Prepared for:

TRANSCO INC.

200 North LaSalle Street, Suite 1550 Chicago, IL 60601

VOLUNTARY REMEDIATION PROGRAM COMPLIANCE STATUS REPORT Former Transco Railcar Facility Macon, Georgia

Prepared by:

a Montrose Environmental Group company 400 Northridge Road, Suite 400 Sandy Springs, GA 30350 Tel: 404-315-9113

VOLUNTARY REMEDIATION PROGRAM COMPLIANCE STATUS REPORT

Former Transco Railcar Facility Macon, Georgia

Prepared for:

TRANSCO INC.

200 North LaSalle Street, Suite 1550 Chicago, IL 60601

Prepared By:

a Montrose Environmental Group company

400 Northridge Road, Suite 400 Sandy Springs, GA 30350 Tel: 404-315-9113

> Kirk Kessler, PG Senior Principal

TABLE OF CONTENTS

GRO	GROUNDWATER SCIENTIST STATEMENT			
CER	TIFICATI	ON OF COMPLIANCE	2	
1	INTRO	ODUCTION	3	
	1.1	Document Overview	3	
	1.2	Background		
	1.3	Purpose		
2	VRP	PROJECT MANAGEMENT	5	
	2.1	Professional Geologist Oversight	5	
	2.2	Milestone Schedule	5	
	2.3	Conceptual Site Model Status	5	
	2.4	Environmental Covenant Status	5	
3	SITE	ASSESSMENT AND REMEDIATION PERFORMANCE REVIEW	6	
	3.1	Site Assessment Review	6	
		3.1.1 Groundwater	6	
		3.1.2 Soil	9	
		3.1.3 LNAPL	11	
	3.2	Remedial Action Review	11	
		3.2.1 Lead Contaminated Soil	11	
		3.2.2 LNAPL Recovery Action	12	
		3.2.3 Groundwater Lead Monitoring	13	
		3.2.4 Groundwater VOC Monitoring	13	
4	Cons	STITUENTS OF CONCERN AND RISK COMPARISON VALUES	OMPARISON VALUES 15	
	4.1	Soil and Groundwater Risk Reduction Standards	15	
	4.2	Corrective Action Objectives		
5	Con	CEPTUAL SITE MODEL	16	
	5.1	Regional Geology	16	
	5.2	Site Geology		
	5.3	Surface Water Features		
	5.4	General Hydrogeologic Conditions	17	

i

		5.4.1 Site Geologic and Hydrogeologic Setting	17
		5.4.2 Groundwater Direction and Flow Velocity	18
	5.5	LNAPL Assessment	18
		5.5.1 Overview	18
		5.5.2 The LCSM	19
		5.5.3 LNAPL Recoverability Assessment	26
		5.5.4 Groundwater Testing for LNAPL Constituents	28
	5.6	Potential Receptors and Exposure Pathways	29
		5.6.1 Facility and Surrounding Area	29
		5.6.2 Well Survey	29
		5.6.3 Potential Human Receptors	
6	Risk	Analysis	32
	6.1	Overview of the Risk Analysis Process	32
	6.2	Soil Risk Analysis	
	V	6.2.1 Soil Dataset	
		6.2.2 Potential Exposure Units	
		6.2.3 Statistical Analysis	
		6.2.4 Comparison of Soil Lead 95% UCL to Site-Specific RRS	
		6.2.5 Protection of Groundwater	
	6.3	Groundwater Risk Analysis	33
		6.3.1 Receptor Evaluation	
		6.3.2 Fate and Transport Model	34
	6.4	LNAPL Risk Analysis	
		6.4.1 LCSM Risk Concerns	
		6.4.2 Concern 1: LNAPL Product Saturation	36
		6.4.3 Concern 2: Dissolved Plume	36
		6.4.4 Concern 3: Direct Contact & Inhalation	37
7	SITE	COMPLIANCE	38
	7.1	Soil Delineation and Compliance	38
	7.2	Groundwater Delineation and Compliance	
		7.2.1 Groundwater Delineation	
		7.2.2 Points of Demonstration and Exposure	
	7.3	LNAPL Remedial Objective Compliance	
8	Refe	RENCES	40

ii

LIST OF FIGURES

Figure 1.1	Site Location
Figure 1.2	Site and Adjacent Properties
Figure 1.3	Site Features (Former and Current)
Figure 3.1	Groundwater Monitoring Network
Figure 3.2	Soil-bound Lead Delineation
Figure 3.3	LNAPL Investigation & Delineation Wells
Figure 3.4	Existing Soil-bound Lead Condition & Soil Removal Areas
Figure 3.5	LNAPL Product Recovery System and Delineation Wells
Figure 3.6	Groundwater Lead Monitoring Program
Figure 3.7	Groundwater VOC Monitoring Program
Figure 5.1	Groundwater Potentiometric Surface (August 2016)
Figure 5.2a	LNAPL Product Frequency of Detection (2008-2016)
Figure 5.2b	LNAPL Product Thickness Measurements (2008-2016)
Figure 5.2c	LNAPL Product Thickness Measurements (2014-2016)
Figure 5.3	Groundwater PAH Assessment Locations
Figure 6.1	Soil Exposure Units and Soil Lead Statistics
Figure 7.1	Groundwater POD and POE

LIST OF TABLES

Table 3.1	Well Construction Details
Table 3.2	Time Series Data for Detected VOCs in Groundwater
Table 5.1	Time Series Data for Measured LNAPL Free Product
Table 5.2	2019 Groundwater PAH Assessment Summary
Table 6.1	Post Removal Soil Lead Data Summary (0-2 ft-bgs)

LIST OF APPENDICES

Appendix A	VRP Property Identification Information
Appendix B	Professional Geologist Summary of Hours
Appendix C	Milestone Schedule
Appendix D	Draft Environmental Covenant
Appendix E	Laboratory Analytical Reports
Appendix F	LNAPL Baildown Field Forms
Appendix G	API Transmissivity Workbook Output
Appendix H	Groundwater Field Sample Forms
Appendix I	Water Well Survey
Appendix J	ProUCL Input and Output Files
Appendix K	Groundwater Model Input and Output

iii March 2019

VOLUNTARY REMEDIATION PROGRAM COMPLIANCE STATUS REPORT

TRANSCO INC. 200 North LaSalle Street, Suite 1550 Chicago, II 60601

GROUNDWATER SCIENTIST STATEMENT

I certify that I am a qualified groundwater scientist who has received a baccalaureate or post-graduate degree in the natural sciences or engineering and have sufficient training and experience in groundwater hydrology and related fields, as demonstrated by state registration and completion of accredited university courses, that enable me to make sound professional judgments regarding groundwater monitoring and contaminant fate and transport. I further certify that this Voluntary Remediation Program Compliance Status Report for Transco Inc. was prepared by me and appropriate qualified subordinates working under my direction.

Date: 3/25/2019

Certified by:

Kirk Kessler, P.G.

Senior Principal

No. 685

DCN: TRPCSR001 1 March 2019

VOLUNTARY REMEDIATION PROGRAM COMPLIANCE STATUS REPORT

TRANSCO INC.
200 North LaSalle Street, Suite 1550
Chicago, II 60601

CERTIFICATION OF COMPLIANCE

I certify that this CSR report and all attachments were prepared under my direction in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Based on my review of the findings of this report with respect to the Risk Reduction Standards (RRSs) under the Rules for Hazardous Site Response, Rule 391-3-19-.07 and the Voluntary Remediation Program Act, O.C.G.A 12-8-108, I have determined that Bibb County Tax Parcel R0810091OC 79 is in compliance with Non-Residential RRSs for soil. Furthermore, this parcel is in compliance with Type 4 RRSs, which include property and groundwater use restrictions under an environmental covenant.

Charles P Andersen Certified by:	Date:	March 25, 2019	
Transco Inc.	_		
Charles P. Andersen, CEO			

2

1 Introduction

1.1 Document Overview

This Voluntary Remediation Program (VRP) Compliance Status Report (CSR) is being submitted to the Georgia Department of Natural Resources, Environmental Protection Division (EPD) on behalf of Transco Inc. (Transco) for the former Transco Railcar Facility (the "Site") located at 861 7th Street, Macon, Georgia and listed under the Hazardous Site Response Act (HSRA) Hazardous Site Inventory (HSI) #10502. The parcel tax map, warranty deed, and legal description for the Site are included in Appendix A.

The Site was accepted into the VRP on August 22, 2018. This CSR serves as a progress report for the current reporting period (August 2018 through February 2019) and demonstrates that the Site is in compliance with the requirements of the VRP.

This CSR will demonstrate compliance by presenting the Site-specific assessment results and actions outlined below.

- Following the 2011 removal action, the soil is in compliance with the Site-specific non-residential Risk Reduction Standard (RRS), and as detailed in this report soil assessment activities have resulted in the horizontal delineation of soil-bound lead.
- Groundwater has been horizontally and vertically delineated, and it has been established
 through modeling that the groundwater plume will not affect the hypothetical point of
 exposure (POE). Based on the conclusion of a recently conducted water well survey review
 that no drinking water wells exist within specified distances downgradient of the Site,
 Transco is not required to certify compliance for groundwater under the VRP.
- The updated light nonaqueous phase liquid (LNAPL) conceptual site model (LCSM) and LNAPL transmissivity analysis presented in this report finds that (1) the LNAPL condition does not pose a risk to off-Site receptors, (2) the LNAPL condition is stable and understood, and potential on-Site risk can be managed through land use controls, and (3) LNAPL has been recovered to the extent practicable under the remedial action technologies enacted to date.
- Site groundwater and property use limitations (*i.e.*, non-residential occupation only) will be established with a Uniform Environmental Covenant (UEC) to manage future on-Site potential risk.

1.2 Background

The Site is located in an industrial area (zoned industrial) southeast of downtown Macon, Georgia (Figure 1.1). Land use immediately adjacent to the Site is industrial and is primarily railroad related, with several surrounding land parcels designated a public utility due to their

use to support public works or railway infrastructure (Figure 1.2). Adjacent land parcel ownership and Parcel ID are provided in Figure 1.2. The Site is bound by railroad tracks on the western, southern and northeastern property boundaries, and by 7th Street to the east. The Norfolk Southern Railway Brosnan Rail Yard encompasses the area east of 7th Street.

Since at least 1889, the Site was developed to support the railroad industry and was occupied until 1991 when operations by Transco ceased. The Site is currently vacant, and the only remaining structure is a former multi-story coal chute near the Site's south entrance. Concrete and brick foundations of several of the former buildings remain on the Site but are leveled to grade. The remainder of the Site has undergone natural succession to scrub grass, shrubs and small to medium-sized trees. The Site is fenced with a locked gate. Figure 1.3 depicts the location of former and existing Site infrastructure.

Environmental assessment activities for the Site began on or around 1995 following the closure of the facility in 1991. Regulated substances released to soil or groundwater provided in the HSI listing summary include the following: soil (lead, PCBs); groundwater (chlorobenzene, cumene, naphthalene, tetrachloroethene (PCE), vinyl chloride, cis-1,2-dichloroethene (cis-DCE), trichloroethene (TCE)). A CSR prepared in 2000 summarized the status of soil and groundwater constituents of potential concern (COPC) with a conclusion that applicable RRS under HSRA were exceeded and thus corrective action was required for the Site (Arcadis, 2000). A Corrective Action Plan (CAP) for the Site to address identified environmental conditions was prepared in 2001 (Arcadis, 2001), and revised in 2003 including Site-specific RRS (Arcadis, 2003). The 2003 CAP was conditionally approved on September 2, 2004, with final approval of a revised CAP and Site-specific RRS on December 4, 2008 (EPD, 2004; EPD, 2008).

To date, corrective action has been performed for each environmental condition as outlined in the revised CAP including soil remediation, LNAPL assessment and recovery, and monitoring for lead and volatile organic compounds (VOCs) in groundwater.

1.3 Purpose

The purpose of this document is to describe the assessment and remedial activities that have occurred at the Site, to present a finalized CSM and to request Site closure under the VRP.

4

2 VRP PROJECT MANAGEMENT

2.1 Professional Geologist Oversight

This CSR includes a certification by Kirk Kessler, P.G., Professional Geologist and Senior Principal who has been involved in the project since the implementation of the CAP in 2008. Appendix B contains a monthly summary of hours invoiced by Mr. Kessler, the Professional Geologist specified in the application.

2.2 Milestone Schedule

An updated milestone schedule is included in Appendix C. Each of the tasks specified in the schedule have been completed.

5

2.3 Conceptual Site Model Status

The final CSM is included in Section 5 of this CSR.

2.4 Environmental Covenant Status

A draft UEC for the Site land parcel is included in Appendix D for review of EPD.

3 SITE ASSESSMENT AND REMEDIATION PERFORMANCE REVIEW

3.1 Site Assessment Review

3.1.1 Groundwater

3.1.1.1 Investigation Summary

Prior to acceptance of the Site into the VRP, the groundwater monitoring well network was comprised of 19 monitoring wells and 10 temporary wells. These wells are separate from the additional 19 temporary wells installed to assess the LNAPL condition discussed in Section 3.1.3. The first monitoring wells, MW-01 through MW-04, were installed in August 1997 and tested for VOCs, polycyclic aromatic hydrocarbons (PAHs) and metals. In April 1999 MW-01 through MW-04 were further assessed for these same constituent groups and for polychlorinated biphenyls (PCBs). The Site well network was expanded in three subsequent events between February 2000 and February 2011 to initially delineate reported detections of PAHs, VOCs, and a single metal (chromium) with later delineation actions limited to VOCs only. Well construction details are provided in Table 3.1, and well locations are depicted in Figure 3.1. A timeline of the monitoring well installation events is provided below.

Groundwater Monitoring Location Summary

August 1997	MW-01 through MW-04 installed during the initial Site investigation to assess for COPC
February-	MW-11 through MW-15 and TW-01 through TW-10 installed to horizontally
October 2000	delineate COPC. MW-07D, -8D, -9D; installed to vertically delineate COPC
February 2003	MW-16 and MW-17 installed to delineate the off-Site VOC plume
July 2009	MW-18 and MW-19 installed to vertically delineate the off-Site VOC plume
February 2011	MW-20 and MW-21 installed to horizontally delineate the off-Site VOC plume

3.1.1.2 Assessment Findings

This review of the groundwater assessment findings is based on Site information obtained through a review of historical reports (*i.e.*, CSR and CAP) and serves to summarize past and current findings by the constituent group. Discussion of groundwater evaluates delineation to the Site-specific Type I RRS and remedial action with respect to the Type 4 RRS as provided in the approved CAP (Arcadis, 2003).

6

PCBs

On April 13, 1999, assessment for PCBs in groundwater was performed with a sampling of MW-01 through MW-04. All four monitoring wells reported a non-detect condition for PCBs (detection limit of 1 microgram per liter [µg/L]). No further assessment for dissolved PCBs was warranted.

Metals

Assessment for RCRA metals was first performed in August 1997 for MW-01 through MW-04. Four metals - barium, chromium, lead and silver - were detected during this initial sampling event with follow-up testing performed in 1999 and 2000. The follow-up testing found only the initial detection of chromium in MW-01 to be reproducible with chromium ranging from 1.7 μ g/L to 80 μ g/L. Trace detection of barium was intermittently reported in all wells ranging from 20 μ g/L to 100 μ g/L, substantially less than the HSRA Notification Criteria (NC) of 2,000 μ g/L. Therefore, no further groundwater assessment for barium, lead, and silver was performed. It is noted that bailer sampling was performed in the early stages of the Site assessment work and groundwater sampling was later modified to low-flow sampling methodology, with low-flow sampling methodology potentially reducing sample turbidity and hence reducing the range of metals detected.

In 2000, seven temporary wells (TW-01 and TW-03 through TW-08), one monitoring well (MW-11) and one deep well (MW-7D) were installed to investigate the chromium detection at MW-01. Sampling and testing of these wells in March through September 2000 found only a single detection of chromium in TW-04 in May 2000, which upon retesting in September 2000 was non-detect for chromium. No further assessment was warranted as delineation for chromium to a non-detect condition was complete and all detections of chromium at MW-01 were below the Site-specific Type 1 RRS (100 μ g/L).

PAHs

Sampling and testing for dissolved PAHs, like metals, was first performed in August 1997 for MW-01 through MW-04. One monitoring well, MW-02, reported two PAHs – naphthalene¹ and phenanthrene – during this initial sampling event. Further investigation for the potential presence of PAHs in groundwater was performed in 1999 and 2000 with resampling of MW-01 through MW-04 and installation of additional wells to investigate the groundwater near MW-02. Horizontal delineation efforts for PAHs near MW-02 included six temporary wells (TW-01 through TW-04, TW-09 and TW-10). Vertical delineation near MW-02 comprised of one well, MW-09D. PAHs were not detected at these additional wells during testing performed in March 2000 through June 2000. Testing of MW-02 in April 1999 and October 2000 did not replicate the detection of naphthalene and PAH detections in October 2000 were limited to acenaphthene (5 μ g/L), fluorene (7 μ g/L) and phenanthrene (5 μ g/L), with acenaphthene and fluorene below their Site-specific Type I RRS and phenanthrene equal to it Site-specific Type I RRS. As the four PAHs

7

¹ Naphthalene has historically been classified as both a VOC and PAH. For the purpose of this report, naphthalene is categorized and discussed as a PAH.

reported in MW-02 were found to be either non-detect in 2000 (*i.e.*, naphthalene), below or equal to their respective Type 1 RRS, and the condition was delineated horizontally and vertically to a non-detect condition, no further assessment was required.

VOCs

Sampling and testing for dissolved VOCs was first performed in August 1997 for MW-01 through MW-04. One of the four wells - MW-04 - reported the detection of TCE at 3 μ g/L. Delineation activity to investigate the detection of TCE at MW-04 started in 2000 and comprised of deep well MW-08D for vertical delineation (installed adjacent to MW-04) and four shallow wells for horizontal delineation, MW-12 through MW-15 (MW-15 is located off-Site in the Brosnan Rail Yard, Figure 3.1). Site-wide sampling in 2000 determined that three VOCs – vinyl chloride, carbon tetrachloride and naphthalene (naphthalene was reported as a VOC at this time) – exceeded their respective Site-specific Type 4 RRS and were accordingly identified as constituents of concern (COC) requiring corrective action.

Two modifications to the groundwater COC list were made following the 2000 CSR. First, prior to submission of the CAP in 2003, the toxicity values for TCE were amended resulting in downward adjustment of the TCE Type 4 RRS. As a result, TCE was listed as a fourth VOC to exceed its respective Type 4 RRS and also marked for corrective action. Second, carbon tetrachloride was later removed as a COC in the 2003 CAP following two rounds of testing with a non-detect result. However, data collected since approval of the CAP finds that carbon tetrachloride continues to be intermittently detected in MW-14 above the Site-specific non-residential Type 4 RRS (5 μ g/L). It is noted that carbon tetrachloride is co-located with the Site VOC plume and has therefore been included by default in the Site's monitored natural attenuation (MNA) program.

Off-Site delineation of the VOC plume was performed from 2003 to 2011. In February 2003, two monitoring wells were installed to investigate the extent of the off-Site VOC condition near MW-15. Well MW-16 was placed east of MW-15 and MW-17 was placed south of MW-15 (Figure 3.1). Each well was sampled and tested on February 1, 2003, with a finding of no VOCs detected. In accordance with the approved CAP, further off-Site assessment was initiated in 2011 with the installation of well pair MW-18 (deep) and MW-19 (shallow) southeast of MW-15 (Figure 3.1). No VOCs were detected in deep well MW-18, however, the VOC plume extent was found to reach past MW-19 in the shallow aquifer. Thus, further assessment was performed with the installation of monitoring wells MW-20 and MW-21 in 2011. A sampling of these wells identified VOCs in MW-20, but further down-gradient wells MW-21 and NS-1 (a monitoring well installed by Norfolk Southern to assess a separate off-Site condition) were non-detect for all VOCs and therefore bounded the down-gradient edge of the plume.

Vertical assessment on-Site for VOCs was performed with MW-07D, MW-08D and MW-09D. All on-Site deep wells reported a non-detect condition with the exception of a single detection of TCE in MW-8D at $2.8 \mu g/L$ on June 28, 2000. MW-08D was installed one week prior to the sampling and detection of TCE was a probable artifact of the well installation process (*i.e.*, carry

8

down of contamination during drilling) as TCE was reported in the shallow aquifer at this location (*i.e.*, MW-04). TCE was non-detect in MW-08D during subsequent sampling events supporting this conclusion. As noted, vertical delineation off-Site was performed with MW-18, which has consistently reported a non-detect condition for all VOCs (2009 through 2016).

3.1.2 Soil

3.1.2.1 Investigation Summary

Investigation of the possible release of regulated substances to Site soil was first performed in August 1997 and focused on historical operation areas identified in a Phase II Environmental Site Assessment (Law, 1997). Three soil-based concerns were identified from this initial investigation including (1) total petroleum hydrocarbons (TPH), (2) detection of Aroclor-1260 above the HSRA NC of 1.55 milligrams per kilogram (mg/kg), and (3) detection of soil-bound lead above the HSRA NC of 300 mg/kg. Due to these findings, several iterative investigations were performed starting in 2000 to characterize and delineate each condition including up to the 2011 removal action to address soil-bound lead. A timeline of the soil assessment events is provided below.

Soil Assessment Activity Summary

August 1997	Initial assessment of the potential release of regulated substances to the soil. Comprised of 35 soil borings with the identification of TPH, Arocor-1260 and lead.
February - March 2000	Assessment and delineation of soil at approximately 68 on-Site locations. Testing performed for PAHs, VOCs, PCBs, lead, and chromium.
June 2000	Assessment and delineation of soil at approximately 69 on-Site and 6 off-Site locations. Testing performed for PAHs, VOCs, PCBs, lead, and chromium.
August -September 2000	Assessment and delineation of soil at approximately 14 on-Site and 12 off-Site locations. Testing performed for PAHs, VOCs, PCBs, lead, and chromium.
September 2002 - February 2003	On-Site delineation of lead and benzo(a)pyrene performed to support the CAP work scope and design.
March 2009	On-Site delineation of lead performed to support CAP work scope and design.
July - August 2011	Confirmational sampling program to support the on-Site soil removal action to address lead above the Type 4 RRS.

3.1.2.2 Assessment Findings

This review of soil assessment findings is based on Site information obtained through a review of historical reports, as provided in the 2000 CSR (Arcadis, 2000) and the 2003 CAP (Arcadis, 2003) and serves to summarize past and current findings by the constituent group. For the discussion of soil constituents, delineation is evaluated with respect to the higher of the Site-specific Type I or Type II RRS (*i.e.*, the residential RRS) and remedial action with respect to the Site-specific Type 4 RRS as provided in the approved CAP (Arcadis, 2003).

9

PCBs

A Site-wide sampling of soil for PCBs identified a single occurrence of Aroclor-1260 above the Site-specific residential RRS (4.3 mg/kg) at sample location HA-7. Perimeter sampling near HA-7 delineated Aroclor-1260 to a non-detect condition or less than the residential RRS. No PCB testing result was reported above the Type 4 RRS (22 mg/kg). Therefore, no further assessment or corrective action was warranted for PCBs based on the intended future land use of the Site as commercial or industrial property.

Metals

The initial Site investigation identified two soil-bound metals, chromium and lead, as requiring further assessment based on a comparison of soil testing results to residential and non-residential RRS. Soil-bound chromium was identified to exceed the residential RRS (230 mg/kg) at four locations: B-04, B-31, B-54, and B-82. Delineation to the chromium residential RRS was performed at three of the four locations. Delineation at the fourth location (B-54), located adjacent to the Site's western property boundary, was not performed to the west which is bound by a rail line. All soil-bound chromium concentrations are below the Site's Type 4 RRS (4,600 mg/kg). Thus, no corrective action was warranted for soil-bound chromium based on the intended future land use of the Site as commercial or industrial property.

Soil-bound lead above the Type 4 RRS (1,300 mg/kg) was identified across the central and eastern portions of the Site. As a result, the soil-bound lead condition required corrective action as described in Section 3.2. Soil-bound lead is delineated to the residential RRS (400 mg/kg) as illustrated in Figure 3.2 with all off-Site perimeter samples less than the residential RRS.

PAHs

Fifteen PAHs were detected in soil during the early Site investigation work of which five benzo(a)pyrene, benzo(b)fluoranthene, benzo(a)anthracene, dibenzo(a,h)anthracene indeno(1,2,3-c,d)pyrene – were reported above their respective residential RRS. The detected PAHs are delineated to the residential RSS by sample locations at the Site property line (note that one off-Site sample observed as an exceedance of the residential RRS is a soil sample collected as part of the prior background PAH study [Arcadis, 2000]). Of the five PAHs identified above the residential RRS, only benzo(a)pyrene was initially classified as exceeding its Type 4 RRS at three locations: HA-1, B-2, and B-63. Follow-up assessment for these three locations during supplementary investigation to support the CAP work scope was unable to confirm the early Site investigation test results. Soil samples collected immediately adjacent to the original soil borings and in a grid pattern surrounding the original boring were unable to replicate the benzo(a)pyrene test results above the Type 4 RRS. Thus, no corrective action for benzo(a)pyrene, or any other PAH, was warranted and benzo(a)pyrene was removed from the CAP (2003, Arcadis).

10

VOCs

Assessment of soil-bound VOCs in 2000 did not identify any constituents above the residential RRS as detailed in the 2000 CSR (Arcadis, 2000). Thus, no further assessment of soil-bound VOCs was warranted.

3.1.3 LNAPL

In April 1999, a sampling of MW-2 discovered an accumulation of approximately 3 feet of LNAPL product in the well casing. A sample of the LNAPL product was collected in June 1999 and determined to be characteristic of highly weathered No.2 fuel oil, a conclusion consistent with the historical use of the immediate area for fuel loading and a pump house. The extent of the LNAPL smear zone was assessed in 2000 and 2003 with the installation of 14 TWs (TW-16 through TW-29). In the mid-2000s, a series of 4 additional wells (TW-30, TW-31, TW-33, and TW-34) were installed to assess the down-gradient fringe of the LNAPL smear zone. The LNAPL assessment area and well locations are provided in Figure 3.3.

In 2018, an assessment of the LNAPL condition was performed in accordance with the Interstate Technology and Regulatory Council's (ITRC) LNAPL management process and a determination of LNAPL transmissivity in accordance with American Society for Testing and Materials (ASTM) Method E2856, *Standard Guide for the Estimating of LNAPL Transmissivity*. The findings of these studies and the development of an LCSM are presented in Section 5.5.

3.2 Remedial Action Review

3.2.1 Lead Contaminated Soil

In 2011, a total of 4,917.59 tons of soil and debris were excavated at the Site as described in the 2011 Corrective Action Progress Report (CAPR) (EPS, 2012). Removal activities commenced on July 13, 2011 and were completed on August 31, 2011. The soil removal activities included the excavation of soil above the Type 4 RRS from 0 to 2 feet below ground surface (ft-bgs) in accordance with the CAP, treatment of soils potentially classified as hazardous based on Toxicity characteristic leaching procedure (TCLP) testing, disposal of soils at a Subtitle D landfill and backfilling of the excavated areas with fill from an off-Site clean soil source.

Removal of soil exceeding the Type 4 RRS was attained for all but four sample locations. The four locations not excavated are detailed below.

 Two samples (11225-OO10-0-1SP and 11225-RR21-0-1SR) were located on the edge of the Site property line abutting to the Norfolk Southern right-of-way for railroad lines. Transco did not have the authorization to extend the excavation into the Norfolk Southern property.

11

- One sample (11225-RR22-0-1SR) was located at the edge of 7th Street. No further excavation could be conducted adjacent to 7th Street as excavation would have undermined the base material of the paved road.
- The final sample that exceeded the Type 4 RRS was from an interior Site location and was inadvertently missed during the removal action planning. That location is bounded on all four sides by soil samples reported below the Type 4 RRS.

The extent of soil removal and location of the four samples reporting lead above the Type 4 RRS are illustrated in Figure 3.4. Assessment of the residual soil condition following the removal action and risk analysis to a future commercial or industrial receptor is provided in Section 6.2.

3.2.2 LNAPL Recovery Action

Two types of LNAPL recovery systems were installed in January 2008 to remove LNAPL product from well casings. The recovery systems comprised of two technologies, free-phase LNAPL skimmer units and continuous hydrophobic belt skimmer units, selected based on their capability to extract LNAPL from a well casing with minimal water withdrawal (*i.e.*, to minimize waste generation) and to extract LNAPL at its natural recovery rate at each well point. A brief description of each system is provided below.

3.2.2.1 Free Phase LNAPL Skimmers

The free-phase LNAPL skimmer units are designed to selectively removed LNAPL product that has accumulated at the air-water interface (*i.e.*, water table) as a result of the LNAPL's lower specific gravity in comparison to water. A hydrophobic membrane mounted on a mobile float, which maintains the position of the hydrophobic membrane at the air-water interface, allows passage of LNAPL product into a reservoir tank mounted at the base of the skimmer unit. LNAPL collected in the reservoir tank was then periodically pumped (pneumatic pump) to a central collection tank on a routine cycle (hourly and then reduced to daily pumping based on the LNAPL recovery rate).

3.2.2.2 Hydrophobic Belt Skimmers

The hydrophobic belt skimmers operated by selectively extracting LNAPL based on the difference in product specific gravity and surface tension in comparison to water. The belt was continuously circulated from ground surface to groundwater level allowing LNAPL to physically adhere to the belt as it circulated within the extraction well. The belt transports the adhered LNAPL to the surface where it is physically scraped from the belt and deposited in an oil-water separator tank. LNAPL in the oil-water separator tank was then gravity drained to a collection drum for recycling. This system operates independently of changing water table depth since the belt can be set up to extend to full well depth.

3.2.2.3 Extraction Well Placement and System History

The placement of the extraction wells was based on the spatial distribution of LNAPL from historical and current observations at the time of installation in January 2008. Five existing 2-inch monitoring wells (MW-2, TW-17, TW-18, TW-19 and TW-20) were adapted for use as extraction wells and five new 2-inch extraction wells (EW-10 to EW-14) were installed for a total of ten LNAPL recovery wells. The layout of the system is provided in Figure 3.5 and the history of the LNAPL system and system modifications is summarized below.

Elvar E recovery System History			
Date	Action		
January 2008	10 LNAPL recovery units online; 5 belt skimmer units and 5 free-phase skimmer units		
September 2009	Free-phase skimmer units are modified with 46" float guide from standard 22" float guide due to highly variable water table; two belt skimmer units modified with alternate belt type in an attempt to improve product recovery		
2010	LNAPL skimmer located at TW-20 is relocated to TW-19. Belt skimmer units decommissioned; LNAPL recovery from belt skimmer units insignificant for two years; manual recovery performed quarterly		
2013	Free-phase skimmer units decommissioned; LNAPL recovery from units insignificant; manual recovery performed quarterly		
2013 – 2016	Manual LNAPL recovery only		

LNAPL Recovery System History

3.2.3 Groundwater Lead Monitoring

Groundwater assessment for dissolved lead comprised of annual monitoring from 2009 through 2016 to determine if the soil-bound lead was leaching to the underlying aquifer. The CAP specified nine monitoring wells located within or adjacent to Site areas exhibiting elevated soil-bound lead concentrations to be sampled: MW-4, MW-12, MW-13, MW-14, MW-15, MW-30, MW-31, MW-32, and TW-04 (Figure 3.6). All nine monitoring wells in the groundwater monitoring program were sampled annually, and all monitoring wells have reported a non-detect condition for dissolved lead (5 μ g/L detection limit) indicating soil-bound lead was not leaching at a detectable level. The routine groundwater sampling program for the lead was discontinued following acceptance of the Site into the VRP.

3.2.4 Groundwater VOC Monitoring

Prior to entering the VRP, groundwater monitoring was performed to assess VOCs according to the approved CAP (Arcadis, 2003). Groundwater VOC monitoring comprised of two years of quarterly monitoring (August 2009 to August 2011) followed by annual monitoring (2012 to 2016) for the purpose of time trend analysis and assessment of MNA potential. A summary of VOC testing results is provided in Table 3.2.

13

The CAP specified 16 wells to be sampled for VOC assessment: MW-4, MW-11, MW-12, MW-13, MW-14, MW-15, MW-16, MW-17, MW-18, MW-19, MW-20, MW-21, TW-01, TW-03, TW-04 and TW-08 (Figure 3.7). Horizontal delineation of chloroethene VOCs has been performed, with the plume bounded to the south by MW-11 and MW-17, to the east by MW-16, MW-20, and MW-21, to the west by MW-3, TW-4, and MW-11 and to the north by MW-13 and MW-14. MW-14 exhibits intermittent detection of carbon tetrachloride (CT) and is the only well to report CT. MW-14 does not report the detection of chloroethenes. Annual evaluation of VOC plume stability and MNA potential was last performed for the 2016 CAPR (EPS, 2017). The evaluation found limited to adequate evidence for MNA based on (i) an analysis of VOC plume stability that determined the on-Site and off-Site plume condition is stable with no observed plume migration; and (ii) occurrence of VOC degradation products (EPS, 2017).

14

4 CONSTITUENTS OF CONCERN AND RISK COMPARISON VALUES

4.1 Soil and Groundwater Risk Reduction Standards

Site RRSs were developed and approved for regulated constituents detected in the soil and groundwater in the 2000 CSR (Arcadis, 2000) and later revised in the 2003 CAP (Arcadis, 2003). RRS revisions in the 2003 CAP accounted for the following factors:

- the TCE groundwater RRS was updated with new toxicity values;
- carcinogenic PAHs were adjusted based on the toxicity equivalent factor approach; and
- the soil-bound lead Type 4 RRS was updated based on the Georgia Adult Lead Model (GALM) with a detection limit of 5 μg/L.

4.2 Corrective Action Objectives

COCs are those constituents that exceed an RRS. The approved 2003 revised CAP refined the list of COPC to four COCs requiring corrective action and established corrective action objectives for each (Arcadis, 2003). The Site corrective action objectives by media are summarized below.

Site Corrective Action Objectives

COC	Media	Objective	Basis
Lead	Soil	1,300 mg/kg	Type 4 RRS
Vinyl Chloride	Groundwater	$3.2~\mu g/L$	Type 4 RRS
Trichloroethene	Groundwater	$7.2~\mu g/L$	Type 4 RRS
Naphthalene	Groundwater	$20~\mu g/L$	Type 4 RRS

15

5 CONCEPTUAL SITE MODEL

5.1 Regional Geology

The Site falls in the upper Coastal Plain Physiographic Province just south of the Fall Line in central Georgia. The Coastal Plain Physiographic Province is characterized by sequences of late Mesozoic and Cenozoic sediments consisting of marl, sands, clays, and limestones. The topography of the region is mostly flat with shallowly sloping hills and discontinuous ridges.

Regional stratigraphy consists primarily of the Tuscaloosa Formation locally overlain by the Eutaw Formation and underlain unconformably by shallow, southeastward dipping crystalline rocks of the Piedmont (Pollard and Vorhis, 1980). The Tuscaloosa Formation is a Cretaceous age, locally cross-bedded, and a southward-thickening wedge of sediments. The formation is composed of gravelly, fine to coarse sand with localized pockets or lenses of iron-stained kaolinitic, micaceous sandy clays.

Adjacent to the Ocmulgee River, alluvial sediments (Pleistocene to Recent) overlie the Tuscaloosa and other undifferentiated Cretaceous material comprise the youngest sediments in the area. East of the Ocmulgee River, massive, deep red, clayey sands of the Barnwell Formation can be found slumped and draping over the Tuscaloosa in inter-stream areas (LeGrand, 1962).

In the Macon vicinity, surficial soils consist of sands and clays. Generally, soils of central to south Macon are a weathering product of the Cretaceous sediments. To the north, soils are typically a weathering product of the crystalline Piedmont bedrock. Alluvial deposits ranging from Pleistocene to recent ages exist along the Ocmulgee floodplain up to one mile from the river's banks. These deposits are primarily unsorted sand, gravel, and clay and measure up to 40 feet (ft) thick (LeGrand, 1962). The Quaternary alluvium near Macon is comprised of unconsolidated alluvial sand, silty to clayey sand, sandy silt, and sandy clay with rare wood debris (natural). Quaternary alluvium thickness averages 6 ft with a range of 2 to 20 ft in thickness. Depth to the top of this unit averages 5.5 ft-bgs with a range of 1 to 9 ft-bgs.

The undifferentiated Cretaceous near Macon consists of clay (often mottled), sandy clay, clayey sand, fine to coarse sand, and fine gravel with rare wood debris (natural). The thickness of this unit averages 23 ft with a range of 6 to 49 ft in thickness. Depth to the top of this unit averages 14 ft-bgs with a range of 8 to 26 ft-bgs. The upper bedrock zone is saprolitic and consists of fine-grained clayey sand, sandy silt, and sandy clay to claystone that grades to more competent partially weathered rock with apparent foliation and finely banded gneiss. Depth to the top of bedrock saprolite averages 62 ft-bgs with a range of 58 to 66 ft-bgs.

5.2 Site Geology

Site geology (from the ground surface to depth) consists largely of fill, Quaternary alluvium, undifferentiated Cretaceous sediments (Blufftown/Eutaw formation overlying the Tuscaloosa formation) and crystalline bedrock. Fill is unconsolidated and consists of lumber debris, metal debris, sands, coal fragments, and minor gravel. These manmade materials are mixed with alluvial sand, silty sand, sandy silt and sandy to silty clay.

5.3 Surface Water Features

No surface water bodies are present on-Site. A large subsurface storm water drainage structure is present beneath the southern portion of the Site. The feature is not accessible on-Site. The subsurface drainage structure daylights east of 7th Street on Norfolk Southern property. The nearest down-gradient water body is the Ocmulgee River, located approximately 4,000 ft north of the Site (Figure 1.1).

5.4 General Hydrogeologic Conditions

5.4.1 Site Geologic and Hydrogeologic Setting

Borehole logging from soil cores and monitoring well installation indicates three hydrogeologic zones exist at the Site (Arcadis, 2000). The upper zone includes the fill, alluvium, and sand in the shallow portions of the upper Cretaceous zone. These materials consist of loose clayey sand, fine to medium to subangular sand, and fine gravel with minor clay, sandy clay, clayey sand, and sandy silt. Lumber debris and coal fragments and fines are observed in the upper zone as well. The upper zone has a Unified Soils Classification System (USCS) classification that is predominantly SP and SM. This zone averages 18 ft thick with a range of thickness from zero to 28 ft. The middle zone is undifferentiated Cretaceous and is comprised of mottled silty clay, sandy clay, and clay with minor wood debris (natural), clay and gravel. The middle zone has a USCS classification of SC, CL, and minor SM. This zone averages 44 ft thick with a range of thickness from 34 to 58 ft-bgs. The average depth to the top of this zone is 18 ft-bgs ranging from zero to 28 ft-bgs. The lower zone consists of sand and gravel in the lower portion of the undifferentiated Cretaceous, saprolitic bedrock and jointed/fractured partially weathered bedrock. The basal upper Cretaceous is represented by sand and gravelly sand with minor clay (USCS: SP, GP, and CL). Saprolitic bedrock is characterized as consolidated to semi-consolidated sandy silt, clayey sand and sandy clay (USCS: SM, SC, and CL). More competent and partially weathered bedrock samples revealed fine-grain gneiss and foliated fine-grained diabase. The average depth to the top of this zone is 62 ft-bgs with a range from 58 to 66 ft-bgs.

5.4.2 Groundwater Direction and Flow Velocity

Groundwater flow direction has been assessed annually since 2009 and mimics the ground surface topography, moving east across the Site, then turning southeast near 7th Street. The potentiometric surface for 2016 is provided in Figure 5.1. The hydraulic gradient is approximately 0.017 ft/ft on-Site and 0.024 ft/ft east of the Site near the core of the VOC plume. The hydraulic properties of the near-surface aquifers were evaluated with slug testing by Arcadis for the CSR (Arcadis, 2000). The upper hydrogeologic zone has a horizontal hydraulic conductivity range of 0.7 ft per day (ft/day) to 6 ft/day with an average of 3 ft/day. The lower hydrogeologic zone has a horizontal hydraulic conductivity range of 6 to 110 ft/day with an average of 75 ft/day. Using the hydraulic conductivity from the falling head permeability test, and the measured Site hydraulic gradient (0.017 ft/ft), and an assumed effective porosity of 20%, the groundwater velocity in the upper aquifer is calculated to be approximately 75 ft/year.

5.5 LNAPL Assessment

5.5.1 Overview

The framework for LNAPL management has evolved over the past decade to recognize that LNAPL remedial objectives require evaluation with respect to technical factors including LNAPL recoverability, mobility, and Site-specific risk concerns (ITRC, 2009). The revised framework was developed to replace the arbitrary threshold limits common to existing LNAPL regulatory programs that in most instances are not technically feasible and to support defining a practical endpoint for LNAPL remediation, customarily referred to as the "maximum extent practicable" or MEP. The ITRC LNAPL guidance has established a framework for determining appropriate site-specific LNAPL remediation objectives and achievable endpoints, with each objective specific to a risk concern (ITRC, 2009). The four steps of the ITRC framework are:

- 1. establish an LCSM based on LNAPL properties, status, and potential risk concerns;
- 2. establish appropriate site-specific and achievable LNAPL remedial objectives that address each LNAPL risk concern;
- 3. develop an LNAPL remedial strategy to achieve the LNAPL remedial objective; and
- 4. establish an acceptable outcome if the LNAPL remedial objective is attained (e.g., no further action, UEC, or a combination of outcomes).

Ten years of LNAPL monitoring, recovery and evaluation, including recent direct testing of LNAPL properties, provide sufficient data to establish a detailed LCSM and to evaluate practicable Site-specific LNAPL remediation objectives or the MEP, Steps 1 and 2 above. This section focuses on Site-specific information and LNAPL data to complete these two steps. Step 3, a strategy to achieve the LNAPL remedial objectives is considered congruent with the recovery and monitoring activities performed to date under the CAP. The last step, determining an acceptable outcome based on the work performed to date and understood risk concerns is evaluated in Section 6.

5.5.2 The LCSM

This section outlines the key elements of the LCSM based on Site history and Site-specific LNAPL testing data.

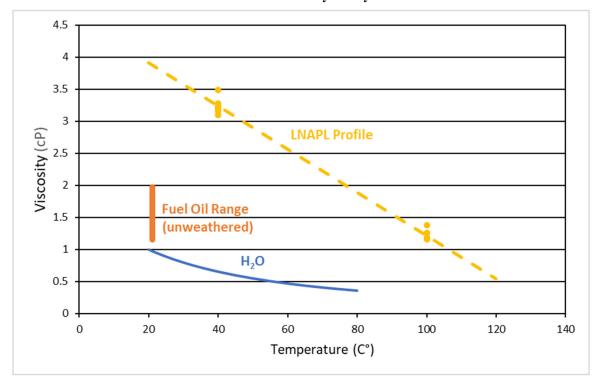
A. Site Setting

As provided in Section 1, the Site is located in an industrial area with land use adjacent to and surrounding the facility zoned industrial and/or railroad related. Eventual Site reuse is limited to commercial/industrial redevelopment, which is consistent with other approved Site-specific remedial objectives (*e.g.*, lead-contaminated soil was managed to a Type 4 RRS). The Site and surrounding industrial/commercial properties are supplied water by the local municipality, and no known drinking water supply wells are present in the immediate vicinity (see Section 5.6.2).

B. LNAPL Source

The release of the diesel LNAPL occurred prior to 1980, which marked the removal of the former on-Site AST fuel oil tanks. No ongoing source of LNAPL is present on-Site.

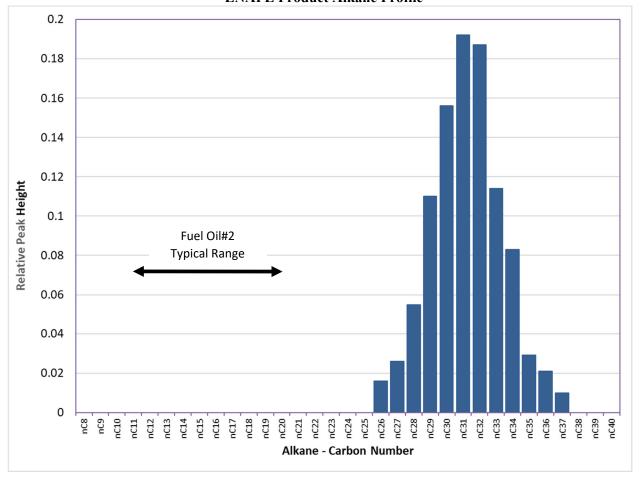
C. LNAPL Physical/Chemical Properties


A renewed effort to characterize the LNAPL product was undertaken in 2018 to better understand its current physical and chemical properties. The effort included testing of the LNAPL viscosity and chemical composition, information useful for understanding the LNAPL's behavior in the subsurface and potential risk concerns. To assess LNAPL viscosity, LNAPL product was collected from seven well casings across the LNAPL smear zone (EW-10, EW-13, MW-02, TW-12, TW-18, TW-19, and TW-24) and submitted for laboratory testing. The laboratory report is provided in Appendix E.

The LNAPL viscosity ranged from 3.59 to 4.05 centipoise (cP) at 40°C or about six times that of water. When heated to 100°C, the LNAPL viscosity decreased and ranged from 1.34 to 1.6 cP, or still about 2.5 times that of water. Thus, the Site's LNAPL resistance to potential subsurface flow is substantially impeded in comparison to water and will have a direct influence on mobility and recoverability. Furthermore, the viscosity supports the prior assessment that the LNAPL represents a weathered product that has undergone chemical and physical alteration since its release. This difference of LNAPL product viscosity relative to water and unweather fuel oil range organics is illustrated graphically below.

19

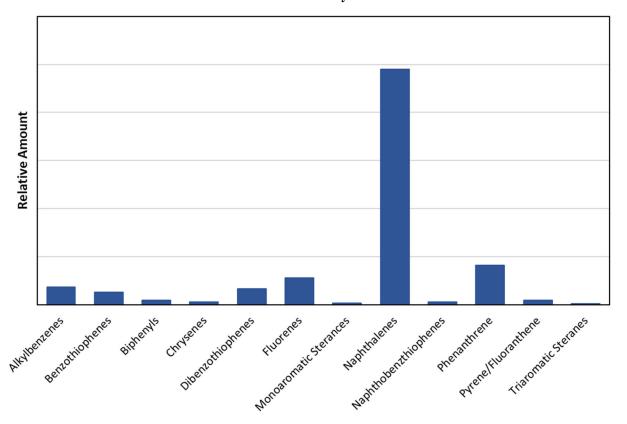
LNAPL Product Viscosity Analysis Results


Also in 2018, the chemical composition of the LNAPL product was assessed to better understand not only its key constituent groups but how the observed constituent groups may affect the surrounding aquifer through the potential release of soluble constituents. The latter concern of soluble constituents was directly assessed by testing of groundwater in monitoring wells adjacent to and down-gradient of the LNAPL smear zone area (Section 5.5.4).

LNAPL product composition was tested with ASTM Method D5739, which provides a semi-quantitative molecular characterization by gas chromatography/mass spectrometry (GC/MS) for C8 through C40 compounds (*i.e.*, hydrocarbon compounds with 8 to 40 carbon atoms). Two key findings from this study provide insight into the status of the LNAPL. First, with respect to the LNAPL alkane profile, the analysis finds the LNAPL hydrocarbon profile to be highly weathered with no hydrocarbon chains less than C26. This is substantially skewed from the expected profile for fuel oil #2, which is characterized by chain lengths in the C11 to C20 range (ATSDR, 1999). In fact, the Site LNAPL alkane profile is at the high-end for any fuel type and is more in line with residual and recalcitrant petroleum compounds. The alkane distribution for the Site LNAPL is illustrated below.

20

LNAPL Product Alkane Profile



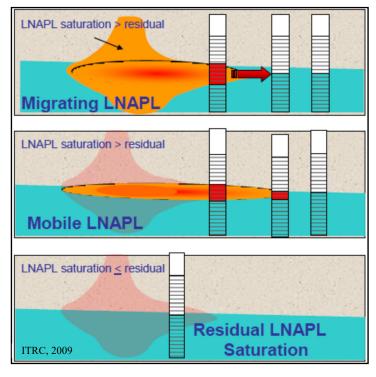
Second, the current aromatic compound distribution is notably skewed towards naphthalene and naphthalene congeners with phenanthrene and fluorenes identified as the second and third most prevalent aromatic hydrocarbon groups although at significantly lower relative amounts. This aromatic distribution profile for the LNAPL product provides a sound explanation for the historical detection of PAHs in past groundwater samples collected within the LNAPL smear zone. Specifically, historical detections of PAHs were limited to these aromatic groups and included detection of four specific PAHs: naphthalene, acenaphthylene, fluorene, and phenanthrene.

21

LNAPL Product Aromatic Hydrocarbon Profile

D. LNAPL Delineation

The extent of LNAPL product is delineated within the existing monitoring well network as illustrated by periphery wells that either exhibit no product or occasionally report minute or trace levels of LNAPL product (Figure 5.2a). Figure 5.2a illustrates the frequency of detection for LNAPL in well casings for the period of 2008 through 2016. Periphery monitoring wells report no detection of LNAPL product with the exception of three locations: TW-22, MW-32, and TW-26. Although these three periphery wells have reported LNAPL product during monitoring events, the quantity of LNAPL observed in these wells averages 0.14 ft to 0.20 ft for the period of 2008 to 2016 (Figure 5.2b) and for the past two years the maximum LNAPL product in these periphery wells ranges from non-detect (TW-26) to a maximum of 0.04 ft (TW-32) as shown in Figure 5.2c and summarized in Table 5.1.

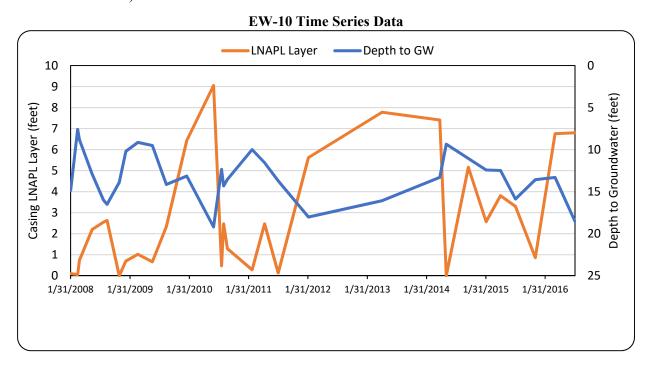

The core of the LNAPL product has remained centered primarily along the transect of monitoring wells from TW-18 to TW-28 since 2008 (Figure 5.2b) with some accumulation of LNAPL at greater than one-foot in wells to the southeast (TW-19, TW-23, TW-24, and SSB-1). This LNAPL profile is consistent with recent LNAPL measurements in 2015 and 2016 (Figure 5.2c), indicating the LNAPL plume is stable with no observed migration.

E. LNAPL Mobility & Saturation

LNAPL mobility is classified as one of three conditions as detailed in the ITRC guidance and illustrated herein. The key characteristic for classifying LNAPL mobility is the LNAPL residual saturation; LNAPL above its residual saturation limit has the potential to be mobile, whereas LNAPL below its residual saturation limit is immobile.

The first LNAPL classification is one of migrating LNAPL, in which LNAPL is observed to spread in the subsurface, horizontally over time. This condition may be observed when a source of LNAPL is present or recently released and thus having sufficient hydraulic head and saturation (*i.e.*, above residual saturation) to continue to migrate

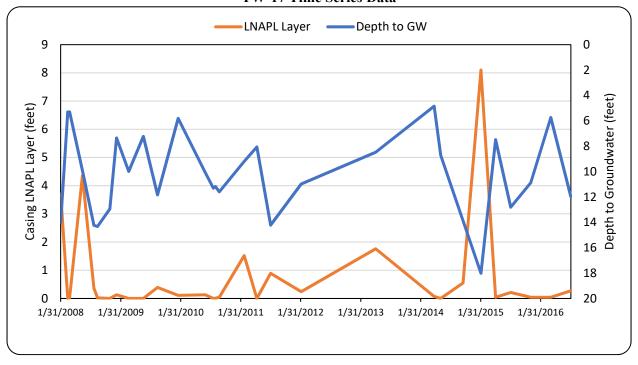
outwards and displace groundwater from pore space. The second classification is mobile LNAPL. Mobile LNAPL also exceeds residual saturation but does not migrate horizontally as there is no LNAPL head. Vertical movement of mobile LNAPL can occur and is subject to LNAPL residual saturation, which is not equal for the vadose zone and saturated zone of the aquifer, and therefore mobile LNAPL responds to water table fluctuations. The last classification is residual LNAPL or LNAPL that is less than the LNAPL saturation level. At less than saturation, LNAPL is entrained or trapped within aquifer pore space.


Site LNAPL is well-documented through prior delineation efforts and annual monitoring to be horizontally stable. Therefore, the Site LNAPL does not exhibit properties of a migrating LNAPL plume. This is consistent with the understood age of the plume (the release occurred prior to 1980) and lack of an ongoing source of LNAPL to the subsurface. The historical dataset does exhibit properties consistent with mobile LNAPL (vertical mobility) as documented in measurements of variable LNAPL thickness in monitoring well casings. Analysis of the LNAPL well casing thickness with respect to the water table elevation finds an inverse relationship between the two. This observation indicates that Site LNAPL occurs at less than residual saturation under high water table conditions and exhibits vertical mobility only during periods of low water table elevation. Three examples illustrating Site LNAPL saturation properties and vertical mobility as a function of the Site water table status are illustrated below.

23

EW-10

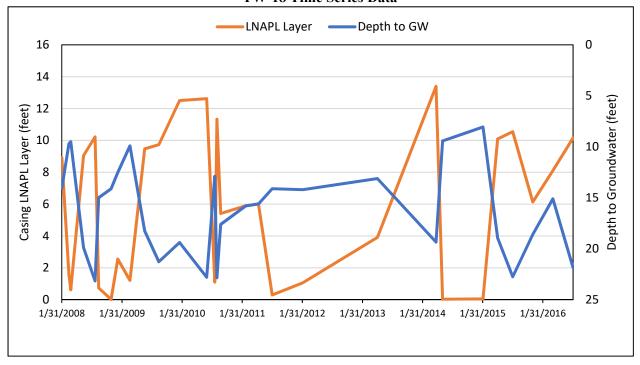
EW-10 was installed in 2008 to increase the number of LNAPL recovery points. The time series of measurements for EW-10 illustrate a characteristic dependence of LNAPL well casing accumulation and water table elevation. For example, four events are noted where the water table was at a shallow point or less than 10 ft-bgs: March 2008, March 2009, February 2011 and June 2014. The corresponding LNAPL thickness for these periods reports trace to less than 1 ft of product in the casing. The inverse condition is noted for periods of low water table (*i.e.*, greater LNAPL thickness).


TW-17

TW-17 historically exhibits little accumulation of LNAPL product with several monitoring events finding no LNAPL product present in the casing. An exception to the historical pattern occurred in 2015 during which the water table at TW-17 declined to the lowest observed level from 2008 to 2016 (approximately 4 ft less than any other measurement). Coinciding with the drop in the water table was an accumulation of LNAPL in the casing, on the order of 8 ft of LNAPL. This observation indicates that LNAPL in the adjacent aquifer is below residual saturation under typical water table conditions but is above residual saturation and vertically mobile when the water table drops (*i.e.*, when the vadose zone expands).

24

TW-17 Time Series Data

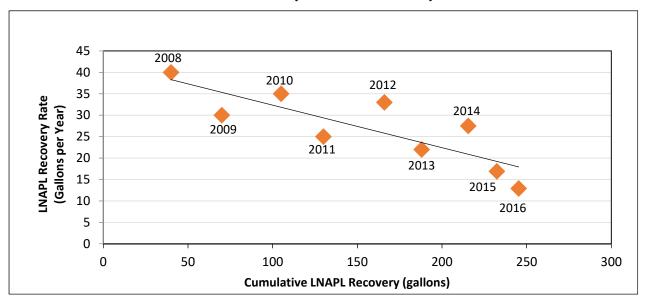

TW-18

TW-18 historically exhibits the thickest accumulation of LNAPL amongst all Site monitoring wells. The time series of measurements for TW-18 illustrates a well-defined relationship between LNAPL accumulation in the well and groundwater elevation. A notable period in the time series occurred in 2014 when the water table elevation was at its shallowest level (8 to 9 ft-bgs) reducing the width of the vadose zone; a condition that increases LNAPL residual saturation (*i.e.*, the saturated aquifer matrix retains more LNAPL) and reduces LNAPL mobility. During this period, LNAPL was nearly absent from the well casing and no LNAPL was recoverable. A contrasting condition occurred in 2010, in which the water table was sustained at a historical low.

25

TW-18 Time Series Data

5.5.3 LNAPL Recoverability Assessment


5.5.3.1 LNAPL Recovery Decline Curve Analysis

An initial assessment of potential LNAPL recoverability was performed and presented in the VIRP following ITRC LNAPL guidance. The ITRC assessment method, the LNAPL recovery decline curve analysis, is designed to utilize historical LNAPL recovery system data to predict the total LNAPL that is potentially recoverable and is based on the annual LNAPL recovered in comparison to the cumulative LNAPL product recovered. A Site-specific LNAPL recovery decline curve analysis is graphically illustrated below and is based on nine years of data for total product recovered from fourteen monitoring/recovery wells.

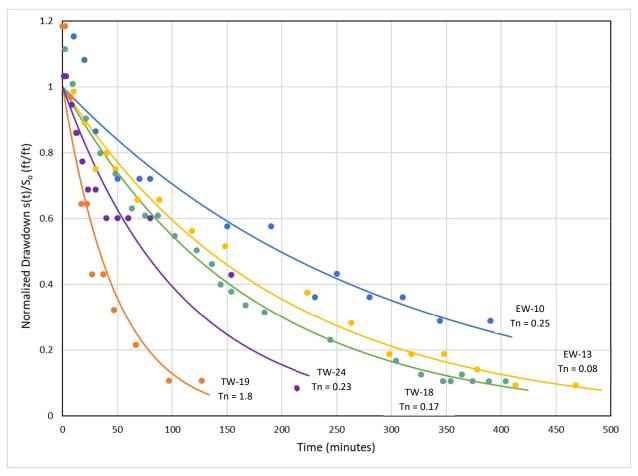
26

LNAPL Recovery Decline Curve Analysis

Two LNAPL recovery parameters are acquired from the analysis. First, the LNAPL product recovery rate declined by approximately 60% in 9 years, from 40 gallons per year (gpy) in 2008 to less than 15 gpy in 2016. Second, the maximum quantity of recoverable LNAPL can be estimated by extending the recovery rate trend line to zero, at which point no further recovery is predicted. Extending the recovery rate trend line to zero, or the point of no further recovery, the maximum Site-specific LNAPL product potentially recoverable is estimated at approximately 425 gallons. Currently, 245 gallons of LNAPL have been recovered.

5.5.3.2 LNAPL Transmissivity Testing

In 2018, further assessment of the Site LNAPL condition was performed based on the growing body of evidence that LNAPL transmissivity, a measure of the lateral mobility of the LNAPL free product in the subsurface, provides the most practicable assessment of LNAPL recoverability and indicator of whether an MEP endpoint has been reached. Specifically, an LNAPL transmissivity between the range of 0.1 ft²/day and 0.8 ft²/day is the lower threshold limit, below which remedial action with standard hydraulic recovery technologies are concluded to have reached a useful endpoint and further action is not merited unless an exposure risk concern is identified in the CSM.


Site LNAPL transmissivity was evaluated with ASTM Method E2856. Specifically, field data was acquired in accordance with the baildown test method of ASTM E2856 and data analysis was performed with the *API Transmissivity Workbook* (API, 2016). Transmissivity testing location preference included 2-inch well casings that exhibited a minimum of 0.5 ft of LNAPL product. One 1-inch well (TW-24) was also assessed for LNAPL transmissivity due to a lack of well casings with sufficient product (>0.5 ft) to perform the baildown test method. In total, sufficient baildown test data was acquired from five wells to calculate LNAPL transmissivity (data collected from a 6th well exhibited anomalous results). Field forms for collection of baildown data are provided in Appendix F and the output of the *API Transmissivity Workbook* are provided in Appendix G

27

The transmissivity analysis results, based on the Bouwer & Rice Type Curve (Bouwer & Rice, 1976), are graphically illustrated below and find that four of the five wells exhibit a transmissivity value of 0.08 to 0.28 ft²/day. One well, TW-19, exhibited an outlier transmissivity value of 1.8 ft²/day. The anomalous value at this location in comparison to the remainder of the LNAPL smear zone indicates other factors may be influencing the testing result. For example, an underestimate of LNAPL recharge from the sand pack can result in an overestimate of actual LNAPL recoverability.

Transmissivity Model Results: Bower & Rice Type Curves

The ITRC-based approach finds that LNAPL recovery by current means has reached a defensible endpoint based on two key metrics, (1) the LNAPL recovery decline curve analysis and (2) the LNAPL transmissivity which identified Site LNAPL transmissivity values within the range of impracticability for effective LNAPL recovery (i.e., < 0.1 to 0.8 ft²/day).

5.5.4 Groundwater Testing for LNAPL Constituents

Concern regarding potential LNAPL constituents in groundwater, specifically naphthalene, was recognized during early sampling of MW-02 in 1997 through 1999. It was later recognized that LNAPL product is routinely observed in MW-02 and the location was later used as part of the

LNAPL recovery system. Therefore, the historical detection of naphthalene and other PAHs in MW-02 was likely a result of direct water-LNAPL contact in the well casing. Prior to the current assessment, Site-wide sampling for naphthalene and PAHs was last performed in 2003 with only a single trace detection of naphthalene in MW-04 at $1.1~\mu g/L$ with wells adjacent to the LNAPL smear zone reporting a non-detect condition. Testing of MW-04 in 2007 did not reproduce the naphthalene detection.

The VIRP outlined a plan to test five wells down-gradient of the LNAPL smear zone for dissolved LNAPL constituents. The objective of this sampling was to address the LNAPL risk concern of a potential dissolved plume. The sampling included locations MW-01, TW-01, TW-08, TW-31 and TW-33 (Figure 5.3). The testing was performed on January 22, 2019, and each groundwater sample was analyzed with EPA Method SW8270D (SIM Polynuclear Aromatic Hydrocarbons). The field and laboratory data report are provided in Appendix H and Appendix E, respectively.

The results of the testing found one of the five wells, the well nearest the down-gradient edge of the LNAPL smear zone, TW-33, to report a range of PAHs with a majority of the test results below 1 μ g/L (Table 5.2). The four remaining wells were non-detect for all PAH constituents with the exception of a single detection of pyrene in TW-08 at 0.4 μ g/L. TW-08 is due east of TW-33 as is the Site groundwater flow. Thus, all PAH constituents are delineated to a non-detect condition in down-gradient or side-gradient wells or below the Type 1 RRS (1,000 μ g/L) in the case of pyrene in TW-08.

5.6 Potential Receptors and Exposure Pathways

5.6.1 Facility and Surrounding Area

The Site is located in an industrial area southeast of downtown Macon, Georgia. No structures exist on-Site except for a former multi-story coal chute and security fencing to control access. The Site is currently vacant but may be occupied by a future owner. Land use immediately adjacent to the Site is zoned industrial and is primarily railroad related, with several surrounding land parcels designated a public utility due to their use to support public works or railway infrastructure. The nearest residential area includes a two-family housing neighborhood located approximately 2,000 feet west of the Site (hydraulically upgradient).

5.6.2 Well Survey

A review of the EPD records to update the Site's original well survey was performed on December 17, 2018. No drinking water sources were identified within a ½-mile radius of the Site or within a 3-mile zone downgradient of the Site (Appendix I). This finding is supported by a recent EPD Trip Report dated October 9, 2018, for a site located at 1217 Martin Luther King Jr. Blvd. The 1217 Martin Luther King Jr. Blvd site is located just 1,200 feet west of the Site and the EPD Trip Report did not locate a drinking water well within a 1-mile radius (Appendix I). Therefore, the downgradient groundwater pathway was excluded from consideration. Regardless, a restriction on the future use of groundwater at the Site is included in the proposed UEC.

29

5.6.3 Potential Human Receptors

5.6.3.1 On-Site Receptors and Exposure Pathways

The Site is located in a zoned industrial area with no reasonable expectation of residential occupation. Thus, on-Site receptors (current and potential future) include Site Workers, Trespassers, and Construction Workers. On-Site receptors might be exposed to COCs via dermal exposure, ingestion, and inhalation, or possibly through vapor intrusion (possible indoor air exposure/inhalation) if future structures were to be constructed and occupied. A summary for each potential Site receptor is provided below.

- <u>Current/Future Site Worker</u>: It is anticipated that the Site will continue to remain industrial based on the surrounding property use, zoning restrictions, and its physical location being bound by active railroad infrastructure. Site workers associated with this type of land use can potentially have long-term exposure to Site-related chemicals in surface soil via particulate ingestion and dermal contact. Concrete or asphalt coverings may prevent worker exposure to residual lead contamination in the underlying soil. For VOCs, exposure to Site workers is more likely to occur via the inhalation of volatiles in indoor air if the Site is redeveloped. Suitable engineering measures are available to control vapor intrusion should future land use involve the construction of an enclosed building. Thus, exposure to Site Workers can be managed according to appropriate land use protocols.
- <u>Current/Future Construction Worker</u>: Construction workers could potentially have short-term (<1 year) exposure to COCs in mixed surface and subsurface soil (0 to 10 ft-bgs) via ingestion, dermal contact, and inhalation of volatiles and particulates. The distribution of soil and groundwater contaminants is well understood for the Site with the current monitoring well network establishing the bounds of VOCs and LNAPL, and the extensive soil delineation activity characterizing the residual soil lead condition. Site data is captured in a Geographic Information System (GIS) that will allow future Site reuse to be planned with respect to residual COC conditions. Therefore, exposure to construction workers can be managed according to the Occupational Safety and Health Administration (OSHA) protocols.
- <u>Trespassers</u>: Trespassers could potentially have short-term (*i.e.*, hours to days) exposure to surface soil via ingestion, dermal contact, and inhalation of particulates. However, an exposure pathway to groundwater is incomplete as no water supply wells are located on-Site. Further, the Site is fenced and locked to prevent trespasser activity. Therefore, even if trespassers did access the Site, no exposure would be anticipated.

5.6.3.2 Off-Site Receptors and Exposure Pathways

5.6.3.2.1 Lead-contaminated Soil

As noted in Section 3.2.1, three soil samples located at or slightly past the Site property/fence line report detection of lead above the RRS. Two of the locations are on the edge of the property line

abutting to the Norfolk Southern right-of-way for active railroad lines and the supporting rail ballast stone. Construction or railroad maintenance workers could potentially have short-term dermal contact exposure to contaminated soil or inhalation of particulates. The other soil sample is located at the edge of 7th Street. No further excavation could be conducted adjacent to 7th Street as excavation would have undermined or required removal of the 7th Street base material or concrete. As with the other two off-Site locations, road maintenance or construction workers could potentially have short-term exposure to lead-contaminated soil through dermal contact or inhalation of particulates.

5.6.3.2.2 Groundwater VOCs

There are no known users of groundwater in the vicinity of the Site and specifically down-gradient of the Site as detailed in the well survey (Section 5.6.2). If required, future potable water needs for this area would be supplied by the City of Macon. Thus, future pathways for exposure to groundwater exclude dermal and ingestion routes and only vapor intrusion is considered a potential possibility.

