |
| LCS 680-384972/4  | Lab Control Sample     | Total/NA  | Water  | 8260B  |            |
| LCSD 680-384972/5 | Lab Control Sample Dup | Total/NA  | Water  | 8260B  |            |
| MB 680-384972/9   | Method Blank           | Total/NA  | Water  | 8260B  |            |

## **GC/MS Semi VOA**

## **Prep Batch: 384797**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 680-112797-7       | TMW_1_05212015     | Total/NA  | Water  | 3520C  |            |
| 680-112797-7 MS    | TMW_1_05212015     | Total/NA  | Water  | 3520C  |            |
| 680-112797-7 MSD   | TMW_1_05212015     | Total/NA  | Water  | 3520C  |            |
| 680-112797-8       | DUP_01_05212015    | Total/NA  | Water  | 3520C  |            |
| 680-112797-9       | EB-01_05212015     | Total/NA  | Water  | 3520C  |            |
| 680-112797-10      | FB-01_05212015     | Total/NA  | Water  | 3520C  |            |
| LCS 680-384797/6-A | Lab Control Sample | Total/NA  | Water  | 3520C  |            |
| MB 680-384797/5-A  | Method Blank       | Total/NA  | Water  | 3520C  |            |

## **Analysis Batch: 385722**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 680-112797-7       | TMW_1_05212015     | Total/NA  | Water  | 8270D  | 384797     |
| 680-112797-7 MS    | TMW_1_05212015     | Total/NA  | Water  | 8270D  | 384797     |
| 680-112797-7 MSD   | TMW_1_05212015     | Total/NA  | Water  | 8270D  | 384797     |
| 680-112797-8       | DUP_01_05212015    | Total/NA  | Water  | 8270D  | 384797     |
| 680-112797-9       | EB-01_05212015     | Total/NA  | Water  | 8270D  | 384797     |
| 680-112797-10      | FB-01_05212015     | Total/NA  | Water  | 8270D  | 384797     |
| LCS 680-384797/6-A | Lab Control Sample | Total/NA  | Water  | 8270D  | 384797     |
| MB 680-384797/5-A  | Method Blank       | Total/NA  | Water  | 8270D  | 384797     |

### Metals

## **Prep Batch: 384639**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 680-112797-5       | PDMW-29D_05212015  | Total/NA  | Water  | 3010A  |            |
| 680-112797-9       | EB-01_05212015     | Total/NA  | Water  | 3010A  |            |
| 680-112797-10      | FB-01_05212015     | Total/NA  | Water  | 3010A  |            |
| 680-112797-15      | EB-02_05212015     | Total/NA  | Water  | 3010A  |            |
| LCS 680-384639/2-A | Lab Control Sample | Total/NA  | Water  | 3010A  |            |
| MB 680-384639/1-A  | Method Blank       | Total/NA  | Water  | 3010A  |            |

## **Prep Batch: 384879**

| Lab Sample ID | Client Sample ID  | Prep Type | Matrix | Method | Prep Batch |
|---------------|-------------------|-----------|--------|--------|------------|
| 680-112797-6  | PDMW-26T_05212015 | Total/NA  | Water  | 3010A  |            |
| 680-112797-7  | TMW_1_05212015    | Total/NA  | Water  | 3010A  |            |

TestAmerica Savannah

Page 36 of 48 6/4/2015

3

4

6

8

9

10

11

# **QC Association Summary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112797-1

## Metals (Continued)

## Prep Batch: 384879 (Continued)

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 680-112797-7 MS    | TMW_1_05212015     | Total/NA  | Water  | 3010A  |            |
| 680-112797-7 MSD   | TMW_1_05212015     | Total/NA  | Water  | 3010A  |            |
| 680-112797-8       | DUP_01_05212015    | Total/NA  | Water  | 3010A  |            |
| LCS 680-384879/2-A | Lab Control Sample | Total/NA  | Water  | 3010A  |            |
| MB 680-384879/1-A  | Method Blank       | Total/NA  | Water  | 3010A  |            |

## **Analysis Batch: 384988**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 680-112797-5       | PDMW-29D_05212015  | Total/NA  | Water  | 6010C  | 384639     |
| 680-112797-9       | EB-01_05212015     | Total/NA  | Water  | 6010C  | 384639     |
| 680-112797-10      | FB-01_05212015     | Total/NA  | Water  | 6010C  | 384639     |
| 680-112797-15      | EB-02_05212015     | Total/NA  | Water  | 6010C  | 384639     |
| LCS 680-384639/2-A | Lab Control Sample | Total/NA  | Water  | 6010C  | 384639     |
| MB 680-384639/1-A  | Method Blank       | Total/NA  | Water  | 6010C  | 384639     |

## **Analysis Batch: 385189**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 680-112797-6       | PDMW-26T_05212015  | Total/NA  | Water  | 6010C  | 384879     |
| 680-112797-7       | TMW_1_05212015     | Total/NA  | Water  | 6010C  | 384879     |
| 680-112797-7 MS    | TMW_1_05212015     | Total/NA  | Water  | 6010C  | 384879     |
| 680-112797-7 MSD   | TMW_1_05212015     | Total/NA  | Water  | 6010C  | 384879     |
| 680-112797-8       | DUP_01_05212015    | Total/NA  | Water  | 6010C  | 384879     |
| LCS 680-384879/2-A | Lab Control Sample | Total/NA  | Water  | 6010C  | 384879     |
| MB 680-384879/1-A  | Method Blank       | Total/NA  | Water  | 6010C  | 384879     |

## **General Chemistry**

### **Analysis Batch: 384267**

| Lab Sample ID     | Client Sample ID    | Prep Type | Matrix | Method | Prep Batch |
|-------------------|---------------------|-----------|--------|--------|------------|
| 680-112797-1      | SW-04_05212015_LOW  | Total/NA  | Water  | 353.2  | _          |
| 680-112797-1 DU   | SW-04_05212015_LOW  | Total/NA  | Water  | 353.2  |            |
| 680-112797-2      | SW-03_05212015_LOW  | Total/NA  | Water  | 353.2  |            |
| 680-112797-3      | SW-02_05212015_LOW  | Total/NA  | Water  | 353.2  |            |
| 680-112797-4      | SW-01_05212015_LOW  | Total/NA  | Water  | 353.2  |            |
| 680-112797-5      | PDMW-29D_05212015   | Total/NA  | Water  | 353.2  |            |
| 680-112797-6      | PDMW-26T_05212015   | Total/NA  | Water  | 353.2  |            |
| 680-112797-7      | TMW_1_05212015      | Total/NA  | Water  | 353.2  |            |
| 680-112797-7 MS   | TMW_1_05212015      | Total/NA  | Water  | 353.2  |            |
| 680-112797-7 MSD  | TMW_1_05212015      | Total/NA  | Water  | 353.2  |            |
| 680-112797-8      | DUP_01_05212015     | Total/NA  | Water  | 353.2  |            |
| 680-112797-9      | EB-01_05212015      | Total/NA  | Water  | 353.2  |            |
| 680-112797-10     | FB-01_05212015      | Total/NA  | Water  | 353.2  |            |
| 680-112797-11     | SW-02_05212015_HIGH | Total/NA  | Water  | 353.2  |            |
| 680-112797-12     | SW-01_05212015_HIGH | Total/NA  | Water  | 353.2  |            |
| 680-112797-13     | SW-03_05212015_HIGH | Total/NA  | Water  | 353.2  |            |
| 680-112797-14     | SW-04_05212015_HIGH | Total/NA  | Water  | 353.2  |            |
| 680-112797-15     | EB-02_05212015      | Total/NA  | Water  | 353.2  |            |
| LCS 680-384267/16 | Lab Control Sample  | Total/NA  | Water  | 353.2  |            |
| MB 680-384267/13  | Method Blank        | Total/NA  | Water  | 353.2  |            |

Page 37 of 48

# **QC Association Summary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112797-1

# **General Chemistry (Continued)**

## Analysis Batch: 384907

| Lab Sample ID     | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|-------------------|------------------------|-----------|--------|--------|------------|
| 680-112797-1      | SW-04_05212015_LOW     | Total/NA  | Water  | 350.1  |            |
| LCS 680-384907/1  | Lab Control Sample     | Total/NA  | Water  | 350.1  |            |
| LCSD 680-384907/4 | Lab Control Sample Dup | Total/NA  | Water  | 350.1  |            |
| MB 680-384907/30  | Method Blank           | Total/NA  | Water  | 350.1  |            |

## **Analysis Batch: 384908**

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| 680-112797-2       | SW-03_05212015_LOW     | Total/NA  | Water  | 350.1  |            |
| 680-112797-3       | SW-02_05212015_LOW     | Total/NA  | Water  | 350.1  |            |
| 680-112797-4       | SW-01_05212015_LOW     | Total/NA  | Water  | 350.1  |            |
| 680-112797-5       | PDMW-29D_05212015      | Total/NA  | Water  | 350.1  |            |
| 680-112797-6       | PDMW-26T_05212015      | Total/NA  | Water  | 350.1  |            |
| 680-112797-7       | TMW_1_05212015         | Total/NA  | Water  | 350.1  |            |
| 680-112797-7 MS    | TMW_1_05212015         | Total/NA  | Water  | 350.1  |            |
| 680-112797-7 MSD   | TMW_1_05212015         | Total/NA  | Water  | 350.1  |            |
| 680-112797-8       | DUP_01_05212015        | Total/NA  | Water  | 350.1  |            |
| 680-112797-9       | EB-01_05212015         | Total/NA  | Water  | 350.1  |            |
| 680-112797-10      | FB-01_05212015         | Total/NA  | Water  | 350.1  |            |
| 680-112797-11      | SW-02_05212015_HIGH    | Total/NA  | Water  | 350.1  |            |
| 680-112797-12      | SW-01_05212015_HIGH    | Total/NA  | Water  | 350.1  |            |
| 680-112797-12 DU   | SW-01_05212015_HIGH    | Total/NA  | Water  | 350.1  |            |
| 680-112797-13      | SW-03_05212015_HIGH    | Total/NA  | Water  | 350.1  |            |
| 680-112797-14      | SW-04_05212015_HIGH    | Total/NA  | Water  | 350.1  |            |
| 680-112797-15      | EB-02_05212015         | Total/NA  | Water  | 350.1  |            |
| LCS 680-384908/1   | Lab Control Sample     | Total/NA  | Water  | 350.1  |            |
| LCSD 680-384908/10 | Lab Control Sample Dup | Total/NA  | Water  | 350.1  |            |
| MB 680-384908/37   | Method Blank           | Total/NA  | Water  | 350.1  |            |

## Analysis Batch: 385163

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| 680-112797-1       | SW-04_05212015_LOW     | Total/NA  | Water  | 310.1  |            |
| 680-112797-2       | SW-03_05212015_LOW     | Total/NA  | Water  | 310.1  |            |
| 680-112797-4       | SW-01_05212015_LOW     | Total/NA  | Water  | 310.1  |            |
| 680-112797-11      | SW-02_05212015_HIGH    | Total/NA  | Water  | 310.1  |            |
| 680-112797-12      | SW-01_05212015_HIGH    | Total/NA  | Water  | 310.1  |            |
| 680-112797-13      | SW-03_05212015_HIGH    | Total/NA  | Water  | 310.1  |            |
| 680-112797-14      | SW-04_05212015_HIGH    | Total/NA  | Water  | 310.1  |            |
| LCS 680-385163/6   | Lab Control Sample     | Total/NA  | Water  | 310.1  |            |
| LCSD 680-385163/31 | Lab Control Sample Dup | Total/NA  | Water  | 310.1  |            |
| MB 680-385163/5    | Method Blank           | Total/NA  | Water  | 310.1  |            |

## **Analysis Batch: 385222**

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch  |
|--------------------|------------------------|-----------|--------|--------|-------------|
| 680-112797-3       | SW-02_05212015_LOW     | Total/NA  | Water  | 310.1  | <del></del> |
| LCS 680-385222/6   | Lab Control Sample     | Total/NA  | Water  | 310.1  |             |
| LCSD 680-385222/32 | Lab Control Sample Dup | Total/NA  | Water  | 310.1  |             |
| MB 680-385222/5    | Method Blank           | Total/NA  | Water  | 310.1  |             |

Page 38 of 48

6/4/2015

TestAmerica Job ID: 680-112797-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

Client Sample ID: SW-04 05212015 LOW Lab Sample ID: 680-112797-1

Date Collected: 05/21/15 08:20 **Matrix: Water** Date Received: 05/21/15 16:21

Dil Initial Batch Batch **Batch** Final Prepared Method Number **Prep Type** Type Run **Factor** Amount Amount or Analyzed **Analyst** Lab Total/NA Analysis 310.1 385163 05/28/15 18:02 DAM TAL SAV Instrument ID: MANTECH Total/NA Analysis 350.1 2 2 mL 2 mL 384907 05/27/15 09:59 JME TAL SAV Instrument ID: KONELAB1 Total/NA Analysis 353.2 2 ml 2 mL 384267 05/21/15 19:23 GRX TAL SAV 1 Instrument ID: LACHAT2

Client Sample ID: SW-03 05212015 LOW Lab Sample ID: 680-112797-2

Date Collected: 05/21/15 08:45 **Matrix: Water** Date Received: 05/21/15 16:21

Batch Batch Dil Initial Final Batch **Prepared Prep Type** Type Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis 310.1 385163 05/28/15 18:38 DAM TAL SAV Instrument ID: MANTECH Total/NA Analysis 350.1 1 384908 05/27/15 09:05 JME TAL SAV 2 mL 2 mL Instrument ID: KONELAB1 Total/NA Analysis 353.2 2 mL 2 mL 384267 05/21/15 19:25 GRX TAL SAV Instrument ID: LACHAT2

Client Sample ID: SW-02 05212015 LOW Lab Sample ID: 680-112797-3

Date Collected: 05/21/15 09:02 **Matrix: Water** Date Received: 05/21/15 16:21

Batch Batch Dil Initial Final Batch **Prepared** Method Number Prep Type Type Run **Factor** Amount Amount or Analyzed **Analyst** Lab Total/NA 310.1 385222 05/29/15 08:11 DAM TAL SAV Analysis Instrument ID: MANTECH Total/NA 2 mL 2 mL 384908 05/27/15 09:05 JME TAL SAV Analysis 350.1 1 Instrument ID: KONELAB1 05/21/15 19:26 GRX Total/NA Analysis 353.2 2 mL 2 mL 384267 TAL SAV Instrument ID: LACHAT2

Lab Sample ID: 680-112797-4 Client Sample ID: SW-01\_05212015\_LOW

Date Collected: 05/21/15 09:15 **Matrix: Water** Date Received: 05/21/15 16:21

|           | Batch                | Batch                    |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|--------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                   | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis<br>Instrume | 310.1<br>nt ID: MANTECH  |     | 1      |         |        | 385163 | 05/28/15 20:27 | DAM     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>nt ID: KONELAB1 |     | 1      | 2 mL    | 2 mL   | 384908 | 05/27/15 09:05 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>nt ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 384267 | 05/21/15 19:28 | GRX     | TAL SAV |

TestAmerica Savannah

Page 39 of 48

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

Client Sample ID: PDMW-29D\_05212015

Lab Sample ID: 680-112797-5 Date Collected: 05/21/15 10:26 **Matrix: Water** 

Date Received: 05/21/15 16:21

|           | Batch                | Batch                    |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|--------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                   | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep                 | 3010A                    |     |        | 50 mL   | 50 mL  | 384639 | 05/26/15 10:40 | CRW     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 6010C<br>nt ID: ICPE     |     | 1      | 50 mL   | 50 mL  | 384988 | 05/27/15 14:44 | ВСВ     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>nt ID: KONELAB1 |     | 10     | 2 mL    | 2 mL   | 384908 | 05/27/15 11:36 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>nt ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 384267 | 05/21/15 19:29 | GRX     | TAL SAV |

Client Sample ID: PDMW-26T\_05212015 Lab Sample ID: 680-112797-6

Date Collected: 05/21/15 11:32 **Matrix: Water** 

Date Received: 05/21/15 16:21

|           | Batch                | Batch                    |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|--------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                   | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep                 | 3010A                    |     |        | 50 mL   | 50 mL  | 384879 | 05/27/15 14:38 | BJB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 6010C<br>nt ID: ICPE     |     | 1      | 50 mL   | 50 mL  | 385189 | 05/28/15 18:27 | BCB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>nt ID: KONELAB1 |     | 500    | 2 mL    | 2 mL   | 384908 | 05/27/15 13:18 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>nt ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 384267 | 05/21/15 19:30 | GRX     | TAL SAV |

Client Sample ID: TMW\_1\_05212015 Lab Sample ID: 680-112797-7

Date Collected: 05/21/15 10:40 **Matrix: Water** Date Received: 05/21/15 16:21

|           | Batch                | Batch                    |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|--------------------------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                   | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis<br>Instrume | 8260B<br>nt ID: CMSAC    |     | 1      | 5 mL     | 5 mL   | 384972 | 05/28/15 16:25 | JD1     | TAL SAV |
| Total/NA  | Prep                 | 3520C                    |     |        | 257.5 mL | 0.5 mL | 384797 | 05/27/15 15:58 | RBS     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 8270D<br>nt ID: CMST     |     | 1      | 257.5 mL | 0.5 mL | 385722 | 06/02/15 20:01 | RAM     | TAL SAV |
| Total/NA  | Prep                 | 3010A                    |     |        | 50 mL    | 50 mL  | 384879 | 05/27/15 14:38 | BJB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 6010C<br>nt ID: ICPE     |     | 1      | 50 mL    | 50 mL  | 385189 | 05/28/15 18:32 | ВСВ     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>nt ID: KONELAB1 |     | 5000   | 2 mL     | 2 mL   | 384908 | 05/27/15 11:27 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>nt ID: LACHAT2  |     | 1000   | 2 mL     | 2 mL   | 384267 | 05/21/15 19:37 | GRX     | TAL SAV |

TestAmerica Savannah

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

Lab Sample ID: 680-112797-8

Client Sample ID: DUP\_01\_05212015 Date Collected: 05/21/15 00:00 **Matrix: Water** 

Date Received: 05/21/15 16:21

|           | Batch    | Batch           |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-----------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method          | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8260B           |     | 1      | 5 mL    | 5 mL   | 384972 | 05/28/15 16:48 | JD1     | TAL SAV |
|           | Instrume | nt ID: CMSAC    |     |        |         |        |        |                |         |         |
| Total/NA  | Prep     | 3520C           |     |        | 252 mL  | 0.5 mL | 384797 | 05/27/15 15:58 | RBS     | TAL SAV |
| Total/NA  | Analysis | 8270D           |     | 1      | 252 mL  | 0.5 mL | 385722 | 06/02/15 20:27 | RAM     | TAL SAV |
|           | Instrume | nt ID: CMST     |     |        |         |        |        |                |         |         |
| Total/NA  | Prep     | 3010A           |     |        | 50 mL   | 50 mL  | 384879 | 05/27/15 14:38 | BJB     | TAL SAV |
| Total/NA  | Analysis | 6010C           |     | 1      | 50 mL   | 50 mL  | 385189 | 05/28/15 18:55 | BCB     | TAL SAV |
|           | Instrume | nt ID: ICPE     |     |        |         |        |        |                |         |         |
| Total/NA  | Analysis | 350.1           |     | 2000   | 2 mL    | 2 mL   | 384908 | 05/27/15 10:00 | JME     | TAL SAV |
|           | Instrume | nt ID: KONELAB1 |     |        |         |        |        |                |         |         |
| Total/NA  | Analysis | 353.2           |     | 1000   | 2 mL    | 2 mL   | 384267 | 05/21/15 19:31 | GRX     | TAL SAV |
|           | Instrume | nt ID: LACHAT2  |     |        |         |        |        |                |         |         |

Client Sample ID: EB-01\_05212015 Lab Sample ID: 680-112797-9

Date Collected: 05/21/15 12:40 Date Received: 05/21/15 16:21

|           | Batch    | Batch           |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-----------------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method          | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8260B           |     | 1      | 5 mL     | 5 mL   | 384972 | 05/28/15 12:39 | JD1     | TAL SAV |
|           | Instrume | nt ID: CMSAC    |     |        |          |        |        |                |         |         |
| Total/NA  | Prep     | 3520C           |     |        | 254.4 mL | 0.5 mL | 384797 | 05/27/15 15:58 | RBS     | TAL SAV |
| Total/NA  | Analysis | 8270D           |     | 1      | 254.4 mL | 0.5 mL | 385722 | 06/02/15 20:53 | RAM     | TAL SAV |
|           | Instrume | nt ID: CMST     |     |        |          |        |        |                |         |         |
| Total/NA  | Prep     | 3010A           |     |        | 50 mL    | 50 mL  | 384639 | 05/26/15 10:40 | CRW     | TAL SAV |
| Total/NA  | Analysis | 6010C           |     | 1      | 50 mL    | 50 mL  | 384988 | 05/27/15 14:49 | BCB     | TAL SAV |
|           | Instrume | nt ID: ICPE     |     |        |          |        |        |                |         |         |
| Total/NA  | Analysis | 350.1           |     | 1      | 2 mL     | 2 mL   | 384908 | 05/27/15 08:55 | JME     | TAL SAV |
|           | Instrume | nt ID: KONELAB1 |     |        |          |        |        |                |         |         |
| Total/NA  | Analysis | 353.2           |     | 1      | 2 mL     | 2 mL   | 384267 | 05/21/15 19:32 | GRX     | TAL SAV |
|           | Instrume | nt ID: LACHAT2  |     |        |          |        |        |                |         |         |

Client Sample ID: FB-01\_05212015

Lab Sample ID: 680-112797-10 Date Collected: 05/21/15 13:00 Date Received: 05/21/15 16:21

|           | Batch                | Batch                 |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|-----------------------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis<br>Instrume | 8260B<br>nt ID: CMSAC |     | 1      | 5 mL     | 5 mL   | 384972 | 05/28/15 13:01 | JD1     | TAL SAV |
| Total/NA  | Prep                 | 3520C                 |     |        | 258.8 mL | 0.5 mL | 384797 | 05/27/15 15:58 | RBS     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 8270D<br>nt ID: CMST  |     | 1      | 258.8 mL | 0.5 mL | 385722 | 06/02/15 21:18 | RAM     | TAL SAV |
| Total/NA  | Prep                 | 3010A                 |     |        | 50 mL    | 50 mL  | 384639 | 05/26/15 10:40 | CRW     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 6010C<br>nt ID: ICPE  |     | 1      | 50 mL    | 50 mL  | 384988 | 05/27/15 14:53 | ВСВ     | TAL SAV |

TestAmerica Savannah

Page 41 of 48

6/4/2015

**Matrix: Water** 

**Matrix: Water** 

TestAmerica Job ID: 680-112797-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

Client Sample ID: FB-01\_05212015 Lab Sample ID: 680-112797-10

Date Collected: 05/21/15 13:00 **Matrix: Water** Date Received: 05/21/15 16:21

Batch Batch Dil Initial Final Batch Prepared Method **Prep Type** Type Run **Factor** Amount **Amount** Number or Analyzed Analyst Lab Total/NA Analysis 350.1 2 mL 2 mL 384908 05/27/15 08:55 JME TAL SAV Instrument ID: KONELAB1 Total/NA Analysis 353.2 2 mL 2 mL 384267 05/21/15 19:34 GRX TAL SAV Instrument ID: LACHAT2

Client Sample ID: SW-02\_05212015\_HIGH Lab Sample ID: 680-112797-11

Date Collected: 05/21/15 12:10 **Matrix: Water** 

Date Received: 05/21/15 16:21

|           | Batch                | Batch                    |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|--------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                   | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis<br>Instrume | 310.1<br>nt ID: MANTECH  |     | 1      |         |        | 385163 | 05/28/15 18:16 | DAM     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>nt ID: KONELAB1 |     | 2      | 2 mL    | 2 mL   | 384908 | 05/27/15 10:19 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>nt ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 384267 | 05/21/15 19:38 | GRX     | TAL SAV |

Client Sample ID: SW-01\_05212015\_HIGH Lab Sample ID: 680-112797-12

**Matrix: Water** Date Collected: 05/21/15 12:20

Date Received: 05/21/15 16:21

|           | Batch                | Batch                    |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|--------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                   | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis<br>Instrume | 310.1<br>nt ID: MANTECH  |     | 1      |         |        | 385163 | 05/28/15 18:09 | DAM     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>nt ID: KONELAB1 |     | 1      | 2 mL    | 2 mL   | 384908 | 05/27/15 08:55 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>nt ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 384267 | 05/21/15 19:39 | GRX     | TAL SAV |

Lab Sample ID: 680-112797-13 Client Sample ID: SW-03\_05212015\_HIGH

Date Collected: 05/21/15 13:00

Date Received: 05/21/15 16:21

| Prep Type<br>Total/NA | Batch Batch Type Method Analysis 310.1 Instrument ID: MANTEC | Run | Dil<br>Factor | Initial<br>Amount | Final<br>Amount | Batch<br>Number<br>385163 | Prepared<br>or Analyzed<br>05/28/15 18:23 | Analyst DAM | Lab<br>TAL SAV |
|-----------------------|--------------------------------------------------------------|-----|---------------|-------------------|-----------------|---------------------------|-------------------------------------------|-------------|----------------|
| Total/NA              | Analysis 350.1<br>Instrument ID: KONELA                      | .B1 | 1             | 2 mL              | 2 mL            | 384908                    | 05/27/15 09:05                            | JME         | TAL SAV        |
| Total/NA              | Analysis 353.2<br>Instrument ID: LACHAT                      | 2   | 1             | 2 mL              | 2 mL            | 384267                    | 05/21/15 19:41                            | GRX         | TAL SAV        |

Page 42 of 48

**Matrix: Water** 

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

Client Sample ID: SW-04\_05212015\_HIGH

Lab Sample ID: 680-112797-14

Date Collected: 05/21/15 13:10 Date Received: 05/21/15 16:21

**Matrix: Water** 

|                       | Batch                  | Batch                             |     | Dil      | Initial | Final  | Batch            | Prepared                   |                |         |
|-----------------------|------------------------|-----------------------------------|-----|----------|---------|--------|------------------|----------------------------|----------------|---------|
| Prep Type<br>Total/NA | Type Analysis Instrume | Method<br>310.1<br>nt ID: MANTECH | Run | Factor 1 | Amount  | Amount | Number<br>385163 | or Analyzed 05/28/15 18:31 | Analyst<br>DAM | TAL SAV |
| Total/NA              | Analysis<br>Instrume   | 350.1<br>nt ID: KONELAB1          |     | 1        | 2 mL    | 2 mL   | 384908           | 05/27/15 09:05             | JME            | TAL SAV |
| Total/NA              | Analysis<br>Instrume   | 353.2<br>nt ID: LACHAT2           |     | 1        | 2 mL    | 2 mL   | 384267           | 05/21/15 19:42             | GRX            | TAL SAV |

Lab Sample ID: 680-112797-15 Client Sample ID: EB-02\_05212015

Date Collected: 05/21/15 13:30 **Matrix: Water** 

Date Received: 05/21/15 16:21

|           | Batch                | Batch                    |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|--------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                   | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep                 | 3010A                    |     |        | 50 mL   | 50 mL  | 384639 | 05/26/15 10:40 | CRW     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 6010C<br>nt ID: ICPE     |     | 1      | 50 mL   | 50 mL  | 384988 | 05/27/15 15:01 | ВСВ     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>nt ID: KONELAB1 |     | 1      | 2 mL    | 2 mL   | 384908 | 05/27/15 09:05 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>nt ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 384267 | 05/21/15 19:43 | GRX     | TAL SAV |

**Client Sample ID: Trip Blank** Lab Sample ID: 680-112797-16 Date Collected: 05/21/15 00:00 **Matrix: Water** 

Date Received: 05/21/15 16:21

| _         | Batch     | Batch        |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|-----------|--------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type      | Method       | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis  | 8260B        |     |        | 5 mL    | 5 mL   | 384972 | 05/28/15 11:31 | JD1     | TAL SAV |
|           | Instrumer | nt ID: CMSAC |     |        |         |        |        |                |         |         |

**Laboratory References:** 

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

TestAmerica Savannah

TAL-6006 (0509) and actebell @ anecked com LAB USE Comments & Special Analytical Requirements: 48/3.6(x)5.3/40°C S el Cartin Project #: 6 - 4300 - 5245 Pos, 10f LAB Log Number DSWSW COMMENTS PM: Aaron (setchell 154 Fax NVOICE MUST BE SUBMITTED TO CSXT WITH ORIGINAL COC SHIPMENT INFORMATION Shipment Tracking No: Shipment Method: uz. CC' i M X X X XXX <u>×</u> × # 000 ××× Custody Seal # De and NE YE METHODS FOR ANALYSIS × □ TestAmerica North Canton - 4101 Shuffel Drive NW, North Canton, OH 44720 P: 330-497-9386 F: 330-497-9722 □ TestAmerica Tampa - 6712 Benjamn Road, Surto 100, Tampa, Ft. 35634 P: 813-885-7427 F: 813-885-7649 □ TestAmerica Pensacola - 3355 McLemore Drive, Pensacola, Ft. 32514 P 850-474-1001 F: 850-478-2671 □ TestAmerica Buffalo - 10 Hazelwood Drive, Surte 106, Amherst, NY 14228 P. 716-691-2600 F. 716-961-7991 Custody Intact Alkalihily Note =3 3630 D 3721 13800 Ezell R3 Str. 100 TestAmerica Chicago - 2417 Bond Street, University Park, IL 60466 P: 708-534-5200 F. 708-534-5211 Company: Coster Wheeler LAB USE: Date/Time City, State, Zip. Abrille, TN Anmonda CONSULTANT INFORMATION 3 3 S 3 3 SE 33 .3 Pres. Code 3 Matrix 3 3 Code LIQ = Liquid Time Sampler Yor N Comp Type এ ঙ و J I ૭ ৩ 4 = Sodium Thiosulfate 5 = Sodium Hydroxide SOL = Other Solid Filtered 3 = Sulfuric Acid 2 7 Z Z Z Z 2 Z 1840 PG - 1x 2 SL = Sludge 26 SO = Soil 6 = Other 5/21/15 10902 30 5/21/15 OA15 X 26 0 = 0 5/21/15 0845 PG 5/21/15/1026 33 5/21/15 1240 PC Lab Remarks 5/21/15 0820 P6 B ENVOCO 20647 Proj. State (State of Ongin) LABORATORY INFORMATION Received By: Proj. City: Sample Collection 5/21/15 1132 38 Preservative Codes: 0 = No Preservatives 1 = Hydrochloric Acid SW = Surface Water WW = Waste Water GW = GroundwaterMatrix Codes: 2 = Nitric Acid 5/21/15 5/21/15 162 162 5/21/15 Date tyled to Containers Number & Med H 5W-03-05212015-LOW 4 poly 4 poly 5W-01\_05212015\_LOW Me: JUG H WOJ-21230-50-100 EDD Required, Format: Date/Time **6**-T T CSXT Project Name: Hexteninson Island Standard 6-13 Days CUSTODY CHAIN OF Standard 14 Days Specify # Days PDMW-26T\_05212015 SW-04-05212015-Law Other Deliv: PDMW-39D\_05212015 DUP-01\_05212015 TMW-1-05212015 CSXT Project Number: 9415575 EB-01-05212015 FB-01-05212015 Sam Ross 580-112797 Sample Identification CSXT PROJECT INFORMATION CSXT Standard (Level II) SAMPLE INFORMATION Turnaround Time: Received By Laborato DRIGINAL - RETURN 1 Day Rush 2 Day Rush 3 Day Rush Deliverables: Relinquished By: OSXT Contact: Level III Level IV

ABORATORY INFORMATION

# **Login Sample Receipt Checklist**

Client: AMEC Foster Wheeler E & I, Inc Job Number: 680-112797-1

Login Number: 112797 List Source: TestAmerica Savannah

List Number: 1

Creator: Banda, Christy S

| Creator. Danda, Christy S                                                                                 |        |         |
|-----------------------------------------------------------------------------------------------------------|--------|---------|
| Question                                                                                                  | Answer | Comment |
| Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td> | N/A    |         |
| The cooler's custody seal, if present, is intact.                                                         | True   |         |
| Sample custody seals, if present, are intact.                                                             | True   |         |
| The cooler or samples do not appear to have been compromised or tampered with.                            | True   |         |
| Samples were received on ice.                                                                             | True   |         |
| Cooler Temperature is acceptable.                                                                         | True   |         |
| Cooler Temperature is recorded.                                                                           | True   |         |
| COC is present.                                                                                           | True   |         |
| COC is filled out in ink and legible.                                                                     | True   |         |
| COC is filled out with all pertinent information.                                                         | True   |         |
| Is the Field Sampler's name present on COC?                                                               | N/A    |         |
| There are no discrepancies between the containers received and the COC.                                   | True   |         |
| Samples are received within Holding Time.                                                                 | True   |         |
| Sample containers have legible labels.                                                                    | True   |         |
| Containers are not broken or leaking.                                                                     | True   |         |
| Sample collection date/times are provided.                                                                | True   |         |
| Appropriate sample containers are used.                                                                   | True   |         |
| Sample bottles are completely filled.                                                                     | True   |         |
| Sample Preservation Verified.                                                                             | N/A    |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs                          | True   |         |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").                           | N/A    |         |
| Multiphasic samples are not present.                                                                      | True   |         |
| Samples do not require splitting or compositing.                                                          | True   |         |
| Residual Chlorine Checked.                                                                                | N/A    |         |
|                                                                                                           |        |         |

2

J

7

0

10

11

# **Certification Summary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-112797-1

# **Laboratory: TestAmerica Savannah**

The certifications listed below are applicable to this report.

| Authority | Program       | <b>EPA</b> Region | Certification ID | <b>Expiration Date</b> |
|-----------|---------------|-------------------|------------------|------------------------|
| Georgia   | State Program | 4                 | 803              | 06-30-15 *             |

<sup>\*</sup> Certification renewal pending - certification considered valid.

TestAmerica Savannah



THE LEADER IN ENVIRONMENTAL TESTING

# ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

TestAmerica Job ID: 680-118925-1

TestAmerica SDG: ENV0000120647/R9415575 Client Project/Site: CSX GA, Hutchinson Island, VRP

### For:

AMEC Foster Wheeler E & I, Inc 2677 Buford Highway Atlanta, Georgia 30324

Attn: Aaron Getchell

Show Hovey

Authorized for release by: 11/20/2015 5:05:22 PM

Lisa Harvey, Project Manager II (912)354-7858 e.3221

lisa.harvey@testamericainc.com

.....LINKS .....

Review your project results through

Total Access

**Have a Question?** 



**Visit us at:** www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

## **Case Narrative**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-118925-1 SDG: ENV0000120647/R9415575

3

Job ID: 680-118925-1

**Laboratory: TestAmerica Savannah** 

Narrative

CASE NARRATIVE
Client: AMEC Foster Wheeler E & I, Inc
Project: CSX GA, Hutchinson Island, VRP
Report Number: 680-118925-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

#### RECEIPT

The samples were received on 11/12/2015; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 2.8 C.

#### **METALS (ICP)**

Samples PDMW-13P\_11112015 (680-118925-1), PDMW-32R\_11112015 (680-118925-3), PDMW-33R2\_11112015 (680-118925-4), PDMW-47\_11112015 (680-118925-6), PDMW-23R\_11112015 (680-118925-7), PDMW-46\_11112015 (680-118925-8) and PDMW-45R\_11112015 (680-118925-9) were analyzed for Metals (ICP) in accordance with EPA SW-846 Method 6010C. The samples were prepared on 11/16/2015 and analyzed on 11/17/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### **AMMONIA**

Samples PDMW-13P\_11112015 (680-118925-1), PDMW-53\_11112015 (680-118925-2), PDMW-32R\_11112015 (680-118925-3), PDMW-33R2\_11112015 (680-118925-4), PDMW-48\_11112015 (680-118925-5), PDMW-47\_11112015 (680-118925-6), PDMW-23R\_11112015 (680-118925-7), PDMW-46\_11112015 (680-118925-8) and PDMW-45R\_11112015 (680-118925-9) were analyzed for ammonia in accordance with EPA Method 350.1. The samples were analyzed on 11/19/2015 and 11/20/2015.

Samples PDMW-13P\_11112015 (680-118925-1)[2X], PDMW-53\_11112015 (680-118925-2)[2X], PDMW-33R2\_11112015 (680-118925-4) [10X], PDMW-48\_11112015 (680-118925-5)[20X], PDMW-47\_11112015 (680-118925-6)[20X] and PDMW-23R\_11112015 (680-118925-7) [2X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

### **NITRATE-NITRITE AS NITROGEN**

Samples PDMW-13P\_11112015 (680-118925-1), PDMW-53\_11112015 (680-118925-2), PDMW-32R\_11112015 (680-118925-3), PDMW-33R2\_11112015 (680-118925-4), PDMW-48\_11112015 (680-118925-5), PDMW-47\_11112015 (680-118925-6), PDMW-23R\_11112015 (680-118925-7), PDMW-46\_11112015 (680-118925-8) and PDMW-45R\_11112015 (680-118925-9) were analyzed for nitrate-nitrite as nitrogen in accordance with EPA Method 353.2. The samples were analyzed on 11/12/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

## **Definitions/Glossary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-118925-1 SDG: ENV0000120647/R9415575

**Qualifiers** 

**Metals** 

Qualifier **Qualifier Description** 

Indicates the analyte was analyzed for but not detected. IJ

**General Chemistry** 

Qualifier **Qualifier Description** 

Indicates the analyte was analyzed for but not detected.