31

6 RISK ANALYSIS

6.1 Overview of the Risk Analysis Process

The risk analysis presented in this section of the report builds upon the CSM, potential receptors and exposure pathways presented in Section 5 for the Site COCs. Specifically, the soil risk analysis evaluates the current soil-bound lead exposure potential with respect to the Site-specific non-residential RRS, the groundwater risk analysis is specific to the VOC plume, and the LNAPL risk analysis is specific to the LNAPL concerns and applicable remedial objectives identified in the VIRP and herein, since updated with the Site studies performed to qualify the concerns and determine if further action is warranted.

6.2 Soil Risk Analysis

6.2.1 Soil Dataset

Soil testing data included in the lead risk analysis includes all testing data for soil from 0 to 2 ft-begs obtained during Site assessment activity (1997 through 2011) and soil data obtained during the confirmational sampling performed during the 2011 removal action. A summary of the soil data is provided in Table 6.1.

6.2.2 Potential Exposure Units

Site exposure units evaluated in the soil-bound lead risk analysis account for multiple future land parcel options and the parcel options are provided in Figure 6.1. The options include (1) reuse of the 22-acre Site as a whole, (2) division of the 22-acre Site into halves, and lastly, (3) division of the Site into quarters. In the quarters land parcel option, the size of the land parcels ranges from 3.3 acres to 7.3 acres.

6.2.3 Statistical Analysis

The soil-bound lead risk assessment applied the 95% Upper Confidence Limit on the mean ("95% UCL") as the representative concentration for each exposure unit. The 95% UCL was calculated with the US Environmental Protection Agency ProUCL software, version 5.1. The ProUCL input and output files are included as Appendix J. The nonparametric distribution Chebyshev 95% UCL, the recommended UCL for most datasets, was selected as the suitable output value for comparison to the Site-specific non-residential RRS.

6.2.4 Comparison of Soil Lead 95% UCL to Site-Specific RRS

A summary of the soil-bound lead 95% UCL values for potential future land parcel options is provided below. No land parcel option results in an exceedance of the Site-specific RRS of 1,300 mg/kg.

Summary of Soil Lead Statistical Analysis

	~ william j or	Don Lead Statis	7010001 1 211001 1 515	
Area	#Samples (0-2 ft-bgs)	Mean (mg/kg)	Median (mg/kg)	95% UCL (mg/kg)
Section 1	55	573	323	1,283
Section 2	203	390	265	515
Section 3	270	462	409	564
Section 4	108	347	254	484
Section 1&2	258	429	271	610
Section 3&4	378	429	330	512
All Sections	636	429	313	517

6.2.5 Protection of Groundwater

Assessment of potential leaching of soil-bound lead to groundwater was directly tested from 2009 to 2016 with a finding that soil leaching was not occurring at a detectable level. Furthermore, following the removal action for soil-bound lead, any future potential risk to groundwater has been minimized.

6.3 Groundwater Risk Analysis

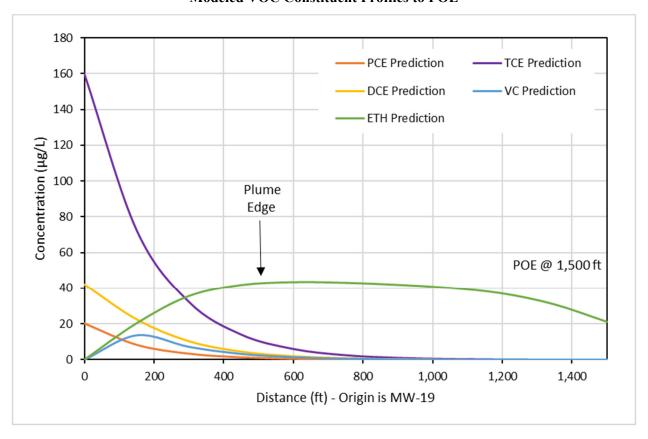
6.3.1 Receptor Evaluation

An on-Site pathway for ingestion or dermal exposure to groundwater is incomplete as no water well is located on-Site and historically potable water was provided by the City of Macon. The future on-Site risk to groundwater will be prohibited through the use of a UEC. The UEC will accomplish two risk management objectives with respect to groundwater for the Site. First, the UEC will restrict groundwater withdrawal from the property and second, construction of any enclosed infrastructure will require proper vapor intrusion testing, and, if necessary, mitigation measures to address potential vapor intrusion concerns caused by the groundwater VOC condition (e.g., foundation vapor barrier or sub-slab depressurization).

There are no known off-Site users of groundwater in the vicinity of the Site and specifically downgradient of the Site. Thus, future pathways for exposure and the risk from groundwater excludes dermal and ingestion routes and only vapor intrusion is considered a potential pathway for exposure. However, the development of occupied structures above the VOC plume is unlikely as

the plume area is currently occupied by several active rail lines and industrial land use features (*i.e.*, roads and material storage) of the Brosnan Rail Yard. Therefore, the risk to off-Site receptors is considered negligible.

6.3.2 Fate and Transport Model


Under the VRP, a downgradient POE is defined as the nearest of the following: the closest existing downgradient drinking water well, the likely nearest future downgradient drinking water well, or at a hypothetical point of exposure 1,000 feet downgradient of the plume edge. No drinking water wells exist within three miles downgradient of the Site (Section 5.6.2) and the groundwater POE is therefore established as a hypothetical POE 1,000 feet downgradient of the plume edge.

The US EPA BIOCHLOR fate and transport model was applied to simulate remediation by natural attenuation and determine if the VOC plume may be a concern for the hypothetical POE. The modeling effort, which is included in Appendix K, applied Site-specific hydrogeologic data from the CSM (Section 5) and VOC data from off-Site wells MW-19, MW-20 and MW-21. MW-19 was selected as the point of origin, as the location exhibits the highest VOC concentration values. The model, following calibration of the biotransformation coefficients, indicates that the groundwater plume constituents will not migrate to the POE, and will not migrate to the POE in the future at concentrations exceeding applicable standards. The results of the BIOCHLOR model are provided below. Note that 1000 feet from the edge of the plume (*i.e.*, the POE) would be located at 1,500 on the x-axis provided below as the model condition originates at MW-19 and the plume edge is located at MW-21, approximately 500 feet down-gradient from MW-19.

34

Modeled VOC Constituent Profiles to POE

6.4 LNAPL Risk Analysis

6.4.1 LCSM Risk Concerns

Based on the Site LCSM, three potential risk concerns were recognized in the VIRP. In review, the three concerns are as follows.

<u>Concern 1</u>: Presence of LNAPL product in Site monitoring wells, defined as an LNAPL saturation risk concern (*i.e.*, migration concern).

<u>Concern 2</u>: LNAPL as a potential source of soluble or dissolved constituents to groundwater, defined as a dissolved groundwater plume risk concern.

<u>Concern 3</u>: Potential exposure to LNAPL (product or soil) or inhalation of LNAPL vapors in the event the area is disturbed to support future redevelopment, defined as an LNAPL exposure risk concern.

Remedial objectives to address each LNAPL risk concern were summarized in the VIRP with proposed actions or measures to qualify the potential risk of each. The remedial objectives in accordance with each LNAPL risk were presented as follows.

LNAPL Concerns and Remedial Objectives

Concern	Potential Risk	Remedial Objective	Performance Metric
Concern 1:	The presence of LNAPL	Reduce LNAPL saturation	Evaluate LNAPL stability &
LNAPL	product (i.e., LNAPL	and prevent product	migration potential (i.e.,
Product	saturation) in Site monitoring	migration, NFA approach	transmissivity); UEC
Saturation	wells; potential migration	through land management	
		(i.e., UEC)	
Concern 2:	LNAPL as a potential source of	Attainment of Type 4 RRS	Dissolved plume evaluation;
Dissolved	dissolved constituents to	for naphthalene (and PAHs)	attainment and delineation of
Plume	groundwater (i.e., dissolve	prior to property line/POE	naphthalene (and PAHs) to
	plume)		regulatory standard at
			property line/POE
Concern 3:	Potential exposure to LNAPL	Land management (i.e.,	Establish a UEC to manage
Direct	(product or soil) or inhalation	UEC)	land use above the LNAPL
Contact &	of LNAPL vapors in the event		smear zone
Inhalation	the area is disturbed to support		
	future redevelopment		

6.4.2 Concern 1: LNAPL Product Saturation

The LNAPL product saturation remedial objective is to attain a state where further migration of LNAPL is inhibited, a condition compatible with but preceding attainment of LNAPL recovery to the MEP. Upon attainment of this objective, the risk to LNAPL exposure can be properly managed as the extent of the LNAPL is defined and the LNAPL will not pose an unforeseen risk to other areas on-Site or Off-Site in the future. Currently, sufficient historical data from nearly two decades of Site assessment work is available to confirm the spatial stability and extent of the LNAPL smear zone and the area of potential risk is defined as presented in the LCSM (Section 5.5).

Furthermore, the LNAPL product recovery efforts performed to date in accordance with the original CAP has advanced the LNAPL product saturation remedial objective through direct removal of the product. Testing performed to evaluate the approach and LNAPL recoverability efforts (*i.e.*, LNAPL transmissivity) affirms migration of LNAPL is inhibited to the point that no further recovery of LNAPL is reasonable for the purpose of further reducing LNAPL migration potential. Thus, the remedial objective with regard to LNAPL product saturation has been achieved.

6.4.3 Concern 2: Dissolved Plume

The second remedial objective for the Site LNAPL is to evaluate the LNAPL smear zone as a potential source of dissolved constituents to groundwater, specifically, naphthalene based on prior testing data, and if present manage the dissolved condition to the Type 4 RRS (20 μ g/L) at the property boundary (or a POE if necessary). As detailed in Section 5.5.4, dissolved LNAPL

constituents comprising of PAHs are detected in the monitoring well tested nearest the LNAPL smear zone including naphthalene reported at 0.92 µg/L (less than the RRS). However, monitoring wells tested further down-gradient on-Site and to the side of the LNAPL smear zone are non-detect for all PAHs with a single exception for pyrene in TW-08. Thus, the dissolved plume concern is limited to potential on-Site receptors only and since Site groundwater is not withdrawn for any purpose, the exposure pathway to on-Site receptors is incomplete and the remedial objective has been attained.

6.4.4 Concern 3: Direct Contact & Inhalation

The third remedial objective for the Site LNAPL is to prevent direct receptor contact with the LNAPL smear zone or secondary contact through a route of vapor intrusion. Both exposure routes are limited to on-Site receptors and only under a scenario where the LNAPL smear zone is actively disturbed or excavated, or in the case of vapor intrusion, an enclosed structure is built over the LNAPL area. Therefore, the LNAPL smear zone area will be appropriately managed through a UEC. A UEC will prevent future incidental contact and allow for appropriate health and safety measures to be enacted if the area were to be disturbed during future Site redevelopment, or require proper vapor intrusion testing, and if necessary, mitigation measures to address potential vapor intrusion concerns (*e.g.*, foundation vapor barrier or sub-slab depressurization).

37

7 SITE COMPLIANCE

7.1 Soil Delineation and Compliance

Delineation of soil-bound lead to the residential RRS is complete based on off-Site soil samples collected beyond the property edge. The soil is also in compliance with the Site-specific non-residential RRS based on the analysis of future exposure unit or land parcel options (Section 6.2). Furthermore, property use at the Site will be limited to non-residential use based on the proposed UEC.

7.2 Groundwater Delineation and Compliance

7.2.1 Groundwater Delineation

Horizontal and vertical groundwater delineation has been demonstrated in previous reports and was reviewed herein. Groundwater use limitations for the Site will be established in the proposed UEC. This Site did not historically list on the Hazardous Site Inventory for groundwater, and, based on the water well survey (Appendix I), it would not currently list as a result of a release to groundwater exceeding a reportable quantity. For this reason, compliance certification for groundwater is not required.

7.2.2 Points of Demonstration and Exposure

Under the VRP, the Point of Demonstration (POD) is a monitoring well located between the source of the Site groundwater impacts and the actual or estimated downgradient POE, which is defined as a hypothetical point of exposure 1,000 feet downgradient of the plume edge. No drinking water wells exist within three miles downgradient of the Site. The POD is proposed to be monitoring well MW-21, and the groundwater POE has been established as a hypothetical point of exposure 1,000 feet downgradient of the plume edge (Figure 7.1).

7.3 LNAPL Remedial Objective Compliance

The three LNAPL remedial objectives have been achieved. Specifically, (1) the LNAPL product condition is stable and defined and will not pose a risk to potential off-Site receptors, (2) the LNAPL is a minor source of dissolved constituents to groundwater and the plume of dissolved constituents was delineated to a marginal area down-gradient of the LNAPL smear zone and furthermore, the dissolved constituents are limited to on-Site groundwater which lacks a pathway for exposure to future potential receptors, and lastly, (3) the proposed UEC will manage future risk

38

and allow for appropriate health and safety measures to be enacted if the area where the residual LNAPL smear zone exists were to be disturbed during future Site redevelopment.

March 2019

39

8 REFERENCES

- API. (2016). API LNAPL Transmissivity Workbook: A Tool for Baildown Test Analysis. API Publication 4762. April 2016.
- Arcadis Geraghty and Miller. (2000). Compliance Status Report, Former Transco Railcar Facility, HSI Site Number 10502.
- Arcadis Geraghty and Miller. (2001). Corrective Action Plan, Former Transco Railcar Facility, HSI Site Number 10502.
- Arcadis Geraghty and Miller. (2003). Revised Corrective Action Plan, Former Transco Railcar Facility, HSI Site Number 10502.
- ATSDR. (1999). Toxicological Profile for Total Petroleum Hydrocarbons (TPH). U.S. Department of Health and Human Services, Agency for Toxic Substances and Disease Registry. September 1999.
- Bouwer, H. and Rice, R.C.. (1976). A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells, Water Resources Research, vol. 12, no. 3, pp. 423-428.
- EPD. (2004). Conditional Approval of the Revised Corrective Action Plan. Transco Railcar Facility (Former), 989 Seventh Street, Macon Georgia, HIS Site No. 10502.
- EPD. (2008). Approval of the Response to NOF (Leaching Model Comments) and Groundwater Corrective Action Update, Transco Railcar Facility (Former), 989 Seventh Street, Macon Georgia, HIS Site No. 10502.
- EPS. (2012). 2011 Corrective Action Progress Report, Former Transco Railcar Facility, Macon, Georgia. HSI# 10502.
- EPS. (2017). 2016 Corrective Action Progress Report, Former Transco Railcar Facility, Macon, Georgia. HSI# 10502.
- ITRC. (2009). Evaluating LNAPL Remediation Technologies for Achieving Project Goals.
- LAW. (1997). Phase II Environmental Assessment for the Former Transco Railcar Facility, Macon, Georgia. Law Engineering and Environmental Services, Inc.
- LeGrand, H. E.. (1962). Geology and Ground-water Resources of the Macon Area. Georgia: Georgia Geological Survey Bulletin, 72, 68.
- Pollard, L.D., and Varhis, R.C.. (1980). Geohydrogeology of the Cretaceous Aquifer System in Georgia, Georgi Geologic Survey Hydrologic Atlanta, 3, 5.

FIGURES

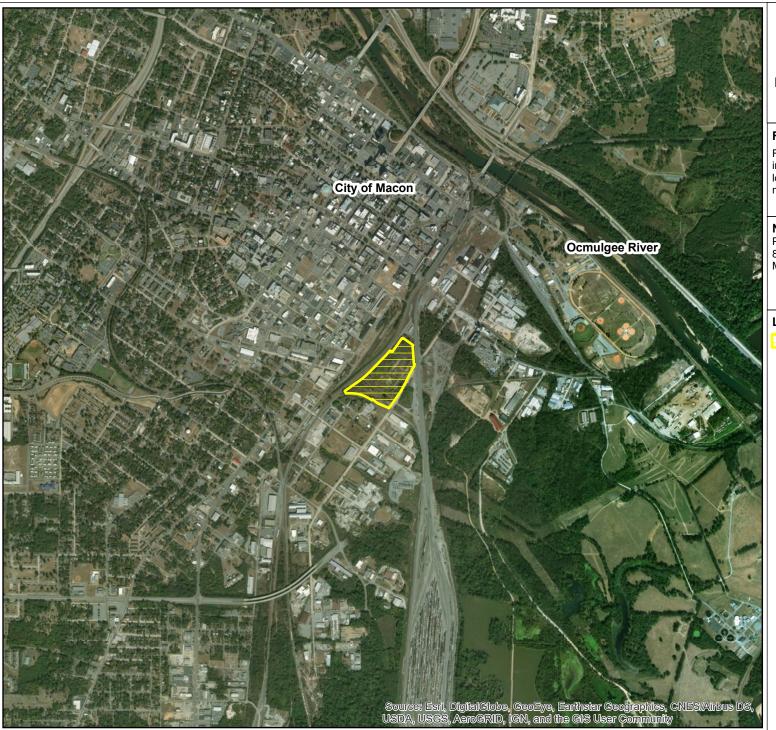
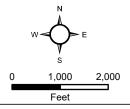
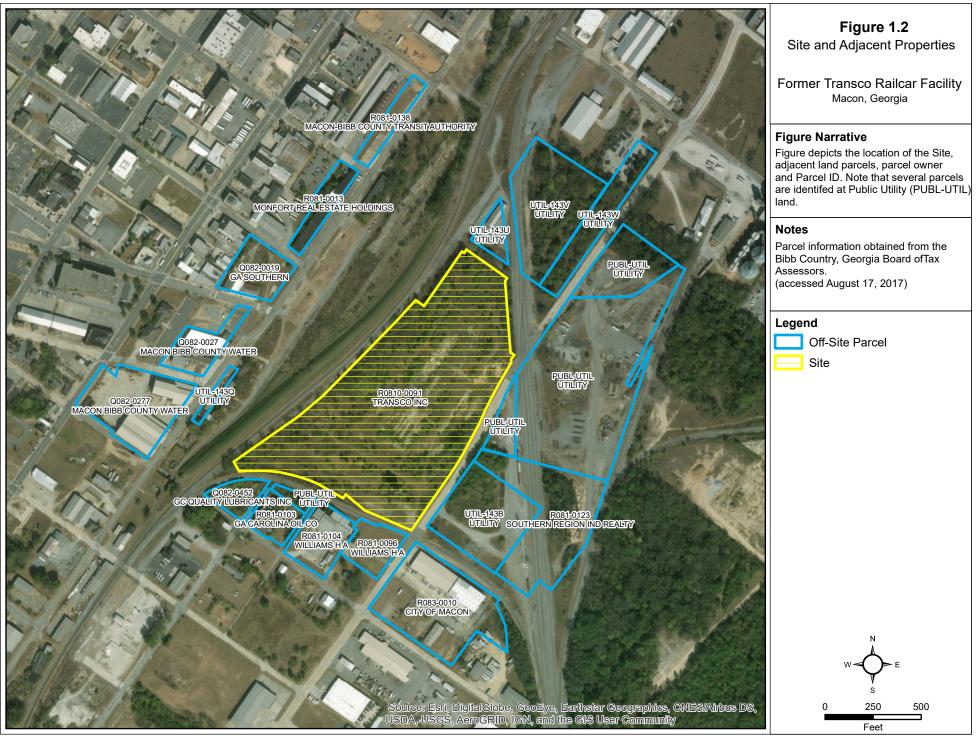


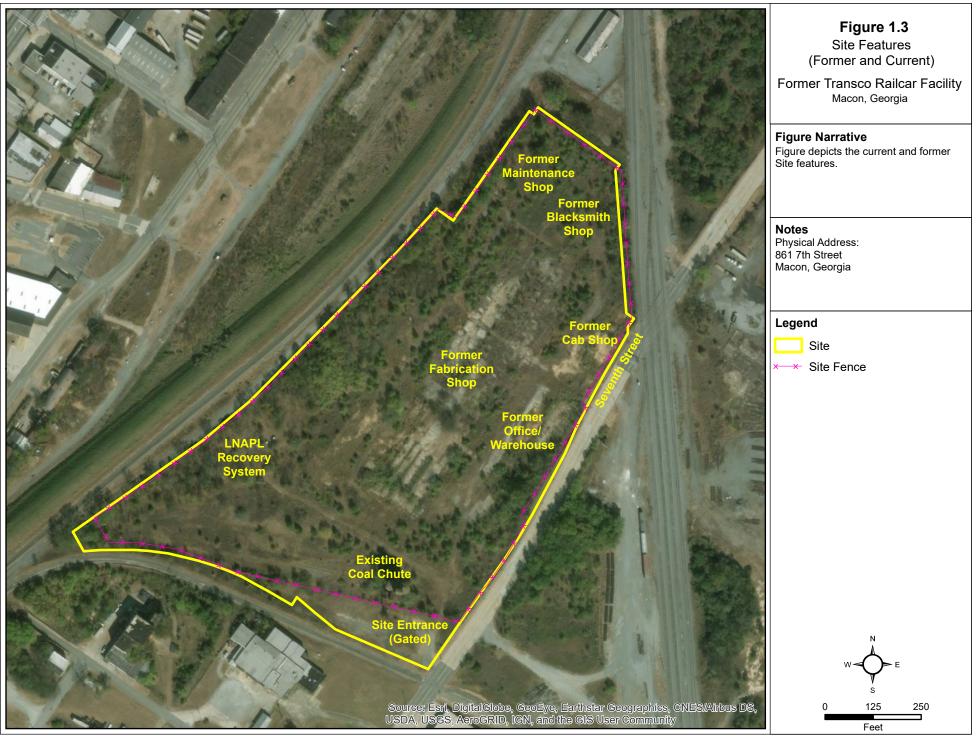
Figure 1.1
Site Location

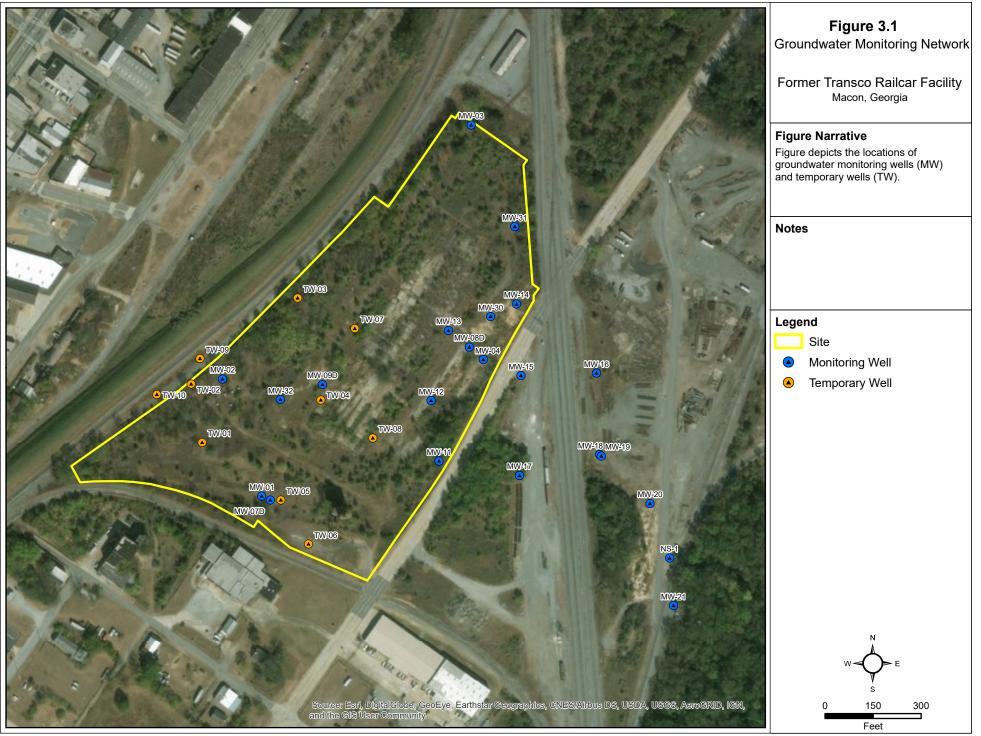
Former Transco Railcar Facility
Macon, Georgia

Figure Narrative


Figure depicts the location of the Site in Macon, GA. The Ocmulgee River is located approximately 4000 ft to the north and east of the Site.


Notes


Physical Address: 861 7th Street Macon, Georgia


Legend

Site

Environmental Planning Specialists, Inc.

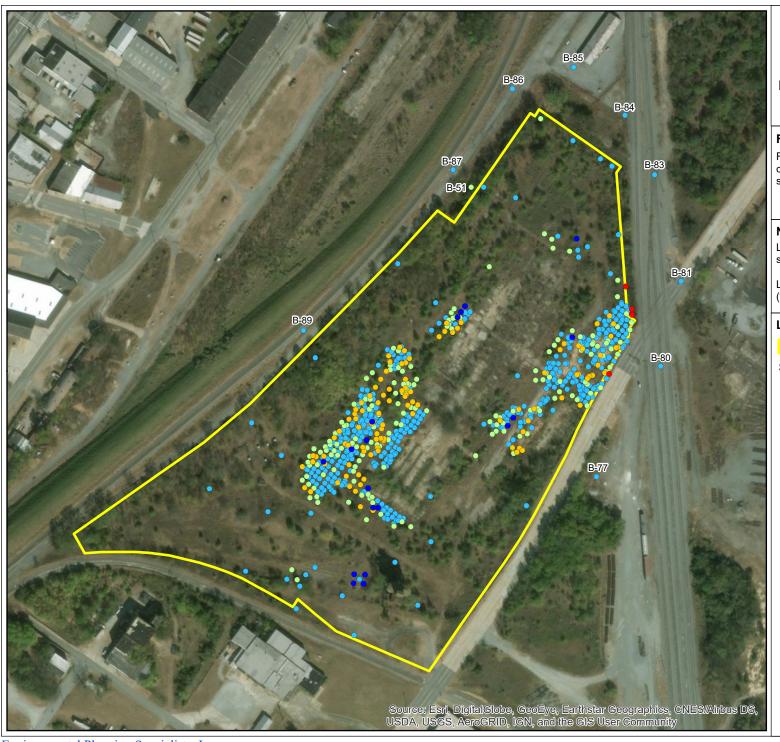


Figure 3.2

Soil-bound Lead Delineation

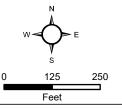
Former Transco Railcar Facility
Macon, Georgia

Figure Narrative

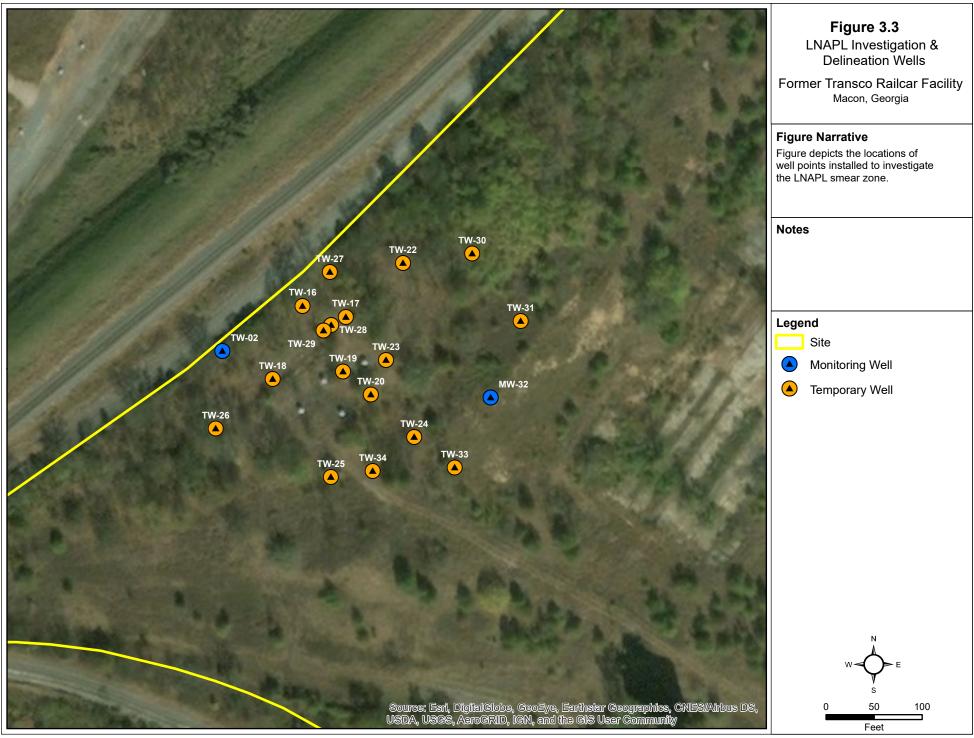
Figure depicts the existing soil lead condition with respect to the Sitespecific RRS.

Notes

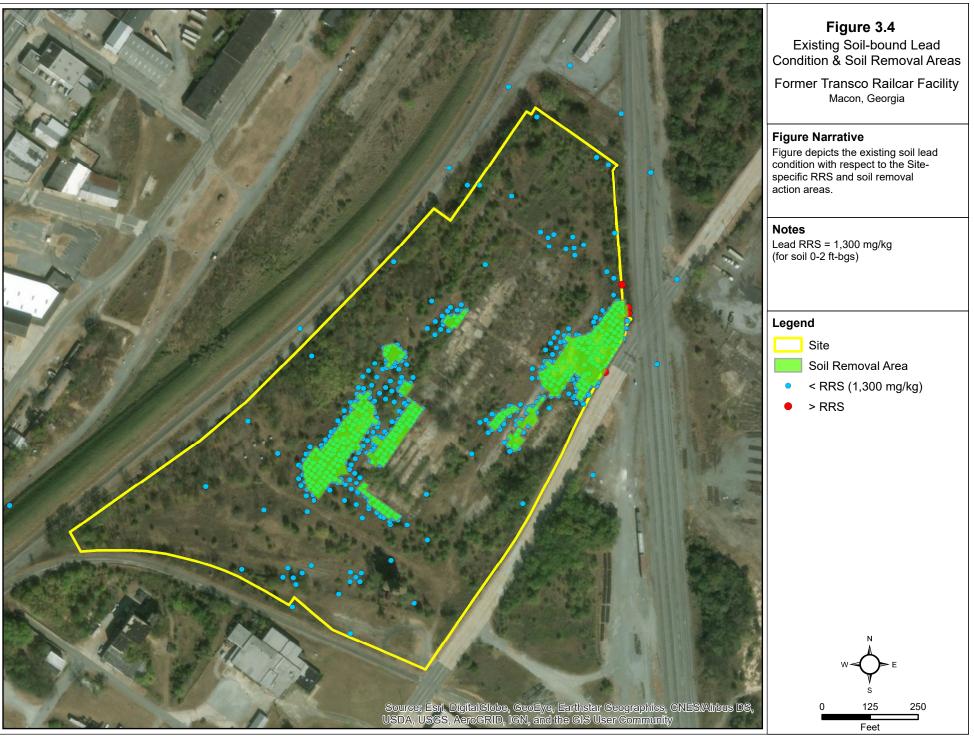
Location ID provided for off-Site sample locations (see Table 6.1)


Lead RRS = 1,300 mg/kg (for soil 0-2 ft-bgs)

Legend



Soil Lead (0 to 2 ft-bgs)


- ND
- < 400 (Res RRS)</p>
- 400 800
- 800 1,300
- > 1,300 (non-Res RRS)

Environmental Planning Specialists, Inc.

Environmental Planning Specialists, Inc.

Environmental Planning Specialists, Inc.

Figure 3.5

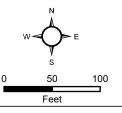
LNAPL Product Recovery System and Delineation Wells

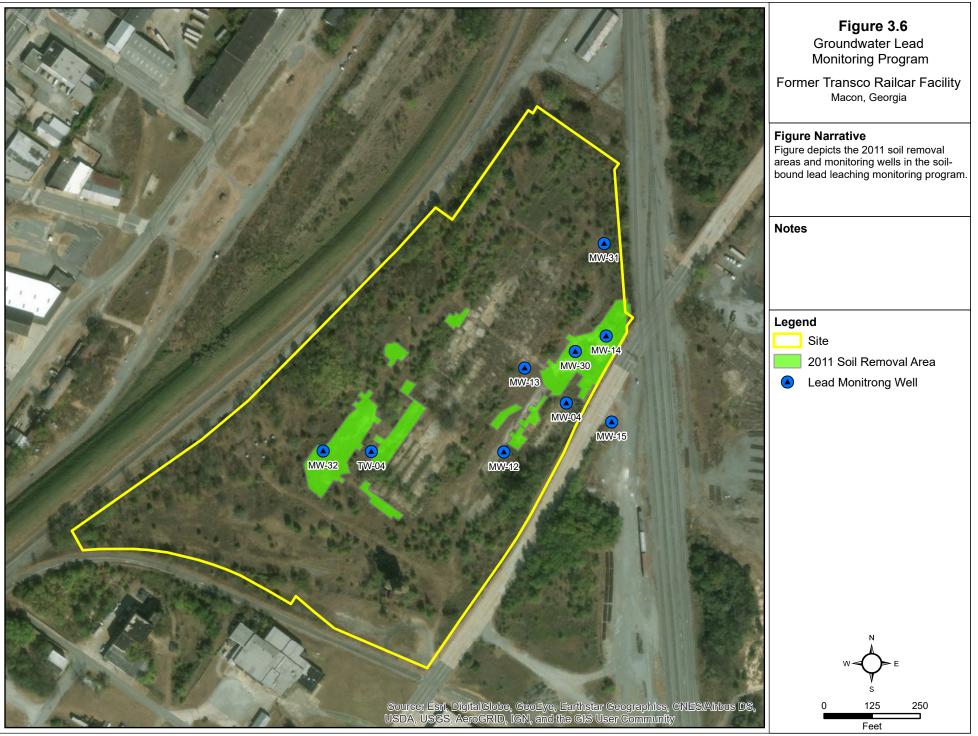
Former Transco Railcar Facility
Macon, Georgia

Figure Narrative

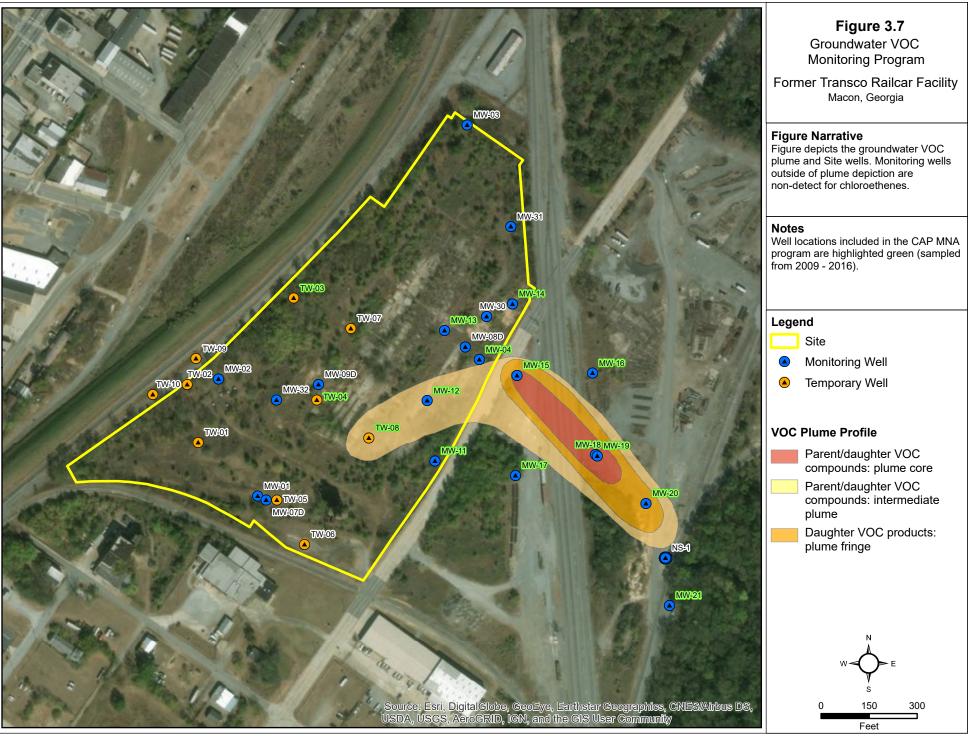
Figure depicts the location of LNAPL recovery equipment.

Notes

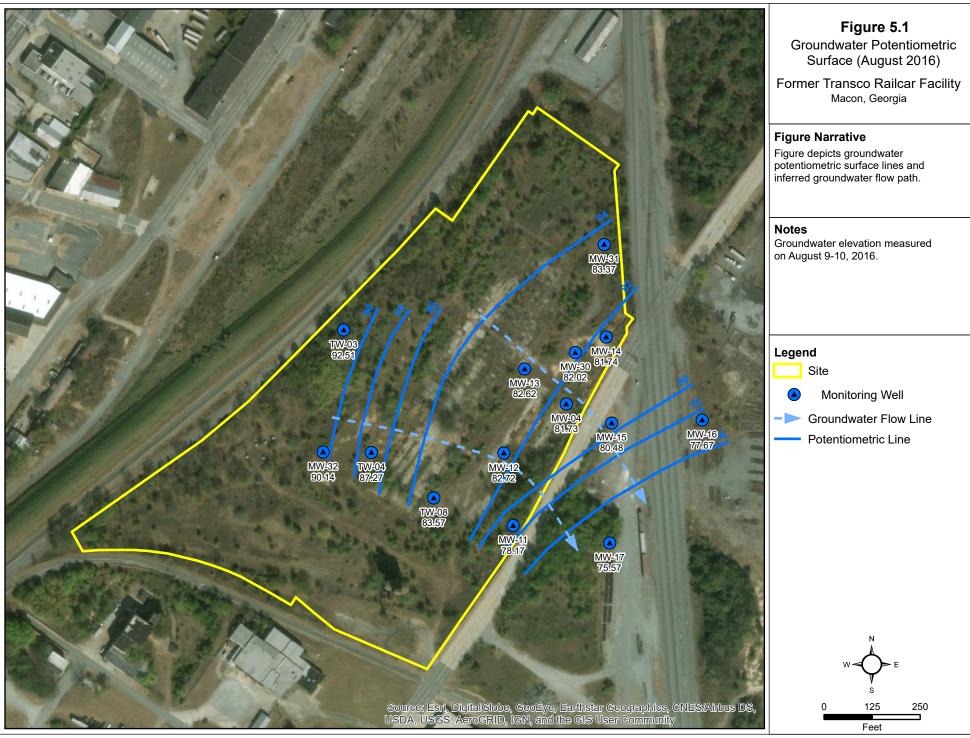

The hydrophobic belt skimmer units were decommissioned in 2010 and the skimmer pump units were decommissioned in 2013. Units decommissioned based on minimal or no recovery of LNAPL product.

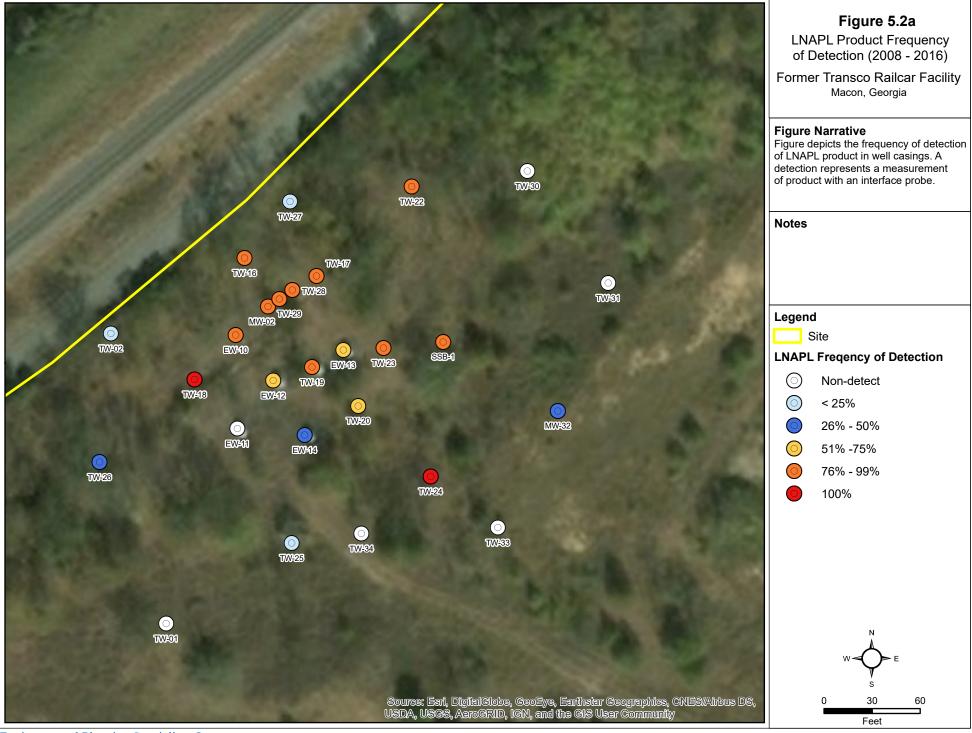

Legend

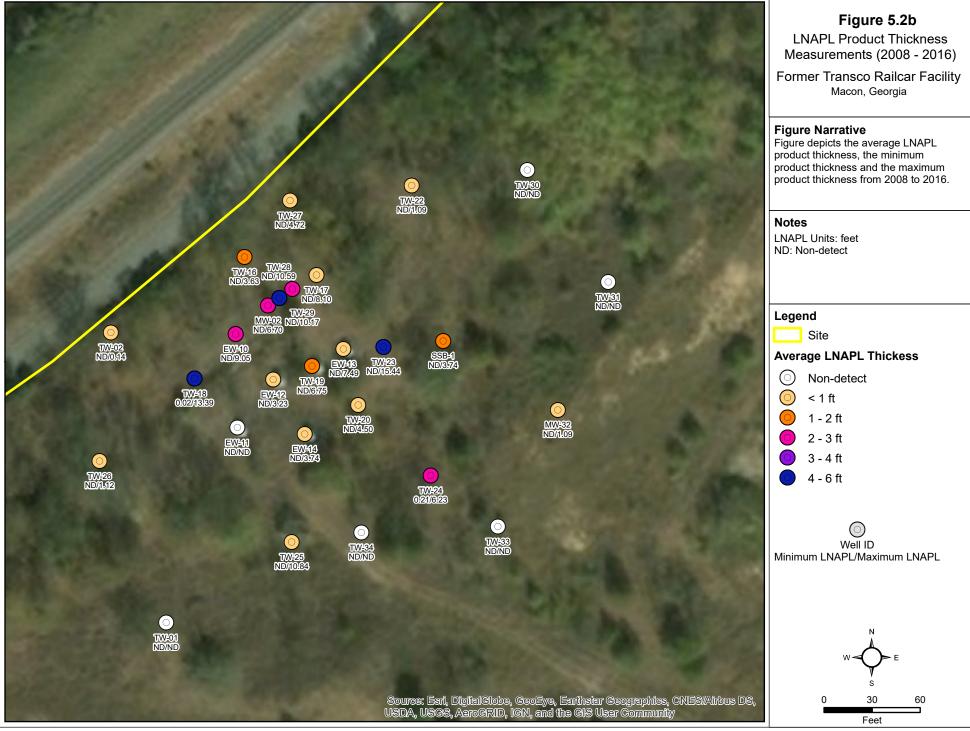
Site

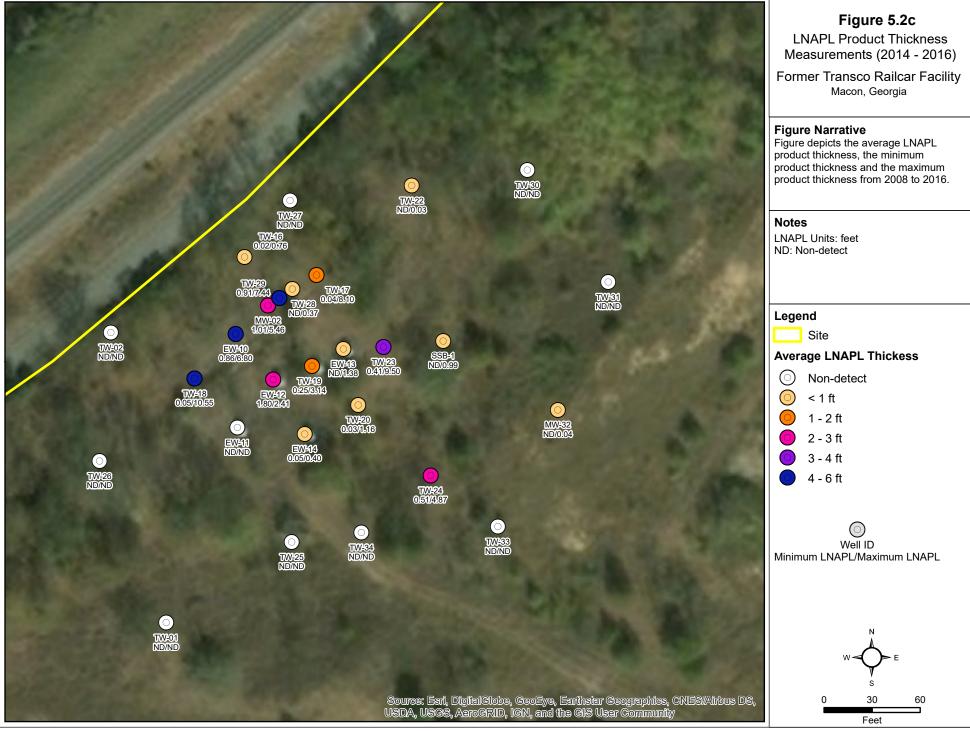

LNAPL Recovery Method

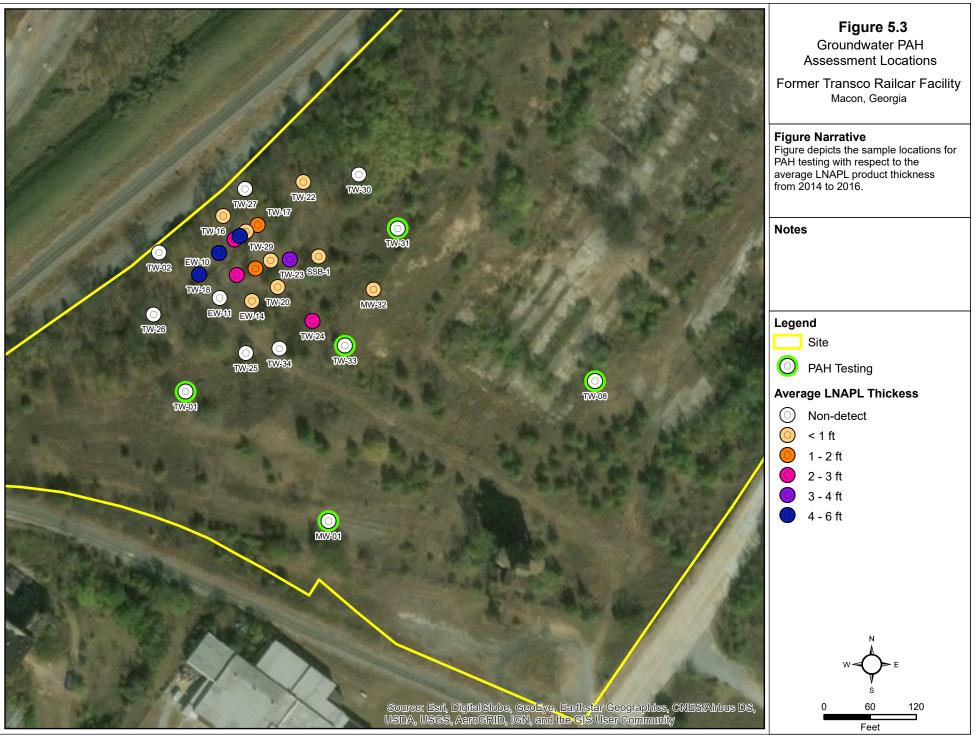
- 2008-2010: LNAPL Skimmer Hydrophobic Belt 2010-2016:Manual Recovery
- 2008-2013: LNAPL Skimmer Pump 2013-2016: Manual Recovery
- 2008-2016: Manual Recovery

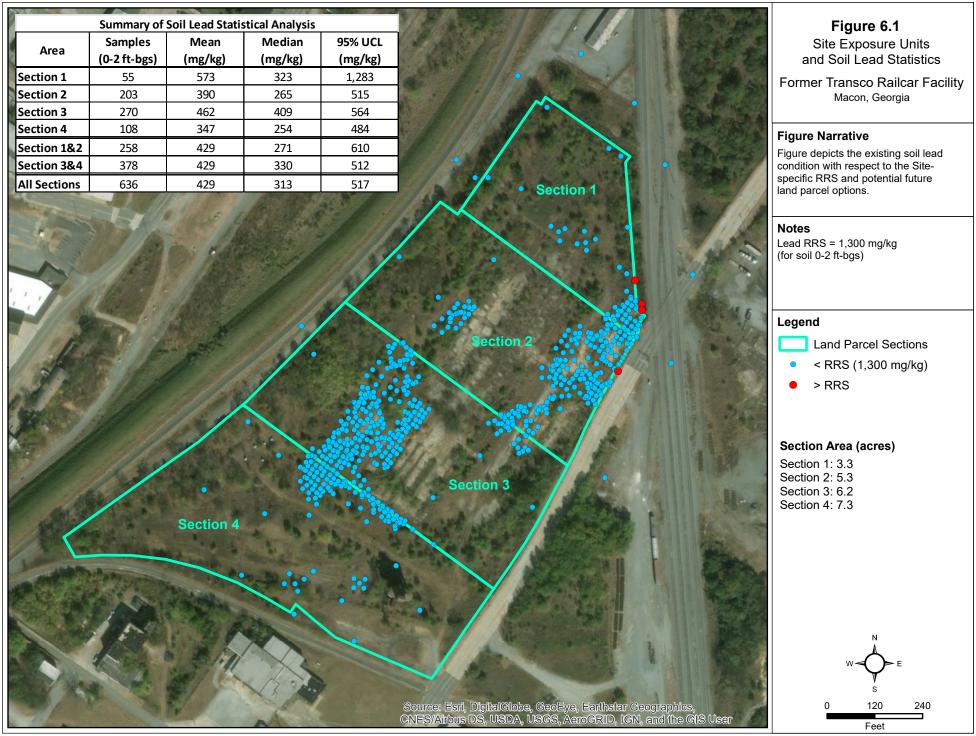


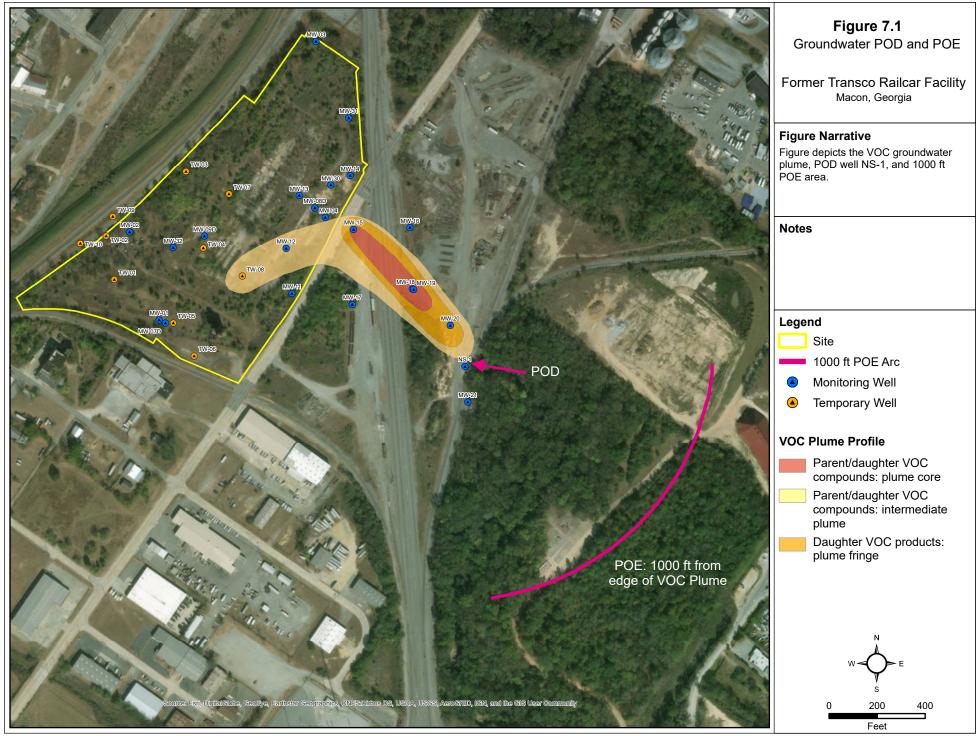

Environmental Planning Specialists, Inc.


Environmental Planning Specialists, Inc.


Environmental Planning Specialists, Inc.


Environmental Planning Specialists, Inc.


Environmental Planning Specialists, Inc.


Environmental Planning Specialists, Inc.

Environmental Planning Specialists, Inc.

Environmental Planning Specialists, Inc.

TABLES

Table 3.1
Well Construction Details

1	TOC	Ground Elevation	Total Depth	Total Depth	Screen	Interval	Screen Depth
Location	ft	ft	ft-bgs	ft-BTOC	top: ft-bgs	bottom: ft-bgs	ft BTOC
roundwater N	Nontioring Wells					<u> </u>	
MW-01	102.57	99.57	17.55	20.55	7.55	17.55	10.55 - 20.55
MW-02	105.40	102.40	19.81	22.81	9.81	19.81	12.81 - 22.81
MW-03	102.30	99.30	34.97	37.97	24.97	34.97	27.97 - 37.97
MW-04	95.13	92.13	14.28	17.28	4.28	14.28	7.28 - 17.28
MW-07D	102.64	99.64	65.45	68.45	55.45	65.45	58.05 - 68.05
MW-08D	102.32	99.32	71.68	74.68	61.68	71.68	64.28 - 74.28
MW-09D	102.09	99.09	59.50	62.50	49.50	59.50	52.10 - 62.10
MW-11	94.68	91.68	29.07	32.07	19.07	29.07	22.07 - 32.07
MW-12	102.38	99.38	34.32	37.32	24.32	34.32	27.32 - 37.32
MW-13	102.36	99.36	30.32	33.32	20.32	30.32	23.32 - 33.32
	102.36					29.99	
MW-14		98.96	29.99	32.99	19.99		22.99 - 32.99
MW-15	93.15	90.15	25.46	28.46	15.46	25.46	18.46 - 28.46
MW-16	87.24	84.24	42.00	45.00	32.00	42.00	35.00 - 45.00
MW-17	88.32	85.32	25.00	28.00	15.00	25.00	18.00 - 28.00
MW-18*			75.00	78.90	65.00	75.00	67.9 - 78.9
MW-19*			22.00	25.37	12.00	22.00	15.37 - 25.37
MW-20*			22.00	25.52	12.00	22.00	15.52 - 25.52
MW-21*			25.00	28.32	15.00	25.00	18.32 - 28.32
MW-32*			25.00	27.00	15.00	25.00	17.00 - 27.00
TW-01	103.24	100.24	18.09	21.09	8.09	18.09	11.09 - 21.09
TW-02	104.90	101.90	13.57	16.57	3.57	13.57	6.57 - 16.57
TW-03	100.41	97.41	14.77	17.77	4.77	14.77	7.77 - 17.77
TW-04	101.52	98.52	16.04	19.04	6.04	16.04	9.04 - 19.04
TW-05	101.49	98.49	16.93	19.93	6.93	16.93	9.93 - 19.93
TW-06	99.46	96.46	15.97	18.97	5.97	15,97	8.97 - 18.97
TW-07	106.11	103.11	23.88	26.88	13.88	23.88	16.88 - 26.88
TW-08	101.18	98.18	19.94	22.94	9.94	19.94	12.94 - 22.94
TW-09	108.40	105.40	23.94	26.94	13.94	23.94	16.94 - 26.94
TW-10	108.47	105.47	20.53	23.53	10.53	20.53	13.53 - 23.53
NAPL Monitor	ing & Assesment V	Vells					
TW-16	104.75	101.75	21.76	24.76	6.76	21.76	9.76 - 24.76
TW-17	105.13	102.13	21.83	24.83	6.83	21.83	9.83 - 24.83
TW-18	105.36	102.36	21.79	24.79	6.79	21.79	9.79 - 24.79
TW-19	103.57	100.57	21.89	24.89	6.89	21.89	9.89 - 24.89
TW-20	102.90	99.90	21.75	24.75	6.75	21.75	9.75 - 24.75
TW-21	90.55	87.55	19.18	22.18	4.18	19.18	7.18 - 22.18
TW-22	91.48	88.48	19.15	22.15	4.15	19.15	7.15 - 22.15
TW-23	89.90	86.90	19.06	22.06	4.06	19.06	7.06 -22.06
TW-24	90.68	87.68	19.16	22.16	4.16	19.16	7.16 - 22.16
TW-25	91.21	88.21	19.14	22.14	4.14	19.14	7.14 - 22.14
TW-26	93.29	90.29	19.19	22.19	4.19	19.19	7.19 - 22.19
TW-27	91.78	88.78	19.25	22.25	4.25	19.25	7.25 - 22.25
TW-28	92.57	89.57	19.17	22.17	4.17	19.17	7.17 - 22.17
TW-29	92.36	89.36	19.11	22.11	4.11	19.11	7.11 - 22.11
TW-30*		65.50	25.00		5.00	25.00	7.11 - 22.11
TW-30*			25.00		5.00	25.00	
TW-31*			25.00		5.00	25.00	
TW-32*							
TW-33**			25.00 25.00		5.00 5.00	25.00 25.00	

Table 3.2
Time Series Data for Detected VOCs in Groundwater

Location/Date	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	Acenaphthene	Acetone	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chloroform	cis-1,2-Dichloroethene	Fluorene	Freon-11	Isopropylbenzene	Naphthalene	Phenanthrene	Tetrachloroethene	trans-1,2-Dichloroethene	Trichloroethene	Vinyl chloride
Site-Specific RRS:														20				7.2	3.2
MW-01																			
8/6/1997	ND	ND	ND	ND			ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/13/1999	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2/29/2000	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2/7/2003	ND	ND	ND		ND	ND	ND	ND		ND		ND	ND	ND		ND	ND	ND	ND
MW-02																			
8/6/1997	ND	ND	ND	ND			ND	ND		ND	ND	ND	12.1	76.5	106	ND	ND	ND	ND
4/13/1999	ND	ND	ND	ND	ND	ND	ND	ND		ND	1200	ND	ND	ND	1700	ND	ND	ND	ND
10/6/2000				5							7			ND	5				
MW-03																			
8/13/1997	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/13/1999	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2/29/2000	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2/7/2003	ND	ND	ND		ND	ND	ND	ND		ND		ND	ND	ND		ND	ND	ND	ND
MW-04																			
8/13/1997	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	3	ND
4/13/1999	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	5	ND
3/1/2000	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	6	ND
10/1/2002					ND	ND	ND	ND		ND						ND	ND	1.7	ND
1/14/2003	ND	ND	ND		ND	ND	ND	ND		ND		ND	ND	1.1		ND	ND	ND	ND
3/1/2007	ND	ND	ND		ND	ND	ND	ND		ND		ND	ND	ND		ND	ND	ND	ND
8/21/2009	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
11/16/2009	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
2/18/2010	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
5/5/2010	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
8/11/2010	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
11/29/2010	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
2/23/2011	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
5/9/2011	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
8/2/2011	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
7/25/2012	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
9/17/2013	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
9/11/2014	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
8/5/2015	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
8/10/2016	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
MW-08D 6/28/2000	ND	ND	ND		29.5	2.6	ND	ND		ND		ND	ND	ND		ND	ND	2.8	ND
10/6/2000	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND		ND ND		ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND
2/7/2003	ND	ND	ND		ND	ND	ND	ND		טא		ND	טא	ND		ND	ND	טא	ND

Table 3.2
Time Series Data for Detected VOCs in Groundwater

Location/Date	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	Acenaphthene	Acetone	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chloroform	cis-1,2-Dichloroethene	Fluorene	Freon-11	Isopropylbenzene	Naphthalene	Phenanthrene	Tetrachloroethene	trans-1,2-Dichloroethene	Trichloroethene	Vinyl chloride
MW-11																			
10/5/2000	ND	ND	ND		ND	ND	ND	ND		ND		ND	2.2	ND		ND	ND	ND	ND
10/1/2002					ND	ND	ND	ND		ND						ND	ND	ND	ND
1/14/2003	ND	ND	ND		ND	ND	ND	ND		ND		ND	ND	ND		ND	ND	2.3	ND
3/1/2007	ND	ND	ND		ND	ND	ND	ND		ND		ND	ND	ND		ND	ND	ND	ND
8/21/2009	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
11/16/2009	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
2/18/2010	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
5/5/2010	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
8/11/2010	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
11/29/2010	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
2/23/2011	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
5/9/2011	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
8/2/2011	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
7/25/2012	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
9/18/2013	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
9/11/2014	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
8/5/2015	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
8/10/2016	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
MW-12																			
10/5/2000	ND	ND	ND		ND	ND	ND	ND		6.8		ND	ND	ND		ND	ND	26.6	ND
10/1/2002					ND	ND	ND	7.2		36						29	3.9	140	4.6
1/14/2003	ND	ND	ND		ND	ND	ND	ND		7		ND	ND	ND		ND	1.9	9.4	ND
3/1/2007	ND	ND	ND		ND	ND	ND	ND		9.7		ND	ND	ND		ND	ND	8.3	ND
8/21/2009	ND	ND	ND		ND	ND	ND	ND	ND	16		ND	ND			ND	ND	19	ND
11/16/2009	ND	ND	ND		ND	ND	ND	ND	ND	6.6		ND	ND			ND	ND	7.5	ND
2/18/2010	ND	ND	ND		ND	ND	ND	14	ND	9.9		ND	ND			ND	ND	6.6	ND
5/5/2010	ND	ND	ND		ND	ND	ND	9.7	ND	12		ND	ND			ND	ND	10	ND
8/11/2010	ND	ND	ND		ND	ND	ND	ND	ND	12		ND	ND			ND	ND	18	ND
11/29/2010	ND	ND	ND		ND	ND	ND	ND	ND	14		ND	ND			ND	ND	20	ND
2/22/2011	ND	ND	ND		ND	ND	ND	ND	ND	5.9		ND	ND			ND	ND	9.8	ND
5/9/2011	ND	ND	ND		ND	ND	ND	ND	ND	9.8		ND	ND			ND	ND	10	ND
8/2/2011	ND	ND	ND		ND	ND	ND	ND	ND	15		ND	ND			ND	ND	18	ND
7/25/2012	ND	ND	ND		ND	ND	ND	ND	ND	15		ND	ND			ND	5.5	17	ND
9/17/2013	ND	ND	ND		ND	ND	ND	69	ND	9.4		ND	ND			ND	ND	6.3	ND
9/11/2014	ND	ND	ND		ND	ND	ND	ND	ND	12		ND	ND			ND	ND	11	ND
8/5/2015	ND	ND	ND		ND	ND	ND	ND	ND	13		ND	ND			ND	ND	13	ND
8/10/2016	ND	ND	ND		ND	ND	ND	ND	ND	19		ND	ND			ND	5.2	17	ND
3/ 10/ 2010	NU	ND	ND		ND	NU	NU	ND	ND	1,5		NU	ND			ND	J.2	1,	ND

Table 3.2
Time Series Data for Detected VOCs in Groundwater

Location/Date	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	Acenaphthene	Acetone	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chloroform	cis-1,2-Dichloroethene	Fluorene	Freon-11	Isopropylbenzene	Naphthalene	Phenanthrene	Tetrachloroethene	trans-1,2-Dichloroethene	Trichloroethene	Vinyl chloride
MW-13																			
10/5/2000	ND	ND	ND		ND	ND	ND	ND		ND		ND	ND	ND		ND	ND	ND	ND
10/1/2002					ND	ND	ND	ND		ND						ND	ND	ND	ND
1/14/2003	ND	ND	ND		ND	ND	ND	ND		ND		ND	ND	ND		ND	ND	1.3	ND
3/1/2007	ND	ND	ND		ND	ND	ND	ND		ND		ND	ND	ND		ND	ND	ND	ND
8/21/2009	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
11/16/2009	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
2/18/2010	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
5/5/2010	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
8/11/2010	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
11/29/2010	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
2/22/2011	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
5/10/2011	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
8/2/2011	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
7/24/2012	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
9/17/2013	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
9/11/2014	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
8/5/2015	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
8/10/2016	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
MW-14	110	110	110		110	110	140	140	110	140		140	110			110	110	110	110
10/5/2000	ND	ND	ND		ND	ND	10.8	ND		ND		ND	ND	ND		ND	ND	12.5	ND
10/1/2002					ND	ND	43	ND		1.1						ND	ND	6.5	ND
1/15/2003	ND	ND	ND		ND	ND	ND	ND		ND		ND	ND	ND		ND	ND	2.3	ND
2/28/2007	ND	ND	ND		ND	ND	ND	ND		ND		ND	ND	ND		ND	ND	ND	ND
8/21/2009	ND	ND	ND		ND	ND	19	ND	ND	ND		ND	ND			ND	ND	ND	ND
11/16/2009	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
2/19/2010	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
5/5/2010	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	5.7	ND
8/11/2010	ND	ND	ND		ND	ND	12	ND	ND	ND		ND	ND			ND	ND	ND	ND
11/30/2010	ND	ND	ND		ND	ND	28	ND	ND	ND		ND	ND			ND	ND	ND	ND
2/22/2011	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
5/10/2011	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
8/2/2011	ND	ND	ND		ND	ND	26	ND	5.5	ND		ND	ND			ND	ND	ND	ND
7/24/2012	ND	ND	ND		ND	ND	23	ND	5.3	ND		ND	ND			ND	ND	ND	ND
9/17/2013	ND	ND ND	ND ND		ND ND	ND	ND	ND	D.3 ND	ND		ND ND	ND ND			ND ND	ND ND	ND	ND
9/10/2014	ND ND	ND ND	ND ND		ND ND	ND ND	ND	ND ND	ND ND	ND		ND ND	ND ND			ND ND	ND ND	ND ND	ND ND
8/5/2015	ND	ND ND				ND		ND		ND		ND ND				ND ND			
8/10/2016	ND ND	ND ND	ND ND		ND ND	ND ND	13 6	ND ND	ND ND	ND ND		ND ND	ND ND			ND ND	ND ND	ND ND	ND ND
0/10/2010	ND	ND	ND		ND	ND	o	ND	ND	ND		ND	ND			ND	ND	ND	טאו