**Glossary** 

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid **CNF** Contains no Free Liquid

DER Duplicate error ratio (normalized absolute difference)

Dil Fac **Dilution Factor** 

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision level concentration MDA Minimum detectable activity **EDL Estimated Detection Limit** MDC

Minimum detectable concentration

MDL Method Detection Limit ML Minimum Level (Dioxin)

NC Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)

**PQL Practical Quantitation Limit** 

QC **Quality Control RER** Relative error ratio

RL Reporting Limit or Requested Limit (Radiochemistry)

**RPD** Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TEF Toxicity Equivalent Quotient (Dioxin) **TEQ** 

# **Sample Summary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-118925-1 SDG: ENV0000120647/R9415575

| Lab Sample ID | Client Sample ID   | Matrix | Collected Received         | d    |
|---------------|--------------------|--------|----------------------------|------|
| 680-118925-1  | PDMW-13P_11112015  | Water  | 11/11/15 10:12 11/12/15 08 | 3:30 |
| 680-118925-2  | PDMW-53_11112015   | Water  | 11/11/15 09:55 11/12/15 08 | 3:30 |
| 680-118925-3  | PDMW-32R_11112015  | Water  | 11/11/15 11:12 11/12/15 08 | 3:30 |
| 680-118925-4  | PDMW-33R2_11112015 | Water  | 11/11/15 10:55 11/12/15 08 | 3:30 |
| 680-118925-5  | PDMW-48_11112015   | Water  | 11/11/15 16:07 11/12/15 08 | 3:30 |
| 680-118925-6  | PDMW-47_11112015   | Water  | 11/11/15 11:55 11/12/15 08 | 3:30 |
| 680-118925-7  | PDMW-23R_11112015  | Water  | 11/11/15 12:17 11/12/15 08 | 3:30 |
| 680-118925-8  | PDMW-46_11112015   | Water  | 11/11/15 15:10 11/12/15 08 | 3:30 |
| 680-118925-9  | PDMW-45R_11112015  | Water  | 11/11/15 16:00 11/12/15 08 | 3:30 |

# **Method Summary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-118925-1 SDG: ENV0000120647/R9415575

| Method | Method Description        | Protocol | Laboratory |
|--------|---------------------------|----------|------------|
| 6010C  | Metals (ICP)              | SW846    | TAL SAV    |
| 350.1  | Nitrogen, Ammonia         | MCAWW    | TAL SAV    |
| 353.2  | Nitrogen, Nitrate-Nitrite | MCAWW    | TAL SAV    |

#### **Protocol References:**

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

#### **Laboratory References:**

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

4

5

7

8

10

11

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-118925-1 SDG: ENV0000120647/R9415575

Lab Sample ID: 680-118925-1

**Matrix: Water** 

Client Sample ID: PDMW-13P\_11112015 Date Collected: 11/11/15 10:12

Date Received: 11/12/15 08:30

| Method: 6010C - Metals (ICP) Analyte | Rosult | Qualifier | RL | MDL | Unit | n | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Arsenic                              | 20     |           | 20 |     | ug/L |   | 11/16/15 09:16 |                | 1       |
| Lead                                 | 11     |           | 10 |     | ug/L |   |                | 11/17/15 11:59 | 1       |
| Nickel                               | 40     | U         | 40 |     | ug/L |   | 11/16/15 09:16 | 11/17/15 11:59 | 1       |
| Zinc                                 | 20     | U         | 20 |     | ug/L |   | 11/16/15 09:16 | 11/17/15 11:59 | 1       |

| General Chemistry Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia                   | 2.7    |           | 0.50  |     | mg/L |   |          | 11/20/15 09:00 | 2       |
| Nitrate as N              | 0.050  | U         | 0.050 |     | mg/L |   |          | 11/12/15 12:44 | 1       |
| Nitrate Nitrite as N      | 0.050  | U         | 0.050 |     | mg/L |   |          | 11/12/15 12:44 | 1       |
| Nitrite as N              | 0.050  | U         | 0.050 |     | mg/L |   |          | 11/12/15 12:44 | 1       |

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-118925-1 SDG: ENV0000120647/R9415575

Lab Sample ID: 680-118925-2

Matrix: Water

Client Sample ID: PDMW-53\_11112015

Date Collected: 11/11/15 09:55 Date Received: 11/12/15 08:30

| General Chemistry<br>Analyte | Result | Qualifier | RL    | MDL Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|--------|-----------|-------|----------|---|----------|----------------|---------|
| Ammonia                      | 3.6    |           | 0.50  | mg/L     |   |          | 11/20/15 09:00 | 2       |
| Nitrate as N                 | 0.050  | U         | 0.050 | mg/L     |   |          | 11/12/15 12:48 | 1       |
| Nitrate Nitrite as N         | 0.050  | U         | 0.050 | mg/L     |   |          | 11/12/15 12:48 | 1       |
| Nitrite as N                 | 0.050  | U         | 0.050 | mg/L     |   |          | 11/12/15 12:48 | 1       |

8

10

11

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-118925-1 SDG: ENV0000120647/R9415575

Lab Sample ID: 680-118925-3

Matrix: Water

Client Sample ID: PDMW-32R\_11112015

Date Collected: 11/11/15 11:12 Date Received: 11/12/15 08:30

| Method: 6010C - Metals (ICP) Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Arsenic                              | 20     | U         | 20 |     | ug/L |   | 11/16/15 09:16 | 11/17/15 12:02 | 1       |
| Lead                                 | 10     | U         | 10 |     | ug/L |   | 11/16/15 09:16 | 11/17/15 12:02 | 1       |
| Nickel                               | 40     | U         | 40 |     | ug/L |   | 11/16/15 09:16 | 11/17/15 12:02 | 1       |
| Zinc                                 | 120    |           | 20 |     | ug/L |   | 11/16/15 09:16 | 11/17/15 12:02 | 1       |

| General Chemistry<br>Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia                      | 1.3    |           | 0.25  |     | mg/L |   |          | 11/20/15 08:50 | 1       |
| Nitrate as N                 | 0.17   |           | 0.050 |     | mg/L |   |          | 11/12/15 12:50 | 1       |
| Nitrate Nitrite as N         | 0.17   |           | 0.050 |     | mg/L |   |          | 11/12/15 12:50 | 1       |
| Nitrite as N                 | 0.050  | Ü         | 0.050 |     | mg/L |   |          | 11/12/15 12:50 | 1       |

. .

5

7

8

4.0

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

Client Sample ID: PDMW-33R2\_11112015

TestAmerica Job ID: 680-118925-1 SDG: ENV0000120647/R9415575

Lab Sample ID: 680-118925-4

**Matrix: Water** 

Date Received: 11/12/15 08:30 Mathed: 6040C Motels (ICP)

Date Collected: 11/11/15 10:55

| Method: 6010C - Metals (ICP) |        |           |    |     |      |   |                |                |         |
|------------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte                      | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                      | 20     | U         | 20 |     | ug/L |   | 11/16/15 09:16 | 11/17/15 12:18 | 1       |
| Lead                         | 10     | U         | 10 |     | ug/L |   | 11/16/15 09:16 | 11/17/15 12:18 | 1       |
| _                            |        |           |    |     |      |   |                |                |         |

|   |                              |        |           |       |     | -    |   |          |                |         |
|---|------------------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
|   | General Chemistry<br>Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| 7 | Ammonia                      | 15     |           | 2.5   |     | mg/L |   |          | 11/20/15 09:10 | 10      |
| ١ | Nitrate as N                 | 0.050  | U         | 0.050 |     | mg/L |   |          | 11/12/15 12:57 | 1       |
| ١ | Nitrate Nitrite as N         | 0.050  | U         | 0.050 |     | mg/L |   |          | 11/12/15 12:57 | 1       |
| ١ | Nitrite as N                 | 0.050  | U         | 0.050 |     | mg/L |   |          | 11/12/15 12:57 | 1       |

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-118925-1 SDG: ENV0000120647/R9415575

Lab Sample ID: 680-118925-5

Matrix: Water

Client Sample ID: PDMW-48\_11112015 Date Collected: 11/11/15 16:07

Date Received: 11/12/15 08:30

| General Chemistry Analyte | Result ( | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------|----------|-----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia                   | 28       |           | 5.0   |     | mg/L |   |          | 11/20/15 09:33 | 20      |
| Nitrate as N              | 0.11     |           | 0.050 |     | mg/L |   |          | 11/12/15 12:59 | 1       |
| Nitrate Nitrite as N      | 0.050    | U         | 0.050 |     | mg/L |   |          | 11/12/15 12:59 | 1       |
| Nitrite as N              | 0.11     |           | 0.050 |     | mg/L |   |          | 11/12/15 12:59 | 1       |

5

6

8

9

4 4

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-118925-1 SDG: ENV0000120647/R9415575

Lab Sample ID: 680-118925-6

**Matrix: Water** 

Client Sample ID: PDMW-47\_11112015 Date Collected: 11/11/15 11:55

Date Received: 11/12/15 08:30

| Method: 6010C - Metals (ICP) Analyte | Result | Qualifier | RL | MDL Unit | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|--------|-----------|----|----------|---|----------------|----------------|---------|
| Arsenic                              | 20     | U         | 20 | ug/L     |   | 11/16/15 09:16 | 11/17/15 12:21 | 1       |
| Lead                                 | 10     |           | 10 | ug/L     |   | 11/16/15 09:16 | 11/17/15 12:21 | 1       |

| General Chemistry Analyte | Result ( | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------|----------|-----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia                   | 39       |           | 5.0   |     | mg/L |   |          | 11/20/15 09:10 | 20      |
| Nitrate as N              | 0.050    | U         | 0.050 |     | mg/L |   |          | 11/12/15 13:00 | 1       |
| Nitrate Nitrite as N      | 0.050 U  | U         | 0.050 |     | mg/L |   |          | 11/12/15 13:00 | 1       |
| Nitrite as N              | 0.050    | U         | 0.050 |     | mg/L |   |          | 11/12/15 13:00 | 1       |

TestAmerica Savannah

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-118925-1 SDG: ENV0000120647/R9415575

Lab Sample ID: 680-118925-7

**Matrix: Water** 

Client Sample ID: PDMW-23R 11112015 Date Collected: 11/11/15 12:17

Date Received: 11/12/15 08:30

| Method: 6010C - Metals (ICP) Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Arsenic                              | 20     | U         | 20 |     | ug/L |   | 11/16/15 09:16 | 11/17/15 12:25 | 1       |
| Lead                                 | 10     | U         | 10 |     | ug/L |   | 11/16/15 09:16 | 11/17/15 12:25 | 1       |

| General Chemistry Analyte | Result | Qualifier | RL    | MDL Unit | t D | Prepared | Analyzed       | Dil Fac |
|---------------------------|--------|-----------|-------|----------|-----|----------|----------------|---------|
| Ammonia                   | 2.8    |           | 0.50  | mg/l     |     |          | 11/20/15 09:10 | 2       |
| Nitrate as N              | 0.050  | U         | 0.050 | mg/l     | L   |          | 11/12/15 13:01 | 1       |
| Nitrate Nitrite as N      | 0.050  | U         | 0.050 | mg/l     | L   |          | 11/12/15 13:01 | 1       |
| Nitrite as N              | 0.050  | U         | 0.050 | mg/l     | L   |          | 11/12/15 13:01 | 1       |

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

Client Sample ID: PDMW-46\_11112015

TestAmerica Job ID: 680-118925-1 SDG: ENV0000120647/R9415575

Lab Sample ID: 680-118925-8

**Matrix: Water** 

Date Collected: 11/11/15 15:10 Date Received: 11/12/15 08:30

| red Analyzed Dil F   | Fac |
|----------------------|-----|
| 09:16 11/17/15 12:29 | 1   |
| 09:16 11/17/15 12:29 | 1   |
|                      |     |

| General Chemistry<br>Analyte | Result Qualific | er RL | MDL Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------------|-------|----------|---|----------|----------------|---------|
| Ammonia                      | 1.1             | 0.25  | mg/L     |   |          | 11/20/15 08:50 | 1       |
| Nitrate as N                 | 0.050 U         | 0.050 | mg/L     |   |          | 11/12/15 13:02 | 1       |
| Nitrate Nitrite as N         | 0.067           | 0.050 | mg/L     |   |          | 11/12/15 13:02 | 1       |
| Nitrite as N                 | 0.073           | 0.050 | mg/L     |   |          | 11/12/15 13:02 | 1       |

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-118925-1 SDG: ENV0000120647/R9415575

Lab Sample ID: 680-118925-9

**Matrix: Water** 

Client Sample ID: PDMW-45R\_11112015 Date Collected: 11/11/15 16:00

Date Received: 11/12/15 08:30

| Method: 6010C - Metals (ICP) |        |           |    |     |      |   |                |                |         |
|------------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte                      | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                      | 20     | U         | 20 |     | ug/L |   | 11/16/15 09:16 | 11/17/15 12:33 | 1       |
| Lead                         | 10     | U         | 10 |     | ug/L |   | 11/16/15 09:16 | 11/17/15 12:33 | 1       |
| Nickel                       | 40     | U         | 40 |     | ug/L |   | 11/16/15 09:16 | 11/17/15 12:33 | 1       |
|                              |        |           |    |     |      |   |                |                |         |

| General Chemistry<br>Analyte | Result Qualifier | RL    | MDL Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|------------------|-------|----------|---|----------|----------------|---------|
| Ammonia                      | 0.80             | 0.25  | mg/L     |   |          | 11/19/15 19:34 | 1       |
| Nitrate as N                 | 0.050 U          | 0.050 | mg/L     |   |          | 11/12/15 13:03 | 1       |
| Nitrate Nitrite as N         | 0.050 U          | 0.050 | mg/L     |   |          | 11/12/15 13:03 | 1       |
| Nitrite as N                 | 0.050 U          | 0.050 | mg/L     |   |          | 11/12/15 13:03 | 1       |

TestAmerica Job ID: 680-118925-1 SDG: ENV0000120647/R9415575

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 680-410498/1-A

**Analysis Batch: 410766** 

**Matrix: Water** 

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 410498 MD MD

| Di             | D | D | Dil | il F | Fac         | C |
|----------------|---|---|-----|------|-------------|---|
| 31             | _ |   |     |      | 1           | ī |
| 31             |   |   |     |      | 1           | 1 |
| 31             |   |   |     |      | 1           | 1 |
| 31             |   |   |     |      | 1           | 1 |
| 31<br>31<br>31 |   |   |     |      | <del></del> | 1 |

Lab Sample ID: LCS 680-410498/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Analysis Batch: 410766 Prep Batch: 410498** Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Arsenic 100 94.7 ug/L 95 80 - 120 500 495 99 Lead ug/L 80 - 120 Nickel 100 98.4 ug/L 98 80 - 120 100 98.1 Zinc ug/L 98 80 - 120

Method: 350.1 - Nitrogen, Ammonia

Lab Sample ID: MB 680-411342/29 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

**Analysis Batch: 411342** 

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Ammonia 0.25 U 0.25 mg/L 11/19/15 19:43

Lab Sample ID: LCS 680-411342/4 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

**Matrix: Water** 

**Analysis Batch: 411342** 

LCS LCS Spike %Rec. **Analyte** Added Result Qualifier Unit D %Rec Limits Ammonia 1.00 1.05 105 90 - 110

Lab Sample ID: LCSD 680-411342/6 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 411342** LCSD LCSD **RPD** Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Ammonia 1.00 1.06 mg/L 106 90 - 110

Lab Sample ID: MB 680-411343/13 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

**Analysis Batch: 411343** 

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 0.25 0.25 U 11/19/15 19:43 Ammonia mg/L

2

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-118925-1 SDG: ENV0000120647/R9415575

Prep Type: Total/NA

Client Sample ID: Method Blank

**Client Sample ID: Lab Control Sample** 

Client Sample ID: PDMW-13P\_11112015

Client Sample ID: PDMW-13P 11112015

**Client Sample ID: Lab Control Sample** 

Client Sample ID: Lab Control Sample Dup

3

## Method: 350.1 - Nitrogen, Ammonia (Continued)

Lab Sample ID: LCS 680-411343/17

**Matrix: Water** 

**Analysis Batch: 411343** 

 Spike
 LCS
 LCS
 %Rec.

 Analyte
 Added
 Result 
Lab Sample ID: LCSD 680-411343/35

**Matrix: Water** 

**Analysis Batch: 411343** 

Spike LCSD LCSD %Rec. **RPD** Added Result Qualifier Limits Analyte **RPD** Limit Unit %Rec Ammonia 1.00 1.05 mg/L 105 90 - 110 30

Method: 353.2 - Nitrogen, Nitrate-Nitrite

Lab Sample ID: MB 680-410169/13

**Matrix: Water** 

**Analysis Batch: 410169** 

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Nitrate as N 0.050 U 0.050 11/12/15 12:39 mg/L Nitrate Nitrite as N 0.050 U 0.050 11/12/15 12:39 mg/L 0.050 U 0.050 mg/L 11/12/15 12:39 Nitrite as N

Lab Sample ID: LCS 680-410169/16

**Matrix: Water** 

**Analysis Batch: 410169** 

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits Nitrate as N 0.500 0.496 mg/L 99 75 - 125 Nitrate Nitrite as N 1.00 0.998 mg/L 100 90 - 110 Nitrite as N 0.500 0.502 mg/L 100 90 - 110

Lab Sample ID: 680-118925-1 MS

**Matrix: Water** 

**Analysis Batch: 410169** 

MS MS Sample Sample Spike %Rec. Result Qualifier Analyte Result Qualifier Added Unit %Rec Limits Nitrate as N 0.050 U 0.500 0.519 mg/L 104 75 - 125 Nitrate Nitrite as N 0.050 U 1.00 1.04 mg/L 104 90 - 110 Nitrite as N 0.050 U 0.500 0.521 mg/L 104 90 - 110

Lab Sample ID: 680-118925-1 MSD

Matrix: Water

Analysis Batch: 410169

| Alialysis Datell. Tivios |        |           |       |        |           |      |   |      |          |     |       |
|--------------------------|--------|-----------|-------|--------|-----------|------|---|------|----------|-----|-------|
| -                        | Sample | Sample    | Spike | MSD    | MSD       |      |   |      | %Rec.    |     | RPD   |
| Analyte                  | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   | RPD | Limit |
| Nitrate as N             | 0.050  | U         | 0.500 | 0.539  |           | mg/L |   | 108  | 75 - 125 | 4   | 30    |
| Nitrate Nitrite as N     | 0.050  | U         | 1.00  | 1.06   |           | mg/L |   | 106  | 90 - 110 | 1   | 10    |
| Nitrite as N             | 0.050  | U         | 0.500 | 0.521  |           | mg/L |   | 104  | 90 - 110 | 0   | 10    |

TestAmerica Savannah

# **QC Sample Results**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-118925-1 SDG: ENV0000120647/R9415575

# Method: 353.2 - Nitrogen, Nitrate-Nitrite (Continued)

Lab Sample ID: 680-118925-2 DU Client Sample ID: PDMW-53\_11112015 **Matrix: Water Prep Type: Total/NA** 

Analysis Batch: 410169

| _                    | Sample | Sample    | DU     | DU        |      |   |        | RPD   |
|----------------------|--------|-----------|--------|-----------|------|---|--------|-------|
| Analyte              | Result | Qualifier | Result | Qualifier | Unit | D | RPD    | Limit |
| Nitrate as N         | 0.050  | U         | 0.050  | U         | mg/L |   | <br>NC | 30    |
| Nitrate Nitrite as N | 0.050  | U         | 0.050  | U         | mg/L |   | NC     | 10    |
| Nitrite as N         | 0.050  | U         | 0.050  | U         | mg/L |   | NC     | 10    |

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-118925-1 SDG: ENV0000120647/R9415575

### **Metals**

## **Prep Batch: 410498**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 680-118925-1       | PDMW-13P_11112015  | Total/NA  | Water  | 3010A  |            |
| 680-118925-3       | PDMW-32R_11112015  | Total/NA  | Water  | 3010A  |            |
| 680-118925-4       | PDMW-33R2_11112015 | Total/NA  | Water  | 3010A  |            |
| 680-118925-6       | PDMW-47_11112015   | Total/NA  | Water  | 3010A  |            |
| 680-118925-7       | PDMW-23R_11112015  | Total/NA  | Water  | 3010A  |            |
| 680-118925-8       | PDMW-46_11112015   | Total/NA  | Water  | 3010A  |            |
| 680-118925-9       | PDMW-45R_11112015  | Total/NA  | Water  | 3010A  |            |
| LCS 680-410498/2-A | Lab Control Sample | Total/NA  | Water  | 3010A  |            |
| MB 680-410498/1-A  | Method Blank       | Total/NA  | Water  | 3010A  |            |
|                    |                    |           |        |        |            |

### **Analysis Batch: 410766**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 680-118925-1       | PDMW-13P_11112015  | Total/NA  | Water  | 6010C  | 410498     |
| 680-118925-3       | PDMW-32R_11112015  | Total/NA  | Water  | 6010C  | 410498     |
| 680-118925-4       | PDMW-33R2_11112015 | Total/NA  | Water  | 6010C  | 410498     |
| 680-118925-6       | PDMW-47_11112015   | Total/NA  | Water  | 6010C  | 410498     |
| 680-118925-7       | PDMW-23R_11112015  | Total/NA  | Water  | 6010C  | 410498     |
| 680-118925-8       | PDMW-46_11112015   | Total/NA  | Water  | 6010C  | 410498     |
| 680-118925-9       | PDMW-45R_11112015  | Total/NA  | Water  | 6010C  | 410498     |
| LCS 680-410498/2-A | Lab Control Sample | Total/NA  | Water  | 6010C  | 410498     |
| MB 680-410498/1-A  | Method Blank       | Total/NA  | Water  | 6010C  | 410498     |

# **General Chemistry**

## **Analysis Batch: 410169**

| Lab Sample ID    | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|------------------|--------------------|-----------|--------|--------|------------|
| 680-118925-1     | PDMW-13P_11112015  | Total/NA  | Water  | 353.2  | _          |
| 680-118925-1 MS  | PDMW-13P_11112015  | Total/NA  | Water  | 353.2  |            |
| 680-118925-1 MSD | PDMW-13P_11112015  | Total/NA  | Water  | 353.2  |            |
| 680-118925-2     | PDMW-53_11112015   | Total/NA  | Water  | 353.2  |            |
| 680-118925-2 DU  | PDMW-53_11112015   | Total/NA  | Water  | 353.2  |            |
| 680-118925-3     | PDMW-32R_11112015  | Total/NA  | Water  | 353.2  |            |
| 880-118925-4     | PDMW-33R2_11112015 | Total/NA  | Water  | 353.2  |            |
| 880-118925-5     | PDMW-48_11112015   | Total/NA  | Water  | 353.2  |            |
| 880-118925-6     | PDMW-47_11112015   | Total/NA  | Water  | 353.2  |            |
| 680-118925-7     | PDMW-23R_11112015  | Total/NA  | Water  | 353.2  |            |
| 880-118925-8     | PDMW-46_11112015   | Total/NA  | Water  | 353.2  |            |
| 880-118925-9     | PDMW-45R_11112015  | Total/NA  | Water  | 353.2  |            |
| CS 680-410169/16 | Lab Control Sample | Total/NA  | Water  | 353.2  |            |
| MB 680-410169/13 | Method Blank       | Total/NA  | Water  | 353.2  |            |

## **Analysis Batch: 411342**

| Lab Sample ID    | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|------------------|--------------------|-----------|--------|--------|------------|
| 680-118925-1     | PDMW-13P_11112015  | Total/NA  | Water  | 350.1  |            |
| 680-118925-2     | PDMW-53_11112015   | Total/NA  | Water  | 350.1  |            |
| 680-118925-3     | PDMW-32R_11112015  | Total/NA  | Water  | 350.1  |            |
| 680-118925-4     | PDMW-33R2_11112015 | Total/NA  | Water  | 350.1  |            |
| 680-118925-5     | PDMW-48_11112015   | Total/NA  | Water  | 350.1  |            |
| 680-118925-6     | PDMW-47_11112015   | Total/NA  | Water  | 350.1  |            |
| LCS 680-411342/4 | Lab Control Sample | Total/NA  | Water  | 350.1  |            |

TestAmerica Savannah

Page 18 of 25

2

4

4

6

8

9

12

11/20/2015

# **QC Association Summary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-118925-1 SDG: ENV0000120647/R9415575

## 2

# **General Chemistry (Continued)**

## **Analysis Batch: 411342 (Continued)**

| Lab Sample ID     | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|-------------------|------------------------|-----------|--------|--------|------------|
| LCSD 680-411342/6 | Lab Control Sample Dup | Total/NA  | Water  | 350.1  |            |
| MB 680-411342/29  | Method Blank           | Total/NA  | Water  | 350.1  |            |

### **Analysis Batch: 411343**

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| 680-118925-7       | PDMW-23R_11112015      | Total/NA  | Water  | 350.1  |            |
| 680-118925-8       | PDMW-46_11112015       | Total/NA  | Water  | 350.1  |            |
| 680-118925-9       | PDMW-45R_11112015      | Total/NA  | Water  | 350.1  |            |
| LCS 680-411343/17  | Lab Control Sample     | Total/NA  | Water  | 350.1  |            |
| LCSD 680-411343/35 | Lab Control Sample Dup | Total/NA  | Water  | 350.1  |            |
| MB 680-411343/13   | Method Blank           | Total/NA  | Water  | 350.1  |            |

e

8

10

11

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-118925-1 SDG: ENV0000120647/R9415575

Client Sample ID: PDMW-13P\_11112015

Date Collected: 11/11/15 10:12 Date Received: 11/12/15 08:30

Lab Sample ID: 680-118925-1

**Matrix: Water** 

|           | Batch                | Batch                    |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|--------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                   | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep                 | 3010A                    |     |        | 50 mL   | 50 mL  | 410498 | 11/16/15 09:16 | CRW     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 6010C<br>nt ID: ICPE     |     | 1      | 50 mL   | 50 mL  | 410766 | 11/17/15 11:59 | ВСВ     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>nt ID: KONELAB1 |     | 2      | 2 mL    | 2 mL   | 411342 | 11/20/15 09:00 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>nt ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 410169 | 11/12/15 12:44 | GRX     | TAL SAV |

Lab Sample ID: 680-118925-2 **Client Sample ID: PDMW-53\_11112015** 

Date Collected: 11/11/15 09:55 Date Received: 11/12/15 08:30

**Matrix: Water** 

**Matrix: Water** 

| Prep Type<br>Total/NA | Batch Type Analysis Instrumer | Batch<br>Method<br>350.1<br>nt ID: KONELAB1 | Run | Factor 2 | Initial<br>Amount<br>2 mL | Final Amount 2 mL | Batch<br>Number<br>411342 | Prepared<br>or Analyzed<br>11/20/15 09:00 | Analyst<br>JME | Lab<br>TAL SAV |
|-----------------------|-------------------------------|---------------------------------------------|-----|----------|---------------------------|-------------------|---------------------------|-------------------------------------------|----------------|----------------|
| Total/NA              | Analysis<br>Instrumer         | 353.2<br>nt ID: LACHAT2                     |     | 1        | 2 mL                      | 2 mL              | 410169                    | 11/12/15 12:48                            | GRX            | TAL SAV        |

Client Sample ID: PDMW-32R\_11112015 Lab Sample ID: 680-118925-3

Date Collected: 11/11/15 11:12

Date Received: 11/12/15 08:30

|           | Batch                | Batch                    |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|--------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                   | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep                 | 3010A                    |     |        | 50 mL   | 50 mL  | 410498 | 11/16/15 09:16 | CRW     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 6010C<br>nt ID: ICPE     |     | 1      | 50 mL   | 50 mL  | 410766 | 11/17/15 12:02 | ВСВ     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>nt ID: KONELAB1 |     | 1      | 2 mL    | 2 mL   | 411342 | 11/20/15 08:50 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>nt ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 410169 | 11/12/15 12:50 | GRX     | TAL SAV |

Client Sample ID: PDMW-33R2\_11112015

Date Collected: 11/11/15 10:55 Date Received: 11/12/15 08:30

| Lab Sample I | D: 680-118925-4 |  |
|--------------|-----------------|--|
|              | Matrix: Water   |  |

|           | Batch                 | Batch                    |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|-----------------------|--------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                  | Method                   | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep                  | 3010A                    |     |        | 50 mL   | 50 mL  | 410498 | 11/16/15 09:16 | CRW     | TAL SAV |
| Total/NA  | Analysis<br>Instrumer | 6010C<br>nt ID: ICPE     |     | 1      | 50 mL   | 50 mL  | 410766 | 11/17/15 12:18 | ВСВ     | TAL SAV |
| Total/NA  | Analysis<br>Instrumer | 350.1<br>nt ID: KONELAB1 |     | 10     | 2 mL    | 2 mL   | 411342 | 11/20/15 09:10 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrumer | 353.2<br>nt ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 410169 | 11/12/15 12:57 | GRX     | TAL SAV |

TestAmerica Savannah

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-118925-1 SDG: ENV0000120647/R9415575

Lab Sample ID: 680-118925-6

Lab Sample ID: 680-118925-7

Lab Sample ID: 680-118925-5

**Matrix: Water** 

**Matrix: Water** 

**Matrix: Water** 

Client Sample ID: PDMW-48 11112015

Instrument ID: LACHAT2

Date Collected: 11/11/15 16:07 Date Received: 11/12/15 08:30

Batch Dil Initial Batch Batch Final Prepared Method **Prep Type** Type Run **Factor** Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis 350.1 20 2 mL 2 mL 411342 11/20/15 09:33 JME TAL SAV Instrument ID: KONELAB1 Total/NA Analysis 353.2 2 mL 2 mL 410169 11/12/15 12:59 GRX TAL SAV

Client Sample ID: PDMW-47\_11112015

Date Collected: 11/11/15 11:55 Date Received: 11/12/15 08:30

Initial Batch Batch Dil Final Batch Prepared Method Amount Amount Number or Analyzed Prep Type Type Run Factor **Analyst** Lab Total/NA Prep 3010A 50 ml 50 ml 410498 11/16/15 09:16 CRW TAL SAV Total/NA Analysis 6010C 50 mL 50 mL 410766 11/17/15 12:21 BCB TAL SAV Instrument ID: ICPE Total/NA Analysis 350.1 20 2 mL 411342 11/20/15 09:10 JME TAL SAV 2 mL Instrument ID: KONELAB1 Total/NA 2 mL 410169 Analysis 353.2 1 2 mL 11/12/15 13:00 GRX TAL SAV

Client Sample ID: PDMW-23R\_11112015

Instrument ID: LACHAT2

Date Collected: 11/11/15 12:17 Date Received: 11/12/15 08:30

|           | Batch                | Batch                    |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|--------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                   | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep                 | 3010A                    |     |        | 50 mL   | 50 mL  | 410498 | 11/16/15 09:16 | CRW     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 6010C<br>nt ID: ICPE     |     | 1      | 50 mL   | 50 mL  | 410766 | 11/17/15 12:25 | BCB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>nt ID: KONELAB1 |     | 2      | 2 mL    | 2 mL   | 411343 | 11/20/15 09:10 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>nt ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 410169 | 11/12/15 13:01 | GRX     | TAL SAV |

Client Sample ID: PDMW-46\_11112015

Lab Sample ID: 680-118925-8 Date Collected: 11/11/15 15:10 **Matrix: Water** Date Received: 11/12/15 08:30

|           | Batch                | Batch                    |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|--------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                   | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep                 | 3010A                    |     |        | 50 mL   | 50 mL  | 410498 | 11/16/15 09:16 | CRW     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 6010C<br>nt ID: ICPE     |     | 1      | 50 mL   | 50 mL  | 410766 | 11/17/15 12:29 | BCB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>nt ID: KONELAB1 |     | 1      | 2 mL    | 2 mL   | 411343 | 11/20/15 08:50 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>nt ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 410169 | 11/12/15 13:02 | GRX     | TAL SAV |

TestAmerica Savannah

Page 21 of 25

11/20/2015

## **Lab Chronicle**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

Client Sample ID: PDMW-45R\_11112015

TestAmerica Job ID: 680-118925-1 SDG: ENV0000120647/R9415575

Lab Sample ID: 680-118925-9

Metrice Metrice Meter

Matrix: Water

Date Collected: 11/11/15 16:00 Date Received: 11/12/15 08:30

|           | Batch                | Batch                    |     | Dil         | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|--------------------------|-----|-------------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                   | Run | Factor      | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep                 | 3010A                    | -   | <del></del> | 50 mL   | 50 mL  | 410498 | 11/16/15 09:16 | CRW     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 6010C<br>nt ID: ICPE     |     | 1           | 50 mL   | 50 mL  | 410766 | 11/17/15 12:33 | BCB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>nt ID: KONELAB1 |     | 1           | 2 mL    | 2 mL   | 411343 | 11/19/15 19:34 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>nt ID: LACHAT2  |     | 1           | 2 mL    | 2 mL   | 410169 | 11/12/15 13:03 | GRX     | TAL SAV |

#### **Laboratory References:**

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

g

9

10

11

|                                              | ·                | LABORAIORY                                    | RY INFORMATION                                                                                                                                                      | _                              |                                   |                                      |                                                                    |                                     |                             | ٦        | #<br>000              | -                                                   |                                |
|----------------------------------------------|------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------|--------------------------------------|--------------------------------------------------------------------|-------------------------------------|-----------------------------|----------|-----------------------|-----------------------------------------------------|--------------------------------|
| CHAIN OF                                     |                  | D TestAmerica Savan                           | Savannan - 5102 Lakoche Avenue, Savannah, GA 31404 P 912-354-7858 F 912-352-0165 North Canton - 4101 Shuffel Drive NW, North Canton, OH 44720 P - 350-4939 F 330-49 | s Avenue, S<br>Hel Drive N     | svannah, GA<br>W, North Can       | 31404 P 9<br>ton, OH 44721<br>5003 : | 12-354-785<br>P-330-4                                              | .354-7858 F 912-3<br>P-330-497-9396 | 352-0165<br>F-330-497-0772  | 0772     | IIPMENT II            | SHIPMENT INFORMATION                                | ]                              |
| TRANSPORTATION CUSTODY                       |                  | L TestAmerica Tampa<br>TestAmerica Pensa      | Tampa - 6712 Benjamın Road, Suite 100, Tampa, FL 33634<br>Pensacola - 3355 McLemore Drive, Pensacola, FL 32514                                                      | load, Suite<br>ore Orive, P    | 100, Tampa,<br>snsacola, FL       | FL 33634 P: 8                        | P: 813-885-7427 F. 813-885-7049<br>P: 850-474-1001 F: 850-478-2671 |                                     | F: 850-478-2671             |          | Shipment Method:      | 190                                                 | COUNER                         |
|                                              |                  | ☐ TestAmerica Buffald<br>☐ TestAmerica Chicag | Buffalo - 10 Hazelwood Drive, Suite 106, Amherst, NY 14228 P: 716-691-2600<br>Chicago - 2417 Bond Street, University Park, IL 60466 P· 708-534-5200 F· 709          | rive, Suite 1<br>set, Universi | 06, Amherst<br>ty Park, IL 6      | ,NY14228<br>D466 P·708               | 1228 P: 716-691-<br>P: 708-534-5200                                |                                     | F 716-961-7991<br>-534-5211 |          | Shipment Tracking No. |                                                     |                                |
| CSXT PROJECT INFORMATION                     |                  | Proj. State (State of Origin)                 | M Ongin) CA                                                                                                                                                         |                                | NSULTAI                           | CONSULTANT INFORMATION               | AATION                                                             | ļ                                   | ŀ                           | Prc      | Project#:             | 6-4300-5246                                         | 940                            |
| CSXT Project Number 9415575                  | · [              | Proj City: Savannah                           | rannah                                                                                                                                                              | ঠ                              | Company:                          | Foster                               | I                                                                  | rapales                             | <br>  ပွ                    | PM       | Agran                 | in Getche                                           | 411                            |
| ame: Hutchinson:                             | Island           |                                               |                                                                                                                                                                     | P Add                          | Address:                          | Chance 15the                         | 15.24                                                              | 1                                   | مريكة                       | Email:   | all:                  |                                                     | cfw.com                        |
| CSXT Contact: Sam Ross                       |                  | LWON: TR                                      | 80                                                                                                                                                                  | Ş                              | .1                                | Tampa                                | 8                                                                  | ١.                                  | 33602                       |          | Phone (813)           | 445-1826 (454) 384-545                              | 好%6.54                         |
| Turnaround Time:                             | 3 Days           | Preservative Co                               | re Codes: 3 = 3                                                                                                                                                     | = Sulfuric Acid                | cid                               | Note                                 | 1                                                                  | _                                   |                             |          |                       | COMMENTS                                            | LAB USE                        |
| 7                                            | /s               | 0 = No Preservatives                          |                                                                                                                                                                     | Sodium T                       | 4 = Sodium Thiosulfate            |                                      |                                                                    | MET                                 | METHODS FOR ANALYSIS        | R ANA    | YSIS                  |                                                     |                                |
| 2 Day Rush Standard 14 Days 3 Day Rush Other | Days             | 1 = Hydrochlonc Acid<br>2 = Nitric Acid       |                                                                                                                                                                     | 5 = Sodium F<br>6 = Other      | 5 = Sødium Hydroxide<br>6 = Other | Code                                 | (i)                                                                | -3-4                                |                             |          |                       |                                                     |                                |
| Deliverables:                                |                  | Matrix Codes:                                 |                                                                                                                                                                     | SO = Soil                      | ] <sup> </sup>                    | LIQ = Liquid                         | T-                                                                 | <u>j.v.</u> j                       |                             |          |                       |                                                     |                                |
| tandard (Level II)                           |                  | GW = Groundwater                              |                                                                                                                                                                     | SL = Studge                    |                                   |                                      | *6                                                                 | !N                                  |                             |          |                       |                                                     |                                |
| ☐ Level III                                  | d, Format:       | WW = Waste Water<br>SW = Surface Water        | _                                                                                                                                                                   | OI = Oil<br>SOL = Other Solid  | Solid                             |                                      | જો (                                                               | क                                   | 9                           |          |                       |                                                     |                                |
| SAMPLE INFORMATION                           |                  |                                               |                                                                                                                                                                     | ļ                              |                                   |                                      | )<br>T                                                             |                                     | ج<br>س                      | 3        | 7)                    |                                                     |                                |
|                                              | Containers       | Sample                                        | Sample Collection                                                                                                                                                   | Filt                           | Filtered Ty                       | Type   Matrix                        |                                                                    | <b>10)</b>                          | 20°                         | 77       | יטי                   |                                                     |                                |
| Sample Identification                        | Number &<br>Type | Date                                          | Time Sam                                                                                                                                                            | Sampler Y                      | Y or N Or C                       | Comp Code or Grab                    | 7                                                                  | H!N                                 | 27<br>27                    | ''N      | 2                     | - 11                                                |                                |
| PDMW-13P_11112015                            | J                | 11/11/2015 1013                               | 1012 33                                                                                                                                                             |                                | 7                                 | M9<br>9                              | X                                                                  | X                                   | X                           | X        | ×                     | 680                                                 | <br> <br> <br> <br>            |
| PDMW-53-11112015                             | W                | 11/11/2015                                    | 2015 0955 PG                                                                                                                                                        |                                | 9<br>Z                            |                                      | ×                                                                  | ×                                   |                             |          |                       | D-118                                               | <br> <br> <br> <br>  <b>  </b> |
| PDMW-32R-11112015                            | ħ                | 11/11/2015/11/12                              | 112 CI                                                                                                                                                              |                                | Z                                 | 3<br>2                               | ×                                                                  | X                                   | ×                           | X        | X                     | 925 (                                               | <br> <br> <br> <br>            |
| PDMW-33R2-11112015                           | す                | 11/11/2015 1055                               | 1055 PG                                                                                                                                                             |                                | Z                                 | C GW                                 | X                                                                  | X                                   | $\times$                    |          |                       | Chain                                               |                                |
| PDMW-48_11112015                             | 3                | 11/11/2015/1607                               | 16075                                                                                                                                                               | と                              | 5                                 | 20                                   | X                                                                  | X                                   |                             |          |                       | of Co                                               |                                |
| PDMW-47-11112015                             | 5                | 11/11/2015 1155                               | 1155 PG                                                                                                                                                             | N                              | 2                                 | M9 .                                 | X                                                                  | X                                   | X                           |          |                       | ustod                                               |                                |
| PDMW-23R_11112015                            | 4                | 11/11/2015                                    | रिक्ष में प्रश                                                                                                                                                      | マカ                             | <u>ق</u>                          | S                                    | X                                                                  | X                                   | X                           |          |                       | y                                                   |                                |
| PDMW-46-11112015                             | ナ                | 2102 12/11                                    | 151510 PG                                                                                                                                                           | Z                              | <u>৩</u>                          | ما ،                                 | X                                                                  | $\hat{\times}$                      | X                           |          |                       |                                                     |                                |
| PDMW-45R_11112015                            | ז                | 11 11 2015 1600                               | -+                                                                                                                                                                  | Pla                            | フ                                 | <u>ო</u>                             | X                                                                  | $\frac{\lambda}{2}$                 | X                           | X        |                       |                                                     |                                |
|                                              |                  |                                               |                                                                                                                                                                     |                                |                                   |                                      |                                                                    |                                     |                             |          |                       |                                                     | j                              |
| Relimplished W.                              | Date/Time: 1/    | 3180                                          | Received By:                                                                                                                                                        | LIN                            |                                   | , i                                  | Date/fime                                                          | fime //                             | (Q)                         | <u> </u> | omments               | Comments & Special Analytical Requirements:         | Requirements:                  |
| Relinquished #:                              | Date/Time:       |                                               | Received By:                                                                                                                                                        | 2                              |                                   |                                      | Date/Time:                                                         | Jme:                                |                             |          |                       |                                                     |                                |
| Relinquished By:                             | Date/Time:       |                                               | Received By:                                                                                                                                                        |                                |                                   | r                                    | Date/Time:                                                         | īme;                                |                             |          |                       |                                                     |                                |
| Received By Laboratory:                      | Date/fine. / C   | 8:30                                          | Lab Remarks:                                                                                                                                                        | (,)                            | 1/2/                              | 7                                    | LAB USE:                                                           | 1                                   | Custody Intact              |          | Custody Seal #        | LAB Lag Number                                      | o mber                         |
| ORIGINAL - RETURN TO LABORATORY WITH SAMPLES | SES.             |                                               |                                                                                                                                                                     |                                |                                   |                                      | INVOIC                                                             | E MUST                              | BE SUBM                     | TTED TO  | CSXT WITH             | INVOICE MUST BE SUBMITTED TO CSXT WITH ORIGINAL COC | TAL-6006 (0509                 |