Table 3.2
Time Series Data for Detected VOCs in Groundwater

Location/Date	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	Acenaphthene	Acetone	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chloroform	cis-1,2-Dichloroethene	Fluorene	Freon-11	Isopropylbenzene	Naphthalene	Phenanthrene	Tetrachloroethene	trans-1,2-Dichloroethene	Trichloroethene	Vinyl chloride
MW-15																			
10/5/2000	18.9	2.7	6.4		ND	ND	ND	20.3		87.1		ND	ND	ND		55.8	3.2	165	10.8
10/1/2002					ND	ND	ND	7.3		39						27	4.1	140	4.6
1/14/2003	2.8	ND	1		ND	ND	ND	3		34		ND	ND	ND		16	3.6	140	3.5
2/28/2007	ND	ND	ND		ND	ND	ND	ND		70		ND	ND	ND		23	5.9	210	8.4
8/20/2009	7.8	ND	ND		ND	ND	ND	6	ND	41		ND	ND			26	ND	130	4
11/16/2009	9	ND	ND		ND	ND	ND	6.8	ND	41		ND	ND			29	5.2	170	5
2/18/2010	ND	ND	ND		ND	ND	ND	ND	ND	32		ND	ND			18	5.8	190	3.5
5/5/2010	ND	ND	ND		ND	ND	ND	ND	ND	37		ND	ND			23	5.1	180	3.8
8/11/2010	ND	ND	ND		ND	ND	ND	ND	ND	21		ND	ND			13	ND	110	2.5
11/29/2010	ND	ND	ND		ND	ND	ND	ND	ND	18		ND	ND			16	ND	110	2
2/22/2011	ND	ND	ND		ND	ND	ND	ND	ND	29		ND	ND			16	ND	130	2.5
5/10/2011	ND	ND	ND		ND	ND	ND	ND	ND	36		ND	ND			16	ND	160	ND
8/3/2011	ND	ND	ND		ND	ND	ND	ND	ND	42		ND	ND			22	ND	190	4.1
7/25/2012	16	ND	ND		ND	ND	ND	12	ND	55		ND	ND			56	ND	160	6.2
9/17/2013	11	ND	ND		ND	ND	ND	8.4	ND	40		ND	ND			40	ND	140	4
9/10/2014	ND	ND	ND		ND	ND	ND	ND	ND	18		ND	ND			11	ND	78	ND
8/5/2015	ND	ND	ND		ND	ND	ND	ND	ND	21		ND	ND			12	ND	92	ND
8/10/2016	ND	ND	ND		ND	ND	ND	ND	ND	29		ND	ND			14	ND	110	ND
MW-16																			
2/10/2003	ND	ND	ND		ND	ND	ND	ND		ND		ND	ND	ND		ND	ND	ND	ND
2/28/2007	ND	ND	ND		ND	ND	ND	ND		ND		ND	ND	ND		ND	ND	ND	ND
8/20/2009	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
11/16/2009	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
2/18/2010	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
5/5/2010	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
8/11/2010	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
11/29/2010	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
2/22/2011	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
5/9/2011	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
8/1/2011	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
7/25/2012	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
9/16/2013	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
9/10/2014	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
8/4/2015	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
8/9/2016	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND

Table 3.2
Time Series Data for Detected VOCs in Groundwater

Location/Date	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	Acenaphthene	Acetone	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chloroform	cis-1,2-Dichloroethene	Fluorene	Freon-11	Isopropylbenzene	Naphthalene	Phenanthrene	Tetrachloroethene	trans-1,2-Dichloroethene	Trichloroethene	Vinyl chloride
MW-17	ND	ND	ND		59	ND	ND	ND		ND		ND	ND	ND		ND	ND	ND	ND
2/10/2003	ND ND	ND											ND						
2/28/2007 8/19/2009	ND ND	ND	ND ND		ND ND	ND	ND	ND		ND		ND ND	ND	ND 		ND ND	ND	ND	ND ND
8/19/2009 11/16/2009	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND			ND ND	ND ND	ND ND	ND ND
2/18/2010	ND ND	ND ND			ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND			ND	ND	ND ND	ND ND
5/5/2010	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND			ND ND	ND	ND	ND ND
8/11/2010	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND			ND ND	ND	ND	ND ND
11/29/2010	ND	ND			ND	ND		ND	ND	ND		ND	ND			ND			
2/22/2010	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND			ND ND	ND ND	ND ND	ND ND
5/9/2011	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND			ND ND	ND ND	ND	ND ND
8/3/2011	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
8/3/2011 7/25/2012	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND			ND ND	ND	ND	ND ND
9/17/2013	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
9/10/2014	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
8/5/2015	ND ND	ND ND	ND		ND ND	ND ND	ND	ND ND	ND ND	ND ND		ND ND	ND ND			ND ND	ND	ND	ND ND
8/10/2016	ND	ND	ND		ND	ND	ND	ND	ND	ND ND		ND	ND			ND	ND	ND	ND
MW-18	ND	ND	ND		ND	ND	ND	ND	ND	ND	-	ND	ND			ND	ND	ND	ND
8/19/2009	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
11/16/2009	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
2/18/2010	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
5/6/2010	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
8/12/2010	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
11/29/2010	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
2/23/2011	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
5/9/2011	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
8/2/2011	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
7/25/2012	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
9/17/2013	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
9/11/2014	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
8/5/2015	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
8/10/2016	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
• •																			

Table 3.2
Time Series Data for Detected VOCs in Groundwater

Location/Date	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	Acenaphthene	Acetone	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chloroform	cis-1,2-Dichloroethene	Fluorene	Freon-11	Isopropylbenzene	Naphthalene	Phenanthrene	Tetrachloroethene	trans-1,2-Dichloroethene	Trichloroethene	Vinyl chloride
MW-19																			
8/19/2009	7.5	ND	ND		ND	ND	ND	8.3	ND	44		ND	ND			23	ND	170	7.8
11/16/2009	ND	ND	ND		ND	ND	ND	ND	ND	30		ND	ND			18	ND	160	3.9
2/18/2010	ND	ND	ND		ND	ND	ND	ND	ND	21		ND	ND			19	ND	130	2.9
5/5/2010	ND	ND	ND		ND	ND	ND	ND	ND	34		ND	ND			21	ND	150	6
8/11/2010	6.5	ND	ND		ND	ND	ND	6.5	ND	35		ND	ND			22	ND	150	8.8
11/29/2010	9.6	ND	ND		ND	ND	ND	10	ND	40		ND	ND			32	ND	190	9.9
2/22/2011	6.9	ND	ND		ND	ND	ND	6.2	ND	35		ND	ND			19	ND	160	4.5
5/10/2011	5.3	ND	ND		ND	ND	ND	ND	ND	30		ND	ND			17	ND	130	ND
8/2/2011	7.1	ND	ND		ND	ND	ND	6.6	ND	31		ND	ND			20	ND	140	5.1
7/25/2012	5.7	ND	ND		ND	ND	ND	5.3	ND	35		ND	ND			22	ND	180	6.1
9/16/2013	ND	ND	ND		ND	ND	ND	ND	ND	26		ND	ND			19	ND	140	4
9/10/2014	13	ND	ND		ND	ND	ND	13	ND	47		ND	ND			27	ND	140	9.1
8/5/2015	8.4	ND	ND		ND	ND	ND	8.2	ND	31		ND	ND			24	ND	130	4.5
8/9/2016	9.3	ND	ND		ND	ND	ND	7.9	ND	42		ND	ND			20	ND	160	7.3
MW-20																			
2/23/2011	ND	ND	ND		ND	ND	ND	ND	ND	13		ND	ND			6	ND	49	3.8
5/10/2011	ND	ND	ND		ND	ND	ND	ND	ND	14		ND	ND			5.5	ND	48	2.1
8/2/2011	ND	ND	ND		ND	ND	ND	ND	ND	15		ND	ND			7.2	ND	57	4.2
7/25/2012	ND	ND	ND		ND	ND	ND	ND	ND	20		ND	ND			6.7	ND	65	5.2
9/16/2013	ND	ND	ND		ND	ND	ND	ND	ND	16		ND	ND			5.8	ND	51	11
9/10/2014	ND	ND	ND		ND	ND	ND	ND	ND	14		ND	ND			5.1	ND	46	6
8/5/2015	ND	ND	ND		ND	ND	ND	ND	ND	12		ND	ND			6.5	ND	47	3.2
8/9/2016	ND	ND	ND		ND	ND	ND	ND	ND	16		ND	ND			5.6	ND	49	7.2
MW-21																			
2/24/2011	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
5/10/2011	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
8/2/2011	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
7/25/2012	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
9/16/2013	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
9/10/2014	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
8/5/2015	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
8/9/2016	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
MW-9D																			
6/28/2000	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2/7/2003	ND	ND	ND		ND	ND	ND	ND		ND		ND	ND	ND		ND	ND	ND	ND
NS-1																			
8/5/2011	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
TW-01			•			• / -	•											•/-	
3/1/2000	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2/7/2003	ND	ND	ND		ND	ND	ND	ND		ND		ND	ND	ND		ND	ND	ND	ND

Table 3.2
Time Series Data for Detected VOCs in Groundwater

	Dichlorobenzene	Dichlorobenzene	Dichlorobenzene	enaphthene	etone	on disulfide	on tetrachloride	Chlorobenzene	roform	,2-Dichloroethene	Fluorene	Freon-11	opylbenzene	aphthalene	anthrene	achloroethene	5-1,2-Dichloroethene	richloroethene	Vinyl chloride
Location/Date	J-Z-[J-£,	.,4-⊑	Acen	\cet	Carb	Carb	흦	- CHO	is-1	<u> </u>	reo	sopi	lap	Phen	etr	rans	į	/in/
TW-02																			
5/29/2000	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	1	23.1	ND	ND	ND	ND	ND
2/19/2010	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
5/6/2010	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
8/11/2010	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
11/30/2010	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
2/23/2011	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
5/9/2011	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
8/1/2011	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
7/24/2012	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
8/10/2016	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
TW-03																			
5/29/2000	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	1.5	ND	ND	ND	ND	ND	ND	ND
6/30/2000	ND	ND	ND		ND	ND	ND	ND		ND		ND	ND	ND		ND	ND	ND	ND
2/7/2003	ND	ND	ND		ND	ND	ND	ND		ND		ND	ND	ND		ND	ND	ND	ND
8/20/2009	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
5/6/2010	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
8/11/2010	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
11/30/2010	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
2/22/2011	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
5/9/2011	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
8/1/2011	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
7/24/2012	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
9/18/2013	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
9/11/2014	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
8/6/2015	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
8/10/2016	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND

Table 3.2
Time Series Data for Detected VOCs in Groundwater

	1,2-Dichlorobenzene	Dichlorobenzene	1,4-Dichlorobenzene	Acenaphthene	one	on disulfide	Carbon tetrachloride	Chlorobenzene	Chloroform	2-Dichloroethene	Fluorene	Freon-11	sopropylbenzene	Naphthalene	Phenanthrene	Tetrachloroethene	-1,2-Dichloroethene	Trichloroethene	Vinyl chloride
Location/Date	J-2,	1,3-⊑	<u>4</u> ,	cen	Acetone	Carbon	arb	亨	亨	is-1,	<u> </u>	ē	opr	ap.	hen	etra	rans-	rich	in. Ly
TW-04																			
5/29/2000	ND	ND	3.1	ND	ND	ND	ND	15.4		2.4	ND	ND	ND	ND	ND	ND	ND	ND	1.4
9/13/2000	ND	ND	ND		ND	ND	ND	4.9		4.4		ND	ND	ND		4.6	ND	ND	ND
10/2/2002					ND	ND	ND	ND		ND						ND	ND	ND	ND
1/14/2003	ND	ND	ND		ND	ND	ND	ND		1.1		ND	ND	ND		ND	ND	ND	ND
3/2/2007	ND	ND	ND		ND	ND	ND	ND		ND		ND	ND	ND		ND	ND	ND	ND
8/20/2009	ND	ND	ND		ND	ND	ND	5.6	ND	ND		ND	ND			ND	ND	ND	ND
11/17/2009	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
2/19/2010	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
5/6/2010	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
8/11/2010	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
11/30/2010	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
2/22/2011	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
5/9/2011	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
8/2/2011	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
7/24/2012	ND	ND	ND		ND	ND	ND	5.4	ND	ND		ND	ND			ND	ND	ND	ND
9/18/2013	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
9/11/2014	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
8/6/2015	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
8/10/2016	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND			ND	ND	ND	ND
TW-07																			
6/29/2000	ND	ND	ND		ND	ND	ND	ND		ND		ND	ND	ND		ND	ND	ND	ND
2/7/2003	ND	ND	ND		ND	ND	ND	ND		ND		ND	ND	ND		ND	ND	ND	ND
3/1/2007	ND	ND	ND		ND	ND	ND	ND		ND		ND	ND	ND		ND	ND	ND	ND
TW-08																			
6/28/2000	ND	ND	ND		ND	ND	ND	ND		13.5		ND	ND	ND		ND	ND	ND	5.2
9/13/2000	ND	ND	ND		ND	ND	ND	ND		19.9		ND	ND	ND		3.4	ND	ND	8.2
9/30/2002					ND	ND	ND	ND		15						ND	1	ND	7.4
1/14/2003	ND	ND	ND		ND	ND	ND	ND		11		ND	ND	ND		ND	ND	ND	7.1
3/1/2007	ND	ND	ND		ND	ND	ND	ND		16		ND	ND	ND		ND	ND	ND	9
8/21/2009	ND	ND	ND		ND	ND	ND	ND	ND	14		ND	ND			ND	ND	ND	7.3
11/16/2009	ND	ND	ND		ND	ND	ND	ND	ND	8.6		ND	ND			ND	ND	ND	4.5
2/18/2010	ND	ND	ND		ND	ND	ND	ND	ND	5.6		ND	ND			ND	ND	ND	ND
5/5/2010	ND	ND	ND		ND	ND	ND	ND	ND	8.2		ND	ND			ND	ND	ND	4.3
8/11/2010	ND	ND	ND		ND	ND	ND	ND	ND	12		ND	ND			ND	ND	ND	6.4
11/29/2010	ND	ND	ND		ND	ND	ND	ND	ND	14		ND	ND			ND	ND	ND	5.9
2/22/2011	ND	ND	ND		ND	ND	ND	ND	ND	11		ND	ND			ND	ND	ND	4.8
5/9/2011	ND	ND	ND		ND	ND	ND	ND	ND	8.4		ND	ND			ND	ND	ND	2.6
8/2/2011	ND	ND	ND		ND	ND	ND	ND	ND	9.5		ND	ND			ND	ND	ND	5.9
7/25/2012	ND	ND	ND		ND	ND	ND	ND	ND	15		ND	ND			ND	ND	ND	11
9/18/2013	ND	ND	ND		ND	ND	ND	ND	ND	6.3		ND	ND			ND	ND	ND	3
9/11/2014	ND	ND	ND		ND	ND	ND	ND	ND	10		ND	ND			ND	ND	ND	3.3
8/5/2015	ND	ND	ND		ND	ND	ND	ND	ND	9.4		ND	ND			ND	ND	ND	3.8
8/10/2016	ND	ND	ND		ND	ND	ND	ND	ND	11		ND	ND			ND	ND	ND	6.2

Units: µg/L ND: Non-detect --: not measured

Table 3.2
Time Series Data for Detected VOCs in Groundwater

Location/Date	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	Acenaphthene	Acetone	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chloroform	cis-1,2-Dichloroethene	Fluorene	Freon-11	Isopropylbenzene	Naphthalene	Phenanthrene	Tetrachloroethene	trans-1,2-Dichloroethene	Trichloroethene	Vinyl chloride
TW-09																			
6/30/2000	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2/7/2003	ND	ND	ND		ND	ND	ND	ND		ND		ND	ND	ND		ND	ND	ND	ND
TW-10																			
6/29/2000	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2/7/2003	ND	ND	ND		ND	ND	ND	ND		ND		ND	ND	ND		ND	ND	ND	ND

Units: µg/L ND: Non-detect --: not measured

Table 5.1
Time Series Data for Measured LNAPL Free Product

Measurement Date	EW-10	EW-11	EW-12	EW-13	EW-14	MW-02	SSB-1	TW-01	TW-02	TW-1	TW-16	TW-17
1/31/2008	0.1	ND	ND	0.4	ND	2.5				ND	3.63	3.7
3/14/2008	0.05	ND	ND	ND	ND	6.7				ND	1.55	ND
3/25/2008	0.74	ND	ND	ND	ND	0.22						0.02
6/11/2008	2.2	ND	0.07	0.4	ND	0.4				ND	1.55	4.35
8/20/2008	2.55	ND	0.09	ND	0.52	0.7						0.36
9/11/2008	2.63	ND	ND	ND	ND	0.08				ND	1.8	0.02
11/25/2008	ND	ND	ND	ND	0.05	ND				ND	0.42	ND
1/5/2009	0.7	ND	ND	ND	ND	1.76				ND	ND	0.13
3/20/2009	1.02	ND	1.15	3.2	0.56	2.18						ND
3/30/2009										ND	1.13	
6/17/2009	0.66	ND	ND	0.93	1.48	1.31				ND	3.14	ND
9/11/2009	2.34	ND	ND	1.55	0.99	0.78						0.39
1/15/2010	6.43	ND	ND	ND	ND	2.86				ND	2.87	0.11
6/29/2010	9.05	ND	0.56		ND	2.18	0.11			ND	ND	0.13
8/17/2010	0.47	ND	ND		ND	1.1	1.05			ND	0.01	ND
8/30/2010	2.47	ND	ND		ND	2.06	1.24			ND	1.03	0.01
9/22/2010	1.29	ND	0.95		ND	1.64	2.17			ND	1.18	0.04
2/21/2011	0.28	ND	ND		0.02	1.86	1.1			ND	0.33	1.52
5/9/2011	2.47	ND	0.23	ND	0.07	0.87	-					ND
8/1/2011	0.13	ND	0.61	0.67	ND	5.19	-					0.89
2/3/2012	5.62	ND	0.21		0.69	0.35	3.74			ND	0.6	0.24
11/1/2012		ND	0.22		0.65		3.66			ND	0.48	
5/1/2013	7.78	ND	3.23		2.33	2.28	1.93			ND	3.59	1.76
4/22/2014	7.41	ND	2.52	7.49	3.74	5.53	2.22			ND	0.73	0.07
6/1/2014	ND	ND	2.32	ND	ND	1.1	2.09			ND	1.43	ND
10/15/2014	5.16	ND	2.36	ND		1.9	0.22			ND	0.46	0.55
2/1/2015	2.57	ND	1.8	0.09	0.05	2.79	0.38			ND	0.02	8.1
5/1/2015	3.81	ND	2.01	0.73	0.31	3.43	0.99			ND	0.69	0.04
8/1/2015	3.3	ND	2.2	0.65	0.4	1.5	ND			ND	0.15	0.21
12/1/2015	0.86	ND	2.39	0.62	0.35	1.01	0.34			ND	0.16	0.04
4/1/2016	6.76	ND	1.85	1.38		5.46	0.97	ND	ND		0.76	0.04
8/1/2016	6.8	ND	2.41	ND		2.06	0.06	ND	ND		0.25	0.27

Units: feet
ND: Non-detect
--: not measured

Table 5.1
Time Series Data for Measured LNAPL Free Product

Measurement Date	TW-18	TW-19	TW-2	TW-20	TW-22	TW-23	TW-24	TW-25	TW-26	TW-27	TW-28	TW-29
1/31/2008	8.92	4.52	ND	4.5	1.09	2.1	2.35	ND	1.12		3.38	10.17
3/14/2008	1.6	ND	ND	ND	0.15		3.45	ND	0.7		4.7	6.85
3/25/2008	0.62	ND		0.57								
6/11/2008	9.05	1.4	ND	ND	0.15		3.45	ND	0.71	ND	4.7	6.85
8/20/2008	10.22	0.85		ND								
9/11/2008	0.74	0.95	0.14	ND	0.03	6.35	1.13	0.05	ND	ND	1.18	5.81
11/25/2008	0.02	1.48	0.02	ND	0.23	5.91	0.29	ND	0.06	ND	1.84	3.73
1/5/2009	2.55	1.75	ND	1.93	0.31	1.25	0.91	ND	0.34	4.72	7.54	ND
3/20/2009	1.21	ND		ND								
3/30/2009			ND		0.28	11.5	1.31	ND	0.34	ND	4	9.25
6/17/2009	9.47	3.4	ND	ND	0.21	13.32	1.34	ND	0.21	0.69	9.1	ND
9/11/2009	9.73	ND		ND								
1/15/2010	12.5	5.81	ND	0.14	0.21	15.06	1.37	ND	0.11	0.99	10.59	ND
6/29/2010	12.62	ND	ND	ND	1.05	ND	2.96	10.84	0.05	0.84	2.31	ND
8/17/2010	1.1	6.15	ND	ND	ND	0.4	1.81	ND	ND	ND	1.77	1.75
8/30/2010	11.33	6.75	ND	ND	0.14	3.95	2.54	ND	ND	ND	1.69	2
9/22/2010	5.41	6.75	ND	ND	0.15	0.7	1.36	ND	ND	ND	0.45	1.74
2/21/2011	5.9	1.06	ND	0.26	0.47	1.37	0.97	ND	ND	ND	7.99	8.7
5/9/2011	6.02	1.3		0.23								
8/1/2011	0.3	0.01		0.04								
2/3/2012	1.06	2.25	ND	1.12	0.01	1.19	1	ND	ND	ND	3.04	3.64
11/1/2012		2.35	ND		0.01	1.03	0.84	ND	ND	ND	2.84	3.1
5/1/2013	3.91	1.68	ND	2.06	0.15	13.85	0.21	ND	0.12	ND	5.15	9.51
4/22/2014	13.39	1.31	ND	2.54	0.05	15.44	6.23	ND	ND	ND	2.84	10.13
6/1/2014	0.03	ND	0.01	0.01	0.12	2.87	3.9	ND	ND	ND	0.02	2.38
10/15/2014	10.32	ND	ND	0.94	0.1	3.83	1.61	ND	ND	ND	ND	5.31
2/1/2015	0.05	0.25	ND	1.01	ND	1.15	4.15	ND	ND	ND	0.17	3.33
5/1/2015	10.09	0.62	ND	1.16	ND	5.86	4.87	ND	ND	ND	0.06	4.65
8/1/2015	10.55	1.85	ND	0.03	0.03	2	1.98	ND	ND	ND	ND	1.78
12/1/2015	6.14	1.33	ND	0.4	ND	0.41	0.51	ND	ND	ND	0.37	0.91
4/1/2016	8.11	3.14	-	1.09	ND	9.5	1.64	ND	ND	ND	0.07	7.44
8/1/2016	10.15		-	0.09	0.01	3.47	2.17	ND	ND	ND	0.03	6.64

Units: feet
ND: Non-detect
--: not measured

Table 5.1
Time Series Data for Measured LNAPL Free Product

Measurement	TW-30	TW-31	TW-32	TW-33	TW-34
Date					
1/31/2008	ND		ND	ND	ND
3/14/2008	ND	ND	ND	ND	ND
3/25/2008					
6/11/2008	ND	ND	ND	ND	ND
8/20/2008					
9/11/2008	ND	ND	ND	ND	ND
11/25/2008	ND	ND	ND	ND	ND
1/5/2009	ND	ND	ND	ND	
3/20/2009		-			
3/30/2009	ND	ND	ND	ND	ND
6/17/2009	ND	ND	ND	ND	
9/11/2009					
1/15/2010	ND	ND	ND	ND	
6/29/2010	ND	ND	ND	ND	ND
8/17/2010	ND	ND	ND	ND	ND
8/30/2010	ND	ND	ND	ND	ND
9/22/2010	ND	ND	ND	ND	ND
2/21/2011	ND	ND	ND	0.44	ND
5/9/2011					
8/1/2011					
2/3/2012	ND	ND	0.05	ND	ND
11/1/2012	ND	ND	0.1	ND	ND
5/1/2013	ND	ND	1.09	0.1	ND
4/22/2014	ND	ND	0.95	ND	ND
6/1/2014	ND	ND	ND	ND	ND
10/15/2014	ND	ND	ND	ND	ND
2/1/2015	ND	ND	ND	ND	ND
5/1/2015	ND	ND	ND	ND	ND
8/1/2015	ND	ND	ND	ND	ND
12/1/2015	ND	ND	0.04	ND	ND
4/1/2016	ND	ND	0.04	ND	ND
8/1/2016	ND	ND	0.03	ND	ND

Table 5.2 2019 Groundwater PAH Assessment Summary

Donomoton	MW-	01	TW-0)1	TW-0	8	TW-3	1	TW-3	3
Parameter	Result	DL								
1-Methylnaphthalene	ND	0.50	ND	0.50	ND	0.5	ND	0.5	3.2	0.5
2-Methylnaphthalene	ND	0.50	ND	0.50	ND	0.5	ND	0.5	ND	0.5
Acenaphthene	ND	0.50	ND	0.50	ND	0.5	ND	0.5	4.4	0.5
Acenaphthylene	ND	1.00	ND	1.00	ND	1	ND	1	ND	1
Anthracene	ND	0.05	ND	0.05	ND	0.05	ND	0.05	0.48	0.05
Benzo(a)anthracene	ND	0.05	ND	0.05	ND	0.05	ND	0.05	0.25	0.05
Benzo(a)pyrene	ND	0.05	ND	0.05	ND	0.05	ND	0.05	0.22	0.05
Benzo(b)fluoranthene	ND	0.10	ND	0.10	ND	0.1	ND	0.1	0.31	0.1
Benzo(g,h,i)perylene	ND	0.10	ND	0.10	ND	0.1	ND	0.1	0.23	0.1
Benzo(k)fluoranthene	ND	0.05	ND	0.05	ND	0.05	ND	0.05	0.2	0.05
Chrysene	ND	0.05	ND	0.05	ND	0.05	ND	0.05	0.22	0.05
Dibenzo(a,h)anthracene	ND	0.10	ND	0.10	ND	0.1	ND	0.1	0.18	0.1
Fluoranthene	ND	0.10	ND	0.10	ND	0.1	ND	0.1	0.31	0.1
Fluorene	ND	0.10	ND	0.10	ND	0.1	ND	0.1	4.4	0.1
Indeno(1,2,3-cd)pyrene	ND	0.05	ND	0.05	ND	0.05	ND	0.05	0.23	0.05
Naphthalene	ND	0.50	ND	0.50	ND	0.5	ND	0.5	0.92	0.5
Phenanthrene	ND	0.05	ND	0.05	ND	0.05	ND	0.05	2.2	0.05
Pyrene	ND	0.05	ND	0.05	0.4	0.05	ND	0.05	0.3	0.05

Units: μg/L

Table 6.1
Post Removal Soil Lead Data Summary (0-2 ft-bgs)

1	Det- C ! !	Sampl	e Depth	Result	Loca	ation	Compele D
Location	Date Sampled	Top (ft)	Bottom (ft)	(mg/kg)	Х	Υ	Sample Purpose
AA65	07/15/11	1	1	294	2462270.75	1028280.67	Confirmational
AA66	07/15/11	1	1	229	2462267.77	1028271.31	Confirmational
aa66-S	07/15/11	0	1	254	2462262.73	1028271.60	Confirmational
B-01	02/23/00	1	1	210	2462325.00	1028248.08	Delineation
B-02	02/24/00	1	1	200	2462237.12	1028202.86	Delineation
B-03	02/23/00	1	1	16	2462388.93	1028146.52	Delineation
B-04	02/24/00	1	1	350	2462124.25	1028229.57	Delineation
b15-6	03/30/09	0	1	432	2462624.89	1028636.62	Delineation
b15-7	03/30/09	1	2	502	2462625.42	1028661.49	Delineation
b15-7 b15-9	03/30/09	0	1 1	431 427	2462625.42	1028661.49 1028596.75	Delineation
B-19	03/30/09 03/06/00	1	1	92	2462720.50 2462786.66	1028396.73	Delineation Delineation
B-19 B-2	10/02/02	0	0	1	2462237.12	1028202.86	Delineation
B-22	06/16/00	1	1	480	2462521.41	1028202.80	Delineation
B-23	10/03/02	0	0	630	2462635.47	1029050.06	Delineation
B-23-NE	10/03/02	0	0	239	2462647.43	1029065.53	Delineation
B-23-NW	10/03/02	0	0	654	2462619.26	1029063.29	Delineation
B-23-SE	10/03/02	0	0	567	2462651.27	1029039.92	Delineation
B-23-SW	10/03/02	0	0	476	2462623.03	1029037.44	Delineation
B-24	02/25/00	1	1	80	2462742.83	1028998.68	Delineation
B-29	06/13/00	1	1	77	2462406.90	1028406.23	Delineation
B-2-NE	10/02/02	0	0	ND	2462246.28	1028219.21	Delineation
B-2-NW	10/02/02	0	0	ND	2462220.88	1028214.64	Delineation
B-2-SE	10/02/02	0	0	ND	2462251.70	1028190.34	Delineation
B-2-SW	10/02/02	0	0	ND	2462226.74	1028185.57	Delineation
B-30	03/06/00	1	1	320	2462318.58	1028340.53	Delineation
b-31a	02/24/09	0	0.5	1,290	2462169.78	1028364.13	Delineation
B-31a-1	02/24/09	0	0.5	563	2462152.95	1028373.35	Delineation
B-31a-2	02/24/09	0	0.5	966	2462164.97	1028389.95	Delineation
B-31a-3	02/24/09	0	0.5	1,170	2462178.71	1028378.61	Delineation
B-31a-5	02/24/09	0	0.5	662	2462173.30	1028337.15	Delineation
B-31a-6 B-31a-7	02/24/09 02/24/09	0	0.5 0.5	984 905	2462156.38 2462141.26	1028348.01 1028360.05	Delineation Delineation
B-31a-7	02/24/09	1	1	280	2462141.26	1028163.37	Delineation
B-33	02/25/00	1	1	140	2462086.24	1028181.94	Delineation
B-34	02/24/00	1	1	51	2462099.78	1028181.94	Delineation
B-35	02/24/00	1	1	420	2462063.08	1028221.70	Delineation
B-36	02/24/00	1	1	95	2462053.47	1028198.11	Delineation
B-37	02/25/00	1	1	190	2462747.29	1028978.77	Delineation
B-38	02/25/00	1	1	230	2462766.52	1029004.86	Delineation
B-39	02/25/00	2	2	260	2462738.02	1029024.43	Delineation
B-39	02/25/00	0	0	ND	2462738.02	1029024.43	Delineation
B-40	02/25/00	1	1	440	2462722.92	1028995.25	Delineation
B-41	03/06/00	1	1	75	2462414.56	1028299.12	Delineation
b-42a-101	03/30/09	0	1	638	2462058.68	1028318.28	Delineation
b-42a-102	03/30/09	0	1	384	2462040.72	1028289.96	Delineation
b-42a-103	03/30/09	0	1	476	2462038.56	1028330.13	Delineation
b-42a-104	03/30/09	0	1	826	2462024.35	1028356.59	Delineation
b-42a-105	03/30/09	0	1	560	2462018.18	1028376.13	Delineation
b-42a-106	03/30/09	0	1	801	2462018.20	1028410.95	Delineation
b-42a-107	03/30/09	0	1	327	2462100.57	1028344.98	Delineation
b-42a-108	03/30/09	0	1	484	2462138.86	1028318.73	Delineation
b-42a-108 b-42a-110	03/30/09 03/30/09	0	1 1	312 1,299	2462138.86 2462202.22	1028318.73	Delineation Delineation
	03/30/09	0	1	1,299 878	2462202.22	1028297.51 1028307.75	Delineation Delineation
b-42a-111 b-42a-112	03/30/09	0	1	526	2462185.21	1028273.76	Delineation
b-42a-112 b-42a-113	03/30/09	0	1	358	2462183.21	1028277.05	Delineation
b-42a-115 b-42a-116	03/30/09	0	1	741	2462256.89	1028255.90	Delineation
b-42a-116 b-42a-116	03/30/09	0	1	508	2462256.89	1028255.90	Delineation
b-42a-110 b-42a-117	03/30/09	0	1	447	2462300.56	1028255.66	Delineation
b-42a-118	03/30/09	0	1	568	2462266.98	1028575.51	Delineation
b-42a-119	03/30/09	0	1	1,242	2462286.61	1028638.86	Delineation
b-42a-120	03/30/09	0	1	695	2462278.87	1028660.46	Delineation

mg/kg: milligram per kilogram

Table 6.1
Post Removal Soil Lead Data Summary (0-2 ft-bgs)

Location	Date Sampled	Sampl	e Depth	Result	Loca	ation	Sample Burnes
Location	Date Sampled	Top (ft)	Bottom (ft)	(mg/kg)	Х	Υ	Sample Purpose
b-42a-121	03/30/09	0	1	544	2462300.30	1028672.71	Delineation
b-42a-122	03/30/09	0	1	398	2462391.97	1028799.98	Delineation
b-42a-123	03/30/09	0	1	1,130	2462388.94	1028763.97	Delineation
b-42a-124	03/30/09	0	1	1,294	2462373.82	1028750.34	Delineation
b-42a-125	03/30/09	0	1	345	2462353.84	1028766.81	Delineation
b-42a-126	03/30/09	0	1	394	2462373.95	1028785.19	Delineation
b-42a-13	03/11/09	0	0.5	403	2462151.38	1028399.60	Delineation
b-42a-14	03/11/09	0	0.5	435	2462155.51	1028411.77	Delineation
b-42a-18	03/11/09	0	0.5	575	2462078.03	1028462.83	Delineation
b-42a-24	03/11/09 03/11/09	0	0.5 0.5	781 539	2462166.11	1028427.13 1028477.99	Delineation
b-42a-28 b-42a-29	03/11/09	0	0.5	655	2462089.01 2462048.88	1028457.58	Delineation Delineation
b-42a-29	03/11/09	0	0.5	487	2462048.88	1028457.58	Delineation
b-42a-30	03/11/09	0	0.5	557	2462037.39	1028439.27	Delineation
b-42a-35	03/11/09	0	0.5	799	2462175.22	1028442.56	Delineation
b-42a-39	03/11/09	0	0.5	745	2462104.02	1028498.18	Delineation
b-42a-40	03/11/09	0	0.5	460	2462186.73	1028460.30	Delineation
b-42a-43	03/11/09	0	0.5	511	2462197.20	1028475.30	Delineation
b-42a-46	03/11/09	0	0.5	630	2462217.03	1028547.37	Delineation
b-42a-47	03/11/09	0	0.5	1,001	2462212.50	1028497.45	Delineation
b-42a-48	03/11/09	0	0.5	888	2462224.77	1028510.45	Delineation
b-42a-49	03/11/09	0	0.5	966	2462231.03	1028484.81	Delineation
b-42a-50	03/11/09	0	0.5	1,242	2462214.38	1028461.36	Delineation
b-42a-51	03/11/09	0	0.5	415	2462243.74	1028498.52	Delineation
b-42a-54	03/11/09	0	0.5	1,004	2462215.48	1028578.00	Delineation
b-42a-55	03/11/09	0	0.5	1,232	2462229.04	1028597.65	Delineation
b-42a-56	03/11/09	0	0.5	519	2462257.23	1028630.05	Delineation
b-42a-57	03/11/09	0	0.5	990	2462244.60	1028612.84	Delineation
b-42a-58	03/11/09	0	0.5	497	2462260.66	1028603.20	Delineation
b-42a-59	03/11/09	0	0.5	1,268	2462244.54	1028582.71	Delineation
b-42a-61 b-42a-62	03/11/09 03/11/09	0	0.5 0.5	1,028 1,055	2462193.89 2462208.23	1028596.80 1028618.75	Delineation Delineation
b-42a-63	03/11/09	0	0.5	1,035	2462222.25	1028639.55	Delineation
b-42a-63 b-42a-64	03/11/09	0	0.5	1,016	2462236.76	1028660.52	Delineation
b-42a-66	03/11/09	0	0.5	252	2462276.63	1028000.32	Delineation
b-42a-69	03/11/09	0	0.5	698	2462267.92	1028669.12	Delineation
b-42a-71	03/11/09	0	0.5	327	2462215.97	1028675.69	Delineation
b-42a-71	03/11/09	0	0.5	309	2462215.97	1028675.69	Delineation
b-42a-72	03/11/09	0	0.5	624	2462200.27	1028656.35	Delineation
b-42a-73	03/11/09	0	0.5	420	2462185.24	1028641.11	Delineation
b-42a-74	03/11/09	0	0.5	145	2462174.21	1028612.57	Delineation
b-42a-75	03/11/09	0	0.5	657	2462153.20	1028574.54	Delineation
b-42a-75	03/11/09	0	0.5	650	2462153.20	1028574.54	Delineation
b-42a-76	03/11/09	0	0.5	266	2462137.67	1028552.26	Delineation
b-42a-77	03/11/09	0	0.5	550	2462120.94	1028526.84	Delineation
b-42a-82	03/11/09	0	0.5	452	2462262.56	1028524.34	Delineation
b-42a-83	03/11/09	0	0.5	458	2462281.22	1028550.80	Delineation
b-42a-86	03/11/09	0	0.5	1,228	2462292.94	1028572.05	Delineation
b-42a-89	03/30/09	0	1	720	2462315.48	1028639.12	Delineation
b-42a-89	03/11/09	0	0.5	717	2462315.48	1028639.12	Delineation
B-42-NE B-42-NW	10/03/02 10/03/02	0	0	1,020 658	2462137.68 2462107.89	1028467.92 1028469.76	Delineation Delineation
B-42-NVV B-42-SE	10/03/02	0	0	166	2462139.99	1028439.66	Delineation
B-42-SW	10/03/02	0	0	552	2462110.19	1028441.35	Delineation
B-44	06/13/00	1	1	86	2462647.37	1028387.64	Delineation
B-46	06/14/00	1	1	249	2462828.65	1028943.75	Delineation
B-47	06/14/00	1	1	157	2462843.07	1029035.76	Delineation
B-48	06/15/00	1	1	324	2462814.89	1029197.26	Delineation
B-49	06/15/00	2	2	90	2462714.66	1029257.46	Delineation
B-50	06/15/00	1	1	465	2462625.45	1029307.20	Delineation
B-51	06/20/00	1	1	421	2462462.70	1029144.26	Delineation
B-52	06/21/00	1	1	89	2462266.55	1028940.38	Delineation
B-53	06/22/00	1	1	252	2462091.17	1028730.30	Delineation

mg/kg: milligram per kilogram

Table 6.1
Post Removal Soil Lead Data Summary (0-2 ft-bgs)

Location	Data Cauralad	Sampl	e Depth	Result	Loca	ation	Sample Purpos
Location	Date Sampled	Top (ft)	Bottom (ft)	(mg/kg)	Х	Υ	Sample Purpos
B-54	06/22/00	1	1	82	2461943.60	1028573.80	Delineation
B-57	06/22/00	1	1	221	2462025.97	1028495.56	Delineation
B-58	06/23/00	1	1	245	2461995.08	1028361.03	Delineation
B-62	06/14/00	2	2	102	2462611.78	1028699.17	Delineation
b-63	09/30/02	0	0	ND	2462566.98	1028539.05	Delineation
B-63-2	02/24/09	0	0.5	480	2462522.01	1028543.78	Delineation
b-63-5	03/30/09	1	2	433	2462512.25	1028495.69	Delineation
b-63-5	03/30/09	0	1	314	2462512.25	1028495.69	Delineation
b-63-6	03/30/09	0	1	611	2462506.33	1028528.33	Delineation
b-63-ene5	01/16/03	0	0	199	2462636.79	1028547.44	Delineation
B-63-ESE3	11/08/02	0	0	206 7	2462615.40	1028513.43	Delineation Delineation
b-63-ese5 B-63-N2	11/16/03 10/01/02	0	0	103	2462670.16 2462566.18	1028558.18 1028564.47	Delineation
b-63-ne2	09/30/02	0	0	387	2462595.37	1028568.53	Delineation
b-63-se2	10/01/02	0	0	513	2462603.20	1028496.89	Delineation
B-63-SSE5	01/16/03	0	0	524	2462469.04	1028439.73	Delineation
b-63-ssw4	11/08/02	0	0	320	2462554.65	1028469.82	Delineation
B-63-SSW5	01/16/03	0	0	539	2462567.74	1028445.98	Delineation
b-63-sw	10/01/02	0	0	986	2462552.60	1028518.07	Delineation
b-63-sw	10/01/02	0	0	ND	2462552.60	1028518.07	Delineation
b-63-sw2	10/01/02	0	0	728	2462542.77	1028504.00	Delineation
b-65	10/04/02	0	0	5	2462709.57	1028748.22	Delineation
B-65-1	02/24/09	0	0.5	475	2462683.19	1028742.70	Delineation
B-65-10	02/24/09	0	0.5	278	2462773.07	1028593.85	Delineation
B-65-11	02/24/09	0	0.5	669	2462759.00	1028570.02	Delineation
b-65-14	03/30/09	0	1	582	2462733.37	1028586.42	Delineation
b-65-15	03/30/09	0	1	1,287	2462740.68	1028571.98	Delineation
B-65-2	02/24/09	0	0.5	560	2462673.77	1028728.34	Delineation
b-65-21	03/30/09	0	1	427	2462837.73	1028854.02	Delineation
b-65-22	03/30/09	0	1	237	2462808.54	1028814.22	Delineation
b-65-22	03/30/09	0	1	217	2462808.54	1028814.22	Delineation
b-65-23	03/30/09	0	1	2,560	2462859.28	1028881.09	Delineation
b-65-23	03/30/09	0	1	1,276	2462859.28	1028881.09	Delineation
b-65-24	03/30/09	0	1	685	2462838.43	1028897.72	Delineation
b-65-24	03/30/09	0	1	510	2462838.43	1028897.72	Delineation
b-65-24	03/30/09	1	2	354	2462838.43	1028897.72	Delineation
b-65-25	03/30/09	0	1	1,240	2462785.11	1028784.40	Delineation
b-65-25	03/30/09	0	1	863	2462785.11	1028784.40	Delineation
b-65-27	03/30/09	0	1	425	2462870.42	1028768.07	Delineation
b-65-28	03/30/09	0	1	726	2462874.20	1028787.18	Delineation
b-65-29	03/30/09	1	2	253	2462854.87	1028726.22	Delineation
B-65-3	02/24/09	0	0.5	546	2462660.42	1028710.84	Delineation
b-65-30	03/30/09	1	2	332	2462840.58	1028702.90	Delineation
B-65-4	02/24/09	0	0.5	181	2462665.63	1028681.68	Delineation
B-65-5	02/24/09	0	0.5	250	2462653.63	1028666.88	Delineation
b-65-e2	10/04/02	0	0	667	2462741.48	1028750.15	Delineation
B-65-E4	02/08/03	0	0	206 471	2462789.97 2462720.46	1028796.24	Delineation
b-65-ne	10/04/02					1028766.05	Delineation
b-65-nw	10/04/02	0	0	253	2462691.72	1028756.42	Delineation
b-65-s8 b-65-sw	02/08/03 10/04/02	0	0	108 1,250	2462730.28 2462699.19	1028633.87 1028731.78	Delineation Delineation
b-65-sw2	10/04/02	0	0	1,050	2462688.86	1028716.70	Delineation
b-65-sw3	01/16/03	0	0	346	2462678.78	1028699.08	Delineation
B-77	09/19/00	1	1	6	2462820.47	1028461.77	Delineation
B-80	09/20/00	1	1	27	2462966.27	1028726.90	Delineation
B-81	09/20/00	1	1	113	2463007.68	1028932.14	Delineation
B-83	09/20/00	1	1	364	2462924.53	1029180.48	Delineation
B-84	09/19/00	1	1	23	2462844.89	1029321.04	Delineation
B-85	09/19/00	1	1	258	2462705.40	1029435.91	Delineation
B-86	09/19/00	1	1	147	2462551.15	1029377.30	Delineation
B-87	09/19/00	1	1	201	2462410.32	1029185.46	Delineation
B-89	09/19/00	1	1	119	2462060.28	1028793.44	Delineation
	03/13/00			113	2702000.20	1020/33.44	Demication

mg/kg: milligram per kilogram

Table 6.1
Post Removal Soil Lead Data Summary (0-2 ft-bgs)

14!	Data C. I. I	Sampl	e Depth	Result	Loca	ation	Camarila D
Location	Date Sampled	Top (ft)	Bottom (ft)	(mg/kg)	Х	Υ	Sample Purpose
B-94	09/20/00	1	1	95	2461845.45	1028413.88	Delineation
B-95	09/20/00	1	1	160	2461945.66	1028213.46	Delineation
BB65	07/15/11	1	1	345	2462281.10	1028276.95	Confirmational
BB66	07/15/11	0	1	719	2462277.36	1028268.71	Confirmational
FF38	07/16/11	0	1	27	2462550.89	1028552.47	Confirmational
FF39	07/16/11	1	1	194	2462541.24	1028543.00	Confirmational
FF40	07/16/11	1	1	805	2462532.71	1028531.78	Confirmational
ff40-S	07/16/11	0	1	719	2462531.65	1028538.87	Confirmational
FF41	07/16/11	1	1	409	2462523.87	1028520.47	Confirmational
ff41-S	07/16/11	0	1	261 129	2462514.82	1028520.04	Confirmational
G41 G65	07/27/11 07/26/11	0	1 1	1,100	2462239.50 2462046.51	1028716.21 1028440.65	Confirmational Confirmational
G67	07/26/11	0	1	703	2462032.99	1028423.80	Confirmational
GG26	07/30/11	0	1	200	2462659.70	1028681.54	Confirmational
GG36	07/16/11	0	1	22	2462572.39	1028563.84	Confirmational
GG37	07/16/11	1	1	723	2462566.60	1028555.74	Confirmational
GG38	07/16/11	1	1	25	2462557.41	1028546.82	Confirmational
gg38-S	07/16/11	0	1	156	2462565.64	1028544.69	Confirmational
GG39	07/16/11	0	1	56	2462549.97	1028534.52	Confirmational
gg39-S	07/16/11	0	1	44	2462551.06	1028526.09	Confirmational
GG40	07/16/11	1	1	435	2462540.25	1028524.35	Confirmational
GG41	07/16/11	1	1	348	2462533.75	1028513.82	Confirmational
gg41-S	07/16/11	0	1	26	2462539.04	1028511.14	Confirmational
GG42	07/16/11	0	1	573	2462522.21	1028503.41	Confirmational
H40	07/14/11	1	2	440	2462255.14	1028720.72	Confirmational
H40	07/14/11	0	1	210	2462255.14	1028720.72	Confirmational
H41	07/27/11	1	1	125	2462250.09	1028711.23	Confirmational
H41-S	07/14/11	1	2	39	2462250.09	1028711.23	Confirmational
H42	07/14/11	0	1	918	2462242.76	1028700.15	Confirmational
H42	07/14/11	1	2	32	2462242.76	1028700.15	Confirmational
H51-S	08/16/11	0	1	88	2462171.85	1028583.55	Confirmational
H53-S	08/04/11	0	1	304 771	2462156.09	1028573.54	Confirmational
H64-S H65	07/26/11 07/25/11	1	1	1,170	2462065.50 2462054.44	1028449.82 1028437.16	Confirmational Confirmational
H66	07/25/11	1	1	896	2462045.62	1028424.91	Confirmational
H67	07/25/11	1	1	740	2462037.46	1028415.10	Confirmational
H68	07/25/11	1	1	36	2462031.27	1028403.01	Confirmational
H68-S	07/26/11	0	1	249	2462026.74	1028406.24	Confirmational
ha-01	10/01/02	0	0	20	2462430.84	1028814.76	Delineation
ha-01	10/01/02	0	0	ND	2462430.84	1028814.76	Delineation
HA-01-a	02/24/09	0	0.5	655	2462405.60	1028812.81	Delineation
HA-01-c	02/24/09	0	0.5	1,240	2462431.11	1028787.24	Delineation
ha-01-ne	10/01/02	0	0	1	2462441.41	1028829.12	Delineation
ha-01-ne	10/01/02	0	0	ND	2462441.41	1028829.12	Delineation
ha-01-nw	10/01/02	0	0	428	2462413.35	1028822.48	Delineation
ha-01-nw	10/01/02	0	0	2	2462413.35	1028822.48	Delineation
ha-01-sw	02/24/09	0	0.5	1,230	2462421.93	1028800.88	Delineation
ha-01-sw	10/02/02	0	0	952	2462421.93	1028800.88	Delineation
ha-01-sw	10/02/02	0	0	ND	2462421.93	1028800.88	Delineation
HA-04	03/06/00	0	0	340	2462530.44	1028578.59	Delineation
HA-07	03/06/00	1	1	390	2462577.46	1029120.13	Delineation
HA-08	03/06/00	1	1	370	2462489.77	1029140.14	Delineation
HH20-S	07/30/11 07/30/11	0	1	ND 16	2462720.36	1028748.36	Confirmational
HH21 HH21-SE	07/30/11	0		16 304	2462717.42 2462711.49	1028739.08	Confirmational Confirmational
HH21-SS	07/30/11	0	1 1	22	2462711.49	1028745.71 1028733.39	Confirmational
HH25	07/30/11	0	1	10	2462709.14	1028680.72	Confirmational
HH26	07/30/11	1	1	21	2462666.54	1028674.44	Confirmational
HH27	07/30/11	0	1	7	2462661.86	1028669.85	Confirmational
HH28	07/23/11	1	1	741	2462652.42	1028654.47	Confirmational
HH28-S	07/23/11	0	1	1,290	2462648.26	1028655.95	Confirmational
HH29	07/23/11	0	1	465	2462643.85	1028637.58	Confirmational
	· · · · · · · · ·						, John Middle Hall

mg/kg: milligram per kilogram

Table 6.1
Post Removal Soil Lead Data Summary (0-2 ft-bgs)

	5 . 6	Sampl	e Depth	Result	Loca	ation	
Location	Date Sampled	Top (ft)	Bottom (ft)	(mg/kg)	Х	Υ	Sample Purpose
HH37	08/04/11	1	1	38	2462579.71	1028552.68	Confirmational
HH37-S	08/04/11	0	1	110	2462585.91	1028550.81	Confirmational
139	08/09/11	1	2	828	2462271.77	1028722.72	Confirmational
139	07/27/11	0	1	594	2462271.77	1028722.72	Confirmational
140-S	07/14/11	1	2	413	2462268.25	1028713.86	Confirmational
I41	07/14/11	2	2	192	2462254.65	1028703.50	Confirmational
143	07/27/11	0	1	1,290	2462246.17	1028684.55	Confirmational
143 150-SE	07/27/11 08/16/11	0	1	73 109	2462246.17 2462181.38	1028684.55 1028594.21	Confirmational Confirmational
150-SE 151	08/16/11	1	1	69	2462181.38	1028588.56	Confirmational
I51-S	08/16/11	0	1	107	2462788.72	1028622.04	Confirmational
I51-SN	08/16/11	0	1	120	2462170.00	1028596.01	Confirmational
152-SE	08/04/11	0	1	819	2462172.31	1028577.93	Confirmational
152-SS	08/04/11	0	1	22	2462166.03	1028574.58	Confirmational
153	08/04/11	1	1	186	2462162.33	1028566.12	Confirmational
154	07/26/11	0	1	929	2462154.87	1028549.86	Confirmational
154-S	08/04/11	0	1	876	2462157.70	1028560.51	Confirmational
156	07/26/11	0	1	807	2462139.67	1028534.70	Confirmational
I57	07/25/11	1	1	656	2462133.26	1028519.85	Confirmational
157-S	07/26/11	0	1	653	2462127.36	1028518.70	Confirmational
157-S1	08/03/11	1	2	70	2462135.32	1028519.78	Confirmational
158	07/25/11	1	1	31	2462123.77	1028506.76	Confirmational
159	07/25/11	1	1	189	2462113.94	1028496.34	Confirmational
159-S	07/26/11	0	1	855	2462114.64	1028503.53	Confirmational
I59-S1	08/03/11	1	2	531	2462144.76	1028467.79	Confirmational
160	07/25/11	1	1	1,170	2462101.57	1028487.19	Confirmational
160-S 161	07/26/11 07/25/11	0	1 1	1,090 291	2462101.57 2462100.23	1028487.19 1028474.14	Confirmational Confirmational
162	07/25/11	1	1	201	2462100.23	1028461.39	Confirmational
162-S	07/25/11	0	1	589	2462091.09	1028469.39	Confirmational
163	07/25/11	1	1	553	2462080.49	1028453.78	Confirmational
163-S	07/26/11	0	1	276	2462080.49	1028453.78	Confirmational
164	07/25/11	1	1	808	2462073.93	1028439.21	Confirmational
164-S	08/03/11	1	2	9	2462071.68	1028434.46	Confirmational
165-S	08/03/11	1	2	18	2462061.36	1028422.03	Confirmational
166	07/25/11	1	1	745	2462057.28	1028416.63	Confirmational
167	07/25/11	1	1	18	2462048.62	1028405.89	Confirmational
168	07/25/11	1	1	38	2462042.04	1028395.32	Confirmational
169	07/25/11	1	1	92	2462035.22	1028383.82	Confirmational
169-S	07/26/11	0	1	556	2462029.66	1028385.96	Confirmational
II21	07/23/11	0	1	283	2462713.40	1028722.01	Confirmational
1123	07/23/11	0	1	6	2462700.69	1028702.44	Confirmational
1125	07/23/11	0	1 1	34	2462684.31	1028680.43	Confirmational
II26 II27	07/22/11 07/22/11	1	1	121 61	2462677.34 2462668.78	1028666.08 1028655.37	Confirmational Confirmational
1128	07/22/11	1	1	500	2462661.07	1028645.01	Confirmational
1129	07/23/11	1	1	109	2462656.94	1028634.43	Confirmational
1138-S	08/13/11	0	1	75	2462585.23	1028515.86	Confirmational
II38-S	08/13/11	1	2	16	2462585.23	1028515.86	Confirmational
J39	08/09/11	1	2	854	2462284.07	1028713.22	Confirmational
J39	07/27/11	0	1	157	2462284.07	1028713.22	Confirmational
J40	07/14/11	2	2	9	2462275.80	1028707.93	Confirmational
J40-S	07/14/11	1	2	93	2462279.23	1028708.87	Confirmational
J41	07/14/11	2	2	31	2462268.35	1028693.67	Confirmational
J41-S	07/14/11	1	2	282	2462273.77	1028694.39	Confirmational
J42	07/14/11	1	2	237	2462263.30	1028687.06	Confirmational
J43	07/27/11	1	2	108	2462256.84	1028676.49	Confirmational
J43-2	08/09/11	1	1	241	2462252.88	1028671.13	Confirmational
J43-SW	08/09/11	0	1	644	2462247.07	1028675.69	Confirmational
J44-S	08/09/11	0	1	505	2462247.30	1028664.18	Confirmational
J49	08/16/11	1	1	95	2462202.89	1028587.13	Confirmational
J49-S	08/16/11	0	1	222	2462190.07	1028597.85	Confirmational
J50	08/11/11	1	1	775	2462195.42	1028586.96	Confirmational

mg/kg: milligram per kilogram

Table 6.1
Post Removal Soil Lead Data Summary (0-2 ft-bgs)

lasette:	Det- C ! !	Sampl	e Depth	Result	Loca	ation	Comet- D
Location	Date Sampled	Top (ft)	Bottom (ft)	(mg/kg)	Х	Υ	Sample Purpose
J52	08/04/11	1	1	62	2462178.37	1028573.89	Confirmational
J52-SS	08/04/11	1	2	33	2462182.15	1028564.86	Confirmational
J53	07/26/11	1	1	1,120	2462174.83	1028556.73	Confirmational
J55	07/26/11	1	1	953	2462157.57	1028536.71	Confirmational
J55-S	08/04/11	1	2	365	2462160.85	1028539.98	Confirmational
J56	07/25/11	1	1	29	2462149.69	1028524.33	Confirmational
J56-S	08/03/11	1	2	21	2462147.25	1028519.79	Confirmational
J58	07/25/11	1	1	200	2462133.97	1028502.87	Confirmational
J58-SE	08/03/11	1	2	9 33	2462137.01	1028500.22	Confirmational
J58-SN J58-SS	08/03/11 08/03/11	1	2 2	60	2462135.88 2462130.08	1028506.70 1028497.49	Confirmational Confirmational
J60	07/25/11	1	1	31	2462130.08	1028477.27	Confirmational
J60-S	08/03/11	1	2	172	2462117.04	1028483.85	Confirmational
J61	07/25/11	1	1	39	2462108.62	1028466.55	Confirmational
J62	07/25/11	1	1	681	2462101.24	1028452.94	Confirmational
J63	07/25/11	1	1	515	2462093.61	1028441.94	Confirmational
J64	07/25/11	1	1	28	2462083.94	1028432.29	Confirmational
J65	07/25/11	1	1	1,220	2462076.62	1028419.83	Confirmational
J65-S	08/03/11	1	2	ND	2462072.98	1028424.65	Confirmational
J66	07/25/11	1	1	188	2462069.65	1028408.61	Confirmational
J67	07/25/11	1	1	10	2462060.15	1028398.87	Confirmational
J68	07/25/11	1	1	109	2462052.52	1028387.22	Confirmational
J69	07/25/11	1	1	24	2462045.25	1028374.12	Confirmational
J70	07/26/11	0	1	566	2462034.91	1028366.47	Confirmational
JJ18	07/23/11	0	1	26	2462748.65	1028748.34	Confirmational
JJ19	07/22/11	1	1	178	2462744.19	1028737.97	Confirmational
JJ19-S	08/10/11	1	2	37	2462741.42	1028735.60	Confirmational
JJ20	07/22/11	1	1	1,280	2462736.98	1028726.97	Confirmational
JJ24	07/22/11	1	1	359	2462706.20	1028680.68	Confirmational
JJ24-S JJ26	08/02/11	1	1	249 12	2462702.23	1028679.49	Confirmational
JJ26 JJ27-SS	07/22/11 08/02/11	1	2	389	2462688.52 2462675.36	1028658.82 1028641.76	Confirmational Confirmational
JJ27-33 JJ27-SW	08/02/11	1	2	109	2462672.11	1028653.14	Delineation
JJ27-3VV	07/23/11	1	1	284	2462673.15	1028638.15	Confirmational
JJ29	07/23/11	1	1	387	2462660.29	1028624.33	Confirmational
JJ30	07/23/11	0	1	243	2462653.05	1028615.23	Confirmational
JJ31-S	08/16/11	0	1	26	2462652.09	1028583.01	Confirmational
JJ33-S	08/13/11	0	1	67	2462597.40	1028528.32	Confirmational
JJ34-S	08/10/11	0	1	1,130	2462621.44	1028562.61	Confirmational
JJ35-2	08/10/11	1	1	43	2462617.08	1028555.15	Confirmational
JJ35-SW	08/10/11	0	1	570	2462611.78	1028559.14	Confirmational
JJ36-SE	08/10/11	1	2	138	2462612.18	1028538.43	Confirmational
JJ36-SN	08/10/11	0	1	321	2462611.58	1028546.96	Confirmational
JJ37-S	08/10/11	1	2	875	2462606.23	1028530.61	Confirmational
JJ37-SS	08/13/11	0	1	21	2462585.49	1028526.91	Confirmational
JJ37-SS2	08/13/11	1	2	11	2462585.49	1028526.91	Confirmational
JJ39-SN	08/13/11	0	1	47	2462738.42	1028622.93	Confirmational
JJ39-SN	08/13/11	1	2	15	2462738.42	1028622.93	Confirmational
JJ41	07/18/11	0	1	319	2462566.68	1028481.66	Confirmational
JJ41 *20.6	07/23/11	0	2	311	2462566.68	1028481.66	Confirmational
K39-S	08/09/11	0	1	141	2462295.44	1028704.33	Confirmational
K40-SS K42-SE	07/27/11	0	1 1	11 106	2462286.07 2462268.36	1028695.00 1028677.54	Confirmational Confirmational
K42-SE	07/27/11 07/27/11	1	2	31		1028677.54	
K42-SN	07/27/11	0	1	881	2462268.36 2462277.24	1028680.12	Confirmational Confirmational
K42-SN	08/09/11	1	2	261	2462277.24	1028680.12	Confirmational
K43-SE	08/09/11	0	1	201	2462259.15	1028666.68	Confirmational
K50-S	08/16/11	0	1	77	2462202.63	1028599.94	Confirmational
K51	07/26/11	1	1	432	2462199.59	1028570.80	Confirmational
K52	07/26/11	1	1	626	2462192.86	1028561.57	Confirmational
K52-S	08/04/11	1	2	121	2462197.66	1028557.76	Confirmational
K53	07/26/11	1	1	268	2462183.74	1028550.79	Confirmational
K53-S	08/04/11	1	2	206	2462181.95	1028546.07	Confirmational

mg/kg: milligram per kilogram

Table 6.1
Post Removal Soil Lead Data Summary (0-2 ft-bgs)

La catia :-	Data Camadad	Sampl	e Depth	Result	Loca	ation	Commis D.
Location	Date Sampled	Top (ft)	Bottom (ft)	(mg/kg)	Х	Υ	Sample Purpose
K55	07/26/11	1	1	208	2462168.79	1028528.08	Confirmational
K55-S	08/04/11	1	2	65	2462172.97	1028531.84	Confirmational
K56	07/25/11	1	1	89	2462161.11	1028515.86	Confirmational
K56-S	08/03/11	1	2	1,230	2462164.79	1028514.40	Confirmational
K56-SE	08/04/11	1	2	432	2462164.79	1028514.40	Confirmational
K57	07/25/11	1	1	52	2462153.66	1028504.95	Confirmational
K59	07/15/11	1	1	159	2462135.83	1028481.73	Confirmational
K59-SN	08/03/11	1	2	16	2462130.90	1028485.53	Confirmational
K59-SW	08/03/11	1	2	236	2462130.90	1028485.53	Confirmational
K60	07/15/11	1	1	1,180	2462129.42	1028471.74	Confirmational
K60-S	08/03/11	1	2	40	2462133.74	1028465.48	Confirmational
K61	07/15/11	1	1	737	2462119.87	1028460.20	Confirmational
K62	07/15/11	1	1	28	2462112.72	1028449.54	Confirmational
K63	07/15/11	1	1	163	2462104.47	1028437.26	Confirmational
K64	07/15/11	1	1	112	2462095.84	1028426.17	Confirmational
K65 K66	07/15/11	1	1	85	2462086.10	1028411.95	Confirmational
K67	07/15/11 07/15/11	1	1	279 523	2462078.13 2462072.89	1028401.34 1028390.41	Confirmational Confirmational
K68	07/15/11	1	1	30	2462063.07	1028379.96	Confirmational
K69	07/25/11	1	1	330	2462055.06	1028365.47	Confirmational
K70	07/25/11	1	1 1	702	2462048.63	1028355.47	Confirmational
K71	07/25/11	0	1	820	2462039.93	1028330.03	Confirmational
KK12	07/23/11	0	1	861	2462816.71	1028805.19	Confirmational
KK14	07/23/11	0	1	396	2462804.07	1028790.15	Confirmational
KK15	07/23/11	0	1	123	2462789.70	1028770.00	Confirmational
KK17	07/23/11	0	1	461	2462773.75	1028752.48	Confirmational
KK18	07/21/11	1	1	159	2462763.26	1028741.85	Confirmational
KK19	07/22/11	1	1	319	2462754.16	1028732.96	Confirmational
KK19-SE	08/13/11	1	2	33	2462752.49	1028727.49	Confirmational
KK19-SS	08/13/11	1	2	20	2462206.58	1028413.34	Confirmational
KK20	07/22/11	1	1	919	2462747.17	1028718.69	Confirmational
KK20-S	08/02/11	1	2	661	2462743.78	1028715.45	Confirmational
KK20-SW	08/10/11	1	2	738	2462742.09	1028724.66	Confirmational
KK27-S	08/02/11	1	2	645	2462688.35	1028633.53	Confirmational
KK28	07/23/11	1	1	78	2462681.58	1028630.65	Confirmational
KK29	07/23/11	1	1	35	2462673.75	1028618.35	Confirmational
KK31-S	08/16/11	0	1	33	2462645.93	1028585.99	Confirmational
KK32	08/16/11	1	1	31	2462778.76	1028689.72	Confirmational
KK33	08/13/11	1	1	30	2462637.29	1028574.84	Confirmational
KK34	08/10/11	1	1	519	2462635.40	1028557.55	Confirmational
KK34-SE	08/10/11	0	1	594	2462630.75	1028562.52	Confirmational
KK39	07/18/11	1	1	922	2462592.48	1028502.68	Confirmational
KK40	07/18/11	1	1	644	2462584.57	1028490.29	Confirmational
KK43	07/18/11 08/09/11	0	1	1,200	2462564.63	1028460.59	Confirmational
L40-S		0	1	851	2462296.82	1028693.48 1028682.24	Confirmational
L41	07/27/11	0	1	1,280 140	2462287.09	1028682.24	Confirmational
L41 L51	08/09/11 07/26/11	1	1	16	2462287.09 2462209.80	1028564.11	Confirmational Confirmational
L51-S	07/26/11	0	1	88	2462208.92	1028570.95	Confirmational
L51-S1	08/04/11	1	2	33	2462211.33	1028566.17	
L53	07/26/11	1	1	160	2462195.79	1028542.71	Confirmational Confirmational
L53-SE	08/04/11	1	2	197	2462193.79	1028537.18	Confirmational
L53-SN	08/04/11	1	2	62	2462196.80	1028546.89	Confirmational
L54	07/26/11	1	1	104	2462187.05	1028531.37	Confirmational
L54-S	08/04/11	1	2	122	2462187.03	1028533.67	Confirmational
L55	07/26/11	1	1	6	2462177.57	1028521.25	Confirmational
L55-S	08/04/11	1	2	64	2462177.37	1028516.31	Confirmational
L56-S	08/04/11	1	2	101	2462168.89	1028502.45	Confirmational
L57	07/25/11	1	1	124	2462164.24	1028496.00	Confirmational
L57-SW	08/03/11	1	2	257	2462159.10	1028500.77	Confirmational
	07/25/11	1	1	609	2462156.49	1028483.89	Confirmational
158							
L58 L58-S	08/03/11	1	2	8	2462151.49	1028489.09	Confirmational

mg/kg: milligram per kilogram

Table 6.1
Post Removal Soil Lead Data Summary (0-2 ft-bgs)