Client: AMEC Foster Wheeler E & I, Inc

Job Number: 680-118925-1

SDG Number: ENV0000120647/R9415575

List Source: TestAmerica Savannah

Login Number: 118925

List Number: 1

Creator: White, Menica R

| Question                                                                                                  | Answer | Comment |
|-----------------------------------------------------------------------------------------------------------|--------|---------|
| Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td> | N/A    |         |
| The cooler's custody seal, if present, is intact.                                                         | True   |         |
| Sample custody seals, if present, are intact.                                                             | True   |         |
| The cooler or samples do not appear to have been compromised or tampered with.                            | True   |         |
| Samples were received on ice.                                                                             | True   |         |
| Cooler Temperature is acceptable.                                                                         | True   |         |
| Cooler Temperature is recorded.                                                                           | True   |         |
| COC is present.                                                                                           | True   |         |
| COC is filled out in ink and legible.                                                                     | True   |         |
| COC is filled out with all pertinent information.                                                         | True   |         |
| Is the Field Sampler's name present on COC?                                                               | N/A    |         |
| There are no discrepancies between the containers received and the COC.                                   | True   |         |
| Samples are received within Holding Time.                                                                 | True   |         |
| Sample containers have legible labels.                                                                    | True   |         |
| Containers are not broken or leaking.                                                                     | True   |         |
| Sample collection date/times are provided.                                                                | True   |         |
| Appropriate sample containers are used.                                                                   | True   |         |
| Sample bottles are completely filled.                                                                     | True   |         |
| Sample Preservation Verified.                                                                             | True   |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs                          | True   |         |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").                           | N/A    |         |
| Multiphasic samples are not present.                                                                      | True   |         |
| Samples do not require splitting or compositing.                                                          | True   |         |
| Residual Chlorine Checked.                                                                                | N/A    |         |

### **Certification Summary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-118925-1 SDG: ENV0000120647/R9415575

# Laboratory: TestAmerica Savannah

The certifications listed below are applicable to this report.

| Authority | Program       | <b>EPA</b> Region | Certification ID | <b>Expiration Date</b> |
|-----------|---------------|-------------------|------------------|------------------------|
| Georgia   | State Program | 4                 | 803              | 06-30-16               |

4

5

\_\_\_\_\_\_



THE LEADER IN ENVIRONMENTAL TESTING

# ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

TestAmerica Job ID: 680-118974-1

TestAmerica SDG: ENV0000120647/R9415575 Client Project/Site: CSX GA, Hutchinson Island, VRP

#### For:

AMEC Foster Wheeler E & I, Inc 2677 Buford Highway Atlanta, Georgia 30324

Attn: Aaron Getchell

Side Hovey

Authorized for release by: 11/30/2015 4:56:08 PM

Lisa Harvey, Project Manager II (912)354-7858 e.3221

lisa.harvey@testamericainc.com

.....LINKS .....

Review your project results through
Total Access

**Have a Question?** 



**Visit us at:** www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

#### **Case Narrative**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-118974-1 SDG: ENV0000120647/R9415575

Job ID: 680-118974-1

**Laboratory: TestAmerica Savannah** 

**Narrative** 

CASE NARRATIVE
Client: AMEC Foster Wheeler E & I, Inc
Project: CSX GA, Hutchinson Island, VRP
Report Number: 680-118974-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

#### RECEIPT

The samples were received on 11/13/2015 8:30 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 3 coolers at receipt time were 0.8° C, 1.2° C and 1.2° C.

#### **VOLATILE ORGANIC COMPOUNDS (GC-MS)**

Samples TMW-1\_11122015 (680-118974-9), DUP-02\_11122015 (680-118974-10), EBJ\_11122015 (680-118974-12), FB\_11122015 (680-118974-13) and TB\_11122015 (680-118974-14) were analyzed for Volatile Organic Compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 11/17/2015.

Method(s) 8260B: The following sample were collected in properly preserved vials for analysis of volatile organic compounds (VOCs), however, the pH was >2 when verified by the laboratory: TMW-1\_11122015 (680-118974-9), TMW-1\_11122015 (680-118974-9[MS]), TMW-1\_11122015 (680-118974-9[MSD]) and DUP-02\_11122015 (680-118974-10).

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### SEMIVOLATILE ORGANIC COMPOUNDS (AQUEOUS)

Samples TMW-1\_11122015 (680-118974-9), DUP-02\_11122015 (680-118974-10), EBJ\_11122015 (680-118974-12) and FB\_11122015 (680-118974-13) were analyzed for Semivolatile Organic Compounds (Aqueous) in accordance with EPA SW-846 Method 8270D. The samples were prepared on 11/17/2015 and 11/24/2015 and analyzed on 11/20/2015, 11/26/2015 and 11/27/2015.

Method(s) 8270D: Surrogate recovery for the following sample was outside control limits: TMW-1\_11122015 (680-118974-9). Re-extraction and/or re-analysis was performed with concurring results. The re-extraction was out of hold time. Both sets of data have been reported. The confirmation sample is qualified with an "H" flag.

Several analytes have recovery outside criteria low for the MS and/or MSD of sample TMW-1\_11122015 (680-118974-9) in batch 680-411357. Indeno[1,2,3-cd]pyrene exceeded the RPD limit. Refer to the QC report for details.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### **METALS (ICP)**

Samples EW-1\_11122015 (680-118974-1), PDMW-19P\_11122015 (680-118974-2), PDMW-10R\_11122015 (680-118974-3), TMW-4R\_11122015 (680-118974-4), PDMW-26T\_11122015 (680-118974-5), PDMW-8R\_11122015 (680-118974-6), DUP-01\_11122015 (680-118974-7), MW-3R\_11122015 (680-118974-8), TMW-1\_11122015 (680-118974-9), DUP-02\_11122015 (680-118974-10), EBP\_11122015 (680-118974-11), EBJ\_11122015 (680-118974-12) and FB\_11122015 (680-118974-13) were analyzed for Metals (ICP) in accordance with EPA SW-846 Method 6010C. The samples were prepared on 11/17/2015 and 11/18/2015 and analyzed on 11/18/2015 and 11/19/2015.

Method(s) 3010A: The following samples were received unpreserved and were preserved upon receipt to the laboratory: PDMW-26T\_11122015 (680-118974-5), DUP-01\_11122015 (680-118974-7), TMW-1\_11122015 (680-118974-9) and DUP-02\_11122015 (680-118974-10). Regulatory documents require a 24-hour waiting period from the time of the addition of the acid preservative to the time of digestion.

-5

8

9

11

#### **Case Narrative**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-118974-1 SDG: ENV0000120647/R9415575

Job ID: 680-118974-1 (Continued)

Laboratory: TestAmerica Savannah (Continued)

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### **AMMONIA**

Samples EW-1\_11122015 (680-118974-1), PDMW-19P\_11122015 (680-118974-2), PDMW-10R\_11122015 (680-118974-3), TMW-4R\_11122015 (680-118974-4), PDMW-26T\_11122015 (680-118974-5), PDMW-8R\_11122015 (680-118974-6), DUP-01\_11122015 (680-118974-7), MW-3R\_11122015 (680-118974-8), TMW-1\_11122015 (680-118974-9), DUP-02\_11122015 (680-118974-10), EBP\_11122015 (680-118974-11), EBJ\_11122015 (680-118974-12) and FB\_11122015 (680-118974-13) were analyzed for ammonia in accordance with EPA Method 350.1. The samples were analyzed on 11/19/2015 and 11/20/2015.

Method(s) 350.1: The reference method requires samples to be preserved to a pH of <2. The following samples were received at a pH of 6: TMW-1\_11122015 (680-118974-9) and DUP-02\_11122015 (680-118974-10). The samples were preserved to the appropriate pH in the laboratory.

Ammonia recovery is outside criteria low for the MS and outside criteria high for the MSD of sample TMW-1\_11122015 (680-118974-9) in batch 680-411340. Refer to the QC report for details.

Samples EW-1\_11122015 (680-118974-1)[200X], PDMW-19P\_11122015 (680-118974-2)[5X], PDMW-10R\_11122015 (680-118974-3) [5X], TMW-4R\_11122015 (680-118974-4)[2X], PDMW-26T\_11122015 (680-118974-5)[400X], PDMW-8R\_11122015 (680-118974-6)[50X], DUP-01\_11122015 (680-118974-7)[400X], TMW-1\_11122015 (680-118974-9)[5000X] and DUP-02\_11122015 (680-118974-10)[5000X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### **NITRATE-NITRITE AS NITROGEN**

Samples EW-1\_11122015 (680-118974-1), PDMW-19P\_11122015 (680-118974-2), PDMW-10R\_11122015 (680-118974-3), TMW-4R\_11122015 (680-118974-4), PDMW-26T\_11122015 (680-118974-5), PDMW-8R\_11122015 (680-118974-6), DUP-01\_11122015 (680-118974-7), MW-3R\_11122015 (680-118974-8), TMW-1\_11122015 (680-118974-9), DUP-02\_11122015 (680-118974-10), EBP\_11122015 (680-118974-11), EBJ\_11122015 (680-118974-12) and FB\_11122015 (680-118974-13) were analyzed for nitrate-nitrite as nitrogen in accordance with EPA Method 353.2. The samples were analyzed on 11/13/2015.

Method(s) 353.2: The native sample, matrix spike, and matrix spike duplicate (MS/MSD) associated with AD410397 were performed at the same dilution. Due to the additional level of analyte present in the spiked samples, the concentration of nitrate plus nitrite in the MS/MSD was above the instrument calibration range. The data have been reported and qualified.

Nitrate as N and Nitrate Nitrite as N failed the recovery criteria low for the MS and/or MSD of sample TMW-1\_11122015 (680-118974-9) in batch 680-410397. Refer to the QC report for details.

Samples TMW-1\_11122015 (680-118974-9)[200X] and DUP-02\_11122015 (680-118974-10)[200X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

3

4

\_

7

0

10

11

#### **Definitions/Glossary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-118974-1 SDG: ENV0000120647/R9415575

#### **Qualifiers**

#### **GC/MS VOA**

Indicates the analyte was analyzed for but not detected.

Indicates the analyte was analyzed for but not detected.

These commonly used abbreviations may or may not be present in this report.

#### **GC/MS Semi VOA**

| Qualifier | Qualifier Description                                            |
|-----------|------------------------------------------------------------------|
| U         | Indicates the analyte was analyzed for but not detected.         |
| Χ         | Surrogate is outside control limits                              |
| F1        | MS and/or MSD Recovery is outside acceptance limits.             |
| F2        | MS/MSD RPD exceeds control limits                                |
| Н         | Sample was prepped or analyzed beyond the specified holding time |
| *         | ISTD response or retention time outside acceptable limits        |
| Metals    |                                                                  |
| Qualifier | Qualifier Description                                            |

#### **General Chemistry**

| Qualifier | Qualifier Description                                    |
|-----------|----------------------------------------------------------|
| U         | Indicates the analyte was analyzed for but not detected. |
| F1        | MS and/or MSD Recovery is outside acceptance limits.     |

## Glossary Abbreviation

| ¤              | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |
|----------------|-------------------------------------------------------------------------------------------------------------|
| %R             | Percent Recovery                                                                                            |
| CFL            | Contains Free Liquid                                                                                        |
| CNF            | Contains no Free Liquid                                                                                     |
| DER            | Duplicate error ratio (normalized absolute difference)                                                      |
| Dil Fac        | Dilution Factor                                                                                             |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |
| DLC            | Decision level concentration                                                                                |
| MDA            | Minimum detectable activity                                                                                 |
| EDL            | Estimated Detection Limit                                                                                   |
| MDC            | Minimum detectable concentration                                                                            |
| MDL            | Method Detection Limit                                                                                      |
| ML             | Minimum Level (Dioxin)                                                                                      |
| NC             | Not Calculated                                                                                              |
| ND             | Not detected at the reporting limit (or MDL or EDL if shown)                                                |
| PQL            | Practical Quantitation Limit                                                                                |
| QC             | Quality Control                                                                                             |
| RER            | Relative error ratio                                                                                        |
| RL             | Reporting Limit or Requested Limit (Radiochemistry)                                                         |
| RPD            | Relative Percent Difference, a measure of the relative difference between two points                        |
| TEF            | Toxicity Equivalent Factor (Dioxin)                                                                         |
| TEQ            | Toxicity Equivalent Quotient (Dioxin)                                                                       |
|                |                                                                                                             |

#### **Sample Summary**

Matrix

Water

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

**Client Sample ID** 

EW-1\_11122015

PDMW-19P\_11122015

PDMW-10R\_11122015

PDMW-26T\_11122015

PDMW-8R\_11122015

DUP-01\_11122015

MW-3R\_11122015

TMW-1 11122015

DUP-02\_11122015

EBP\_11122015

EBJ\_11122015

FB\_11122015

TB\_11122015

TMW-4R\_11122015

Lab Sample ID

680-118974-1

680-118974-2

680-118974-3

680-118974-4

680-118974-5

680-118974-6

680-118974-7

680-118974-8

680-118974-9

680-118974-10

680-118974-11

680-118974-12

680-118974-13

680-118974-14

TestAmerica Job ID: 680-118974-1 SDG: ENV0000120647/R9415575

|   | 17113413373    | _14 0 0 0 0 1 2 0 0 - |
|---|----------------|-----------------------|
|   |                |                       |
|   | Received       | Collected             |
|   | 11/13/15 08:30 | 11/12/15 09:58        |
|   | 11/13/15 08:30 | 11/12/15 09:30        |
| , | 11/13/15 08:30 | 11/12/15 10:48        |
|   | 11/13/15 08:30 | 11/12/15 10:30        |

11/12/15 13:55 11/13/15 08:30

11/12/15 13:00 11/13/15 08:30

11/12/15 00:00 11/13/15 08:30

11/12/15 00:00 11/13/15 08:30

11/12/15 15:13 11/13/15 08:30

11/12/15 00:00 11/13/15 08:30

11/12/15 15:15 11/13/15 08:30

11/12/15 16:35 11/13/15 08:30

11/12/15 15:35 11/13/15 08:30

11/12/15 00:00 11/13/15 08:30

| 4 |   |  |
|---|---|--|
|   | - |  |
| - |   |  |
|   |   |  |
|   |   |  |

### **Method Summary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-118974-1 SDG: ENV0000120647/R9415575

| Method | Method Description                     | Protocol | Laboratory |
|--------|----------------------------------------|----------|------------|
| 8260B  | Volatile Organic Compounds (GC/MS)     | SW846    | TAL SAV    |
| 8270D  | Semivolatile Organic Compounds (GC/MS) | SW846    | TAL SAV    |
| 6010C  | Metals (ICP)                           | SW846    | TAL SAV    |
| 350.1  | Nitrogen, Ammonia                      | MCAWW    | TAL SAV    |
| 353.2  | Nitrogen, Nitrate-Nitrite              | MCAWW    | TAL SAV    |

#### **Protocol References:**

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

#### **Laboratory References:**

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

2

5

7

8

9

11

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

**Client Sample ID: EW-1\_11122015** 

TestAmerica Job ID: 680-118974-1 SDG: ENV0000120647/R9415575

Lab Sample ID: 680-118974-1

Matrix: Water

Date Collected: 11/12/15 09:58
Date Received: 11/13/15 08:30

| Method: 6010C - Metals (ICP) Analyte | Result | Qualifier | RL | MDL | Unit | D   | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|--------|-----------|----|-----|------|-----|----------------|----------------|---------|
| Arsenic                              | 20     | U         | 20 |     | ug/L | — – | 11/17/15 10:31 | 11/18/15 04:24 | 1       |
| Chromium                             | 10     | U         | 10 |     | ug/L |     | 11/17/15 10:31 | 11/18/15 04:24 | 1       |
| Lead                                 | 10     | U         | 10 |     | ug/L |     | 11/17/15 10:31 | 11/18/15 04:24 | 1       |
| Nickel                               | 60     |           | 40 |     | ug/L |     | 11/17/15 10:31 | 11/18/15 04:24 | 1       |
| Zinc                                 | 170    |           | 20 |     | ug/L |     | 11/17/15 10:31 | 11/18/15 04:24 | 1       |

| General Chemistry    | Posult | Qualifier | RL    | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
|----------------------|--------|-----------|-------|------|------|---|----------|----------------|---------|
| Ammonia              | 270    | Qualifier | 50    | WIDE | mg/L |   | riepaieu | 11/19/15 18:47 | 200     |
| Nitrate as N         | 0.050  | U         | 0.050 |      | mg/L |   |          | 11/13/15 15:43 | 1       |
| Nitrate Nitrite as N | 0.050  | U         | 0.050 |      | mg/L |   |          | 11/13/15 15:43 | 1       |
| Nitrite as N         | 0.050  | U         | 0.050 |      | mg/L |   |          | 11/13/15 15:43 | 1       |

3

4

6

8

9

10

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-118974-1 SDG: ENV0000120647/R9415575

Lab Sample ID: 680-118974-2

**Matrix: Water** 

Client Sample ID: PDMW-19P\_11122015 Date Collected: 11/12/15 09:30

| Method: 6010C - Metals (ICP) Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Arsenic                              | 20     | U         | 20 |     | ug/L |   | 11/17/15 10:31 | 11/18/15 04:28 | 1       |
| Lead                                 | 10     | U         | 10 |     | ug/L |   | 11/17/15 10:31 | 11/18/15 04:28 | 1       |
| Nickel                               | 40     | U         | 40 |     | ug/L |   | 11/17/15 10:31 | 11/18/15 04:28 | 1       |

| General Chemistry Analyte | Result Q | ualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------|----------|----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia                   | 4.9      |          | 1.3   |     | mg/L |   |          | 11/19/15 17:34 | 5       |
| Nitrate as N              | 0.050 U  | (        | 0.050 |     | mg/L |   |          | 11/13/15 15:50 | 1       |
| Nitrate Nitrite as N      | 0.050 U  | (        | 0.050 |     | mg/L |   |          | 11/13/15 15:50 | 1       |
| Nitrite as N              | 0.050 U  | (        | 0.050 |     | mg/L |   |          | 11/13/15 15:50 | 1       |

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-118974-1 SDG: ENV0000120647/R9415575

Lab Sample ID: 680-118974-3

**Matrix: Water** 

Client Sample ID: PDMW-10R 11122015 Date Collected: 11/12/15 10:48

| Method: 6010C - Metals (ICP) |        |           |    |     |      |   |                |                |         |
|------------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte                      | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                      | 20     | U         | 20 |     | ug/L |   | 11/17/15 10:31 | 11/18/15 04:33 | 1       |
| Lead                         | 10     | U         | 10 |     | ug/L |   | 11/17/15 10:31 | 11/18/15 04:33 | 1       |
| Nickel                       | 40     | U         | 40 |     | ug/L |   | 11/17/15 10:31 | 11/18/15 04:33 | 1       |
| _                            |        |           |    |     |      |   |                |                |         |

| General Chemistry<br>Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia                      | 7.9    |           | 1.3   |     | mg/L |   |          | 11/19/15 16:58 | 5       |
| Nitrate as N                 | 0.050  | U         | 0.050 |     | mg/L |   |          | 11/13/15 16:52 | 1       |
| Nitrate Nitrite as N         | 0.050  | U         | 0.050 |     | mg/L |   |          | 11/13/15 16:52 | 1       |
| Nitrite as N                 | 0.050  | U         | 0.050 |     | mg/L |   |          | 11/13/15 16:52 | 1       |

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-118974-1 SDG: ENV0000120647/R9415575

Lab Sample ID: 680-118974-4

ab Sample ID. 660-116974-4

Matrix: Water

Client Sample ID: TMW-4R\_11122015 Date Collected: 11/12/15 10:30

Date Received: 11/13/15 08:30

| Method: 6010C - Metals (ICP) |        |           |    |         |     |                |                |         |
|------------------------------|--------|-----------|----|---------|-----|----------------|----------------|---------|
| Analyte                      | Result | Qualifier | RL | MDL Uni | t D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                      | 20     | U         | 20 | ug/     |     | 11/17/15 10:31 | 11/18/15 04:37 | 1       |
| Lead                         | 10     | U         | 10 | ug/     | _   | 11/17/15 10:31 | 11/18/15 04:37 | 1       |

| General Chemistry<br>Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia                      | 3.1    |           | 0.50  |     | mg/L |   |          | 11/19/15 17:34 | 2       |
| Nitrate as N                 | 0.050  | U         | 0.050 |     | mg/L |   |          | 11/13/15 16:53 | 1       |
| Nitrate Nitrite as N         | 0.050  | U         | 0.050 |     | mg/L |   |          | 11/13/15 16:53 | 1       |
| Nitrite as N                 | 0.050  | Ü         | 0.050 |     | mg/L |   |          | 11/13/15 16:53 | 1       |

3

-

0

4.0

11

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-118974-1 SDG: ENV0000120647/R9415575

Lab Sample ID: 680-118974-5

**Matrix: Water** 

Client Sample ID: PDMW-26T 11122015 Date Collected: 11/12/15 13:55

| Method: 6010C - Metals (ICP) |        |           |    |     |      |   |                |                |         |
|------------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte                      | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                      | 20     | U         | 20 |     | ug/L |   | 11/18/15 10:36 | 11/19/15 14:51 | 1       |
| Lead                         | 10     | U         | 10 |     | ug/L |   | 11/18/15 10:36 | 11/19/15 14:51 | 1       |
| <del>-</del>                 |        |           |    |     |      |   |                |                |         |

| General Chemistry<br>Analyte | Result Q | ualifier RL | MDL Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|----------|-------------|----------|---|----------|----------------|---------|
| Ammonia                      | 600      | 100         | mg/L     |   |          | 11/20/15 09:10 | 400     |
| Nitrate as N                 | 0.050 U  | 0.050       | mg/L     |   |          | 11/13/15 15:56 | 1       |
| Nitrate Nitrite as N         | 0.050 U  | 0.050       | mg/L     |   |          | 11/13/15 15:56 | 1       |
| Nitrite as N                 | 0.050 U  | 0.050       | mg/L     |   |          | 11/13/15 15:56 | 1       |

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-118974-1 SDG: ENV0000120647/R9415575

Lab Sample ID: 680-118974-6

**Matrix: Water** 

Client Sample ID: PDMW-8R\_11122015 Date Collected: 11/12/15 13:00

| Method: 6010C - Metals (ICP) |        |           |    |     |      |   |                |                |         |
|------------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte                      | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                      | 20     | U         | 20 |     | ug/L |   | 11/17/15 10:31 | 11/18/15 04:42 | 1       |
| Lead                         | 10     | U         | 10 |     | ug/L |   | 11/17/15 10:31 | 11/18/15 04:42 | 1       |
| Nickel                       | 40     | U         | 40 |     | ug/L |   | 11/17/15 10:31 | 11/18/15 04:42 | 1       |
| <del>-</del>                 |        |           |    |     |      |   |                |                |         |

| General Chemistry<br>Analyte | Result | Qualifier | alifier RL |  | MDL Unit |  | Prepared | Analyzed       | Dil Fac |
|------------------------------|--------|-----------|------------|--|----------|--|----------|----------------|---------|
| Ammonia                      | 60     |           | 13         |  | mg/L     |  |          | 11/19/15 18:02 | 50      |
| Nitrate as N                 | 0.050  | U         | 0.050      |  | mg/L     |  |          | 11/13/15 16:50 | 1       |
| Nitrate Nitrite as N         | 0.050  | U         | 0.050      |  | mg/L     |  |          | 11/13/15 16:50 | 1       |
| Nitrite as N                 | 0.050  | U         | 0.050      |  | mg/L     |  |          | 11/13/15 16:50 | 1       |

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-118974-1 SDG: ENV0000120647/R9415575

Lab Sample ID: 680-118974-7

**Matrix: Water** 

**Client Sample ID: DUP-01\_11122015** Date Collected: 11/12/15 00:00

| Method: 6010C - Metals (ICP) |        |           |    |     |      |   |                |                |         |
|------------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte                      | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                      | 20     | U         | 20 |     | ug/L |   | 11/18/15 10:36 | 11/19/15 14:55 | 1       |
| Lead                         | 10     | U         | 10 |     | ug/L |   | 11/18/15 10:36 | 11/19/15 14:55 | 1       |
|                              |        |           |    |     |      |   |                |                |         |

| General Chemistry Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia                   | 600    |           | 100   |     | mg/L |   |          | 11/20/15 09:10 | 400     |
| Nitrate as N              | 0.050  | U         | 0.050 |     | mg/L |   |          | 11/13/15 16:01 | 1       |
| Nitrate Nitrite as N      | 0.050  | U         | 0.050 |     | mg/L |   |          | 11/13/15 16:01 | 1       |
| Nitrite as N              | 0.050  | U         | 0.050 |     | mg/L |   |          | 11/13/15 16:01 | 1       |

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

Client Sample ID: MW-3R\_11122015

TestAmerica Job ID: 680-118974-1 SDG: ENV0000120647/R9415575

Lab Sample ID: 680-118974-8

**Matrix: Water** 

Date Collected: 11/12/15 00:00 Date Received: 11/13/15 08:30

| Method: 6010C - Metals<br>Analyte | S (ICP)  Result Qualifie | er RL | MDL Unit | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------|--------------------------|-------|----------|---|----------------|----------------|---------|
| Arsenic                           | 20 U                     | 20    | ug/L     |   | 11/17/15 10:31 | 11/18/15 04:55 | 1       |
| Lead                              | 10                       | 10    | ug/L     |   | 11/17/15 10:31 | 11/18/15 04:55 | 1       |
| Nickel                            | 40 U                     | 40    | ug/L     |   | 11/17/15 10:31 | 11/18/15 04:55 | 1       |
| Zinc                              | 35                       | 20    | ug/L     |   | 11/17/15 10:31 | 11/18/15 04:55 | 1       |

| Zinc                 | 35               | 20    | ug/L     |   | 11/17/15 10:31 | 11/18/15 04:55 | 1       |
|----------------------|------------------|-------|----------|---|----------------|----------------|---------|
| General Chemistry    |                  |       |          |   |                |                |         |
| Analyte              | Result Qualifier | RL    | MDL Unit | D | Prepared       | Analyzed       | Dil Fac |
| Ammonia              | 1.7              | 0.25  | mg/L     |   |                | 11/19/15 17:20 | 1       |
| Nitrate as N         | 0.056            | 0.050 | mg/L     |   |                | 11/13/15 16:02 | 1       |
| Nitrate Nitrite as N | 0.054            | 0.050 | mg/L     |   |                | 11/13/15 16:02 | 1       |
| Nitrite as N         | 0.11             | 0.050 | mg/L     |   |                | 11/13/15 16:02 | 1       |

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

Client Sample ID: TMW-1\_11122015

TestAmerica Job ID: 680-118974-1 SDG: ENV0000120647/R9415575

Lab Sample ID: 680-118974-9

Matrix: Water

Date Collected: 11/12/15 15:13
Date Received: 11/13/15 08:30

| Analyte                      | Result    | Qualifier | RL       | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|-----|------|---|----------|----------------|---------|
| Benzene                      | 52        |           | 1.0      |     | ug/L |   |          | 11/17/15 13:20 | 1       |
| Ethylbenzene                 | 1.0       | U         | 1.0      |     | ug/L |   |          | 11/17/15 13:20 | 1       |
| Toluene                      | 1.0       | U         | 1.0      |     | ug/L |   |          | 11/17/15 13:20 | 1       |
| Xylenes, Total               | 220       |           | 1.0      |     | ug/L |   |          | 11/17/15 13:20 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits   |     |      |   | Prepared | Analyzed       | Dil Fac |
| Toluene-d8 (Surr)            | 94        |           | 70 - 130 |     |      |   |          | 11/17/15 13:20 | 1       |
| 1,2-Dichloroethane-d4 (Surr) | 94        |           | 70 - 130 |     |      |   |          | 11/17/15 13:20 | 1       |
| Dibromofluoromethane (Surr)  | 95        |           | 70 - 130 |     |      |   |          | 11/17/15 13:20 | 1       |
| 4-Bromofluorobenzene (Surr)  | 96        |           | 70 - 130 |     |      |   |          | 11/17/15 13:20 | 1       |

| Analyte                | Result    | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|-----|------|---|----------------|----------------|---------|
| Acenaphthene           | 9.5       | U         | 9.5      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:00 | 1       |
| Acenaphthylene         | 9.5       | U         | 9.5      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:00 | 1       |
| Anthracene             | 9.5       | U         | 9.5      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:00 | 1       |
| Benzo[a]anthracene     | 9.5       | U F1      | 9.5      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:00 | 1       |
| Benzo[a]pyrene         | 9.5       | U         | 9.5      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:00 | 1       |
| Benzo[b]fluoranthene   | 9.5       | U F1      | 9.5      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:00 | 1       |
| Benzo[g,h,i]perylene   | 9.5       | U F1      | 9.5      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:00 | 1       |
| Benzo[k]fluoranthene   | 9.5       | U F1      | 9.5      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:00 | 1       |
| Chrysene               | 9.5       | U F1      | 9.5      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:00 | 1       |
| Dibenz(a,h)anthracene  | 9.5       | U F1      | 9.5      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:00 | 1       |
| Fluoranthene           | 9.5       | U         | 9.5      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:00 | 1       |
| Fluorene               | 9.5       | U         | 9.5      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:00 | 1       |
| Indeno[1,2,3-cd]pyrene | 9.5       | U F2 F1   | 9.5      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:00 | 1       |
| 1-Methylnaphthalene    | 9.5       | U         | 9.5      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:00 | 1       |
| 2-Methylnaphthalene    | 9.5       | U         | 9.5      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:00 | 1       |
| Naphthalene            | 32        |           | 9.5      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:00 | 1       |
| Phenanthrene           | 9.5       | U         | 9.5      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:00 | 1       |
| Pyrene                 | 9.5       | U         | 9.5      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:00 | 1       |
| Surrogate              | %Recovery | Qualifier | Limits   |     |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl       | 28        | X         | 32 - 114 |     |      |   | 11/17/15 15:53 | 11/20/15 21:00 | 1       |
| Nitrobenzene-d5 (Surr) | 28        | X         | 30 - 117 |     |      |   | 11/17/15 15:53 | 11/20/15 21:00 | 1       |
| Terphenyl-d14 (Surr)   | 34        |           | 10 - 132 |     |      |   | 11/17/15 15:53 | 11/20/15 21:00 | 1       |

| Analyte               | Result | Qualifier | RL  | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------|--------|-----------|-----|-----|------|---|----------------|----------------|---------|
| Acenaphthene          | 9.6    | UH        | 9.6 |     | ug/L |   | 11/24/15 15:42 | 11/27/15 19:28 | 1       |
| Acenaphthylene        | 9.6    | UH        | 9.6 |     | ug/L |   | 11/24/15 15:42 | 11/27/15 19:28 | 1       |
| Anthracene            | 9.6    | UH        | 9.6 |     | ug/L |   | 11/24/15 15:42 | 11/27/15 19:28 | 1       |
| Benzo[a]anthracene    | 9.6    | UН        | 9.6 |     | ug/L |   | 11/24/15 15:42 | 11/27/15 19:28 | 1       |
| Benzo[a]pyrene        | 9.6    | UH        | 9.6 |     | ug/L |   | 11/24/15 15:42 | 11/27/15 19:28 | 1       |
| Benzo[b]fluoranthene  | 9.6    | U H F1    | 9.6 |     | ug/L |   | 11/24/15 15:42 | 11/27/15 19:28 | 1       |
| Benzo[g,h,i]perylene  | 9.6    | UН        | 9.6 |     | ug/L |   | 11/24/15 15:42 | 11/27/15 19:28 | 1       |
| Benzo[k]fluoranthene  | 9.6    | U H F1    | 9.6 |     | ug/L |   | 11/24/15 15:42 | 11/27/15 19:28 | 1       |
| Chrysene              | 9.6    | U H F1    | 9.6 |     | ug/L |   | 11/24/15 15:42 | 11/27/15 19:28 | 1       |
| Dibenz(a,h)anthracene | 9.6    | UHF1      | 9.6 |     | ug/L |   | 11/24/15 15:42 | 11/27/15 19:28 | 1       |
| Fluoranthene          | 9.6    | U H       | 9.6 |     | ug/L |   | 11/24/15 15:42 | 11/27/15 19:28 | 1       |

TestAmerica Savannah

11/30/2015

Page 15 of 46

2

4

6

8

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-118974-1 SDG: ENV0000120647/R9415575

Client Sample ID: TMW-1\_11122015 Lab Sample ID: 680-118974-9

**Matrix: Water** 

Date Collected: 11/12/15 15:13 Date Received: 11/13/15 08:30

| Analyte                      | Result    | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|-----|------|---|----------------|----------------|---------|
| Fluorene                     | 9.6       | UH        | 9.6      |     | ug/L |   | 11/24/15 15:42 | 11/27/15 19:28 | 1       |
| Indeno[1,2,3-cd]pyrene       | 9.6       | UH        | 9.6      |     | ug/L |   | 11/24/15 15:42 | 11/27/15 19:28 | 1       |
| 1-Methylnaphthalene          | 9.6       | UH        | 9.6      |     | ug/L |   | 11/24/15 15:42 | 11/27/15 19:28 | 1       |
| 2-Methylnaphthalene          | 9.6       | UH        | 9.6      |     | ug/L |   | 11/24/15 15:42 | 11/27/15 19:28 | 1       |
| Naphthalene                  | 26        | H F1      | 9.6      |     | ug/L |   | 11/24/15 15:42 | 11/27/15 19:28 | 1       |
| Phenanthrene                 | 9.6       | UH        | 9.6      |     | ug/L |   | 11/24/15 15:42 | 11/27/15 19:28 | 1       |
| Pyrene                       | 9.6       | UH        | 9.6      |     | ug/L |   | 11/24/15 15:42 | 11/27/15 19:28 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits   |     |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl             | 17        | X         | 32 - 114 |     |      |   | 11/24/15 15:42 | 11/27/15 19:28 | 1       |
| Nitrobenzene-d5 (Surr)       | 20        | X         | 30 - 117 |     |      |   | 11/24/15 15:42 | 11/27/15 19:28 | 1       |
| Terphenyl-d14 (Surr)         | 10        |           | 10 - 132 |     |      |   | 11/24/15 15:42 | 11/27/15 19:28 | 1       |
| Method: 6010C - Metals (ICP) |           |           |          |     |      |   |                |                |         |
| Analyte                      | Result    | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                      | 150       |           | 20       |     | ug/L |   | 11/18/15 10:36 | 11/19/15 14:40 | 1       |
| Chromium                     | 29        |           | 10       |     | ug/L |   | 11/18/15 10:36 | 11/19/15 14:40 | 1       |
| Lead                         | 10        | U         | 10       |     | ug/L |   | 11/18/15 10:36 | 11/19/15 14:40 | 1       |
| Nickel                       | 40        | U         | 40       |     | ug/L |   | 11/18/15 10:36 | 11/19/15 14:40 | 1       |
|                              |           |           |          |     |      |   |                |                |         |

| General Chemistry Analyte | Result | Qualifier | RL   | MDL | Unit | D           | Prepared | Analyzed       | Dil Fac |
|---------------------------|--------|-----------|------|-----|------|-------------|----------|----------------|---------|
| Ammonia                   | 3600   | F1        | 1300 |     | mg/L | <del></del> |          | 11/20/15 09:25 | 5000    |
| Nitrate as N              | 250    | F1        | 10   |     | mg/L |             |          | 11/13/15 15:37 | 200     |
| Nitrate Nitrite as N      | 250    | F1        | 10   |     | mg/L |             |          | 11/13/15 15:37 | 200     |
| Nitrite as N              | 10     | Ü         | 10   |     | mg/L |             |          | 11/13/15 15:37 | 200     |