Location	Data Campled	Sample	e Depth	Result	Loca	ation	Cample Durness
Location	Date Sampled	Top (ft)	Bottom (ft)	(mg/kg)	Х	Υ	Sample Purpose
L59-S	08/03/11	1	2	5	2462144.76	1028467.79	Confirmational
L61	07/15/11	1	1	27	2462133.22	1028451.01	Confirmational
L61-2	08/03/11	1	1	15	2462135.47	1028453.78	Confirmational
L62	07/15/11	1	1	42	2462125.35	1028437.31	Confirmational
L63	07/15/11	1	1	96	2462117.22	1028425.55	Confirmational
L64	07/15/11	1	1	49	2462109.99	1028415.60	Confirmational
L65	07/15/11	1	1	550	2462100.81	1028404.20	Confirmational
L66	07/15/11	1	1	5	2462092.55	1028391.77	Confirmational
L67	07/15/11	1	1	18	2462085.26	1028380.56	Confirmational
L68	07/15/11	1	1	29	2462076.75	1028368.38	Confirmational
L69 L70	07/25/11 07/25/11	1	1 1	60 39	2462068.66	1028356.82	Confirmational
L70	07/25/11	1	1		2462059.11 2462056.11	1028346.58 1028333.14	Confirmational Confirmational
L71-S	07/25/11	0	1	687	2462056.11	1028333.14	Confirmational
LL10	07/20/11	1	1	11	2462839.51	1028825.37	Confirmational
LL11	07/21/11	1	1	323	2462831.66	1028825.57	Confirmational
LL11-S	07/23/11	0	1	327	2462828.59	1028818.29	Confirmational
LL12	07/21/11	1	1	108	2462824.29	1028803.79	Confirmational
LL13	07/21/11	1	1	172	2462815.55	1028793.61	Confirmational
LL14	07/21/11	1	1	323	2462806.85	1028780.74	Confirmational
LL15	07/21/11	1	1	379	2462798.75	1028769.86	Confirmational
LL16	07/21/11	1	1	394	2462789.84	1028758.42	Confirmational
LL17	07/21/11	1	1	161	2462783.07	1028747.48	Confirmational
LL18	07/21/11	1	1	728	2462774.77	1028734.73	Confirmational
LL18-S	08/13/11	1	2	28	2462759.32	1028729.64	Confirmational
LL20	07/22/11	1	1	84	2462758.51	1028712.85	Confirmational
LL22	07/22/11	1	1	235	2462741.30	1028687.10	Confirmational
LL24	07/22/11	1	1	62	2462725.66	1028665.21	Confirmational
LL25	07/22/11	1	1	9	2462715.83	1028653.33	Confirmational
LL25-SN	08/13/11	1	2	66	2462647.46	1028578.97	Confirmational
LL26	07/22/11	1	1	70	2462710.70	1028644.21	Confirmational
LL27	07/23/11	1	1	187	2462702.54	1028633.70	Confirmational
LL28 LL29	07/23/11	1	1 1	265 487	2462694.20	1028623.89	Confirmational
LL29 LL31	07/23/11 07/30/11	0	1	549	2462686.98 2462674.86	1028606.95 1028589.64	Confirmational Confirmational
LL42	07/18/11	1	1	1,020	2462582.79	1028460.19	Confirmational
LL43	07/18/11	0	1	999	2462576.38	1028449.84	Confirmational
LL9	07/18/11	1	1	100	2462848.58	1028834.71	Confirmational
LL9-S	07/23/11	0	1	115	2462848.15	1028839.05	Confirmational
M52	07/26/11	0	1	983	2462217.02	1028551.26	Confirmational
M52-S	08/04/11	1	2	175	2462210.99	1028541.01	Confirmational
M54	07/26/11	1	1	921	2462198.89	1028524.21	Confirmational
M54-S	08/04/11	1	2	ND	2462200.07	1028528.78	Confirmational
M55	07/26/11	1	1	134	2462192.57	1028511.88	Confirmational
M56	07/25/11	1	1	43	2462184.75	1028501.04	Confirmational
M56-S	08/04/11	1	2	306	2462178.21	1028501.46	Confirmational
M57	07/25/11	1	1	75	2462174.06	1028488.90	Confirmational
M58	07/25/11	1	1	53	2462167.26	1028478.75	Confirmational
M59	07/15/11	1	1	520	2462159.50	1028462.83	Confirmational
M60	07/15/11	1	1	6	2462151.33	1028452.46	Confirmational
M60-S	08/03/11	1	2	ND	2462146.78	1028457.40	Confirmational
M61	07/15/11	1	1	6	2462144.78	1028442.90	Confirmational
M62	07/15/11	1	1	224	2462134.62	1028432.11	Confirmational
M63	07/15/11	1	1	7	2462128.77	1028422.20	Confirmational
M64	07/15/11	1	1	6	2462121.39	1028409.41	Confirmational
M65	07/15/11	1	1	73	2462110.61	1028394.66	Confirmational
M66	07/15/11	1	1 1	59 9	2462102.03	1028383.02	Confirmational
M67	07/15/11 07/15/11	*	1	30	2462096.23 2462087.86	1028372.12 1028359.34	Confirmational
M68 M69	07/15/11	1	1	222	2462087.86	1028359.34	Confirmational Confirmational
M70	07/25/11	1	1	222	2462075.03	1028340.11	Confirmational
MM10	07/23/11	1	1	383	2462850.60	1028818.22	Confirmational
MM11	07/21/11	1	1	80	2462843.35	1028805.82	Confirmational

mg/kg: milligram per kilogram

Table 6.1
Post Removal Soil Lead Data Summary (0-2 ft-bgs)

		Sampl	e Depth	Result	Loca	ation		
Location	Date Sampled	Top (ft)	Bottom (ft)	(mg/kg)	Х	Y	Sample Purpose	
MM11-S	07/30/11	1	2	115	2462847.96	1028804.53	Confirmational	
MM12	07/21/11	1	1	134	2462834.80	1028795.21	Confirmational	
MM13	07/21/11	1	1	1,200	2462827.52	1028783.44	Confirmational	
MM13-S	07/30/11	1	2	59	2462824.40	1028779.71	Confirmational	
MM14-S	07/30/11	1	2	257	2462815.05	1028767.51	Confirmational	
MM15	07/21/11	1	1	50	2462808.98	1028760.66	Confirmational	
MM16-SN MM16-SW	07/30/11 07/30/11	1	2	50 17	2462808.49 2462808.58	1028756.59 1028746.08	Confirmational Confirmational	
MM18	07/30/11	1	1	528	2462785.78	1028725.70	Confirmational	
MM19	07/22/11	1	1	93	2462777.14	1028716.11	Confirmational	
MM20	07/22/11	1	1	781	2462769.36	1028704.35	Confirmational	
MM24-S	07/23/11	0	1	1,290	2462736.50	1028652.22	Confirmational	
MM25	07/22/11	1	1	138	2462726.47	1028645.58	Confirmational	
MM25-S	08/10/11	1	2	1,260	2462732.67	1028651.00	Confirmational	
MM26	07/23/11	0	1	32	2462721.22	1028632.11	Confirmational	
MM28	07/23/11	0	1	339	2462706.81	1028612.96	Confirmational	
MM30	07/23/11	1	1	817	2462693.21	1028590.54	Confirmational	
MM42	07/18/11	1	1	941	2462590.82	1028453.78	Confirmational	
MM9 MW-01	07/21/11 02/25/00	1	1 1	165 410	2462859.94 2462004.83	1028829.42 1028117.46	Confirmational Delineation	
N29	07/14/11	0	1	799	2462410.15	1028117.46	Confirmational	
N29 N29	07/14/11	1	2	482	2462410.15	1028797.81	Confirmational	
N29-S	08/04/11	0	1	722	2462416.37	1028800.28	Confirmational	
N29-S	08/04/11	1	2	184	2462416.37	1028800.28	Confirmational	
N30	07/14/11	2	2	286	2462403.37	1028787.78	Confirmational	
N30-S	07/14/11	1	2	575	2462399.32	1028793.53	Confirmational	
N30-S	07/14/11	0	1	528	2462399.32	1028793.53	Confirmational	
N31	07/14/11	2	2	645	2462398.74	1028781.69	Confirmational	
N31-SS	07/14/11	1	2	437	2462394.87	1028777.26	Confirmational	
N31-SS	07/14/11	0	1	408	2462394.87	1028777.26	Confirmational	
N31-SW	07/14/11	1	1	895	2462393.78	1028785.46	Confirmational	
N31-SW	07/14/11	1	2	474	2462393.78	1028785.46	Confirmational	
N44 N44-S	07/27/11 07/27/11	0	1	783 733	2462294.94 2462290.52	1028626.69 1028628.46	Confirmational Confirmational	
N44-3 N45	07/27/11	1	1	1,130	2462286.56	1028615.81	Confirmational	
N46	07/27/11	1	1	675	2462278.88	1028604.75	Confirmational	
N46-S	07/27/11	0	1	998	2462277.52	1028609.64	Confirmational	
N52-S	08/04/11	0	1	386	2462223.08	1028532.96	Confirmational	
N53	08/04/11	1	1	23	2462219.12	1028527.54	Confirmational	
N54	07/26/11	0	1	606	2462204.56	1028514.86	Confirmational	
N54-SN	08/04/11	0	1	25	2462213.38	1028519.22	Confirmational	
N56	07/26/11	0	1	162	2462195.74	1028497.98	Confirmational	
N57	07/26/11	0	1	ND	2462185.75	1028480.14	Confirmational	
N58	08/03/11	0	1	834	2462175.71	1028462.49	Confirmational	
N60 N61	07/26/11 07/26/11	0	1	25 39	2462159.43 2462147.51	1028448.16 1028432.57	Confirmational Confirmational	
N63	07/26/11	0	1	1,130	2462139.45	1028417.00	Confirmational	
N66-2	08/03/11	1	1	21	2462113.44	1028375.52	Confirmational	
N67	07/26/11	0	1	369	2462105.28	1028368.12	Confirmational	
N67-SN	08/03/11	0	1	1,130	2462110.03	1028369.89	Confirmational	
N68	07/26/11	0	1	330	2462093.48	1028351.71	Confirmational	
NN10	07/21/11	1	1	542	2462861.33	1028810.16	Confirmational	
NN11-S	07/30/11	1	2	81	2462850.79	1028794.57	Confirmational	
NN12	07/21/11	1	1	169	2462846.38	1028786.53	Confirmational	
NN13	07/21/11	1	1	429	2462837.64	1028776.42	Confirmational	
NN14	07/21/11	1	1	52	2462830.42	1028763.44	Confirmational	
NN14-S	07/30/11	1	2	14	2462825.76	1028768.29	Confirmational	
NN15 NN15-S	07/21/11 08/10/11	1	2	1,260 109	2462820.71	1028751.52 1028748.80	Confirmational	
NN15-5 NN16	08/10/11	1	1	645	2462819.60 2462812.94	1028748.80	Confirmational Confirmational	
NN17	07/21/11	1	1	202	2462804.93	1028729.90	Confirmational	
NN17-S	08/10/11	1	2	432	2462809.33	1028733.12	Confirmational	
NN18	07/21/11	1	1	241	2462798.04	1028716.49	Confirmational	
,	,,		1					

mg/kg: milligram per kilogram

Table 6.1
Post Removal Soil Lead Data Summary (0-2 ft-bgs)

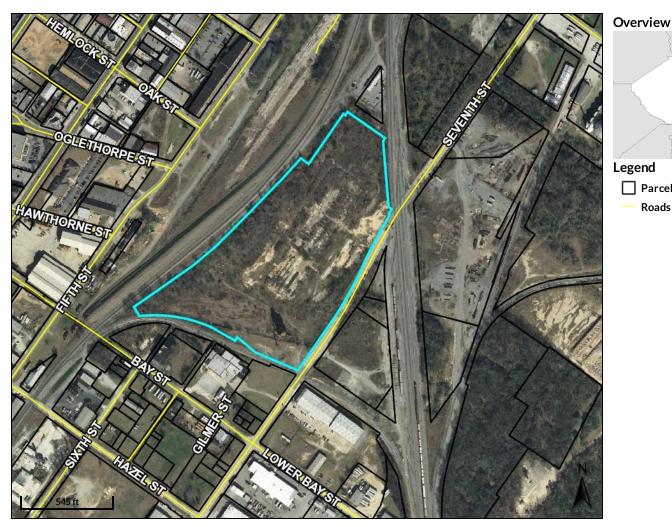
	5.6.1.	Sampl	e Depth	Result	Loca	ation	
Location	Date Sampled	Top (ft)	Bottom (ft)	(mg/kg)	Х	Υ	Sample Purpose
NN18-S	07/30/11	1	2	138	2462800.20	1028715.07	Confirmational
NN19	07/22/11	1	1	190	2462790.80	1028706.69	Confirmational
NN19-S	08/10/11	1	2	863	2462793.19	1028701.99	Confirmational
NN20	07/22/11	1	1	170	2462781.68	1028695.95	Confirmational
NN20-S NN21	08/16/11 07/22/11	0	1 1	294 229	2462781.17 2462775.20	1028679.96 1028684.43	Confirmational Confirmational
NN22	07/22/11	1	1	229	2462762.26	1028672.13	Confirmational
NN25	07/30/11	0	1	23	2462744.50	1028645.23	Confirmational
NN25-SE	08/10/11	0	1	141	2462748.19	1028634.89	Confirmational
NN26-S	08/13/11	0	1	97	2462740.30	1028611.48	Confirmational
NN9	07/21/11	1	1	344	2462867.09	1028820.34	Confirmational
NN9-SP	08/13/11	0	1	519	2462772.81	1028730.42	Confirmational
027-S	08/16/11	0	1	144	2462197.93	1028592.61	Confirmational
O28-S	08/04/11	1	2	500	2462428.20	1028799.68	Confirmational
028-S	08/04/11	0	1	286	2462428.20	1028799.68	Confirmational
O28-SE O28-SE	08/16/11 08/11/11	0	2	59 46	2462441.49 2462441.49	1028796.68 1028796.68	Confirmational Confirmational
030	07/14/11	2	2	94	2462416.69	1028782.44	Confirmational
031	07/14/11	2	2	424	2462406.92	1028770.38	Confirmational
044	07/27/11	1	1	152	2462302.23	1028621.65	Confirmational
O44-S	07/27/11	0	1	638	2462308.98	1028624.71	Confirmational
O45-SE	08/04/11	1	2	812	2462299.83	1028606.84	Confirmational
O45-SN	08/04/11	1	2	33	2462297.64	1028615.66	Confirmational
O45-SS	08/04/11	1	2	472	2462289.71	1028604.52	Confirmational
O45-SW	08/04/11	1	2	416	2462289.17	1028613.94	Confirmational
046	07/27/11	1	1	906	2462288.52	1028598.82	Confirmational
O46-S	07/27/11	0	1	855	2462285.59	1028594.23	Confirmational
053-S	08/04/11	0	1	862	2462226.93	1028520.16	Confirmational
O56-S O59	08/11/11 08/03/11	0	1 1	873 1,250	2462222.13 2462178.60	1028485.18 1028451.39	Confirmational Confirmational
063	07/25/11	0	2	77	2462178.00	1028400.86	Confirmational
064	07/25/11	0	2	1,130	2462132.95	1028386.68	Confirmational
065-S	08/31/11	0	1	57	2462129.47	1028374.84	Confirmational
066-2	08/31/11	1	1	25	2462125.63	1028368.99	Confirmational
O67-S	08/31/11	0	1	18	2462121.16	1028363.28	Confirmational
0010-SP	08/13/11	0	1	8,020	2462875.34	1028821.69	Confirmational
0011	07/30/11	1	2	12	2462862.17	1028793.92	Confirmational
0012	07/21/11	1	1	34	2462859.12	1028778.95	Confirmational
0013	07/21/11	1	1	128	2462850.29	1028766.35	Confirmational
0014 0015	07/21/11 07/21/11	1 1	1 1	60 37	2462840.41 2462833.53	1028755.75 1028742.77	Confirmational Confirmational
0015	07/21/11	1	1	251	2462824.94	1028732.94	Confirmational
0016-S	08/10/11	1	2	141	2462822.56	1028736.20	Confirmational
0017	07/21/11	1	1	74	2462817.87	1028720.92	Confirmational
0017-S	07/30/11	1	2	457	2462821.70	1028718.20	Confirmational
0019	07/22/11	1	1	703	2462799.43	1028700.49	Confirmational
0020-S	08/10/11	1	2	141	2462797.73	1028690.71	Confirmational
0021	07/22/11	1	1	1,160	2462786.98	1028676.08	Confirmational
0021-S	08/16/11	1	2	97	2462787.22	1028613.57	Confirmational
0024	08/01/11	1	1	76	2462765.13	1028622.89	Confirmational
0024-2	08/10/11	1	1	851	2462759.89	1028641.24	Confirmational
0024-S 0024-SN	08/01/11 08/10/11	0	1 1	523 903	2462759.61 2462764.75	1028626.69	Confirmational Confirmational
0024-3N	08/10/11	1	1	295	2462758.03	1028646.45 1028609.54	Confirmational
0025-2	08/10/11	1	1	<u>293</u> 487	2462754.46	1028631.06	Confirmational
0025-S	08/01/11	0	1	318	2462752.67	1028613.65	Confirmational
0026	08/01/11	1	1	169	2462749.56	1028597.70	Confirmational
0026-2	08/13/11	1	1	161	2462780.39	1028618.26	Confirmational
0026-S	08/01/11	0	1	364	2462744.25	1028601.33	Confirmational
0027	08/01/11	1	1	189	2462742.58	1028587.32	Confirmational
0027-S	08/01/11	0	1	108	2462736.87	1028590.14	Confirmational
0027-S2	08/13/11	0	1	173	2462745.60	1028619.84	Confirmational
P26-S	08/16/11	0	1	205	2462449.81	1028808.90	Confirmational

mg/kg: milligram per kilogram

Table 6.1
Post Removal Soil Lead Data Summary (0-2 ft-bgs)

	5 . 6 . 1 .	Sampl	e Depth	Result	Loca	Location	
Location	Date Sampled	Top (ft)	Bottom (ft)	(mg/kg)	Х	Υ	Sample Purpose
P27	08/16/11	1	1	91	2462442.29	1028813.18	Confirmational
P27-S	08/16/11	1	2	12	2462611.78	1028559.14	Confirmational
P28-S	08/04/11	1	2	61	2462437.73	1028792.61	Confirmational
P30	07/14/11	0	1	1,290	2462421.68	1028772.10	Confirmational
P30	07/14/11	1	2	1,080	2462421.68	1028772.10	Confirmational
P31	07/14/11	0	1	987	2462409.26	1028761.16	Confirmational
P31	07/14/11	1	2	395	2462409.26	1028761.16	Confirmational
P55-S2	08/11/11	0	1	797	2462182.86	1028587.22	Confirmational
P57-S P59-S	08/11/11 08/04/11	0	1 1	908	2462210.55 2462196.41	1028483.04 1028442.17	Confirmational Confirmational
P66-S	08/31/11	0	1	43	2462131.10	1028364.91	Confirmational
PP12	07/23/11	0	1	65	2462866.58	1028768.70	Confirmational
PP13	07/21/11	1	1	58	2462860.50	1028758.54	Confirmational
PP14	07/21/11	1	1	61	2462853.30	1028748.74	Confirmational
PP15	07/21/11	1	1	738	2462845.32	1028735.37	Confirmational
PP16	07/21/11	1	1	1,110	2462839.04	1028722.50	Confirmational
PP16-S	07/30/11	1	2	940	2462834.31	1028721.75	Confirmational
PP19	07/30/11	1	2	22	2462816.21	1028696.23	Confirmational
PP19-S	07/22/11	1	1	166	2462810.83	1028692.10	Confirmational
PP19-SW	08/10/11	1	2	130	2462808.80	1028693.70	Confirmational
PP21	07/22/11	1	1	307	2462796.66	1028669.12	Confirmational
PP22-S	07/30/11	0	1	1,220	2462773.48	1028649.11	Confirmational
PP24	08/01/11	0	1	53	2462775.35	1028614.83	Confirmational
PP25	08/01/11	0	1	459	2462768.34	1028603.05	Confirmational
PP26	08/01/11	0	1	83	2462761.76	1028591.21	Confirmational
PP27	08/01/11	0	1	101	2462754.46	1028579.67	Confirmational
Q46 Q47	07/27/11 07/27/11	0	1	1,120 575	2462305.14 2462300.93	1028580.27 1028565.83	Confirmational Confirmational
Q47 Q49	07/27/11	0	1	400	2462290.02	1028546.28	Confirmational
Q50	07/27/11	0	1	85	2462280.30	1028530.62	Confirmational
Q51	07/16/11	0	1	508	2462275.34	1028521.15	Confirmational
Q53	07/16/11	0	1	35	2462262.52	1028503.42	Confirmational
Q54	07/27/11	0	1	299	2462251.07	1028491.21	Confirmational
Q55	07/27/11	0	1	498	2462241.85	1028481.39	Confirmational
Q55-S	08/04/11	0	1	1,130	2462230.33	1028479.66	Confirmational
Q57	07/27/11	0	1	1,060	2462215.38	1028452.98	Confirmational
Q57-SN	08/04/11	0	1	539	2462219.30	1028464.97	Confirmational
Q58-S	08/04/11	0	1	240	2462206.84	1028446.35	Confirmational
Q60-S	08/11/11	0	1	410	2462212.83	1028469.01	Confirmational
QQ14	07/23/11	0	1	15	2462863.07	1028738.89	Confirmational
QQ16	07/23/11	0	1	176	2462850.41	1028721.52	Confirmational
QQ17	07/23/11	0	1	419	2462838.23	1028704.98	Confirmational
QQ19 QQ20	07/23/11 07/23/11	0	1 1	390 518	2462828.64 2462818.23	1028686.56 1028670.95	Confirmational
QQ21	07/23/11	1	1	715	2462807.05	1028659.48	Confirmational Confirmational
QQ21-S	07/30/11	1	2	805	2462807.03	1028655.75	Confirmational
QQ25-S	08/13/11	1	2	107	2462809.11	1028641.18	Confirmational
R46	07/27/11	1	1	1,010	2462318.76	1028572.35	Confirmational
R47	07/27/11	1	1	415	2462312.22	1028563.47	Confirmational
R48	07/27/11	1	1	1,230	2462305.12	1028549.09	Confirmational
R49	07/27/11	1	1	137	2462295.95	1028540.18	Confirmational
R50	07/27/11	1	1	97	2462289.96	1028530.18	Confirmational
R51	07/16/11	1	1	153	2462282.40	1028518.34	Confirmational
R52	07/16/11	1	1	36	2462274.72	1028506.80	Confirmational
R53	07/16/11	1	1	9	2462264.76	1028494.42	Confirmational
R54	07/16/11	1	1	13	2462257.32	1028486.28	Confirmational
R55	07/27/11	1	1	318	2462248.81	1028471.96	Confirmational
R56	07/27/11	1	1	129	2462241.31	1028461.28	Confirmational
R57	07/27/11	1	1	325	2462232.11	1028448.30	Confirmational
R58	07/27/11	1	1	44	2462223.23	1028438.60	Confirmational
R60	08/11/11		1	151 57	2462204.51 2462210.14	1028421.28 1028418.20	Confirmational Confirmational
R60-S	08/11/11	0					

mg/kg: milligram per kilogram


Table 6.1
Post Removal Soil Lead Data Summary (0-2 ft-bgs)

		Sampl	e Depth	Result	Location		
Location	Date Sampled	Top (ft)	Bottom (ft)	(mg/kg)	Х	Υ	Sample Purpose
RR22-SR	08/13/11	0	1	3,110	2462816.25	1028652.99	Confirmational
RR23-S	08/16/11	0	1	130	2462454.96	1028815.01	Confirmational
RR24-S	08/16/11	0	1	59	2462797.29	1028626.82	Confirmational
RR25-S	08/16/11	0	1	461	2462793.91	1028617.29	Confirmational
S47	07/27/11	1	1	13	2462323.01	1028554.12	Confirmational
S48	07/27/11	1	1	45	2462316.34	1028543.60	Confirmational
S49	07/27/11	1	1	24	2462308.39	1028529.96	Confirmational
S50	07/27/11	1	1	86	2462301.36	1028519.66	Confirmational
S51 S52	07/16/11 07/16/11	1 1	1 1	15 20	2462289.88 2462283.99	1028510.98 1028500.65	Confirmational Confirmational
S53	07/16/11	1	1	9	2462273.38	1028489.27	Confirmational
S54	07/16/11	1	1	153	2462267.59	1028478.39	Confirmational
S55	07/10/11	1	1	83	2462260.63	1028462.67	Confirmational
S56	07/27/11	1	1	112	2462252.14	1028451.05	Confirmational
S57	07/27/11	1	1	48	2462243.57	1028439.44	Confirmational
\$57-S	08/04/11	1	2	5	2462248.55	1028439.40	Confirmational
S58	07/27/11	1	1	32	2462237.41	1028429.89	Confirmational
S59	07/27/11	1	1	101	2462229.40	1028418.85	Confirmational
S59-S	07/27/11	0	1	516	2462230.15	1028410.19	Confirmational
S64	07/15/11	1	1	ND	2462189.63	1028356.00	Confirmational
S65	07/15/11	1	1	254	2462178.94	1028346.75	Confirmational
S66	07/15/11	0	1	202	2462173.35	1028341.02	Confirmational
SD-01	06/22/00	1	1	577	2462281.98	1028626.66	Delineation
SD-04	06/16/00	1	1	167	2462395.35	1028786.34	Delineation
SD-05	06/20/00	1	1	206	2462391.27	1028864.79	Delineation
T46	07/27/11	1	1	779	2462341.74	1028557.67	Confirmational
T47	07/27/11	1	1	311	2462332.36	1028547.14	Confirmational
T48	07/27/11	1	1	47	2462325.35	1028536.74	Confirmational
T49	07/27/11	1	1	63	2462318.73	1028525.49	Confirmational
T50	07/27/11	1	1	99	2462310.16	1028513.24	Confirmational
T51	07/26/11	1	2	6	2462298.81	1028502.74	Confirmational
T55	07/27/11	1	1	71	2462269.54	1028456.84	Confirmational
T56	07/27/11	1	1	67	2462260.73	1028444.86	Confirmational
T56-S	08/04/11	1	2	33	2462258.11	1028443.19	Confirmational
T58	07/27/11	1	1	16	2462245.72	1028422.65	Confirmational
T58-S	08/04/11	1	2	9	2462247.78	1028428.42	Confirmational
T59	07/27/11	1	1	110	2462237.13	1028412.69	Confirmational
T65	07/15/11	1	1	618	2462189.53	1028339.09	Confirmational
TW-05	06/12/00	1	1	44	2462078.37	1028130.38	Delineation
TW-06	06/12/00	1	1	15	2462153.27	1027972.93	Delineation
U65	07/15/11	1	1	586	2462199.96	1028331.69	Confirmational
U66	07/15/11	0	1	657	2462193.89	1028328.90	Confirmational
V65	07/15/11	1	1	334	2462213.65	1028322.85	Confirmational
V66-SW	08/09/11	1	2	519	2462201.73	1028317.75	Confirmational
V66-SW	08/09/11	0	1	433	2462201.73	1028317.75	Confirmational
V67-S	07/22/11	0	1	511 ND	2462202.55	1028304.50 1028304.50	Confirmational Confirmational
V67-S W65	08/09/11 07/15/11	1	2	ND 226	2462202.55 2462225.49	1028304.50	Confirmational
W67	08/01/11	1	1	340	2462218.33	1028313.77	Confirmational
W67-S	08/09/11	1	2	ND	2462218.33	1028305.21	Confirmational
X65	08/09/11	1	1	304	2462215.83	1028305.21	Confirmational
X66	07/15/11	0	1	248	2462229.02	1028299.71	Confirmational
X67	08/01/11	1	1	38	2462229.82	1028297.54	Confirmational
X67-S	07/22/11	0	1	560	2462222.51	1028287.20	Confirmational
Y65	07/22/11	1	1	184	2462247.48	1028298.67	Confirmational
Y67	08/01/11	1	1	22	2462239.46	1028288.41	Confirmational
Z65	07/15/11	1	1	65	2462259.56	1028289.64	Confirmational
Z67	08/01/11	1	1	23	2462252.22	1028279.75	Confirmational
Z67-S	07/22/11	0	1	301	2462240.71	1028274.67	Confirmational
201-3	01/22/11			301	2702270./1	1020217.07	Comminational

mg/kg: milligram per kilogram

APPENDIX A VRP Property Identification

Parcel ID R0810091OC 79 **Class Code** Industrial Taxing District MACON-BIBB MACON-BIBB

22.52 Acres

(Note: Not to be used on legal documents)

Owner

TRANSCO INC 200 N LASALLE ST STE 1550 CHICAGO IL 60601

Physical Address 861 SEVENTH ST Assessed Value Value \$366052

Last 2 Sales

Price Reason Qual Date 5/11/1992 \$100 CP U n/a n/a n/a

Parcels Roads

Date created: 2/25/2019 Last Data Uploaded: 2/25/2019 12:45:00 AM

SELL & MELTO P.O. BOX 229

SELL & MELTON

1414 CHARTER MEDICAL BUILDING MACON, GEORGIA 31297

80494

STATE OF GEORGIA COUNTY OF BIBB

THIS INDENTURE, made this

11 th

day of May

in the year of our Lord one Thousand Nine Hundred and Ninety-Two

between

MACON-BIBB COUNTY INDUSTRIAL AUTHORITY

of the State of

Georgia and County of

Bibb

hereinafter called the "first party," and

of the State of

TRANSCO INC.

Georgia and County of

Bibb

hereinafter called the "second party,"

WITNESSETH: That the first party, for and in consideration of the sum of Other good and valuable

considerations and One Hundred and No/100 -**(\$** 100.00) Dollars, cash in hand paid at and before the sealing and delivery of these presents, the receipt whereof is hereby acknowledged, does by these presents, grant, bargain, sell convey and confirm unto the second party, all that tract or parcel of land, lying and being

See Exhibit "A" attached hereto and made a part hereof.

This Deed is made pursuant to an Option contained in an Agreement between the parties dated March 1, 1980, which is recorded in Deed Book 1379, Page 635, Clerk's Office, Bibb Superior Court.

TO HAVE AND TO HOLD the said bargained premises, together with all and singular the rights, members and appurtenances thereunto belonging or in any wise appertaining, to every proper use, benefit and behoof of the second party, his, her, or its heirs, executors, administrators and assigns in FEE SIMPLE;

And the first party, his, her, or its heirs, executors, administrators, will warrant and forever defend the right and title to the above described property unto the second party, his, her or its heirs, executors, administrators and assigns, against the lawful claims and demands of all persons who have claiming under first party.

IN WITNESS WHEREOF, the first party has signed, sealed and delivered these presents, the day and year first above written.

Signed, sealed and delivered in the presence of:

MACON-BIBB COUNTY INDUSTREAT

SEAL)

(SEAL)

y Public, Bibb County, Georgia

COMMISSION EXPIRES APRIL 5, 1993

GEORGIA, Bibb County, Clark's Office Superior C Filed for RecorMAY 1 2

CLERK'S OFFICE, SUPERIOR COURT
Filed for Record at 12-0'clock 14. M. GEORGIA, ... BIBLE COUNTY

rian Storne Sep. CLERK

SELL & MELTON
ATTORNEYS AT LAW
1414 CHARTER MEDICAL BUILDING
MACON, GEORGIA 31297

DESCRIPTION OF THE REAL ESTATE

All that tract or parcel of land situate, lying and being in the City of Macon, Bibb County, Georgia, and being part of Old City Square 80, Lots 1 and 2 of the South Western Range of two Acre Lots, Blocks 1 and 11 of Southwest Commons, and parts of Blocks 2, 10 and 12 of Southwest Commons and various closed streets, and being more particularly described as follows: to wit,

COMMENCING at an existing center stone located at the centerline intersection of Sixth Street and Hazel Street and running thence, North 35°-00'East, a distance of 517.0 feet; thence, North 4°-19'-30" West, a distance of 269.25 feet to a point, said point being the POINT OF BEGINNING: from this POINT OF BEGINNING running thence, North 29°-10' West, crossing a spur track and three other spur tracks, a distance of 59.8 feet; thence, North 55°-00'-30" East a distance of 280.4 feet; thence, North 54°-52'East, a distance of 134.05 feet; thence, North 50°-01' East, a distance of 155.55 feet; thence South 75°-25' East, a distance of 190.55 feet; thence North 14°-35'East, a distance of 323.0 feet; thence, North 43°-44'-30" East, a distance of 67.35 feet, thence, North 44°-35'-15" East, a distance of 123.95 feet; thence, North 42°-00' East, a distance of 163.9 feet; thence, South 53°-01'-15" East, a distance of 55.1 feet; thence, North 34°-40' East, a distance of 347.4 feet; thence, South 56°-37'-30" East, a distance of 14.6 feet; thence, North 31°-13' East, a distance of 22.45 feet; thence, South 55°-04' East, a distance of 261.4 feet, more or less, to the northeasterly corner of the Old Blacksmith Shop Building; thence, South 34°-47' West, along the southeasterly side of said Blacksmith Shop Building, a distance of 20.6 feet; thence, South 04°-46'-15" East, a distance of 376.3 feet, more or less, to the northeasterly side of a building known as a sheet metal building; thence South 55°-03'-15" East, along said northeasterly side of said sheet metal building, a distance of 22.3 feet; thence, South 34°-56'-45" West, along the southeasterly side of said sheet metal building, a distance of 26.8 feet; thence, South 04°-46'-15" East, a distance of 14.9 feet, more or less, to a point on the northwesterly right-of-way boundary of Seventh Street; thence, southwardly along a curve to the left (chord - South 28°-32' West, 286.9 feet) an arc distance of 287.4 feet; thence South 22°-32' West, a distance of 51.7 feet; thence continuing southwardly along a curve to the right (chord - South 28°-35" West, 289.3 feet) an arc distance of 289.8 feet; thence, South 34°-38' West, a distance of 397.4 feet, more or less to a point, said point being on the westerly rightof-way boundary of Seventh Street, said point also being 25 feet northwardly from, as measured at a right angle to, the centerline of the track designated and known as: the Dooley track, and running thence, North 66°-55'-45" West, along a line that is parallel to and at all points 25 feet northwardly from, as measured at right angles to, said centerline of said Dooley track, a distance of 262.8 feet, more or less, to a point that is 12 feet northeastwardly from, as measured at a right angle to, a spur track; thence, North 60°-13' West, along a line that is parallel to and at all points 12 feet Northeastwardly from, as measured at right angles to, said spur track, a distance of 134.65 feet; thence, South 29°-47' West, crossing said spur track, a distance of 24 feet, more or less, to a point that is 12 feet Southwestwardly from, as measured at a right angle to, said spur track; thence, North 60°-13' West, along a line that is parallel to and at all points 12 feet Southwestwardly from said spur track, a distance of 154.4 feet; thence, Northwestwardly along a curve to the left, along an arc that is

parallel to and at all points 12 feet southwestwardly from said spur track (chord-North 80°-34'-15" West, 421.7 feet) an arc distance of 434.2 feet, more or less, to the POINT OF BEGINNING, and being subject to that small increment or area being occupied by Seventh Street, containing 21.83 acres, more or less. Said parcel being shown as Parcel "B" on a plat of survey by S. J. Gostin Co., Inc., dated November 8, 1979,

revised January 14, 1980.

TOGETHER WITH:

ALL that tract or parcel of land situate, lying and being in the City of Macon, Bibb County, Georgia, and being part of Original Lot 3, of the South Western Range of 2 acre lots, and being more particularly described as follows: to wit,

BEGINNING at a point on the northerly right-of-way boundary of Hawthorne Street (an unopened street), said point being a common property corner between property owned by Central of Georgia Railroad Company, and property being owned by The South Western Railroad Company, and running thence, North 75°-25' West, along the common property boundary of property owned by the Central of Georgia Railroad Company and property owned by The South Western Railroad Company, a distance of 190.55 feet; thence, North 50°-01' East, a distance of 22.95 feet, thence, North 45°-29'-45" East, a distance of 110.75 feet; thence, North 44°-46' East, a distance of 174.35 feet; thence, North 43°-44'-30" East, a distance of 67.05 feet; thence, South 14°-35' West, a distance of 323 feet, more or less, to the POINT OF BEGINNING; containing 0.69 of an acre, more or less. Said parcel being shown as Parcel "A" on a plat of survey by S. J. Gostin Co., Inc., dated November 8, 1979, revised January 14, 1980

in and to any adjacent streets, alleys and rights-of-way; and any and all right, title and interest of GRANTOR in and to the improvements located on said premises, including, but not limited to, the portions of tracks located on above-described property, including all the rails, materials and fixtures in or appurtenant thereto, as is located upon and within the boundaries of the property herein conveyed, together with those portions of track (the "tail track") adjoining the above-described property, between survey stations 1+81 and 2+87; between survey stations 8+74 and 12+52; and those portions of tracks springing from aforesaid track between survey stations 12+52 to the westerly boundary of above-described property, together with the right to maintain and use the aforementioned portions of tail track for so long as Transco, its successors and assigns shall require the same.

GEORGIA, Bibb County, Clark's Office Superior Count

Filed for Record MAY 1 2 1992 10 39 AN Recorded MAY 1 3 1992

(For Filing Officer Only) 2 Secured Party(ies) and address(es) Debtor(s) (Last Name-First) and address(es) MA OB: Harris Trust and Savings Bank Macon-Bibb County Industrial 111 West Monroe Street Authority Chicago, Illinois 60690 305 Coliseum Drive P. O. Box 207 Maturity Date \underline{n}/a Macon, Georgia 31202 This statement refers to original Financing Statement No. 156246 Filed on (date): D. Other C. Assignment A. Continuation B. Partial Release . . . The original financing statement between the foregoing Debtor and Secured Party, bearing the file number shown above, is still effective. From the collateral described the financing statement bearing the file number shown above the Secured Party releases the following: certifies that the Secured Party to Assurace (whose name and now) Secured Party Hights under emine leaving the file number Termination* *Secured party no longer claims a security interest under the financing statement bearing file number shown above. Trust and/ Signature(s) of Debtor(s) : Filing Officer Copy

APPENDIX B Professional Geologist Summary of Hours

Appendix B Professional Geologist Hours Period: September 2018 through March 2019

Period	Hours
September 2018	1.5
October 2018	1
November 2018	1
December 2018	3
January 2019	0
February 2019	0
March 2019	4
Total:	10.5

APPENDIX C Milestone Schedule

Appendix C Project Milestone Schedule

Former Transco Railyard, GA HSI Site

			Yes	ar 1	Year 2		Year 3		Ye	ar 4	Yea	ar 5
			6mo			18mo 24mo		30mo 36mo		42mo 48mo		60mo
ID	Task Name		Feb-19	Aug-19	Feb-20	Aug-20	Feb-21	Aug-21	Feb-22	Aug-22	Feb-23	Aug-23
1	VIRP Approval	Aug-18										
2	Semi-Annual Progress Reports											
3	Enter Qualifying Properties											
4	Source Area Investigation / Soil Delineation											
5	On-site Horizontal Groundwater Delineation											
6	Off-site Horizontal Groundwater Delineation (if necessary)											
7	Vertical Groundwater Delineation (if necessary)											
8	Updated CSM and Final Remdiation Plan											
9	Remedial Activities											
10	Compliance Status Report											

APPENDIX D Draft Environmental Covenant

APPENDIX E Laboratory Analytical Reports

ANALYTICAL ENVIRONMENTAL SERVICES, INC.

January 28, 2019

Aaron Williams

Environmental Planning Specialists, Inc.

1050 Crown Pointe Parkway

Atlanta

30338

RE: Transco

Aaron Williams: Dear

Order No: 1901I45

Analytical Environmental Services, Inc. received

samples on

January 22, 2019 3:00 pm

for the analyses presented in following report.

No problems were encountered during the analyses. Additionally, all results for the associated Quality Control samples were within EPA and/or AES established limits. Any discrepancies associated with the analyses contained herein will be noted and submitted in the form of a project Case Narrative.

AES's accreditations are as follows:

-NELAP/State of Florida Laboratory ID E87582 for analysis of Non-Potable Water, Solid & Chemical Materials, Air & Emissions Volatile Organics, and Drinking Water Microbiology & Metals, effective 07/01/18-06/30/19.

State of Georgia, Department of Natural Resources ID #800 for analysis of Drinking Water Metals, effective 07/01/18-06/30/19 and Total Coliforms/ E. coli, effective 04/25/17-04/24/20.

-AIHA-LAP, LLC Laboratory ID: 100671 for Industrial Hygiene samples (Organics, Metals, PCM Asbestos, Gravimetric), Environmental Lead (Paint, Soil, Dust Wipes, Air), and Environmental Microbiology (Fungal) Direct Examination, effective until 11/01/19.

These results relate only to the items tested. This report may only be reproduced in full.

If you have any questions regarding these test results, please feel free to call.

Sincerely,

Chris Pafford

Project Manager

autoto P.//L

ANALYTICAL ENVIRONMENTAL SERVICES, INC.

3080 Presidential Drive Atlanta, GA 30340-3704

CHAIN OF CUSTODY

C	10	145
	C	90

AES Phone: (770) 457-8177 / Toll-Free: (800) 972													Date: /-	22-19 Page / of	
COMPANY: EPS	ADDRESS: 400 No. Surly EMAIL: awillian SIGNATURE:	rkridge Springs	Rd, GA	Sxe L 303	100 250	M			ANALYSI	S REQU	ESTED			Visit our website www.aesatlanta.com for downloadable COCs and to	
SAMPLED BY: DOE TEMY, Brinn Mc Gunn	SIGNATURE:	se en pla	aning If			PAH SI								log in to your AESAccess account.	ber of Containers
# SAMPLE ID	DATE	TIME	GRAB	COMPOSITE	MATRIX (see codes)	エ			PRESERVA	TION (se	e codes)			REMARKS	Number
1 19022-MW-1 2 19022-TW-1 3 19022-TW-31 4 19022-TW-33	1-22-19	0950	X X		6W 6W	X									2 2
5 19022-TW-B	1-22-19	1125	X		GW GW	×									2
6 19022 Dup	1-72-19	1200	X		aw	*									2
9 10 11		,													
12 13															
14 RELINQUISHED BY: DATE/TIME:	RÉCEIVED BY:			DATE/T	IME:				PROJECT	INFORM	ATION			RECEIPT	
1. Jety 1-22-19/1500		V1-221	9 1				CT NAME:	Tra	2500		Anon			Total # of Containers	
2V V /	2.	0				PROJECT SITE AD	DDRESS:		Muc	ر ده	6A			Turnaround Time (TAT) Reque Standard 5 Business Days 2 Business Day Rush	est /
3.	3.							: Aw	ion Wi	11ian	i .			Next Business Day Rush	
SPECIAL INSTRUCTIONS/COMMENTS:	OUT: /	SHIPMENT	VIA:)		INVOIC	E TO: ERENT FR	OM ABO\	/E)					□ Same-Day Rush (auth req.) ☑ Other <u>ごりり</u>	
	client Fed	Ex UPS US other:	VIA: mail co	urier G	reyhound	QUOT	F #-				PO#:			STATE PROGRAM (if any): E-mail?	,
Submission of samples to the laboratory constitutes acceptance of Al						day are o	onsidered				diameter and the second	ay. If no TA	T is marked		

Preservative Codes: H+I = Hydrochloric acid + ice I = Ice only N = Nitric acid S+I = Sulfuric acid + ice S/M+I = Sodium Bisulfate/Methanol + ice O = Other (specify) NA = None

Analytical Environmental Services, Inc

Client: Environmental Planning Specialists, Inc. Client Sample ID: 19022-MW-1

Project Name: Transco Collection Date: 1/22/2019 9:50:00 AM

Date:

25-Jan-19

Lab ID: 1901I45-001 Matrix: Groundwater

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
SIM Polynuclear Aromatic Hydrocarbons	SW8270D			(SW	V3510C)			
Naphthalene	BRL	0.50		ug/L	273370	1	01/23/2019 18:08	YH
1-Methylnaphthalene	BRL	0.50		ug/L	273370	1	01/23/2019 18:08	YH
2-Methylnaphthalene	BRL	0.50		ug/L	273370	1	01/23/2019 18:08	YH
Acenaphthylene	BRL	1.0		ug/L	273370	1	01/23/2019 18:08	YH
Acenaphthene	BRL	0.50		ug/L	273370	1	01/23/2019 18:08	YH
Fluorene	BRL	0.10		ug/L	273370	1	01/23/2019 18:08	YH
Phenanthrene	BRL	0.050		ug/L	273370	1	01/23/2019 18:08	YH
Anthracene	BRL	0.050		ug/L	273370	1	01/23/2019 18:08	YH
Fluoranthene	BRL	0.10		ug/L	273370	1	01/23/2019 18:08	YH
Pyrene	BRL	0.050		ug/L	273370	1	01/23/2019 18:08	YH
Benz(a)anthracene	BRL	0.050		ug/L	273370	1	01/23/2019 18:08	YH
Chrysene	BRL	0.050		ug/L	273370	1	01/23/2019 18:08	YH
Benzo(b)fluoranthene	BRL	0.10		ug/L	273370	1	01/23/2019 18:08	YH
Benzo(k)fluoranthene	BRL	0.050		ug/L	273370	1	01/23/2019 18:08	YH
Benzo(a)pyrene	BRL	0.050		ug/L	273370	1	01/23/2019 18:08	YH
Indeno(1,2,3-cd)pyrene	BRL	0.050		ug/L	273370	1	01/23/2019 18:08	YH
Dibenz(a,h)anthracene	BRL	0.10		ug/L	273370	1	01/23/2019 18:08	YH
Benzo(g,h,i)perylene	BRL	0.10		ug/L	273370	1	01/23/2019 18:08	YH
Surr: 4-Terphenyl-d14	121	69.4-138		%REC	273370	1	01/23/2019 18:08	YH

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative NC Not confirmed

< Less than Result value

J Estimated value detected below Reporting Limit

Analytical Environmental Services, Inc

Client: Environmental Planning Specialists, Inc.

Project Name: Transco

Lab ID: 1901I45-002

Date: 25-Jan-19

Client Sample ID: 19022-TW-1

Collection Date: 1/22/2019 9:20:00 AM

Matrix: Groundwater

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
SIM Polynuclear Aromatic Hydrocarbons	SW8270D			(SV	V3510C)			
Naphthalene	BRL	0.50		ug/L	273370	1	01/23/2019 18:35	YH
1-Methylnaphthalene	BRL	0.50		ug/L	273370	1	01/23/2019 18:35	YH
2-Methylnaphthalene	BRL	0.50		ug/L	273370	1	01/23/2019 18:35	YH
Acenaphthylene	BRL	1.0		ug/L	273370	1	01/23/2019 18:35	YH
Acenaphthene	BRL	0.50		ug/L	273370	1	01/23/2019 18:35	YH
Fluorene	BRL	0.10		ug/L	273370	1	01/23/2019 18:35	YH
Phenanthrene	BRL	0.050		ug/L	273370	1	01/23/2019 18:35	YH
Anthracene	BRL	0.050		ug/L	273370	1	01/23/2019 18:35	YH
Fluoranthene	BRL	0.10		ug/L	273370	1	01/23/2019 18:35	YH
Pyrene	BRL	0.050		ug/L	273370	1	01/23/2019 18:35	YH
Benz(a)anthracene	BRL	0.050		ug/L	273370	1	01/23/2019 18:35	YH
Chrysene	BRL	0.050		ug/L	273370	1	01/23/2019 18:35	YH
Benzo(b)fluoranthene	BRL	0.10		ug/L	273370	1	01/23/2019 18:35	YH
Benzo(k)fluoranthene	BRL	0.050		ug/L	273370	1	01/23/2019 18:35	YH
Benzo(a)pyrene	BRL	0.050		ug/L	273370	1	01/23/2019 18:35	YH
Indeno(1,2,3-cd)pyrene	BRL	0.050		ug/L	273370	1	01/23/2019 18:35	YH
Dibenz(a,h)anthracene	BRL	0.10		ug/L	273370	1	01/23/2019 18:35	YH
Benzo(g,h,i)perylene	BRL	0.10		ug/L	273370	1	01/23/2019 18:35	YH
Surr: 4-Terphenyl-d14	70.2	69.4-138		%REC	273370	1	01/23/2019 18:35	YH

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

J Estimated value detected below Reporting Limit

Analytical Environmental Services, Inc

Client: Environmental Planning Specialists, Inc. Client Sample ID: 19022-TW-31

Project Name: Transco Collection Date: 1/22/2019 11:15:00 AM

Date:

25-Jan-19

Lab ID: 1901I45-003 Matrix: Groundwater

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
SIM Polynuclear Aromatic Hydrocarbons	SW8270D							
Naphthalene	BRL	0.50		ug/L	273370	1	01/23/2019 19:01	YH
1-Methylnaphthalene	BRL	0.50		ug/L	273370	1	01/23/2019 19:01	YH
2-Methylnaphthalene	BRL	0.50		ug/L	273370	1	01/23/2019 19:01	YH
Acenaphthylene	BRL	1.0		ug/L	273370	1	01/23/2019 19:01	YH
Acenaphthene	BRL	0.50		ug/L	273370	1	01/23/2019 19:01	YH
Fluorene	BRL	0.10		ug/L	273370	1	01/23/2019 19:01	YH
Phenanthrene	BRL	0.050		ug/L	273370	1	01/23/2019 19:01	YH
Anthracene	BRL	0.050		ug/L	273370	1	01/23/2019 19:01	YH
Fluoranthene	BRL	0.10		ug/L	273370	1	01/23/2019 19:01	YH
Pyrene	BRL	0.050		ug/L	273370	1	01/23/2019 19:01	YH
Benz(a)anthracene	BRL	0.050		ug/L	273370	1	01/23/2019 19:01	YH
Chrysene	BRL	0.050		ug/L	273370	1	01/23/2019 19:01	YH
Benzo(b)fluoranthene	BRL	0.10		ug/L	273370	1	01/23/2019 19:01	YH
Benzo(k)fluoranthene	BRL	0.050		ug/L	273370	1	01/23/2019 19:01	YH
Benzo(a)pyrene	BRL	0.050		ug/L	273370	1	01/23/2019 19:01	YH
Indeno(1,2,3-cd)pyrene	BRL	0.050		ug/L	273370	1	01/23/2019 19:01	YH
Dibenz(a,h)anthracene	BRL	0.10		ug/L	273370	1	01/23/2019 19:01	YH
Benzo(g,h,i)perylene	BRL	0.10		ug/L	273370	1	01/23/2019 19:01	YH
Surr: 4-Terphenyl-d14	106	69.4-138		%REC	273370	1	01/23/2019 19:01	YH

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

J Estimated value detected below Reporting Limit

Client: Environmental Planning Specialists, Inc. Client Sample ID: 19022-TW-33

Project Name: Transco Collection Date: 1/22/2019 11:25:00 AM

Date:

25-Jan-19

Lab ID:1901I45-004Matrix:Groundwater

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
SIM Polynuclear Aromatic Hydrocarbons	SW8270D			(SW	V3510C)			
Naphthalene	0.92	0.50		ug/L	273370	1	01/23/2019 19:27	YH
1-Methylnaphthalene	3.2	0.50		ug/L	273370	1	01/23/2019 19:27	YH
2-Methylnaphthalene	BRL	0.50		ug/L	273370	1	01/23/2019 19:27	YH
Acenaphthylene	BRL	1.0		ug/L	273370	1	01/23/2019 19:27	YH
Acenaphthene	4.4	0.50		ug/L	273370	1	01/23/2019 19:27	YH
Fluorene	4.4	0.10		ug/L	273370	1	01/23/2019 19:27	YH
Phenanthrene	2.2	0.050		ug/L	273370	1	01/23/2019 19:27	YH
Anthracene	0.48	0.050		ug/L	273370	1	01/23/2019 19:27	YH
Fluoranthene	0.31	0.10		ug/L	273370	1	01/23/2019 19:27	YH
Pyrene	0.30	0.050		ug/L	273370	1	01/23/2019 19:27	YH
Benz(a)anthracene	0.25	0.050		ug/L	273370	1	01/23/2019 19:27	YH
Chrysene	0.22	0.050		ug/L	273370	1	01/23/2019 19:27	YH
Benzo(b)fluoranthene	0.31	0.10		ug/L	273370	1	01/23/2019 19:27	YH
Benzo(k)fluoranthene	0.20	0.050		ug/L	273370	1	01/23/2019 19:27	YH
Benzo(a)pyrene	0.22	0.050		ug/L	273370	1	01/23/2019 19:27	YH
Indeno(1,2,3-cd)pyrene	0.23	0.050		ug/L	273370	1	01/23/2019 19:27	YH
Dibenz(a,h)anthracene	0.18	0.10		ug/L	273370	1	01/23/2019 19:27	YH
Benzo(g,h,i)perylene	0.23	0.10		ug/L	273370	1	01/23/2019 19:27	YH
Surr: 4-Terphenyl-d14	118	69.4-138		%REC	273370	1	01/23/2019 19:27	YH

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

J Estimated value detected below Reporting Limit

Client: Environmental Planning Specialists, Inc. Client Sample ID: 19022-TW-8

Project Name: Transco Collection Date: 1/22/2019 12:55:00 PM

Date:

25-Jan-19

Lab ID:1901I45-005Matrix:Groundwater

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
SIM Polynuclear Aromatic Hydrocarbons	SW8270D			(SW	/3510C)			
Naphthalene	BRL	0.50		ug/L	273370	1	01/23/2019 19:53	YH
1-Methylnaphthalene	BRL	0.50		ug/L	273370	1	01/23/2019 19:53	YH
2-Methylnaphthalene	BRL	0.50		ug/L	273370	1	01/23/2019 19:53	YH
Acenaphthylene	BRL	1.0		ug/L	273370	1	01/23/2019 19:53	YH
Acenaphthene	BRL	0.50		ug/L	273370	1	01/23/2019 19:53	YH
Fluorene	BRL	0.10		ug/L	273370	1	01/23/2019 19:53	YH
Phenanthrene	BRL	0.050		ug/L	273370	1	01/23/2019 19:53	YH
Anthracene	BRL	0.050		ug/L	273370	1	01/23/2019 19:53	YH
Fluoranthene	BRL	0.10		ug/L	273370	1	01/23/2019 19:53	YH
Pyrene	0.40	0.050		ug/L	273370	1	01/23/2019 19:53	YH
Benz(a)anthracene	BRL	0.050		ug/L	273370	1	01/23/2019 19:53	YH
Chrysene	BRL	0.050		ug/L	273370	1	01/23/2019 19:53	YH
Benzo(b)fluoranthene	BRL	0.10		ug/L	273370	1	01/23/2019 19:53	YH
Benzo(k)fluoranthene	BRL	0.050		ug/L	273370	1	01/23/2019 19:53	YH
Benzo(a)pyrene	BRL	0.050		ug/L	273370	1	01/23/2019 19:53	YH
Indeno(1,2,3-cd)pyrene	BRL	0.050		ug/L	273370	1	01/23/2019 19:53	YH
Dibenz(a,h)anthracene	BRL	0.10		ug/L	273370	1	01/23/2019 19:53	YH
Benzo(g,h,i)perylene	BRL	0.10		ug/L	273370	1	01/23/2019 19:53	YH
Surr: 4-Terphenyl-d14	121	69.4-138		%REC	273370	1	01/23/2019 19:53	YH

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

J Estimated value detected below Reporting Limit

Client: Environmental Planning Specialists, Inc. Client Sample ID: 19022-DUP

Project Name: Transco Collection Date: 1/22/2019 12:00:00 PM

Lab ID: 1901I45-006 Matrix: Groundwater

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst	
SIM Polynuclear Aromatic Hydrocarbons	SW8270D	(SW3510C)							
Naphthalene	BRL	0.50		ug/L	273370	1	01/23/2019 16:47	YH	
1-Methylnaphthalene	BRL	0.50		ug/L	273370	1	01/23/2019 16:47	YH	
2-Methylnaphthalene	BRL	0.50		ug/L	273370	1	01/23/2019 16:47	YH	
Acenaphthylene	BRL	1.0		ug/L	273370	1	01/23/2019 16:47	YH	
Acenaphthene	BRL	0.50		ug/L	273370	1	01/23/2019 16:47	YH	
Fluorene	BRL	0.10		ug/L	273370	1	01/23/2019 16:47	YH	
Phenanthrene	BRL	0.050		ug/L	273370	1	01/23/2019 16:47	YH	
Anthracene	BRL	0.050		ug/L	273370	1	01/23/2019 16:47	YH	
Fluoranthene	BRL	0.10		ug/L	273370	1	01/23/2019 16:47	YH	
Pyrene	BRL	0.050		ug/L	273370	1	01/23/2019 16:47	YH	
Benz(a)anthracene	BRL	0.050		ug/L	273370	1	01/23/2019 16:47	YH	
Chrysene	BRL	0.050		ug/L	273370	1	01/23/2019 16:47	YH	
Benzo(b)fluoranthene	BRL	0.10		ug/L	273370	1	01/23/2019 16:47	YH	
Benzo(k)fluoranthene	BRL	0.050		ug/L	273370	1	01/23/2019 16:47	YH	
Benzo(a)pyrene	BRL	0.050		ug/L	273370	1	01/23/2019 16:47	YH	
Indeno(1,2,3-cd)pyrene	BRL	0.050		ug/L	273370	1	01/23/2019 16:47	YH	
Dibenz(a,h)anthracene	BRL	0.10		ug/L	273370	1	01/23/2019 16:47	YH	
Benzo(g,h,i)perylene	BRL	0.10		ug/L	273370	1	01/23/2019 16:47	YH	
Surr: 4-Terphenyl-d14	67.7	69.4-138	S	%REC	273370	1	01/23/2019 16:47	YH	

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

Date:

25-Jan-19

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

J Estimated value detected below Reporting Limit

SAMPLE/COOLER RECEIPT CHECKLIST

1. Client Name: Environmental Planning Specialists, Inc	•			AES Work Order Numbe	er: 1901i45	
2. Carrier: FedEx UPS USPS Client Courier Othel						
	Yes	No	N/A	Details	Comments	
3. Shipping container/cooler received in good condition?	10	\overline{IO}		damaged leaking other		
4. Custody seals present on shipping container?	10	lõ	Ō			
5. Custody seals intact on shipping container?	10	10	Ŏ			
6. Temperature blanks present?	10	ĬŎ	Ŏ			
Cooler temperature(s) within limits of 0-6°C? [See item 13 and 14 for		Ō		Cooling initiated for recently collected samples / ice		
7. temperature recordings.]	0		0	present		
8. Chain of Custody (COC) present?	0		0			
9. Chain of Custody signed, dated, and timed when relinquished and received?	? 0	l Õ	Õ			
0. Sampler name and/or signature on COC?	10	IÕ	Ŏ			
Were all samples received within holding time?	10	Ŏ	Ŏ			
2. TAT marked on the COC?	10	Ŏ	O	If no TAT indicated, proceeded with standard TAT per T	erms & Conditions.	
3. Cooler 1 Temperature 1.3 °C Cooler 2 Temperature 1	6		°C	Cooler 3 Temperature OC Cool	er 4 Temperature°C	
4. Cooler 5 Temperature °C Cooler 6 Temperature			C	Cooler 7 Temperature °C Coole	er 8 Temperature °C	
					<u> </u>	
5. Comments:						
				Leowifi that I have a	ampleted sections 1 15 (detect initials)	MJ 1/22/19
				i certify that i have co	ompleted sections 1-15 (dated initials).	
	Yes	No	N/A	Details .	Comments	
6. Were sample containers intact upon receipt?	$ \odot $	I O	Q			
7. Custody seals present on sample containers?	$\bot O$	0	0			
8. Custody seals intact on sample containers?			lacksquare			
9. Do sample container labels match the COC?	0			incomplete info illegible		
5. Bo sumple container labels materi the coe.				no label Other		
0. Are analyses requested indicated on the COC?	0					
1 Ware all of the complex listed on the COC received?	0	0	0	samples received but not listed on COC		
Were all of the samples listed on the COC received?				samples listed on COC not received		
2. Was the sample collection date/time noted?			О			
3. Did we receive sufficient sample volume for indicated analyses?	10		О			
4. Were samples received in appropriate containers?	10		О			
5. Were VOA samples received without headspace (< 1/4" bubble)?	\overline{O}		0			
6. Were trip blanks submitted?	\overline{O}	0	0	listed on COC not listed on COC		
7. Comments						
7. Comments:						
This section only applies to complex where all can be				I certify that I have co	ompleted sections 16-27 (dated initials).	MJ 1/22/19
This section only applies to samples where pH can be checked at Sample Receipt.	Voc	No	NI/A	Details	Comments	
<u>-</u>	Yes	No	N/A	Details	Comments	
Have containers needing chemical preservation been checked? * Containers meet preservation guidelines?	$+ \times$	18	8			
	+	$+ \times$	18			
0. Was pH adjusted at Sample Receipt?	$\perp \bigcirc$	$\perp \bigcirc$				
* Note: Certain analyses require chemical preservation but must be checked in the la	boratory a	and not u	oon Sam	ple Receipt such as Coliforms, VOCs and Oil & Grease/TPH.		/

I certify that I have completed sections 28-30 (dated initials).

MJ 1/22/19

Date: 25-Jan-19

Client: Environmental Planning Specialists, Inc.

ANALYTICAL QC SUMMARY REPORT

Project Name: Transco Workorder: 1901I45

BatchID: 273370

Result BRL BRL BRL BRL	0.50 0.50	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref	Val %RPD	RPD Limit	0 .1
BRL BRL	0.50					-	ra B reer	701CI D	KI D LIIII	Quai
BRL										
	0.50									
BRL	0.50									
	1.0									
BRL	0.050									
BRL	0.050									
BRL	0.050									
BRL	0.10									
BRL	0.10									
BRL	0.050									
BRL	0.050									
BRL	0.10									
BRL	0.10									
BRL	0.10									
BRL	0.050									
BRL	0.50									
BRL	0.050									
BRL	0.050									
2.657	0	2.000		133	69.4	138				
	M Polynuclear Aromat	ic Hydrocarbons	SW8270D		_		-			
Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref	Val %RPD	RPD Limit	Qua
1.845	0.50	2.000		92.3	66	125				
1.856	0.50	2.000		92.8	64.9	125				
1.895	0.50	2.000		94.7	70	120				
		< Less t	han Result value			В	Analyte detected is	n the associated method	blank	
		E Estima	ited (value above quantita	ation range)		Н	Holding times for	preparation or analysis e	exceeded	
pelow Reporting Lim	it	N Analy	te not NELAC certified			R	RPD outside limit	s due to matrix		
	BRL	BRL 0.050 BRL 0.10 BRL 0.10 BRL 0.050 BRL 0.050 BRL 0.050 BRL 0.050 BRL 0.10 BRL 0.10 BRL 0.10 BRL 0.50 BRL 0.050 BRL 0.50 BRL 0.50 BRL 0.50 BRL RPT Limit 1.845 0.50 1.856 0.50	BRL 0.050 BRL 0.10 BRL 0.10 BRL 0.10 BRL 0.050 BRL 0.050 BRL 0.050 BRL 0.10 BRL 0.10 BRL 0.10 BRL 0.10 BRL 0.050 BRL 0.050 BRL 0.050 BRL 0.50 BRL 0.050 BRL 0.50 BRL 0.050 BRL 0.050 BRL 0.050 BRL 0.050 2.657 0 2.000 Client ID: TestCode: SIM Polynuclear Aromatic Hydrocarbons Result RPT Limit SPK value 1.845 0.50 2.000 1.895 0.50 2.000	BRL 0.050 BRL 0.10 BRL 0.10 BRL 0.050 BRL 0.050 BRL 0.050 BRL 0.050 BRL 0.10 BRL 0.10 BRL 0.10 BRL 0.10 BRL 0.50 BRL 0.50 BRL 0.50 BRL 0.50 BRL 0.50 BRL 0.050 BRL 0.050 BRL 0.050 BRL 0.050 BRL 0.050 BRL 0.050 BRL 0.050 BRL 0.050 Client ID: TestCode: SIM Polynuclear Aromatic Hydrocarbons SW8270D Result RPT Limit SPK value SPK Ref Val 1.845 0.50 2.000 1.856 0.50 2.000	BRL 0.050 BRL 0.10 BRL 0.10 BRL 0.050 BRL 0.050 BRL 0.050 BRL 0.10 BRL 0.10 BRL 0.10 BRL 0.10 BRL 0.10 BRL 0.050 2.657 0 2.000 133 Client ID: Unit TestCode: SIM Polynuclear Aromatic Hydrocarbons SW8270D Bat SW8270D Bat SPK Ref Val %REC 1.845 0.50 2.000 92.3 1.856 0.50 2.000 92.8 1.895 0.50 2.000 94.7	BRL 0.050 BRL 0.10 BRL 0.10 BRL 0.050 BRL 0.050 BRL 0.050 BRL 0.10 BRL 0.10 BRL 0.10 BRL 0.10 BRL 0.10 BRL 0.150 BRL 0.50 BRL 0.050 BR	BRL 0.050 BRL 0.050 BRL 0.10 BRL 0.10 BRL 0.050 BRL 0.050 BRL 0.050 BRL 0.10 BRL 0.10 BRL 0.10 BRL 0.10 BRL 0.10 BRL 0.150 BRL 0.50 BRL 0.50 BRL 0.50 BRL 0.50 BRL 0.50 BRL 0.050 BRL 0.05	BRL 0.050 BRL 0.10 BRL 0.050 BRL 0.050 BRL 0.050 BRL 0.050 BRL 0.050 BRL 0.10 BRL 0.10 BRL 0.10 BRL 0.050 BRL 0.050 BRL 0.10 BRL 0.050 BRL 0.050 BRL 0.50 BRL 0.050	BRL 0.050 BRL 0.10 BRL 0.10 BRL 0.050 BRL 0.050 BRL 0.050 BRL 0.050 BRL 0.10 BRL 0.50 BRL 0.50 BRL 0.50 BRL 0.50 BRL 0.50 BRL 0.50 BRL 0.050 BRL	BRL 0.050 BRL 0.10 BRL 0.10 BRL 0.050 BRL 0.10 BRL 0.50 BRL 0.050 BRL 0.10 BRL 0.050 BRL 0.050 BRL 0.050 BRL 0.050 BRL 0.050 BRL 0.10 BRL 0.050 BRL 0.050 BRL 0.10 BRL

1901I45

Rpt Lim Reporting Limit

Project Name:

Workorder:

25-Jan-19 Date:

Environmental Planning Specialists, Inc. **Client:**

Transco

ANALYTICAL QC SUMMARY REPORT

BatchID: 273370

Sample ID: LCS-273370	Client ID:				Uni	its: ug/L	Pro	ep Date: 0	1/23/2019	Run No: 389520)
SampleType: LCS	TestCode:	SIM Polynuclear Aromat	ic Hydrocarbons	SW8270D	Bat	chID: 273370	Ar	nalysis Date: 0	1/23/2019	Seq No: 871271	13
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref V	al %RPD	RPD Limit	Qual
Acenaphthylene	1.995	1.0	2.000		99.8	69.5	120				
Anthracene	2.111	0.050	2.000		106	70	126				
Benz(a)anthracene	2.251	0.050	2.000		113	70.9	147				
Benzo(a)pyrene	2.150	0.050	2.000		108	70	124				
Benzo(b)fluoranthene	2.671	0.10	2.000		134	65.6	134				
Benzo(g,h,i)perylene	2.105	0.10	2.000		105	66.2	128				
Benzo(k)fluoranthene	1.937	0.050	2.000		96.9	70.9	134				
Chrysene	2.107	0.050	2.000		105	70	133				
Dibenz(a,h)anthracene	2.196	0.10	2.000		110	56	128				
Fluoranthene	2.254	0.10	2.000		113	80.4	135				
Fluorene	2.051	0.10	2.000		103	70	122				
ndeno(1,2,3-cd)pyrene	2.243	0.050	2.000		112	63.6	131				
Naphthalene	1.734	0.50	2.000		86.7	68.8	120				
Phenanthrene	2.065	0.050	2.000		103	72.9	122				
Pyrene	2.061	0.050	2.000		103	70	130				
Surr: 4-Terphenyl-d14	2.088	0	2.000		104	69.4	138				
Sample ID: 1901I45-006AMS	Client ID:	19022-DUP			Uni	its: ug/L	Pro	ep Date: 0	1/23/2019	Run No: 389520)
SampleType: MS	TestCode:	SIM Polynuclear Aromat	ic Hydrocarbons	SW8270D	Bat	chID: 273370	Ar	nalysis Date: 0	1/23/2019	Seq No: 871319	93
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref V	al %RPD	RPD Limit	Qual
-Methylnaphthalene	2.004	0.50	2.000		100	60.4	120				
-Methylnaphthalene	2.016	0.50	2.000		101	56.1	122				
Acenaphthene	2.086	0.50	2.000		104	61.2	120				
Acenaphthylene	2.165	1.0	2.000		108	62.1	120				
Anthracene	2.245	0.050	2.000		112	65.2	124				
Benz(a)anthracene	2.481	0.050	2.000		124	69.2	134				
Benzo(a)pyrene	2.358	0.050	2.000		118	58.1	120				
Qualifiers: > Greater than Result va	lue		< Less	than Result value			В	Analyte detected in the	ne associated method	blank	
BRL Below reporting limit			E Estim	ated (value above quantit	ation range)		Н	Holding times for pre	eparation or analysis e	exceeded	
J Estimated value detec	cted below Reporting I	Limit	N Analy	te not NELAC certified			R	RPD outside limits d	ue to matrix		

S Spike Recovery outside limits due to matrix

25-Jan-19 Date:

Client: Environmental Planning Specialists, Inc.

Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

ANALYTICAL QC SUMMARY REPORT

Project Name: Transco Workorder: 1901I45

BatchID: 273370

Sample ID: 1901I45-006AMS		19022-DUP			Un	its: ug/L	Pre	p Date: 01/23	/2019	Run No: 38952	0
SampleType: MS	TestCode:	SIM Polynuclear Aromatic	Hydrocarbons	SW8270D	Bat	chID: 273370	Ana	alysis Date: 01/23	/2019	Seq No: 87131	93
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit	Qual
Benzo(b)fluoranthene	2.920	0.10	2.000		146	51.9	120				S
Benzo(g,h,i)perylene	2.201	0.10	2.000		110	44	120				
Benzo(k)fluoranthene	2.160	0.050	2.000		108	53.5	120				
Chrysene	2.315	0.050	2.000		116	64.5	129				
Dibenz(a,h)anthracene	2.355	0.10	2.000		118	37.4	120				
Fluoranthene	2.465	0.10	2.000		123	70.1	126				
Fluorene	2.228	0.10	2.000		111	63.1	120				
Indeno(1,2,3-cd)pyrene	2.217	0.050	2.000		111	46.4	120				
Naphthalene	1.917	0.50	2.000		95.9	56.7	120				
Phenanthrene	2.248	0.050	2.000		112	64.5	120				
Pyrene	2.328	0.050	2.000		116	61.5	136				
Surr: 4-Terphenyl-d14	2.380	0	2.000		119	69.4	138				
Sample ID: 1901I45-006AMSD	Client ID:	19022-DUP			Un	its: ug/L	Pre	p Date: 01/23	/2019	Run No: 38952	0
SampleType: MSD	TestCode:	SIM Polynuclear Aromatic	Hydrocarbons	SW8270D	Bat	chID: 273370	Ana	alysis Date: 01/23	/2019	Seq No: 87131	95
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit	Qual
1-Methylnaphthalene	2.049	0.50	2.000		102	60.4	120	2.004	2.19	28.5	
2-Methylnaphthalene	2.064	0.50	2.000		103	56.1	122	2.016	2.36	26.6	
Acenaphthene	2.133	0.50	2.000		107	61.2	120	2.086	2.23	20.2	
Acenaphthylene	2.220	1.0	2.000		111	62.1	120	2.165	2.52	22	
Anthracene	2.291	0.050	2.000		115	65.2	124	2.245	2.02	20	
Benz(a)anthracene	2.547	0.050	2.000		127	69.2	134	2.481	2.61	23.7	
Benzo(a)pyrene	2.377	0.050	2.000		119	58.1	120	2.358	0.828	26.1	
Benzo(b)fluoranthene	2.976	0.10	2.000		149	51.9	120	2.920	1.91	25.4	S
Benzo(g,h,i)perylene	2.153	0.10	2.000		108	44	120	2.201	2.20	23.1	
Benzo(k)fluoranthene	2.271	0.050	2.000		114	53.5	120	2.160	4.98	22.7	
Chrysene	2.350	0.050	2.000		118	64.5	129	2.315	1.52	22.4	
Qualifiers: > Greater than Result val	ue		< Less	than Result value			В	Analyte detected in the asso	ociated method b	lank	
BRL Below reporting limit			E Estim	ated (value above quantita	ation range)		Н	Holding times for preparati	on or analysis ex	ceeded	

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

R RPD outside limits due to matrix

Transco

1901I45

Project Name:

Workorder:

Client:

Environmental Planning Specialists, Inc.

ANALYTICAL QC SUMMARY REPORT

Date:

25-Jan-19

BatchID: 273370

Sample ID: 1901145-006AMSD SampleType: MSD	Client ID: TestCode:	19022-DUP SIM Polynuclear Aromat	ic Hydrocarbons	SW8270D	Uni Bat	ts: ug/L chID: 273370		Date: 01/23/ lysis Date: 01/23/		Run No: 38952 Seq No: 87131	
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit	Qual
Dibenz(a,h)anthracene	2.306	0.10	2.000		115	37.4	120	2.355	2.13	31	
Fluoranthene	2.484	0.10	2.000		124	70.1	126	2.465	0.775	19.1	
Fluorene	2.286	0.10	2.000		114	63.1	120	2.228	2.56	22.2	
Indeno(1,2,3-cd)pyrene	2.309	0.050	2.000		115	46.4	120	2.217	4.11	26.1	
Naphthalene	1.941	0.50	2.000		97.0	56.7	120	1.917	1.23	19.7	
Phenanthrene	2.335	0.050	2.000		117	64.5	120	2.248	3.77	20.5	
Pyrene	3.105	0.050	2.000		155	61.5	136	2.328	28.6	19.4	SR
Surr: 4-Terphenyl-d14	2.627	0	2.000		131	69.4	138	2.380	0	0	

Qualifiers: Greater than Result value

> BRL Below reporting limit

Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

Holding times for preparation or analysis exceeded

R RPD outside limits due to matrix

November 20, 2018

Aaron Williams EPS 400 Northridge Road Suite 400 Sandy Springs, GA 30350

RE: TRANSCO

Pace Analytical received 7 samples on November 12, 2018 for analysis labeled 18312-RW-24, 18312-EW-13, 18311-TW-19, 18312-EW-10, 18310-TW-12, 18311-TW-18, and 18310-TW-20. Per client request, the following analyses were performed:

- 1. (C8-C40) Semi-Quantitative Molecular Characterization by GC/MS full scan mode
- 2. Viscosity Subcontracted to Clark Testing

The sample analyses were performed under laboratory number 28678.

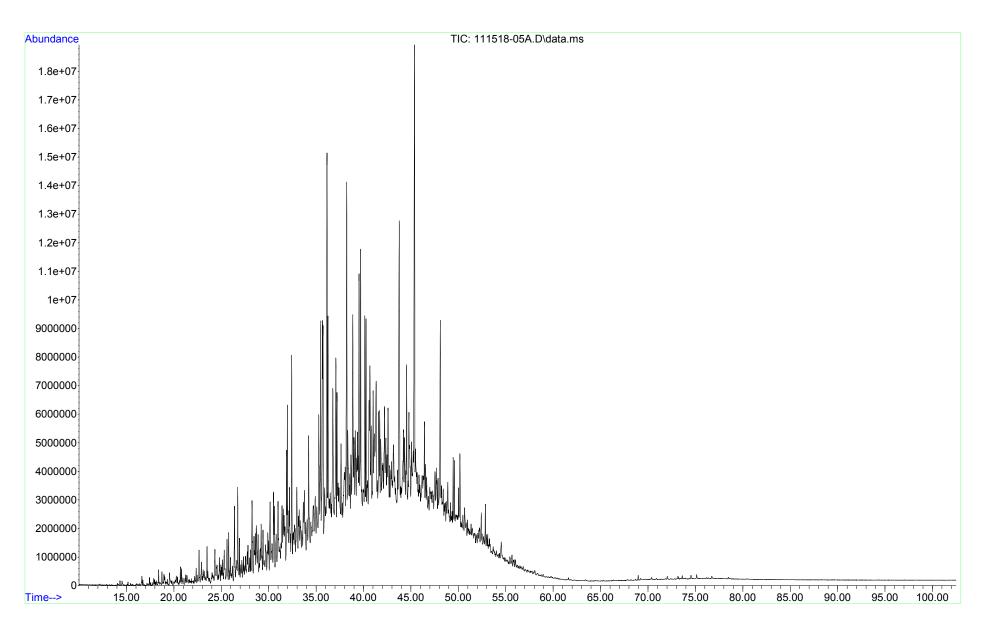
Please call the lab at 412-826-5245, or you may email any questions or concerns to ruth.welsh@pacelabs.com regarding any analytical data reports.

Respectfully submitted,

Ruth Welsh

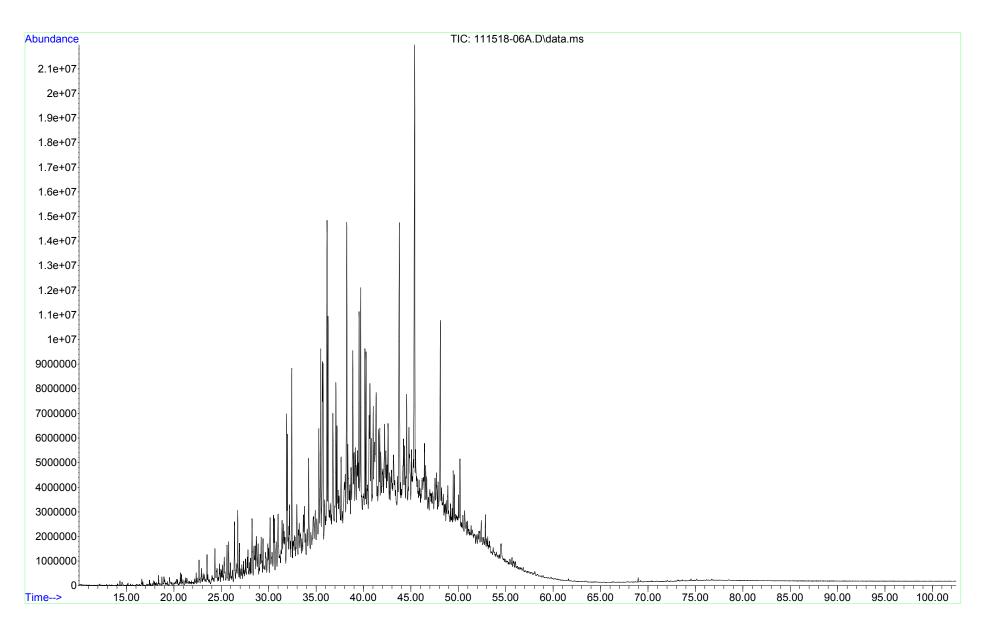
Ruth Welsh Customer Service

(C8-C40) Semi-Quantitative Molecular Characterization by GC/MS - full scan mode TIC, n-Alkanes, Iso-Alkanes, Isoprenoids, Alkylcyclohexanes, C4-monoaromatics, Bicyclanes, Terpanes, Steranes


C8-C40 - Semi Quantitative Hydrocarbons Characterization by GC/MS - full scan mode

	Mass Chromatograms
ION (m/z)	COMPOUND CLASS
TIC	All Compounds
85	n-Paraffins
113	Isoparaffins
83	Alkylcyclohexanes
134	C3-C4 Monoaromatics
123	Bicyclanes
191	Terpanes
217	Steranes
253	Monoaromatice Steranes
231	Triaromatic Steranes
Bar Diagram	Monoaromatic and Polyaromatic Hydrocarbon Distribution

note: Chromatograms and data follow this cover page.


Submitted by, Pace Analytical Energy Services

Sample Name: 28678-1 [18312-TW-24] 1/10 Misc Info : 0.4032g->10mL

Sample Name: 28678-6 [18311-TW-18] 1/10

Misc Info : 0.4458g->10mL

Chromatogram Key & Numerical Results: 85 m/z n-Paraffins

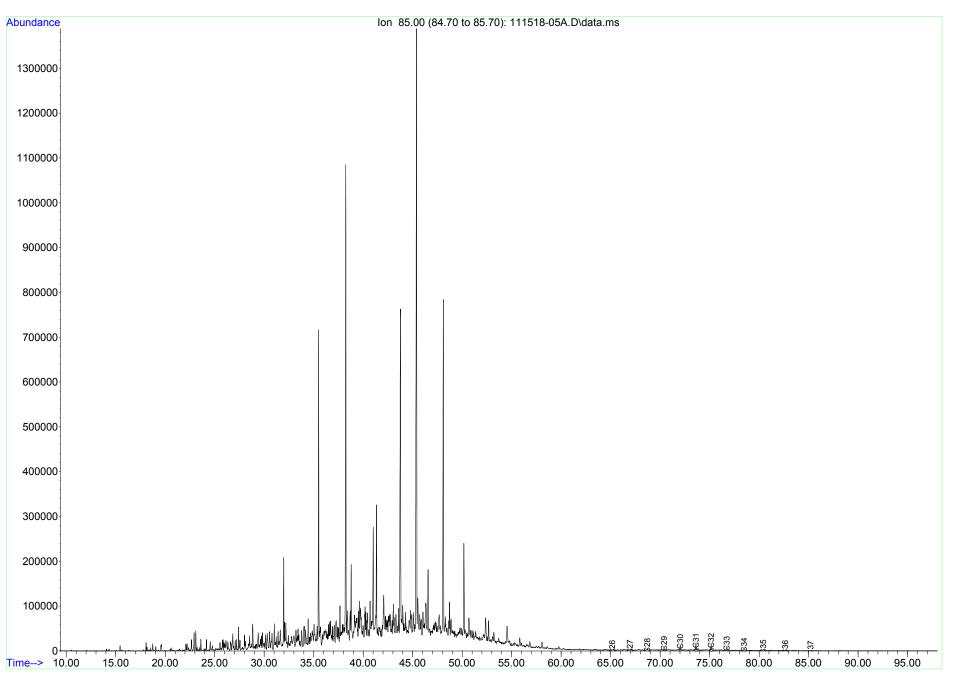
Project Manager: A. Williams Lab ID: 28678-1 Client: EPS Collected: 11/8/2018

Address: 400 Northridge Rd. Suite Received: 11/12/2018
Sandy Springs, GA 30350 Matrix: Product

Project: TRANSCO

Project #:

Collected by:


Client ID: 18312-TW-24 1/10

Analyzed: 11/16/2018

Q Method: FSRTL111618B.M

Identity	Symbol	lon (m/z)	Retention Time	Peak Height	Rel. Height % (85 m/z)
n Ostana	nC8	85	ND	ND	ND
n-Octane	nC9			ND ND	
n-Nonane		85	ND		ND ND
n-Decane	nC10	85 85	ND	ND	ND ND
n-Undecane	nC11	85	ND	ND	ND ND
n-Dodecane	nC12	85	ND	ND	ND
n-Tridecane	nC13	85	ND	ND	ND
n-Tetradecane	nC14	85	ND	ND	ND
n-Pentadecane	nC15	85	ND	ND	ND
n-Hexadecane	nC16	85	ND	ND	ND
n-Heptadecane	nC17	85	ND	ND	ND
n-Octadecane	nC18	85	ND	ND	ND
n-Nonadecane	nC19	85	ND	ND	ND
n-icosane	nC20	85	ND	ND	ND
n-Henicosane	nC21	85	ND	ND	ND
n-Docosane	nC22	85	ND	ND	ND
n-Tricosane	nC23	85	ND	ND	ND
n-Tetracosane	nC24	85	ND	ND	ND
n-Pentacosane	nC25	85	ND	ND	ND
n-Hexacosane	nC26	85	65.2	1252.0	1.6%
n-Heptacosane	nC27	85	67.0	1992.0	2.6%
n-Octacosane	nC28	85	68.7	4266.0	5.5%
n-Nonacosane	nC29	85	70.4	8489.0	11.0%
n-Triacontane	nC30	85	72.0	11990.0	15.6%
n-Hentriacontane	nC31	85	73.6	14769.0	19.2%
n-Dotriacontane	nC32	85	75.1	14379.0	18.7%
n-Tritriacontane	nC33	85	76.7	8775.0	11.4%
n-Tetratriacontane	nC34	85	78.5	6391.0	8.3%
n-Pentatriacontane	nC35	85	80.4	2258.0	2.9%
n-Hexatriacontane	nC36	85	82.6	1652.0	2.1%
n -Heptatriacontane	nC37	85	85.2	736.0	1.0%
n -Octatriacontane	nC38	85	ND	ND	ND
n -Nonatriacontane	nC39	85	ND	ND	ND
n-Tetracontane	nC40	85	ND	ND	ND

0.4032g->10mL FOREN4LA_RTL.M

Chromatogram Key & Numerical Results: 85 m/z n-Paraffins

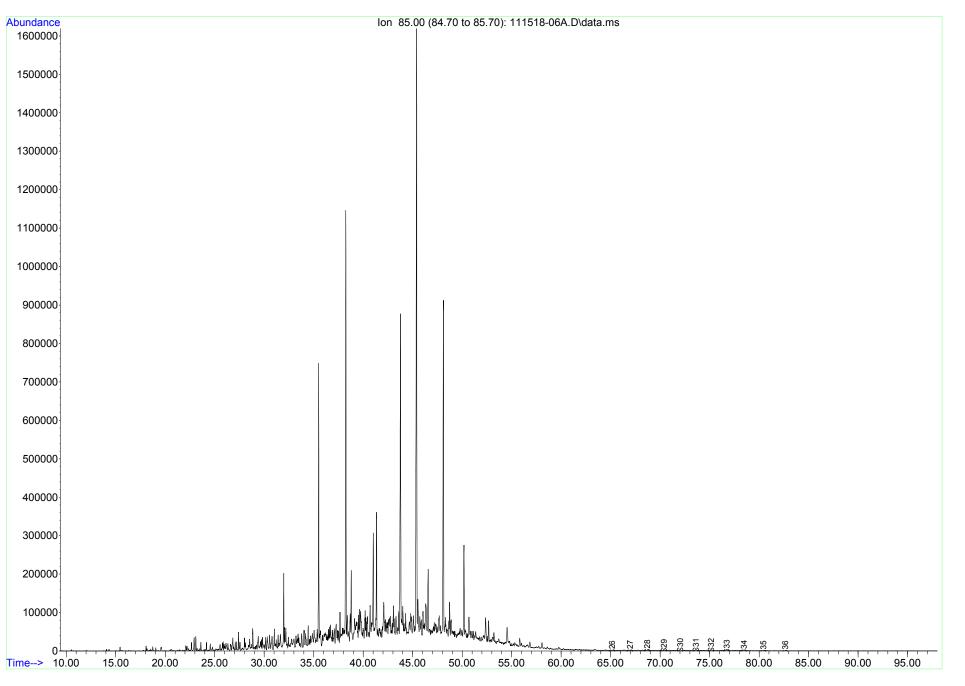
Project Manager: A. Williams Lab ID: 28678-6
Client: EPS Collected: 11/7/2018

Address: 400 Northridge Rd. Suite Received: 11/12/2018
Sandy Springs, GA 30350 Matrix: Product

Project: TRANSCO

Project #:

Collected by:


Client ID: 18311-TW-18 1/10

Analyzed: 11/17/2018

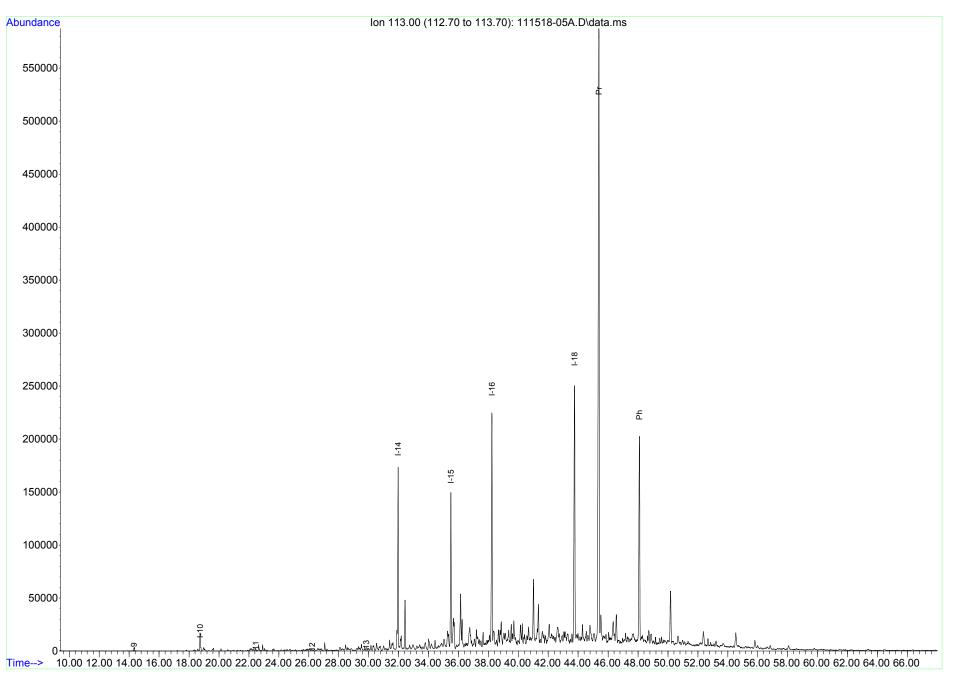
Q Method: FSRTL111618B.M

Identity	Symbol	lon	Retention	Peak Height	Rel. Height %
		(m/z)	Time		(85 m/z)
n-Octane	nC8	85	ND	ND	ND
n-Nonane	nC9	85	ND	ND	ND
n-Decane	nC10	85	ND	ND	ND
n-Undecane	nC11	85	ND	ND	ND
n-Dodecane	nC12	85	ND	ND	ND
n-Tridecane	nC13	85	ND	ND	ND
n-Tetradecane	nC14	85	ND	ND	ND
n-Pentadecane	nC15	85	ND	ND	ND
n-Hexadecane	nC16	85	ND	ND	ND
n-Heptadecane	nC17	85	ND	ND	ND
n-Octadecane	nC18	85	ND	ND	ND
n-Nonadecane	nC19	85	ND	ND	ND
n-icosane	nC20	85	ND	ND	ND
n-Henicosane	nC21	85	ND	ND	ND
n-Docosane	nC22	85	ND	ND	ND
n-Tricosane	nC23	85	ND	ND	ND
n-Tetracosane	nC24	85	ND	ND	ND
n-Pentacosane	nC25	85	ND	ND	ND
n-Hexacosane	nC26	85	65.2	857.0	2.4%
n-Heptacosane	nC27	85	67.0	1484.0	4.2%
n-Octacosane	nC28	85	68.7	2616.0	7.4%
n-Nonacosane	nC29	85	70.4	4584.0	13.0%
n-Triacontane	nC30	85	72.0	5952.0	16.9%
n-Hentriacontane	nC31	85	73.6	6161.0	17.4%
n-Dotriacontane	nC32	85	75.2	5992.0	17.0%
n-Tritriacontane	nC33	85	76.7	3433.0	9.7%
n-Tetratriacontane	nC34	85	78.5	2436.0	6.9%
n-Pentatriacontane	nC35	85	80.4	1290.0	3.7%
n-Hexatriacontane	nC36	85	82.6	504.0	1.4%
n -Heptatriacontane	nC37	85	ND	ND	ND
n -Octatriacontane	nC38	85	ND	ND	ND
n -Nonatriacontane	nC39	85	ND	ND	ND
n-Tetracontane	nC40	85	ND	ND	ND

0.4458g->10mL FOREN4LA_RTL.M

Chromatogram Key & Numerical Results: 113 m/z Isoparaffins

Project Manager: A. Williams Lab ID: 28678-1


Client: EPS Collected: 11/8/2018

Address: 400 Northridge Rd. Suite Received: 11/12/2018
Sandy Springs, GA 30350 Matrix: Product

Project: TRANSCO
Project #:
Analyzed: 11/16/2018
Collected by:
Q Method: FSRTL111618B.M

Identity	Symbol	lon (m/z)	Retention Time	Peak Height	Rel. Height % (113 m/z)
Iso-alkane w/ 9 Carbon Atoms	I-9	113	14.3	3250.0	0.2%
Iso-alkane w/ 10 Carbon Atoms	I-10	113	18.7	17128.0	1.1%
Iso-alkane w/ 11 Carbon Atoms	I-11	113	22.5	2654.0	0.2%
Iso-alkane w/ 12 Carbon Atoms	I-12	113	26.2	881.0	0.1%
Iso-alkane w/ 13 Carbon Atoms	I-13	113	29.9	2842.0	0.2%
Iso-alkane w/ 14 Carbon Atoms	I-14	113	32.0	169759.0	10.8%
Farnesane (Isoprenoid - C15)	I-15	113	35.5	145585.0	9.3%
Iso-alkane w/ 16 Carbon Atoms	I-16	113	38.2	216047.0	13.8%
Iso-alkane w/ 18 Carbon Atoms	I-18	113	43.8	242399.0	15.5%
Pristane (Isoprenoid - C19)	Pr	113	45.4	575109.0	36.7%
Phytane (Isoprenoid - C20)	Ph	113	48.1	192772.0	12.3%

0.4032g->10mL FOREN4LA_RTL.M

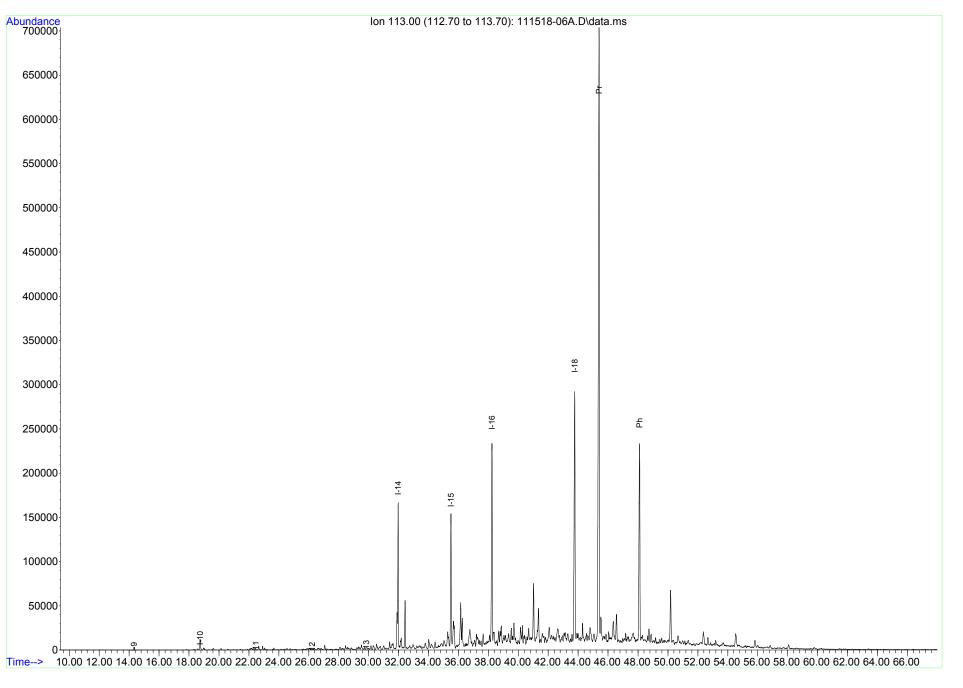
Chromatogram Key & Numerical Results: 113 m/z Isoparaffins

Project Manager: A. Williams Lab ID: 28678-6

Client: EPS Collected: 11/7/2018

Address: 400 Northridge Rd. Suite Received: 11/12/2018
Sandy Springs, GA 30350 Matrix: Product

Project: TRANSCO
Project #:


Collected by:

Client ID: 18311-TW-18 1/10
Analyzed: 11/17/2018

Q Method: FSRTL111618B.M

Identity	Symbol	lon (m/z)	Retention Time	Peak Height	Rel. Height % (113 m/z)
Iso-alkane w/ 9 Carbon Atoms	I-9	113	14.3	3225.0	0.2%
Iso-alkane w/ 10 Carbon Atoms	I-10	113	18.7	12413.0	0.7%
Iso-alkane w/ 11 Carbon Atoms	I-11	113	22.5	2178.0	0.1%
Iso-alkane w/ 12 Carbon Atoms	I-12	113	26.2	1085.0	0.1%
Iso-alkane w/ 13 Carbon Atoms	I-13	113	29.8	2211.0	0.1%
Iso-alkane w/ 14 Carbon Atoms	I-14	113	32.0	163317.0	9.3%
Farnesane (Isoprenoid - C15)	I-15	113	35.5	149727.0	8.5%
Iso-alkane w/ 16 Carbon Atoms	I-16	113	38.2	224483.0	12.8%
Iso-alkane w/ 18 Carbon Atoms	I-18	113	43.8	282721.0	16.1%
Pristane (Isoprenoid - C19)	Pr	113	45.4	694639.0	39.5%
Phytane (Isoprenoid - C20)	Ph	113	48.1	222533.0	12.7%

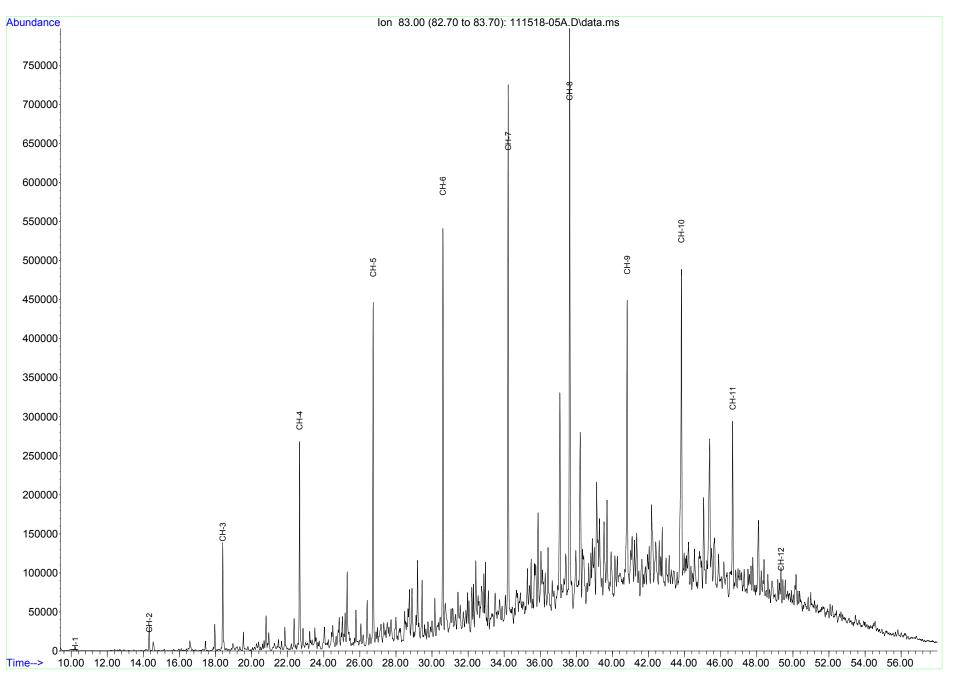
0.4458g->10mL FOREN4LA_RTL.M

Chromatogram Key & Numerical Results: 83 m/z Alkylcyclohexanes

Project Manager: A. Williams Lab ID: 28678-1

Client: EPS Collected: 11/8/2018

Address: 400 Northridge Rd. Suite Received: 11/12/2018
Sandy Springs, GA 30350 Matrix: Product


Project: TRANSCO
Project #:
Collected by:

Client ID: 18312-TW-24 1/10
Analyzed: 11/16/2018
Q Method: FSRTL111618B.M

Identity	Symbol	lon	Retention	Peak Height	Rel. Height %
		(m/z)	Time		(83 m/z)
Methylcyclohexane	CH-1	83	10.2	4481.0	0.1%
Ethylcyclohexane	CH-2	83	14.3	32245.0	0.8%
Propylcyclohexane	CH-3	83	18.4	135363.0	3.6%
Butylcyclohexane	CH-4	83	22.7	265339.0	7.0%
Pentylcyclohexane	CH-5	83	26.7	435418.0	11.5%
Hexylcyclohexane	CH-6	83	30.6	518788.0	13.6%
Heptylcyclohexane	CH-7	83	34.2	677368.0	17.8%
Octylcyclohexane	CH-8	83	37.6	718392.0	18.9%
Nonylcyclohexane	CH-9	83	40.8	352630.0	9.3%
Decylcyclohexane	CH-10	83	43.8	401289.0	10.6%
Undecylcyclohexane	CH-11	83	46.7	215024.0	5.7%
Dodecylcyclohexane	CH-12	83	49.3	45712.0	1.2%
Tridecylcyclohexane	CH-13	83	ND	ND	ND
Tetradecylcyclohexane	CH-14	83	ND	ND	ND

0.4032g->10mL FOREN4LA_RTL.M Submitted by,

Pace Energy Services, LLC

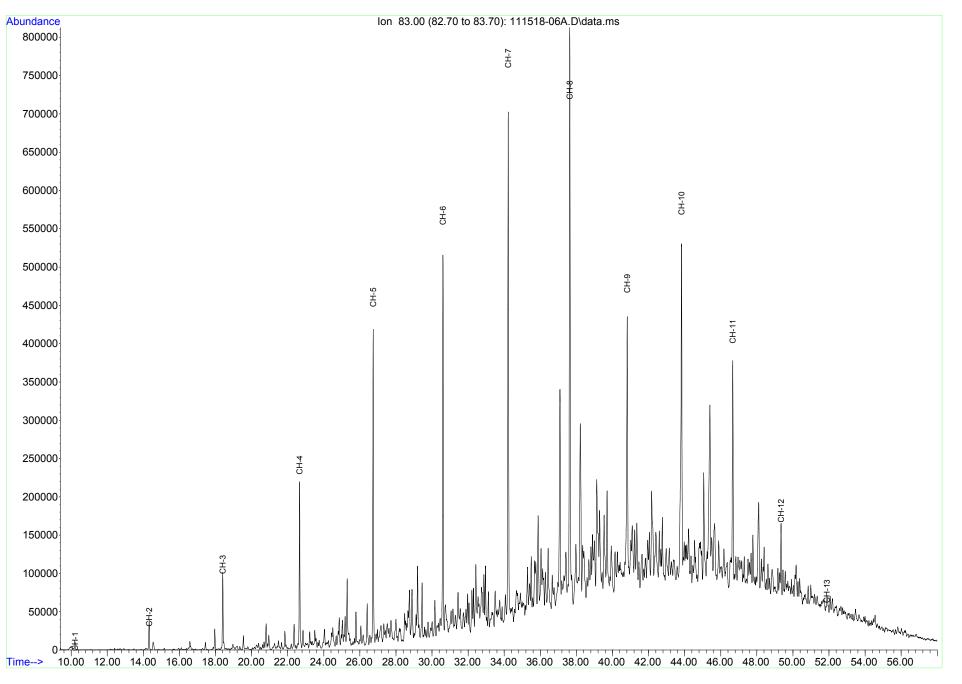
Chromatogram Key & Numerical Results: 83 m/z Alkylcyclohexanes

Project Manager: A. Williams Lab ID: 28678-6

Client: EPS Collected: 11/7/2018

Address: 400 Northridge Rd. Suite Received: 11/12/2018
Sandy Springs, GA 30350 Matrix: Product

Project: TRANSCO
Project #:
Collected by:


Client ID: 18311-TW-18 1/10
Analyzed: 11/17/2018

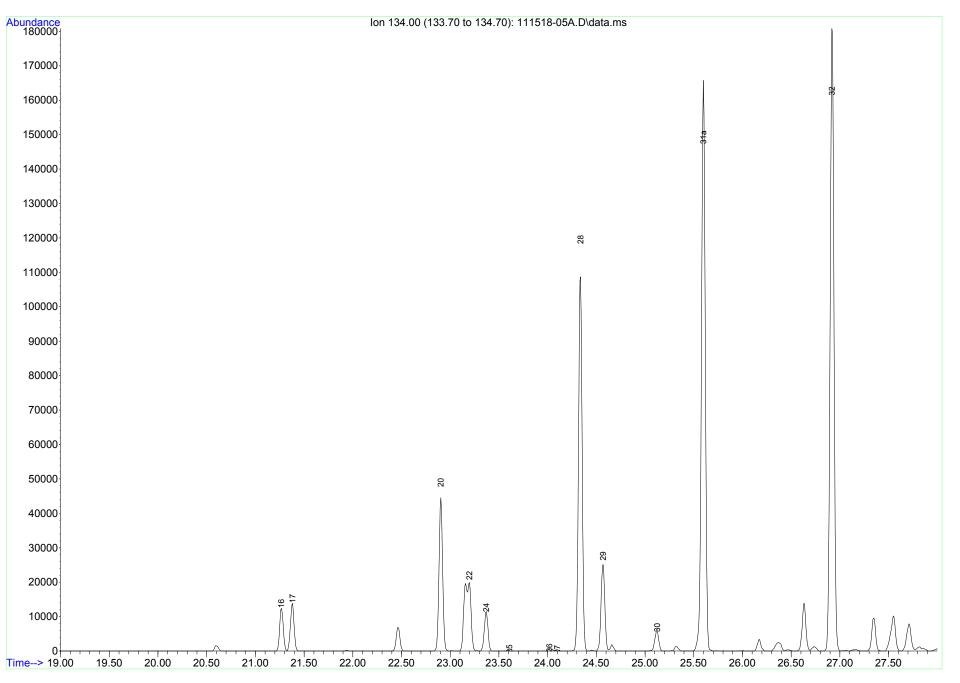
Q Method: FSRTL111618B.M

Identity	Symbol	lon	Retention	Peak Height	Rel. Height %
		(m/z)	Time		(83 m/z)
Methylcyclohexane	CH-1	83	10.2	9692.0	0.3%
Ethylcyclohexane	CH-2	83	14.3	38659.0	1.0%
Propylcyclohexane	CH-3	83	18.4	99110.0	2.6%
Butylcyclohexane	CH-4	83	22.7	216914.0	5.7%
Pentylcyclohexane	CH-5	83	26.7	408990.0	10.7%
Hexylcyclohexane	CH-6	83	30.6	489800.0	12.9%
Heptylcyclohexane	CH-7	83	34.2	656736.0	17.2%
Octylcyclohexane	CH-8	83	37.6	729360.0	19.2%
Nonylcyclohexane	CH-9	83	40.8	328587.0	8.6%
Decylcyclohexane	CH-10	83	43.8	436017.0	11.4%
Undecylcyclohexane	CH-11	83	46.7	286008.0	7.5%
Dodecylcyclohexane	CH-12	83	49.3	93120.0	2.4%
Tridecylcyclohexane	CH-13	83	51.9	15027.0	0.4%
Tetradecylcyclohexane	CH-14	83	ND	ND	ND

0.4458g->10mL FOREN4LA_RTL.M Submitted by,

Pace Energy Services, LLC

Chromatogram Key & Numerical Results: 134 m/z C3-C4 Monoaromatics


Project Manager: A. Williams Lab ID: 28678-1 Client: EPS Collected: 11/8/2018

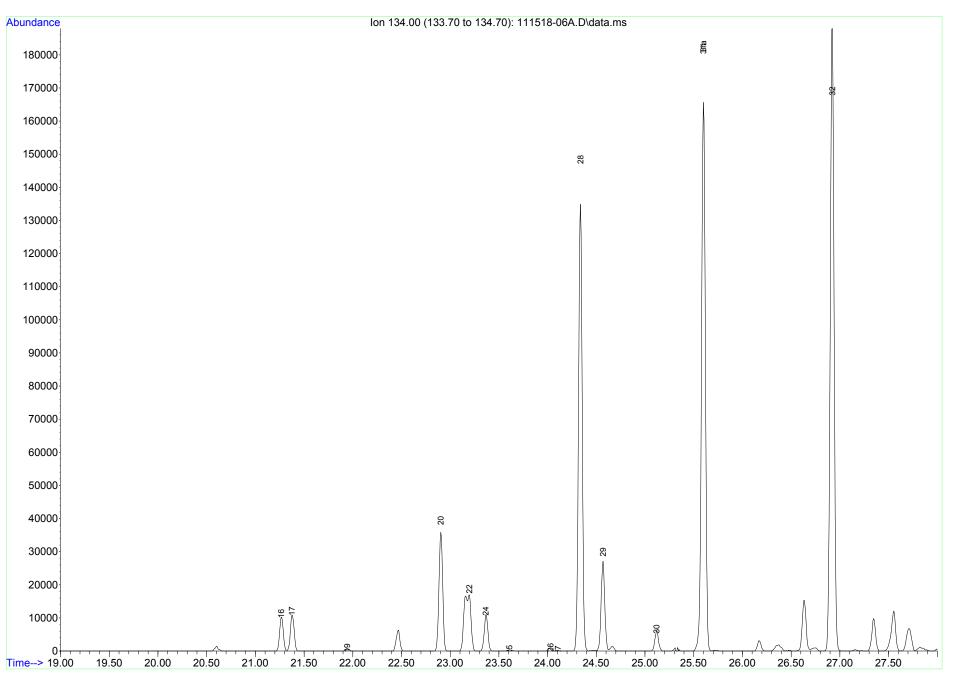
Address: 400 Northridge Rd. Suite Received: 11/12/2018
Sandy Springs, GA 30350 Matrix: Product

Project: TRANSCO
Project #:
Collected by:
Client ID: 18312-TW-24 1/10
Analyzed: 11/16/2018
Q Method: FSRTL111618B.M

Identity	Symbol	lon (m/z)	Retention Time	Peak Height	Rel. Height % (134 m/z)
Sec-Butylbenzene	16	134	21.3	12474.0	2.1%
1-Methyl-3-Isopropylbenzene	17	134	21.4	13860.0	2.3%
1-Methyl-4-Isopropylbenzene	18	134	ND	ND	ND
1-Methyl-2-Isopropylbenzene	19	134	ND	ND	ND
1,3-Diethylbenzene	20	134	22.9	44480.0	7.5%
1-Methyl-3-Propylbenzene	21	134	ND	ND	ND
Butylbenzene	22	134	23.2	19904.0	3.4%
1,3-Diethyl-5-Ethylbenzene	23	134	ND	ND	ND
1,2-Diethylbenzene	24	134	23.4	11456.0	1.9%
1-Methyl-2-Propylbenzene	25	134	23.6	547.0	0.1%
1,4-Dimethyl-2-Ethylbenzene	26	134	24.0	784.0	0.1%
1,3-Dimethyl-4-Ethylbenzene	27	134	24.1	370.0	0.1%
1,2-Dimethyl-4-Ethylbenzene	28	134	24.3	108664.0	18.4%
1,3-Dimethyl-2-Ethylbenzene	29	134	24.6	25112.0	4.3%
1,2-Dimethyl-3-Ethylbenzene	30	134	25.1	6179.0	1.0%
1,2,4,5-Tetramethylbenzene	31a	134	25.6	165760.0	28.1%
1,2,3,5-Tetramethylbenzene	31	134	ND	ND	ND
1,2,3,4-Tetramethylbenzene	32	134	26.9	180800.0	30.6%

0.4032g->10mL FOREN4LA_RTL.M

Chromatogram Key & Numerical Results: 134 m/z C3-C4 Monoaromatics


Project Manager: A. Williams Lab ID: 28678-6
Client: EPS Collected: 11/7/2018

Address: 400 Northridge Rd. Suite Received: 11/12/2018 Sandy Springs, GA 30350 Matrix: Product

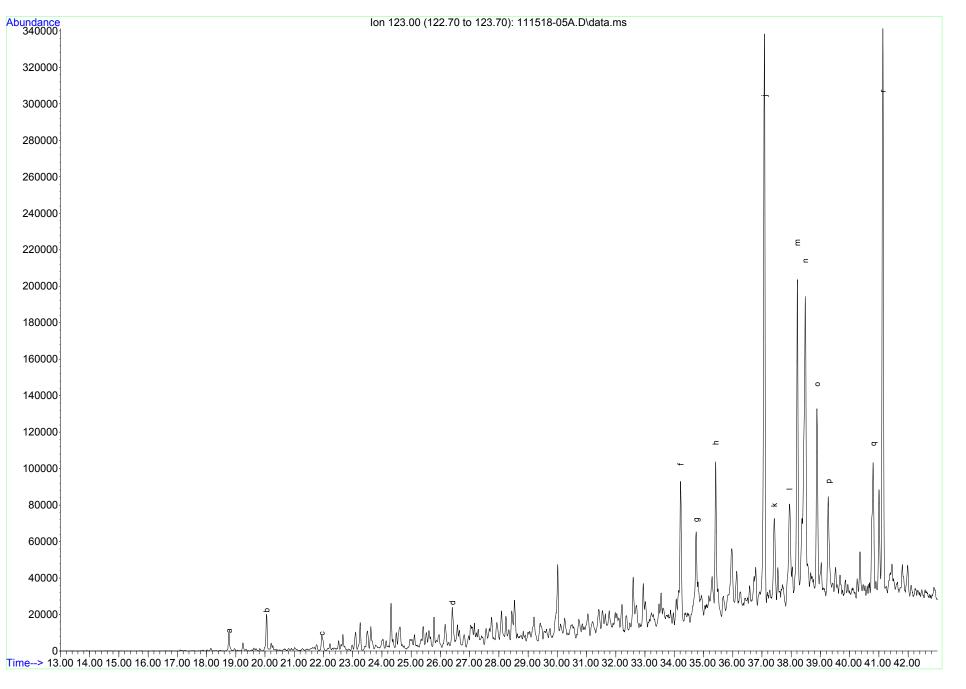
Project: TRANSCO
Project #:
Collected by:
Client ID: 18311-TW-18 1/10
Analyzed: 11/17/2018
Q Method: FSRTL111618B.M

Identity	Symbol	lon (m/z)	Retention Time	Peak Height	Rel. Height % (134 m/z)
Sec-Butylbenzene	16	134	21.3	10245.0	1.3%
1-Methyl-3-Isopropylbenzene	17	134	21.4	10905.0	1.4%
1-Methyl-4-Isopropylbenzene	18	134	ND	ND	ND
1-Methyl-2-Isopropylbenzene	19	134	21.9	812.0	0.1%
1,3-Diethylbenzene	20	134	22.9	35824.0	4.6%
1-Methyl-3-Propylbenzene	21	134	ND	ND	ND
Butylbenzene	22	134	23.2	16968.0	2.2%
1,3-Diethyl-5-Ethylbenzene	23	134	ND	ND	ND
1,2-Diethylbenzene	24	134	23.4	10896.0	1.4%
1-Methyl-2-Propylbenzene	25	134	23.6	391.0	0.1%
1,4-Dimethyl-2-Ethylbenzene	26	134	24.0	919.0	0.1%
1,3-Dimethyl-4-Ethylbenzene	27	134	24.1	253.0	0.0%
1,2-Dimethyl-4-Ethylbenzene	28	134	24.3	134848.0	17.4%
1,3-Dimethyl-2-Ethylbenzene	29	134	24.6	27104.0	3.5%
1,2-Dimethyl-3-Ethylbenzene	30	134	25.1	5981.0	0.8%
1,2,4,5-Tetramethylbenzene	31a	134	25.6	165632.0	21.4%
1,2,3,5-Tetramethylbenzene	31	134	25.6	165632.0	21.4%
1,2,3,4-Tetramethylbenzene	32	134	26.9	187904.0	24.3%

0.4458g->10mL FOREN4LA_RTL.M

Chromatogram Key & Numerical Results: 123 m/z Bicyclanes

Project Manager: A. Williams Lab ID: 28678-1


Client: EPS Collected: 11/8/2018

Address: 400 Northridge Rd. Suite Received: 11/12/2018 Sandy Springs, GA 30350 Matrix: Product

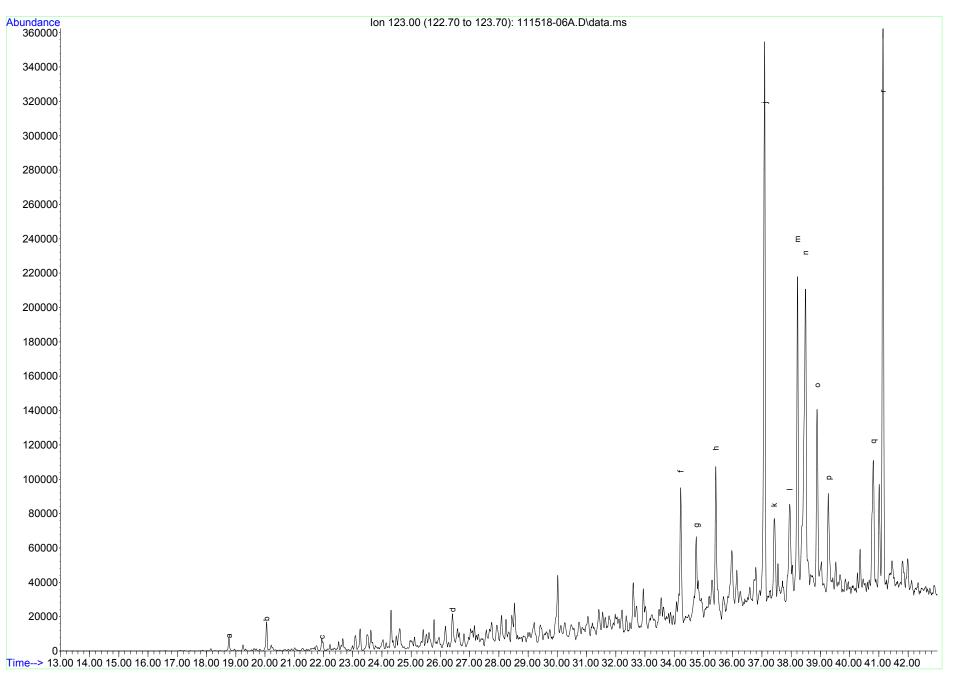
Project: TRANSCO
Project #:
Collected by:
Client ID: 18312-TW-24 1/10
Analyzed: 11/16/2018
Q Method: FSRTL111618B.M

Identity	Symbol	lon (m/z)	Retention Time	Peak Height	Rel. Height % (123 m/z)
2,2,3-Trimethylbicycloheptane	a	123	18.8	10142.0	0.7%
C ₁₀ bicycloalkane	b	123	20.1	20200.0	1.3%
3,3,7-Trimethylbicycloheptane	С	123	21.9	8466.0	0.6%
C ₁₁ Decalin	d	123	26.4	21067.0	1.4%
Nordrimane	f	123	34.2	76651.0	5.0%
Nordrimane	g	123	34.8	49646.0	3.3%
Rearranged drimane	h	123	35.4	77448.0	5.1%
Rearranged drimane	j	123	37.1	311856.0	20.4%
Isomer of Eudesmane	k	123	37.4	44640.0	2.9%
4β (H) Eudesmane	1	123	38.0	56128.0	3.7%
C ₁₅ Bicyclic Sesquiterpane	m	123	38.2	170400.0	11.2%
8β (H) Drimane	n	123	38.5	148315.0	9.7%
C ₁₅ Bicyclic Sesquiterpane	0	123	38.9	98572.0	6.5%
C ₁₆ Bicyclic Sesquiterpane	р	123	39.3	54360.0	3.6%
C ₁₆ Bicyclic Sesquiterpane	q	123	40.8	71336.0	4.7%
8β (H) Homodrimane	r	123	41.1	306960.0	20.1%

0.4032g->10mL FOREN4LA_RTL.M

Chromatogram Key & Numerical Results: 123 m/z Bicyclanes

Project Manager: A. Williams Lab ID: 28678-6


Client: EPS Collected: 11/7/2018

Address: 400 Northridge Rd. Suite Received: 11/12/2018 Sandy Springs, GA 30350 Matrix: Product

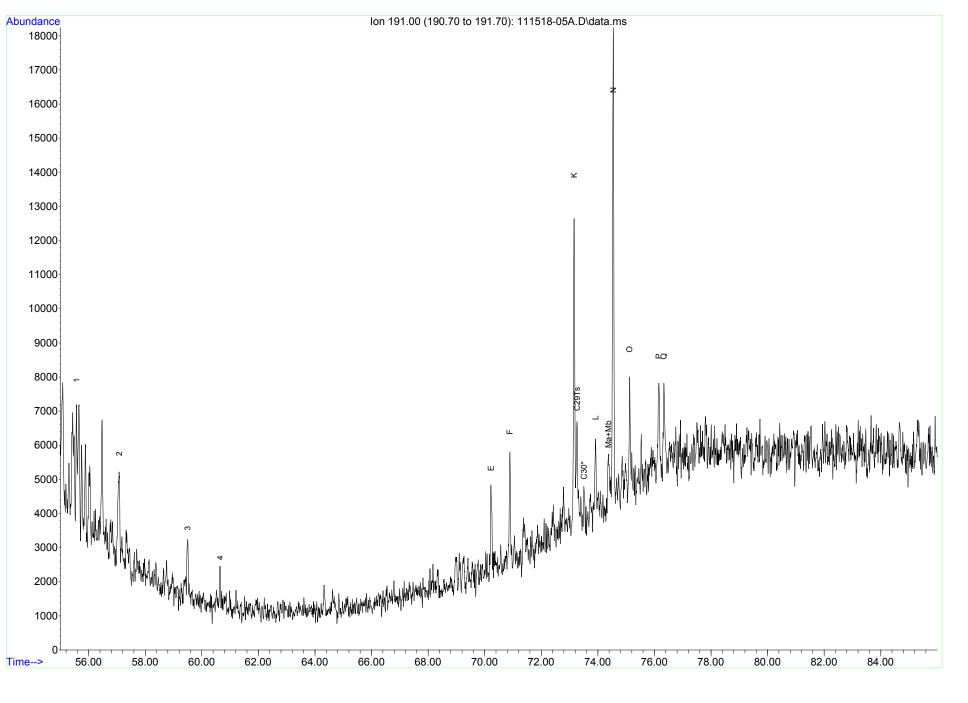
Project: TRANSCO
Project #:
Collected by:
Client ID: 18311-TW-18 1/10
Analyzed: 11/17/2018
Q Method: FSRTL111618B.M

Identity	Symbol	lon (m/z)	Retention Time	Peak Height	Rel. Height % (123 m/z)
2,2,3-Trimethylbicycloheptane	a	123	18.8	8089.0	0.5%
C ₁₀ bicycloalkane	b	123	20.1	16928.0	1.1%
3,3,7-Trimethylbicycloheptane	С	123	21.9	7172.0	0.5%
C ₁₁ Decalin	d	123	26.4	19407.0	1.2%
Nordrimane	f	123	34.2	78576.0	4.9%
Nordrimane	g	123	34.8	35218.0	2.2%
Rearranged drimane	h	123	35.4	88936.0	5.6%
Rearranged drimane	j	123	37.1	325704.0	20.4%
Isomer of Eudesmane	k	123	37.4	46614.0	2.9%
4β (H) Eudesmane	1	123	38.0	56848.0	3.6%
C ₁₅ Bicyclic Sesquiterpane	m	123	38.2	182616.0	11.5%
8β (H) Drimane	n	123	38.5	169192.0	10.6%
C ₁₅ Bicyclic Sesquiterpane	О	123	38.9	103200.0	6.5%
C ₁₆ Bicyclic Sesquiterpane	р	123	39.3	57456.0	3.6%
C ₁₆ Bicyclic Sesquiterpane	q	123	40.8	73056.0	4.6%
8β (H) Homodrimane	r	123	41.1	323703.0	20.3%

0.4458g->10mL FOREN4LA_RTL.M

Chromatogram Key & Numerical Results: 191 m/z Terpanes

Project Manager: A. Williams Lab ID: 28678-1 Client: EPS Collected: 11/8/2018


Address: 400 Northridge Rd. Received: 11/12/2018
Sandy Springs, GA Matrix: Product

30350 Project: TRANSCO Client ID: 18312-TW-24 1/10

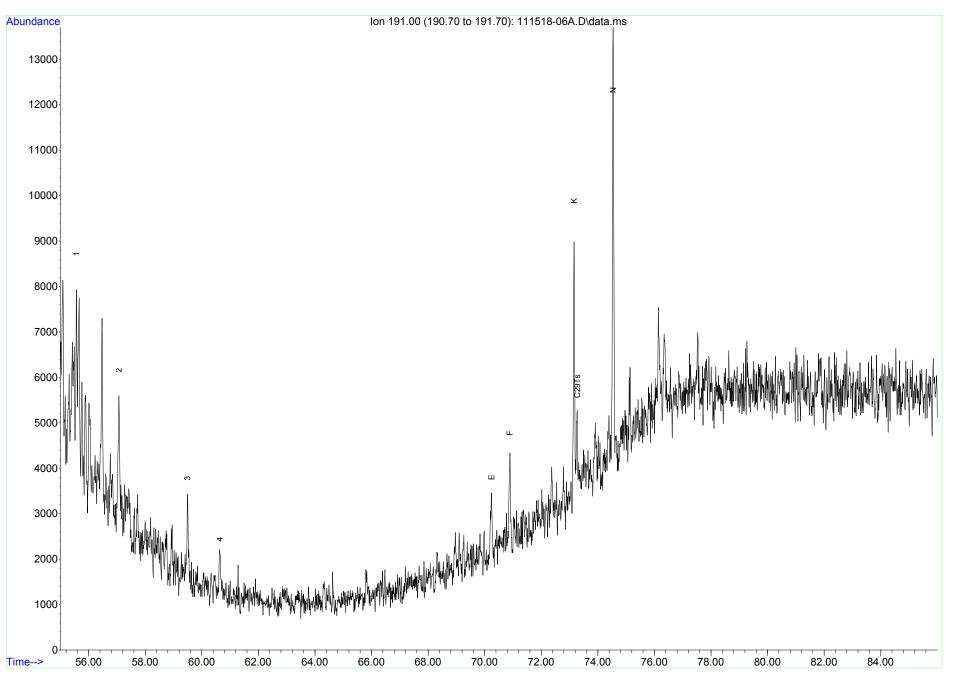
Project #: Analyzed: 11/16/2018
Collected by: Q Method: FSRTL111618B.M

Identity	Symbol	Ion (m/z)	Retention Time	Peak Height	Rel. Height % (191 m/z)
C ₂₁ -Tricyclic Terpane	1	191	55.6	3423.0	5.8%
C ₂₂ -Tricyclic Terpane	2	191	57.1	2743.0	4.6%
C ₂₃ -Tricyclic Terpane	3	191	59.5	5310.0	9.0%
C ₂₄ -Tricyclic Terpane	4	191	60.6	1295.0	2.2%
C ₂₅ -Tricyclic Terpane	5(S+R)	191	ND	ND	ND
C ₂₄ -Tetracyclic Terpane	Z 4	191	ND	ND	ND
C ₂₆ -Tricyclic Terpane	6a*	191	ND	ND	ND
C ₂₆ -Tricyclic Terpane	6b	191	ND	ND	ND
C ₂₈ -Tricyclic Terpane #1	Α	191	ND	ND	ND
C ₂₈ -Tricyclic Terpane #2	В	191	ND	ND	ND
C ₂₉ -Tricyclic Terpane #1	С	191	ND	ND	ND
C ₂₉ -Tricyclic Terpane #2	D	191	ND	ND	ND
18 α-22,29,30-Trisnorneohopane (Ts)	Е	191	70.2	2500.0	4.2%
17 α-22,29,30-Trisnorhopane (Tm)	F	191	70.9	3444.0	5.8%
C ₃₀ -Tricyclic Terpane #1	10a*	191	ND	ND	ND
C ₃₀ -Tricyclic Terpane #2	10b	191	ND	ND	ND
17 α-28,30 Bisnorhopane	1	191	ND	ND	ND
C ₃₁ -Tricyclic Terpane #1	11a*	191	ND	ND	ND
17α-25-Norhopane	J	191	ND	ND	ND
C ₃₁ -Tricyclic Terpane #2	11b	191	ND	ND	ND
17 α,21β-30-Norhopane	K	191	73.2	9294.0	15.7%
18α-30-Norneohopane	C29Ts	191	73.3	2265.0	3.8%
17α-Diahopane	C30*	191	73.5	1372.0	2.3%
17β-21α-30-Normoretane	L	191	73.9	2243.0	3.8%
18α+18β-Oleanane	Ma+Mb	191	74.4	1730.0	2.9%
17α-21β-Hopane	N	191	74.5	13951.0	23.6%
17β-21α-Moretane	0	191	75.1	3689.0	6.2%
22S-17α,21β-30-Homohopane	Р	191	76.2	2931.0	5.0%
22R-17α,21β-30-Homohopane	Q	191	76.3	2879.0	4.9%
Gammacerane	R	191	ND	ND	ND
22S-17α,21β-30-Bishomohopane	Т	191	ND	ND	ND
22R-17α,21β-30-Bishomohopane	U	191	ND	ND	ND
22S-17α,21β-30-Bishomohopane	WS	191	ND	ND	ND
22R-17α,21β-Trishomohopane	WR	191	ND	ND	ND
22S-17α,21β-Tetrahomohopane	XS	191	ND	ND	ND
22R-17α,21β-Tetrahomohopane	XR	191	ND	ND	ND
22S-17 α ,21 β -Pentahomohopane	YS	191	ND	ND	ND
22R-17 α ,21 β -Pentahomohopane	YR	191	ND	ND	ND

0.4032g->10mL FOREN4LA_RTL.M

Chromatogram Key & Numerical Results: 191 m/z Terpanes

Project Manager: A. Williams Lab ID: 28678-6
Client: EPS Collected: 11/7/2018


Address: 400 Northridge Rd. Received: 11/12/2018
Sandy Springs, GA Matrix: Product

30350 Project: TRANSCO Client ID: 18311-TW-18 1/10

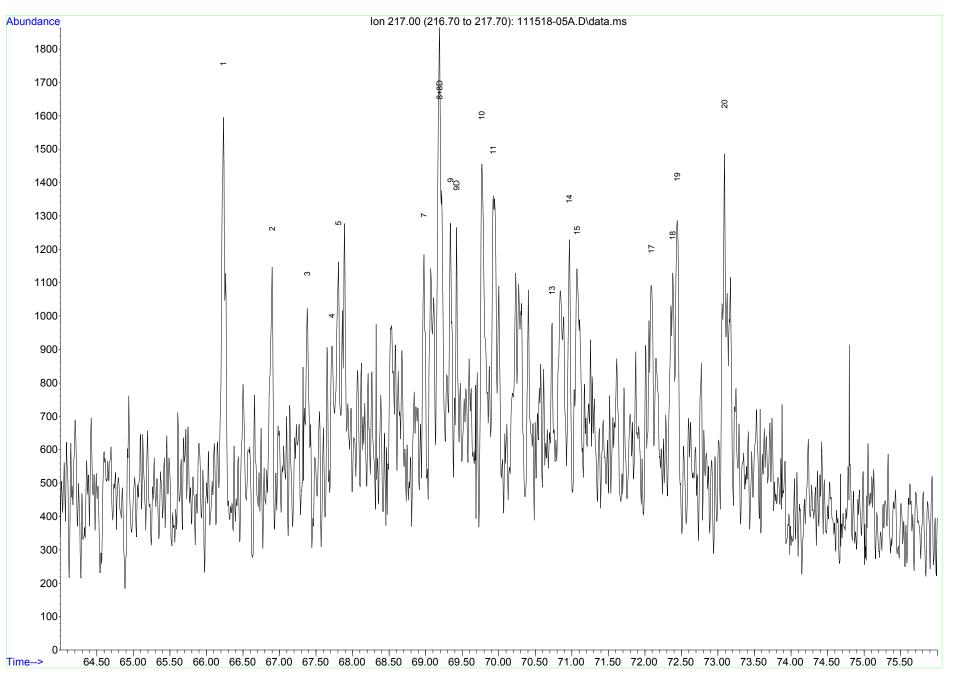
Project #: Analyzed: 11/17/2018
Collected by: Q Method: FSRTL111618B.M

Identity	Symbol	Ion (m/z)	Retention Time	Peak Height	Rel. Height % (191 m/z)
C ₂₁ -Tricyclic Terpane	1	191	55.6	3200.0	10.0%
C ₂₂ -Tricyclic Terpane	2	191	57.1	3001.0	9.4%
C ₂₃ -Tricyclic Terpane	3	191	59.5	4115.0	12.8%
C ₂₄ -Tricyclic Terpane	4	191	60.6	1093.0	3.4%
C ₂₅ -Tricyclic Terpane	5(S+R)	191	ND	ND	ND
C ₂₄ -Tetracyclic Terpane	Z 4	191	ND	ND	ND
C ₂₆ -Tricyclic Terpane	6a*	191	ND	ND	ND
C ₂₆ -Tricyclic Terpane	6b	191	ND	ND	ND
C ₂₈ -Tricyclic Terpane #1	Α	191	ND	ND	ND
C ₂₈ -Tricyclic Terpane #2	В	191	ND	ND	ND
C ₂₉ -Tricyclic Terpane #1	С	191	ND	ND	ND
C ₂₉ -Tricyclic Terpane #2	D	191	ND	ND	ND
18 α-22,29,30-Trisnorneohopane (Ts)	Е	191	70.2	1453.0	4.5%
17 α-22,29,30-Trisnorhopane (Tm)	F	191	70.9	2189.0	6.8%
C ₃₀ -Tricyclic Terpane #1	10a*	191	ND	ND	ND
C ₃₀ -Tricyclic Terpane #2	10b	191	ND	ND	ND
17 α-28,30 Bisnorhopane	1	191	ND	ND	ND
C ₃₁ -Tricyclic Terpane #1	11a*	191	ND	ND	ND
17α-25-Norhopane	J	191	ND	ND	ND
C ₃₁ -Tricyclic Terpane #2	11b	191	ND	ND	ND
17 α,21β-30-Norhopane	K	191	73.2	5974.0	18.6%
18α-30-Norneohopane	C29Ts	191	73.3	1585.0	4.9%
17α-Diahopane	C30*	191	ND	ND	ND
17β-21α-30-Normoretane	L	191	ND	ND	ND
18α+18β-Oleanane	Ma+Mb	191	ND	ND	ND
17α-21β-Hopane	N	191	74.5	9479.0	29.5%
17β-21α-Moretane	0	191	ND	ND	ND
22S-17α,21β-30-Homohopane	Р	191	ND	ND	ND
22R-17α,21β-30-Homohopane	Q	191	ND	ND	ND
Gammacerane	R	191	ND	ND	ND
22S-17α,21β-30-Bishomohopane	Т	191	ND	ND	ND
22R-17α,21β-30-Bishomohopane	U	191	ND	ND	ND
22S-17α,21β-30-Bishomohopane	WS	191	ND	ND	ND
22R-17α,21β-Trishomohopane	WR	191	ND	ND	ND
22S-17α,21β-Tetrahomohopane	XS	191	ND	ND	ND
22R-17 α ,21 β -Tetrahomohopane	XR	191	ND	ND	ND
22S-17α,21β-Pentahomohopane	YS	191	ND	ND	ND
22R-17 α ,21 β -Pentahomohopane	YR	191	ND	ND	ND

0.4458g->10mL FOREN4LA_RTL.M

Chromatogram Key & Numerical Results: 217 m/z Steranes

Project Manager: A. Williams Lab ID: 28678-1 Client: EPS Collected: 11/8/2018


Address: 400 Northridge Rd. Suite Received: 11/12/2018
Sandy Springs, GA 30350 Matrix: Product

Project: TRANSCO
Project #:
Collected by:

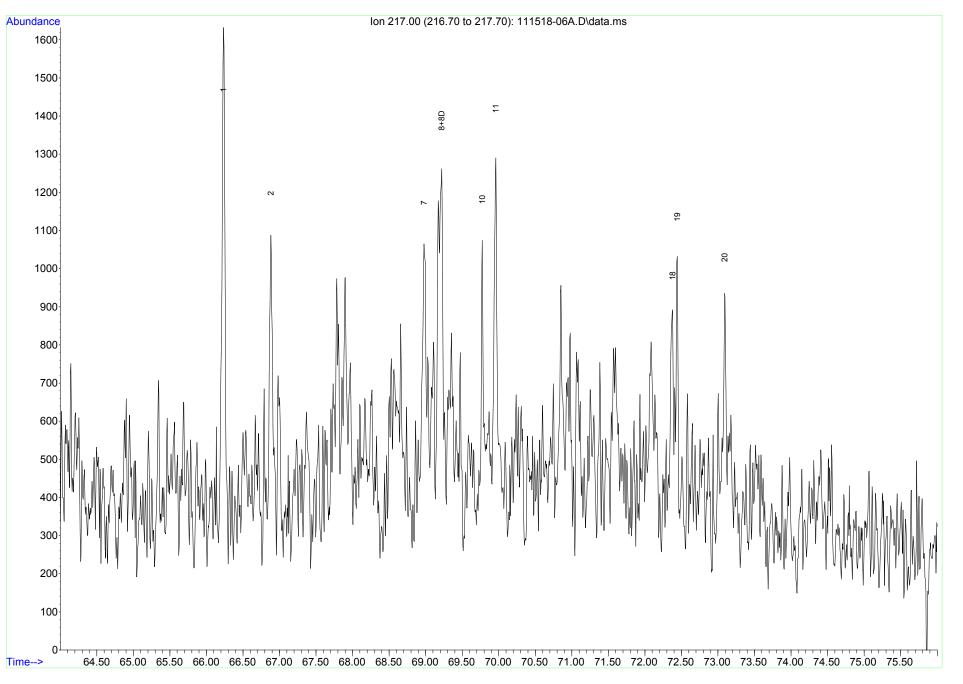
Client ID: 18312-TW-24 1/10
Analyzed: 11/16/2018
Q Method: FSRTL111618B.M

Identity	Symbol	lon	Retention	Peak Height	Rel. Height %
		(m/z)	Time		(217 m/z)
13β, 17α-Diacholestane (20S)	1	217	66.2	1205.0	8.6%
13β, 17α-Diacholestane (20R)	2	217	66.9	784.0	5.6%
13α, 17β-Diacholestane (20S)	3	217	67.4	718.0	5.1%
13α, 17β-Diacholestane (20R)	4	217	67.7	438.0	3.1%
24-methyl-13β,17α-Diacholestane (20S)	5	217	67.8	579.0	4.1%
24-methyl-13β,17α-Diacholestane (20S)	6	217	ND	ND	ND
24-methyl-13α,17β-Diacholestane (20S)	7D	217	ND	ND	ND
14α,17α-Cholestane (20S)	7	217	69.0	733.0	5.2%
24-ethyl-13β, 17α-Diacholestane (20S)+	8+8D	217			
14β,17β-Cholestane (20R)			69.2	1260.0	9.0%
14β,17β-Cholestane (20S)	9	217	69.3	760.0	5.4%
24-methyl-13α,17β-Diacholestane (20R)	9D	217	69.4	641.0	4.6%
14α,17α-Cholestane (20R)	10	217	69.8	1087.0	7.8%
24-ethyl-13β, 17α-Diacholestane (20R)	11	217	69.9	718.0	5.1%
24-ethyl-13α, 17β-Diacholestane (20S)	12	217	ND	ND	ND
24-ethyl-13α, 17α-Diacholestane (20S)	13	217	70.7	435.0	3.1%
24-methyl-14β, 17β-Cholestane (20R)	14	217	71.0	756.0	5.4%
24-methyl-14β, 17β-Cholestane (20S)	15	217	71.1	670.0	4.8%
24-methyl-14α, 17α-Cholestane (20R)	16	217	ND	ND	ND
24-ethyl-14α-Cholestane (20S)	17	217	72.1	608.0	4.3%
24-ethyl-14β, 17β-Cholestane (20R)	18	217	72.4	601.0	4.3%
24-ethyl-14β, 17β-Cholestane (20S)	19	217	72.4	938.0	6.7%
24-ethyl-14 α , 17 α -Cholestane (20R)	20	217	73.1	1065.0	7.6%

0.4032g->10mL FOREN4LA_RTL.M

Chromatogram Key & Numerical Results: 217 m/z Steranes

Project Manager: A. Williams Lab ID: 28678-6
Client: EPS Collected: 11/7/2018


Address: 400 Northridge Rd. Suite Received: 11/12/2018
Sandy Springs, GA 30350 Matrix: Product

Project: TRANSCO
Project #:
Collected by:

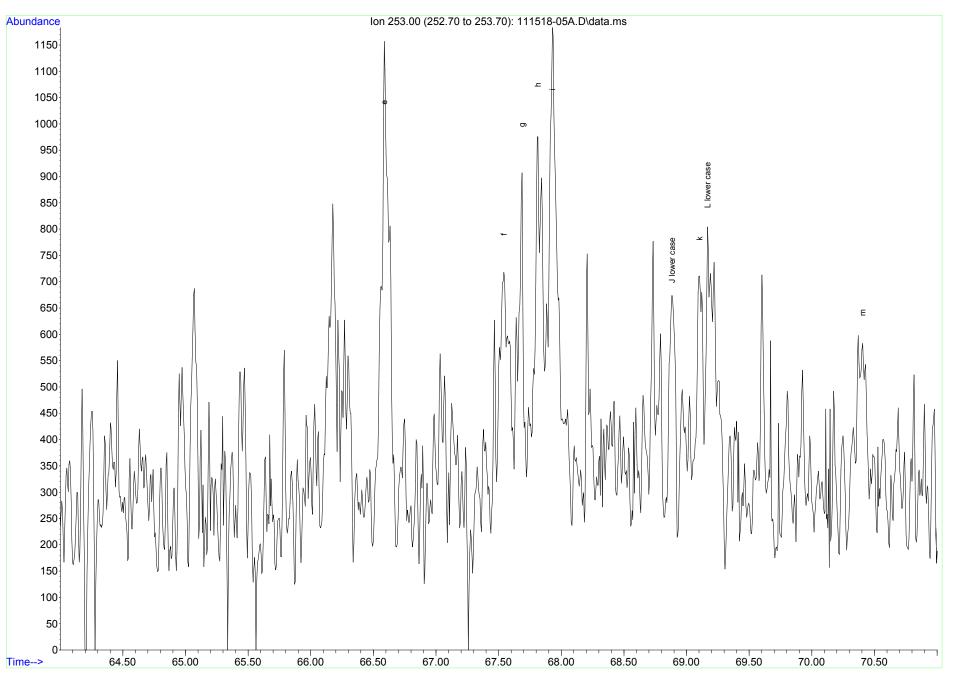
Client ID: 18311-TW-18 1/10
Analyzed: 11/17/2018
Q Method: FSRTL111618B.M

Identity	Symbol	lon	Retention	Peak Height	Rel. Height %
		(m/z)	Time		(217 m/z)
13β, 17α-Diacholestane (20S)	1	217	66.2	1406.0	20.4%
13β, 17α-Diacholestane (20R)	2	217	66.9	839.0	12.1%
13α, 17β-Diacholestane (20S)	3	217	ND	ND	ND
13α, 17β-Diacholestane (20R)	4	217	ND	ND	ND
24-methyl-13β,17α-Diacholestane (20S)	5	217	ND	ND	ND
24-methyl-13β,17α-Diacholestane (20S)	6	217	ND	ND	ND
24-methyl-13α,17β-Diacholestane (20S)	7D	217	ND	ND	ND
14α,17α-Cholestane (20S)	7	217	69.0	614.0	8.9%
24-ethyl-13 β , 17 α -Diacholestane (20S)+	8+8D	217			
14β,17β-Cholestane (20R)			69.2	869.0	12.6%
14β,17β-Cholestane (20S)	9	217	ND	ND	ND
24-methyl-13α,17β-Diacholestane (20R)	9D	217	ND	ND	ND
14α,17α-Cholestane (20R)	10	217	69.8	643.0	9.3%
24-ethyl-13β, 17α-Diacholestane (20R)	11	217	70.0	877.0	12.7%
24-ethyl-13α, 17β-Diacholestane (20S)	12	217	ND	ND	ND
24-ethyl-13α, 17α-Diacholestane (20S)	13	217	ND	ND	ND
24-methyl-14β, 17β-Cholestane (20R)	14	217	ND	ND	ND
24-methyl-14β, 17β-Cholestane (20S)	15	217	ND	ND	ND
24-methyl-14α, 17α-Cholestane (20R)	16	217	ND	ND	ND
24-ethyl-14α-Cholestane (20S)	17	217	ND	ND	ND
24-ethyl-14β, 17β-Cholestane (20R)	18	217	72.4	467.0	6.8%
24-ethyl-14β, 17β-Cholestane (20S)	19	217	72.4	687.0	9.9%
24-ethyl-14 α , 17 α -Cholestane (20R)	20	217	73.1	504.0	7.3%

0.4458g->10mL FOREN4LA_RTL.M

Chromatogram Key & Numerical Results: 253 m/z Monoaromatic Steranes

Project Manager: A. Williams Lab ID: 28678-1 Client: EPS Collected: 11/8/2018


5...... 2. 5

Address: 400 Northridge Rd. Suite Received: 11/12/2018
Sandy Springs, GA 30350 Matrix: Product

Project: TRANSCO Client ID: 18312-TW-24 1/10
Project #: Analyzed: 11/16/2018
Collected by: Q Method: FSRTL111618B.M

Identity	Symbol	lon (m/z)	Retention Time	Peak Height	Rel. Height % (253 m/z)
20S, 5β C27-MAS	a	253	ND	ND	ND
20S, dia C27-MAS	b	253	ND	ND	ND
20R, 5β C27-MAS + 20R C27 dia MAS	С	253	ND	ND	ND
20S, 5α C27-MAS	d	253	ND	ND	ND
20R, 5β C28-MAS + 20S C28 dia MAS	e	253	66.6	961.0	20.1%
20R, 5α C27-MAS	f	253	67.5	398.0	8.3%
20S, 5α C28-MAS	g	253	67.7	578.0	12.1%
20R, 5β C28-MAS + 20R C28 dia MAS	h	253	67.8	571.0	11.9%
20S, 5β C29-MAS + 20S C29 dia MAS	i	253	67.9	753.0	15.7%
20S, 5α C29-MAS	J lower case	253	68.9	457.0	9.6%
20R, 5α C28-MAS	k	253	69.1	344.0	7.2%
20R, 5β C29-MAS + 20R C29 dia MAS	L lower case	253	69.2	421.0	8.8%
20R, 5α C29-MAS	m	253	70.4	301.0	6.3%

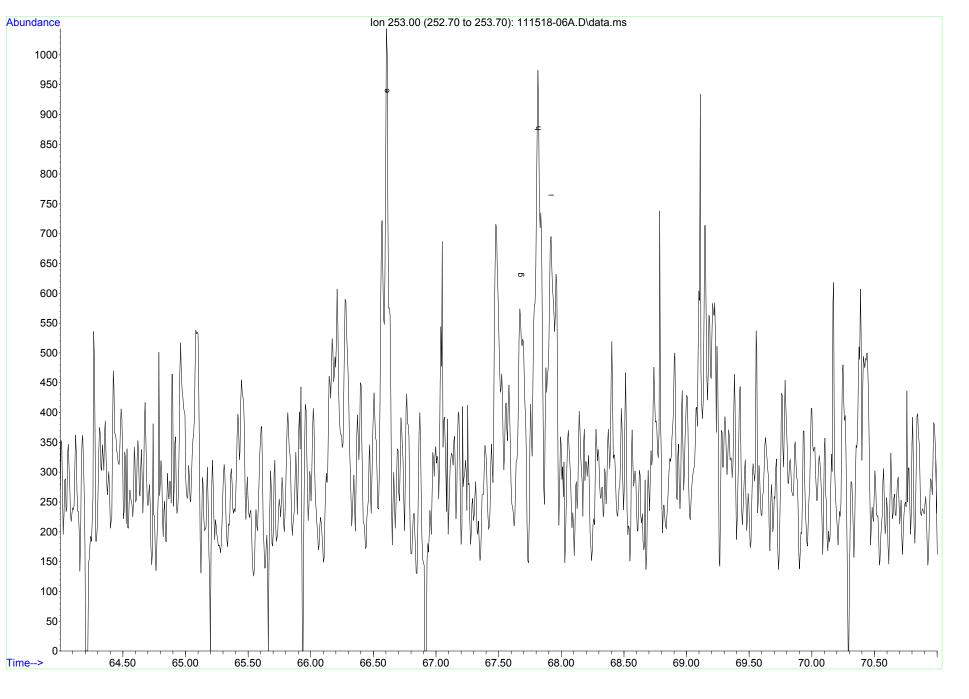
0.4032g->10mL FOREN4LA_RTL.M

Chromatogram Key & Numerical Results: 253 m/z Monoaromatic Steranes

Project Manager: A. Williams Lab ID: 28678-6

Client: EPS Collected: 11/7/2018

Address: 400 Northridge Rd. Suite Received: 11/12/2018
Sandy Springs, GA 30350 Matrix: Product


Project: TRANSCO
Project #:
Collected by:

Client ID: 18311-TW-18 1/10
Analyzed: 11/17/2018

Q Method: FSRTL111618B.M

Identity	Symbol	lon (m/z)	Retention Time	Peak Height	Rel. Height % (253 m/z)
20S, 5β C27-MAS	a	253	ND	ND	ND
20S, dia C27-MAS	b	253	ND	ND	ND
20R, 5β C27-MAS + 20R C27 dia MAS	С	253	ND	ND	ND
20S, 5α C27-MAS	d	253	ND	ND	ND
20R, 5β C28-MAS + 20S C28 dia MAS	e	253	66.6	866.0	35.1%
20R, 5α C27-MAS	f	253	ND	ND	ND
20S, 5α C28-MAS	g	253	67.7	426.0	17.3%
20R, 5β C28-MAS + 20R C28 dia MAS	h	253	67.8	728.0	29.5%
20S, 5β C29-MAS + 20S C29 dia MAS	i	253	67.9	449.0	18.2%
20S, 5α C29-MAS	J lower case	253	ND	ND	ND
20R, 5α C28-MAS	k	253	ND	ND	ND
20R, 5β C29-MAS + 20R C29 dia MAS	L lower case	253	ND	ND	ND
20R, 5α C29-MAS	m	253	ND	ND	ND

0.4458g->10mL FOREN4LA_RTL.M

Chromatogram Key & Numerical Results: 231 m/z Triaromatic Steranes

Project Manager: A. Williams Lab ID: 28678-1

Client: EPS Collected: 11/8/2018

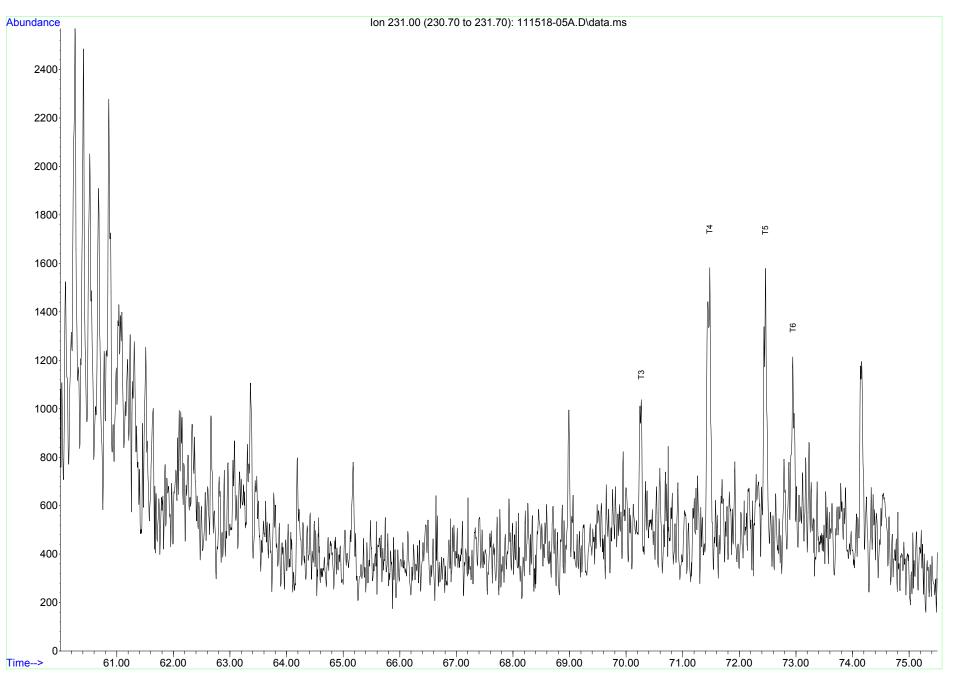
Address: 400 Northridge Rd. Suite Received: 11/12/2018

Sandy Springs, GA 30350 Matrix: Product

Project: TRANSCO

Project #:

Collected by:


Client ID: 18312-TW-24 1/10

Analyzed: 11/16/2018

Q Method: FSRTL111618B.M

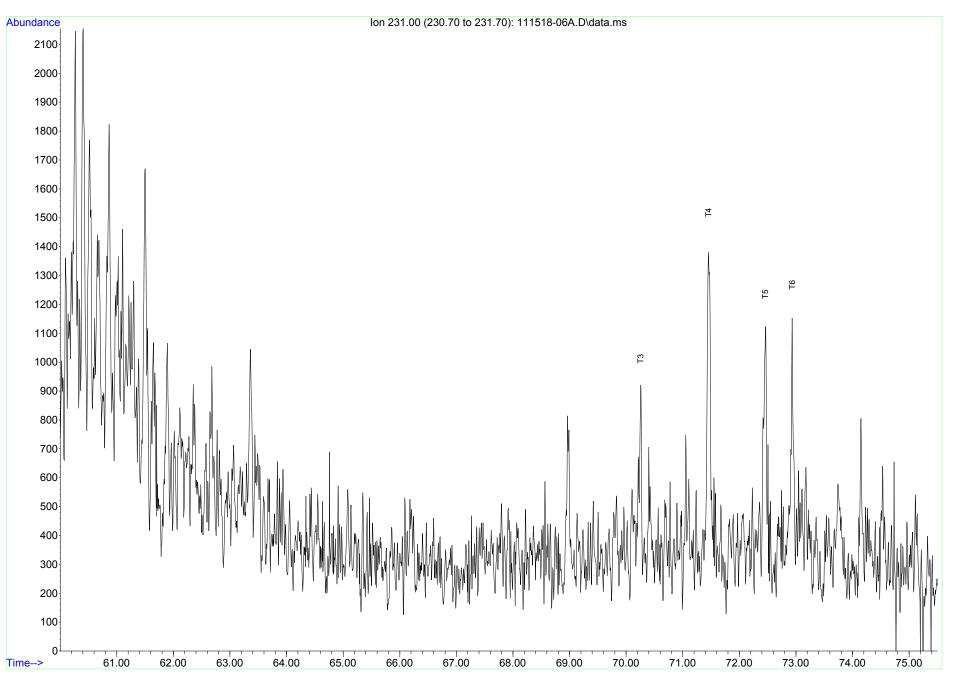
Identity	Symbol	lon (m/z)	Retention Time	Peak Height	Rel. Height % (231 m/z)
C ₂₀ Triaromatic Sterane	T1	231	ND	ND	ND
C ₂₁ Triaromatic Sterane	T2	231	ND	ND	ND
20S C ₂₆ Triaromatic Sterane	T3	231	70.3	625.0	13.6%
20R C ₂₆ + 20S C ₂₇ Triaromatic Steranes	T4	231	71.5	1254.0	27.4%
20S C ₂₈ Triaromatic Sterane	T5	231	72.5	1184.0	25.9%
20R C ₂₇ Triaromatic Sterane	T6	231	73.0	719.0	15.7%
20R C ₂₈ Triaromatic Sterane	T7	231	74.2	797.0	17.4%

0.4032g->10mL FOREN4LA_RTL.M

Chromatogram Key & Numerical Results: 231 m/z Triaromatic Steranes

Project Manager: A. Williams Lab ID: 28678-6

Client: EPS Collected: 11/7/2018


Address: 400 Northridge Rd. Suite Received: 11/12/2018
Sandy Springs, GA 30350 Matrix: Product

Project: TRANSCO Client ID: 18311-TW-18 1/10
Project #: Analyzed: 11/17/2018

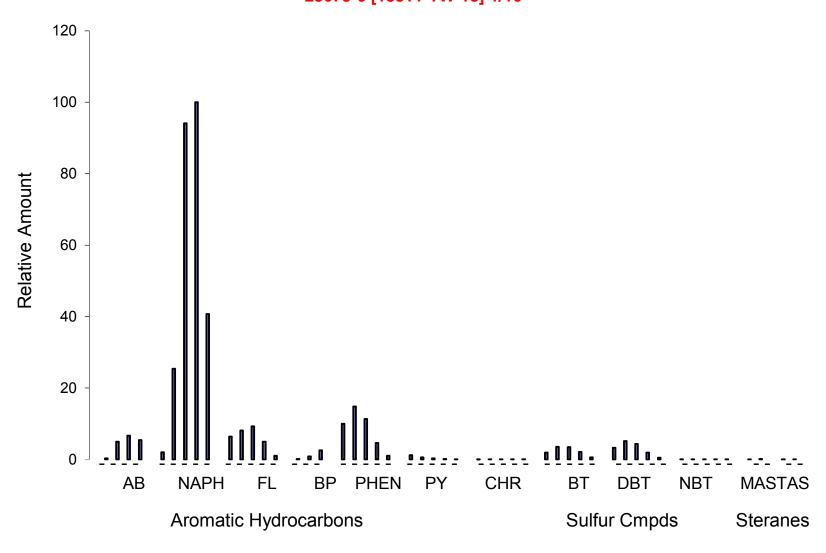
Collected by: Q Method: FSRTL111618B.M

Identity	Symbol	lon (m/z)	Retention Time	Peak Height	Rel. Height % (231 m/z)
C ₂₀ Triaromatic Sterane	T1	231	ND	ND	ND
C ₂₁ Triaromatic Sterane	T2	231	ND	ND	ND
20S C ₂₆ Triaromatic Sterane	T3	231	70.3	656.0	16.2%
20R C ₂₆ + 20S C ₂₇ Triaromatic Steranes	T4	231	71.5	1065.0	26.3%
20S C ₂₈ Triaromatic Sterane	T5	231	72.5	865.0	21.4%
20R C ₂₇ Triaromatic Sterane	T6	231	72.9	881.0	21.8%
20R C ₂₈ Triaromatic Sterane	T7	231	74.2	577.0	14.3%

0.4458g->10mL FOREN4LA_RTL.M

Key for Identifying Aromatic Hydrocarbons


No	m/z	Abbreviation	Compound
1	120	AB	C ₃ -alkylbenzenes
2	134		C ₄ -alkylbenzenes
3	148		C ₅ -alkylbenzenes
4	162		C ₆ -alkylbenzenes
5	128	NAPH	C ₀ -naphthalene
6	142		C ₁ -naphthalenes
7	156		C ₂ -naphthalenes
8	170		C₃-naphthalenes
9	184		C ₄ -naphthalenes
10	166	FL	C ₀ -fluorene
11	180		C ₁ -fluorenes
12	194		C ₂ -fluorenes
13	208		C ₃ -fluorenes
14	222		C ₄ -fluorenes
15	154	ВР	C ₀ -biphenyl
16	168		C ₁ -biphenyls + dibenzofuran
17	182		C ₂ -biphenyls + C1 Dibenzofuran
18	178	PHEN	C ₀ -phenanthrene
19	192		C ₁ -phenanthrenes
20	206		C ₂ -phenanthrenes
21	220		C ₃ -phenanthrenes
22	234		C ₄ -phenanthrenes
23	202	PY	C_0 -pyrene/fluoranthene
24	216		C ₁ -pyrenes/fluoranthenes
25	230		C ₂ -pyrenes/fluoranthenes
26	244		C₃-pyrenes/fluoranthenes
27	258		C ₄ -pyrenes/fluoranthenes
28	228	CHR	C ₀ -chrysene
29	242		C ₁ -chrysenes
30	256		C ₂ -chrysenes
31	270		C ₃ -chrysenes
32	284		C ₄ -chrysenes
33	148	BT	C ₁ -benzothiophenes
34	162		C_2 -benzothiophenes
35	176		C_3 -benzothiophenes
36	190		C_4 -benzothiophenes
37	204		C_5 -benzothiophenes


Key for Identifying Aromatic Hydrocarbons – Cont.

No	m/z	Abbreviation	Compound
38	184	DBT	C ₀ -dibenzothiophene
39	198		C ₁ -dibenzothiophenes
40	212		C ₂ -dibenzothiophenes
41	226		C ₃ -dibenzothiophenes
42	240		C ₄ -dibenzothiophenes
43	234	NBT	C ₀ -naphthobenzthiophene
44	248		C ₁ -naphthobenzthiophenes
45	262		C ₂ -naphthobenzthiophenes
46	276		C ₃ -naphthobenzthiophenes
47	290		C ₄ -naphthobenzthiophenes
48	253	MAS	Monoaromatic steranes
49	267		Monoaromatic steranes
50	239		Monoaromatic steranes
51	231	TAS	Triaromatic steranes
52	245		Triaromatic steranes

Aromatic Hydrocarbon Distribution 28678-1 [18312-TW-24] 1/10

Aromatic Hydrocarbon Distribution 28678-6 [18311-TW-18] 1/10

Quality Monitoring Form

Project Manager: A. Williams Lab ID: 28678-1

Client: EPS

Collected: 11/8/2018 Received: 11/12/2018

Address: 400 Northridge Rd. Suite

Sandy Springs, GA 30350

Matrix: Product

Project: TRANSCO
Project #:
Analyzed: 11/16/2018
Collected by:
Q Method: FSRTL111618B.M

Identity	R.T.	Expected R.T.	Qualifier
o-Terphenyl	49.2	49.2	
Naphthalene (d8)	27.7	27.7	
Acenapthene (d10)	37.8	37.8	
Phenanthrene (d10)	46.3	46.3	
Chrysene (d12)	61.6	61.7	
Perylene (d12)	69.2	69.3	
Mass Discrimination Ratio 1	1.4		
Mass Discrimination Ratio 2	0.6		
Mass Discrimination Ratio 3	0.23		

Q - Retention time qualifier M-Mass discrimination qualifier

FOREN4LA_RTL.M 0.4032g->10mL

Submitted by,

Pace Energy Services, LLC

Quality Monitoring Form

Project Manager: A. Williams Lab ID: 28678-6

Client: EPS

Collected: 11/7/2018 Received: 11/12/2018

Address: 400 Northridge Rd. Suite

Sandy Springs, GA 30350

Matrix: Product

Project: TRANSCO
Project #:
Analyzed: 11/17/2018
Collected by:
Q Method: FSRTL111618B.M

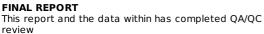
Identity	R.T.	Expected R.T.	Qualifier
o-Terphenyl	49.2	49.2	
Naphthalene (d8)	27.7	27.7	
Acenapthene (d10)	37.8	37.8	
Phenanthrene (d10)	46.3	46.3	
Chrysene (d12)	61.6	61.7	
Perylene (d12)	69.2	69.3	
Mass Discrimination Ratio 1	1.4		
Mass Discrimination Ratio 2	0.6		
Mass Discrimination Ratio 3	0.28		

Q - Retention time qualifier M-Mass discrimination qualifier

FOREN4LA_RTL.M 0.4458g->10mL

Submitted by,

Pace Energy Services, LLC



Subcontracted Analyses

Contact: Ruth Welsh

Address: 220 William Pitt Way Pittsburgh, PA 15238

Ph: 412-826-4482 Fax: 412-826-3433 Email: Ruth.Welsh@pacelabs.com

Fuels & Lubrication Lab

Primary Contact	Pittsburgh, PA
PO#	28678
Tracking #	409952-1
Client Sample #	286780001 18312-TW-24
Received Date	11/15/2018

General Diagnostic Notes

Additional detail may be available if requested, at standard Clark consulting rates.

Kinematic Viscosity (40C, 100C, and VI) - new oil		Test Code: D445 / Method: D445/D2270
Result Date	11/19/2018	
Viscosity @ 40C	3.6951 cSt	
Viscosity @ 100C	1.3650 cSt	
Viscosity Index	0	

Authorized Signature

Analyst:

Date: 11/19/2018

Contact: Ruth Welsh

Address: 220 William Pitt Way Pittsburgh, PA 15238

Ph: 412-826-4482 Fax: 412-826-3433 Email: Ruth.Welsh@pacelabs.com

FINAL REPORT

This report and the data within has completed QA/QC

Fuels & Lubrication Lab

Primary Contact	Pittsburgh, PA
PO#	28678
Tracking #	409952-2
Client Sample #	286780002 18312-EW-13
Received Date	11/15/2018

General Diagnostic Notes

Additional detail may be available if requested, at standard Clark consulting rates.

Kinematic Viscosity (40C, 100C, and VI) - new oil		Test Code: D445 / Method: D445/D2270
Result Date	11/19/2018	
Viscosity @ 40C	4.0507 cSt	
Viscosity @ 100C	1.4532 cSt	
Viscosity Index	0	

Authorized Signature

Analyst:

Date: 11/19/2018

Contact: Ruth Welsh

Address: 220 William Pitt Way Pittsburgh, PA 15238

Ph: 412-826-4482 Fax: 412-826-3433 Email: Ruth.Welsh@pacelabs.com

FINAL REPORT

This report and the data within has completed QA/QC

review

Fuels & Lubrication Lab

Primary Contact	Pittsburgh, PA
PO#	28678
Tracking #	409952-3
Client Sample #	286780003 18311-TW-19
Received Date	11/15/2018

General Diagnostic Notes

Additional detail may be available if requested, at standard Clark consulting rates.

Kinematic Viscosity (40C, 100C, and VI) - new oil		Test Code: D445 / Method: D445/D2270
Result Date	11/19/2018	
Viscosity @ 40C	3.6600 cSt	
Viscosity @ 100C	1.3549 cSt	
Viscosity Index	0	

Authorized Signature

Analyst:

Date: 11/19/2018

Contact: Ruth Welsh

Address: 220 William Pitt Way Pittsburgh, PA 15238

Ph: 412-826-4482 Fax: 412-826-3433 Email: Ruth.Welsh@pacelabs.com

FINAL REPORT

This report and the data within has completed QA/QC

review

Fuels & Lubrication Lab

Primary Contact	Pittsburgh, PA
PO#	28678
Tracking #	409952-4
Client Sample #	286780004 18312-EW-10
Received Date	11/15/2018

General Diagnostic Notes

Additional detail may be available if requested, at standard Clark consulting rates.

Kinematic Viscosity (40C, 100C, and VI) - new oil		Test Code: D445 / Method: D445/D2270
Result Date	11/19/2018	
Viscosity @ 40C	3.7426 cSt	
Viscosity @ 100C	1.3594 cSt	
Viscosity Index	0	

Authorized Signature

Analyst:

Date: 11/19/2018

Contact: Ruth Welsh

Address: 220 William Pitt Way Pittsburgh, PA 15238

Ph: 412-826-4482 Fax: 412-826-3433 Email: Ruth.Welsh@pacelabs.com

FINAL REPORT

This report and the data within has completed QA/QC

Fuels & Lubrication Lab

Primary Contact	Pittsburgh, PA
PO#	28678
Tracking #	409952-5
Client Sample #	286780005 18310-TW-12
Received Date	11/15/2018

General Diagnostic Notes

Additional detail may be available if requested, at standard Clark consulting rates.

Kinematic Viscosity (40C, 100C, and VI) - new oil		Test Code: D445 / Method: D445/D2270
Result Date	11/19/2018	
Viscosity @ 40C	3.7424 cSt	
Viscosity @ 100C	1.3828 cSt	
Viscosity Index	0	

Authorized Signature

Analyst:

Date: 11/19/2018

Contact: Ruth Welsh

Address: 220 William Pitt Way Pittsburgh, PA 15238

Ph: 412-826-4482 Fax: 412-826-3433 Email: Ruth.Welsh@pacelabs.com

FINAL REPORT

This report and the data within has completed QA/QC

Fuels & Lubrication Lab

Primary Contact	Pittsburgh, PA
PO#	28678
Tracking #	409952-6
Client Sample #	286780006 18311-TW-18
Received Date	11/15/2018

General Diagnostic Notes

Additional detail may be available if requested, at standard Clark consulting rates.

Kinematic Viscosity (40C, 100C, and VI) - new oil		Test Code: D445 / Method: D445/D2270
Result Date	11/19/2018	
Viscosity @ 40C	3.5897 cSt	
Viscosity @ 100C	1.3447 cSt	
Viscosity Index	0	

Authorized Signature

Analyst:

Date: 11/19/2018

Contact: Ruth Welsh

Address: 220 William Pitt Way Pittsburgh, PA 15238

Ph: 412-826-4482 Fax: 412-826-3433 Email: Ruth.Welsh@pacelabs.com

FINAL REPORT

This report and the data within has completed QA/QC

Fuels & Lubrication Lab

Primary Contact	Pittsburgh, PA
PO#	28678
Tracking #	409952-7
Client Sample #	286780007 18310-TW-20
Received Date	11/15/2018

General Diagnostic Notes

Additional detail may be available if requested, at standard Clark consulting rates.

Kinematic Viscosity (40C, 100C, and VI) - new oil		Test Code: D445 / Method: D445/D2270
Result Date	11/19/2018	
Viscosity @ 40C	3.5782 cSt	
Viscosity @ 100C	1.4820 cSt	
Viscosity Index	0	

Authorized Signature

Analyst:

Date: 11/19/2018

Pittsburgh, PA 15238 220 William Pitt Way Face Analytical ® www.pacelabs.com

412-826-5245

28678

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Pace Project No./ Lab I.D. (N/Y) **DRINKING WATER** Samples Intact SAMPLE CONDITIONS 344 OTHER (N/Y) Sealed Cooler Custody ĕ Ice (Y/N) 7 Received on **GROUND WATER** Residual Chlorine (Y/N) O° ni qmeT G.A. REGULATORY AGENCY RCRA 50 Requested Analysis Filtered (Y/N) TIME 1210 Site Location STATE: 1001 **NPDES** ACCEPTED BY / AFFILIATION FT LOATE UST nsalman 18:N-24Pa-MTSA PEF2a-MTSA ⋗ 28:1-9hha 1 N /A JaaT sisylsnA 👃 Other Zinc Acetate & NaOH Preservatives BAK **GST** HCI invoice Information: $^{\epsilon}$ ONH Company Name: Pace Quote Reference: Pace Project Manager: Pace Profile #: [⊅]OS^ZH Section C TIME Unpreserved Attention: Address: 2 N 7 N N # OF CONTAINERS SAMPLER NAME AND SIGNATURE SAMPLE TEMP AT COLLECTION DATE 18 109 SE 3/8/18/08/12 >H>1 (8)/7/VI 1/4/8 10815 11/0/18/1550 2180/81/11 TIME 11/18/18 (US1C COMPOSITE END/GRAB Report Town Niams Ornyalaning, com DATE COLLECTED RELINQUISHED BY / AFFILIATION RANNO TIME July -COMPOSITE START DATE Section B Required Project Information: (G=GRAB C=COMP) SAMPLE TYPE 'urchase Order No.: Ω 0 Q. Project Number: Q (see valid codes to left) MATRIX CODE 0 roject Name: ORIGINAL Copy To: DW WW SL OL OL AR AR OT OT Matrix Codes
MATRIX / CODE Drinking Water ASIM DESTA Water
Waste Water
Product
Soil/Solid
Oil
Wipe
Air
Tissue
Other O envolonning con Sto. UM 30350 Q ADDITIONAL COMMENTS 2 0 A FW-ノミ (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE -TM FM# 2345 Š \geq Address: 400 Northridge SAMPLE ID Springs rond Email To: Q W/ Jam & Phone: 404-315-913 Required Client Information たって Required Client Information: Requested Due Date/TAT: M Section D ロアコ Section A Company: 10 Ξ က 2 9 6 # MJTI œ

"Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices hot paid within 30 days

SIGNATURE of SAMPLER: PRINT Name of SAMPLER:

F-ALL-Q-020rev.07, 15-May-2007

DATE Signed (MM/DD/YY):

Brian McCann

Cooler Receipt Form

nt Name: FPS Project: Transca)		Lab \	Work Order: 28678					
A. Shipping/Container Information (circle appropriate response	·)								
Courier: FedEx UPS USPS Client Other: Air bill Present: Yes No									
Tracking Number: 449494053191	·								
Custody Seal on Cooler/Box Present: Yes No Seals	Intact:	Yes	No						
Cooler/Box Packing Material: Bubble Wrap Absorbent	Foam	Othe	r:						
Type of Ice: Wet Blue None Ice Intact: Yes Me									
Cooler Temperature: 2 7 Radiation Screened: Ye	and the same of th	Ch	ain of	Custody Present: Yes No					
Comments:									
3. Laboratory Assignment/Log-in (check appropriate response)				Я					
	YES	NO	N/A						
Chain of Custody properly filled out				Reference non-Conformance					
Chain of Custody relinquished									
Sampler Name & Signature on COC									
Containers intact									
Were samples in separate bags		<u>-</u>							
Sample container labels match COC Sample name/date and time collected									
Sufficient volume provided	V								
PAES containers used									
Are containers properly preserved for the requested testing? (as labeled)									
If an unknown preservation state, were containers checked? Exception: VOA's coliform		(If yes, see pH form.					
Was volume for dissolved testing field filtered, as noted on the COC? Was volume received in a preserved container?			0						
Headspace present?									
Comments:			l						
Cooler contents examined/rec	ceived l	ру :	4	Date: 11.12.(8					
Project Manage	r Revie	w :	14	Date: 11-13-18.					

APPENDIX F LNAPL Baildown Field Forms

Site Trunsco

Baildown/Slug Test Field Form

					Borehole Diameter (INCHES):
Project #	:	Site Name:	Transco	7	
Wel	: TW-18	Samplers:	J. Terry, B. McGann	1	Filter Pack Specific Yield
Evacuation Method	: 00	Weather:	M. Cloudy, 589=	1	(LNAPL)
				1	0.175
Well Informatio	n	LNA	PL Information	1	
Casing Diameter (INCHES):	12	Fluid Type:		1	Effective Well Radius (FT)
Total Depth (FT):	22	Volume Removed:	6	1	
Depth to Top of Screen (FT):	7	Evacuation Method:	PP		LNAPL Well Volume
Screen Length (FT):	15	LNAPL Well Volume:	6.1904	ft^3	
Length and volumetric units need	to be specified			gal	
Length Units:	Volume Units			ml	

Period	Date	Time HH:MM	Elapsed Time (min)	DTP (feet)	DTW (feet)	Comments
Initial	11-7-18	0745		11.75	20.46	8.71 F+ LNAPL
Removal Start	11-7-18	1800		11.75	20.46	Test Start 09,20
Removal Stop	11-7-18	0919	_	13.65	13.70	LNAPL/Slug Volume Removed (gal): ら Water Volume Removed (gal): へのいまし
Renoval		0850	1	13.34	17.40	COESO: DTP: 13.34 3.5gul
Removal	~(0915	-	13.65	14.18	@0965: DTP: 13.65- 5.5gul
LNAPL Recharge	11-7-18	0921	İ	13.42	13.44	LNAPITLickness: 0,02fr
14	()	0924	L	13.34	13,40	0.06'
ν.		0927	7	13.70	13.38	0.18'
X	· · ·	0478	ව	13.13	13.40	0.27'
	()	0930	10	13.02	13.45	0.43
ζζ.	~	0933	13	12.96	13.53	0.57'
(1	()	0435	15	12.91	13.61	0.7'

Copyright by ASTM Int'l (all rights reserved); Mon Aug 27 16:04:58 EDT 2018 28 Downloaded/printed by Alex Testoff (EPS Inc.) pursuant to License Agreement. No further reproductions authorized.

Period	Date	Time HH:MM	Elapsed Time (min)	DTP (feet)	DTW (feet)	Comments
LNAPL	11-7-18	0941	21	12.83	13.68	LNAPL Thirthness: 0.85
در	((0948	28	12.78	13.63	0.85'
CC	((0955	35	12.73	13.65	0.92'
α,	(<	1007	47	12.68	13.63	0.95
ζ.	((1020	60	12.63	13.65	1.02'
()	ζ.	1034	74	12.60	13,63	1.03
IV.	(\	1049	89	12.55	13.63	1.08'
, ,	((1101	101	12.54	13.63	1.09'
1 >	(\	1113	113	12.54	13,54	, '
U (('	1128	128	12.51	13,61	1.1'
(C		1148	1418	12.419	13.63	1.14'
()	Ų	1202	162	12.47	13.63	1.16'
ζζ.	~ ~	1210	170	12.44	13.55	1.11
14	C,	1220	180	12.43	13.57	1.14'
(,	٠,	1233	193	12.411	13.57	1.16'
(×	, ,	1250	210	12.40	13.60	1.2
Ľ	(c	1350	270	12.36	13,69	1.33 '

E2856 -
13

Period	Date	Time HH:MM	Elapsed Time (min)	DTP (feet)	DTW (feet)	Comments
RECLOSE	11-7-18	1450	330	12.33	13,56	LNAPL Thickness: 1.23'
رد	14	1513	353	12.31	13,56	1.25
ر ٪	((1533	373	12.30	13.62	1.32'
(c	((1540	380	12.30	13.62	1.32
\`	((1550	390	12.31	13.67	1,36'
	(\	1600	400	12.30	13.72	1.42'
((ſ,	1615	415	12.30	13.72	1.42'
11	14	1630	430	12.30	13.72	1.42'
(1)	11-8-18	0735	1,335	12.31	14.38	2.07'
	t					
				-		
			,			

Well_TW-24

Baildown/Slug Test Field Form

					Borehole Diameter (INCHES):
Project #:		Site Name:	TRANSCO		
Well:	TW-24	Samplers:	B.McGonn, J. Terr	Y .	Filter Pack Specific Yield
Evacuation Method:	peristortic	Weather:	Misty, 62° F		(LNAPL)
			1		0.175
Well Information		LNA	PL Information		
Casing Diameter (INCHES):		Fluid Type:	T		Effective Well Radius (FT)
Total Depth (FT):		Volume Removed:	,		
Depth to Top of Screen (FT):		Evacuation Method:	posistaltic pump		LNAPL Well Volume
Screen Length (FT):		LNAPL Well Volume:		ft^3	
Length and volumetric units need to	o be specified	· · · · · · · · · · · · · · · · · · ·		gal	
Length Units:	Volume Units:			ml	

Period	Date	Time HH:MM	Elapsed Time (min)	DTP (feet)	DTW (feet)	Comments
Initial	11/8/18	0950		14.51	16,49	Collected (8312-TW-24@
Removal Start		0953	_	14.51	16.49	Test Start
Removal Stop		1001	0	14.98	14.99	LNAPL/Slug Volume Removed (gal): 0,13 Water Volume Removed (gal): 0,2 (
Recharge		1004	3	14.86	14.88	LNAPL Thickness=0.02
1		1006	5	14.79	14.90	3/411 Well WAPL: 0.11
		1008	7	14.76	14.94	=0.18
	1	1010	9	14.74	14.96	= 0.22
12		1012	<i>)</i> /	14.74	14.96	:0.22
		1014	13	14.74	14.96	:0.22
		1019	18	14.73	14,99	=0.26
		1024	23	14.72	14.99	= 0.27
		1029	28	14.71	14.99	-0.28

Copyright by ASTM Int'l (all rights reserved); Mon Aug 27 16:04:58 EDT 2018 28

Downloaded/printed by

Alex Testoff (EPS Inc.) pursuant to License Agreement. No further reproductions authorized.

*
E2856
1
3

Period	Date	Time HH:MM	Elapsed Time (min)	DTP (feet)	DTW (feet)	Comments
Recharge	11/8/18	1034	33	14.70	14.99	LNAPL thress = 0.29
1	1	1041	40	14,70	14,99	= 0.29
		1051	50	14.69	14.99	= 0.30
	2	1101	60	14.69	15.02	÷ 6.33
179	P 5 55	1111	70	14.69	15.07	: 0.33
	*	1131	90.	14.69	15.03	- 0.34
		1245	164	14-67	15.02	= 0.35
		1345	224	14.63	15.02	1330 heavy rainstorted
		1510	309	14.67	15.04	
		1610	369	14.62	15.04	
		1630	389	14.62	15.04	Botton = 22,12 ft.
			,			
			,			
						1
		34			٠	

well EW-10

Site Transco

C 0905 DTP:13.30 DTW:17.15 Priged: 2.5 gul E2856 - 13

Baildown/Slug Test Field Form

					Borehole Diameter (INCHES):
Project #:		Site Name:	Transco		
Well:	EW-10	Samplers:	J. Terry, B. McGunn		Filter Pack Specific Yield
Evacuation Method:	PP	Weather:	overest, lightranh, 649=		(LNAPL)
	10		, ,		0.175
Well Information		LNA	NPL Information		
Casing Diameter (INCHES):	Z	Fluid Type:			Effective Well Radius (FT)
Total Depth (FT):	27,49	Volume Remoyed:			
Depth to Top of Screen (FT):		Evacuation Method:	OP		LNAPL Well Volume
Screen Length (FT):		LNAPL Well Volume:	2.75 gal	ft^3	
Length and volumetric units need	to be specified		(OLDENTES)	gal	
Length Units:	Volume Units:	:	41.85 ina/	ml	

Period	Date	Time HH:MM	Elapsed Time (min)	DTP (feet)	DTW (feet)	Comments
Initial	11-8-18	0755		11.44	23.18	LNAPL Thickness: 11.74'
Removal Start	11-8-18	0832	_	11.44	23.18	
Removal Stop	11-8-18	0920	_	13.89	13.90	LNAPL/Slug Volume Removed (gal): 니
LNAPL Rechurge	11-8-18	0921	D 1		13.70	LNAPL Thickness: 0'
٠(ٔ	~(0923	3	_	13.60	0 '
Q	٠,	0925	5-	_	13.413	0 1
۷,	(c	0926	6	, dam	13.30	0 '
((ν.	0978	8	-	13.20	0'
C	((0929	9	-	13,10	0'
- ((((0932	12	12.95	13.02	0.07'
\(((0933	13	12.92	13.00	0.08'
٠,		0936	16	12.80	12.96	0.16'

Note: There is an obstruction in EN-10 at N18' BTOC

E2856
1
3

Period	Date	Time HH:MM	Elapsed Time (min)	DTP (feet)	DTW (feet)	Comments
LNAPL Rechurge	11-9-18	0939	19	12.71	12.96	LNAPL Thochness: 0.25'
11	~ ~	09411	21	12.64	12.96	0.32'
L	((0943	23	12.60	12.97	0.37
C	CC .	0945	25	12.55	12.98	0.43
V.	V	0947	27	12.50	13.00	0.5
C(1 00	0949	29	12.49	13.02	0.53
	(c	0957	37	12,43	13.06	0-63'
(-	((0955	35	12.40	13.08	0.68'
	10	1000	40	1235	13.14	0.79
٠,	C.	1005	45	12.32	13.20	0.88'
· · ·	C	1010	50	12.30	13.24	0.94'
~	~ (1020	60	12.26	13.27	1.01'
· · ·	~ <	1030	70	12.25	13.35	1.1
((CC .	1040	80	12.72	13.39	1.17'
~ ~	ζζ.	1100	100	12.20	13.42	1.77'
رد	10	1120	120	12.20	13.46	1.26'
(1,	1130	130	12.20	13:46	1.26'
\ <u>`</u>	1,0	1240	200	12.18	13,57	1.39

Period	Date	Time HH:MM	Elapsed Time (min)	DTP (feet)	DTW (feet)	Comments
-NAPL Rechurgh	11-8-18	1320	240	12.18	13.59	LNAPL Thickness: 1,41'
* /	(1400	280	12,15	1360	
((1 (1420	300	12.186	13.61	1.45'
, ,	χ(1450	330	12.15	13.61	1.46
ν ((1520	360	12.15	13.62	1.47'
11		1554	394		13.62	1.48'
((()	1640	440	12.14	13.66	1.52'

					34	
			9			

@ 1330 - heavy 0/4/55-rain light 1505-heury

€ E2856 - 13

Well EW-13

					Borehole Diameter (INCHES):
Project #	TRANSCO	Site Name:	TRANSCO	1	
Well	EW-13	Samplers:	B. McGann, J. Terry		Filter Pack Specific Yield
Evacuation Method	peristaltic	Weather:	Claidy 599F		(LNAPL)
	,		1 1 1 1		0.175
Well Information	1	LNA	PL Information		
Casing Diameter (INCHES):		Fluid Type:			Effective Well Radius (FT)
Total Depth (FT):		Volume Removed:			
Depth to Top of Screen (FT):		Evacuation Method:	Deristaltic pump		LNAPL Well Volume
Screen Length (FT):		LNAPL Well Volume:		ft^3	
Length and volumetric units need	to be specified			gal	
Length Units:	Volume Units:			ml	

Period	Date	Time HH:MM	Elapsed Time (min)	DTP (feet)	DTW (feet)	Comments
Initial	11/8/18	0755		10.90	13.71	Measured from initial LNAPL top of floor thickness = 2.81
Removal Start	(c /.	0756		10.90	13.71	Collected 18312-EW-13@0810 Test Start
Removal Stop		0832	0	11.86	11.87	LNAPL/Slug Volume Removed (gal): [, 4] Water Volume Removed (gal): 🗅 🕬
Recharge	2 4	0834	2	11.80	11.84	LNAPL THICKNESS = 0-04
(1 ~	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0836	4	11.70	11.81	0.11
	2 11	0838	6	11.66	11.79	0.13
_	w 11	0840	8	11.61	11.76	015
S 10	× 1;	0842	10	11.57	11.74	0.17
S -,	S "7	0844	12	11.55	11.72	0.17
	4 1,	0846	14	11.51	11.69	0.18
÷ 11	is on	0848	16	11.48	11.67	0.19
5 4,	S 11 "	0850	18	11.47	(1.66	0-19

1							
5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Comments	DTW (feet)	DTP (feet)	Elapsed Time (min)	Time HH:MM	Date	Period
*:	LNAPL thickness = 0.19	11-64	11.45	20	0852	11/8/18	2ccharge
-	0,20	11-62	11.42	25	0857	1 1	55 77
	0.20	11.60	11.40	30	0902		
	0.22	11.59	11.37	40	0912	000	0 %
	0.23	11.58	11.35	50	0922	5.57	5 4
	0.26	11,58	11.32	60	0932	× 11	(",
95 1	0.25	11.58	11.33	70	0942	501	~ ~
•	0.26	11.58	11.32	78	0950	20 /1	s = 11
	0.28	11.58	11.30	98	1010	et 17	in M
E2856 -	0.28	11.58	11.30	118	1030	çe 11	it n
ಪ	0.30	11,58	11.28	148	1100	c 21	11
	0.31	11.58	11.27	178	1130	EC . 11	· (1
	0.34	11.58	11.24	253	1245	(//	(1/
Heavy rain started C 1330	0.34	11.56	11.22	293	1325	11	V //
C 13 3 0	0.35	11.55	11.20	328	1400	٠, ١	u '/
	0.35	11.55	11.20	348	1-120	· 1	. 11
1136+10.10 @1455	0.35	11.55	11.30	378	1450	· .	· //
1505 - heavy rain	0.36	11.55	11.19	408	1520	· 1	C 11

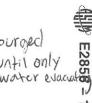
Period	Date	Time HH:MM	Elapsed Time (min)	DTP (feet)	DTW (feet)	Comments
LNAPL Rechuse	11-8-18	1555	41-13	11.18	11,55	0.37
/ / /		1555	498	11.18	11.55	
						Buttom = 24.92
, 1	(I. S. C. S.					
		Ta Yeu			-	•
				g 0		, , , , , , , , , , , , , , , , , , ,
				(B)		
						* ,
				11		
	. ,					
	=				1	
	20					
				,		

well_TW-20

Site Trunsco

					Borehole Diameter (INCHES):
Project #:		Site Name: /	Transco	1	
Well:	TW-20	Samplers:	J. TEMY B. McGun	5]	Filter Pack Specific Yield
Evacuation Method:	PD	Weather:	0, cloudy, 77%	1	(LNAPL)
				1	0.175
Well Information		LNA	PL Information	1	
Casing Diameter (INCHES):	2	Fluid Type:	LNAPL	1	Effective Well Radius (FT)
Total Depth (FT):	22	Volume Removed:			
Depth to Top of Screen (FT):	7	Evacuation Method:	peristritiz pump		LNAPL Well Volume
Screen Length (FT):	15	LNAPL Well Volume:	0,69501	ft^3	
Length and volumetric units need	to be specified			gal	
Length Units:	Volume Units	•		ml	

Period	Date	Time HH:MM	Elapsed Time (min)	DTP (feet)	DTW (feet)	Comments
Initial	11-6-18	1445	-	12.36	13.33	
Removal Start	11-6-18	1507				Test Start
Removal Stop	11-6-18	1634	87	/3.53	13.61	LNAPL/Slug Volume Removed (gal): ∂ 23 Water Volume Removed (gal): ∂ 07
						Then is ~ 0.05' of
						There is ~ 0.05' of LNAPL recharge every 10 shuta
						10 mihutea
				,		
						7
9			w 11			
		-				


Site / runsco

					Borehole Diameter (INCHES):
Project #	:	Site Name:	TIZANS:CO	7	
Wel	1: FW-12	Samplers:	B. McGam, I-Terry	1	Filter Pack Specific Yield
Evacuation Method	1: peristaitic	Weather:	SUMON TIFE	1	(LNAPL)
	1			7	0.175
Well Information	n	LNA	PL Information	1	
Casing Diameter (INCHES):	2	Fluid Type:		7	Effective Well Radius (FT)
Total Depth (FT):	22	Volume Removed:	1.1601		
Depth to Top of Screen (FT):	7	Evacuation Method:	PP		LNAPL Well Volume
Screen Length (FT):	15	LNAPL Well Volume:	0.83 501	ft^3	
Length and volumetric units nee	to be specified		9	gal	
Length Units:	Volume Units:			ml	

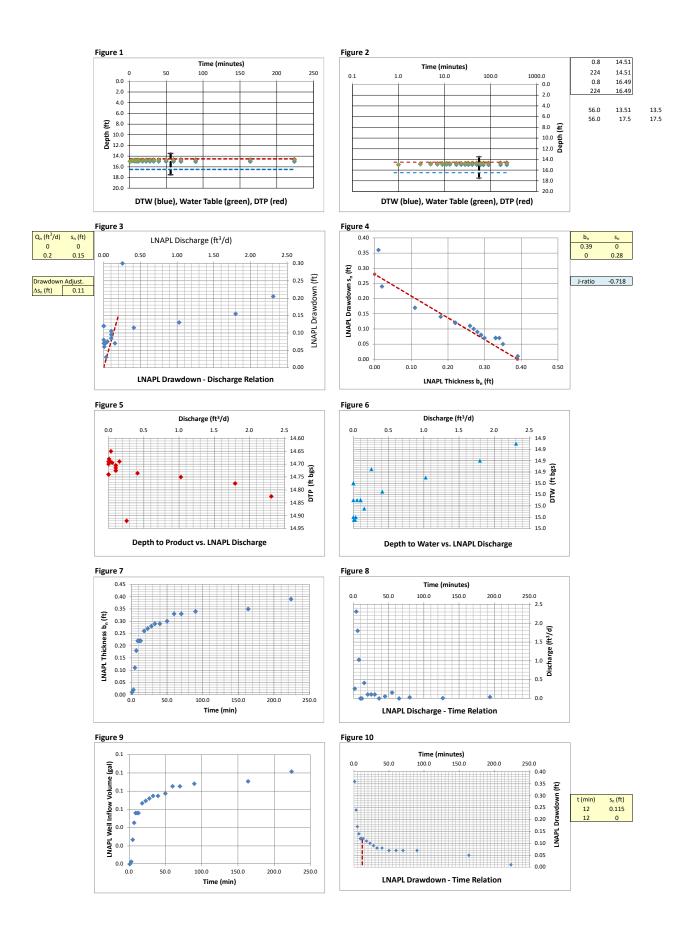
Period	Date	Time HH:MM	Elapsed Time (min)	DTP (feet)	DTW (feet)	Comments
Initial	11/6/18	1535	-	11.3	13.41	measured from floor
Removal Start	11/6/18	1540)			Test Start
Removal Stop	11/6/18	1612	Ú	12.45	12.50	LNAPL/Slug Volume Removed (gal):/, 10 Water Volume Removed (gal): 0.05
	,	1619	7	12.19	12.20	
	Cl	1628	16	11.96	12-10	
	.17	1632	20	11.86	12.01	
	10.71	1642	30	11.78	11.96	
	/	1652	40	11.71	11-91	
		1712	60	11.66	11,96	
	× //	1722	70	11.65	11.9(
	(//	1732	80	11.64	(1.9(*
	` /'	1442	90	11-64	11.91	

					Borehole Diameter (INCHES):
Project #	:	Site Name:	TRANSCO		
Well		Samplers:	B. McGons, J. Terry		Filter Pack Specific Yield
Evacuation Method	peristaltic	Weather:	Cloudy < 9°F		(LNAPL)
	1		70		0.175
Well Information	1	LNA	PL Information		
Casing Diameter (INCHES):	2	Fluid Type:	T		Effective Well Radius (FT)
Total Depth (FT):	22	Volume Removed:	1.59 and		
Depth to Top of Screen (FT):	7	Evacuation Method:	PP		LNAPL Well Volume
Screen Length (FT):	15	LNAPL Well Volume:	3,17941	ft^3	
Length and volumetric units need	to be specified			gal	
Length Units:	Volume Units:			ml	

Period	Date	Time HH:MM	Elapsed Time (min)	DTP (feet)	DTW (feet)	Comments
Initial	11/7/18	0750		12.14	16.54	Collected 18311-TW-19
Removal Start	6/	0800		12.18	16.70	Test Start
Removal Stop	, ,	0823		13.01	13,03	LNAPL/Slug Volume Removed (gal): $1,59$ Water Volume Removed (gal): $0,13$
	\\	0825	2	12.96	13.00	WAPL = 0-04
	/	0827	4	12-89	13.00	LNAPL=Q- 11
		0829	6	12-83	13.04	LNAPL=0.21
	(, , ,	0831	8	12-80	13.11	LNAPL 0.31
	(~ **	0833	10	12.76	13.18	LNAPL =0.42
	(-/	0835	12	12.72	13.26	LNAPL = 0.54
	(//	0837	14	12-71	13.33	LNAPL = 0-62
	()	0839	16	12-68	13.37	LNAP2 = 0.69
	1 - 2	0841	18	12.66	13.41	LNAPL -0.75

E2856
1
ವ

Period	Date	Time HH:MM	Elapsed Time (min)	DTP (feet)	DTW (feet)	Comments
	11/7/18	0843	20	12.66	13.45	LNAPL 0.79
	11/7/18	0848	25	12.61	13.57	LN4,02 0.96
	11/7/18	0850	27	12.61	13.59	0.98
	11/7/18	0855	32	12.59	13.66	1.07
	11/7/18	0900	37	12.58	13.74	1-16
	11/7/18	0905	42	12-56	13.76	1.2
	11/7/18	0910	47	12.56	13.80	1.24
	11/7/18	0915	52	12.54	13.83	(. 29
	11/7/8	0925	62	12.54	13.89	1.35
	11/7/18	0935	72	12.53	13.89	1.36
	11/7/18	0955	92	12.52	13,91	1.39
	11/7/18	01025	122	12.51	13.94	1.43
	11/7/18	1055	152	12.51	13.95	1:44
	11/7/18	1125	182	12-49	13.96	1.47
	11/7/18	1225	242	12.45	13.96	1.51
	11/7/18	1435	372	12.44	13.96	1.52


APPENDIX G API Transmissivity Workbook Output

EW-10 17-Dec-18 Well Designation: Beckett and Lyverse (2002) Date: Ground Surface Elev (ft msl) Enter These Data Top of Casing Elev (ft msl) 0.0 (ft) 0.66 Well Casing Radius, r_c (ft): 0.083 $\rm r_{\rm e1}$ Well Radius, r_w (ft): 0.180 LNAPL Specific Yield, S_y: 0.175 LNAPL Density Ratio, ρ_r : 0.780 Top of Screen (ft bgs): 5.0 Bottom of Screen (ft bgs): LNAPL Baildown Vol. (gal.): Effective Radius, r_{e3} (ft): 25.0 4.0 0.107 Calculated Parameters Effective Radius, r_{e2} (ft): Initial Casing LNAPL Vol. (gal.): Initial Filter LNAPL Vol. (gal.): 0.098 1.90 1.23

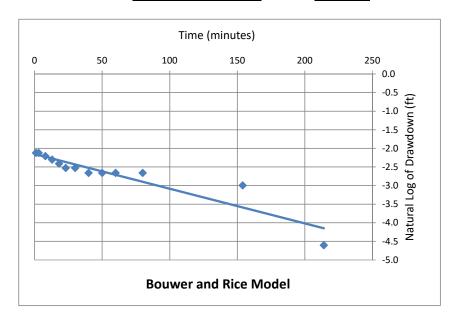
Initial Fluid Levels:

Enter Test Data:

En	ter Data H	ere			Water Table	LNAPL		LNAPL			
					Depth	Drawdown	Average		Sn	b _n	r _e
Time (min)	DTP (ft btoc)	DTW (ft btoc)	DTP (ft bgs)	DTW (ft bgs)	(ft)	s _n (ft)	Time (mi	n) Q _n (ft ³ /d)	(ft)	(ft)	(ft)
0	11.44	23.18	11.44	23.18	14.02	- 1				11.74	
1.0	13.70	13.70	13.70	13.70	13.70	1.60				0.00	
3.0	13.60	13.60	13.60	13.60	13.60	1.50	2.0	0.000	1.55	0.00	0.107
5.0	13.43	13.43	13.43	13.43	13.43	1.33	4.0	0.000	1.42	0.00	0.107
6.0	13.30	13.30	13.30	13.30	13.30	1.20	5.5	0.000	1.27	0.00	0.107
8.0	13.20	13.20	13.20	13.20	13.20	1.10	7.0	0.000	1.15	0.00	0.107
9.0	13.10	13.10	13.10	13.10	13.10	1.00	8.5	0.000	1.05	0.00	0.107
12.0	12.95	13.02	12.95	13.02	12.97	0.85	10.5	1.198	0.93	0.07	0.107
13.0	12.92	13.00	12.92	13.00	12.94	0.82	12.5	0.514	0.84	0.08	0.107
16.0	12.80	12.90	12.80	12.90	12.82	0.70	14.5	0.342	0.76	0.10	0.107
19.0	12.71	12.96	12.71	12.96	12.77	0.61	17.5	2.568	0.66	0.25	0.107
21.0	12.64	12.96	12.64	12.96	12.71	0.54	20.0	1.798	0.58	0.32	0.107
23.0	12.60	12.97	12.60	12.97	12.68	0.50	22.0	1.284	0.52	0.37	0.107
25.0	12.55	12.98	12.55	12.98	12.64	0.45	24.0	1.541	0.48	0.43	0.107
27.0	12.5	13.00	12.50	13.00	12.61	0.40	26.0	1.798	0.43	0.50	0.107
29.0	12.49	13.02	12.49	13.02	12.61	0.39	28.0	0.770	0.40	0.53	0.107
33.0	12.43	13.06	12.43	13.06	12.57	0.33	31.0	1.284	0.36	0.63	0.107
35.0	12.4	13.08	12.40	13.08	12.55	0.30	34.0	1.284	0.32	0.68	0.107
40.0	12.35	13.14	12.35	13.14	12.52	0.25	37.5	1.130	0.28	0.79	0.107
45.0	12.32	13.20	12.32	13.20	12.51	0.22	42.5	0.925	0.24	0.88	0.107
50.0	12.3	13.24	12.30	13.24	12.51	0.20	47.5	0.616	0.21	0.94	0.107
60.0	12.26	13.27	12.26	13.27	12.48	0.16	55.0	0.360	0.18	1.01	0.107
70.0	12.25	13.35	12.25	13.35	12.49	0.15	65.0	0.462	0.16	1.10	0.107
80.0	12.22	13.39	12.22	13.39	12.48	0.12	75.0	0.360	0.14	1.17	0.107
100.00	12.2	13.42	12.20	13.42	12.47	0.10	90.0	0.128	0.11	1.22	0.107
120.00	12.2	13.46	12.20	13.46	12.48	0.10	110.0	0.103	0.10	1.26	0.107
130.00	12.2	13.46	12.20	13.46	12.48	0.10	125.0	0.000	0.10	1.26	0.107
200.00	12.18	13.57	12.18	13.57	12.49	0.08	165.0	0.095	0.09	1.39	0.107
240.00	12.18	13.59	12.18	13.59	12.49	0.08	220.0	0.026	0.08	1.41	0.107
280.00	12.15	13.60	12.15	13.60	12.47	0.05	260.0	0.051	0.07	1.45	0.107
300.00	12.16	13.61	12.16	13.61	12.48	0.06	290.0	0.000	0.06	1.45	0.107
330.00	12.15	13.61	12.15	13.61	12.47	0.05	315.0	0.017	0.06	1.46	0.107
360.00	12.15	13.62	12.15	13.62	12.47	0.05	345.0	0.017	0.05	1.47	0.107
394.00	12.14	13.62	12.14	13.62	12.47	0.04	377.0	0.015	0.05	1.48	0.107
440.00	12.14	13.66	12.14	13.66	12.47	0.04	417.0	0.045	0.04	1.52	0.107

Generalized Bouwer and Rice (1976)

Well Designation: TW-24
Date: 15-Dec-18


 $T_n = \frac{r_e^2 \ln(R/r_e) \ln(s_n(t_1)/s_n(t))}{2(-J)(t-t_1)}$

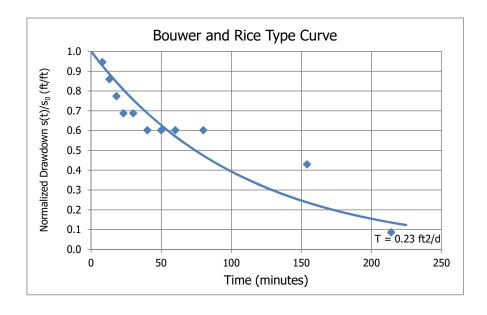
Enter early time cut-off for least-squares model fit

Time_{cut} 10 <- Enter or change value here

Model Results:

$T_n (ft^2/d) = 0.23$	+/-	0.03	ft ² /d
-----------------------	-----	------	--------------------

L_e/r_e
18.6


C
1.53

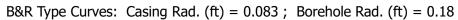
R/r_e
8.83

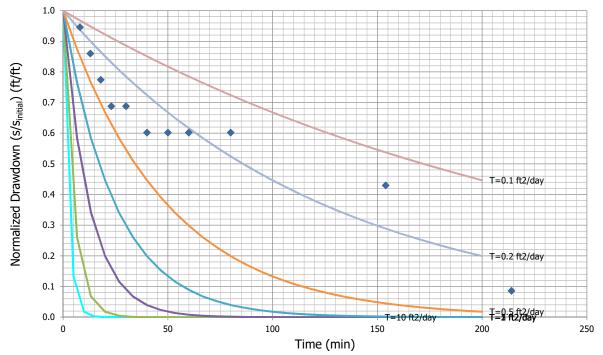
J-Ratio -0.718

Coef. Of Variation 0.12

C coefficient calculated from Eq. 6.5(c) of Butler, The Design, Performance, and Analysis of Slug Tests, CRC Press, 2000.