11/30/2015

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

**Client Sample ID: DUP-02\_11122015** 

Date Collected: 11/12/15 00:00

Date Received: 11/13/15 08:30

TestAmerica Job ID: 680-118974-1 SDG: ENV0000120647/R9415575

Lab Sample ID: 680-118974-10

**Matrix: Water** 

| Analyte                      | Result    | Qualifier | RL       | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|-----|------|---|----------|----------------|---------|
| Benzene                      | 51        |           | 1.0      |     | ug/L |   |          | 11/17/15 15:27 | 1       |
| Ethylbenzene                 | 1.0       | U         | 1.0      |     | ug/L |   |          | 11/17/15 15:27 | 1       |
| Toluene                      | 1.0       | U         | 1.0      |     | ug/L |   |          | 11/17/15 15:27 | 1       |
| Xylenes, Total               | 220       |           | 1.0      |     | ug/L |   |          | 11/17/15 15:27 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits   |     |      |   | Prepared | Analyzed       | Dil Fac |
| Toluene-d8 (Surr)            | 93        |           | 70 - 130 |     |      | - |          | 11/17/15 15:27 |         |
| 1,2-Dichloroethane-d4 (Surr) | 92        |           | 70 - 130 |     |      |   |          | 11/17/15 15:27 | 1       |
| Dibromofluoromethane (Surr)  | 92        |           | 70 - 130 |     |      |   |          | 11/17/15 15:27 | 1       |
| 4-Bromofluorobenzene (Surr)  | 95        |           | 70 - 130 |     |      |   |          | 11/17/15 15:27 |         |

| Analyte                | Result    | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|-----|------|---|----------------|----------------|---------|
| Acenaphthene           | 9.7       | U         | 9.7      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:25 | 1       |
| Acenaphthylene         | 9.7       | U         | 9.7      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:25 | 1       |
| Anthracene             | 9.7       | U         | 9.7      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:25 | 1       |
| Benzo[a]anthracene     | 9.7       | U         | 9.7      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:25 | 1       |
| Benzo[a]pyrene         | 9.7       | U         | 9.7      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:25 | 1       |
| Benzo[b]fluoranthene   | 9.7       | U         | 9.7      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:25 | 1       |
| Benzo[g,h,i]perylene   | 9.7       | U         | 9.7      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:25 | 1       |
| Benzo[k]fluoranthene   | 9.7       | U         | 9.7      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:25 | 1       |
| Chrysene               | 9.7       | U         | 9.7      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:25 | 1       |
| Dibenz(a,h)anthracene  | 9.7       | U         | 9.7      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:25 | 1       |
| Fluoranthene           | 9.7       | U         | 9.7      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:25 | 1       |
| Fluorene               | 9.7       | U         | 9.7      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:25 | 1       |
| Indeno[1,2,3-cd]pyrene | 9.7       | U         | 9.7      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:25 | 1       |
| 1-Methylnaphthalene    | 11        |           | 9.7      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:25 | 1       |
| 2-Methylnaphthalene    | 13        |           | 9.7      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:25 | 1       |
| Naphthalene            | 63        |           | 9.7      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:25 | 1       |
| Phenanthrene           | 9.7       | U         | 9.7      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:25 | 1       |
| Pyrene                 | 9.7       | U         | 9.7      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:25 | 1       |
| Surrogate              | %Recovery | Qualifier | Limits   |     |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl       | 48        |           | 32 - 114 |     |      |   | 11/17/15 15:53 | 11/20/15 21:25 | 1       |
| Nitrobenzene-d5 (Surr) | 57        |           | 30 - 117 |     |      |   | 11/17/15 15:53 | 11/20/15 21:25 | 1       |
| Terphenyl-d14 (Surr)   | 35        |           | 10 - 132 |     |      |   | 11/17/15 15:53 | 11/20/15 21:25 | 1       |

| Method: 6010C - Metals (ICP) Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Arsenic                              | 120    |           | 20 |     | ug/L |   | 11/18/15 10:36 | 11/19/15 14:58 | 1       |
| Chromium                             | 23     |           | 10 |     | ug/L |   | 11/18/15 10:36 | 11/19/15 14:58 | 1       |
| Lead                                 | 10     | U         | 10 |     | ug/L |   | 11/18/15 10:36 | 11/19/15 14:58 | 1       |
| Nickel                               | 40     | Ü         | 40 |     | ug/L |   | 11/18/15 10:36 | 11/19/15 14:58 | 1       |
| Zinc                                 | 63     |           | 20 |     | ug/L |   | 11/18/15 10:36 | 11/19/15 14:58 | 1       |

| General Chemistry<br>Analyte | Result | Qualifier | RL   | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|--------|-----------|------|-----|------|---|----------|----------------|---------|
| Ammonia                      | 3400   |           | 1300 |     | mg/L |   |          | 11/20/15 09:25 | 5000    |
| Nitrate as N                 | 230    |           | 10   |     | mg/L |   |          | 11/13/15 15:41 | 200     |
| Nitrate Nitrite as N         | 230    |           | 10   |     | mg/L |   |          | 11/13/15 15:41 | 200     |

TestAmerica Savannah

Page 17 of 46

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-118974-1 SDG: ENV0000120647/R9415575

Client Sample ID: DUP-02\_11122015

Lab Sample ID: 680-118974-10

Matrix: Water

Date Collected: 11/12/15 00:00 Date Received: 11/13/15 08:30

| <b>General Chemistry (Continued</b> | d)     |           |    |     |      |   |          |                |         |
|-------------------------------------|--------|-----------|----|-----|------|---|----------|----------------|---------|
| Analyte                             | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Nitrite as N                        | 10     | U         | 10 |     | mg/L |   |          | 11/13/15 15:41 | 200     |

4

5

6

8

40

11

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

Client Sample ID: EBP\_11122015

TestAmerica Job ID: 680-118974-1 SDG: ENV0000120647/R9415575

Lab Sample ID: 680-118974-11

**Matrix: Water** 

11/13/15 16:03

11/13/15 16:03

11/13/15 16:03

Date Collected: 11/12/15 15:15 Date Received: 11/13/15 08:30

Nitrate as N

Nitrite as N

Nitrate Nitrite as N

| Method: 6010C - Metals (ICF Analyte | •      | Qualifier | RL   | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|-------------------------------------|--------|-----------|------|-----|------|---|----------------|----------------|---------|
| Arsenic                             |        | U -       | 20   |     | ug/L |   | 11/17/15 10:31 | 11/18/15 05:00 | 1       |
| Lead                                | 10     | U         | 10   |     | ug/L |   | 11/17/15 10:31 | 11/18/15 05:00 | 1       |
| Nickel                              | 40     | U         | 40   |     | ug/L |   | 11/17/15 10:31 | 11/18/15 05:00 | 1       |
| Zinc<br>_                           | 20     | Ü         | 20   |     | ug/L |   | 11/17/15 10:31 | 11/18/15 05:00 | 1       |
| General Chemistry                   |        |           |      |     |      |   |                |                |         |
| Analyte                             | Result | Qualifier | RL   | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Ammonia                             | 0.25   | U -       | 0.25 |     | mg/L |   |                | 11/19/15 16:38 | 1       |

0.050

0.050

0.050

0.16

0.16

0.050 U

mg/L

mg/L

mg/L

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

Client Sample ID: EBJ\_11122015

TestAmerica Job ID: 680-118974-1 SDG: ENV0000120647/R9415575

Lab Sample ID: 680-118974-12

. Matrix: Water

Date Collected: 11/12/15 16:35 Date Received: 11/13/15 08:30

| Analyte                      | Result    | Qualifier | RL       | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|-----|------|---|----------|----------------|---------|
| Benzene                      | 1.0       | U         | 1.0      |     | ug/L |   |          | 11/17/15 11:35 | 1       |
| Ethylbenzene                 | 1.0       | U         | 1.0      |     | ug/L |   |          | 11/17/15 11:35 | 1       |
| Toluene                      | 1.0       | U         | 1.0      |     | ug/L |   |          | 11/17/15 11:35 | 1       |
| Xylenes, Total               | 1.0       | U         | 1.0      |     | ug/L |   |          | 11/17/15 11:35 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits   |     |      |   | Prepared | Analyzed       | Dil Fac |
| Toluene-d8 (Surr)            | 94        |           | 70 - 130 |     |      |   |          | 11/17/15 11:35 | 1       |
| 1,2-Dichloroethane-d4 (Surr) | 94        |           | 70 - 130 |     |      |   |          | 11/17/15 11:35 | 1       |
| Dibromofluoromethane (Surr)  | 95        |           | 70 - 130 |     |      |   |          | 11/17/15 11:35 | 1       |
| 4-Bromofluorobenzene (Surr)  | 94        |           | 70 - 130 |     |      |   |          | 11/17/15 11:35 | 1       |

| Analyte                | Result    | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|-----|------|---|----------------|----------------|---------|
| Acenaphthene           | 9.6       | U         | 9.6      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:50 | 1       |
| Acenaphthylene         | 9.6       | U         | 9.6      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:50 | 1       |
| Anthracene             | 9.6       | U         | 9.6      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:50 | 1       |
| Benzo[a]anthracene     | 9.6       | U         | 9.6      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:50 | 1       |
| Benzo[a]pyrene         | 9.6       | U         | 9.6      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:50 | 1       |
| Benzo[b]fluoranthene   | 9.6       | U         | 9.6      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:50 | 1       |
| Benzo[g,h,i]perylene   | 9.6       | U         | 9.6      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:50 | 1       |
| Benzo[k]fluoranthene   | 9.6       | U         | 9.6      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:50 | 1       |
| Chrysene               | 9.6       | U         | 9.6      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:50 | 1       |
| Dibenz(a,h)anthracene  | 9.6       | U         | 9.6      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:50 | 1       |
| Fluoranthene           | 9.6       | U         | 9.6      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:50 | 1       |
| Fluorene               | 9.6       | U         | 9.6      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:50 | 1       |
| Indeno[1,2,3-cd]pyrene | 9.6       | U         | 9.6      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:50 | 1       |
| 1-Methylnaphthalene    | 9.6       | U         | 9.6      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:50 | 1       |
| 2-Methylnaphthalene    | 9.6       | U         | 9.6      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:50 | 1       |
| Naphthalene            | 9.6       | U         | 9.6      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:50 | 1       |
| Phenanthrene           | 9.6       | U         | 9.6      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:50 | 1       |
| Pyrene                 | 9.6       | U         | 9.6      |     | ug/L |   | 11/17/15 15:53 | 11/20/15 21:50 | 1       |
| Surrogate              | %Recovery | Qualifier | Limits   |     |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl       | 43        |           | 32 - 114 |     |      |   | 11/17/15 15:53 | 11/20/15 21:50 | 1       |
| Nitrobenzene-d5 (Surr) | 48        |           | 30 - 117 |     |      |   | 11/17/15 15:53 | 11/20/15 21:50 | 1       |
| Terphenyl-d14 (Surr)   | 56        |           | 10 - 132 |     |      |   | 11/17/15 15:53 | 11/20/15 21:50 | 1       |

| Analyte  | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|----------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Arsenic  | 20     | U         | 20 |     | ug/L |   | 11/17/15 10:31 | 11/18/15 05:04 | 1       |
| Chromium | 10     | U         | 10 |     | ug/L |   | 11/17/15 10:31 | 11/18/15 05:04 | 1       |
| Lead     | 10     | U         | 10 |     | ug/L |   | 11/17/15 10:31 | 11/18/15 05:04 | 1       |
| Nickel   | 40     | U         | 40 |     | ug/L |   | 11/17/15 10:31 | 11/18/15 05:04 | 1       |
| Zinc     | 20     | U         | 20 |     | ug/L |   | 11/17/15 10:31 | 11/18/15 05:04 | 1       |

| General Chemistry Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia                   | 0.25   | U         | 0.25  |     | mg/L |   |          | 11/19/15 16:38 | 1       |
| Nitrate as N              | 0.050  | U         | 0.050 |     | mg/L |   |          | 11/13/15 16:05 | 1       |
| Nitrate Nitrite as N      | 0.050  | U         | 0.050 |     | mg/L |   |          | 11/13/15 16:05 | 1       |

TestAmerica Savannah

Page 20 of 46

2

3

5

6

8

10

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-118974-1 SDG: ENV0000120647/R9415575

Client Sample ID: EBJ\_11122015

Lab Sample ID: 680-118974-12

Matrix: Water

Date Collected: 11/12/15 16:35 Date Received: 11/13/15 08:30

| General Chemistry | (Continued) |
|-------------------|-------------|
| Analyta           |             |

| Analyte      | Result Qualifier | RL    | MDL Unit | D | Prepared | Analyzed       | Dil Fac |
|--------------|------------------|-------|----------|---|----------|----------------|---------|
| Nitrite as N | 0.050 U          | 0.050 | mg/L     |   |          | 11/13/15 16:05 |         |

Ė

5

0

9

11

4.6

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-118974-1 SDG: ENV0000120647/R9415575

Lab Sample ID: 680-118974-13

Matrix: Water

Date Collected: 11/12/15 15:35
Date Received: 11/13/15 08:30

Client Sample ID: FB\_11122015

| Analyte                      | Result    | Qualifier | RL       | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|-----|------|---|----------|----------------|---------|
| Benzene                      | 1.0       | U         | 1.0      |     | ug/L |   |          | 11/17/15 11:56 | 1       |
| Ethylbenzene                 | 1.0       | U         | 1.0      |     | ug/L |   |          | 11/17/15 11:56 | 1       |
| Toluene                      | 1.0       | U         | 1.0      |     | ug/L |   |          | 11/17/15 11:56 | 1       |
| Xylenes, Total               | 1.0       | U         | 1.0      |     | ug/L |   |          | 11/17/15 11:56 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits   |     |      |   | Prepared | Analyzed       | Dil Fac |
| Toluene-d8 (Surr)            | 94        |           | 70 - 130 |     |      | - |          | 11/17/15 11:56 | 1       |
| 1,2-Dichloroethane-d4 (Surr) | 95        |           | 70 - 130 |     |      |   |          | 11/17/15 11:56 | 1       |
| Dibromofluoromethane (Surr)  | 96        |           | 70 - 130 |     |      |   |          | 11/17/15 11:56 | 1       |
| 4-Bromofluorobenzene (Surr)  | 94        |           | 70 - 130 |     |      |   |          | 11/17/15 11:56 | 1       |

| Analyte                | Result    | Qualifier | RL       | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|-----|------|---|----------------|----------------|---------|
| Acenaphthene           | 9.6       | Ū         | 9.6      |     | ug/L |   | 11/17/15 15:53 | 11/26/15 02:09 | 1       |
| Acenaphthylene         | 9.6       | U         | 9.6      |     | ug/L |   | 11/17/15 15:53 | 11/26/15 02:09 | 1       |
| Anthracene             | 9.6       | U         | 9.6      |     | ug/L |   | 11/17/15 15:53 | 11/26/15 02:09 | 1       |
| Benzo[a]anthracene     | 9.6       | U         | 9.6      |     | ug/L |   | 11/17/15 15:53 | 11/26/15 02:09 | 1       |
| Benzo[a]pyrene         | 9.6       | U         | 9.6      |     | ug/L |   | 11/17/15 15:53 | 11/26/15 02:09 | 1       |
| Benzo[b]fluoranthene   | 9.6       | U         | 9.6      |     | ug/L |   | 11/17/15 15:53 | 11/26/15 02:09 | 1       |
| Benzo[g,h,i]perylene   | 9.6       | U         | 9.6      |     | ug/L |   | 11/17/15 15:53 | 11/26/15 02:09 | 1       |
| Benzo[k]fluoranthene   | 9.6       | U         | 9.6      |     | ug/L |   | 11/17/15 15:53 | 11/26/15 02:09 | 1       |
| Chrysene               | 9.6       | U         | 9.6      |     | ug/L |   | 11/17/15 15:53 | 11/26/15 02:09 | 1       |
| Dibenz(a,h)anthracene  | 9.6       | U         | 9.6      |     | ug/L |   | 11/17/15 15:53 | 11/26/15 02:09 | 1       |
| Fluoranthene           | 9.6       | U         | 9.6      |     | ug/L |   | 11/17/15 15:53 | 11/26/15 02:09 | 1       |
| Fluorene               | 9.6       | U         | 9.6      |     | ug/L |   | 11/17/15 15:53 | 11/26/15 02:09 | 1       |
| Indeno[1,2,3-cd]pyrene | 9.6       | U         | 9.6      |     | ug/L |   | 11/17/15 15:53 | 11/26/15 02:09 | 1       |
| 1-Methylnaphthalene    | 9.6       | U         | 9.6      |     | ug/L |   | 11/17/15 15:53 | 11/26/15 02:09 | 1       |
| 2-Methylnaphthalene    | 9.6       | U         | 9.6      |     | ug/L |   | 11/17/15 15:53 | 11/26/15 02:09 | 1       |
| Naphthalene            | 9.6       | U         | 9.6      |     | ug/L |   | 11/17/15 15:53 | 11/26/15 02:09 | 1       |
| Phenanthrene           | 9.6       | U         | 9.6      |     | ug/L |   | 11/17/15 15:53 | 11/26/15 02:09 | 1       |
| Pyrene                 | 9.6       | U         | 9.6      |     | ug/L |   | 11/17/15 15:53 | 11/26/15 02:09 | 1       |
| Surrogate              | %Recovery | Qualifier | Limits   |     |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl       | 101       |           | 32 - 114 |     |      |   | 11/17/15 15:53 | 11/26/15 02:09 | 1       |
| Nitrobenzene-d5 (Surr) | 94        |           | 30 - 117 |     |      |   | 11/17/15 15:53 | 11/26/15 02:09 | 1       |
| Terphenyl-d14 (Surr)   | 114       |           | 10 - 132 |     |      |   | 11/17/15 15:53 | 11/26/15 02:09 | 1       |

| Method: 6010C - Metals ( | •      | 0 110     |    |     |      | _ |                |                |         |
|--------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte                  | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                  | 20     | U         | 20 |     | ug/L |   | 11/17/15 10:31 | 11/18/15 05:09 | 1       |
| Chromium                 | 10     | U         | 10 |     | ug/L |   | 11/17/15 10:31 | 11/18/15 05:09 | 1       |
| Lead                     | 10     | U         | 10 |     | ug/L |   | 11/17/15 10:31 | 11/18/15 05:09 | 1       |
| Nickel                   | 40     | U         | 40 |     | ug/L |   | 11/17/15 10:31 | 11/18/15 05:09 | 1       |
| Zinc                     | 20     | U         | 20 |     | ug/L |   | 11/17/15 10:31 | 11/18/15 05:09 | 1       |
|                          |        |           |    |     |      |   |                |                |         |

| General Chemistry Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------|--------|-----------|-------|-----|------|---|----------|----------------|---------|
| Ammonia                   | 0.25   | U         | 0.25  |     | mg/L |   |          | 11/19/15 16:38 | 1       |
| Nitrate as N              | 0.050  | U         | 0.050 |     | mg/L |   |          | 11/13/15 16:06 | 1       |
| Nitrate Nitrite as N      | 0.050  | U         | 0.050 |     | mg/L |   |          | 11/13/15 16:06 | 1       |

TestAmerica Savannah

Page 22 of 46

2

3

5

7

0

10

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-118974-1 SDG: ENV0000120647/R9415575

Client Sample ID: FB\_11122015

Lab Sample ID: 680-118974-13

**Matrix: Water** 

Date Collected: 11/12/15 15:35 Date Received: 11/13/15 08:30

| Analyte      | Result Qualifier | RL    | MDL Unit | D | Prepared | Analyzed       | Dil Fac |
|--------------|------------------|-------|----------|---|----------|----------------|---------|
| Nitrite as N | 0.050 U          | 0.050 | mg/L     |   |          | 11/13/15 16:06 |         |

3

5

7

8

11

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-118974-1 SDG: ENV0000120647/R9415575

Lab Sample ID: 680-118974-14

**Matrix: Water** 

Client Sample ID: TB\_11122015

Date Collected: 11/12/15 00:00 Date Received: 11/13/15 08:30

| Method: 8260B - Volatile O   | rganic Compo | unds (GC/ | MS)      |          |   |          |                |         |
|------------------------------|--------------|-----------|----------|----------|---|----------|----------------|---------|
| Analyte                      | •            | Qualifier | RL       | MDL Unit | D | Prepared | Analyzed       | Dil Fac |
| Benzene                      | 1.0          | U         | 1.0      | ug/L     |   |          | 11/17/15 12:17 | 1       |
| Ethylbenzene                 | 1.0          | U         | 1.0      | ug/L     |   |          | 11/17/15 12:17 | 1       |
| Toluene                      | 1.0          | U         | 1.0      | ug/L     |   |          | 11/17/15 12:17 | 1       |
| Xylenes, Total               | 1.0          | U         | 1.0      | ug/L     |   |          | 11/17/15 12:17 | 1       |
| Surrogate                    | %Recovery    | Qualifier | Limits   |          |   | Prepared | Analyzed       | Dil Fac |
| Toluene-d8 (Surr)            | 93           |           | 70 - 130 |          |   |          | 11/17/15 12:17 | 1       |
| 1,2-Dichloroethane-d4 (Surr) | 95           |           | 70 - 130 |          |   |          | 11/17/15 12:17 | 1       |
| Dibromofluoromethane (Surr)  | 96           |           | 70 - 130 |          |   |          | 11/17/15 12:17 | 1       |
| 4-Bromofluorobenzene (Surr)  | 93           |           | 70 - 130 |          |   |          | 11/17/15 12:17 | 1       |

8

9

10

TestAmerica Job ID: 680-118974-1 SDG: ENV0000120647/R9415575

#### Method: 8260B - Volatile Organic Compounds (GC/MS)

MB MB

1.0 U

1.0 U

1.0 U

1.0 U

Result Qualifier

Lab Sample ID: MB 680-410671/11

**Matrix: Water** 

Analyte

Benzene

Toluene

Ethylbenzene

Xylenes, Total

**Analysis Batch: 410671** 

**Client Sample ID: Method Blank** Prep Type: Total/NA

11/17/15 11:14

11/17/15 11:14

11/17/15 11:14

**MDL** Unit D Prepared Analyzed Dil Fac 11/17/15 11:14 ug/L

MB MB Surrogate Qualifier Limits Dil Fac %Recovery Prepared Analyzed 70 - 130 11/17/15 11:14 Toluene-d8 (Surr) 94 96 70 - 130 1,2-Dichloroethane-d4 (Surr) 11/17/15 11:14 Dibromofluoromethane (Surr) 98 70 - 130 11/17/15 11:14 4-Bromofluorobenzene (Surr) 94 70 - 130 11/17/15 11:14

RL

1.0

1.0

1.0

1.0

ug/L

ug/L

ug/L

Lab Sample ID: LCS 680-410671/5

**Matrix: Water** 

**Analysis Batch: 410671** 

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA

|                | Spike | LCS    | LCS       |      |   |      | %Rec.    |  |
|----------------|-------|--------|-----------|------|---|------|----------|--|
| Analyte        | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Benzene        | 50.0  | 48.2   |           | ug/L |   | 96   | 73 - 131 |  |
| Ethylbenzene   | 50.0  | 48.0   |           | ug/L |   | 96   | 80 - 120 |  |
| Toluene        | 50.0  | 48.8   |           | ug/L |   | 98   | 80 - 122 |  |
| Xylenes, Total | 100   | 96.7   |           | ug/L |   | 97   | 80 - 120 |  |

LCS LCS Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 70 - 130 94 1,2-Dichloroethane-d4 (Surr) 98 70 - 130 Dibromofluoromethane (Surr) 98 70 - 130 70 - 130 4-Bromofluorobenzene (Surr) 98

Lab Sample ID: LCSD 680-410671/6

**Matrix: Water** 

**Analysis Batch: 410671** 

**Client Sample ID: Lab Control Sample Dup** Prep Type: Total/NA

|                | Spike | LCSD LCSD        |      |        | %Rec.    |     | RPD   |
|----------------|-------|------------------|------|--------|----------|-----|-------|
| Analyte        | Added | Result Qualifier | Unit | D %Rec | Limits   | RPD | Limit |
| Benzene        | 50.0  | 48.5             | ug/L | 97     | 73 - 131 | 1   | 30    |
| Ethylbenzene   | 50.0  | 48.2             | ug/L | 96     | 80 - 120 | 0   | 20    |
| Toluene        | 50.0  | 48.5             | ug/L | 97     | 80 - 122 | 1   | 20    |
| Xylenes, Total | 100   | 97.8             | ug/L | 98     | 80 - 120 | 1   | 20    |

|                              | LCSD      | LCSD      |          |
|------------------------------|-----------|-----------|----------|
| Surrogate                    | %Recovery | Qualifier | Limits   |
| Toluene-d8 (Surr)            | 93        |           | 70 - 130 |
| 1,2-Dichloroethane-d4 (Surr) | 101       |           | 70 - 130 |
| Dibromofluoromethane (Surr)  | 101       |           | 70 - 130 |
| 4-Bromofluorobenzene (Surr)  | 99        |           | 70 - 130 |

TestAmerica Job ID: 680-118974-1 SDG: ENV0000120647/R9415575

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 680-118974-9 MS

Client: AMEC Foster Wheeler E & I, Inc

Project/Site: CSX GA, Hutchinson Island, VRP

**Matrix: Water** 

**Analysis Batch: 410671** 

Client Sample ID: TMW-1\_11122015 **Prep Type: Total/NA** 

%Rec

| Sample | Sample            | Spike          | MS                                                                                                                                         | MS                                                                                                                                                                                              |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                              | %Rec.                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------|-------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Result | Qualifier         | Added          | Result                                                                                                                                     | Qualifier                                                                                                                                                                                       | Unit                                                                                                                                                                                                              | D                                                                                                                                                                                                                                                                     | %Rec                                                                                                                                                                                                                                                                                         | Limits                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                   |
| 52     |                   | 50.0           | 104                                                                                                                                        |                                                                                                                                                                                                 | ug/L                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                       | 104                                                                                                                                                                                                                                                                                          | 73 - 131                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.0    | U                 | 50.0           | 50.2                                                                                                                                       |                                                                                                                                                                                                 | ug/L                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                       | 100                                                                                                                                                                                                                                                                                          | 80 - 120                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.0    | U                 | 50.0           | 49.9                                                                                                                                       |                                                                                                                                                                                                 | ug/L                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                       | 99                                                                                                                                                                                                                                                                                           | 80 - 122                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                   |
| 220    |                   | 100            | 316                                                                                                                                        |                                                                                                                                                                                                 | ug/L                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                       | 101                                                                                                                                                                                                                                                                                          | 80 - 120                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                   |
|        | Result 52 1.0 1.0 | 1.0 U<br>1.0 U | Result         Qualifier         Added           52         50.0           1.0         U         50.0           1.0         U         50.0 | Result         Qualifier         Added         Result           52         50.0         104           1.0         U         50.0         50.2           1.0         U         50.0         49.9 | Result         Qualifier         Added         Result         Qualifier           52         50.0         104           1.0         U         50.0         50.2           1.0         U         50.0         49.9 | Result         Qualifier         Added         Result         Qualifier         Unit           52         50.0         104         ug/L           1.0         U         50.0         50.2         ug/L           1.0         U         50.0         49.9         ug/L | Result         Qualifier         Added         Result         Qualifier         Unit         D           52         50.0         104         ug/L         ug/L           1.0         U         50.0         50.2         ug/L           1.0         U         50.0         49.9         ug/L | Result         Qualifier         Added         Result         Qualifier         Unit         D         %Rec           52         50.0         104         ug/L         104           1.0         U         50.0         50.2         ug/L         100           1.0         U         50.0         49.9         ug/L         99 | Result         Qualifier         Added         Result         Qualifier         Unit         D         %Rec         Limits           52         50.0         104         ug/L         104         73 - 131           1.0         U         50.0         50.2         ug/L         100         80 - 120           1.0         U         50.0         49.9         ug/L         99         80 - 122 |

|                              | MS        | MS        |          |
|------------------------------|-----------|-----------|----------|
| Surrogate                    | %Recovery | Qualifier | Limits   |
| Toluene-d8 (Surr)            | 95        |           | 70 - 130 |
| 1,2-Dichloroethane-d4 (Surr) | 96        |           | 70 - 130 |
| Dibromofluoromethane (Surr)  | 98        |           | 70 - 130 |
| 4-Bromofluorobenzene (Surr)  | 98        |           | 70 - 130 |

Lab Sample ID: 680-118974-9 MSD

**Matrix: Water** 

**Analysis Batch: 410671** 

Client Sample ID: TMW-1\_11122015 **Prep Type: Total/NA** 

|                | Sample | Sample    | Spike | MSD    | MSD       |      |   |      | %Rec.    |     | RPD   |
|----------------|--------|-----------|-------|--------|-----------|------|---|------|----------|-----|-------|
| Analyte        | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   | RPD | Limit |
| Benzene        | 52     |           | 50.0  | 103    |           | ug/L |   | 102  | 73 - 131 | 1   | 30    |
| Ethylbenzene   | 1.0    | U         | 50.0  | 49.3   |           | ug/L |   | 98   | 80 - 120 | 2   | 20    |
| Toluene        | 1.0    | U         | 50.0  | 49.5   |           | ug/L |   | 98   | 80 - 122 | 1   | 20    |
| Xylenes, Total | 220    |           | 100   | 311    |           | ug/L |   | 96   | 80 - 120 | 2   | 20    |

|                              | MSD       | MSD       |          |
|------------------------------|-----------|-----------|----------|
| Surrogate                    | %Recovery | Qualifier | Limits   |
| Toluene-d8 (Surr)            | 94        |           | 70 - 130 |
| 1,2-Dichloroethane-d4 (Surr) | 98        |           | 70 - 130 |
| Dibromofluoromethane (Surr)  | 96        |           | 70 - 130 |
| 4-Bromofluorobenzene (Surr)  | 96        |           | 70 - 130 |

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-410700/7-A

**Matrix: Water** 

**Analysis Batch: 411357** 

**Client Sample ID: Method Blank** Prep Type: Total/NA **Prep Batch: 410700** 

| MB     | MB                                            |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------|-----------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Result | Qualifier                                     | RL                                                            | MDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Prepared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Dil Fac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 10     | U                                             | 10                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11/17/15 15:53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11/20/15 18:09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10     | U                                             | 10                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11/17/15 15:53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11/20/15 18:09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10     | U                                             | 10                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11/17/15 15:53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11/20/15 18:09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10     | U                                             | 10                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11/17/15 15:53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11/20/15 18:09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10     | U                                             | 10                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11/17/15 15:53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11/20/15 18:09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10     | U                                             | 10                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11/17/15 15:53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11/20/15 18:09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10     | U                                             | 10                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11/17/15 15:53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11/20/15 18:09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10     | U                                             | 10                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11/17/15 15:53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11/20/15 18:09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10     | U                                             | 10                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11/17/15 15:53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11/20/15 18:09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10     | U                                             | 10                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11/17/15 15:53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11/20/15 18:09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10     | U                                             | 10                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11/17/15 15:53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11/20/15 18:09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10     | U                                             | 10                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11/17/15 15:53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11/20/15 18:09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10     | U                                             | 10                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11/17/15 15:53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11/20/15 18:09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        | Result 10 10 10 10 10 10 10 10 10 10 10 10 10 | MB MB Result Qualifier  10 U 10 | Result         Qualifier         RL           10         U         10           10         U         10 | Result         Qualifier         RL         MDL           10         U         10           10         U         10 | Result         Qualifier         RL         MDL         Unit           10         U         10         ug/L           10         U         10         ug/L | Result         Qualifier         RL         MDL         Unit         D           10         U         10         ug/L         ug/L           10         U         10         ug/L         ug/L | Result         Qualifier         RL         MDL         Unit         D         Prepared           10         U         10         ug/L         11/17/15 15:53           10         U         10         ug/L         11/17/15 15:53 | Result         Qualifier         RL         MDL         Unit         D         Prepared         Analyzed           10         U         10         ug/L         11/17/15 15:53         11/20/15 18:09           10 |

TestAmerica Savannah

Page 26 of 46

TestAmerica Job ID: 680-118974-1 SDG: ENV0000120647/R9415575

## Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

MD MD

Lab Sample ID: MB 680-410700/7-A

Lab Sample ID: LCS 680-410700/8-A

**Matrix: Water** 

**Matrix: Water** 

**Analysis Batch: 411357** 

**Client Sample ID: Method Blank Prep Type: Total/NA** 

**Prep Batch: 410700** 

|                     | MR     | MR        |    |     |      |   |                |                |         |
|---------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte             | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| 1-Methylnaphthalene | 10     | U         | 10 |     | ug/L |   | 11/17/15 15:53 | 11/20/15 18:09 | 1       |
| 2-Methylnaphthalene | 10     | U         | 10 |     | ug/L |   | 11/17/15 15:53 | 11/20/15 18:09 | 1       |
| Naphthalene         | 10     | U         | 10 |     | ug/L |   | 11/17/15 15:53 | 11/20/15 18:09 | 1       |
| Phenanthrene        | 10     | U         | 10 |     | ug/L |   | 11/17/15 15:53 | 11/20/15 18:09 | 1       |
| Pyrene              | 10     | U         | 10 |     | ug/L |   | 11/17/15 15:53 | 11/20/15 18:09 | 1       |
|                     |        |           |    |     |      |   |                |                |         |

MR MR

|                        | IND       | IVID      |          |                |                |         |
|------------------------|-----------|-----------|----------|----------------|----------------|---------|
| Surrogate              | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl       | 53        |           | 32 - 114 | 11/17/15 15:53 | 11/20/15 18:09 | 1       |
| Nitrobenzene-d5 (Surr) | 61        |           | 30 - 117 | 11/17/15 15:53 | 11/20/15 18:09 | 1       |
| Terphenyl-d14 (Surr)   | 72        |           | 10 - 132 | 11/17/15 15:53 | 11/20/15 18:09 | 1       |

**Client Sample ID: Lab Control Sample** 

**Prep Type: Total/NA Prep Batch: 410700** 

| Analysis Batch: 411357 | Spike | LCS  | LCS       |      |   |      | Prep Batch: 410700 %Rec. |
|------------------------|-------|------|-----------|------|---|------|--------------------------|
| Analyte                | Added |      | Qualifier | Unit | D | %Rec | Limits                   |
| Acenaphthene           | 100   | 63.3 |           | ug/L |   | 63   | 32 - 107                 |
| Acenaphthylene         | 100   | 63.5 |           | ug/L |   | 63   | 10 - 119                 |
| Anthracene             | 100   | 69.9 |           | ug/L |   | 70   | 38 - 112                 |
| Benzo[a]anthracene     | 100   | 69.6 |           | ug/L |   | 70   | 36 - 115                 |
| Benzo[a]pyrene         | 100   | 66.6 |           | ug/L |   | 67   | 13 - 120                 |
| Benzo[b]fluoranthene   | 100   | 67.0 |           | ug/L |   | 67   | 32 - 117                 |
| Benzo[g,h,i]perylene   | 100   | 63.4 |           | ug/L |   | 63   | 21 - 118                 |
| Benzo[k]fluoranthene   | 100   | 67.5 |           | ug/L |   | 67   | 28 - 125                 |
| Chrysene               | 100   | 66.6 |           | ug/L |   | 67   | 36 - 113                 |
| Dibenz(a,h)anthracene  | 100   | 62.2 |           | ug/L |   | 62   | 32 - 115                 |
| Fluoranthene           | 100   | 71.2 |           | ug/L |   | 71   | 41 - 113                 |
| Fluorene               | 100   | 67.3 |           | ug/L |   | 67   | 39 - 115                 |
| Indeno[1,2,3-cd]pyrene | 100   | 51.9 |           | ug/L |   | 52   | 16 - 119                 |
| 1-Methylnaphthalene    | 100   | 56.1 |           | ug/L |   | 56   | 26 - 94                  |
| 2-Methylnaphthalene    | 100   | 58.6 |           | ug/L |   | 59   | 24 - 92                  |
| Naphthalene            | 100   | 52.9 |           | ug/L |   | 53   | 24 - 85                  |
| Phenanthrene           | 100   | 66.6 |           | ug/L |   | 67   | 40 - 114                 |
| Pyrene                 | 100   | 69.8 |           | ug/L |   | 70   | 29 - 118                 |

LCS LCS

| Surrogate              | %Recovery Qualifier | Limits   |
|------------------------|---------------------|----------|
| 2-Fluorobiphenyl       | 56                  | 32 - 114 |
| Nitrobenzene-d5 (Surr) | 70                  | 30 - 117 |
| Terphenyl-d14 (Surr)   | 69                  | 10 - 132 |

Lab Sample ID: 680-118974-9 MS

| Matrix: Water<br>Analysis Batch: 411357 |        |           |       |        |           |      |   |      | Prep Ba  | e: Total/NA<br>tch: 410700 |
|-----------------------------------------|--------|-----------|-------|--------|-----------|------|---|------|----------|----------------------------|
|                                         | Sample | Sample    | Spike | MS     | MS        |      |   |      | %Rec.    |                            |
| Analyte                                 | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   |                            |
| Acenaphthene                            | 9.5    | U         | 93.7  | 52.1   |           | ug/L |   | 56   | 32 - 107 |                            |
| Acenaphthylene                          | 9.5    | U         | 93.7  | 47.6   |           | ug/L |   | 51   | 10 - 119 |                            |
| Anthracene                              | 9.5    | U         | 93.7  | 54.4   |           | ug/L |   | 58   | 38 - 112 |                            |

TestAmerica Savannah

Client Sample ID: TMW-1\_11122015

Page 27 of 46

TestAmerica Job ID: 680-118974-1 SDG: ENV0000120647/R9415575

#### Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 680-118974-9 MS **Matrix: Water** 

**Analysis Batch: 411357** 

Client Sample ID: TMW-1\_11122015 Prep Type: Total/NA **Prep Batch: 410700** 

MS MS Sample Sample Spike %Rec. Result Qualifier Result Qualifier Analyte Added Unit %Rec Limits 9.5 U F1 93.7 30.6 F1 ug/L 33 36 - 115 Benzo[a]anthracene Benzo[a]pyrene 9.5 U 93.7 20.8 ug/L 22 13 - 120 Benzo[b]fluoranthene 9.5 UF1 93.7 20.4 F1 ug/L 22 32 - 117 Benzo[g,h,i]perylene 9.5 UF1 93.7 19.8 ug/L 21 21 - 118 Benzo[k]fluoranthene 9.5 UF1 93.7 21.9 F1 ug/L 23 28 - 125 29 Chrysene 9.5 UF1 93.7 26.9 F1 ug/L 36 - 113 Dibenz(a,h)anthracene 9.5 UF1 93.7 20.1 F1 ug/L 21 32 - 115 ug/L Fluoranthene 51 9.5 U 93.7 48.2 41 - 113 Fluorene 9.5 U 93.7 55.0 ug/L 59 39 - 115 Indeno[1,2,3-cd]pyrene 9.5 U F2 F1 93.7 21.7 23 16 - 119 ug/L 1-Methylnaphthalene 9.5 U 93.7 57.7 ug/L 54 26 - 94 24 - 92 2-Methylnaphthalene 93.7 56.1 ug/L 51 9.5 Naphthalene 32 93.7 101 ug/L 73 24 - 85 Phenanthrene 93.7 55.6 59 40 - 114 9.5 U ug/L Pyrene 9.5 U 93.7 47.6 ug/L 51 29 - 118

MS MS

| Surrogate              | %Recovery Qualifier | · Limits |
|------------------------|---------------------|----------|
| 2-Fluorobiphenyl       | 48                  | 32 - 114 |
| Nitrobenzene-d5 (Surr) | 59                  | 30 - 117 |
| Terphenyl-d14 (Surr)   | 25                  | 10 - 132 |

Lab Sample ID: 680-118974-9 MSD

**Matrix: Water** 

**Analysis Batch: 411357** 

| <b>Client Sample</b> | ID: TMW-1 | _11122015 |
|----------------------|-----------|-----------|
|----------------------|-----------|-----------|

Prep Type: Total/NA **Prep Batch: 410700** 

Sample Sample Spike MSD MSD %Rec. **RPD** Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit 20 Acenaphthene 9.5 U 93.2 53.3 ug/L 57 32 - 107 2 Acenaphthylene 9.5 U 93.2 50.0 ug/L 54 10 - 119 5 20 93.2 52.3 ug/L 56 38 - 112 20 Anthracene 9.5 U Benzo[a]anthracene 9.5 UF1 93.2 27.8 F1 ug/L 30 36 - 115 9 40 21 Benzo[a]pyrene 9.5 U 93.2 ug/L 13 - 1208 40 19.3 Benzo[b]fluoranthene 9.5 UF1 93.2 20.0 F1 ug/L 21 32 - 117 2 50 93.2 21 - 118 18 Benzo[g,h,i]perylene 9.5 UF1 16.5 F1 ug/L 18 50 Benzo[k]fluoranthene 9.5 UF1 93.2 19.0 F1 ug/L 20 28 - 125 14 40 Chrysene 9.5 UF1 93.2 24.4 F1 ug/L 26 36 - 113 10 50 Dibenz(a,h)anthracene 9.5 UF1 93.2 16.6 F1 ug/L 18 32 - 115 19 40 Fluoranthene 9.5 U 93.2 45.7 49 41 - 113 5 40 ug/L Fluorene 9.5 U 93.2 53.1 ug/L 57 39 - 115 3 20 Indeno[1,2,3-cd]pyrene 9.5 UF2F1 93.2 13.4 F1 F2 ug/L 14 16 - 119 47 40 1-Methylnaphthalene 9.5 U 93.2 58.4 ug/L 55 26 - 941 50 2-Methylnaphthalene 9.5 U 93.2 59.6 ug/L 56 24 - 92 6 30 Naphthalene 32 93.2 98 4 ug/L 71 24 - 85 2 40 Phenanthrene 9.5 U 93.2 52.9 57 40 - 114 ug/L 40 93.2 45.5 49 29 - 118 50 Pyrene 9.5 U ug/L

> MSD MSD %Recovery Qualifier Limits

Surrogate 2-Fluorobiphenyl 32 - 114 49

TestAmerica Savannah

Page 28 of 46

TestAmerica Job ID: 680-118974-1 SDG: ENV0000120647/R9415575

#### Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 680-118974-9 MSD

Lab Sample ID: MB 680-411724/2-A

**Matrix: Water** 

**Matrix: Water** 

**Analysis Batch: 411357** 

**Analysis Batch: 412162** 

Client Sample ID: TMW-1\_11122015 **Prep Type: Total/NA** 

**Prep Batch: 410700** 

MSD MSD %Recovery Qualifier

Surrogate Limits Nitrobenzene-d5 (Surr) 30 - 117 57 Terphenyl-d14 (Surr) 23 10 - 132

**Client Sample ID: Method Blank** 

**Prep Type: Total/NA Prep Batch: 411724** 

|                        | MB     | MB        |    |     |      |   |                |                |         |  |
|------------------------|--------|-----------|----|-----|------|---|----------------|----------------|---------|--|
| Analyte                | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |  |
| Acenaphthene           | 10     | U         | 10 |     | ug/L |   | 11/24/15 15:42 | 11/27/15 15:53 | 1       |  |
| Acenaphthylene         | 10     | U         | 10 |     | ug/L |   | 11/24/15 15:42 | 11/27/15 15:53 | 1       |  |
| Anthracene             | 10     | U         | 10 |     | ug/L |   | 11/24/15 15:42 | 11/27/15 15:53 | 1       |  |
| Benzo[a]anthracene     | 10     | U         | 10 |     | ug/L |   | 11/24/15 15:42 | 11/27/15 15:53 | 1       |  |
| Benzo[a]pyrene         | 10     | U         | 10 |     | ug/L |   | 11/24/15 15:42 | 11/27/15 15:53 | 1       |  |
| Benzo[b]fluoranthene   | 10     | U         | 10 |     | ug/L |   | 11/24/15 15:42 | 11/27/15 15:53 | 1       |  |
| Benzo[g,h,i]perylene   | 10     | U         | 10 |     | ug/L |   | 11/24/15 15:42 | 11/27/15 15:53 | 1       |  |
| Benzo[k]fluoranthene   | 10     | U         | 10 |     | ug/L |   | 11/24/15 15:42 | 11/27/15 15:53 | 1       |  |
| Chrysene               | 10     | U         | 10 |     | ug/L |   | 11/24/15 15:42 | 11/27/15 15:53 | 1       |  |
| Dibenz(a,h)anthracene  | 10     | U         | 10 |     | ug/L |   | 11/24/15 15:42 | 11/27/15 15:53 | 1       |  |
| Fluoranthene           | 10     | U         | 10 |     | ug/L |   | 11/24/15 15:42 | 11/27/15 15:53 | 1       |  |
| Fluorene               | 10     | U         | 10 |     | ug/L |   | 11/24/15 15:42 | 11/27/15 15:53 | 1       |  |
| Indeno[1,2,3-cd]pyrene | 10     | U         | 10 |     | ug/L |   | 11/24/15 15:42 | 11/27/15 15:53 | 1       |  |
| 1-Methylnaphthalene    | 10     | U         | 10 |     | ug/L |   | 11/24/15 15:42 | 11/27/15 15:53 | 1       |  |
| 2-Methylnaphthalene    | 10     | U         | 10 |     | ug/L |   | 11/24/15 15:42 | 11/27/15 15:53 | 1       |  |
| Naphthalene            | 10     | U         | 10 |     | ug/L |   | 11/24/15 15:42 | 11/27/15 15:53 | 1       |  |
| Phenanthrene           | 10     | U         | 10 |     | ug/L |   | 11/24/15 15:42 | 11/27/15 15:53 | 1       |  |
| Pyrene                 | 10     | U         | 10 |     | ug/L |   | 11/24/15 15:42 | 11/27/15 15:53 | 1       |  |

MB MB

| Surrogate              | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------|----------------|----------------|---------|
| 2-Fluorobiphenyl       | 23        | X         | 32 - 114 | 11/24/15 15:42 | 11/27/15 15:53 | 1       |
| Nitrobenzene-d5 (Surr) | 30        |           | 30 - 117 | 11/24/15 15:42 | 11/27/15 15:53 | 1       |
| Terphenyl-d14 (Surr)   | 35        |           | 10 - 132 | 11/24/15 15:42 | 11/27/15 15:53 | 1       |

Lab Sample ID: LCS 680-411724/3-A

**Matrix: Water** 

**Analysis Batch: 412162** 

**Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Prep Batch: 411724

|                       | Spike | LCS    | LCS       |      |   |      | %Rec.    |  |
|-----------------------|-------|--------|-----------|------|---|------|----------|--|
| Analyte               | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Acenaphthene          | 100   | 38.8   |           | ug/L |   | 39   | 32 - 107 |  |
| Acenaphthylene        | 100   | 30.1   |           | ug/L |   | 30   | 10 - 119 |  |
| Anthracene            | 100   | 41.4   |           | ug/L |   | 41   | 38 - 112 |  |
| Benzo[a]anthracene    | 100   | 40.5   |           | ug/L |   | 40   | 36 - 115 |  |
| Benzo[a]pyrene        | 100   | 41.1   |           | ug/L |   | 41   | 13 - 120 |  |
| Benzo[b]fluoranthene  | 100   | 57.3   |           | ug/L |   | 57   | 32 - 117 |  |
| Benzo[g,h,i]perylene  | 100   | 42.2   |           | ug/L |   | 42   | 21 - 118 |  |
| Benzo[k]fluoranthene  | 100   | 58.4   |           | ug/L |   | 58   | 28 - 125 |  |
| Chrysene              | 100   | 38.9   |           | ug/L |   | 39   | 36 - 113 |  |
| Dibenz(a,h)anthracene | 100   | 53.8   |           | ug/L |   | 54   | 32 - 115 |  |
| Fluoranthene          | 100   | 42.8   |           | ua/L |   | 43   | 41 - 113 |  |

TestAmerica Savannah

Page 29 of 46

TestAmerica Job ID: 680-118974-1 SDG: ENV0000120647/R9415575

#### Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-411724/3-A **Matrix: Water** 

**Analysis Batch: 412162** 

**Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 411724** 

|                        | Spike | LCS    | LCS       |      |   |      | %Rec.    |  |
|------------------------|-------|--------|-----------|------|---|------|----------|--|
| Analyte                | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Fluorene               | 100   | 40.2   | -         | ug/L |   | 40   | 39 - 115 |  |
| Indeno[1,2,3-cd]pyrene | 100   | 29.9   |           | ug/L |   | 30   | 16 - 119 |  |
| 1-Methylnaphthalene    | 100   | 32.8   |           | ug/L |   | 33   | 26 - 94  |  |
| 2-Methylnaphthalene    | 100   | 30.9   |           | ug/L |   | 31   | 24 - 92  |  |
| Naphthalene            | 100   | 30.2   |           | ug/L |   | 30   | 24 - 85  |  |
| Phenanthrene           | 100   | 40.8   |           | ug/L |   | 41   | 40 - 114 |  |
| Pyrene                 | 100   | 38.9   |           | ug/L |   | 39   | 29 - 118 |  |
|                        |       |        |           |      |   |      |          |  |

LCS LCS

| Surrogate              | %Recovery ( | Qualifier | Limits   |
|------------------------|-------------|-----------|----------|
| 2-Fluorobiphenyl       | 34          |           | 32 - 114 |
| Nitrobenzene-d5 (Surr) | 37          |           | 30 - 117 |
| Terphenyl-d14 (Surr)   | 41          |           | 10 - 132 |

#### Method: 8270D - Semivolatile Organic Compounds (GC/MS) - RE

Lab Sample ID: 680-118974-9 MS

**Matrix: Water** 

Client Sample ID: TMW-1\_11122015 Prep Type: Total/NA

**Analysis Batch: 412162 Prep Batch: 411724** Sample Sample Spike MS MS %Rec. Limits Analyte Result Qualifier Added Result Qualifier Unit D %Rec Acenaphthene - RE 9.6 U H 97.0 65.6 H ug/L 68 32 - 107 Acenaphthylene - RE 53.4 H 9.6 UH 97.0 ug/L 55 10 - 119 Anthracene - RE 9.6 UH 97.0 63.1 H 65 38 - 112 ug/L 40.4 H\* Benzo[a]anthracene - RE 9.6 UH 97.0 42 36 - 115 ug/L Benzo[a]pyrene - RE 9.6 UH 97.0 24.5 H\* 25 13 - 120 ug/L 32 - 117 97.0 ug/L 29 Benzo[b]fluoranthene - RE 9.6 UHF1 27.9 HF1\* Benzo[g,h,i]perylene - RE 9.6 UH 97.0 24.6 H\* ug/L 25 21 - 118 Benzo[k]fluoranthene - RE 9.6 UHF1 97.0 25.0 HF1\* ug/L 26 28 - 125 36.0 H\* Chrysene - RE 9.6 UHF1 97.0 ug/L 37 36 - 113Dibenz(a,h)anthracene - RE 9.6 UHF1 97.0 25.5 H F1 \* ug/L 26 32 - 115 Fluoranthene - RE 41 - 113 9.6 UH 97.0 63.3 H ug/L 65 Fluorene - RE 9.6 U H 97.0 62.9 H ug/L 65 39 - 115 16 - 119 Indeno[1,2,3-cd]pyrene - RE 97.0 26.3 H\* 9.6 UH ug/L 26 - 94 1-Methylnaphthalene - RE 97.0 61 9.6 UH 64.0 H ug/L 24 - 92 2-Methylnaphthalene - RE 9.6 UH 97.0 61.8 H 58 ug/L Naphthalene - RE 26 HF1 97.0 129 HF1 ug/L 106 24 - 85 Phenanthrene - RE 9.6 UH 97.0 65.0 H ug/L 67 40 - 114 Pyrene - RE 9.6 UH 97.0 54.1 H\* ug/L 56 29 - 118

MS MS

| Surrogate                   | %Recovery | Qualifier | Limits   |
|-----------------------------|-----------|-----------|----------|
| 2-Fluorobiphenyl - RE       | 58        |           | 32 - 114 |
| Nitrobenzene-d5 (Surr) - RE | 68        |           | 30 - 117 |
| Terphenyl-d14 (Surr) - RE   | 27        | *         | 10 - 132 |

TestAmerica Savannah

Page 30 of 46

TestAmerica Job ID: 680-118974-1 SDG: ENV0000120647/R9415575

#### Method: 8270D - Semivolatile Organic Compounds (GC/MS) - RE (Continued)

Lab Sample ID: 680-118974-9 MSD

**Matrix: Water** 

Client Sample ID: TMW-1\_11122015

**Prep Type: Total/NA** 

| Analysis Batch: 412162      |        |           |       |        |           |      |   |      | Prep Ba  | itch: 4 | 11724 |
|-----------------------------|--------|-----------|-------|--------|-----------|------|---|------|----------|---------|-------|
|                             | Sample | Sample    | Spike | MSD    | MSD       |      |   |      | %Rec.    |         | RPD   |
| Analyte                     | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   | RPD     | Limit |
| Acenaphthene - RE           | 9.6    | UH        | 95.6  | 58.2   | Н         | ug/L |   | 61   | 32 - 107 | 12      | 20    |
| Acenaphthylene - RE         | 9.6    | U H       | 95.6  | 45.7   | Н         | ug/L |   | 48   | 10 - 119 | 16      | 20    |
| Anthracene - RE             | 9.6    | U H       | 95.6  | 54.8   | Н         | ug/L |   | 57   | 38 - 112 | 14      | 20    |
| Benzo[a]anthracene - RE     | 9.6    | UH        | 95.6  | 36.5   | H *       | ug/L |   | 38   | 36 - 115 | 10      | 40    |
| Benzo[a]pyrene - RE         | 9.6    | U H       | 95.6  | 22.3   | H *       | ug/L |   | 23   | 13 - 120 | 9       | 40    |
| Benzo[b]fluoranthene - RE   | 9.6    | U H F1    | 95.6  | 24.4   | H * F1    | ug/L |   | 25   | 32 - 117 | 14      | 50    |
| Benzo[g,h,i]perylene - RE   | 9.6    | UH        | 95.6  | 20.4   | H *       | ug/L |   | 21   | 21 - 118 | 19      | 50    |
| Benzo[k]fluoranthene - RE   | 9.6    | U H F1    | 95.6  | 23.4   | H * F1    | ug/L |   | 24   | 28 - 125 | 7       | 40    |
| Chrysene - RE               | 9.6    | U H F1    | 95.6  | 31.9   | H * F1    | ug/L |   | 33   | 36 - 113 | 12      | 50    |
| Dibenz(a,h)anthracene - RE  | 9.6    | U H F1    | 95.6  | 22.4   | H * F1    | ug/L |   | 23   | 32 - 115 | 13      | 40    |
| Fluoranthene - RE           | 9.6    | UH        | 95.6  | 53.8   | Н         | ug/L |   | 56   | 41 - 113 | 16      | 40    |
| Fluorene - RE               | 9.6    | U H       | 95.6  | 54.4   | Н         | ug/L |   | 57   | 39 - 115 | 15      | 20    |
| Indeno[1,2,3-cd]pyrene - RE | 9.6    | UH        | 95.6  | 22.1   | H *       | ug/L |   | 23   | 16 - 119 | 17      | 40    |
| 1-Methylnaphthalene - RE    | 9.6    | U H       | 95.6  | 53.6   | Н         | ug/L |   | 51   | 26 - 94  | 18      | 50    |
| 2-Methylnaphthalene - RE    | 9.6    | U H       | 95.6  | 50.1   | Н         | ug/L |   | 47   | 24 - 92  | 21      | 30    |
| Naphthalene - RE            | 26     | H F1      | 95.6  | 108    | Н         | ug/L |   | 85   | 24 - 85  | 18      | 40    |
| Phenanthrene - RE           | 9.6    | UH        | 95.6  | 55.5   | Н         | ug/L |   | 58   | 40 - 114 | 16      | 40    |
| Pyrene - RE                 | 9.6    | UH        | 95.6  | 47.9   | H *       | ug/L |   | 50   | 29 - 118 | 12      | 50    |

9.6 U H MSD MSD

| Surrogate                   | %Recovery Qualifier | Limits   |
|-----------------------------|---------------------|----------|
| 2-Fluorobiphenyl - RE       | 48                  | 32 - 114 |
| Nitrobenzene-d5 (Surr) - RE | 59                  | 30 - 117 |
| Terphenvl-d14 (Surr) - RE   | 25 *                | 10 - 132 |

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 680-410722/1-A

**Matrix: Water** 

**Analysis Batch: 410905** 

| Client Sample ID | : Method Blank |
|------------------|----------------|
| Prep             | Type: Total/NA |

Prep Batch: 410722

|          | MB                           | МВ                                                                                                                                      |                                                                                                                |                                                                                                                                                                                                                                                                  |                                                                                                    |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                              |                                                                                                                 |                                                                                                                 |
|----------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Analyte  | Result                       | Qualifier                                                                                                                               | RL                                                                                                             | MDL                                                                                                                                                                                                                                                              | Unit                                                                                               | D                                                                                                                                                                                                                      | Prepared                                                                                                                                                                                                                                                                     | Analyzed                                                                                                        | Dil Fac                                                                                                         |
| Arsenic  | 20                           | U                                                                                                                                       | 20                                                                                                             |                                                                                                                                                                                                                                                                  | ug/L                                                                                               |                                                                                                                                                                                                                        | 11/17/15 10:31                                                                                                                                                                                                                                                               | 11/18/15 03:31                                                                                                  | 1                                                                                                               |
| Chromium | 10                           | U                                                                                                                                       | 10                                                                                                             |                                                                                                                                                                                                                                                                  | ug/L                                                                                               |                                                                                                                                                                                                                        | 11/17/15 10:31                                                                                                                                                                                                                                                               | 11/18/15 03:31                                                                                                  | 1                                                                                                               |
| Lead     | 10                           | U                                                                                                                                       | 10                                                                                                             |                                                                                                                                                                                                                                                                  | ug/L                                                                                               |                                                                                                                                                                                                                        | 11/17/15 10:31                                                                                                                                                                                                                                                               | 11/18/15 03:31                                                                                                  | 1                                                                                                               |
| Nickel   | 40                           | U                                                                                                                                       | 40                                                                                                             |                                                                                                                                                                                                                                                                  | ug/L                                                                                               |                                                                                                                                                                                                                        | 11/17/15 10:31                                                                                                                                                                                                                                                               | 11/18/15 03:31                                                                                                  | 1                                                                                                               |
| Zinc     | 20                           | U                                                                                                                                       | 20                                                                                                             |                                                                                                                                                                                                                                                                  | ug/L                                                                                               |                                                                                                                                                                                                                        | 11/17/15 10:31                                                                                                                                                                                                                                                               | 11/18/15 03:31                                                                                                  | 1                                                                                                               |
|          | Arsenic Chromium Lead Nickel | Analyte         Result           Arsenic         20           Chromium         10           Lead         10           Nickel         40 | Arsenic         20 U           Chromium         10 U           Lead         10 U           Nickel         40 U | Analyte         Result drsenic         Qualifier         RL           Arsenic         20         U         20           Chromium         10         U         10           Lead         10         U         10           Nickel         40         U         40 | Analyte         Result drsenic         Qualifier         RL or | Analyte         Result Arsenic         Qualifier         RL         MDL Unit           Chromium         10 U         10 ug/L           Lead         10 U         10 ug/L           Nickel         40 U         40 ug/L | Analyte         Result Arsenic         Qualifier         RL         MDL Unit ug/L         D           Chromium         10 U         10 ug/L         ug/L         ug/L           Lead         10 U         10 ug/L         ug/L           Nickel         40 U         40 ug/L | Analyte         Result Arsenic         Qualifier         RL         MDL Unit Unit Unit Unit Unit Unit Unit Unit | Analyte         Result Arsenic         Qualifier         RL         MDL Unit Unit Unit Unit Unit Unit Unit Unit |

Lab Sample ID: LCS 680-410722/2-A

**Matrix: Water** 

**Analysis Batch: 410905** 

| <b>Client Sample ID: Lab Control Sample</b> |
|---------------------------------------------|
| Prep Type: Total/NA                         |
| <b>Prep Batch: 410722</b>                   |

|          | Spike | LCS    | LCS       |      |   |      | %Rec.    |          |          |
|----------|-------|--------|-----------|------|---|------|----------|----------|----------|
| Analyte  | Added | Result | Qualifier | Unit | D | %Rec | Limits   |          |          |
| Arsenic  | 100   | 89.7   |           | ug/L |   | 90   | 80 - 120 |          |          |
| Chromium | 100   | 92.1   |           | ug/L |   | 92   | 80 - 120 |          |          |
| Lead     | 500   | 455    |           | ug/L |   | 91   | 80 - 120 |          |          |
| Nickel   | 100   | 89.2   |           | ug/L |   | 89   | 80 - 120 |          |          |
| Zinc     | 100   | 90.2   |           | ug/L |   | 90   | 80 - 120 |          |          |
| Zinc     | 100   | 90.2   |           | ug/L |   | 90   |          | 80 - 120 | 80 - 120 |

TestAmerica Job ID: 680-118974-1 SDG: ENV0000120647/R9415575

#### Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: MB 680-410954/1-A

Lab Sample ID: LCS 680-410954/2-A

**Matrix: Water** 

**Matrix: Water** 

**Analysis Batch: 411246** 

**Client Sample ID: Method Blank Prep Type: Total/NA** 

Prep Batch: 410954

|          | MB     | MB        |    |     |      |   |                |                |         |
|----------|--------|-----------|----|-----|------|---|----------------|----------------|---------|
| Analyte  | Result | Qualifier | RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic  | 20     | U         | 20 |     | ug/L |   | 11/18/15 10:36 | 11/19/15 14:25 | 1       |
| Chromium | 10     | U         | 10 |     | ug/L |   | 11/18/15 10:36 | 11/19/15 14:25 | 1       |
| Lead     | 10     | U         | 10 |     | ug/L |   | 11/18/15 10:36 | 11/19/15 14:25 | 1       |
| Nickel   | 40     | U         | 40 |     | ug/L |   | 11/18/15 10:36 | 11/19/15 14:25 | 1       |
| Zinc     | 20     | U         | 20 |     | ug/L |   | 11/18/15 10:36 | 11/19/15 14:25 | 1       |
|          |        |           |    |     |      |   |                |                |         |

**Client Sample ID: Lab Control Sample** 

**Prep Type: Total/NA** 

Prep Batch: 410954

**Analysis Batch: 411246** Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 100 ug/L 90 80 - 120 Arsenic 90.2 ug/L Chromium 100 97.6 98 80 - 120 Lead 500 488 ug/L 98 80 - 120 Nickel 100 96 95.7 ug/L 80 - 120 Zinc 100 96.7 ug/L 80 - 120

Lab Sample ID: 680-118974-9 MS

**Matrix: Water** 

**Analysis Batch: 411246** 

Client Sample ID: TMW-1\_11122015

**Prep Type: Total/NA** 

Prep Batch: 410954

|          | Sample | Sample        | Spike | MS     | MS        |      |   |      | %Rec.               |  |
|----------|--------|---------------|-------|--------|-----------|------|---|------|---------------------|--|
| Analyte  | Result | Qualifier     | Added | Result | Qualifier | Unit | D | %Rec | Limits              |  |
| Arsenic  | 150    | <del></del> - | 100   | 233    |           | ug/L |   | 88   | 75 - 125            |  |
| Chromium | 29     |               | 100   | 119    |           | ug/L |   | 90   | 75 - 125            |  |
| Lead     | 10     | U             | 500   | 472    |           | ug/L |   | 94   | 75 <sub>-</sub> 125 |  |
| Nickel   | 40     | U             | 100   | 123    |           | ug/L |   | 90   | 75 - 125            |  |
| Zinc     | 78     |               | 100   | 169    |           | ug/L |   | 91   | 75 <sub>-</sub> 125 |  |

Lab Sample ID: 680-118974-9 MSD

**Matrix: Water** 

Analysis Batch: 411246

Client Sample ID: TMW-1\_11122015

**Prep Type: Total/NA** Prop Batch: 410954

| Alialysis Dalcii. 411240 |        |           |       |        |           |      |   |      | Fieb De  | ucn. 4 | 10354 |
|--------------------------|--------|-----------|-------|--------|-----------|------|---|------|----------|--------|-------|
| -                        | Sample | Sample    | Spike | MSD    | MSD       |      |   |      | %Rec.    |        | RPD   |
| Analyte                  | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   | RPD    | Limit |
| Arsenic                  | 150    |           | 100   | 234    |           | ug/L |   | 89   | 75 - 125 | 0      | 20    |
| Chromium                 | 29     |           | 100   | 118    |           | ug/L |   | 88   | 75 - 125 | 1      | 20    |
| Lead                     | 10     | U         | 500   | 458    |           | ug/L |   | 92   | 75 - 125 | 3      | 20    |
| Nickel                   | 40     | U         | 100   | 119    |           | ug/L |   | 86   | 75 - 125 | 3      | 20    |
| Zinc                     | 78     |           | 100   | 166    |           | ug/L |   | 88   | 75 - 125 | 2      | 20    |
| _                        |        |           |       |        |           |      |   |      |          |        |       |

Method: 350.1 - Nitrogen, Ammonia

Lab Sample ID: MB 680-411340/30

**Matrix: Water** 

Analysis Batch: 411340

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB Result Qualifier Dil Fac **Analyte** RL **MDL** Unit Prepared Analyzed Ammonia 0.25 U 0.25 mg/L 11/19/15 17:53

TestAmerica Job ID: 680-118974-1 SDG: ENV0000120647/R9415575

#### Method: 350.1 - Nitrogen, Ammonia (Continued)

Lab Sample ID: LCS 680-411340/46

Lab Sample ID: LCSD 680-411340/35

**Matrix: Water** 

Analysis Batch: 411340

Analyte 1.00 Ammonia

Spike LCS LCS Added

Result Qualifier 1.03

Unit mg/L D %Rec 103

Limits 90 - 110

%Rec.

Client Sample ID: TMW-1\_11122015

%Rec.

**Client Sample ID: Lab Control Sample** 

**RPD** 

30

RPD

Limit

30

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Type: Total/NA

**Matrix: Water** 

**Analysis Batch: 411340** 

Analyte

Ammonia

Spike Added 1.00

LCSD LCSD Result Qualifier 1.04

Unit mg/L

Limits %Rec 104

**RPD** Limit 90 - 110

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

**RPD** 

19

Lab Sample ID: 680-118974-9 MS

**Matrix: Water** 

Analysis Batch: 411340

Analyte

Sample Sample Result Qualifier 3600 F1

Spike Added 1000

MS MS Result Qualifier Unit 3930 F1 mg/L

Unit

mg/L

MSD MSD

4750 F1

Result Qualifier

D %Rec 32

%Rec

114

%Rec. Limits 90 - 110

Client Sample ID: TMW-1\_11122015

%Rec.

Limits

90 - 110

**Client Sample ID: Method Blank** 

Lab Sample ID: 680-118974-9 MSD

**Matrix: Water** 

Ammonia

Analysis Batch: 411340

| •       | Sample | Sample    | Spike |  |  |
|---------|--------|-----------|-------|--|--|
| Analyte | Result | Qualifier | Added |  |  |
| Ammonia | 3600   | F1 -      | 1000  |  |  |

#### Method: 353.2 - Nitrogen, Nitrate-Nitrite

Lab Sample ID: MB 680-410397/13

**Matrix: Water** 

**Analysis Batch: 410397** 

MB MB

Analyte Result Qualifier RL **MDL** Unit Dil Fac Prepared Analyzed Nitrate as N 0.050 U 0.050 mg/L 11/13/15 15:32 Nitrate Nitrite as N 0.050 U 0.050 mg/L 11/13/15 15:32 0.050 U Nitrite as N 0.050 mg/L 11/13/15 15:32

Lab Sample ID: LCS 680-410397/16

**Matrix: Water** 

Analysis Batch: 410397

**Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec I imits Nitrate as N 0.500 0.506 mg/L 101 75 - 125 Nitrate Nitrite as N 1.00 0.999 mg/L 100 90 - 110 Nitrite as N 0.500 0.493 mg/L 90 - 110 99

Lab Sample ID: 680-118974-9 MS

**Matrix: Water** 

Nitrate as N

**Analysis Batch: 410397** 

Analyte

Sample Sample Spike Result Qualifier Added 250 F1 100

MS MS Result Qualifier 308 F1

Unit mg/L

%Rec. %Rec Limits 58 75 - 125

Client Sample ID: TMW-1\_11122015

Prep Type: Total/NA

# **QC Sample Results**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-118974-1 SDG: ENV0000120647/R9415575

Method: 353.2 - Nitrogen, Nitrate-Nitrite (Continued)

Lab Sample ID: 680-118974-9 MS Client Sample ID: TMW-1\_11122015 **Matrix: Water Prep Type: Total/NA** 

**Analysis Batch: 410397** 

|                      | Sample | Sample    | Spike | MS     | MS        |      |   |      | %Rec.    |  |
|----------------------|--------|-----------|-------|--------|-----------|------|---|------|----------|--|
| Analyte              | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Nitrate Nitrite as N | 250    | F1        | 200   | 416    | F1        | mg/L |   | 81   | 90 - 110 |  |
| Nitrite as N         | 10     | U         | 100   | 108    |           | mg/L |   | 104  | 90 - 110 |  |

Lab Sample ID: 680-118974-9 MSD Client Sample ID: TMW-1\_11122015 **Matrix: Water Prep Type: Total/NA** 

Analysis Batch: 410397

| Alialysis Batch. 410007 |        |           |       |        |           |      |   |      |          |     |       |  |
|-------------------------|--------|-----------|-------|--------|-----------|------|---|------|----------|-----|-------|--|
| •                       | Sample | Sample    | Spike | MSD    | MSD       |      |   |      | %Rec.    |     | RPD   |  |
| Analyte                 | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   | RPD | Limit |  |
| Nitrate as N            | 250    | F1        | 100   | 308    | F1        | mg/L |   | 58   | 75 - 125 | 0   | 30    |  |
| Nitrate Nitrite as N    | 250    | F1        | 200   | 416    | F1        | mg/L |   | 80   | 90 - 110 | 0   | 10    |  |
| Nitrite as N            | 10     | U         | 100   | 108    |           | mg/L |   | 104  | 90 - 110 | 0   | 10    |  |

Lab Sample ID: 680-118974-10 DU **Client Sample ID: DUP-02\_11122015 Prep Type: Total/NA Matrix: Water** 

Analysis Batch: 410397

| Alialysis Dalcii. 410331 |        |           |        |           |      |   |       |       |
|--------------------------|--------|-----------|--------|-----------|------|---|-------|-------|
| -                        | Sample | Sample    | DU     | DU        |      |   |       | RPD   |
| Analyte                  | Result | Qualifier | Result | Qualifier | Unit | D | RPD   | Limit |
| Nitrate as N             | 230    |           | 227    |           | mg/L |   | <br>1 | 30    |
| Nitrate Nitrite as N     | 230    |           | 227    |           | mg/L |   | 0.3   | 10    |
| Nitrite as N             | 10     | U         | 10     | U         | mg/L |   | NC    | 10    |

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-118974-1 SDG: ENV0000120647/R9415575

### **GC/MS VOA**

**Analysis Batch: 410671** 

| Lab Sample ID     | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|-------------------|------------------------|-----------|--------|--------|------------|
| 680-118974-9      | TMW-1_11122015         | Total/NA  | Water  | 8260B  |            |
| 680-118974-9 MS   | TMW-1_11122015         | Total/NA  | Water  | 8260B  |            |
| 680-118974-9 MSD  | TMW-1_11122015         | Total/NA  | Water  | 8260B  |            |
| 680-118974-10     | DUP-02_11122015        | Total/NA  | Water  | 8260B  |            |
| 680-118974-12     | EBJ_11122015           | Total/NA  | Water  | 8260B  |            |
| 680-118974-13     | FB_11122015            | Total/NA  | Water  | 8260B  |            |
| 680-118974-14     | TB_11122015            | Total/NA  | Water  | 8260B  |            |
| LCS 680-410671/5  | Lab Control Sample     | Total/NA  | Water  | 8260B  |            |
| LCSD 680-410671/6 | Lab Control Sample Dup | Total/NA  | Water  | 8260B  |            |
| MB 680-410671/11  | Method Blank           | Total/NA  | Water  | 8260B  |            |

## **GC/MS Semi VOA**

### **Prep Batch: 410700**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 680-118974-9       | TMW-1_11122015     | Total/NA  | Water  | 3520C  |            |
| 680-118974-9 MS    | TMW-1_11122015     | Total/NA  | Water  | 3520C  |            |
| 680-118974-9 MSD   | TMW-1_11122015     | Total/NA  | Water  | 3520C  |            |
| 680-118974-10      | DUP-02_11122015    | Total/NA  | Water  | 3520C  |            |
| 680-118974-12      | EBJ_11122015       | Total/NA  | Water  | 3520C  |            |
| 680-118974-13      | FB_11122015        | Total/NA  | Water  | 3520C  |            |
| LCS 680-410700/8-A | Lab Control Sample | Total/NA  | Water  | 3520C  |            |
| MB 680-410700/7-A  | Method Blank       | Total/NA  | Water  | 3520C  |            |

#### **Analysis Batch: 411357**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 680-118974-9       | TMW-1_11122015     | Total/NA  | Water  | 8270D  | 410700     |
| 680-118974-9 MS    | TMW-1_11122015     | Total/NA  | Water  | 8270D  | 410700     |
| 680-118974-9 MSD   | TMW-1_11122015     | Total/NA  | Water  | 8270D  | 410700     |
| 680-118974-10      | DUP-02_11122015    | Total/NA  | Water  | 8270D  | 410700     |
| 680-118974-12      | EBJ_11122015       | Total/NA  | Water  | 8270D  | 410700     |
| LCS 680-410700/8-A | Lab Control Sample | Total/NA  | Water  | 8270D  | 410700     |
| MB 680-410700/7-A  | Method Blank       | Total/NA  | Water  | 8270D  | 410700     |

#### **Prep Batch: 411724**

| Lab Sample ID         | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|-----------------------|--------------------|-----------|--------|--------|------------|
| 680-118974-9 - RE     | TMW-1_11122015     | Total/NA  | Water  | 3520C  |            |
| 680-118974-9 MS - RE  | TMW-1_11122015     | Total/NA  | Water  | 3520C  |            |
| 680-118974-9 MSD - RE | TMW-1_11122015     | Total/NA  | Water  | 3520C  |            |
| LCS 680-411724/3-A    | Lab Control Sample | Total/NA  | Water  | 3520C  |            |
| MB 680-411724/2-A     | Method Blank       | Total/NA  | Water  | 3520C  |            |

### **Analysis Batch: 412023**

| Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method | Prep Batch |
|---------------|------------------|-----------|--------|--------|------------|
| 680-118974-13 | FB_11122015      | Total/NA  | Water  | 8270D  | 410700     |

### **Analysis Batch: 412162**

| Lab Sample ID        | Client Sample ID | Prep Type | Matrix | Method | Prep Batch |
|----------------------|------------------|-----------|--------|--------|------------|
| 680-118974-9 - RE    | TMW-1_11122015   | Total/NA  | Water  | 8270D  | 411724     |
| 680-118974-9 MS - RE | TMW-1 11122015   | Total/NA  | Water  | 8270D  | 411724     |

TestAmerica Savannah

Page 35 of 46

6

9

6

8

9

10

11

15

# **QC Association Summary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-118974-1 SDG: ENV0000120647/R9415575

# **GC/MS Semi VOA (Continued)**

#### **Analysis Batch: 412162 (Continued)**

| Lab Sample ID         | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|-----------------------|--------------------|-----------|--------|--------|------------|
| 680-118974-9 MSD - RE | TMW-1_11122015     | Total/NA  | Water  | 8270D  | 411724     |
| LCS 680-411724/3-A    | Lab Control Sample | Total/NA  | Water  | 8270D  | 411724     |
| MB 680-411724/2-A     | Method Blank       | Total/NA  | Water  | 8270D  | 411724     |