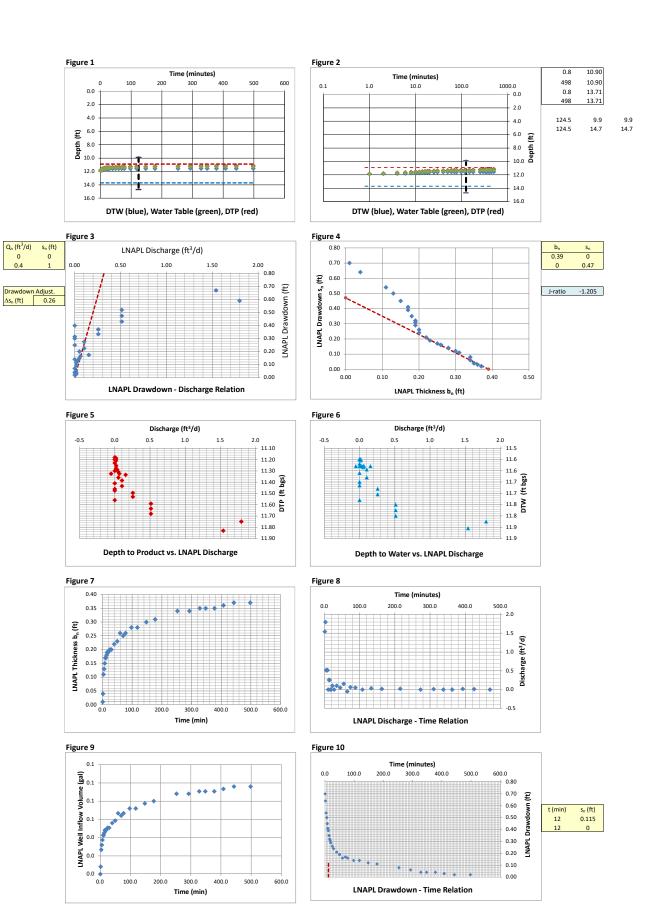



Bouwer and Rice Short Term LNAPL Mobility Test Type Curves


B&R Type Curves: Casing Rad. (ft) = 0.083; Borehole Rad. (ft) = 0.18

Enter these values

Type Curve ID	Type Curve Name	Notes	Max Time (min)	Transmissivity (ft ² /day)
1	T=10 ft2/day		150	10
2	T=5 ft2/day		200	5
3	T=2 ft2/day		200	2
4	T=1 ft2/day		200	1
5	T=0.5 ft2/day		200	0.5
6	T=0.2 ft2/day		200	0.2
7	T=0.1 ft2/day		200	0.1



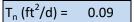
EW-13 15-Dec-18 Well Designation: Beckett and Lyverse (2002) Date: Ground Surface Elev (ft msl) Enter These Data Top of Casing Elev (ft msl) 0.0 (ft) 0.26 Well Casing Radius, r_c (ft): 0.083 $\rm r_{\rm e1}$ Well Radius, r_w (ft): 0.180 LNAPL Specific Yield, S_y: 0.175 LNAPL Density Ratio, ρ_r : 0.780 Top of Screen (ft bgs): 5.0 Bottom of Screen (ft bgs): LNAPL Baildown Vol. (gal.): Effective Radius, r_{e3} (ft): 25.0 4.0 0.107 Calculated Parameters Effective Radius, r_{e2} (ft): Initial Casing LNAPL Vol. (gal.): Initial Filter LNAPL Vol. (gal.): 0.077 0.45 0.29

Initial Fluid Levels:

Enter Test Data:

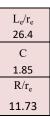
	Ent	ter Data H	ere			Water Table	LNAPL		LNAPL			
						Depth	Drawdown	Average	Discharge	Sn	b_n	r _e
	Time (min)	DTP (ft btoc)	DTW (ft btoc)	DTP (ft bgs)	DTW (ft bgs)	(ft)	s _n (ft)	Time (min)	Q_n (ft ³ /d)	(ft)	(ft)	(ft)
	0	10.90	13.71	10.90	13.71	11.52					2.81	
_												
	1.0	11.86	11.87	11.86	11.87	11.86	0.70				0.01	
	2.0	11.80	11.84	11.80	11.84	11.81	0.64	1.5	1.541	0.67	0.04	0.107
	4.0	11.70	11.81	11.70	11.81	11.72	0.54	3.0	1.798	0.59	0.11	0.107
	6.0	11.66	11.79	11.66	11.79	11.69	0.50	5.0	0.514	0.52	0.13	0.107
	8.0	11.61	11.76	11.61	11.76	11.64	0.45	7.0	0.514	0.47	0.15	0.107
	10.0	11.57	11.74	11.57	11.74	11.61	0.41	9.0	0.514	0.43	0.17	0.107
	12.0	11.55	11.72	11.55	11.72	11.59	0.39	11.0	0.000	0.40	0.17	0.107
	14.0	11.51	11.69	11.51	11.69	11.55	0.35	13.0	0.257	0.37	0.18	0.107
	16.0	11.48	11.67	11.48	11.67	11.52	0.32	15.0	0.257	0.34	0.19	0.107
	18.0	11.47	11.66	11.47	11.66	11.51	0.31	17.0	0.000	0.32	0.19 0.19	0.107 0.107
	20.0	11.45	11.64	11.45	11.64 11.62	11.49	0.29	19.0	0.000	0.30	0.19	
	25.0	11.42	11.62	11.42 11.40	11.62	11.46 11.44	0.26 0.24	22.5 27.5	0.103 0.000	0.27	0.20	0.107 0.107
	30.0 40.0	11.4 11.37	11.60 11.59	11.40	11.50	11.44	0.24	35.0	0.103	0.23	0.20	0.107
	50.0	11.37	11.59	11.37	11.59	11.42	0.21	45.0	0.103	0.22	0.22	0.107
	60.0	11.33	11.58	11.33	11.58	11.40	0.19	55.0	0.051	0.20	0.23	0.107
	70.0	11.32	11.58	11.32	11.58	11.39	0.10	65.0	-0.051	0.13	0.25	0.107
	78.0	11.32	11.58	11.32	11.58	11.38	0.16	74.0	0.064	0.17	0.26	0.107
	98.0	11.3	11.58	11.30	11.58	11.36	0.14	88.0	0.051	0.15	0.28	0.107
	118.0	11.3	11.58	11.30	11.58	11.36	0.14	108.0	0.000	0.14	0.28	0.107
	148.0	11.28	11.58	11.28	11.58	11.35	0.12	133.0	0.034	0.13	0.30	0.107
	178.0	11.27	11.58	11.27	11.58	11.34	0.11	163.0	0.017	0.11	0.31	0.107
	253.0	11.24	11.58	11.24	11.58	11.31	0.08	215.5	0.021	0.09	0.34	0.107
	293.00	11.22	11.56	11.22	11.56	11.29	0.06	273.0	0.000	0.07	0.34	0.107
	328.00	11.2	11.55	11.20	11.55	11.28	0.04	310.5	0.015	0.05	0.35	0.107
	348.00	11.2	11.55	11.20	11.55	11.28	0.04	338.0	0.000	0.04	0.35	0.107
	378.00	11.2	11.55	11.20	11.55	11.28	0.04	363.0	0.000	0.04	0.35	0.107
	408.00	11.19	11.55	11.19	11.55	11.27	0.03	393.0	0.017	0.03	0.36	0.107
	443.00	11.18	11.55	11.18	11.55	11.26	0.02	425.5	0.015	0.02	0.37	0.107
	498.00	11.18	11.55	11.18	11.55	11.26	0.02	470.5	0.000	0.02	0.37	0.107

Generalized Bouwer and Rice (1976)

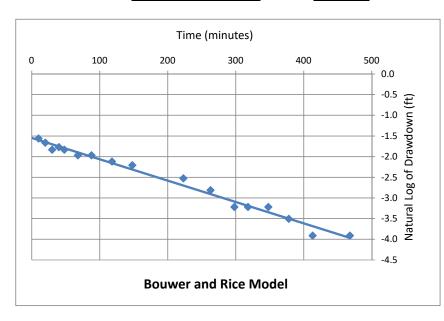

Well Designation: EW-13
Date: 15-Dec-18

 $T_n = \frac{r_e^2 \ln(R/r_e) \ln(s_n(t_1)/s_n(t))}{2(-J)(t-t_1)}$

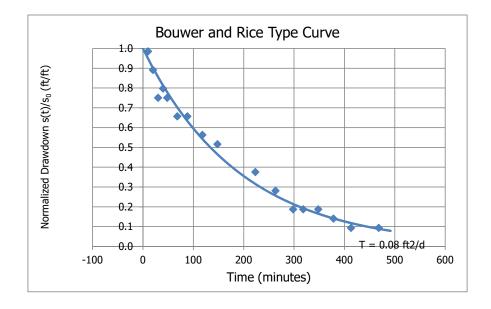
Enter early time cut-off for least-squares model fit


Time_{cut} 30 <- Enter or change value here

Model Results:


+/- 0.00

ft²/d

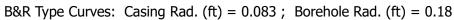


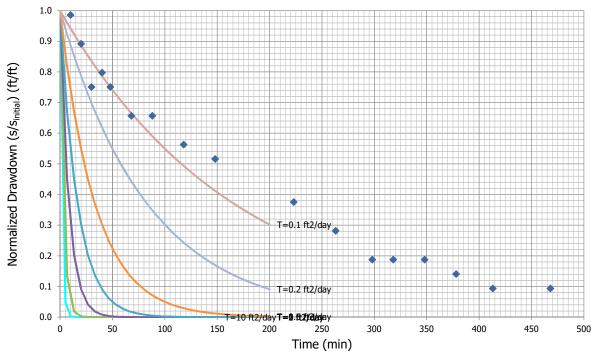
J-Ratio -1.205

Coef. Of Variation 0.03

C coefficient calculated from Eq. 6.5(c) of Butler, The Design, Performance, and Analysis of Slug Tests, CRC Press, 2000.

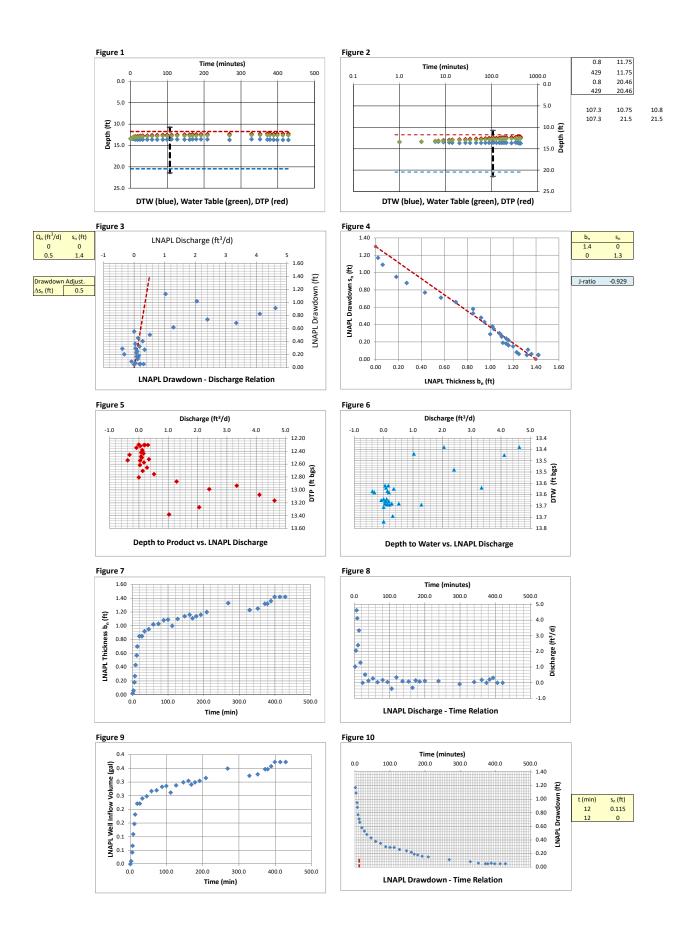



Bouwer and Rice Short Term LNAPL Mobility Test Type Curves


B&R Type Curves: Casing Rad. (ft) = 0.083; Borehole Rad. (ft) = 0.18

Enter these values

Type Curve ID	Type Curve Name	Notes	Max Time (min)	Transmissivity (ft ² /day)
1	T=10 ft2/day		150	10
2	T=5 ft2/day		200	5
3	T=2 ft2/day		200	2
4	T=1 ft2/day		200	1
5	T=0.5 ft2/day		200	0.5
6	T=0.2 ft2/day		200	0.2
7	T=0.1 ft2/day		200	0.1



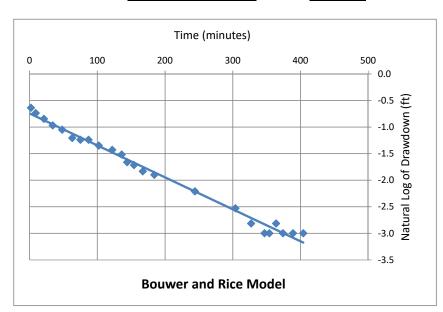
Well Designation:	TW-18	Beckett and Lyverse (2002)	
Date:	15-Dec-18		
	•	_	
Ground Surface Elev (ft msl)	0.0	Enter These Data	Drawdown
Top of Casing Elev (ft msl)	0.0		Adjustment
Well Casing Radius, rc (ft):	0.083	r _{e1}	(ft)
Well Radius, r _w (ft):	0.180		0.5
LNAPL Specific Yield, S _y :	0.175		
LNAPL Density Ratio, pr:	0.780		
Top of Screen (ft bgs):	7.0		
Bottom of Screen (ft bgs):	22.0		
LNAPL Baildown Vol. (gal.):	1.6		
Effective Radius, r _{e3} (ft):	0.107	Calculated Parameters	
Effective Radius, r _{e2} (ft):	0.085		
Initial Casing LNAPL Vol. (gal.):	1.41		
Initial Filter LNAPL Vol. (gal.):	0.91		
	Fn	ter Data Here	

Initial Fluid Levels:	
Enter Test Data:	1
	3
	6
	9
	1

En	ter Data H	ere			Water Table	LNAPL		LNAPL			
					Depth	Drawdown	Average	Discharge	s _n	b _n	r _e
Time (min)		DTW (ft btoc)		DTW (ft bgs)	(ft)	s _n (ft)	Time (min)	Q_n (ft ³ /d)	(ft)	(ft)	(ft)
0	11.75	20.46	11.75	20.46	13.67					8.71	
1.0	13.42	13.44	13.42	13.44	13.42	1.17				0.02	
3.0	13.34	13.40	13.34	13.40	13.35	1.09	2.0	1.027	1.13	0.06	0.107
6.0	13.20	13.38	13.20	13.38	13.24	0.95	4.5	2.054	1.02	0.18	0.107
7.0	13.13	13.40	13.13	13.40	13.19	0.88	6.5	4.623	0.92	0.27	0.107
9.0	13.02	13.45	13.02	13.45	13.11	0.77	8.0	4.109	0.83	0.43	0.107
12.0	12.96	13.53	12.96	13.53	13.09	0.71	10.5	2.397	0.74	0.57	0.107
14.0	12.91	13.61	12.91	13.61	13.06	0.66	13.0	3.339	0.69	0.70	0.107
20.0	12.83	13.68	12.83	13.68	13.02	0.58	17.0	1.284	0.62	0.85	0.107
27.0	12.78	13.63	12.78	13.63	12.97	0.53	23.5	0.000	0.56	0.85	0.107
34.0	12.73	13.65	12.73	13.65	12.93	0.48	30.5	0.514	0.51	0.92	0.107
46.0	12.68	13.63	12.68	13.63	12.89	0.43	40.0	0.128	0.46	0.95	0.107
59.0	12.63	13.65	12.63	13.65	12.85	0.38	52.5	0.277	0.41	1.02	0.107
73.0	12.6	13.63	12.60	13.63	12.83	0.35	66.0	0.037	0.37	1.03	0.107
88.0	12.55	13.63	12.55	13.63	12.79	0.30	80.5	0.171	0.33	1.08	0.107
100.0	12.54	13.63	12.54	13.63	12.78	0.29	94.0	0.043	0.30	1.09	0.107
112.0	12.54	13.54	12.54	13.54	12.76	0.29	106.0	-0.385	0.29	1.00	0.107
127.0	12.51	13.61	12.51	13.61	12.75	0.26	119.5	0.342	0.27	1.10	0.107
147.0	12.49	13.63	12.49	13.63	12.74	0.24	137.0	0.103	0.25	1.14	0.107
161.0	12.47	13.63	12.47	13.63	12.73	0.22	154.0	0.073	0.23	1.16	0.107
169.0	12.44	13.55	12.44	13.55	12.68	0.19	165.0	-0.321	0.21	1.11	0.107
179.0	12.43	13.57	12.43	13.57	12.68	0.18	174.0	0.154	0.19	1.14	0.107
192.0	12.41	13.57	12.41	13.57	12.67	0.16	185.5	0.079	0.17	1.16	0.107
209.0	12.4	13.60	12.40	13.60	12.66	0.15	200.5	0.121	0.16	1.20	0.107
269.00	12.36	13.69	12.36	13.69	12.65	0.11	239.0	0.111	0.13	1.33	0.107
329.00	12.33	13.56	12.33	13.56	12.60	0.08	299.0	-0.086	0.09	1.23	0.107
352.00	12.31	13.56	12.31	13.56	12.59	0.06	340.5	0.045	0.07	1.25	0.107
372.00	12.3	13.62	12.30	13.62	12.59	0.05	362.0	0.180	0.06	1.32	0.107
379.00	12.3	13.62	12.30	13.62	12.59	0.05	375.5	0.000	0.05	1.32	0.107
389.00	12.31	13.67	12.31	13.67	12.61	0.06	384.0	0.205	0.06	1.36	0.107
399.00	12.3	13.72	12.30	13.72	12.61	0.05	394.0	0.308	0.06	1.42	0.107
414.00	12.3	13.72	12.30	13.72	12.61	0.05	406.5	0.000	0.05	1.42	0.107
429.00	12.3	13.72	12.30	13.72	12.61	0.05	421.5	0.000	0.05	1.42	0.107
						_					

Generalized Bouwer and Rice (1976)

Well Designation: TW-18
Date: 15-Dec-18


 $T_n = \frac{r_e^2 \ln(R/r_e) \ln(s_n(t_1)/s_n(t))}{2(-J)(t-t_1)}$

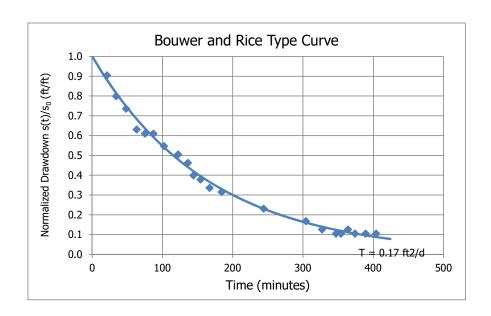
Enter early time cut-off for least-squares model fit

Time_{cut} 25 <- Enter or change value here

Model Results:

$T_n (ft^2/d) = 0.18 + /-$	

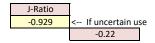
 $\begin{array}{c} L_{e}/r_{e} \\ 81.7 \\ C \\ 4.08 \\ R/r_{e} \\ 28.14 \end{array}$

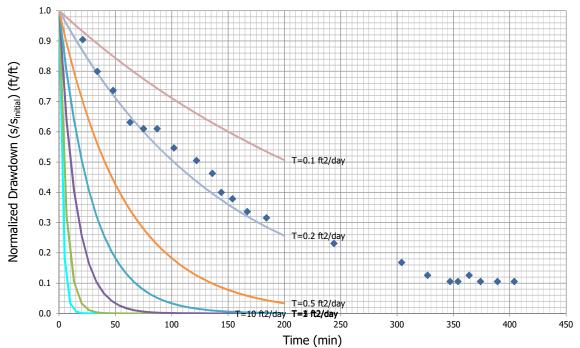

ft²/d

0.00

J-Ratio -0.929

Coef. Of Variation 0.02

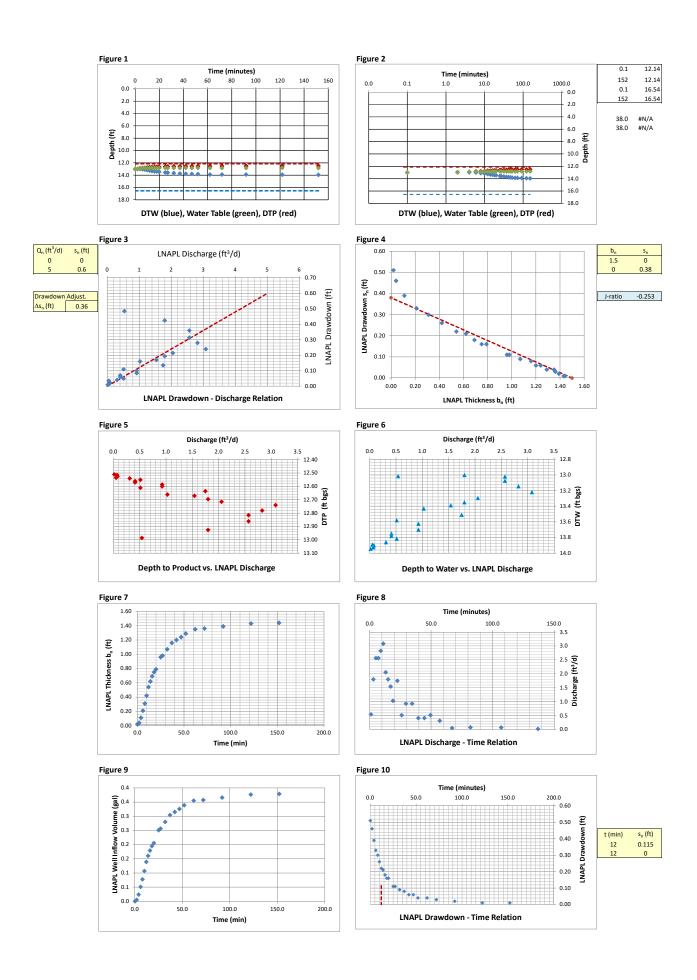

C coefficient calculated from Eq. 6.5(c) of Butler, The Design, Performance, and Analysis of Slug Tests, CRC Press, 2000.


Bouwer and Rice Short Term LNAPL Mobility Test Type CurvesB&R Type Curves: Casing Rad. (ft) = 0.083; Borehole Rad. (ft) = 0.18

Enter these values

Type Curve ID	Type Curve Name	Notes	Max Time (min)	Transmissivity (ft ² /day)
1	T=10 ft2/day		150	10
2	T=5 ft2/day		200	5
3	T=2 ft2/day		200	2
4	T=1 ft2/day		200	1
5	T=0.5 ft2/day		200	0.5
6	T=0.2 ft2/day		200	0.2
7	T=0.1 ft2/day		200	0.1

B&R Type Curves: Casing Rad. (ft) = 0.083; Borehole Rad. (ft) = 0.18



Well Designation:	TW-19	Beckett and Lyverse (2002)	
Date:	15-Dec-18		
		_	
Ground Surface Elev (ft msl)	0.0	Enter These Data	Drawdown
Top of Casing Elev (ft msl)	0.0		Adjustment
Well Casing Radius, r _c (ft):	0.083	r _{e1}	(ft)
Well Radius, r _w (ft):	0.180		0.36
LNAPL Specific Yield, S _y :	0.175		,
LNAPL Density Ratio, ρ _r :	0.780		
Top of Screen (ft bgs):	0.0		
Bottom of Screen (ft bgs):	0.0		
LNAPL Baildown Vol. (gal.):			
Effective Radius, r _{e3} (ft):	0.107	Calculated Parameters	
Effective Radius, r _{e2} (ft):	0.101		
Initial Casing LNAPL Vol. (gal.):	0.71	1	
Initial Filter LNAPL Vol. (gal.):	0.46		

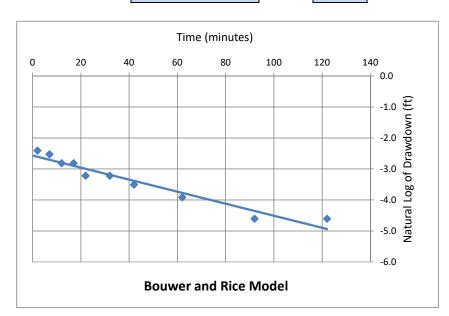
Initial Fluid Levels:

Enter Test Data:

En	ter Data H	ere			Water Table	LNAPL		LNAPL			
					Depth	Drawdown	Average	Discharge	s _n	b _n	r _e
Time (min)	DTP (ft btoc)	DTW (ft btoc)	DTP (ft bgs)	DTW (ft bgs)	(ft)	s _n (ft)	Time (min)	Q_n (ft ³ /d)	(ft)	(ft)	(ft)
0	12.14	16.54	12.14	16.54	13.11	,	, ,		` '	4.40	` ,
0.1	13.01	13.03	13.01	13.03	13.01	0.51				0.02	
2.0	12.96	13.00	12.96	13.00	12.97	0.46	1.1	0.541	0.49	0.04	0.107
4.0	12.89	13.00	12.89	13.00	12.91	0.39	3.0	1.798	0.43	0.11	0.107
6.0	12.83	13.04	12.83	13.04	12.88	0.33	5.0	2.568	0.36	0.21	0.107
8.0	12.80	13.11	12.80	13.11	12.87	0.30	7.0	2.568	0.32	0.31	0.107
10.0	12.76	13.18	12.76	13.18	12.85	0.26	9.0	2.825	0.28	0.42	0.107
12.0	12.72	13.26	12.72	13.26	12.84	0.22	11.0	3.082	0.24	0.54	0.107
14.0	12.71	13.33	12.71	13.33	12.85	0.21	13.0	2.054	0.22	0.62	0.107
16.0	12.68	13.37	12.68	13.37	12.83	0.18	15.0	1.798	0.20	0.69	0.107
18.0	12.66	13.41	12.66	13.41	12.83	0.16	17.0	1.541	0.17	0.75	0.107
20.0	12.66	13.45	12.66	13.45	12.83	0.16	19.0	1.027	0.16	0.79	0.107
25.0	12.61	13.57	12.61	13.57	12.82	0.11	22.5	1.746	0.13	0.96	0.107
27.0	12.61	13.59	12.61	13.59	12.83	0.11	26.0	0.514	0.11	0.98	0.107
32.0	12.59	13.66	12.59	13.66	12.83	0.09	29.5	0.925	0.10	1.07	0.107
37.0	12.58	13.74	12.58	13.74	12.84	0.08	34.5	0.925	0.08	1.16	0.107
42.0	12.56	13.76	12.56	13.76	12.82	0.06	39.5	0.411	0.07	1.20	0.107
47.0	12.56	13.80	12.56	13.80	12.83	0.06	44.5	0.411	0.06	1.24	0.107
52.0	12.54	13.83	12.54	13.83	12.82	0.04	49.5	0.514	0.05	1.29	0.107
62.0	12.54	13.89	12.54	13.89	12.84	0.04	57.0	0.308	0.04	1.35	0.107
72.0	12.53	13.89	12.53	13.89	12.83	0.03	67.0	0.051	0.03	1.36	0.107
92.0	12.52	13.91	12.52	13.91	12.83	0.02	82.0	0.077	0.02	1.39	0.107
122.0	12.51	13.94	12.51	13.94	12.82	0.01	107.0	0.068	0.01	1.43	0.107
152.0	12.51	13.95	12.51	13.95	12.83	0.01	137.0	0.017	0.01	1.44	0.107

Generalized Bouwer and Rice (1976)

Well Designation: TW-19
Date: 15-Dec-18


 $T_n = \frac{r_e^2 \ln(R/r_e) \ln(s_n(t_1)/s_n(t))}{2(-J)(t-t_1)}$

Enter early time cut-off for least-squares model fit

Time_{cut} 30 <- Enter or change value here

Model Results:

- 15211		,	
$T_n (ft^2/d) =$	1.77	+/-	0.16

L_e/r_e
41.3

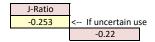
C
2.44

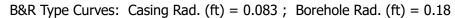
R/r_e
16.75

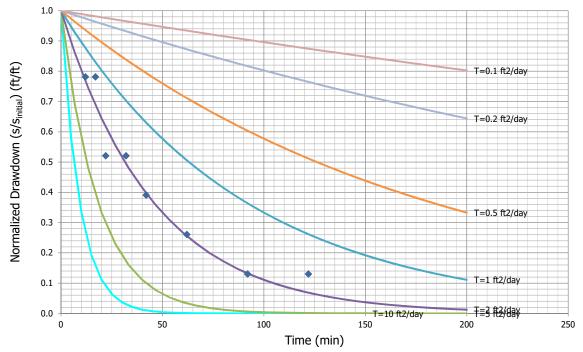
ft²/d

J-Ratio -0.253

Coef. Of Variation 0.09

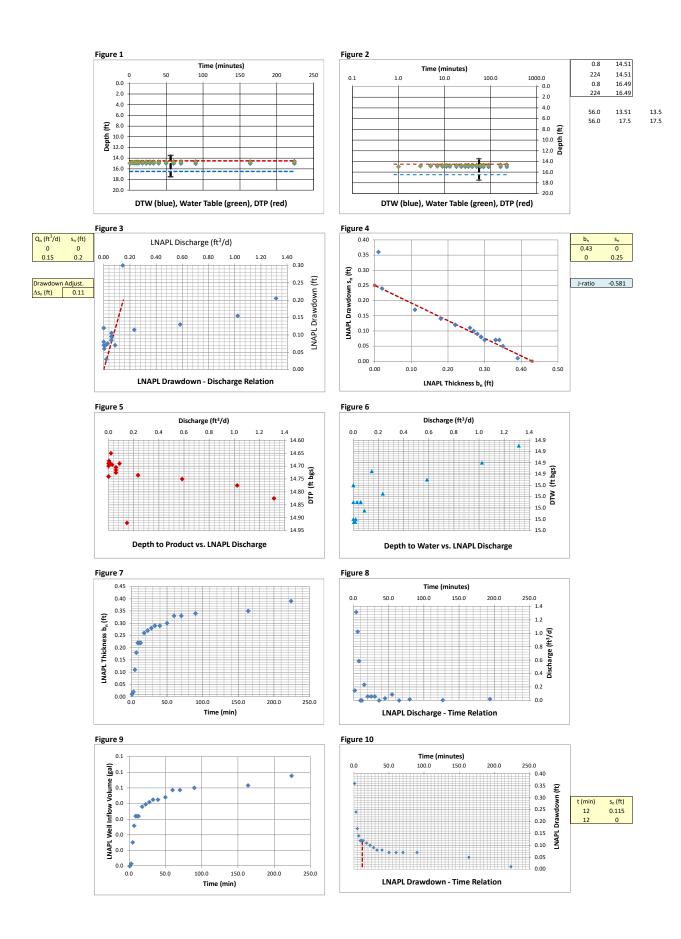

C coefficient calculated from Eq. 6.5(c) of Butler, The Design, Performance, and Analysis of Slug Tests, CRC Press, 2000.




Bouwer and Rice Short Term LNAPL Mobility Test Type CurvesB&R Type Curves: Casing Rad. (ft) = 0.083; Borehole Rad. (ft) = 0.18

Enter these values

Type Curve ID	Type Curve Name	Notes	Max Time (min)	Transmissivity (ft ² /day)
1	T=10 ft2/day		150	10
2	T=5 ft2/day		200	5
3	T=2 ft2/day		200	2
4	T=1 ft2/day		200	1
5	T=0.5 ft2/day		200	0.5
6	T=0.2 ft2/day		200	0.2
7	T=0.1 ft2/day		200	0.1



Well Designation:	TW-24	Beckett and Lyverse (2002)	
Date:	15-Dec-18		
	•		
Ground Surface Elev (ft msl)	0.0	Enter These Data	Drawdown
Top of Casing Elev (ft msl)	0.0		Adjustment
Well Casing Radius, rc (ft):	0.031	r _{e1}	(ft)
Well Radius, r _w (ft):	0.180		0.11
LNAPL Specific Yield, Sy:	0.175		•
LNAPL Density Ratio, pr:	0.780		
Top of Screen (ft bgs):	5.0		
Bottom of Screen (ft bgs):	25.0		
LNAPL Baildown Vol. (gal.):	4.0		
Effective Radius, r _{e3} (ft):	0.080	Calculated Parameters	
Effective Radius, r _{e2} (ft):	0.057		
Initial Casing LNAPL Vol. (gal.):	0.04	1	
Initial Filter LNAPL Vol. (gal.):	0.26		

Initial Fluid Levels:

Enter Test Data:

En	ter Data H	ere			Water Table Depth	LNAPL Drawdown	Average	LNAPL Discharge	Sn	b _n	r _e
Time (min)	DTP (ft btoc)	DTW (ft btoc)	DTP (ft bgs)	DTW (ft bgs)	(ft)	s _n (ft)	Time (min)	Q _n (ft ³ /d)	(ft)	(ft)	(ft)
0	14.51	16.49	14.51	16.49	14.95	-11 (-1)		-Ci (7-)	()	1.98	()
1.0	14.98	14.99	14.98	14.99	14.98	0.36				0.01	
3.0	14.86	14.88	14.86	14.88	14.86	0.24	2.0	0.146	0.30	0.02	0.080
5.0	14.79	14.90	14.79	14.90	14.81	0.17	4.0	1.316	0.21	0.11	0.080
7.0	14.76	14.94	14.76	14.94	14.80	0.14	6.0	1.023	0.16	0.18	0.080
9.0	14.74	14.96	14.74	14.96	14.79	0.12	8.0	0.585	0.13	0.22	0.080
11.0	14.74	14.96	14.74	14.96	14.79	0.12	10.0	0.000	0.12	0.22	0.080
13.0	14.74	14.96	14.74	14.96	14.79	0.12	12.0	0.000	0.12	0.22	0.080
18.0	14.73	14.99	14.73	14.99	14.79	0.11	15.5	0.234	0.12	0.26	0.080
23.0	14.72	14.99	14.72	14.99	14.78	0.10	20.5	0.058	0.11	0.27	0.080
28.0	14.71	14.99	14.71	14.99	14.77	0.09	25.5	0.058	0.10	0.28	0.080
33.0	14.70	14.99	14.70	14.99	14.76	0.08	30.5	0.058	0.09	0.29	0.080
40.0	14.70	14.99	14.70	14.99	14.76	0.08	36.5	0.000	0.08	0.29	0.080
50.0	14.69	14.99	14.69	14.99	14.76	0.07	45.0	0.029	0.07	0.30	0.080
60.0	14.69	15.02	14.69	15.02	14.76	0.07	55.0	0.088	0.07	0.33	0.080
70.0	14.69	15.02	14.69	15.02	14.76	0.07	65.0	0.000	0.07	0.33	0.080
90.0	14.69	15.03	14.69	15.03	14.76	0.07	80.0	0.015	0.07	0.34	0.080
164.0	14.67	15.02	14.67	15.02	14.75	0.05	127.0	0.004	0.06	0.35	0.080
224.0	14.63	15.02	14.63	15.02	14.72	0.01	194.0	0.019	0.03	0.39	0.080

Generalized Bouwer and Rice (1976)

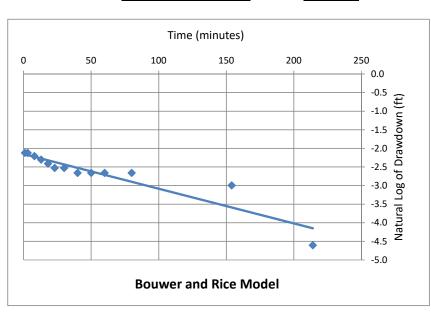

Well Designation: TW-24
Date: 15-Dec-18

 $T_n = \frac{r_e^2 \ln(R/r_e) \ln(s_n(t_1)/s_n(t))}{2(-J)(t-t_1)}$

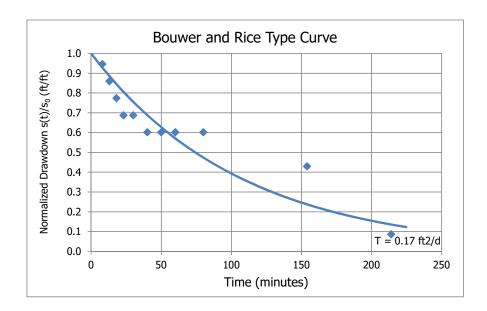
Enter early time cut-off for least-squares model fit

Time_{cut} 10 <- Enter or change value here

Model Results:

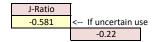


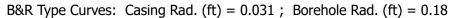
J-Ratio -0.581

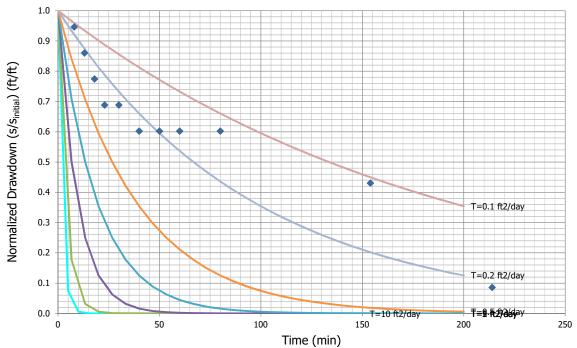

ft²/d

0.02

Coef. Of Variation 0.12


C coefficient calculated from Eq. 6.5(c) of Butler, The Design, Performance, and Analysis of Slug Tests, CRC Press, 2000.




Bouwer and Rice Short Term LNAPL Mobility Test Type Curves
B&R Type Curves: Casing Rad. (ft) = 0.031; Borehole Rad. (ft) = 0.18

Enter these values

Type Curve ID	Type Curve	Notes	Max Time	Transmissivity
~	Name		(min)	(ft ² /day)
1	T=10 ft2/day		150	10
2	T=5 ft2/day		200	5
3	T=2 ft2/day		200	2
4	T=1 ft2/day		200	1
5	T=0.5 ft2/day		200	0.5
6	T=0.2 ft2/day		200	0.2
7	T=0.1 ft2/day		200	0.1

APPENDIX H Groundwater Field Sample Forms

EPS Project: Transco							Date: Janua	ary 22, 2019			
Well ID:	MW-	\			Fi	eld Conditions:	Sunny,	349 EA	IE 10mgh		
Sampling Perf	formed By:	J. Terry, B. Mc	Gann								
Well Construc	tion:	Stick	UP		General Condition of Well: 400						
Well Labeled:		Well Cap:	_ Y	Well Locked:	Y	Condition of si	urrounding are	a: Unimprov	en (field)		
Well depth fro	m TOC:	19.40		7114L 1211	1	Depth to Water		9,88	,		
Well Diameter (in):					Meth	od of measure:	Water Level M	eter			
leight (Ht) of	water in well (V	Vell depth from	TOC - Static le	evel from TOC):		9.52					
Volume of wat	ter in well (Ht. x	(0.04 for 1")(.16 for	2")(.653 for 4")(1.	469 for 6"):	1.5		Thre	e Well Volumes	(gal): 45		
Purging Metho	od:	Multiple Volum	e Ruse:	0.16.85		Start of Purge:	0835				
Sample Metho	od:	direct / transfer			M C - 1	ole Parameters:	PAHs (SIM me	thod)			
nitial Depth o	f Pump/Tubing	: 11.00	ft (BTOC)		Final Depth o	f Pump/Tubing:	13.00	ft (BTOC)			
Time	Volume (gal)	Temp (°C)	рН	Cond. (mS/cm)	DO (mg/L)	Turbidity (NTU)	ORP (mV)	DTW (ft, BTOC)	Comments		
0850	1.5	14	41.90	0.199	1,23	9,9	1943	11.38			
0900	2.5	141.5	4.92	0.201	1,35	15.5	227.3	11.99			
0908	3.3	14.3	4.99	0.203	1.46		238.4	12.12	Reduced purgerous: 0.08		
0930	5.7	14.3	5.10	0.207	1.39	3.7	251.6	12.13			
0940	5.9	13.9	5.10	0,211	1.36	7.7	256.7	12.15			
0950	6.7	14.3	5,08	0.212	1.41	1.2	258.1	12.15			
				1		0					

WQ Meter Make/Model/SN:	YSI ProPlus /8 = 106364
Pump Make/Model:	Alexis Peristaltic
Turbidity Meter Make/Model/SN:	(10 2)

Sample ID: 19022 - MW - 1

Time Collected: 0950

Technician Signature Ox Cuy

EPS Projec	t: Transco						Date: Janua	ry 22, 2019	
Well ID:	TW-	1			Fi	eld Conditions:	33°F	SUMMY	
Sampling Perl	formed By:	J. Terry, B. Mo	Gann					22-01	
Well Construc	/ell Construction: 5TICK-VP					General Condi	tion of Well:	9000	
Well Labeled:	V	Well Cap	: 'V	Well Locked:	V	Condition of su	urrounding are		oved surface
Well depth fro	m TOC:	20				Depth to Water	from TOC:	10.91	
Well Diameter	(in):	7	10.		Metho	od of measure:	Water Level Me	eter	
leight (Ht) of	water in well (W	ell depth fron	n TOC - Static	evel from TOC):	1 .100	9,09			
olume of war	ter in well (Ht. x (0.04 for 1")(.16 fo	r 2")(.653 for 4")(1	.469 for 6"):	1.45		Three	e Well Volumes (gal): 4.36
ourging Metho	od:	Multiple Volum	ne		Time @	Start of Purge:	0820	7	
Sample Metho	od:	direct / transfe	r cap assembly		Samp	ole Parameters:	PAHs (SIM me	thod)	
nitial Depth o	f Pump/Tubing:	18	ft (BTOC)		Final Depth of	f Pump/Tubing:	18	ft (BTOC)	
Time	Volume (gal)	Temp (°C)	рН	Cond. (mS/cm)	DO (mg/L)	Turbidity (NTU)	ORP (mV)	DTW (ft, BTOC)	Comments
OK35	1,35	160.1	5.04	0.115	2,68	8,38	225.9	12.46	0.09 gal/min
0845	2.25	15.9	5.04	0.111	8.70	6.60	175.0	12.92	Proc rate
3855	3:15	16.1	5.04	Qill	9.09	4,23	176.2	12.92	1 /
0975	4.95	18.15	5.00	8:118	9:16	3.59	144.8	12.92	
-11.0	1812	14	2.00	107111	1700		1 . 1/9	10.12	
							1		
			1002	11-17)		7		
WQ Meter I	Make/Model/SN:	YSI ProPlus	181511	14500		2.1			
			74	1125					
Pum	p Make/Model:	Alexis Peristal	tic / [475		-			
	Turbidity Meter		97	-10-119	7				
N	lake/Model/SN:	LaMotte 2020	we	10-111)				

Sample ID: 19022 - TW - [

Time Collected:

Technician Signature_

5+.2	B. McGann		Fie	eld Conditions:	Sanny	440F, E1	ongl			
5+.2										
	100									
/ Wall	Well Construction: Stick up				General Condition of Well:					
Well Labeled: Well Cap: Well Locked:										
oc: 22	.94	α	bled lock	Depth to Water	r from TOC:	14.89				
_2			Metho	d of measure:	Water Level M	eter				
r in well (Well depth	from TOC - Static le	vel from TOC):	-	8.05			- 0			
well (Ht. x (0.04 for 1")						e Well Volumes (gal)	: 3,9			
Multiple \	Volume Rute.	0.1684	Time @	Start of Purge:	1200					
			Charles in a control of the control							
np/Tubing: /6	ft (BTOC)		Final Depth of	Pump/Tubing:	10	ft (BTOC)				
	I pH	Cond. (mS/cm)	DO (mg/L)	Turbidity (NTU)	ORP (mV)	DTW (ft, BTOC)	Comments			
1.8 19.	1 6.43	0.60	1.33	62,9	-73.2	16,411				
	0 6.35	0.62				16.41				
		0.42								
		0.62	0.51	1 74	675	10.41				
						717-1-1				
	_									
	-1,									
				2		7				
	r in well (Well depth well (Ht. x (0.04 for 1")) Multiple \direct / tra mp/Tubing: /6 /olume (gal) (°C // 8 19.7	r in well (Well depth from TOC - Static let well (Ht. x (0.04 for 1")(.16 for 2")(.653 for 4")(1.653 for 4")(1.653 for 4")(1.653 for 4")(1.6	r in well (Well depth from TOC - Static level from TOC): well (Ht. x (0.04 for 1")(.16 for 2")(.653 for 4")(1.469 for 6"): Multiple Volume	r in well (Well depth from TOC - Static level from TOC): well (Ht. x (0.04 for 1")(.16 for 2")(.653 for 4")(1.469 for 6"): Multiple Volume	r in well (Well depth from TOC - Static level from TOC): well (Ht. x (0.04 for 1")(.16 for 2")(.653 for 4")(1.469 for 6"): Multiple Volume	r in well (Well depth from TOC - Static level from TOC):	well (Well depth from TOC - Static level from TOC):			

Sample ID: 19022-TW-8

Pump Make/Model: Alexis Peristaltic

Turbidity Meter
Make/Model/SN: LaMotte 2020we

Time Collected: 1255

9835-1018

Technician Signature

PS Project	: Transco						Date: Janua	ry 22, 2019		
/ell ID:	TW-	31			Fi	eld Conditions:	390	F, S	UNNY	
ampling Perf	ormed By:	J. Terry, B. Mc	Gann					21		
ell Construc	tion:	Stick -	19			General Condi	tion of Well:	9000		
ell Labeled:		Well Cap:	/	Well Locked:	NO	Condition of s	urrounding are	a: in m;	proved surface	
ell depth fro	m TOC:	22.	62			Depth to Water	r from TOC:	6:5		
ell Diameter	(in):	110.			Meth	od of measure:	Water Level Me	eter		
eight (Ht) of	water in well (W	ell depth from	TOC - Static I	evel from TOC):		16.11				
lume of wat	er in well (Ht. x (0.04 for 1")(.16 for	2")(.653 for 4")(1.	.469 for 6"):	0.6	4	Three	Well Volumes	(gal): 1.93	
rging Metho	od:	Multiple Volum	е		Time @	Start of Purge:	1015)		
ample Method: direct / transfer cap assembly				Sample Parameters: PAHs (SIM method)						
itial Depth of	f Pump/Tubing:	15	ft (BTOC)		Final Depth o	f Pump/Tubing:	15	ft (BTOC)		
Time	Volume (gal)	Temp (°C)	рН	Cond. (mS/cm)	DO (mg/L)	Turbidity (NTU)	ORP (mV)	DTW (ft, BTOC)	Comments	
039	1.2	16.9	5.94	0 486	0.58	6.71	115.3	8.69	0.08 gal/min prige	
040	2.0	17.0	5,97	0485	028	6.06	108.3	8.76	rate	
1050	2.5	16.8	5.97	0.489	024	9,59	106.1	8.12	@ 1040 pcmp rate	
1100	3.5	19.8	7.00	0.484	0.21	6.01	105.6	8.15	COM to reduce	
4,0	7.0		0.00			0.01	10 /	0 10	further	
									grandon	
						Y				
			V.P.		1					
WQ Meter N	Make/Model/SN:	YSI ProPlus	12171	14560)	-				
Pum	p Make/Model:	Alexis Peristalt	ic 74	475						
T uni	p wake/wodel.	AIGNIS I GIISIAIL	0 1,	1 1 2	2	-				
	Turbidity Meter	Talm Section	97	10 -111	8					
M	lake/Model/SN:	LaMotte 2020v	ve	10						

Sample ID: 19022 - TW - 3

Time Collected: 15

Technician Signature

EPS Project: Transco					Date: January 22, 2019					
Vell ID:	W-33			Fie	eld Conditions:	Sunny	37°F, E	10 204		
ampling Performed B	y: J. Terry, B. M	IcGann					,	<i>y</i>		
Vell Construction: Stick UP Vell Labeled: V Well Cap: V Well Locked:			General Condition of Well: good Condition of surrounding area: youngloved Depth to Water from TOC: 11.72							
									/ell depth from TOC: 23.07	
Vell Diameter (in):	1									Metho
leight (Ht) of water in	well (Well depth fro	m TOC - Static I	evel from TOC):		11.35					
olume of water in well (Ht. x (0.04 for 1")(.16 for 2")(.653 for 4")(1.469 for 6"): urging Method: Multiple Volume Quite: 0.06 GPA direct / transfer cap assembly			0.5		Three Well Volumes (gal): 1.5					
			Time @	Time @ Start of Purge: 1040						
			Samp	Sample Parameters: PAHs (SIM method)						
itial Depth of Pump/I	ubing: \3	ft (BTOC)		Final Depth of	Pump/Tubing:	!3	ft (BTOC)			
Time Volu	2000 a 100 a 100 a 100 a	рН	Cond. (mS/cm)	DO (mg/L)	Turbidity (NTU)	ORP (mV)	DTW (ft, BTOC)	Comments		
1050 0.0		6.44	0.64	0.29	4.1	-111,4	11.75	XD		
1100 1.0		6.38	0.64	0.17	4.6	-112	11.75			
1110 1.8		6.43	0.66	0.11	2.9	-111.5	11.75			
1115 2.1	16.7	6.43	0.66	0.10	2.4	-110.8	11.75			
1125 2.7	17.5	6.42	0.66	0.07	3.7	-112	11.75			
				•						
	_									

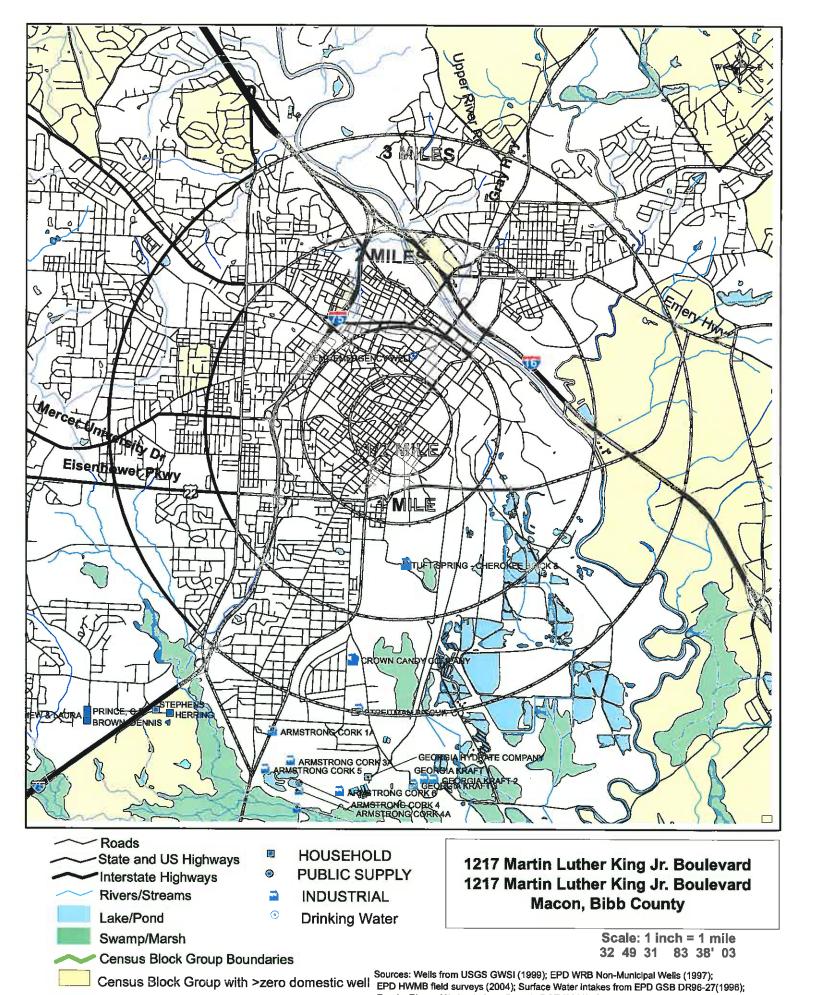
Sample ID: 19077-TW-33

Time Collected: 125

Technician Signature

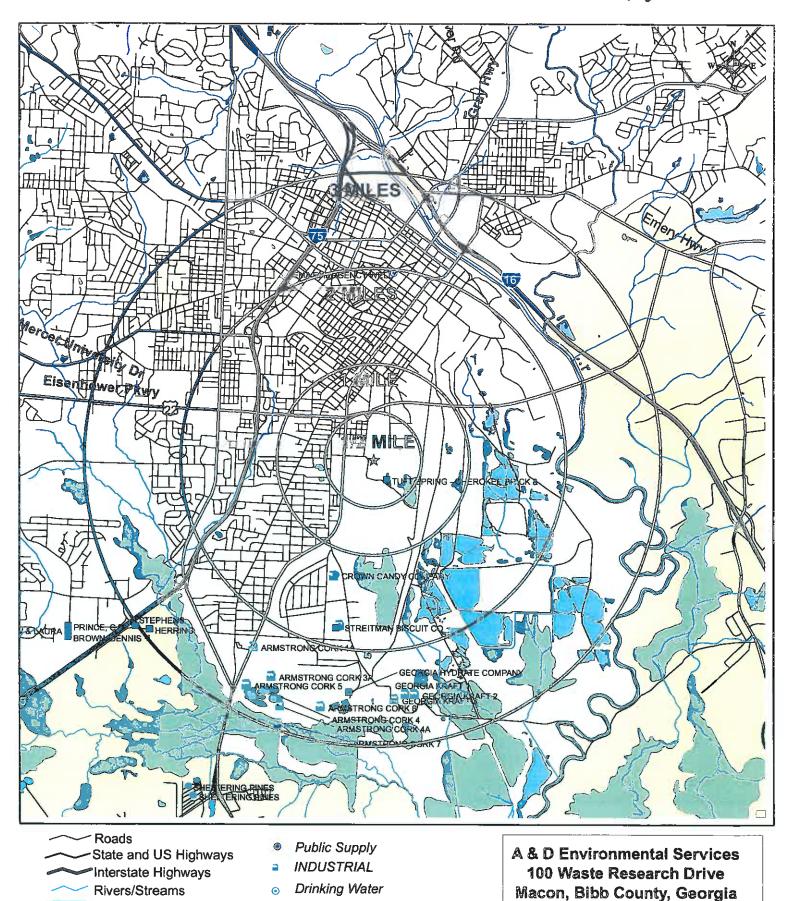
ANALYTICAL ENVIRONMENTAL SERVICES, INC.

3080 Presidential Drive Atlanta, GA 30340-3704


CHAIN OF CUSTODY

Work Order:	
Work Order:	

AES Phone: (770) 457-8177 / Toll-Free: (800) 972-4889 / Fax: (770) 457-8188														Dat	e: <u>/-6</u>	22-19 Page / of	
COMPANY: EPS	ADDRESS:	100	ANALYSIS REQUESTED										Visit our website				
	ADDRESS: 400 Northridge Rd, Ste 400 Sandy Springs, G.A 30350					N										www.aesatlanta.com for downloadable COCs and to	Ş.
404-315-9115	EMAIL: awillianspenuplanning, con					N			Н				-			log in to your AESAccess account.	ntaine
SAMPLED BY: DOE TERRY Bring Mc Gunn	SIGNATURE: Ty Th					4H		+									er of Co
	SAMPLED:			SITE	(sap	3			Ш			(see codes)					Numbe
# SAMPLE ID	DATE	TIME	GRAB	COMPOSITE	(see codes)	I		+	PRES	ERVATIO	JN (see	codes)		1		REMARKS	
1 19022-MW-1	1.22-19	0950	X		GW	X											2
2 19022-TW-1	1-22-19		X		6W	X											2
3 19022-TW-31	1-22-19		X		GW	X											2
4 19022 - TW-33	1-22-19		X		6W	X											2
5 19022-TW-8	1-22-19		X		aw	- /				4							2
6 19022- DUP	1-22-19	1200	X		an	1 1		_	\vdash		_				-		2
7								_	\vdash		_				-	9	
8								_	\vdash				y		-		
9								-			_			-	-		
10									\Box						-		
11											_			_			
12							-							-	-		
13						_		_									
14					*											RECEIPT	
RELINQUISHED BY: DATE/TIME:	RECEIVED BY: DATE/TIME					PROJECT NAME: TO PROJEC											
1. Je ly 1-22-19/1500	1. XW 1-2219 1500					PROJECT NAME: Transco										Total # of Containers	
	3.					PROJECT #: SITE ADDRESS: Mucon, GA										Turnaround Time (TAT) Reque	<u>25T</u>
						-	,,,,,,		N		2 Business Day Rush						
3.						SEND REPORT TO: Aurun Williams										Next Business Day Rush	
SPECIAL INSTRUCTIONS/COMMENTS:	SHIPMENT METHOD OUT: / / VIA: IN: / / VIA: client FedEx UPS US mail courier Greyh					INVOICE TO: (IF DIFFERENT FROM ABOVE)										Same-Day Rush (auth req.	1
																STATE PROGRAM (if any): E-mail?	
			QUOTE #:									_	DATA PACKAGE: 1 O 11 O 11 O 1VO				
Submission of samples to the laboratory constitutes acceptance of AES's Terms & Conditions. Samples received after 3PM or on Saturday are considered as received the following business day. If no TAT is marked on COC, AES will proceed with standard TAT. Samples are disposed of 30 days after completion of report unless other arangements are made.																	