#### **Metals**

#### Prep Batch: 410722

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 680-118974-1       | EW-1_11122015      | Total/NA  | Water  | 3010A  |            |
| 680-118974-2       | PDMW-19P_11122015  | Total/NA  | Water  | 3010A  |            |
| 680-118974-3       | PDMW-10R_11122015  | Total/NA  | Water  | 3010A  |            |
| 680-118974-4       | TMW-4R_11122015    | Total/NA  | Water  | 3010A  |            |
| 680-118974-6       | PDMW-8R_11122015   | Total/NA  | Water  | 3010A  |            |
| 680-118974-8       | MW-3R_11122015     | Total/NA  | Water  | 3010A  |            |
| 680-118974-11      | EBP_11122015       | Total/NA  | Water  | 3010A  |            |
| 680-118974-12      | EBJ_11122015       | Total/NA  | Water  | 3010A  |            |
| 680-118974-13      | FB_11122015        | Total/NA  | Water  | 3010A  |            |
| LCS 680-410722/2-A | Lab Control Sample | Total/NA  | Water  | 3010A  |            |
| MB 680-410722/1-A  | Method Blank       | Total/NA  | Water  | 3010A  |            |

#### **Analysis Batch: 410905**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 680-118974-1       | EW-1_11122015      | Total/NA  | Water  | 6010C  | 410722     |
| 680-118974-2       | PDMW-19P_11122015  | Total/NA  | Water  | 6010C  | 410722     |
| 680-118974-3       | PDMW-10R_11122015  | Total/NA  | Water  | 6010C  | 410722     |
| 680-118974-4       | TMW-4R_11122015    | Total/NA  | Water  | 6010C  | 410722     |
| 680-118974-6       | PDMW-8R_11122015   | Total/NA  | Water  | 6010C  | 410722     |
| 680-118974-8       | MW-3R_11122015     | Total/NA  | Water  | 6010C  | 410722     |
| 680-118974-11      | EBP_11122015       | Total/NA  | Water  | 6010C  | 410722     |
| 680-118974-12      | EBJ_11122015       | Total/NA  | Water  | 6010C  | 410722     |
| 680-118974-13      | FB_11122015        | Total/NA  | Water  | 6010C  | 410722     |
| LCS 680-410722/2-A | Lab Control Sample | Total/NA  | Water  | 6010C  | 410722     |
| MB 680-410722/1-A  | Method Blank       | Total/NA  | Water  | 6010C  | 410722     |

#### **Prep Batch: 410954**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 680-118974-5       | PDMW-26T_11122015  | Total/NA  | Water  | 3010A  | <u> </u>   |
| 680-118974-7       | DUP-01_11122015    | Total/NA  | Water  | 3010A  |            |
| 680-118974-9       | TMW-1_11122015     | Total/NA  | Water  | 3010A  |            |
| 680-118974-9 MS    | TMW-1_11122015     | Total/NA  | Water  | 3010A  |            |
| 680-118974-9 MSD   | TMW-1_11122015     | Total/NA  | Water  | 3010A  |            |
| 680-118974-10      | DUP-02_11122015    | Total/NA  | Water  | 3010A  |            |
| LCS 680-410954/2-A | Lab Control Sample | Total/NA  | Water  | 3010A  |            |
| MB 680-410954/1-A  | Method Blank       | Total/NA  | Water  | 3010A  |            |

### **Analysis Batch: 411246**

| Lab Sample ID | Client Sample ID  | Prep Type | Matrix | Method | Prep Batch |
|---------------|-------------------|-----------|--------|--------|------------|
| 680-118974-5  | PDMW-26T_11122015 | Total/NA  | Water  | 6010C  | 410954     |
| 680-118974-7  | DUP-01_11122015   | Total/NA  | Water  | 6010C  | 410954     |
| 680-118974-9  | TMW-1_11122015    | Total/NA  | Water  | 6010C  | 410954     |

TestAmerica Savannah

11/30/2015

Page 36 of 46

2

3

4

6

7

8

9

4 4

11

# **QC Association Summary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-118974-1 SDG: ENV0000120647/R9415575

# Metals (Continued)

### **Analysis Batch: 411246 (Continued)**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 680-118974-9 MS    | TMW-1_11122015     | Total/NA  | Water  | 6010C  | 410954     |
| 680-118974-9 MSD   | TMW-1_11122015     | Total/NA  | Water  | 6010C  | 410954     |
| 680-118974-10      | DUP-02_11122015    | Total/NA  | Water  | 6010C  | 410954     |
| LCS 680-410954/2-A | Lab Control Sample | Total/NA  | Water  | 6010C  | 410954     |
| MB 680-410954/1-A  | Method Blank       | Total/NA  | Water  | 6010C  | 410954     |

# **General Chemistry**

### **Analysis Batch: 410397**

| Lab Sample ID     | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|-------------------|--------------------|-----------|--------|--------|------------|
| 680-118974-1      | EW-1_11122015      | Total/NA  | Water  | 353.2  | _          |
| 680-118974-2      | PDMW-19P_11122015  | Total/NA  | Water  | 353.2  |            |
| 680-118974-3      | PDMW-10R_11122015  | Total/NA  | Water  | 353.2  |            |
| 680-118974-4      | TMW-4R_11122015    | Total/NA  | Water  | 353.2  |            |
| 680-118974-5      | PDMW-26T_11122015  | Total/NA  | Water  | 353.2  |            |
| 680-118974-6      | PDMW-8R_11122015   | Total/NA  | Water  | 353.2  |            |
| 680-118974-7      | DUP-01_11122015    | Total/NA  | Water  | 353.2  |            |
| 680-118974-8      | MW-3R_11122015     | Total/NA  | Water  | 353.2  |            |
| 680-118974-9      | TMW-1_11122015     | Total/NA  | Water  | 353.2  |            |
| 680-118974-9 MS   | TMW-1_11122015     | Total/NA  | Water  | 353.2  |            |
| 680-118974-9 MSD  | TMW-1_11122015     | Total/NA  | Water  | 353.2  |            |
| 680-118974-10     | DUP-02_11122015    | Total/NA  | Water  | 353.2  |            |
| 680-118974-10 DU  | DUP-02_11122015    | Total/NA  | Water  | 353.2  |            |
| 680-118974-11     | EBP_11122015       | Total/NA  | Water  | 353.2  |            |
| 680-118974-12     | EBJ_11122015       | Total/NA  | Water  | 353.2  |            |
| 680-118974-13     | FB_11122015        | Total/NA  | Water  | 353.2  |            |
| LCS 680-410397/16 | Lab Control Sample | Total/NA  | Water  | 353.2  |            |
| MB 680-410397/13  | Method Blank       | Total/NA  | Water  | 353.2  |            |

#### Analysis Batch: 411340

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| 680-118974-1       | EW-1_11122015          | Total/NA  | Water  | 350.1  | _          |
| 680-118974-2       | PDMW-19P_11122015      | Total/NA  | Water  | 350.1  |            |
| 680-118974-3       | PDMW-10R_11122015      | Total/NA  | Water  | 350.1  |            |
| 680-118974-4       | TMW-4R_11122015        | Total/NA  | Water  | 350.1  |            |
| 680-118974-5       | PDMW-26T_11122015      | Total/NA  | Water  | 350.1  |            |
| 680-118974-6       | PDMW-8R_11122015       | Total/NA  | Water  | 350.1  |            |
| 680-118974-7       | DUP-01_11122015        | Total/NA  | Water  | 350.1  |            |
| 680-118974-8       | MW-3R_11122015         | Total/NA  | Water  | 350.1  |            |
| 680-118974-9       | TMW-1_11122015         | Total/NA  | Water  | 350.1  |            |
| 680-118974-9 MS    | TMW-1_11122015         | Total/NA  | Water  | 350.1  |            |
| 680-118974-9 MSD   | TMW-1_11122015         | Total/NA  | Water  | 350.1  |            |
| 680-118974-10      | DUP-02_11122015        | Total/NA  | Water  | 350.1  |            |
| 680-118974-11      | EBP_11122015           | Total/NA  | Water  | 350.1  |            |
| 680-118974-12      | EBJ_11122015           | Total/NA  | Water  | 350.1  |            |
| 680-118974-13      | FB_11122015            | Total/NA  | Water  | 350.1  |            |
| LCS 680-411340/46  | Lab Control Sample     | Total/NA  | Water  | 350.1  |            |
| LCSD 680-411340/35 | Lab Control Sample Dup | Total/NA  | Water  | 350.1  |            |
| MB 680-411340/30   | Method Blank           | Total/NA  | Water  | 350.1  |            |

TestAmerica Savannah

Page 37 of 46

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-118974-1 SDG: ENV0000120647/R9415575

Client Sample ID: EW-1\_11122015

Date Collected: 11/12/15 09:58 Date Received: 11/13/15 08:30

Lab Sample ID: 680-118974-1 **Matrix: Water** 

|           | Batch                | Batch                    |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|--------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                   | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep                 | 3010A                    |     |        | 50 mL   | 50 mL  | 410722 | 11/17/15 10:31 | CRW     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 6010C<br>nt ID: ICPE     |     | 1      | 50 mL   | 50 mL  | 410905 | 11/18/15 04:24 | BCB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>nt ID: KONELAB1 |     | 200    | 2 mL    | 2 mL   | 411340 | 11/19/15 18:47 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>nt ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 410397 | 11/13/15 15:43 | GRX     | TAL SAV |

Client Sample ID: PDMW-19P\_11122015 Lab Sample ID: 680-118974-2

Date Collected: 11/12/15 09:30 Date Received: 11/13/15 08:30

**Matrix: Water** 

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Type Method Amount Amount Number or Analyzed Run **Factor** Analyst Lab Total/NA Prep 3010A 50 mL 50 mL 410722 11/17/15 10:31 CRW TAL SAV Total/NA 410905 TAL SAV Analysis 6010C 50 mL 50 mL 11/18/15 04:28 BCB 1 Instrument ID: ICPE 350.1 5 Total/NA Analysis 2 mL 2 mL 411340 11/19/15 17:34 JME TAL SAV Instrument ID: KONELAB1 Total/NA Analysis 353.2 2 mL 2 mL 410397 11/13/15 15:50 GRX TAL SAV Instrument ID: LACHAT2

Client Sample ID: PDMW-10R 11122015 Lab Sample ID: 680-118974-3

Date Collected: 11/12/15 10:48 Date Received: 11/13/15 08:30

**Matrix: Water** 

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Type Method Run Factor Amount Amount Number or Analyzed **Analyst** Lab Total/NA Prep 3010A 50 mL 50 mL 410722 11/17/15 10:31 CRW TAL SAV Total/NA 6010C 50 mL 50 mL 410905 11/18/15 04:33 BCB TAL SAV Analysis 1 Instrument ID: ICPE Total/NA Analysis 350.1 5 2 mL 2 mL 411340 11/19/15 16:58 JME TAL SAV Instrument ID: KONELAB1 Total/NA Analysis 353.2 2 mL 2 mL 410397 11/13/15 16:52 GRX TAL SAV Instrument ID: LACHAT2

Client Sample ID: TMW-4R 11122015

Date Collected: 11/12/15 10:30

Lab Sample ID: 680-118974-4 **Matrix: Water** Date Received: 11/13/15 08:30

| Prep Type | Batch<br>Type | Batch<br>Method | Run | Dil<br>Factor | Initial<br>Amount | Final<br>Amount | Batch<br>Number | Prepared or Analyzed | Analyst | Lab     |
|-----------|---------------|-----------------|-----|---------------|-------------------|-----------------|-----------------|----------------------|---------|---------|
| Total/NA  | Prep          | 3010A           |     |               | 50 mL             | 50 mL           | 410722          | 11/17/15 10:31       | CRW     | TAL SAV |
| Total/NA  | Analysis      | 6010C           |     | 1             | 50 mL             | 50 mL           | 410905          | 11/18/15 04:37       | BCB     | TAL SAV |
|           | Instrume      | nt ID: ICPE     |     |               |                   |                 |                 |                      |         |         |

2

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-118974-1 SDG: ENV0000120647/R9415575

\_\_\_\_

Client Sample ID: TMW-4R\_11122015

Client Sample ID: PDMW-26T\_11122015

Date Collected: 11/12/15 10:30 Date Received: 11/13/15 08:30

Lab Sample ID: 680-118974-4

Matrix: Water

|           | Batch    | Batch           |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-----------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method          | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 350.1           |     | 2      | 2 mL    | 2 mL   | 411340 | 11/19/15 17:34 | JME     | TAL SAV |
|           | Instrume | nt ID: KONELAB1 |     |        |         |        |        |                |         |         |
| Total/NA  | Analysis | 353.2           |     | 1      | 2 mL    | 2 mL   | 410397 | 11/13/15 16:53 | GRX     | TAL SAV |
|           | Instrume | nt ID: LACHAT2  |     |        |         |        |        |                |         |         |

Lab Sample ID: 680-118974-5

Date Collected: 11/12/15 13:55

Matrix: Water

Date Received: 11/13/15 08:30

|           | Batch                | Batch                    |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|--------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                   | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep                 | 3010A                    | -   | -      | 50 mL   | 50 mL  | 410954 | 11/18/15 10:36 | CRW     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 6010C<br>nt ID: ICPE     |     | 1      | 50 mL   | 50 mL  | 411246 | 11/19/15 14:51 | BCB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>nt ID: KONELAB1 |     | 400    | 2 mL    | 2 mL   | 411340 | 11/20/15 09:10 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>nt ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 410397 | 11/13/15 15:56 | GRX     | TAL SAV |

Client Sample ID: PDMW-8R\_11122015

Date Collected: 11/12/15 13:00 Date Received: 11/13/15 08:30

DMW-8R\_11122015 Lab Sample ID: 680-118974-6
513:00 Matrix: Water

|           | Batch                | Batch                    |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|--------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                   | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep                 | 3010A                    |     |        | 50 mL   | 50 mL  | 410722 | 11/17/15 10:31 | CRW     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 6010C<br>nt ID: ICPE     |     | 1      | 50 mL   | 50 mL  | 410905 | 11/18/15 04:42 | BCB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>nt ID: KONELAB1 |     | 50     | 2 mL    | 2 mL   | 411340 | 11/19/15 18:02 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>nt ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 410397 | 11/13/15 16:50 | GRX     | TAL SAV |

**Client Sample ID: DUP-01\_11122015** 

Instrument ID: LACHAT2

Date Collected: 11/12/15 00:00

Date Received: 11/13/15 08:30

|           | Batch                | Batch                    |     | Dil           | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|--------------------------|-----|---------------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                   | Run | Factor        | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep                 | 3010A                    |     | · <del></del> | 50 mL   | 50 mL  | 410954 | 11/18/15 10:36 | CRW     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 6010C<br>nt ID: ICPE     |     | 1             | 50 mL   | 50 mL  | 411246 | 11/19/15 14:55 | BCB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>nt ID: KONELAB1 |     | 400           | 2 mL    | 2 mL   | 411340 | 11/20/15 09:10 | JME     | TAL SAV |
| Total/NA  | Analysis             | 353.2                    |     | 1             | 2 mL    | 2 mL   | 410397 | 11/13/15 16:01 | GRX     | TAL SAV |

TestAmerica Savannah

Lab Sample ID: 680-118974-7

Page 39 of 46

**Matrix: Water** 

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

Client Sample ID: MW-3R\_11122015

TestAmerica Job ID: 680-118974-1 SDG: ENV0000120647/R9415575

Lab Sample ID: 680-118974-8

**Matrix: Water** 

Date Collected: 11/12/15 00:00 Date Received: 11/13/15 08:30

|           | Batch                | Batch                    |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|--------------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                   | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep                 | 3010A                    | -   |        | 50 mL   | 50 mL  | 410722 | 11/17/15 10:31 | CRW     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 6010C<br>nt ID: ICPE     |     | 1      | 50 mL   | 50 mL  | 410905 | 11/18/15 04:55 | BCB     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>nt ID: KONELAB1 |     | 1      | 2 mL    | 2 mL   | 411340 | 11/19/15 17:20 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>nt ID: LACHAT2  |     | 1      | 2 mL    | 2 mL   | 410397 | 11/13/15 16:02 | GRX     | TAL SAV |

Client Sample ID: TMW-1\_11122015 Lab Sample ID: 680-118974-9

Date Collected: 11/12/15 15:13 **Matrix: Water** 

Date Received: 11/13/15 08:30

|           | Batch    | Batch           |               | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-----------------|---------------|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method          | Run           | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8260B           | - <del></del> | 1      | 5 mL     | 5 mL   | 410671 | 11/17/15 13:20 | CEJ     | TAL SAV |
|           | Instrume | nt ID: CMSO2    |               |        |          |        |        |                |         |         |
| Total/NA  | Prep     | 3520C           | RE            |        | 260 mL   | 0.5 mL | 411724 | 11/24/15 15:42 | RBS     | TAL SAV |
| Total/NA  | Analysis | 8270D           | RE            | 1      | 260 mL   | 0.5 mL | 412162 | 11/27/15 19:28 | CAR     | TAL SAV |
|           | Instrume | nt ID: CMSE     |               |        |          |        |        |                |         |         |
| Total/NA  | Prep     | 3520C           |               |        | 263.3 mL | 0.5 mL | 410700 | 11/17/15 15:53 | RBS     | TAL SAV |
| Total/NA  | Analysis | 8270D           |               | 1      | 263.3 mL | 0.5 mL | 411357 | 11/20/15 21:00 | CAR     | TAL SAV |
|           | Instrume | nt ID: CMSG     |               |        |          |        |        |                |         |         |
| Total/NA  | Prep     | 3010A           |               |        | 50 mL    | 50 mL  | 410954 | 11/18/15 10:36 | CRW     | TAL SAV |
| Total/NA  | Analysis | 6010C           |               | 1      | 50 mL    | 50 mL  | 411246 | 11/19/15 14:40 | BCB     | TAL SAV |
|           | Instrume | nt ID: ICPE     |               |        |          |        |        |                |         |         |
| Total/NA  | Analysis | 350.1           |               | 5000   | 2 mL     | 2 mL   | 411340 | 11/20/15 09:25 | JME     | TAL SAV |
|           | Instrume | nt ID: KONELAB1 |               |        |          |        |        |                |         |         |
| Total/NA  | Analysis | 353.2           |               | 200    | 2 mL     | 2 mL   | 410397 | 11/13/15 15:37 | GRX     | TAL SAV |
|           | Instrume | nt ID: LACHAT2  |               |        |          |        |        |                |         |         |

Client Sample ID: DUP-02\_11122015 Lab Sample ID: 680-118974-10

Date Collected: 11/12/15 00:00 **Matrix: Water** Date Received: 11/13/15 08:30

|           | Batch    | Batch           |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-----------------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method          | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8260B           |     | 1      | 5 mL     | 5 mL   | 410671 | 11/17/15 15:27 | CEJ     | TAL SAV |
|           | Instrume | nt ID: CMSO2    |     |        |          |        |        |                |         |         |
| Total/NA  | Prep     | 3520C           |     |        | 258.5 mL | 0.5 mL | 410700 | 11/17/15 15:53 | RBS     | TAL SAV |
| Total/NA  | Analysis | 8270D           |     | 1      | 258.5 mL | 0.5 mL | 411357 | 11/20/15 21:25 | CAR     | TAL SAV |
|           | Instrume | nt ID: CMSG     |     |        |          |        |        |                |         |         |
| Total/NA  | Prep     | 3010A           |     |        | 50 mL    | 50 mL  | 410954 | 11/18/15 10:36 | CRW     | TAL SAV |
| Total/NA  | Analysis | 6010C           |     | 1      | 50 mL    | 50 mL  | 411246 | 11/19/15 14:58 | BCB     | TAL SAV |
|           | Instrume | nt ID: ICPE     |     |        |          |        |        |                |         |         |
| Total/NA  | Analysis | 350.1           |     | 5000   | 2 mL     | 2 mL   | 411340 | 11/20/15 09:25 | JME     | TAL SAV |
|           | Instrume | nt ID: KONELAB1 |     |        |          |        |        |                |         |         |

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-118974-1 SDG: ENV0000120647/R9415575

**Client Sample ID: DUP-02\_11122015** 

Date Collected: 11/12/15 00:00 Date Received: 11/13/15 08:30

Lab Sample ID: 680-118974-10

**Matrix: Water** 

|           | Batch    | Batch           |             | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-----------------|-------------|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method          | Run         | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 353.2           | <del></del> | 200    | 2 mL    | 2 mL   | 410397 | 11/13/15 15:41 | GRX     | TAL SAV |
|           | Inetrumo | of ID: I ACHAT2 |             |        |         |        |        |                |         |         |

Lab Sample ID: 680-118974-11

Client Sample ID: EBP\_11122015 Date Collected: 11/12/15 15:15 **Matrix: Water** 

Date Received: 11/13/15 08:30

| Prep Type<br>Total/NA<br>Total/NA | Batch Type Prep Analysis Instrume | Method 3010A 6010C nt ID: ICPE | Run | Factor 1 | Initial Amount 50 mL 50 mL | Final Amount 50 mL 50 mL | Batch<br>Number<br>410722<br>410905 | Prepared<br>or Analyzed<br>11/17/15 10:31<br>11/18/15 05:00 |     | Lab<br>TAL SAV<br>TAL SAV |
|-----------------------------------|-----------------------------------|--------------------------------|-----|----------|----------------------------|--------------------------|-------------------------------------|-------------------------------------------------------------|-----|---------------------------|
| Total/NA                          | Analysis<br>Instrume              | 350.1<br>nt ID: KONELAB1       |     | 1        | 2 mL                       | 2 mL                     | 411340                              | 11/19/15 16:38                                              | JME | TAL SAV                   |
| Total/NA                          | Analysis<br>Instrume              | 353.2<br>nt ID: LACHAT2        |     | 1        | 2 mL                       | 2 mL                     | 410397                              | 11/13/15 16:03                                              | GRX | TAL SAV                   |

Client Sample ID: EBJ\_11122015 Lab Sample ID: 680-118974-12

Date Collected: 11/12/15 16:35 **Matrix: Water** 

Date Received: 11/13/15 08:30

|           | Batch                | Batch                    |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|----------------------|--------------------------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Type                 | Method                   | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis<br>Instrume | 8260B<br>nt ID: CMSO2    |     | 1      | 5 mL     | 5 mL   | 410671 | 11/17/15 11:35 | CEJ     | TAL SAV |
| Total/NA  | Prep                 | 3520C                    |     |        | 259.6 mL | 0.5 mL | 410700 | 11/17/15 15:53 | RBS     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 8270D<br>nt ID: CMSG     |     | 1      | 259.6 mL | 0.5 mL | 411357 | 11/20/15 21:50 | CAR     | TAL SAV |
| Total/NA  | Prep                 | 3010A                    |     |        | 50 mL    | 50 mL  | 410722 | 11/17/15 10:31 | CRW     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 6010C<br>nt ID: ICPE     |     | 1      | 50 mL    | 50 mL  | 410905 | 11/18/15 05:04 | ВСВ     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 350.1<br>nt ID: KONELAB1 |     | 1      | 2 mL     | 2 mL   | 411340 | 11/19/15 16:38 | JME     | TAL SAV |
| Total/NA  | Analysis<br>Instrume | 353.2<br>nt ID: LACHAT2  |     | 1      | 2 mL     | 2 mL   | 410397 | 11/13/15 16:05 | GRX     | TAL SAV |

Client Sample ID: FB\_11122015 Lab Sample ID: 680-118974-13 Date Collected: 11/12/15 15:35 **Matrix: Water** 

Date Received: 11/13/15 08:30

| _         | Batch     | Batch        |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|-----------|--------------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Type      | Method       | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis  | 8260B        |     | 1      | 5 mL     | 5 mL   | 410671 | 11/17/15 11:56 | CEJ     | TAL SAV |
|           | Instrumer | nt ID: CMSO2 |     |        |          |        |        |                |         |         |
| Total/NA  | Prep      | 3520C        |     |        | 260.4 mL | 0.5 mL | 410700 | 11/17/15 15:53 | RBS     | TAL SAV |

### **Lab Chronicle**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-118974-1 SDG: ENV0000120647/R9415575

Lab Sample ID: 680-118974-13

Matrix: Water

Client Sample ID: FB\_11122015 Date Collected: 11/12/15 15:35 Date Received: 11/13/15 08:30

|           | Batch    | Batch           |     | Dil    | Initial  | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-----------------|-----|--------|----------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method          | Run | Factor | Amount   | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8270D           |     | 1      | 260.4 mL | 0.5 mL | 412023 | 11/26/15 02:09 | CAR     | TAL SAV |
|           | Instrume | nt ID: CMSN     |     |        |          |        |        |                |         |         |
| Total/NA  | Prep     | 3010A           |     |        | 50 mL    | 50 mL  | 410722 | 11/17/15 10:31 | CRW     | TAL SAV |
| Total/NA  | Analysis | 6010C           |     | 1      | 50 mL    | 50 mL  | 410905 | 11/18/15 05:09 | BCB     | TAL SAV |
|           | Instrume | nt ID: ICPE     |     |        |          |        |        |                |         |         |
| Total/NA  | Analysis | 350.1           |     | 1      | 2 mL     | 2 mL   | 411340 | 11/19/15 16:38 | JME     | TAL SAV |
|           | Instrume | nt ID: KONELAB1 |     |        |          |        |        |                |         |         |
| Total/NA  | Analysis | 353.2           |     | 1      | 2 mL     | 2 mL   | 410397 | 11/13/15 16:06 | GRX     | TAL SAV |
|           | Instrume | nt ID: LACHAT2  |     |        |          |        |        |                |         |         |

Client Sample ID: TB\_11122015 Lab Sample ID: 680-118974-14

Date Collected: 11/12/15 00:00 **Matrix: Water** 

Date Received: 11/13/15 08:30

| Prep Type<br>Total/NA | Batch Type Analysis | Batch<br>Method<br>8260B | Run | Dil<br>Factor | Initial Amount 5 mL | Final Amount 5 mL | Batch<br>Number<br>410671 | Prepared or Analyzed 11/17/15 12:17 | Analyst CEJ | Lab<br>TAL SAV |  |
|-----------------------|---------------------|--------------------------|-----|---------------|---------------------|-------------------|---------------------------|-------------------------------------|-------------|----------------|--|
|                       | Instrumer           | nt ID: CMSO2             |     |               |                     |                   |                           |                                     |             |                |  |

#### **Laboratory References:**

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

| C +0 / # 200           | -ORMATION                                                                                                                                               | Shipment Method: Lab Colviter Shipment Tracking No:                                                                                                                                                                                                                                                                                                                | Project #: 6-4300-5246                                                | PM: Acusa Certchell                | and a cetchell @ omecfuscon   |                             | 2   O COMMENTS LABUSE                                                                      | JALYSIS                                     |                                                                         |                             | 680-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5<br>X 5                                |                                     | hain o                | f Cus                                                                                                                                   | tody                  |                     |                     |                     |                        | . early             | ×                                   | $\times \times \times$ | XXX             | Comments & Special Analytical Requirements: | 0.0                | 2000             | Custody Seal # LAB Log Number | TO CSXT WITH ORIGINAL COC TAL-6006 (0509)    |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------|-------------------------------|-----------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------|---------------------|---------------------|------------------------|---------------------|-------------------------------------|------------------------|-----------------|---------------------------------------------|--------------------|------------------|-------------------------------|----------------------------------------------|
|                        | 11404 P: 912-354-7858 F: 912-352-0165<br>on, 0H 44720 P: 330-497-9396 F: 330-497-0772                                                                   | L 33634 P: 813-885-7427 F: 813-885-7049<br>32514 P: 850-474-1001 F: 850-478-2671<br>NY 14228 P: 716-691-2600 F: 716-961-7991<br>466 P: 708-534-5200 F: 708-534-5211                                                                                                                                                                                                | CONSULTANT INFORMATION                                                | nec Foster Wheeler                 | elside Drive o                | Tampa, FL 3360              | Note <b>3</b>   <b>3</b>   <b>3</b>   <b>3</b>   <b>3</b>   <b>3</b>   <b>3</b>   <b>3</b> | Pres. METHODS FOR ANALYSIS                  | epoo                                                                    | LIQ = Liquid                | ns of ex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × | Matrix                              | Code                  | $\times \times $ | XXXX                  | ××××39 4            | 6WXXX               | X X X M9            | Sulvey X X X           | SW XX               | $\times$ $\times$ $\times$ $\times$ | X                      | XXXXM9          | Date/Fine:    & 07.                         | Date/Time:         | Date/Time:       | LAB USE: Custody Intact       | AUST BE                                      |
| LABORATORY INFORMATION | 🔀 restAmerica Savannah - 5102 LaRoche Avenue, Savannah, GA 31404 - P: 912<br>🗖 TestAmerica North Canton - 4101 Shuffel Drive NW, North Canton, OH 44720 | ☐ TestAmerica Tampa - 6712 Benjamin Road, Suite 100, Tampa, FL 33634 P: 813-885-7427 F ☐ TestAmerica Pensacola - 3355 McLemore Drive, Pensacola, FL 32514 P: 850-474-1001 F: 8 ☐ TestAmerica Buffalo - 10 Hazelwood Drive, Suite 106, Amherst, NY 14228 P: 716-691-2600 ☐ TestAmerica Chicago - 2417 Bond Street, University Park, IL 60466 P: 708-534-5200 F: 708 | Proj. State (State of Origin) $\mathcal{G}_{\mathcal{A}}$   CONSULTAN | Proj. City: Savanneh Company: Amec | Address                       | LWON: TBD City, State, Zip: | Preservative Codes: 3 = Sulfuric Acid                                                      | 0 = No Preservatives 4 = Sodium Thiosulfate | 1 = Hydrochloric Acid 5 = Sodium Hydroxide<br>2 = Nitric Acid 6 = Other | Matrix Codes: SO = Soil LIQ | GW = Groundwater \ \text{SL} = Sludge<br>WW = Waste Water \ \text{Ol} = \text{Oil} \ Oil on the Collision of the Collisio | SW = Surface Water SOL = Other Solid    | Sample Collection   Filtered   Type | Sampler Y or N        | 12 2015 0958 JJ N                                                                                                                       | 11/12/2015 0930PG N G | 2 /2015 1048 55 N G | 12/2015 1030 PG N G | 12/2015 1355 JT N G | 11/12/2015/1300 PG N 6 | 11/12/2015 - JJ N C | 12 2215 PG M G                      | 0 N TS 515131513       | 0 N CC - Sez 21 | 5750 Received By: Like G                    | AK 30 Received By: | Received By:     | Lab Remarks:                  | 2/12                                         |
| LA                     | CHAIN OF                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                    |                                                                       | 5                                  | inson Island                  |                             | Standard 6-13 Days                                                                         |                                             | Standard 14 Days Other CSN Standard 2:                                  | Other Deliv:                | GN EDD Required, Format: W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AD                                      | Containers                          |                       | 111 4 51088111                                                                                                                          | 22015 4 III           | 11122015 4 II       | 1 4 SIDE            | 11 H S10661         | 122015 4 III           | 11122015 4 III      | 2015 4 11                           | 2015 27 11             | 2               | Date/Time:                                  | Date/Time: //      | Date/Time:       | Date/Time:                    | TORY WITH SAMPLES                            |
|                        |                                                                                                                                                         | TRANSPORTATION                                                                                                                                                                                                                                                                                                                                                     | CSXT PROJECT INFORMATION                                              | CSXT Project Number:               | CSXT Project Name: Hatchinson | CSXT Contact: Som RE        | Turnaround Time:                                                                           | 1 Day Rush                                  | 2 Day Rush 3 Day Rush                                                   | iverables:                  | CSXT Standard (Level II) Level III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SAMPI F INFORMATION                     |                                     | Sample Identification | EW-1-11123                                                                                                                              | PDMW-19P_111          | PDMW-10R-11         | TMW-4R_11122015     | PDMW-JGT_11         | PDMW-8R-11             | DUP-01-1113         | MW-3K-1112                          | TMW-1-11112            | 32,1112         | Rejiroguihed By:                            | Retinquished/By:   | Relinquished By: | Received By Laboratory:       | ORIGINAL – RETURN TO LABORATORY WITH SAMPLES |

# **Login Sample Receipt Checklist**

Client: AMEC Foster Wheeler E & I, Inc

Job Number: 680-118974-1 SDG Number: ENV0000120647/R9415575

Login Number: 118974 List Source: TestAmerica Savannah

List Number: 1

Creator: Kicklighter, Marilyn D

| Grouter: Menighter, marry: 2                                                                              |        |         |
|-----------------------------------------------------------------------------------------------------------|--------|---------|
| Question                                                                                                  | Answer | Comment |
| Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td> | N/A    |         |
| The cooler's custody seal, if present, is intact.                                                         | True   |         |
| Sample custody seals, if present, are intact.                                                             | True   |         |
| The cooler or samples do not appear to have been compromised or tampered with.                            | True   |         |
| Samples were received on ice.                                                                             | True   |         |
| Cooler Temperature is acceptable.                                                                         | True   |         |
| Cooler Temperature is recorded.                                                                           | True   |         |
| COC is present.                                                                                           | True   |         |
| COC is filled out in ink and legible.                                                                     | True   |         |
| COC is filled out with all pertinent information.                                                         | True   |         |
| Is the Field Sampler's name present on COC?                                                               | N/A    |         |
| There are no discrepancies between the containers received and the COC.                                   | True   |         |
| Samples are received within Holding Time.                                                                 | True   |         |
| Sample containers have legible labels.                                                                    | True   |         |
| Containers are not broken or leaking.                                                                     | True   |         |
| Sample collection date/times are provided.                                                                | True   |         |
| Appropriate sample containers are used.                                                                   | True   |         |
| Sample bottles are completely filled.                                                                     | True   |         |
| Sample Preservation Verified.                                                                             | True   |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs                          | True   |         |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").                           | True   |         |
| Multiphasic samples are not present.                                                                      | True   |         |
| Samples do not require splitting or compositing.                                                          | True   |         |
| Residual Chlorine Checked.                                                                                | N/A    |         |

# **Certification Summary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-118974-1 SDG: ENV0000120647/R9415575

# **Laboratory: TestAmerica Savannah**

The certifications listed below are applicable to this report.

| Authority | Program       | EPA Region | Certification ID | <b>Expiration Date</b> |
|-----------|---------------|------------|------------------|------------------------|
| Georgia   | State Program | 4          | 803              | 06-30-16               |

6

-

Δ

5

\_

8

10

11



THE LEADER IN ENVIRONMENTAL TESTING

# **ANALYTICAL REPORT**

TestAmerica Laboratories, Inc.

TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

TestAmerica Job ID: 680-125713-1

TestAmerica SDG: ENV0000123996/R9415575 Client Project/Site: CSX GA, Hutchinson Island, VRP

#### For:

AMEC Foster Wheeler E & I, Inc 1075 Big Shanty Road, NW Suite 100 Kennesaw, Georgia 30144

Attn: Mr. Matthew Grostick

Authorized for release by: 6/2/2016 11:06:40 AM

Robert Bearden, Project Manager I (912)354-7858

robert.bearden@testamericainc.com

Designee for

Lisa Harvey, Project Manager II (912)354-7858 e.3221

lisa.harvey@testamericainc.com

.....Links .....

Review your project results through

Total Access

**Have a Question?** 



**Visit us at:**www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

# **Definitions/Glossary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-125713-1 SDG: ENV0000123996/R9415575

\_\_\_\_

#### **Qualifiers**

#### **General Chemistry**

| Qualifier | Qualifier Description                                    |
|-----------|----------------------------------------------------------|
| U         | Indicates the analyte was analyzed for but not detected. |

4

### **Glossary**

| Abbreviation   | These commonly used abbreviations may or may not be present in this report.                                 |
|----------------|-------------------------------------------------------------------------------------------------------------|
| ¤              | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |
| %R             | Percent Recovery                                                                                            |
| CFL            | Contains Free Liquid                                                                                        |
| CNF            | Contains no Free Liquid                                                                                     |
| DER            | Duplicate error ratio (normalized absolute difference)                                                      |
| Dil Fac        | Dilution Factor                                                                                             |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |
| DLC            | Decision level concentration                                                                                |
| MDA            | Minimum detectable activity                                                                                 |
| EDL            | Estimated Detection Limit                                                                                   |
| MDC            | Minimum detectable concentration                                                                            |
| MDL            | Method Detection Limit                                                                                      |
| ML             | Minimum Level (Dioxin)                                                                                      |
| NC             | Not Calculated                                                                                              |

4.0

12

ND PQL

QC

RER RL

RPD

Reporting Limit or Requested Limit (Radiochemistry)

Practical Quantitation Limit

Quality Control Relative error ratio

Not detected at the reporting limit (or MDL or EDL if shown)

# **Sample Summary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-125713-1 SDG: ENV0000123996/R9415575

| Lab Sample ID | Client Sample ID | Matrix | Collected      | Received       |
|---------------|------------------|--------|----------------|----------------|
| 680-125713-1  | PDMW-47          | Water  | 05/25/16 13:05 | 05/26/16 13:48 |
| 680-125713-2  | DUP-1            | Water  | 05/25/16 12:00 | 05/26/16 13:48 |

#### **Case Narrative**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-125713-1 SDG: ENV0000123996/R9415575

Job ID: 680-125713-1

**Laboratory: TestAmerica Savannah** 

Narrative

Client: AMEC Foster Wheeler E & I, Inc Project: CSX GA, Hutchinson Island, VRP Report Number: 680-125713-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

#### **RECEIPT**

The samples were received on 05/26/2016; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 4.4 C.

#### **AMMONIA**

Samples PDMW-47 (680-125713-1) and DUP-1 (680-125713-2) were analyzed for ammonia in accordance with EPA Method 350.1. The samples were analyzed on 06/01/2016.

Samples PDMW-47 (680-125713-1)[20X] and DUP-1 (680-125713-2)[20X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

2

4

0

9

10

11

# **Client Sample Results**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

Client Sample ID: PDMW-47

TestAmerica Job ID: 680-125713-1 SDG: ENV0000123996/R9415575

Lab Sample ID: 680-125713-1

Matrix: Water

Date Collected: 05/25/16 13:05 Date Received: 05/26/16 13:48

**General Chemistry** Analyte Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac Ammonia 29 5.0 mg/L 06/01/16 09:10 20

# **Client Sample Results**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-125713-1 SDG: ENV0000123996/R9415575

Lab Sample ID: 680-125713-2

Prepared

Matrix: Water

Dil Fac

20

Analyzed

06/01/16 09:10

**Client Sample ID: DUP-1** Date Collected: 05/25/16 12:00

Date Received: 05/26/16 13:48

| General Chemistry |        |           |     |     |      |   |  |
|-------------------|--------|-----------|-----|-----|------|---|--|
| Analyte           | Result | Qualifier | RL  | MDL | Unit | D |  |
| Ammonia           | 30     |           | 5.0 |     | mg/L | _ |  |

# **QC Sample Results**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-125713-1 SDG: ENV0000123996/R9415575

**Client Sample ID: Lab Control Sample** 

Limits

90 - 110

3

Method: 350.1 - Nitrogen, Ammonia

| Lab Sample ID: MB 680-435556/2 | Client Sample ID: Method Blank |
|--------------------------------|--------------------------------|
| Matrix: Water                  | Prep Type: Total/NA            |

Analysis Batch: 435556

Analyte

Ammonia

Lab Sample ID: LCS 680-435556/1

|         | MB     | MB        |      |     |      |   |          |                |         |
|---------|--------|-----------|------|-----|------|---|----------|----------------|---------|
| Analyte | Result | Qualifier | RL   | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Ammonia | 0.25   | U         | 0.25 |     | mg/L |   |          | 05/31/16 16:47 | 1       |

| Matrix: Water          |          |        |           |      |   |      | Prep 1   | Type: Total/NA |
|------------------------|----------|--------|-----------|------|---|------|----------|----------------|
| Analysis Batch: 435556 |          |        |           |      |   |      |          |                |
|                        | Spike    | LCS    | LCS       |      |   |      | %Rec.    |                |
| Analyte                | Added    | Result | Qualifier | Unit | D | %Rec | Limits   |                |
| Ammonia                | <br>1.00 | 0.961  |           | mg/L |   | 96   | 90 - 110 |                |

| Lab Sample ID: LCSD 680-435556/4<br>Matrix: Water |       |           | Client Sample ID: Lab Control Sample Type: |     |
|---------------------------------------------------|-------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Analysis Batch: 435556                            |       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                   | Spike | LCSD LCSD | %Rec.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RPD |

Result Qualifier

0.960

Unit

mg/L

Added

1.00

 $\frac{\text{RPD}}{0} \quad \frac{\text{Limit}}{30}$ 

# **QC Association Summary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-125713-1 SDG: ENV0000123996/R9415575

6

# **General Chemistry**

### Analysis Batch: 435556

| Lab Sample ID     | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|-------------------|------------------------|-----------|--------|--------|------------|
| 680-125713-1      | PDMW-47                | Total/NA  | Water  | 350.1  |            |
| 680-125713-2      | DUP-1                  | Total/NA  | Water  | 350.1  |            |
| LCS 680-435556/1  | Lab Control Sample     | Total/NA  | Water  | 350.1  |            |
| LCSD 680-435556/4 | Lab Control Sample Dup | Total/NA  | Water  | 350.1  |            |
| MB 680-435556/2   | Method Blank           | Total/NA  | Water  | 350.1  |            |

A

5

7

8

9

4 4

11

#### **Lab Chronicle**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-125713-1 SDG: ENV0000123996/R9415575

Client Sample ID: PDMW-47

Lab Sample ID: 680-125713-1

Matrix: Water

Date Collected: 05/25/16 13:05 Date Received: 05/26/16 13:48

|           | Batch    | Batch            |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|------------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method           | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 350.1            |     | 20     | 2 mL    | 2 mL   | 435556 | 06/01/16 09:10 | JME     | TAL SAV |
|           | Instrume | ent ID: KONELAB1 |     |        |         |        |        |                |         |         |

Lab Sample ID: 680-125713-2

Matrix: Water

**Client Sample ID: DUP-1** Date Collected: 05/25/16 12:00 Date Received: 05/26/16 13:48

| Prep Type | Batch<br>Type | Batch<br>Method  | Run | Dil<br>Factor | Initial<br>Amount | Final<br>Amount | Batch<br>Number | Prepared or Analyzed | Analyst | Lab     |
|-----------|---------------|------------------|-----|---------------|-------------------|-----------------|-----------------|----------------------|---------|---------|
| Total/NA  | Analysis      | 350.1            |     | 20            | 2 mL              | 2 mL            | 435556          | 06/01/16 09:10       | JME     | TAL SAV |
|           | Instrume      | ent ID: KONELAB1 |     |               |                   |                 |                 |                      |         |         |

**Laboratory References:** 

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

# **Method Summary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-125713-1 SDG: ENV0000123996/R9415575

3

| Method | Method Description | Protocol | Laboratory |
|--------|--------------------|----------|------------|
| 350.1  | Nitrogen, Ammonia  | MCAWW    | TAL SAV    |

#### Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

#### Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

8

9

1 0

11

# **Login Sample Receipt Checklist**

Client: AMEC Foster Wheeler E & I, Inc

Job Number: 680-125713-1

SDG Number: ENV0000123996/R9415575

List Source: TestAmerica Savannah

Login Number: 125713 List Number: 1

Creator: White, Menica R

| Creator: White, Menica R                                                                                  |        |         |
|-----------------------------------------------------------------------------------------------------------|--------|---------|
| Question                                                                                                  | Answer | Comment |
| Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td> | N/A    |         |
| The cooler's custody seal, if present, is intact.                                                         | True   |         |
| Sample custody seals, if present, are intact.                                                             | True   |         |
| The cooler or samples do not appear to have been compromised or tampered with.                            | True   |         |
| Samples were received on ice.                                                                             | True   |         |
| Cooler Temperature is acceptable.                                                                         | True   |         |
| Cooler Temperature is recorded.                                                                           | True   |         |
| COC is present.                                                                                           | True   |         |
| COC is filled out in ink and legible.                                                                     | True   |         |
| COC is filled out with all pertinent information.                                                         | True   |         |
| Is the Field Sampler's name present on COC?                                                               | N/A    |         |
| There are no discrepancies between the containers received and the COC.                                   | True   |         |
| Samples are received within Holding Time (excluding tests with immediate HTs)                             | True   |         |
| Sample containers have legible labels.                                                                    | True   |         |
| Containers are not broken or leaking.                                                                     | True   |         |
| Sample collection date/times are provided.                                                                | True   |         |
| Appropriate sample containers are used.                                                                   | True   |         |
| Sample bottles are completely filled.                                                                     | True   |         |
| Sample Preservation Verified.                                                                             | True   |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs                          | True   |         |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").                           | N/A    |         |
| Multiphasic samples are not present.                                                                      | True   |         |
| Samples do not require splitting or compositing.                                                          | True   |         |
| Residual Chlorine Checked.                                                                                | N/A    |         |

TestAmerica Savannah

4

6

8

10

. .

11

# **Certification Summary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-125713-1 SDG: ENV0000123996/R9415575

### **Laboratory: TestAmerica Savannah**

The certifications listed below are applicable to this report.

| Authority | Program       | EPA Region | Certification ID | <b>Expiration Date</b> |
|-----------|---------------|------------|------------------|------------------------|
| Georgia   | State Program | 4          | 803              | 06-30-16 *             |

\* Certification renewal pending - certification considered valid.

A

A

0

9

10

11



THE LEADER IN ENVIRONMENTAL TESTING

# **ANALYTICAL REPORT**

TestAmerica Laboratories, Inc.

TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

TestAmerica Job ID: 680-127916-1

TestAmerica SDG: ENV0000123996 / R9415575 Client Project/Site: CSX GA, Hutchinson Island, VRP

#### For:

AMEC Foster Wheeler E & I, Inc 1075 Big Shanty Road, NW Suite 100 Kennesaw, Georgia 30144

Attn: Mr. Matthew Grostick

Sion Horey

Authorized for release by: 7/28/2016 9:15:20 AM

Lisa Harvey, Project Manager II (912)354-7858 e.3221 lisa.harvey@testamericainc.com

Links

Review your project results through

Total Access

**Have a Question?** 



**Visit us at:** www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

# **Definitions/Glossary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-127916-1 SDG: ENV0000123996 / R9415575

#### a

### **Qualifiers**

## **General Chemistry**

| ualifier Description | on                   |
|----------------------|----------------------|
| ١                    | ualifier Description |

U Indicates the analyte was analyzed for but not detected.

## **Glossary**

| Abbreviation   | These commonly used abbreviations may or may not be present in this report.                                 |
|----------------|-------------------------------------------------------------------------------------------------------------|
| ¤              | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |
| %R             | Percent Recovery                                                                                            |
| CFL            | Contains Free Liquid                                                                                        |
| CNF            | Contains no Free Liquid                                                                                     |
| DER            | Duplicate error ratio (normalized absolute difference)                                                      |
| Dil Fac        | Dilution Factor                                                                                             |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |
| DLC            | Decision level concentration                                                                                |
| MDA            | Minimum detectable activity                                                                                 |
| EDL            | Estimated Detection Limit                                                                                   |
| MDC            | Minimum detectable concentration                                                                            |
| MDL            | Method Detection Limit                                                                                      |
| N A I          | Minimum Lavel (District)                                                                                    |

| MDL | Method Detection Limit |
|-----|------------------------|
| ML  | Minimum Level (Dioxin) |
| NC  | Not Calculated         |

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control RER Relative error ratio

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

# **Sample Summary**

Matrix

Water

Water

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

Client Sample ID

PDMW-47

DUP-1

Lab Sample ID

680-127916-1

680-127916-2

TestAmerica Job ID: 680-127916-1 SDG: ENV0000123996 / R9415575

| SDG: ENV0000123996 / R9415575 |
|-------------------------------|
|                               |
|                               |

07/26/16 11:18 07/26/16 12:06

| Collected      | Received       |
|----------------|----------------|
| 07/26/16 11:18 | 07/26/16 12:06 |

3

4

**O** 

<del>ا</del>

9

#### **Case Narrative**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-127916-1 SDG: ENV0000123996 / R9415575

3

Job ID: 680-127916-1

**Laboratory: TestAmerica Savannah** 

Narrative

Client: AMEC Foster Wheeler E & I, Inc Project: CSX GA, Hutchinson Island, VRP Report Number: 680-127916-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

#### **RECEIPT**

The samples were received on 07/26/2016; the samples arrived in good condition. The temperature of the coolers at receipt was 7.2 C.

#### AMMONIA

Samples PDMW-47 (680-127916-1) and DUP-1 (680-127916-2) were analyzed for ammonia in accordance with EPA Method 350.1. The samples were analyzed on 07/27/2016.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

\_

9

10

11

# **Client Sample Results**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-127916-1 SDG: ENV0000123996 / R9415575

Client Sample ID: PDMW-47

Date Collected: 07/26/16 11:18

Lab Sample ID: 680-127916-1

Matrix: Water

Date Received: 07/26/16 12:06 Matrix: Water

General ChemistryAnalyteResult AmmoniaQualifierRL QualifierMDL Unit mg/LD Prepared mg/LAnalyzed Dil Fac D7/27/16 13:54

5

R

9

11

# **Client Sample Results**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

TestAmerica Job ID: 680-127916-1 SDG: ENV0000123996 / R9415575

**Client Sample ID: DUP-1** 

Lab Sample ID: 680-127916-2

Matrix: Water

Date Collected: 07/26/16 11:18 Date Received: 07/26/16 12:06

| General Chemistry |                  |     |          |   |          |                |         |
|-------------------|------------------|-----|----------|---|----------|----------------|---------|
| Analyte           | Result Qualifier | RL  | MDL Unit | D | Prepared | Analyzed       | Dil Fac |
| Ammonia           | 19               | 2.5 | mg/L     |   |          | 07/27/16 14:03 | 10      |

# **QC Sample Results**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-127916-1 SDG: ENV0000123996 / R9415575

2

Method: 350.1 - Nitrogen, Ammonia

Lab Sample ID: MB 680-443127/15

Client Sample ID: Method Blank
Matrix: Water

Prep Type: Total/NA

Analysis Batch: 443127

 Analyte
 Result Ammonia
 Qualifier Qualifier
 RL Ol.25
 MDL mg/L
 Unit Department
 D prepared Dil Fac Ol.7/27/16 13:44
 Analyzed Dil Fac Ol.7/27/16 13:44
 D prepared Dil Fac Ol.7/27/16 13:44

Lab Sample ID: LCS 680-443127/10

Matrix: Water

Analysis Batch: 443127

Spike

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

\*\*Rec.\*\*

 Analyte
 Added Ammonia
 Result Qualifier 1.00
 Unit Message
 Description
 WRec Property
 Limits Property

Lab Sample ID: LCSD 680-443127/11

Matrix: Water

Prep Type: Total/NA

Analysis Batch: 443127

Spike LCSD LCSD %Rec. **RPD** Added RPD Analyte Result Qualifier Unit D %Rec Limits Limit Ammonia 1.00 1.00 mg/L 100

# **QC Association Summary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP TestAmerica Job ID: 680-127916-1 SDG: ENV0000123996 / R9415575

## 2

# **General Chemistry**

# Analysis Batch: 443127

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| 680-127916-1       | PDMW-47                | Total/NA  | Water  | 350.1  |            |
| 680-127916-2       | DUP-1                  | Total/NA  | Water  | 350.1  |            |
| MB 680-443127/15   | Method Blank           | Total/NA  | Water  | 350.1  |            |
| LCS 680-443127/10  | Lab Control Sample     | Total/NA  | Water  | 350.1  |            |
| LCSD 680-443127/11 | Lab Control Sample Dup | Total/NA  | Water  | 350.1  |            |

4

5

7

8

4.0

11

4.6

## **Lab Chronicle**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

TestAmerica Job ID: 680-127916-1 SDG: ENV0000123996 / R9415575

Lab Sample ID: 680-127916-1

**Matrix: Water** 

**Client Sample ID: PDMW-47** Date Collected: 07/26/16 11:18 Date Received: 07/26/16 12:06

|           | Batch      | Batch        |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|------------|--------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type       | Method       | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis   | 350.1        |     | 10     | 2 mL    | 2 mL   | 443127 | 07/27/16 13:54 | ALS     | TAL SAV |
|           | Instrument | ID: KONELAB1 |     |        |         |        |        |                |         |         |

Lab Sample ID: 680-127916-2

**Client Sample ID: DUP-1** Date Collected: 07/26/16 11:18 **Matrix: Water** 

Date Received: 07/26/16 12:06

| Prep Type | Batch<br>Type | Batch<br>Method | Run | Dil<br>Factor | Initial<br>Amount | Final<br>Amount | Batch<br>Number | Prepared or Analyzed | Analyst | Lab     |
|-----------|---------------|-----------------|-----|---------------|-------------------|-----------------|-----------------|----------------------|---------|---------|
| Total/NA  | Analysis      | 350.1           |     | 10            | 2 mL              | 2 mL            | 443127          | 07/27/16 14:03       | ALS     | TAL SAV |
|           | Instrument    | ID: KONELAB1    |     |               |                   |                 |                 |                      |         |         |

**Laboratory References:** 

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

# **Method Summary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

**Method Description** 

Nitrogen, Ammonia

TestAmerica Job ID: 680-127916-1 SDG: ENV0000123996 / R9415575

TAL SAV

Protocol Laboratory

**MCAWW** 

1

#### **Protocol References:**

Method

350.1

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

#### Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

4

6

\_

10

11

## **Login Sample Receipt Checklist**

Client: AMEC Foster Wheeler E & I, Inc

Job Number: 680-127916-1

SDG Number: ENV0000123996 / R9415575

Login Number: 127916 List Source: TestAmerica Savannah

List Number: 1

Creator: White, Menica R

| Creator. Writte, Menica IX                                                                                |        |                                                              |
|-----------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------|
| Question                                                                                                  | Answer | Comment                                                      |
| Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td> | N/A    |                                                              |
| The cooler's custody seal, if present, is intact.                                                         | True   |                                                              |
| Sample custody seals, if present, are intact.                                                             | True   |                                                              |
| The cooler or samples do not appear to have been compromised or tampered with.                            | True   |                                                              |
| Samples were received on ice.                                                                             | True   |                                                              |
| Cooler Temperature is acceptable.                                                                         | True   | Received same day of collection; chilling process has begun. |
| Cooler Temperature is recorded.                                                                           | True   |                                                              |
| COC is present.                                                                                           | True   |                                                              |
| COC is filled out in ink and legible.                                                                     | True   |                                                              |
| COC is filled out with all pertinent information.                                                         | True   |                                                              |
| Is the Field Sampler's name present on COC?                                                               | N/A    |                                                              |
| There are no discrepancies between the containers received and the COC.                                   | True   |                                                              |
| Samples are received within Holding Time (excluding tests with immediate HTs)                             | True   |                                                              |
| Sample containers have legible labels.                                                                    | True   |                                                              |
| Containers are not broken or leaking.                                                                     | True   |                                                              |
| Sample collection date/times are provided.                                                                | True   |                                                              |
| Appropriate sample containers are used.                                                                   | True   |                                                              |
| Sample bottles are completely filled.                                                                     | True   |                                                              |
| Sample Preservation Verified.                                                                             | True   |                                                              |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs                          | True   |                                                              |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").                           | N/A    |                                                              |
| Multiphasic samples are not present.                                                                      | True   |                                                              |
| Samples do not require splitting or compositing.                                                          | True   |                                                              |
| Residual Chlorine Checked.                                                                                | N/A    |                                                              |
|                                                                                                           |        |                                                              |

2

4

6

8

10

1

10

|                                              |                           |                                    | LABORATORY                                                                                                                                                                                           | INFORMATION                           | NOL                              |                                   |                                |                           |                         |                         |                                                     | * 000                        |                                             |               |                 |
|----------------------------------------------|---------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------|-----------------------------------|--------------------------------|---------------------------|-------------------------|-------------------------|-----------------------------------------------------|------------------------------|---------------------------------------------|---------------|-----------------|
| ٠, ٠                                         |                           | 1                                  | TestAmerica Sava                                                                                                                                                                                     | nnah - 5102 La<br>Septen 410          | Roche Avenu                      | e, Savannah,<br>e Mist No⇒b       | 6A 31404 P                     | 912-354-78                | 58 F 912-               | 352-0165                | -                                                   | MOLTA MEDICATION TRANSPORTED | NO. LA PROPERTIES                           |               |                 |
|                                              |                           | CLAIN                              | TestAmenca Tam                                                                                                                                                                                       | i odilitili - 4 lu<br>va - 6712 Benis | min Boad St                      | orw, notati                       | alitori, UR 4-<br>va. El 33634 | 7 zu P. 33.<br>P-813-885  | 7497 F 8:               | r ssu-487-07            |                                                     |                              | NIOI PINIS                                  |               |                 |
|                                              | TRANSPORTATION            | CUSTODY                            | ☐ TestAmerica Pensacola - 3355 MoLemore Ditive, Pensacola, FL 22514 P · 850-474-1001 F. 850-478-2671                                                                                                 | acola - 3355 N                        | IcLemore Day                     | re, Pensacola,                    | FL 32514                       | · 850-474-1               | 001 F: 850              | 478-2671                | _                                                   | Shipment Method:             |                                             |               | (###            |
|                                              |                           |                                    | ☐ TestAmerica Buffalo - 10 Hazelwood Drive, Suite 106, Amherst, NY 14228 P 716-691-2600 F 716-961 ☐ TestAmerica Chicago - 2417 Bond Street, University Park, IL 50466 P 708-534-5200 F: 708-534-5211 | ilo - 10 Hazelw<br>ago - 2417 Bor     | ood Drive, Su<br>id Street, Univ | rte 106, Amhe<br>rersity Park, I  | ırst, NY 1422<br>L 60466 P     | 3 P 716-69<br>708-534-520 | 11-2600 F<br>0 F: 708-5 | 716-961-7991<br>34-5211 |                                                     | Shipment Tracking No:        | 8                                           |               |                 |
| ŭ                                            | CSXT PROJECT INFORMATION  | NOI                                | Proj. State (State                                                                                                                                                                                   | of Origin)                            |                                  | CONSULTANT INFORMATION            | ANT INFO                       | RMATION                   | _                       |                         | Project #:                                          |                              |                                             |               |                 |
| ర                                            | CSXT Project Number: 94 ( | 5275                               | Proj. City:                                                                                                                                                                                          | 4000                                  |                                  | Company: AME                      | ME                             | THE STATE OF              | Str                     | FOSTEr Whole IT         | PW. Mat                                             | ラオ                           | Groshk                                      |               |                 |
| ర                                            | CSXT Project Name:        | hson Island                        |                                                                                                                                                                                                      |                                       |                                  | Address:                          | 1075                           | 220                       | think.                  | Y RD H                  | Email:                                              |                              |                                             |               |                 |
| ပြိ                                          | CSXT Contact:             |                                    | LWON:                                                                                                                                                                                                |                                       |                                  | City, State, Zip:                 | PANASK                         | ₩<br>6                    | 7                       | 71510                   | W GK 30144 Phone-770-191-3400                       | 70-12                        | 1-3400 Fax:                                 |               |                 |
| <u> </u>                                     | Turnaround Time:          | Standard 6-13 Days                 | Preservative Codes:                                                                                                                                                                                  | Sodes:                                | 3 = Sulfur                       | Sulfuric Acid                     | Ž                              | Note                      |                         |                         |                                                     |                              | COMMENTS                                    | LAB USE       | JSE             |
| دادا                                         | X 1 Day Rush              | Specify # Days                     | 0 = No Preservatives                                                                                                                                                                                 | atives                                | 4 = Sodiu                        | 4 = Sodium Thiosulfate            |                                | Pres.                     | MET                     | HODS FOR                | METHODS FOR ANALYSIS                                |                              |                                             |               |                 |
| لال                                          |                           | Standard 14 Days                   | 1 = Hydrochloric Acid<br>2 = Nitric Acid                                                                                                                                                             | ic Acid                               | 5 = Sodiui<br>6 = Other          | 5 = Sodium Hydroxide<br>6 = Other |                                | Code                      |                         |                         |                                                     |                              |                                             |               | <u></u>         |
| [ CD,                                        | Deljverables:             | Other Deliv:                       | Matrix Codes:                                                                                                                                                                                        |                                       | SO = Soil                        |                                   | LIQ = Liquid                   |                           |                         |                         |                                                     |                              |                                             | ~ ~           |                 |
| ראן ר                                        | CSXT Standard (Level II)  |                                    | GW = Groundwater                                                                                                                                                                                     | vater                                 | SL = Sludge                      | e g                               |                                | ,                         |                         |                         |                                                     |                              |                                             |               |                 |
|                                              | Level III                 | ✓ EDD Required, Format:            | WW = Waste Water                                                                                                                                                                                     | Vater<br>Water                        | OI = Oil<br>SOL = Other Solid    | ner Solid                         |                                |                           | -A                      |                         |                                                     |                              |                                             | ,             |                 |
|                                              | SAMPLE INFORMATION        |                                    |                                                                                                                                                                                                      |                                       |                                  |                                   |                                | T                         | 111                     |                         |                                                     |                              |                                             |               | u lauk          |
| _                                            |                           | Containers                         | Sample                                                                                                                                                                                               | Collection                            |                                  | Filtered                          | Type M                         | Matrix                    |                         |                         |                                                     | -                            |                                             | ·             |                 |
| 12 c                                         | Sample Identification     | tion Number & Type                 | Date                                                                                                                                                                                                 | Time                                  | Sampler                          | YorN                              | Comp<br>or Grab                | Code                      |                         |                         |                                                     |                              |                                             |               |                 |
| f 13                                         | 17-MWGO                   |                                    | 7/26/10                                                                                                                                                                                              | 1118                                  | *                                | 1                                 | 9                              | X ~9                      |                         |                         |                                                     |                              |                                             |               |                 |
| <u> </u>                                     | 1-411                     |                                    | 7/26/16                                                                                                                                                                                              | 1118                                  | 15                               | N                                 | 9 3                            | X Sign                    |                         |                         |                                                     |                              |                                             |               |                 |
|                                              |                           |                                    |                                                                                                                                                                                                      |                                       |                                  |                                   |                                |                           |                         |                         |                                                     |                              |                                             |               |                 |
| <u>L</u>                                     |                           |                                    |                                                                                                                                                                                                      |                                       |                                  |                                   |                                |                           |                         |                         |                                                     |                              |                                             | Wita NEW C    |                 |
| <u>L</u>                                     |                           |                                    |                                                                                                                                                                                                      |                                       |                                  |                                   |                                |                           |                         |                         |                                                     |                              | :                                           | - Table -     |                 |
| L                                            |                           | ^                                  |                                                                                                                                                                                                      |                                       |                                  |                                   |                                |                           |                         |                         |                                                     |                              |                                             | e Milei e con |                 |
| <u>L</u>                                     |                           |                                    |                                                                                                                                                                                                      |                                       |                                  |                                   |                                |                           |                         |                         |                                                     |                              |                                             |               |                 |
| <u>                                     </u> |                           |                                    |                                                                                                                                                                                                      |                                       |                                  |                                   |                                |                           |                         |                         |                                                     |                              |                                             |               |                 |
|                                              |                           |                                    |                                                                                                                                                                                                      |                                       |                                  | -                                 |                                |                           |                         | 680-12                  | 680-127916 Chain of Custody                         | of Custod                    |                                             |               |                 |
|                                              |                           |                                    |                                                                                                                                                                                                      | ,                                     |                                  | 7                                 |                                |                           |                         | 1                       | 1                                                   | -                            |                                             |               |                 |
| Œ                                            | Relinquished By. Man      | Date/Time:                         | 1207                                                                                                                                                                                                 | Reported By:                          | ».<br>» 14 ° L                   | Z                                 | $\rightarrow$                  |                           | Date/Time:<br>7-2(0-1)  | 6 12:0G                 |                                                     | ents & Sp<br>``` < h         | Comments & Special Analytical Requirements: | Requireme     | ints:           |
|                                              | Relinquished By:          | Date/Time:                         |                                                                                                                                                                                                      | Received By:                          | λ;                               | <i>)</i>                          |                                | Date                      | Date/Time.              |                         |                                                     | · ·                          |                                             | <u> </u>      |                 |
| <u></u>                                      | Relinquished By:          | Вате/Тіπе:                         |                                                                                                                                                                                                      | Received By.                          |                                  |                                   |                                | Dat                       | Date/Time:              |                         |                                                     | 10 V                         | 1.4 1                                       | #             |                 |
| 2016                                         | lecelved By Laboratory:   | Date Time                          | 5-2016                                                                                                                                                                                               | Lab Remarks:                          | ks:                              |                                   |                                | LAE                       | LAB USE: (              | Custody Intact          | Custod<br>#                                         | Custody Seal #<br>#          | LAB Log Number                              | ımber         |                 |
| <b>J</b> ō                                   | RIGINAL – RETURINTO LABOR | - RETURNTO LABORATORY WITH SAMPLES | 18:08                                                                                                                                                                                                |                                       |                                  |                                   |                                | OANI                      | ICE MUST                | BE SUBMIT               | INVOICE MUST BE SUBMITTED TO CSXT WITH ORIGINAL COC | T WITH ORI                   | GINAL COC                                   | TAL           | TAL-6006 (0509) |

## **Certification Summary**

Client: AMEC Foster Wheeler E & I, Inc Project/Site: CSX GA, Hutchinson Island, VRP

TestAmerica Job ID: 680-127916-1 SDG: ENV0000123996 / R9415575

## Laboratory: TestAmerica Savannah

The certifications listed below are applicable to this report.

| Authority | Program       | EPA Region | Certification ID | <b>Expiration Date</b> |
|-----------|---------------|------------|------------------|------------------------|
| Georgia   | State Program | 4          | 803              | 06-30-17               |

## APPENDIX B BORING LOGS



DRILLER: Geolab EQUIPMENT: Geoprobe

METHOD: Direct Push/Hollow Stem Auger

HOLE DIA.: 8 inches

REMARKS: Groundwater monitoring well installed. Stabilized water

depth 3.01 feet.

Prepared by: S. Foley Reviewed by: Chuck Ferry

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER INTERFACES BEWEEN STRATA ARE APPROXIMATE. TRANSITIONS BETWEEN STRATA MAY BE GRADUAL.

## SOIL TEST BORING RECORD

**BORING NO.:** PDMW-46

**PROJECT:** CSXT - Hutchinson Island

LOCATION: Savannah, Georgia

**DRILLED:** June 2, 2014

PROJECT NO.: 6-4300-5240 PAGE 1 OF 1



| D                                            | SOIL CLASSIFICATION                                                    | L        | E<br>L      | S                     | ΑN               | IPLES                      | Ī   | PL (%    | %)    |      | NM<br>C | (%)    | ]  | L (%)     |     |
|----------------------------------------------|------------------------------------------------------------------------|----------|-------------|-----------------------|------------------|----------------------------|-----|----------|-------|------|---------|--------|----|-----------|-----|
| E<br>P                                       | AND REMARKS                                                            | E<br>G   | L<br>E<br>V | I                     | Т                | N-COUNT                    |     | •        |       |      |         | ES (%) |    | -æ        |     |
| T<br>H<br>(ft)                               | SEE KEY SHEET FOR EXPLANATION OF SYMBOLS AND ABBREVIATIONS USED BELOW. | E<br>N   |             | I<br>D<br>E<br>N<br>T | T<br>Y<br>P<br>E | 1st 6"<br>2nd 6"<br>3rd 6" |     |          |       |      |         | (bpf)  |    |           |     |
| - (π)<br>- 0 -                               | SYMBOLS AND ABBREVIATIONS USED BELOW.  ALLUVIAL - Tan medium SAND.     | D        | (ft)        | T                     | E                | 1s 2n 3r                   |     | 10 2     | 20 30 | 0 40 | ) 5(    | 60     | 70 | 80 90     | 100 |
| -                                            | ALLOVIAL - Tan medium SAND.                                            |          |             | -                     |                  |                            | -   |          |       |      |         |        |    |           | -   |
|                                              | Gray fine to medium SAND.                                              |          |             | 1                     |                  |                            | -   |          |       |      |         |        |    |           |     |
|                                              | -                                                                      | <b>▼</b> |             | 1                     |                  |                            |     |          |       |      |         |        |    |           | 11  |
| - 5 -                                        | Gray brown clayey fine SAND.                                           | - /////  |             | -                     |                  |                            | -   |          |       |      |         |        |    |           |     |
| <b> </b>                                     | Gray brown fine sandy CLAY.                                            |          |             | -                     |                  |                            | -   |          |       |      |         |        |    |           | 十目  |
|                                              |                                                                        | - ////// | - ·         | ]                     |                  |                            | Ĺ   |          |       |      |         |        |    |           | 1 目 |
| -                                            | Dark gray silty CLAY.                                                  |          |             | -                     |                  |                            | -   |          |       |      |         |        |    |           | -   |
| - 10 -                                       | Boring terminated at 10 feet.                                          |          |             | -                     |                  |                            | -   | <u> </u> |       |      |         |        | -  | ++        |     |
| [                                            |                                                                        |          | - ·         |                       |                  |                            | ļ   |          |       |      |         |        |    |           | _   |
| -                                            | -                                                                      |          |             | -                     |                  |                            | -   |          |       |      |         |        |    |           | ]   |
| -                                            | -                                                                      |          |             | -                     |                  |                            | +   |          |       |      |         |        |    |           | -   |
| _ 15 -                                       |                                                                        |          |             |                       |                  |                            |     |          |       |      |         |        |    | $\dagger$ |     |
| -                                            |                                                                        |          |             |                       |                  |                            | F   |          |       |      |         |        |    |           |     |
| -                                            | -                                                                      |          |             | 1                     |                  |                            | -   |          |       |      |         |        |    |           | 4   |
| 20                                           |                                                                        |          |             | 1                     |                  |                            | -   |          |       |      |         |        |    |           | -   |
| - 20 -                                       |                                                                        |          |             |                       |                  |                            |     |          |       |      |         |        |    |           |     |
| ŀ                                            |                                                                        |          |             | -                     |                  |                            | F   |          |       |      |         |        | ŀ  |           | -   |
| -                                            |                                                                        |          | - ,         | 1                     |                  |                            | -   |          |       |      |         |        |    |           | -   |
| - 25 -                                       |                                                                        |          | - <i>·</i>  |                       |                  |                            |     |          |       |      |         |        |    |           |     |
| - 23                                         |                                                                        |          |             |                       |                  |                            | -   |          |       |      |         |        |    |           |     |
| 2/14                                         |                                                                        |          |             | -                     |                  |                            | -   |          |       |      |         |        |    |           | -   |
| 1/9 I                                        |                                                                        |          |             | 1                     |                  |                            | -   |          |       |      |         |        |    |           | -   |
| AMEC.GDT 6/12/14                             |                                                                        |          |             | ]                     |                  |                            |     |          |       |      |         |        |    |           |     |
|                                              |                                                                        |          |             | -                     |                  |                            | -   |          |       |      |         |        |    |           | -   |
| GP.                                          | -                                                                      |          |             |                       |                  |                            | -   |          |       |      |         |        |    |           | -   |
| LAN<br>L                                     |                                                                        |          | -<br>-      |                       |                  |                            |     |          |       |      |         |        |    |           | ]   |
| ☑<br>☑                                       | _                                                                      |          |             | _                     |                  |                            |     |          |       |      |         |        | _  | $\perp$   |     |
| Š<br>L                                       | -                                                                      |          |             | -                     |                  |                            | -   |          |       |      |         |        |    |           | -   |
| <u> </u>                                     |                                                                        |          |             | 1                     |                  |                            | -   |          |       |      |         |        |    |           | -   |
| #[<br> -                                     |                                                                        |          | - ·         | ]                     |                  |                            |     |          |       |      |         |        |    |           |     |
| S - 40 -                                     | -                                                                      |          |             | -                     |                  |                            | _   | -        |       | _    |         | _      |    | +         |     |
| SOIL TEST BORING CSXT-HUTCHINSON ISLAND, GPJ | -                                                                      |          |             | 1                     |                  |                            | -   |          |       |      |         |        |    |           | +   |
| SSTB                                         | ]                                                                      |          | <u>.</u> .  | ]                     | $  \  $          |                            |     |          |       |      |         |        |    |           | _   |
| # -<br>  -                                   |                                                                        |          | - ·         | 1                     |                  |                            |     |          |       |      |         |        |    |           | ]   |
| SL <sub>45</sub> -                           |                                                                        |          |             | <u> </u>              |                  |                            | 0 : | 10 2     | 0 30  | ) 40 | ) 50    | ) 60   | 70 | 80 90     | 100 |

DRILLER: Geolab

EQUIPMENT: Geoprobe METHOD:

Direct Push/Hollow Stem Auger

HOLE DIA.: REMARKS:

Groundwater monitoring well installed. Stabilized water

depth 3.52 feet.

Prepared by: S. Foley Reviewed by: Chuck Ferry

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BEWEEN STRATA ARE APPROXIMATE. TRANSITIONS BETWEEN STRATA MAY BE GRADUAL.

## SOIL TEST BORING RECORD

**BORING NO.:** PDMW-47

**PROJECT:** CSXT - Hutchinson Island

LOCATION: Savannah, Georgia

June 2, 2014 DRILLED:

**PROJECT NO.:** 6-4300-5240

PAGE 1 OF 1





DRILLER: Geolab
EQUIPMENT: Hand Auger
METHOD: Hand Auger

HOLE DIA.:

REMARKS: Groundwater monitoring well installed. Stabilized water

depth 2.19 feet.

Prepared by: S. Foley Reviewed by: Chuck Ferry

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BEWEEN STRATA ARE APPROXIMATE. TRANSITIONS BETWEEN STRATA MAY BE GRADUAL.

## SOIL TEST BORING RECORD

**BORING NO.:** PDMW-48

**PROJECT:** CSXT - Hutchinson Island **LOCATION:** Savannah, Georgia

**DRILLED:** June 3, 2014 **PROJECT NO.:** 6-4300-5240

ECT NO.: 6-4300-5240 PAGE 1 OF 1





DRILLER: Geolab
EQUIPMENT: Hand Auger
METHOD: Hand Auger
HOLE DIA.: 6 inches

REMARKS: Groundwater monitoring well installed. Stabilized water

depth 1.47 feet.

Prepared by: S. Foley Reviewed by: Chuck Ferry

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER INTERFACES BEWEEN STRATA ARE APPROXIMATE. TRANSITIONS BETWEEN STRATA MAY BE GRADUAL.

## SOIL TEST BORING RECORD

**BORING NO.:** PDMW-49

**PROJECT:** CSXT - Hutchinson Island **LOCATION:** Savannah, Georgia

**DRILLED:** June 3, 2014 **PROJECT NO.:** 6-4300-5240

PAGE 1 OF 1





DRILLER: Geolab EQUIPMENT: Hand Auger METHOD: Hand Auger

HOLE DIA.: 6 inches REMARKS: Groundwater monitoring well installed. Stabilized water

depth 1.90 feet.

Prepared by: S. Foley Reviewed by: Chuck Ferry

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BEWEEN STRATA ARE APPROXIMATE TRANSITIONS BETWEEN STRATA MAY BE GRADUAL.

## SOIL TEST BORING RECORD

**BORING NO.:** PDMW-50

**PROJECT:** CSXT - Hutchinson Island

LOCATION: Savannah, Georgia

**DRILLED:** June 3, 2014

PROJECT NO.: 6-4300-5240 PAGE 1 OF 1





DRILLER: Geolab
EQUIPMENT: Hand Auger
METHOD: Hand Auger
HOLE DIA.: 6 inches

REMARKS: Groundwater monitoring well installed. Stabilized water

depth 2.41 feet.

Prepared by: S. Foley Reviewed by: Chuck Ferry

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BEWEEN STRATA ARE APPROXIMATE. TRANSITIONS BETWEEN STRATA MAY BE GRADUAL.

## SOIL TEST BORING RECORD

**BORING NO.:** PDMW-51

**PROJECT:** CSXT - Hutchinson Island

LOCATION: Savannah, Georgia DRILLED: June 3, 2014

PROJECT NO.: 6-4300-5240 PAGE 1 OF 1





DRILLER: Geolab
EQUIPMENT: Hand Auger
METHOD: Hand Auger
HOLE DIA.: 6 inches

REMARKS: Groundwater monitoring well installed. Stabilized water

depth 1.79 feet.

Prepared by: S. Foley Reviewed by: Chuck Ferry

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER INTERFACES BEWEEN STRATA ARE APPROXIMATE. TRANSITIONS BETWEEN STRATA MAY BE GRADUAL.

## SOIL TEST BORING RECORD

**BORING NO.:** PDMW-52

**PROJECT:** CSXT - Hutchinson Island

**LOCATION:** Savannah, Georgia **DRILLED:** June 3, 2014

**PROJECT NO.:** 6-4300-5240

PAGE 1 OF 1





DRILLER: Geolab EQUIPMENT: Geoprobe METHOD: Direct Push/HSA

HOLE DIA.: 2 inches/8 inches REMARKS:

Groundwater monitoring well installed. Stablized

groundwater depth 2.63 feet.

Prepared by: S. Foley Reviewed by: C. Ferry

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BEWEEN STRATA ARE APPROXIMATE. TRANSITIONS BETWEEN STRATA MAY BE GRADUAL.

## SOIL TEST BORING RECORD

**BORING NO.:** PDMW-53

PROJECT NO.:

PROJECT: CSXT - Hutchinson Island

**LOCATION:** Savannah, Georgia **DRILLED:** October 31, 2014 6-4300-5240

PAGE 1 OF 1



# APPENDIX C BIOCHLOR OUTPUT SHEETS

Table C-1 – Summary of Biochlor Input Parameters

|                   |                                                                         | V                                | alue                             |                                                                                                                                                                                                                                                  |
|-------------------|-------------------------------------------------------------------------|----------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data Type         | Parameter                                                               | Northern<br>Plume                | Southern<br>Plume                | Source of Data                                                                                                                                                                                                                                   |
| Hydrogeology      | Hydraulic Conductivity                                                  | 7.8 x 10 <sup>-4</sup> cm/sec    | 3 x 10 <sup>-3</sup><br>cm/sec   | Slug Test Results, AMEC Modified<br>Corrective Action Plan, dated June 6,<br>2009.                                                                                                                                                               |
|                   | Hydraulic Gradient                                                      | 0.0146                           | 0.0015                           | Static Water Level Measurements 11/3/14                                                                                                                                                                                                          |
|                   | Effective Porosity                                                      | 0.25                             | 0.25                             | Estimated based on typical sandy soil                                                                                                                                                                                                            |
| Dispersion        | Longitudinal Dispersivity Transverse Dispersivity Vertical Dispersivity | 30<br>0.1<br>1x10 <sup>-99</sup> | 60<br>0.1<br>1x10 <sup>-99</sup> | 10% of estimated plume length 0.1 x longitudinal dispersivity Biochlor recommended value                                                                                                                                                         |
| Adsorption        | Retardation Factor                                                      | 1.1                              | 1.1                              | Calculated from R=1+K <sub>oc</sub> x f <sub>oc</sub> x ρ/n for northern and southern plumes.                                                                                                                                                    |
|                   | Aquifer Matrix Density                                                  | 1.7 gm/cm <sup>3</sup>           | 1.7 gm/cm <sup>3</sup>           | Estimated based on typical density of sandy soil                                                                                                                                                                                                 |
|                   | Foc                                                                     | 0.001                            | 0.001                            | Default value                                                                                                                                                                                                                                    |
|                   | Koc                                                                     | 14                               | 14                               | Literature value                                                                                                                                                                                                                                 |
| Biotransformation | Biotransformation Rate<br>Coefficient                                   | 0.693                            | 0.21                             | Based on calibration to field data using 40-year simulation time (release of ammonia assumed in the 1970s). Started with literature values (Buss, S.R., Herbert, A.W., Morgan, P., & Thornton, S.F., 2003) and adjusted model to fit field data. |
| General           | Modeled Area Length                                                     | 200                              | 600                              | Northern plume modeled from TMW-1 to PDMW-49, located adjacent to drainage canal. Southern plume modeled from EW-1 to PDMW-30P.                                                                                                                  |
|                   | Modeled Area Width                                                      | 300                              | 180                              | Modeled area widths were estimated based on location of 100 mg/L isopleth.                                                                                                                                                                       |
|                   | Simulation Time                                                         | 150                              | 150                              | Simulation time from estimated release to point at which ammonia plume begins to recede.                                                                                                                                                         |
| Source Data       | Source Thickness, ft.                                                   | 10                               | 10                               | From monitoring well boring logs.                                                                                                                                                                                                                |
|                   | Source Width, ft.                                                       | 300                              | 100                              | Modeled as a single-plane source based on location of 100 mg/L isopleth.                                                                                                                                                                         |
|                   | Source Concentrations, mg/L                                             | 18000                            | 5000                             | TW-1 data represents the highest concentration detected to date. EW-1 initial concentration estimated based on current concentration and estimated release date.                                                                                 |

Table C-2 - Model Sensitivity Analysis; Calculated for May 2015 at PDMW-49

|                 | Hydraulic Conductivi              | ity (Raseline = | 7.8 v 10 <sup>-4</sup> cm/sec) |          |  |  |  |  |
|-----------------|-----------------------------------|-----------------|--------------------------------|----------|--|--|--|--|
| Constituent     | Tryarauno oonaactivi              |                 | tions (mg/L)                   |          |  |  |  |  |
| Constituent     | 2x Baseline                       | Baseline        | 0.5xBaseline                   | Observed |  |  |  |  |
| NH <sub>3</sub> | 296                               | 10.7            | 0.001                          | 0.63     |  |  |  |  |
| 11113           | Hydraulic Gra                     |                 |                                | 0.03     |  |  |  |  |
| Constituent     | Hydraulic Gra                     | -               | <u> </u>                       |          |  |  |  |  |
| Constituent     | 2x Baseline                       | Baseline        | tions (mg/L)<br>0.5x Baseline  | Observed |  |  |  |  |
| NH <sub>3</sub> | 2x Baseline<br>296                | 10.7            | 0.001                          | 0.63     |  |  |  |  |
| INF13           |                                   | rosity (Baselir |                                | 0.03     |  |  |  |  |
| Constituent     | Ellective For                     |                 | tions (mg/L)                   |          |  |  |  |  |
| Constituent     | 1.2x Baseline                     | Baseline        | 0.8x Baseline                  | Observed |  |  |  |  |
| NH <sub>3</sub> | 1.2X Baseline<br>1.85             | 10.7            | 49.8                           | 0.63     |  |  |  |  |
| INF13           | Longitudinal Disp                 |                 |                                | 0.03     |  |  |  |  |
| Constituent     | Longitudinai Disp                 |                 | •                              |          |  |  |  |  |
| Constituent     | 1.5x Baseline                     | Baseline        | tions (mg/L)<br>0.5x Baseline  | Observed |  |  |  |  |
| NH <sub>3</sub> | 22.7                              | 10.7            | 2.3                            | 0.63     |  |  |  |  |
|                 | erse Dispersivity (Bas            |                 |                                |          |  |  |  |  |
| Constituent     | erse Dispersivity (bas            |                 |                                | vity)    |  |  |  |  |
| Constituent     | Ov Deceline                       |                 | tions (mg/L)<br>0.5x Baseline  | Observed |  |  |  |  |
| NII I           | 2x Baseline                       | Baseline        | 10.7                           | Observed |  |  |  |  |
| NH <sub>3</sub> | 10.7                              | 10.7            |                                | 0.63     |  |  |  |  |
| Constituent     | Constituent Concentrations (mg/L) |                 |                                |          |  |  |  |  |
| Constituent     | 4. Ev. Deceline                   |                 | ` • ,                          | Observed |  |  |  |  |
| <b>N</b> 11.1   | 1.5x Baseline                     | Baseline        | 0.5x Baseline                  | Observed |  |  |  |  |
| NH <sub>3</sub> | 0.5                               | 10.7            | 14.1                           | 0.63     |  |  |  |  |
| 0               | Aquifer Matrix Der                |                 |                                |          |  |  |  |  |
| Constituent     | 4.0. D                            |                 | tions (mg/L)                   |          |  |  |  |  |
| NII I           | 1.2x Baseline                     | Baseline        | 0.90x Baseline                 | Observed |  |  |  |  |
| NH <sub>3</sub> | 10.6                              | 10.7            | 10.7                           | 0.63     |  |  |  |  |
| 0               | Foc (E                            | Baseline = 0.00 |                                |          |  |  |  |  |
| Constituent     | 4.5                               | 1               | tions (mg/L)                   |          |  |  |  |  |
|                 | 1.5x Baseline                     | Baseline        | 0.85x Baseline                 | Observed |  |  |  |  |
| NH <sub>3</sub> | 10.7                              | 10.7            | 10.7                           | 0.63     |  |  |  |  |
| 0               | Koc                               | (Baseline = 14  | •                              |          |  |  |  |  |
| Constituent     | 4.5 D P                           |                 | tions (mg/L)                   | Observed |  |  |  |  |
| NII I           | 1.5x Baseline                     | Baseline        |                                | Observed |  |  |  |  |
| NH <sub>3</sub> | 10.7                              | 10.7            | 0.03                           | 0.63     |  |  |  |  |
| On-stite of     | Biotransformation Ra              |                 | •                              |          |  |  |  |  |
| Constituent     | 4.5 D P                           |                 | tions (mg/L)                   | Observed |  |  |  |  |
| N 11 2          | 1.5x Baseline                     | Baseline        | 0.5x Baseline                  | Observed |  |  |  |  |
| NH <sub>3</sub> | 3.0                               | 10.7            | 114                            | 0.63     |  |  |  |  |
| 0               | First Order Decay                 | •               | •                              |          |  |  |  |  |
| Constituent     | 4.5 D P                           |                 | tions (mg/L)                   | Observed |  |  |  |  |
|                 | 1.5x Baseline                     | Baseline        | 0.5x Baseline                  | Observed |  |  |  |  |
| NH <sub>3</sub> | 1,632                             | 3,634           | 8,087                          | 3,600    |  |  |  |  |
| 0               | Source Wid                        | th (Baseline =  | ,                              |          |  |  |  |  |
| Constituent     | 4.5. D. "                         |                 | tions (mg/L)                   |          |  |  |  |  |
|                 | 1.5x Baseline                     | Baseline        | 0.85x Baseline                 | Observed |  |  |  |  |
| NH <sub>3</sub> | 10.7                              | 10.7            | 10.7                           | 0.63     |  |  |  |  |

Table C-3 - Model sensitivity analysis; calculated for May 2015 at PDMW-30P

|                                                                                                        | Hydraulic Conductivi                                                                                                                 | ity (Baseline -                                                                                                                                                                   | $3.0 \times 10^{-3} \text{ cm/sec}$                                                                                                                                                     |                                        |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--|--|--|--|--|
| Constituent                                                                                            | Hydraulic Collddciiv                                                                                                                 |                                                                                                                                                                                   | •                                                                                                                                                                                       |                                        |  |  |  |  |  |
| Constituent                                                                                            | 2x Baseline                                                                                                                          |                                                                                                                                                                                   | ions (mg/L)<br>0.5xBaseline*                                                                                                                                                            | Observed                               |  |  |  |  |  |
| NH <sub>3</sub>                                                                                        | 38.8                                                                                                                                 | Baseline<br>6.3                                                                                                                                                                   | 0.5XBaSelliTe<br>0.2                                                                                                                                                                    | Observed<br>1.1                        |  |  |  |  |  |
| INIT3                                                                                                  | Hydraulic Grad                                                                                                                       |                                                                                                                                                                                   |                                                                                                                                                                                         | 1.1                                    |  |  |  |  |  |
| Constituent                                                                                            | Hydraulic Grad                                                                                                                       | •                                                                                                                                                                                 | •                                                                                                                                                                                       |                                        |  |  |  |  |  |
| Constituent                                                                                            | Ov Deceline                                                                                                                          | 1                                                                                                                                                                                 | ions (mg/L)                                                                                                                                                                             | Observed                               |  |  |  |  |  |
| NII I                                                                                                  | 2x Baseline<br>38.8                                                                                                                  | Baseline<br>6.3                                                                                                                                                                   | 0.5x Baseline<br>0.2                                                                                                                                                                    | Observed                               |  |  |  |  |  |
| NH <sub>3</sub>                                                                                        |                                                                                                                                      |                                                                                                                                                                                   |                                                                                                                                                                                         | 1.1                                    |  |  |  |  |  |
| Constituent                                                                                            | Effective Por                                                                                                                        | rosity (Baselin                                                                                                                                                                   |                                                                                                                                                                                         |                                        |  |  |  |  |  |
| Constituent                                                                                            | 1.2x Baseline                                                                                                                        | Baseline                                                                                                                                                                          | ions (mg/L)<br>0.8x Baseline                                                                                                                                                            | Observed                               |  |  |  |  |  |
| NILI.                                                                                                  | <u> </u>                                                                                                                             | +                                                                                                                                                                                 |                                                                                                                                                                                         | Observed                               |  |  |  |  |  |
| NH <sub>3</sub>                                                                                        | 3.12                                                                                                                                 | 6.3                                                                                                                                                                               | 12.8                                                                                                                                                                                    | 1.1                                    |  |  |  |  |  |
| Constituent                                                                                            | Longitudinal Disp                                                                                                                    |                                                                                                                                                                                   | •                                                                                                                                                                                       |                                        |  |  |  |  |  |
| Constituent                                                                                            | 1.5x Baseline                                                                                                                        | Baseline                                                                                                                                                                          | ions (mg/L)<br>0.5x Baseline                                                                                                                                                            | Observed                               |  |  |  |  |  |
| NILL                                                                                                   |                                                                                                                                      | +                                                                                                                                                                                 |                                                                                                                                                                                         | Observed                               |  |  |  |  |  |
| NH <sub>3</sub>                                                                                        | 5.5<br>erse Dispersivity (Bas                                                                                                        | 6.3                                                                                                                                                                               | 7.7                                                                                                                                                                                     | 1.1                                    |  |  |  |  |  |
| Constituent                                                                                            | erse Dispersivity (Bas                                                                                                               |                                                                                                                                                                                   |                                                                                                                                                                                         | vity)                                  |  |  |  |  |  |
| Constituent                                                                                            | Ov Bosolino                                                                                                                          | Baseline                                                                                                                                                                          | ions (mg/L)<br>0.5x Baseline                                                                                                                                                            | Observed                               |  |  |  |  |  |
| NILI.                                                                                                  | 2x Baseline<br>6.3                                                                                                                   | +                                                                                                                                                                                 | 6.3                                                                                                                                                                                     | Observed                               |  |  |  |  |  |
| NH <sub>3</sub>                                                                                        |                                                                                                                                      | 6.3                                                                                                                                                                               |                                                                                                                                                                                         | 1.1                                    |  |  |  |  |  |
| Constituent                                                                                            | Constituent Retardation Factor (Baseline = 2.0)  Concentrations (mg/L)                                                               |                                                                                                                                                                                   |                                                                                                                                                                                         |                                        |  |  |  |  |  |
| Constituent                                                                                            | 4 Ev Docalina                                                                                                                        |                                                                                                                                                                                   | ` • /                                                                                                                                                                                   | Observed                               |  |  |  |  |  |
| NILL                                                                                                   | 1.5x Baseline<br>4.8                                                                                                                 | Baseline<br>6.3                                                                                                                                                                   | 0.5x Baseline                                                                                                                                                                           | Observed                               |  |  |  |  |  |
| NH <sub>3</sub>                                                                                        |                                                                                                                                      |                                                                                                                                                                                   | 9.9                                                                                                                                                                                     | 1.1                                    |  |  |  |  |  |
| Constituent                                                                                            | Aquifer Matrix Der                                                                                                                   |                                                                                                                                                                                   |                                                                                                                                                                                         |                                        |  |  |  |  |  |
| Constituent                                                                                            | 1.2x Baseline                                                                                                                        | Baseline                                                                                                                                                                          | ions (mg/L)<br>0.90x Baseline                                                                                                                                                           | Observed                               |  |  |  |  |  |
| NH <sub>3</sub>                                                                                        | <u> </u>                                                                                                                             | 6.3                                                                                                                                                                               | 6.4                                                                                                                                                                                     | Observed                               |  |  |  |  |  |
| IN⊓3                                                                                                   | 6.3                                                                                                                                  |                                                                                                                                                                                   |                                                                                                                                                                                         | 1.1                                    |  |  |  |  |  |
|                                                                                                        | Foc (Baseline = 0.001)                                                                                                               |                                                                                                                                                                                   |                                                                                                                                                                                         |                                        |  |  |  |  |  |
| Constituent                                                                                            | Foc (E                                                                                                                               |                                                                                                                                                                                   | •                                                                                                                                                                                       |                                        |  |  |  |  |  |
| Constituent                                                                                            |                                                                                                                                      | Concentrat                                                                                                                                                                        | ions (mg/L)                                                                                                                                                                             | Observed                               |  |  |  |  |  |
|                                                                                                        | 1.5x Baseline                                                                                                                        | Concentrat<br>Baseline                                                                                                                                                            | ions (mg/L)<br>0.85x Baseline                                                                                                                                                           | Observed                               |  |  |  |  |  |
| Constituent NH <sub>3</sub>                                                                            | 1.5x Baseline<br>6.3                                                                                                                 | Concentrat Baseline 6.3                                                                                                                                                           | ions (mg/L)<br>0.85x Baseline<br>6.3                                                                                                                                                    | Observed 1.1                           |  |  |  |  |  |
| NH <sub>3</sub>                                                                                        | 1.5x Baseline<br>6.3                                                                                                                 | Concentrat  Baseline  6.3  (Baseline = 14                                                                                                                                         | ions (mg/L) 0.85x Baseline 6.3                                                                                                                                                          |                                        |  |  |  |  |  |
|                                                                                                        | 1.5x Baseline<br>6.3                                                                                                                 | Concentrat  Baseline  6.3  (Baseline = 14  Concentrat                                                                                                                             | ions (mg/L) 0.85x Baseline 6.3 ions (mg/L)                                                                                                                                              | 1.1                                    |  |  |  |  |  |
| NH₃<br>Constituent                                                                                     | 1.5x Baseline 6.3  Koc  1.5x Baseline                                                                                                | Concentrat  Baseline 6.3  (Baseline = 14  Concentrat  Baseline                                                                                                                    | ions (mg/L) 0.85x Baseline 6.3 ions (mg/L) 0.5x Baseline                                                                                                                                | 1.1 Observed                           |  |  |  |  |  |
| NH <sub>3</sub>                                                                                        | 1.5x Baseline 6.3  Koc  1.5x Baseline 3.0                                                                                            | Concentrat  Baseline 6.3  (Baseline = 14  Concentrat  Baseline 6.3                                                                                                                | ions (mg/L)  0.85x Baseline 6.3  ions (mg/L)  0.5x Baseline 2.8                                                                                                                         | 1.1                                    |  |  |  |  |  |
| NH <sub>3</sub> Constituent  NH <sub>3</sub>                                                           | 1.5x Baseline 6.3  Koc  1.5x Baseline                                                                                                | Concentrat Baseline 6.3 (Baseline = 14 Concentrat Baseline 6.3 ate Constant (                                                                                                     | ions (mg/L)  0.85x Baseline  6.3  ions (mg/L)  0.5x Baseline  2.8  Baseline = 0.693)                                                                                                    | 1.1 Observed                           |  |  |  |  |  |
| NH₃<br>Constituent                                                                                     | 1.5x Baseline 6.3  Koc  1.5x Baseline 3.0  Biotransformation Ra                                                                      | Concentrat Baseline 6.3 (Baseline = 14 Concentrat Baseline 6.3 ate Constant ( Concentrat                                                                                          | ions (mg/L)  0.85x Baseline  6.3  ions (mg/L)  0.5x Baseline  2.8  Baseline = 0.693)  ions (mg/L)                                                                                       | 1.1 Observed 1.1                       |  |  |  |  |  |
| NH <sub>3</sub> Constituent  NH <sub>3</sub> Constituent                                               | 1.5x Baseline 6.3  Koc  1.5x Baseline 3.0  Biotransformation Ra  1.5x Baseline                                                       | Concentrat  Baseline 6.3 (Baseline = 14  Concentrat Baseline 6.3 ate Constant ( Concentrat Baseline                                                                               | ions (mg/L)  0.85x Baseline  6.3  ions (mg/L)  0.5x Baseline  2.8  Baseline = 0.693)  ions (mg/L)  0.5x Baseline                                                                        | 1.1 Observed 1.1 Observed              |  |  |  |  |  |
| NH <sub>3</sub> Constituent  NH <sub>3</sub>                                                           | 1.5x Baseline 6.3  Koc  1.5x Baseline 3.0  Biotransformation Ra  1.5x Baseline 0.9                                                   | Concentrat  Baseline 6.3 (Baseline = 14  Concentrat Baseline 6.3 ate Constant ( Concentrat Baseline 6.3                                                                           | ions (mg/L)  0.85x Baseline  6.3  ions (mg/L)  0.5x Baseline  2.8  Baseline = 0.693)  ions (mg/L)  0.5x Baseline  51.6                                                                  | 1.1 Observed 1.1                       |  |  |  |  |  |
| NH <sub>3</sub> Constituent  NH <sub>3</sub> Constituent  NH <sub>3</sub>                              | 1.5x Baseline 6.3  Koc  1.5x Baseline 3.0  Biotransformation Ra  1.5x Baseline                                                       | Concentrat  Baseline 6.3 (Baseline = 14 Concentrat Baseline 6.3 ate Constant ( Concentrat Baseline 6.3 7 Constant (Ba                                                             | ions (mg/L)  0.85x Baseline 6.3  ions (mg/L)  0.5x Baseline 2.8  Baseline = 0.693) ions (mg/L)  0.5x Baseline 51.6  iseline = 0.04)                                                     | 1.1 Observed 1.1 Observed              |  |  |  |  |  |
| NH <sub>3</sub> Constituent  NH <sub>3</sub> Constituent                                               | 1.5x Baseline 6.3  Koc  1.5x Baseline 3.0  Biotransformation Ra  1.5x Baseline 0.9  First Order Decay                                | Concentrat Baseline 6.3 (Baseline = 14 Concentrat Baseline 6.3 ate Constant ( Concentrat Baseline 6.3 r Constant (Baseline) Concentrat                                            | ions (mg/L)  0.85x Baseline  6.3  ions (mg/L)  0.5x Baseline  2.8  Baseline = 0.693)  ions (mg/L)  0.5x Baseline  51.6  iseline = 0.04)  ions (mg/L)                                    | Observed 1.1 Observed 1.1 Observed 1.1 |  |  |  |  |  |
| NH <sub>3</sub> Constituent  NH <sub>3</sub> Constituent  NH <sub>3</sub>                              | 1.5x Baseline 6.3  Koc  1.5x Baseline 3.0  Biotransformation Ra  1.5x Baseline 0.9  First Order Decay  1.5x Baseline                 | Concentrat Baseline 6.3 (Baseline = 14 Concentrat Baseline 6.3 ate Constant ( Concentrat Baseline 6.3 r Constant (Ba Concentrat Baseline Baseline Baseline Baseline               | ions (mg/L)  0.85x Baseline 6.3  ions (mg/L) 0.5x Baseline 2.8  Baseline = 0.693) ions (mg/L) 0.5x Baseline 51.6  aseline = 0.04) ions (mg/L) 0.5x Baseline                             | 1.1 Observed 1.1 Observed 1.1 Observed |  |  |  |  |  |
| NH <sub>3</sub> Constituent  NH <sub>3</sub> Constituent  NH <sub>3</sub>                              | 1.5x Baseline 6.3  Koc  1.5x Baseline 3.0  Biotransformation Ra  1.5x Baseline 0.9  First Order Decay  1.5x Baseline 4.0             | Concentrat Baseline 6.3 (Baseline = 14 Concentrat Baseline 6.3 ate Constant ( Concentrat Baseline 6.3 / Constant (Baseline Concentrat Baseline 271                                | ions (mg/L)  0.85x Baseline 6.3  ions (mg/L)  0.5x Baseline 2.8  Baseline = 0.693) ions (mg/L)  0.5x Baseline 51.6  aseline = 0.04) ions (mg/L)  0.5x Baseline 557                      | Observed 1.1 Observed 1.1 Observed 1.1 |  |  |  |  |  |
| NH <sub>3</sub> Constituent  NH <sub>3</sub> Constituent  NH <sub>3</sub> Constituent  NH <sub>3</sub> | 1.5x Baseline 6.3  Koc  1.5x Baseline 3.0  Biotransformation Ra  1.5x Baseline 0.9  First Order Decay  1.5x Baseline 4.0             | Concentrat  Baseline 6.3 (Baseline = 14 Concentrat Baseline 6.3 ate Constant ( Concentrat Baseline 6.3 / Constant (Ba Concentrat Baseline 271 ath (Baseline =                     | ions (mg/L)  0.85x Baseline 6.3  ions (mg/L)  0.5x Baseline 2.8  Baseline = 0.693) ions (mg/L)  0.5x Baseline 51.6  iseline = 0.04) ions (mg/L)  0.5x Baseline 557  : 300 Ft)           | 1.1 Observed 1.1 Observed 1.1 Observed |  |  |  |  |  |
| NH <sub>3</sub> Constituent  NH <sub>3</sub> Constituent  NH <sub>3</sub>                              | 1.5x Baseline 6.3  Koc  1.5x Baseline 3.0  Biotransformation Ra  1.5x Baseline 0.9  First Order Decay  1.5x Baseline 4.0  Source Wid | Concentrat  Baseline 6.3 (Baseline = 14 Concentrat Baseline 6.3 ate Constant ( Concentrat Baseline 6.3 Concentrat Baseline 6.3 Concentrat Baseline 271 Ath (Baseline = Concentrat | ions (mg/L)  0.85x Baseline 6.3  ions (mg/L)  0.5x Baseline 2.8  Baseline = 0.693) ions (mg/L)  0.5x Baseline 51.6  iseline = 0.04) ions (mg/L)  0.5x Baseline 557  300 Ft) ions (mg/L) | Observed 1.1 Observed 1.1 Observed 270 |  |  |  |  |  |
| NH <sub>3</sub> Constituent  NH <sub>3</sub> Constituent  NH <sub>3</sub> Constituent  NH <sub>3</sub> | 1.5x Baseline 6.3  Koc  1.5x Baseline 3.0  Biotransformation Ra  1.5x Baseline 0.9  First Order Decay  1.5x Baseline 4.0             | Concentrat  Baseline 6.3 (Baseline = 14 Concentrat Baseline 6.3 ate Constant ( Concentrat Baseline 6.3 / Constant (Ba Concentrat Baseline 271 ath (Baseline =                     | ions (mg/L)  0.85x Baseline 6.3  ions (mg/L)  0.5x Baseline 2.8  Baseline = 0.693) ions (mg/L)  0.5x Baseline 51.6  iseline = 0.04) ions (mg/L)  0.5x Baseline 557  : 300 Ft)           | 1.1 Observed 1.1 Observed 1.1 Observed |  |  |  |  |  |

# CSXT-Hutchinson Island Savannah, Georgia

Table C-4 – Summary of Predicted vs. Observed COC Concentrations, 2015

| Location | Sampling<br>Date | Amn       | nonia    | Nit       | rite     | Niti      | rate     | Comments            |
|----------|------------------|-----------|----------|-----------|----------|-----------|----------|---------------------|
|          |                  | Predicted | Observed | Predicted | Observed | Predicted | Observed |                     |
| TMW-1    | 11/2015          | 3,634     | 3,600    | 0.04      | <10      | 56.5      | 250      | Source Area<br>Well |
| PDMW-48  | 11/2015          | 557       | 28       | 0.09      | 0.11     | 133       | 0.11     |                     |
| PDMW-49  | 11/2015          | 10.6      | 0.63     | 0.015     | <0.05    | 21.5      | <0.05    | POD Well            |
|          |                  |           |          |           |          |           |          |                     |
| EW-1     | 11/2015          | 271.3     | 270      | 0.0       | <0.05    | 0.07      | <0.05    | Source Area<br>Well |
| PDMW-10R | 11/2015          | 87.7      | 7.9      | 0.0       | <0.05    | 0.086     | <0.05    |                     |
| PDMW-46  | 11/2015          | 6.3       | 1.1      | 0.0       | <0.05    | 0.13      | 0.073    | POD Well            |





## AMMONIA CONCENTRATIONS ALONG PLUME CENTERLINE (mg/L) at Z=0

#### Distance from Source (ft) **Ammonia** 160 224 256 288 320 0 32 64 96 128 192 9232.710 8826.700 5052.096 2298.801 No Degradation 4651.756 5900.108 7297.250 3634.138 8567.835 7273.109 1055.458 3634.1368 344.230 207.378 118.792 62.268 26.958 10.659 Biotransformation 2276.674 1426.107 892.701 557.117 Monitoring Well Locations (ft) TMW-1 PDMW-48 PDMW-49 Field Data from Site 3600.000 28.000 0.630 No Degradation/Production Sequential 1st Order Decay ■ Field Data from Site 10000.00 See PCE 9000.00 192 Concentration (mg/L) 8000.00 224 See TCE 7000.00 6000.00 5000.00 256 See DCE 4000.00 3000.00 288 2000.00 320 1000.00 0.00 100 0 50 150 200 250 350 300 **Distance From Source (ft.)** Time: 40.0 Years Return to **Prepare Animation** To All To Array Input Log ⇐⇒>Linear

## NITRITE CONCENTRATIONS ALONG PLUME CENTERLINE (mg/L) at Z=0



## NITRATE CONCENTRATIONS ALONG PLUME CENTERLINE (mg/L) at Z=0

#### Distance from Source (ft) **Nitrate** 0 32 64 96 128 160 192 224 256 288 320 No Degradation 56.531 133.277 143.620 137.304 113.137 78.588 45.289 21.417 72.361 91.779 113.513 11597.535 | 19466.786 | 26472.280 | 30716.822 | 30520.873 | 25680.770 | 18049.985 | 10512.056 56.5316 4467.933 4995.486 **Biotransformation** Monitoring Well Locations (ft) PDMW-48 PDMW-49 TMW-1 Field Data from Site 250.000 0.110 < 0.05 No Degradation/Production Sequential 1st Order Decay Field Data from Site 35000.00 See PCE **3**0000.00 <u>\$</u>25000.00 See TCE See DCE 288 320 250 350 0 50 100 150 200 300 **Distance From Source (ft.)** Time: 40.0 Years Return to **Prepare Animation** To All To Array Input Log \Linear



## AMMONIA CONCENTRATIONS ALONG PLUME CENTERLINE (mg/L) at Z=0



## AMMONIA CONCENTRATIONS ALONG PLUME CENTERLINE (mg/L) at Z=0



## NITRITE CONCENTRATIONS ALONG PLUME CENTERLINE (mg/L) at Z=0



## NITRITE CONCENTRATIONS ALONG PLUME CENTERLINE (mg/L) at Z=0



## NITRATE CONCENTRATIONS ALONG PLUME CENTERLINE (mg/L) at Z=0



## NITRATE CONCENTRATIONS ALONG PLUME CENTERLINE (mg/L) at Z=0





#### AMMONIA CONCENTRATIONS ALONG PLUME CENTERLINE (mg/L) at Z=0 Distance from Source (ft) **Ammonia** 32 64 0 96 128 160 192 224 256 288 320 15067.535 No Degradation 4036.380 5176.958 6628.305 8439.385 12938.772 16374.485 16258.965 12550.057 10597.125 9609.353 Biotransformation 4036.3786 2528.695 621.629 389.163 243.159 1584.162 992.413 151.077 92.827 54.159 30.512 **Monitoring Well Locations (ft)** Field Data from Site No Degradation/Production Sequential 1st Order Decay Field Data from Site 18000.00 16000.00 14000.00 See PCE 256 192 288 See TCE £12000.00 0.000 Country (10000.00 country (1000.00 128 320 See DCE 4000.00 50 200 0 100 150 250 300 350 Distance From Source (ft.) Time: 54.0 Years Return to Replay To All To Array Input Log ⇐⇒ Linear



## AMMONIA CONCENTRATIONS ALONG PLUME CENTERLINE (mg/L) at Z=0



#### NITRITE CONCENTRATIONS ALONG PLUME CENTERLINE (mg/L) at Z=0 Distance from Source (ft) **Nitrite** 0 54 108 162 216 270 324 378 432 486 540 No Degradation 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Biotransformation 209.858 170.459 133.074 0.0001 192.575 249.384 242.502 101.121 75.359 55.346 40.191 **Monitoring Well Locations (ft)** PDMW-46 PDMW-10R EW-1 Field Data from Site < 0.05 < 0.05 < 0.05 No Degradation/Production Sequential 1st Order Decay Field Data from Site 300.00 See PCE Concentration (mg/L) 250.00 See TCE 200.00 150.00 See DCE 100.00 50.00 0.00 200 300 100 400 500 600 **Distance From Source (ft.)**

Return to

Input

To All

To Array

Time:

**Prepare Animation** 

40.0 Years

Log ⇐⇒>Linear

## NITRATE CONCENTRATIONS ALONG PLUME CENTERLINE (mg/L) at Z=0





# AMMONIA CONCENTRATIONS ALONG PLUME CENTERLINE (mg/L) at Z=0



Linear

### AMMONIA CONCENTRATIONS ALONG PLUME CENTERLINE (mg/L) at Z=0



### NITRITE CONCENTRATIONS ALONG PLUME CENTERLINE (mg/L) at Z=0



# NITRITE CONCENTRATIONS ALONG PLUME CENTERLINE (mg/L) at Z=0



# NITRATE CONCENTRATIONS ALONG PLUME CENTERLINE (mg/L) at Z=0



## NITRATE CONCENTRATIONS ALONG PLUME CENTERLINE (mg/L) at Z=0





#### AMMONIA CONCENTRATIONS ALONG PLUME CENTERLINE (mg/L) at Z=0 Distance from Source (ft) **Ammonia** 0 120 240 360 480 600 720 840 960 1080 1200 No Degradation ######### ######## ######## ######## ######## ######## ######## ######## ######## ######### ######## ######## 60869.878 26362.664 11417.635 4944.956 2141.625 927.474 30.240 Biotransformation 401.581 173.626 74.271 **Monitoring Well Locations (ft)** Field Data from Site No Degradation/Production Sequential 1st Order Decay Field Data from Site 450000.00 See PCE 400000.00 1080 840 50000.00 See TCE 1200 500000.00 **2**50000.00 480 120 240 360 See DCE **%**000000.00 50000.00 50000.00 0.00 0 200 600 800 1000 1200 1400 400 **Distance From Source (ft.)** Time: 40.5 Years Return to Replay To All To Array Input Log \Linear

# APPENDIX D CONTAMINANT TREND GRAPHS













































































## APPENDIX E VAPOR INTRUSION MODELING

## OSWER VAPOR INTRUSION ASSESSMENT

## Vapor Intrusion Screening Level (VISL) Calculator Version 3.4, November 2015 RSLs

The primary objective of risk-based screening is to identify sites or buildings unlikely to pose a health concern through the vapor intrusion pathway. Generally, at properties where subsurface concentrations of vapor-forming chemicals (e.g., groundwater or "near source" soil gas concentrations) fall below screening levels (i.e., VISLs), no further action or study is warranted, so long as the exposure assumptions match those taken into account by the calculations and the site fulfills the conditions and assumptions of the generic conceptual model underlying the screening levels. In a similar fashion, the results of risk-based screening can help the data review team identify areas, buildings, and/or chemicals that can be

| Parameter                                  | Symbol   | Value      | Instructions                                                                                                                  |
|--------------------------------------------|----------|------------|-------------------------------------------------------------------------------------------------------------------------------|
| Exposure Scenario                          | Scenario | Commercial | Select residential or commercial scenario from pull down list                                                                 |
| Target Risk for Carcinogens                | TCR      | 1.00E-06   | Enter target risk for carcinogens                                                                                             |
| Target Hazard Quotient for Non-Carcinogens | THQ      | 0.1        | Enter target hazard quotient for non-carcinogens                                                                              |
| Average Groundwater Temperature (°C)       | Tgw      | 19.4       | Enter average of the stabilized groundwater temperature to correct Henry's Law Constant for groundwater target concentrations |

|           |         | for volatility?    | toxicity data?   | Volatile and Toxic<br>to Pose<br>Inhalation Risk<br>Via Vapor<br>Intrusion from<br>Soil Source? | Inhalation Risk Via Vapor Intrusion from Groundwater Source? | Target Indoor Air<br>Conc. @ TCR =<br>1E-06 or THQ =<br>0.1 | Toxicit<br>y Basis | Exterior<br>Soil Gas<br>Conc. @<br>TCR =<br>1E-06 or<br>THQ =<br>0.1 | Conc. @<br>TCR =<br>1E-06 or<br>THQ =<br>0.1 | Is Target<br>Ground<br>Water Conc.<br>< MCL?                                                                                                                     | Phase<br>Vapor<br>Conc. @<br>25°C | Conc.    | ater<br>Vapor<br>Conc. | Lower<br>Explosi<br>ve<br>Limit** | LEL Source |     |          |   | nic<br>Indicat | Indoor<br>Air<br>Conc.<br>for<br>Carcino<br>gens @<br>TCR =<br>1E-06 | 0.1     |
|-----------|---------|--------------------|------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|--------------------|----------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------|------------------------|-----------------------------------|------------|-----|----------|---|----------------|----------------------------------------------------------------------|---------|
|           |         | (HLC>1E-5 or VP>1) | (IUR and/or RfC) | Cvp > Cia,target?                                                                               | Chc > Cia,target?                                            | MIN(Cia,c;Cia,nc)                                           |                    | Csg                                                                  | Cgw                                          | Cgw <mcl?< td=""><td>Cvp</td><td>Chc</td><td>Tgw or 25</td><td>LEL</td><td></td><td>IUR</td><td>RfC</td><td></td><td>i</td><td>Cia,c</td><td>Cia,nc</td></mcl?<> | Cvp                               | Chc      | Tgw or 25              | LEL                               |            | IUR | RfC      |   | i              | Cia,c                                                                | Cia,nc  |
| 7664-41-7 | Ammonia | Yes                | Yes              | Yes                                                                                             | Yes                                                          | 4.4E+01                                                     | NC                 | 1.5E+03                                                              | 7.8E+04                                      |                                                                                                                                                                  | 6.88E+09                          | 2.70E+08 | 19.4                   | 15                                | N          |     | 1.00E-01 | I |                |                                                                      | 4.4E+01 |