APPENDIX I Water Well Survey

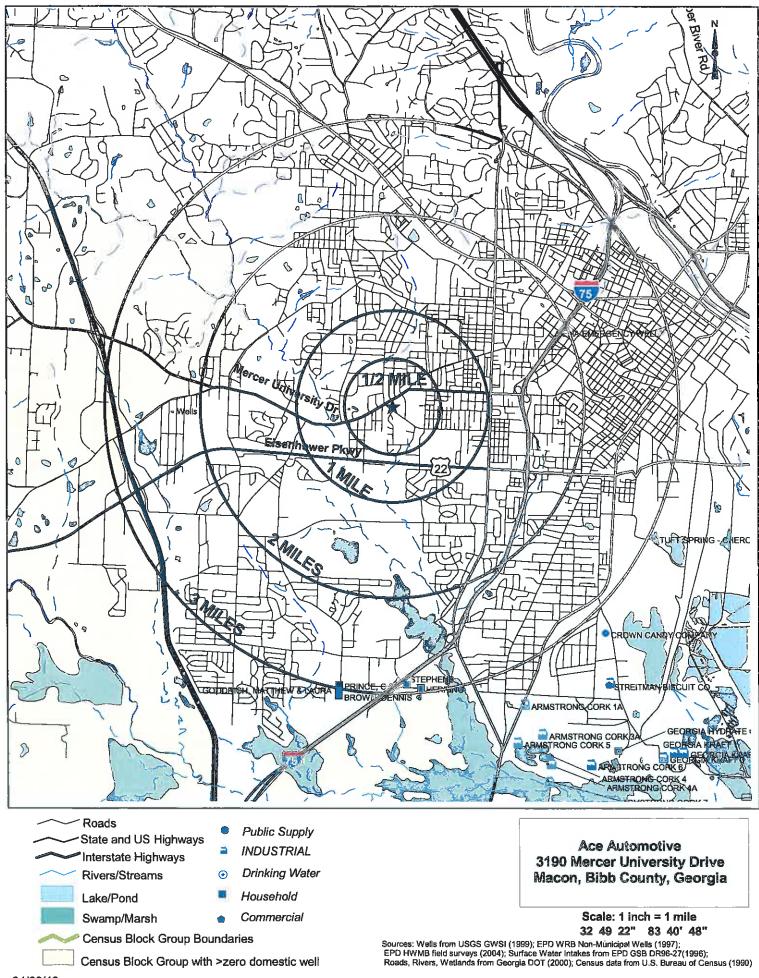
Poads, Rivers, Wetlands from Georgia DOT (2000); Census data from U.S. Bureau of Census (1990)

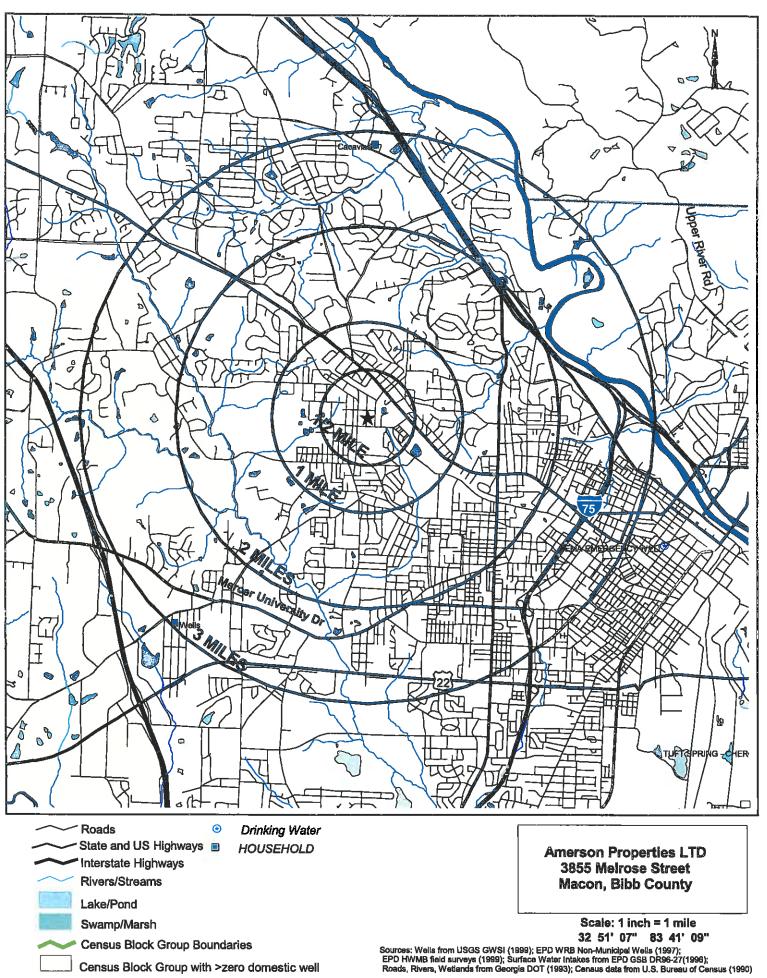
9/18/18

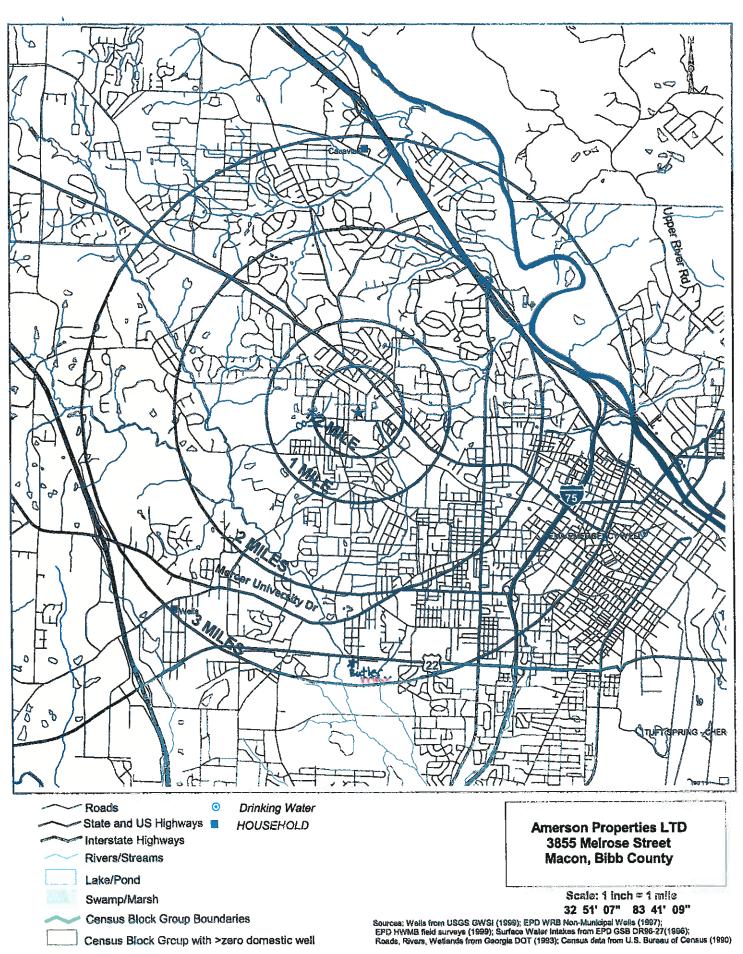
No Trip Report as at 16/26/18

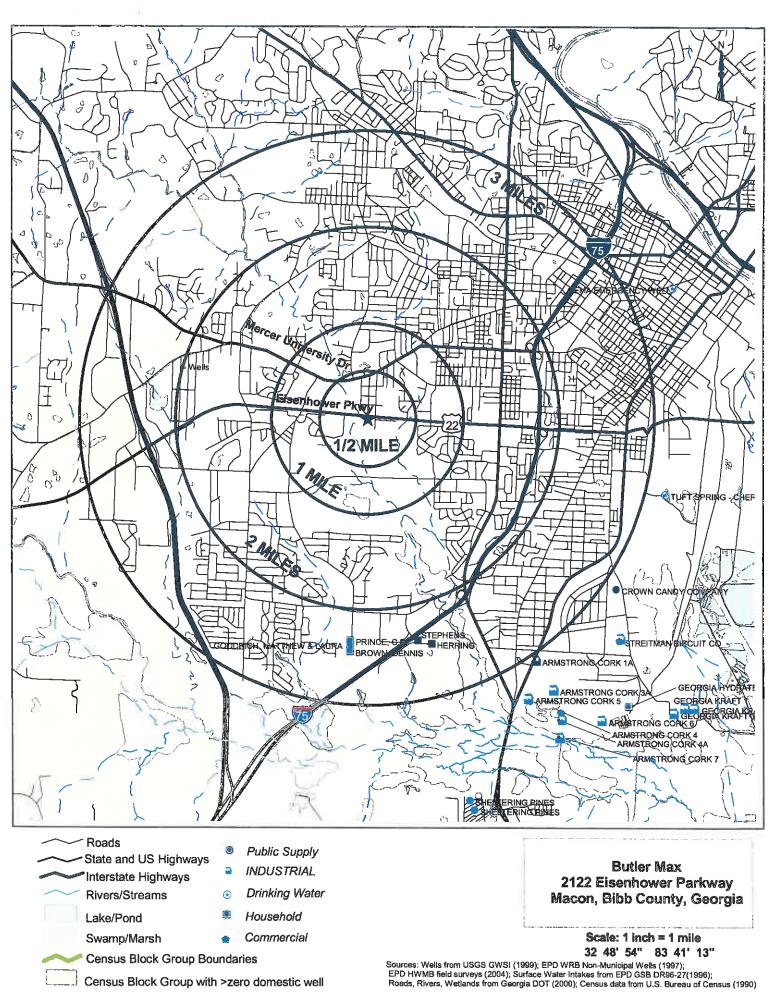
Household

32 48 27 83 38' 06 Sources: Wells from USGS GWSI (1999); EPD WRB Non-Municipal Wells (1997); Census Block Group with >zero domestic well EPD HWMB field surveys (2004); Surface Water Intakes from EPD GSB DR96-27(1996);


Roads, Rivers, Wetlands from Georgia DOT (2000); Census data from U.S. Bureau of Census (1990)


Scale: 1 inch = 1 mile


Lake/Pond


Swamp/Marsh

Census Block Group Boundaries

State and US Highways

Interstate Highways

Rivers/Streams

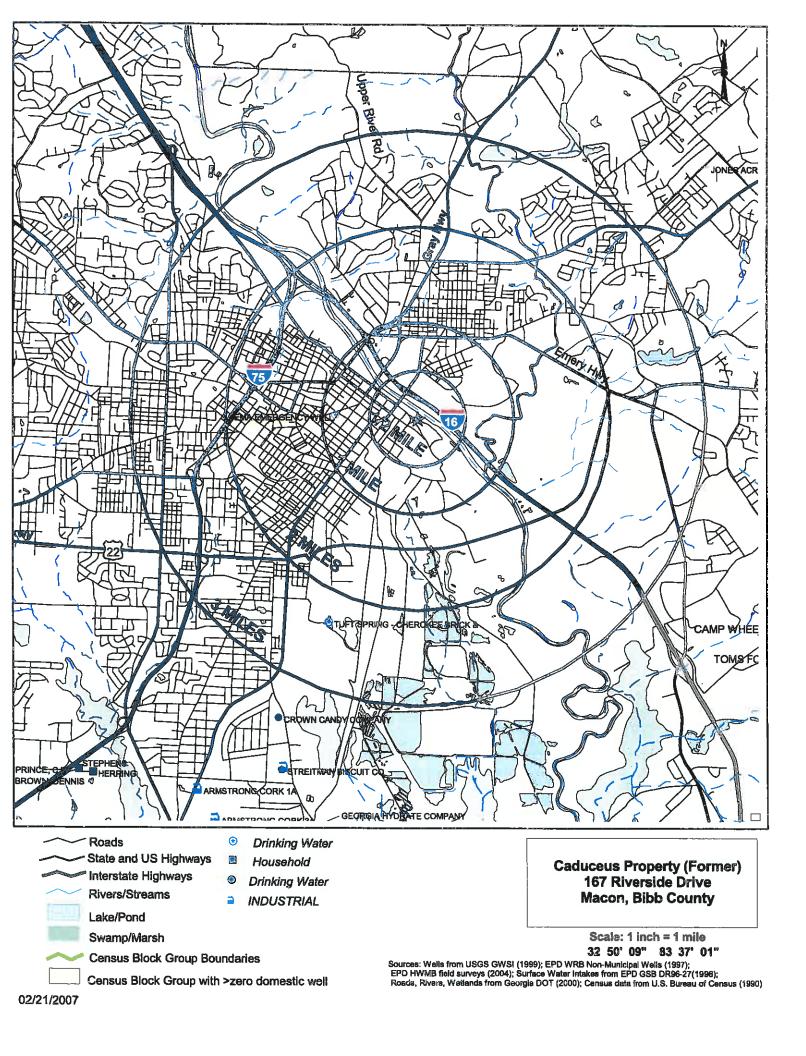
Lake/Pond

Swamp/Marsh

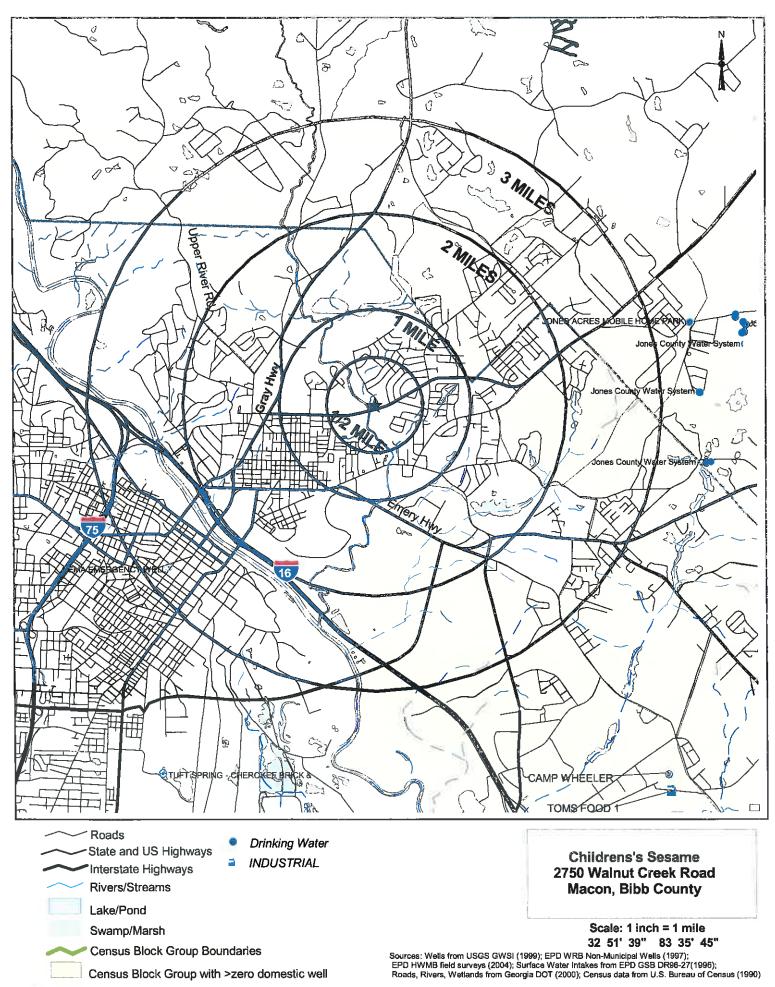
Census Block Group Boundaries

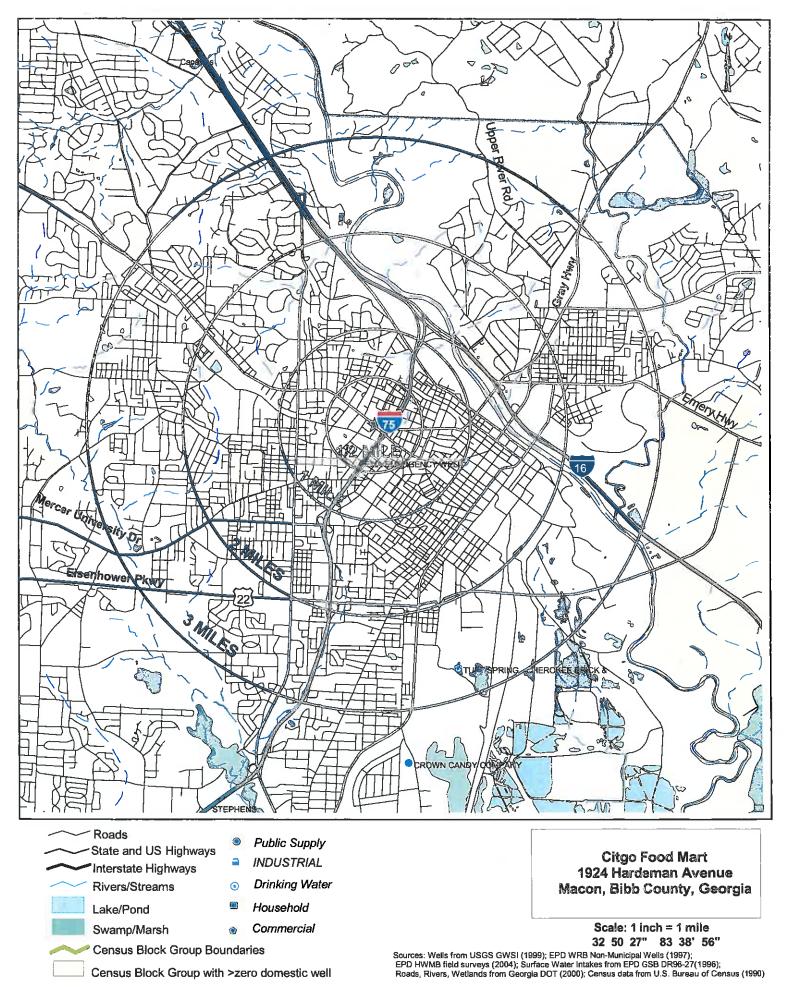
HOUSEHOLD

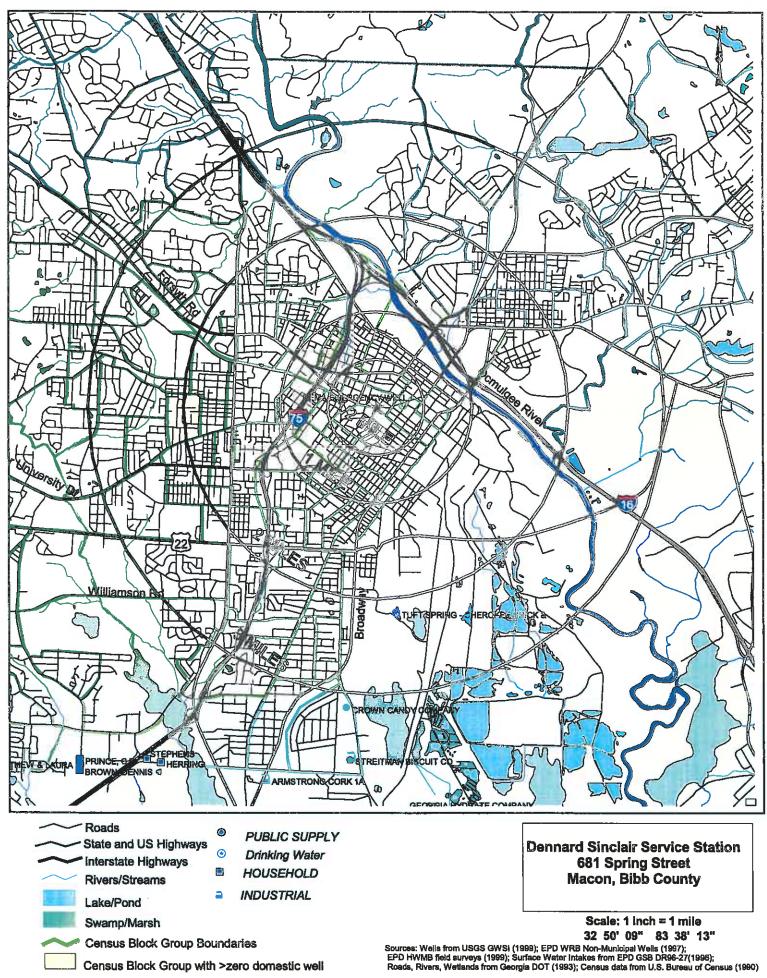
PUBLIC SUPPLY

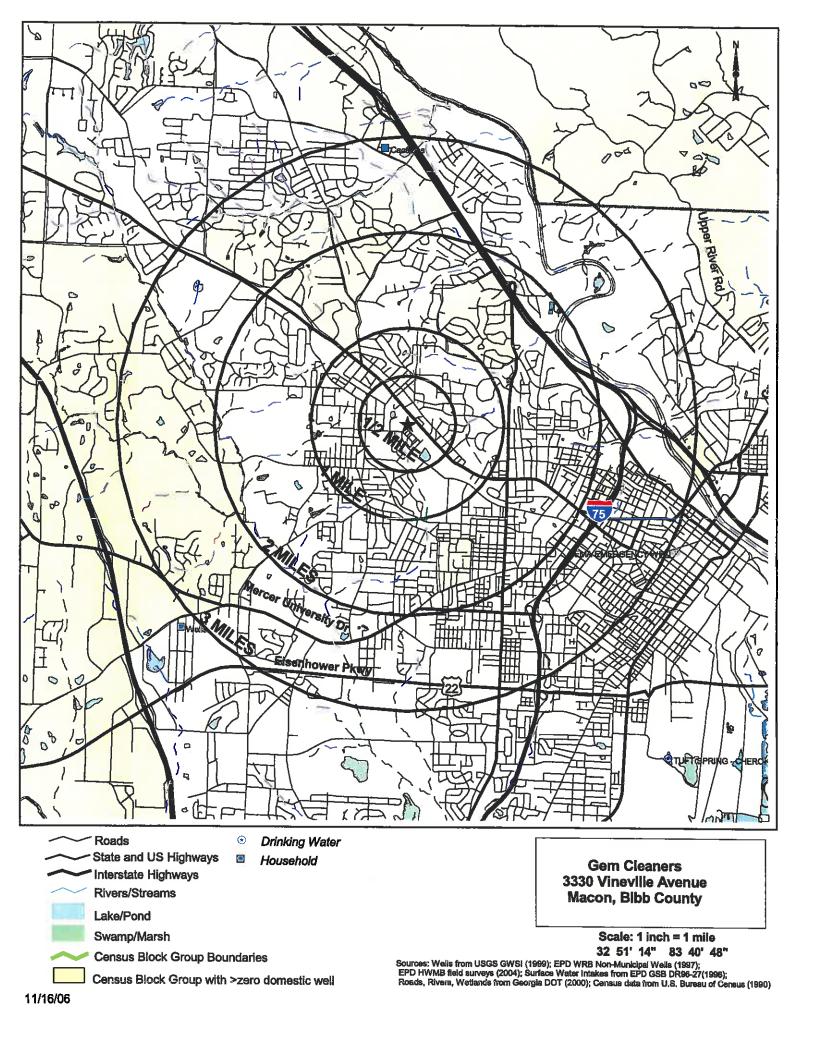

INDUSTRIAL

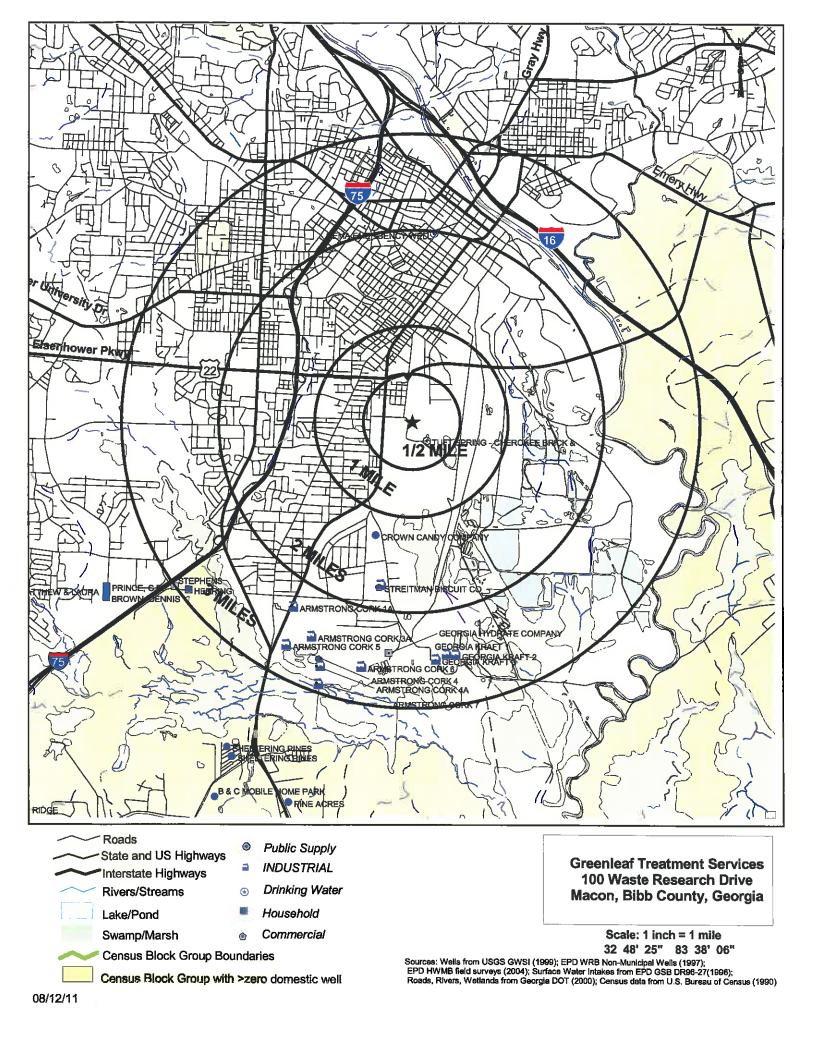
UNUSED

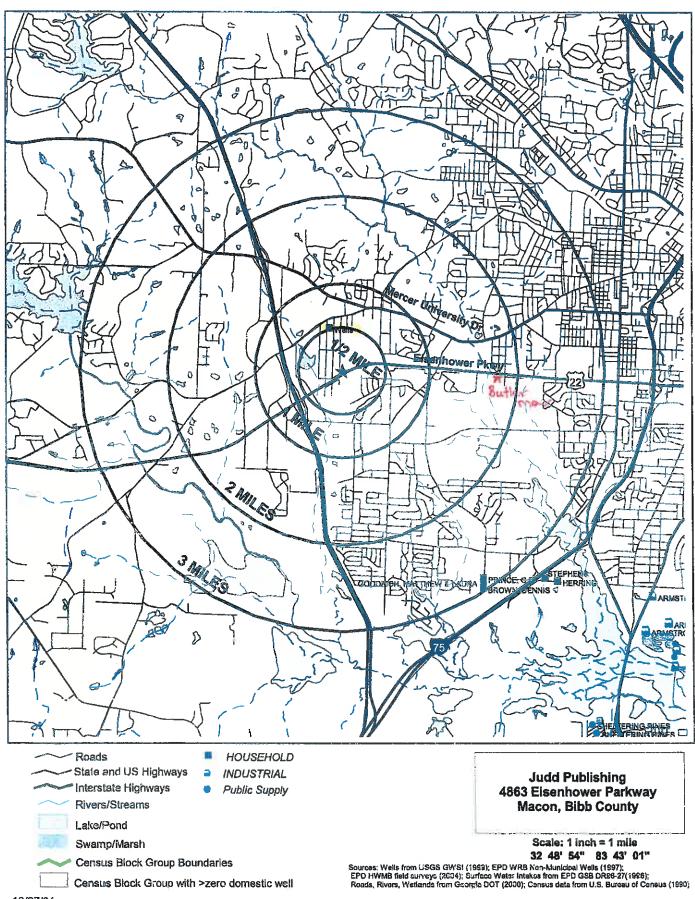

Bibb Mill Properties (Former) 155 Coliseum Drive & 201 Coliseum Drive Macon, Bibb County, Georgia

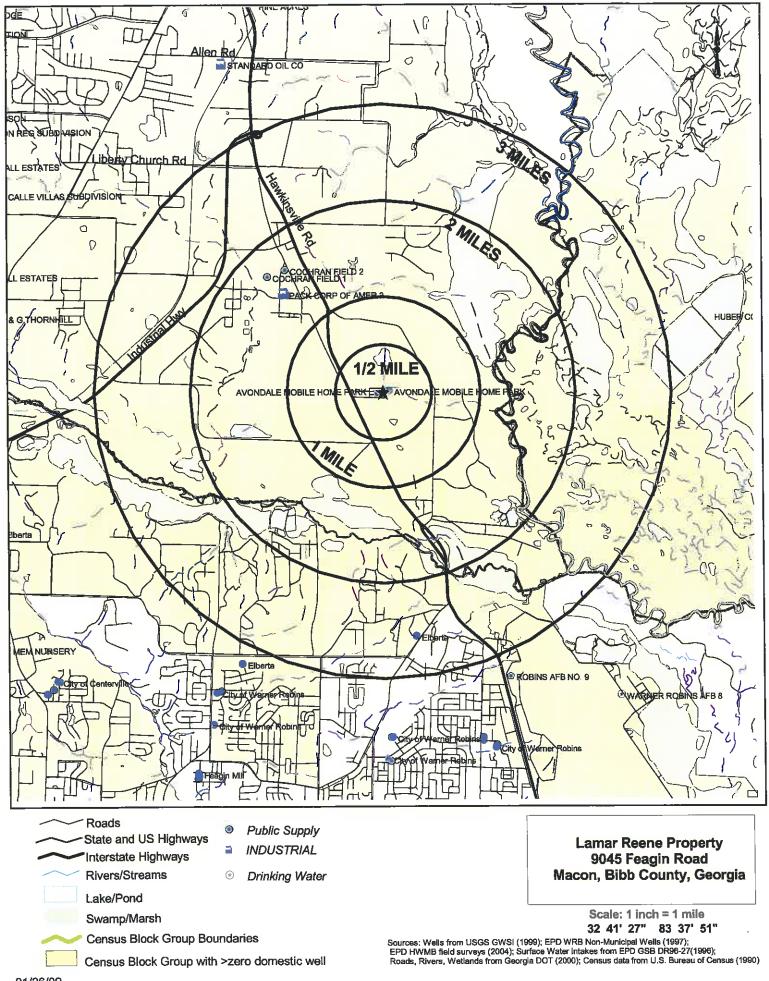

> Scale: 1 inch = 1 mile 32 50 26 83 37' 02

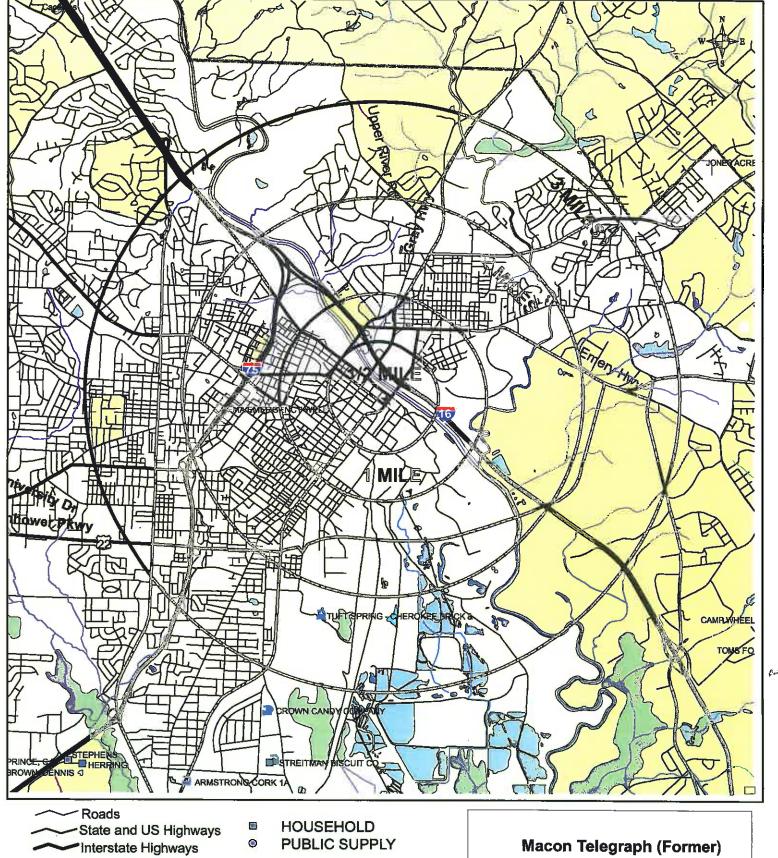

Census Block Group with >zero domestic well Sources: Wells from USGS GWSI (1999); EPD WRB Non-Municipal Wells (1997); EPD HWMB field surveys (2004); Surface Water Intakes from EPD GSB DR96-27(1996); Roads, Rivers, Wetlands from Georgia DOT (2000); Census data from U.S. Bureau of Census (1990)











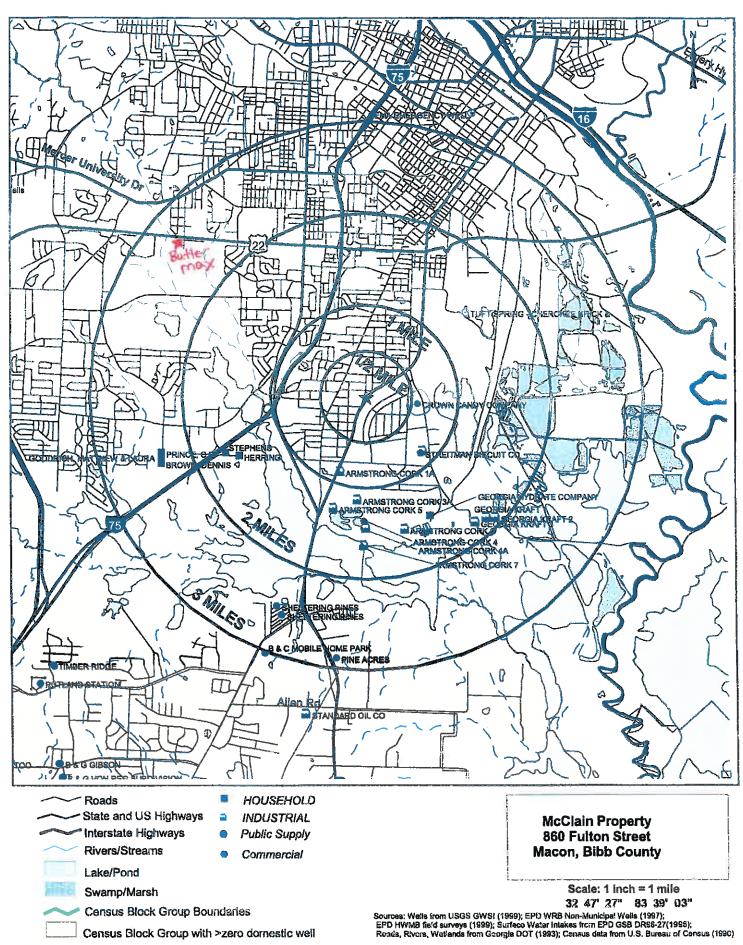
Rivers/Streams

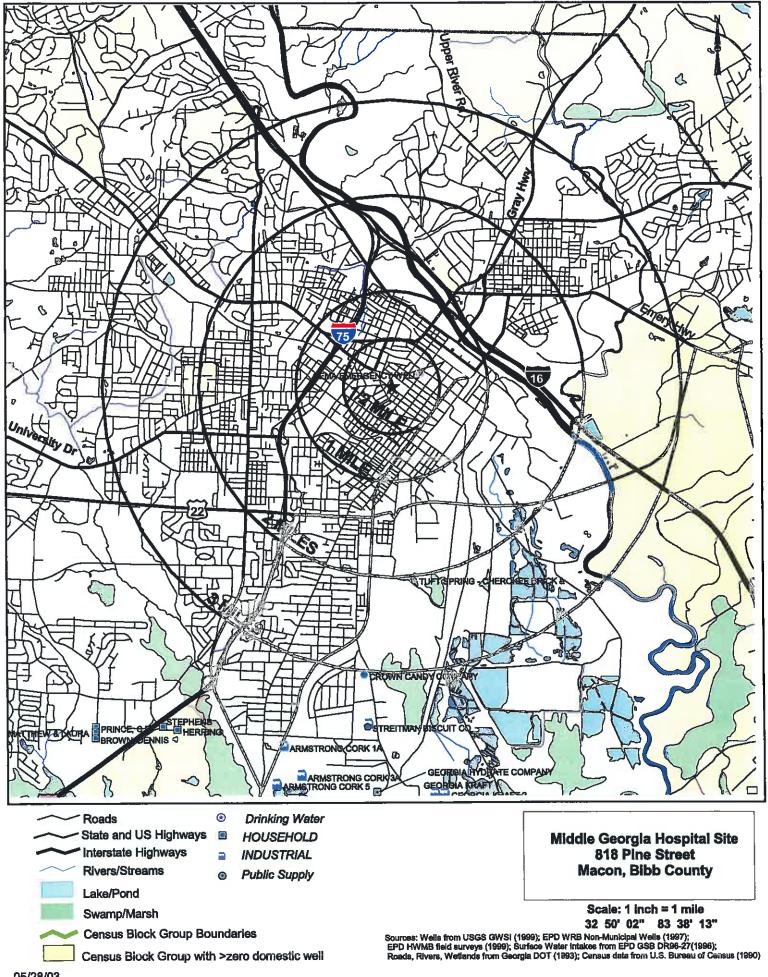
Lake/Pond

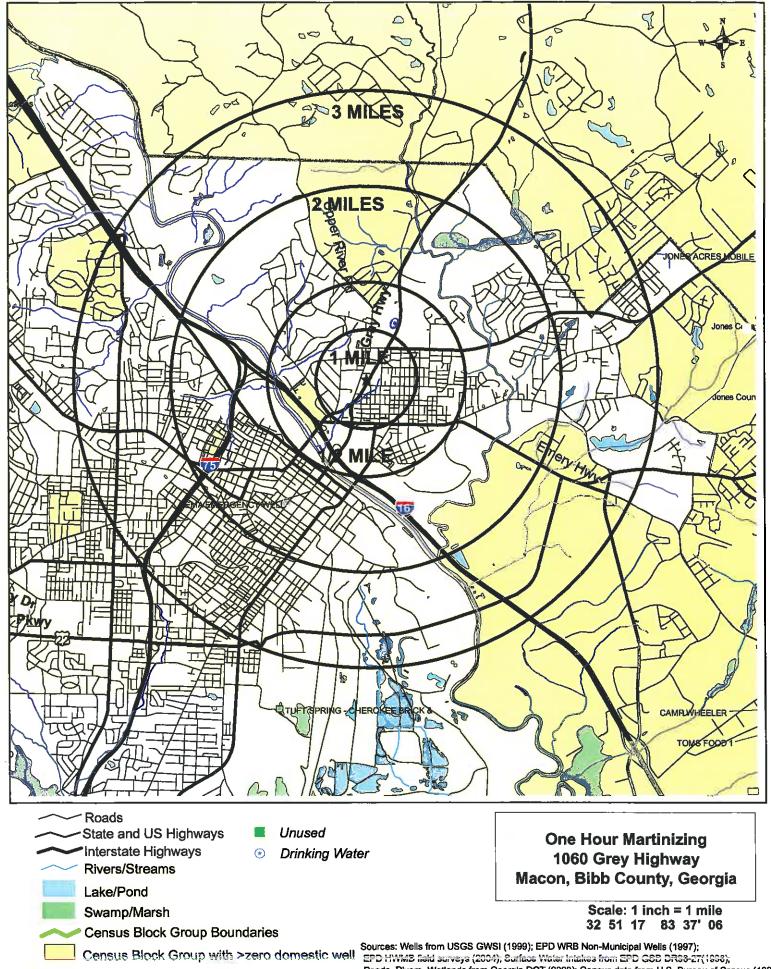
Swamp/Marsh

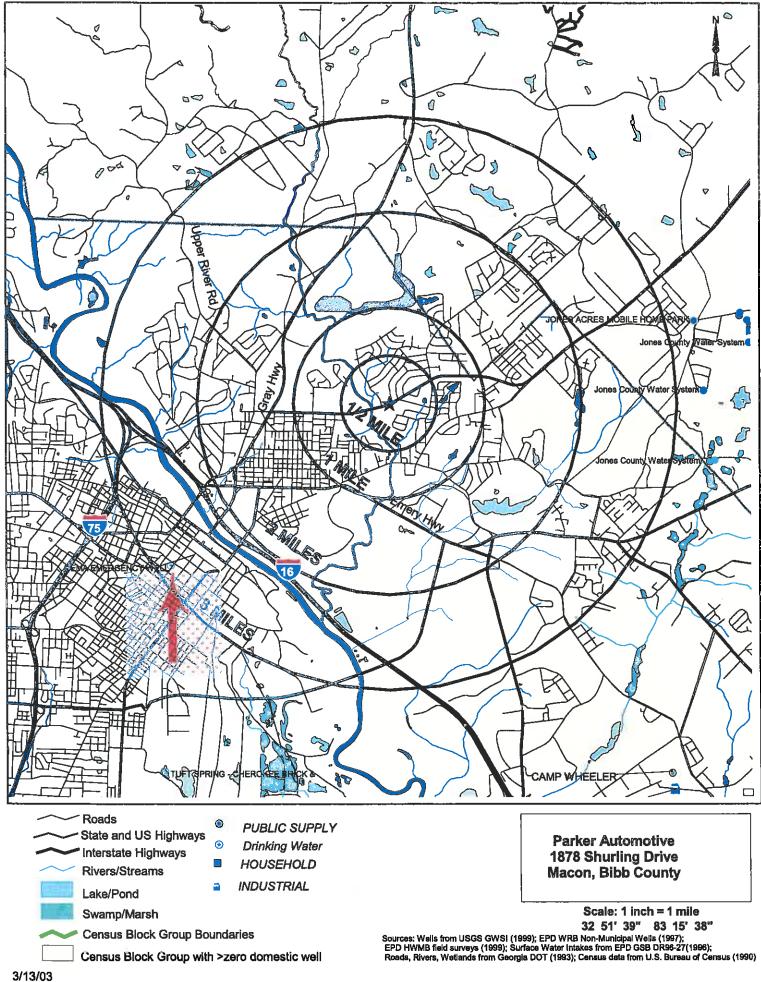
INDUSTRIAL

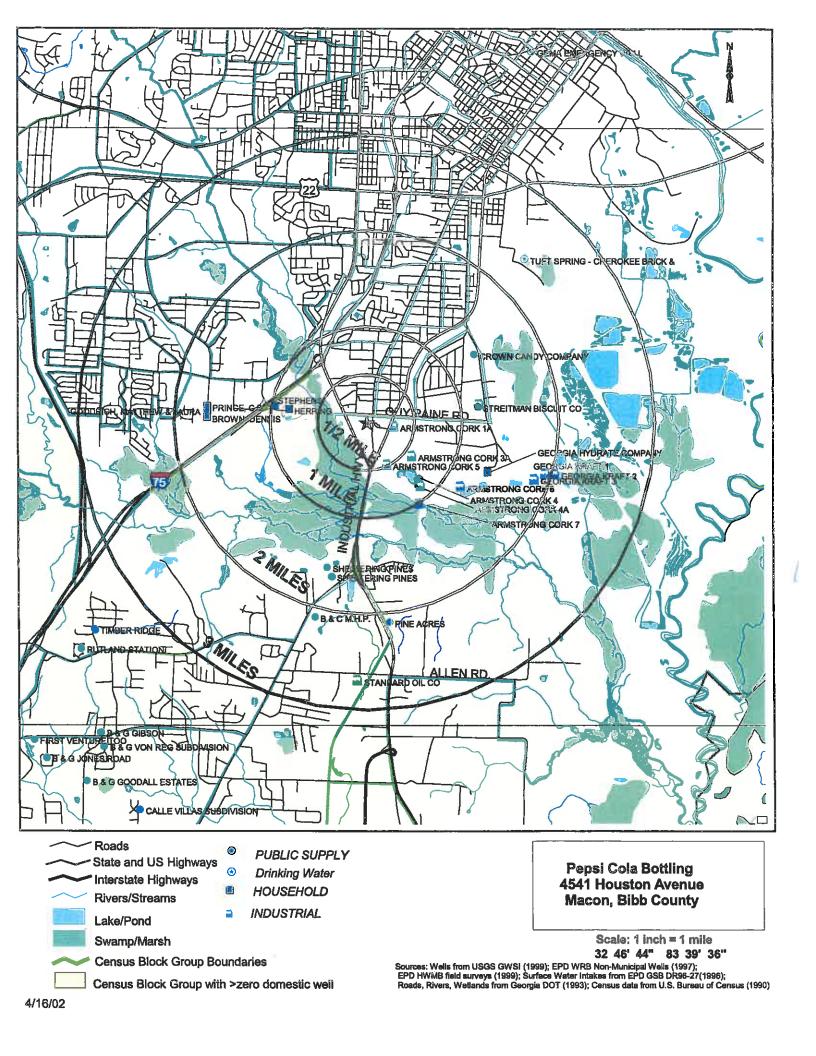
UNUSED

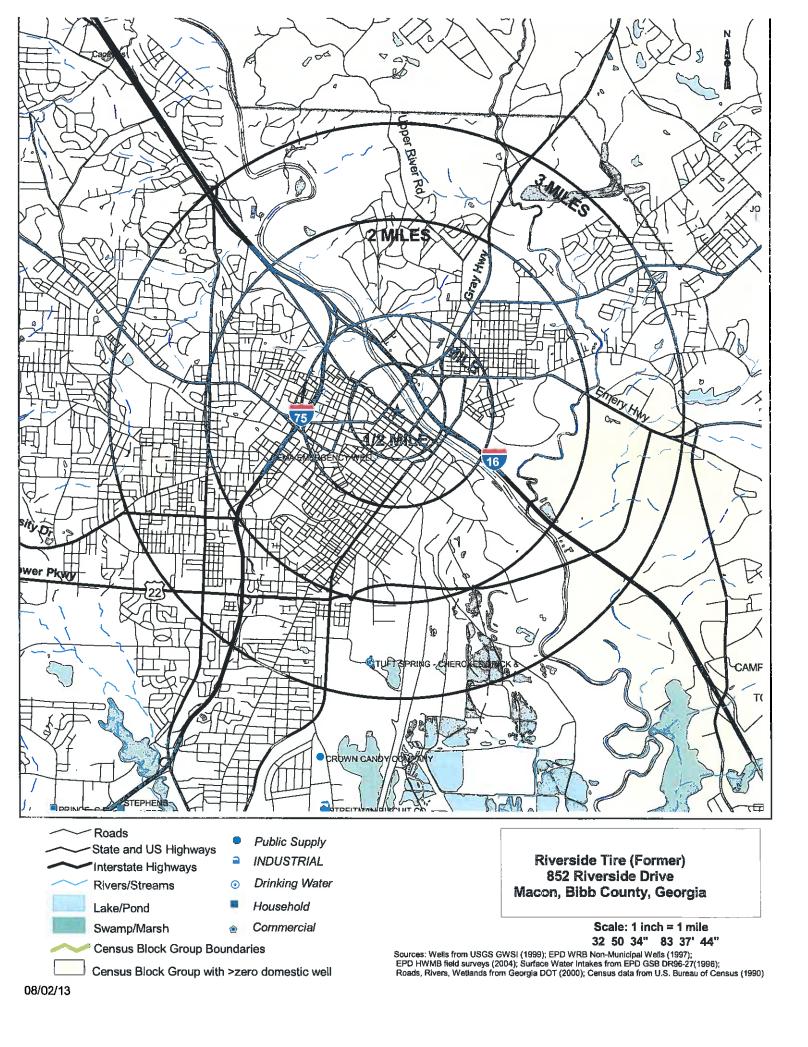

DRINKING WATER

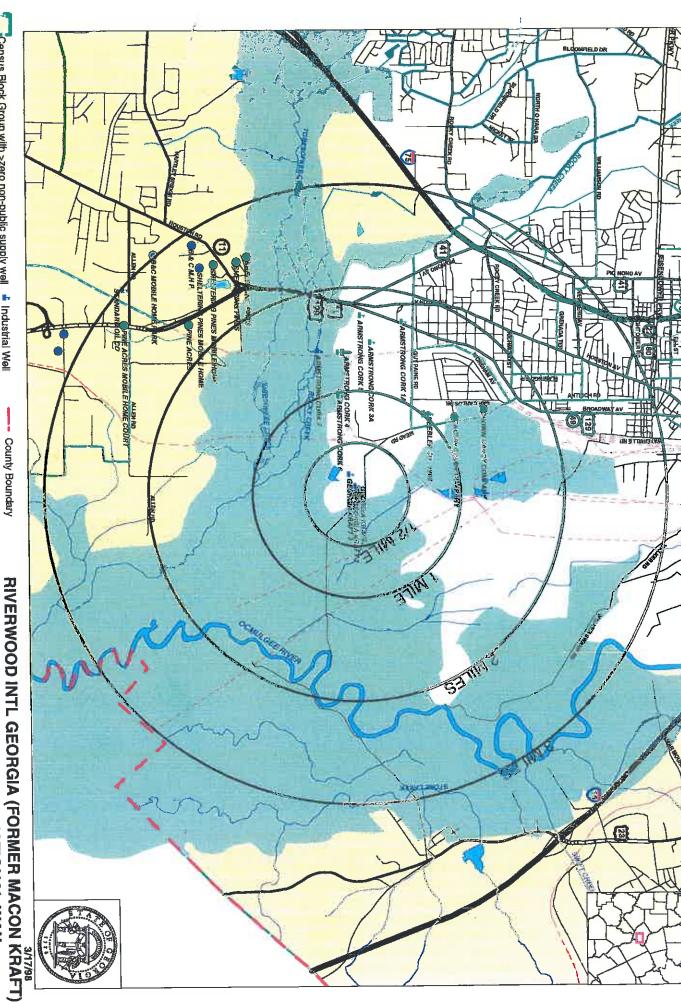

120 & 139 Broadway Macon, Bibb County, Georgia


> Scale: 1 inch = 1 mile 32 48 15 83 37' 19


Census Block Group Boundaries


Census Block Group with >zero domestic well Sources: Wells from USGS GWSI (1999); EPD WRB Non-Municipal Wells (1997); EPD HWMB field surveys (2004); Surface Water Intakes from EPD GSB DR96-27(1996); Roads, Rivers, Wetlands from Georgia DOT (2000); Census data from U.S. Bureau of Census (1990)



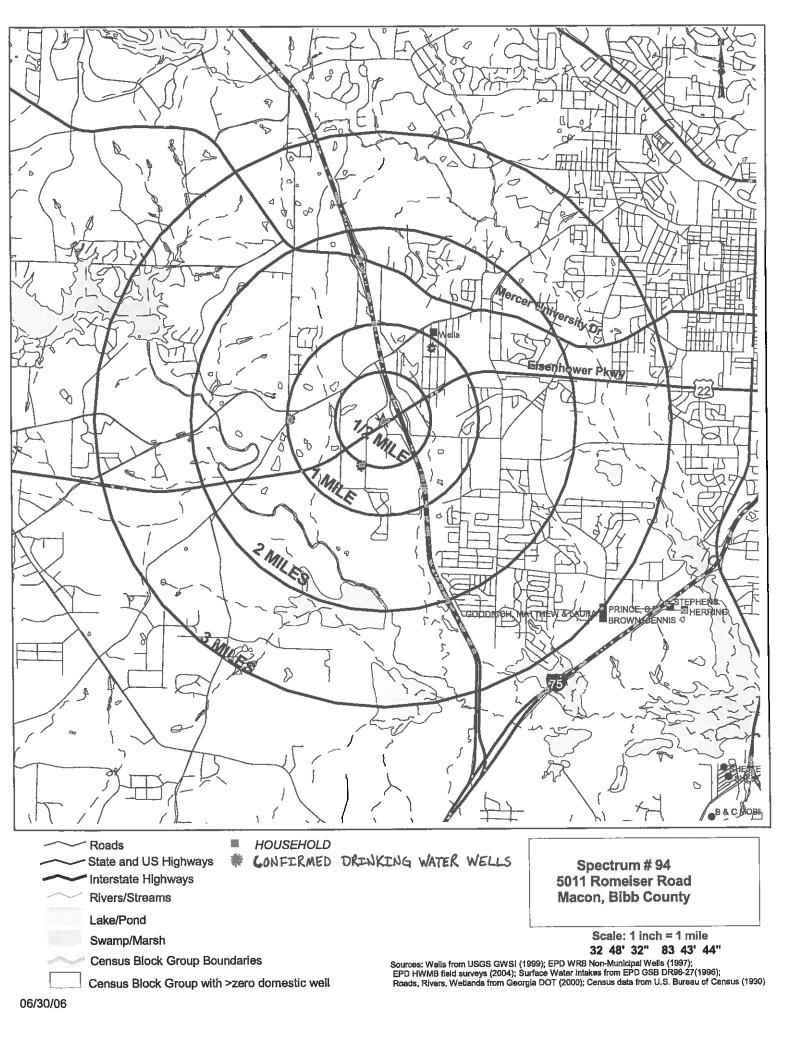


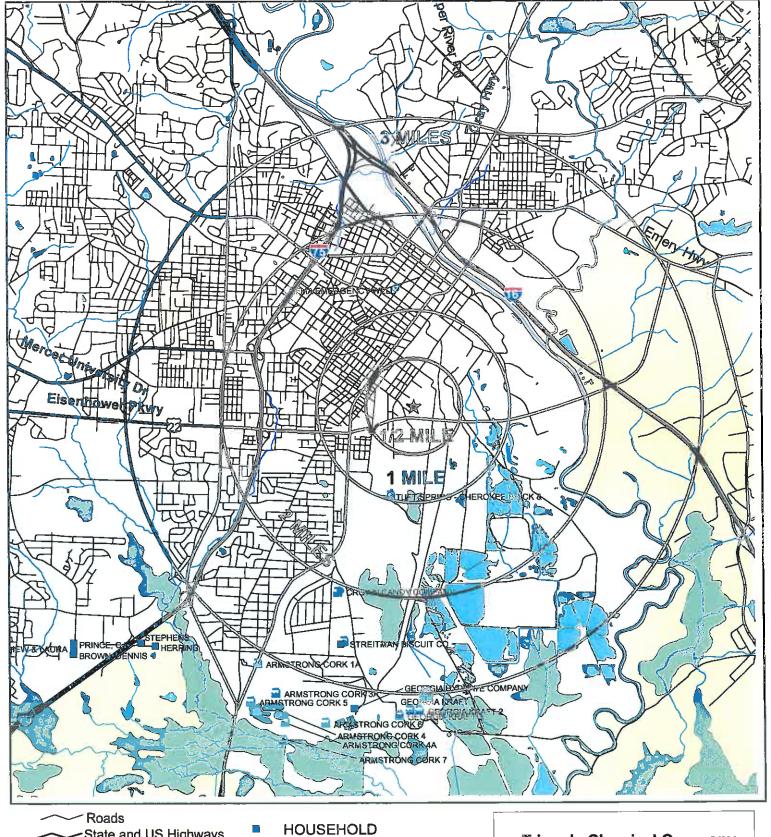
Public Supply Well
Surface Water Intake
Domestic Well
Unused Well
'Spring Census Block Group served by public water

Census Block Group with >zero non-public supply well Industrial Well Well - Unknown use Livestock well Irrigation Well Commercial Well

Other Well

Major Highway County Boundary Stream/River Road


Railroad


Wetland

100 RIVERWOOD INTERNATIONAL WAY MACON, BIBB COUNTY

Ver 1/2, 1, 2 and 3 MILE RADII Well Locations 1/2, 2, 46' 19" LAT / 83 37' 38" LONG 1995 SOURCES: Georgia Public Water Source Inventory, 1994; US Census Bureau 1990; Ga. Water Source Inv., USGS, 1995

-State and US Highways

Interstate Highways

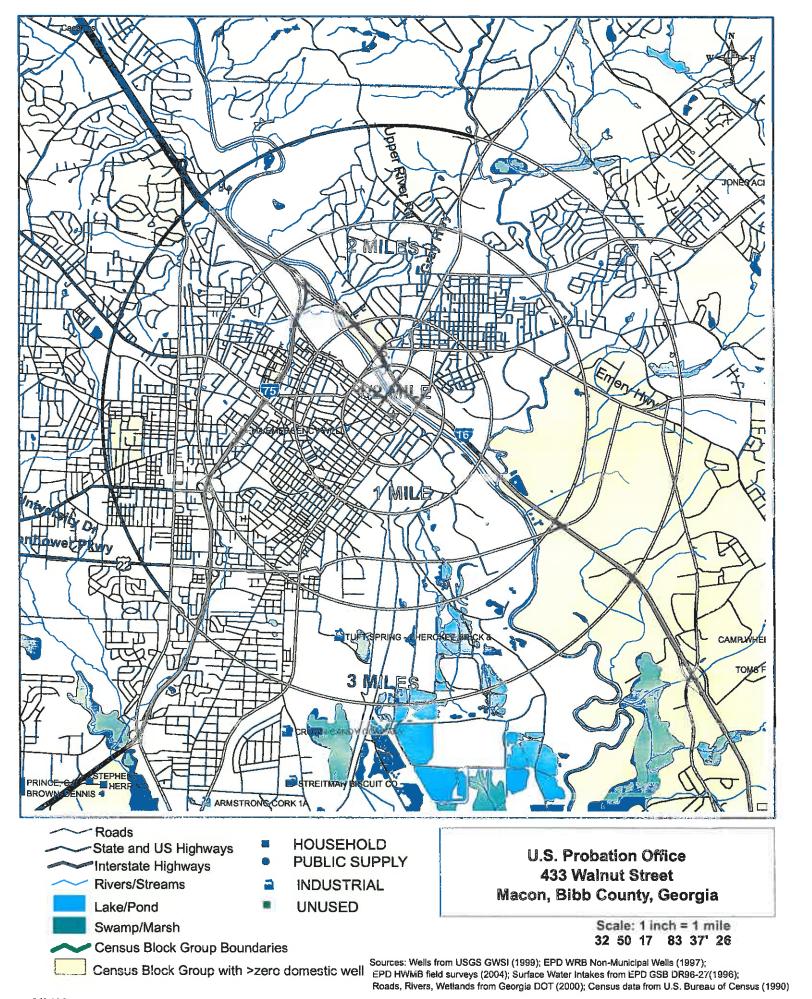
Rivers/Streams

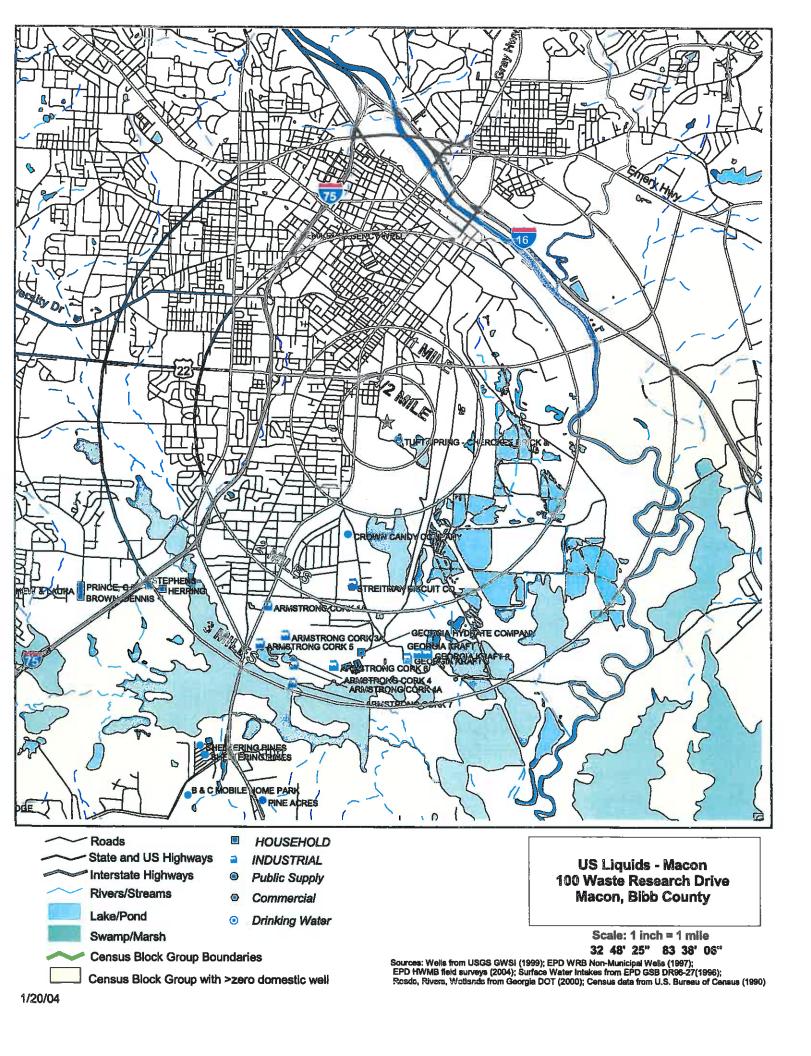
Lake/Pond

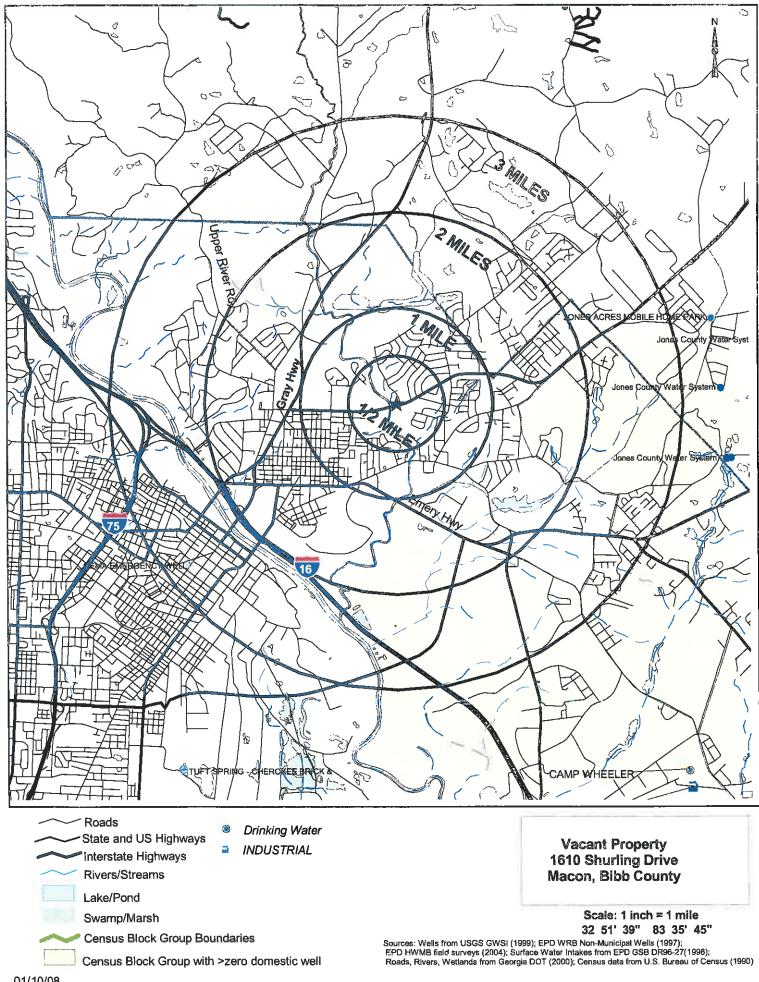
Swamp/Marsh

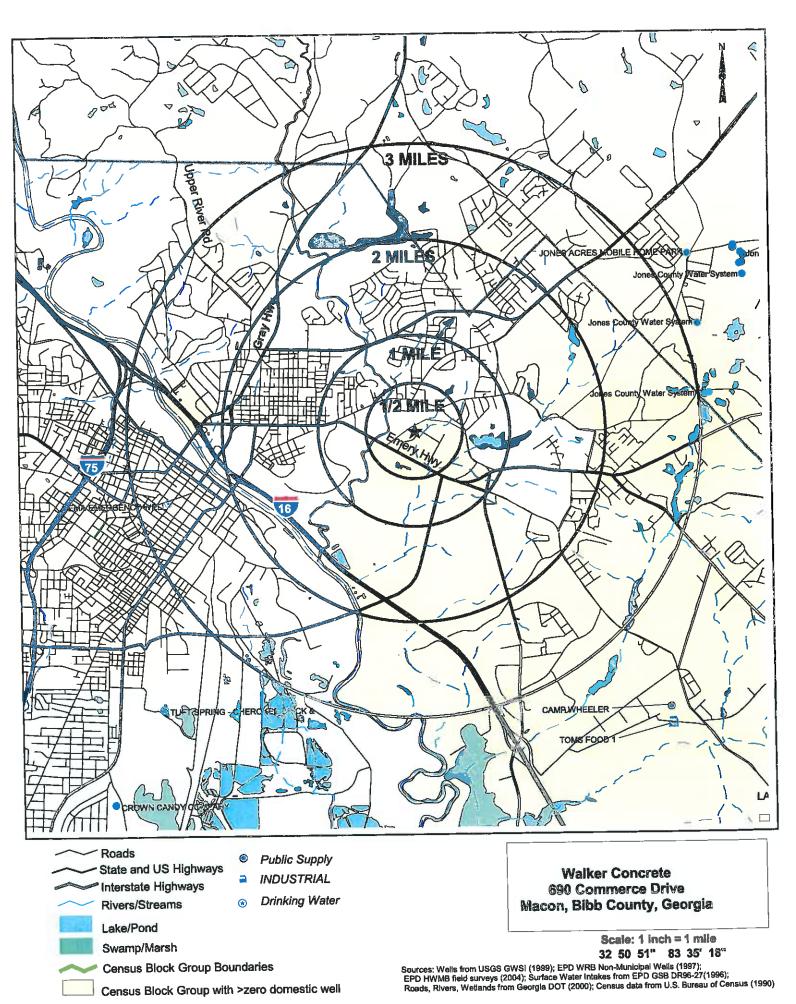
Census Block Group Boundaries

PUBLIC SUPPLY


INDUSTRIAL


UNUSED


Triangle Chemical Company 206 Lower Elm Street Macon, Bibb County, Georgia


> Scale: 1 inch = 1 mile 32 49 05 83 37' 43

Sources: Wells from USGS GWSI (1999); EPD WRB Non-Municipal Wells (1997); Census Block Group with >zero domestic well EPD HWMB field surveys (2004); Surface Water Intakes from EPD GSB DR96-27(1996); Roads, Rivers, Wetlands from Georgia DOT (2000); Census data from U.S. Bureau of Census (1990)

ENVIRONMENTAL PROTECTION DIVISION

Richard E. Dunn, Director

Land Protection Branch

2 Martin Luther King, Jr. Drive Suite 1054, East Tower Atlanta, Georgia 30334 404-657-8600

October 24, 2018

TRIP REPORT

Site Name and Location: 1217 Martin Luther King Jr. Blvd.

Macon, Bibb County

Trip by: Nicole Vermillion, Geologist

Carolyn Daniels, P.G. 🐪

Date of Trip: October 9, 2018

Persons Contacted: n/a

Reference: September 14, 2018 Release Notification

Comments:

On October 9, 2018, EPD representatives conducted a release notification site visit at the three adjacent parcels (subject property), located at 1217 and 1223 Martin Luther King Jr. Blvd, and 1216 Third Street in Macon, Georgia. The purpose of the site visit was to evaluate the site and compile information necessary to complete the release notification scoring of the site in accordance with the Reportable Quantities Screening Method (RQSM), and the Rules for Hazardous Site Response.

The 0.23-acre subject property consists of three adjoining parcels and is currently vacant (Photographs 1-3). According to the release notification, trichloroethene (TCE) was detected above the Maximum Contaminant Level (MCL) of 5 ug/L in one of three temporary monitoring wells on-site. The highest concentration of TCE was detected in groundwater at a concentration of 64 ug/L in well DW-1 (12'), along the eastern boundary of the 1217 Martin Luther King Jr. Blvd parcel. Additionally, tetrachloroethene (PCE) was detected above the MCL of 5 ug/L in one of the three temporary monitoring wells on-site. The highest concentration of PCE was detected in groundwater at a concentration of 1,100 ug/L in monitoring well DW-1. EPD was not able to confirm the location of the monitoring wells on-site. No regulated substances were detected above the notification concentrations (NCs) in soil.

Various commercial businesses such as a grocery store, restaurant and auto body shop operated on the subject property from the 1950s until the on-site buildings were demolished in the 2000s. The building slab remains on the 1217 Martin Luther King Jr. Blvd parcel.

1217 Martin Luther King Jr. Blvd. HSRA Release Notification Trip Report Page 2 of 2

The subject property is located in a mixed residential, commercial and light industrial area of Macon (Photograph 8). The subject property is bound to the north by a vacant lot, a commercial property and a residence (Photographs 5 & 6) located along Hazel Street. Vacant land (mixed grass and concrete cover) is located farther across Hazel Street. Third Street borders the subject property to the west. Vacant undeveloped land is located farther to the west across Third Street. The subject property is bordered by Martin Luther King Jr. Blvd. to the east, across which is a vacant lot (Photograph 7). According to the notification, this property to the east is the location of a former dry cleaner, garage and filling station. The subject property is bound to the south by undeveloped vacant land (Photograph 9). 446 Hazel Street, the nearest residence, is located approximately 120 feet northwest of the 1217 Martin Luther King Jr. Blvd parcel. The subject property has unlimited access.

As part of the notification site visit, EPD conducted a drive-by well survey within a 1-mile radius. No drinking water wells were identified. Based on groundwater sampling on the subject property, the direction of groundwater flow varies across the site, but is generally to the south toward DW-2. A City of Macon Emergency Management well is located at 770 Poplar Street, approximately 0.75 miles north of the subject property.

Attachments:

Photograph log of the September 14, 2018 Release Notification Site Visit.

Recommendation:

Proceed with scoring the notification.

PHOTOGRAPHS

Site Name: 1217 MLK Jr. Blvd

Macon, Georgia

Photograph 1 of 10

County: Bibb

Date: 10/9/2018

Photographer: Nicole Vermillion, Response and Remediation Program

Description: View of the subject property; facing southwest.

Site Name: 1217 MLK Jr. Blvd

Macon, Georgia

Photograph 2 of 10

County: Bibb

Date: 10/9/2018

Photographer: Nicole Vermillion, Response and Remediation Program

Description: View of the subject property; facing south.

Site Name: 1217 MLK Jr. Blvd

Macon, Georgia

Photograph 3 of 10

County: Bibb

10/9/2018 Date:

Photographer: Nicole Vermillion, Response and Remediation Program

Description: View of the subject property across MLK Jr. Blvd.; facing southwest.

Site Name: 1217 MLK Jr. Blvd Macon, Georgia

Photograph 4 of 10

County: Bibb

Date:

10/9/2018

Photographer: Nicole Vermillion, Response and Remediation Program

Description: View of the 1223 MLK Jr. parcel; facing west.

Site Name: 1217 MLK Jr. Blvd

Macon, Georgia

Photograph 5 of 10

County: Bibb

Date: 10/9/2018 Photographer: Nicole Vermillion, Response and Remediation Program

Description: View of the north adjacent property (432 Hazel Street) from the 1216 3rd Street parcel; facing north.


Site Name: 1217 MLK Jr. Blvd Macon, Georgia

Photograph 6 of 10

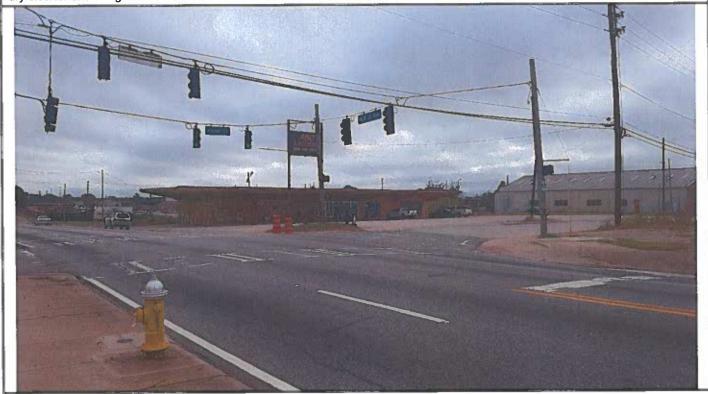
County: Bibb

Date: 10/9/2018 Photographer: Nicole Vermillion, Response and Remediation Program

Description: View of the adjacent commercial and residential properties, 432 and 446 Hazel Street, respectively, facing west.

Site Name: 1217 MLK Jr. Blvd

Macon, Georgia


Photograph 7 of 10

County: Bibb

Date: 10/9/2018

Photographer: Nicole Vermillion, Response and Remediation Program

Description: View of the east adjacent property across MLK Jr. Blvd, facing east. This vacant parcel is the location of the former dry cleaner and filling station referenced in the release notification.

Site Name: 1217 MLK Jr. Blvd

Macon, Georgia

Photograph 8 of 10

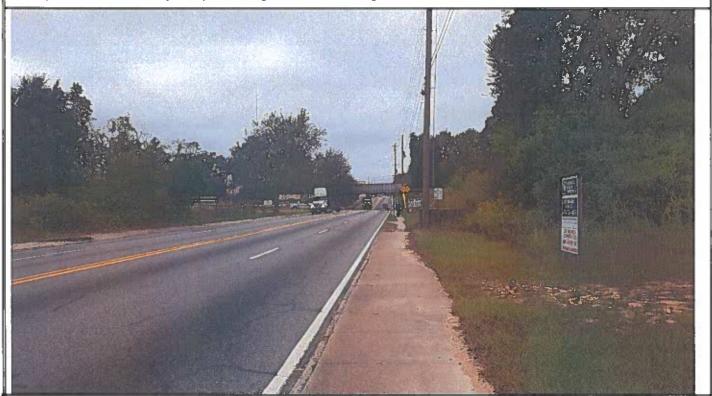
County: Bibb

Date:

10/9/2018

Photographer: Nicole Vermillion, Response and Remediation Program

Description: View of the surrounding area to the northeast of the subject property; facing northeast. Intersection of Hazel Street and MLK Jr. Blvd.


Site Name: 1217 MLK Jr. Blvd Macon, Georgia

Photograph 9 of 10

County: Bibb

Date: 10/9/2018 Photographer: Nicole Vermillion, Response and Remediation Program

Description: View of south adjacent parcel along MLK Jr. Blvd; facing west.

Site Name: 1217 MLK Jr. Blvd Macon, Georgia

Photograph 10 of 10

County: Bibb

Date:

10/9/2018

Photographer: Nicole Vermillion, Response and Remediation Program

Description: View of the adjacent property and surrounding area to the south; facing southwest.

APPENDIX J ProUCL Input and Output Files

	Α	В	С	D E	F	G	Н		J	K	L
1				Nonparametric UC	L Statistics	for Uncensored I	Full Data Sets				
2											
3			cted Options								
4	Date	e/Time of Co	<u> </u>	ProUCL 5.12/25/2019 11							
5			From File	Pb Avg Analysis Section	- ProUCL Ir	nput.xls					
6			II Precision	OFF							
7		Confidence		95%							
8	Number o	f Bootstrap (Operations	2000							
9	<u> </u>										
10											
11	Section 1										
12	<u> </u>					0					
13	<u> </u>					Statistics				<u> </u>	
14	<u> </u>		lotai	Number of Observations	55					Observations	
15							Nu	umber of	Missing (Observations	
16				Minimum	1.5					Mean	
17				Maximum	8020					Median	
18				SD SD	1207				Std. E	Error of Mean	
19	<u> </u>			Coefficient of Variation	2.105					Skewness	
20	<u> </u>			Mean of logged Data	5.5				SD of	flogged Data	1.349
21	<u> </u>			Name and the same	ada Disadisa	# F 1101 04	4-41-41				
22	<u> </u>					tion Free UCL St					
23	 			Data appear Approximate	Lognormai	Distributed at 5%	% Significance L	_evei			
24	<u> </u>					mad Dietelle diese					
25	<u> </u>		OEW N	ormal UCL	suming Non	mal Distribution	OFO/ LICLS	/ A di	d for Clear		
26	 		95% NC		846.2		95% UCLs			(Chen-1995)	959.7
27				95% Student's-t UCL	840.2			•		(Chen-1995) hnson-1978)	
28							95% 1	viouilleu-	T UCL (30	11115011-1970)	004.0
29				Nonno	amotrio Dio	tribution Free UC	<u> </u>				
30				95% CLT UCL	841.5)LS		059/ Jr	ackknife UCL	846.2
31			059/	Standard Bootstrap UCL	838.2					otstrap-t UCL	
32				95% Hall's Bootstrap UCL	1831					ootstrap UCL	
33	 			95% BCA Bootstrap UCL	999			95 % Fel	Certille Do	Joistiap OCL	004.2
34				nebyshev(Mean, Sd) UCL	1062		OF	5% Chob	vshov(Mc	ean, Sd) UCL	1283
35	 			nebyshev(Mean, Sd) UCL	1590			-	-	ean, Sd) UCL	
36	<u> </u>		97.570 CI	lebysilev(ivieali, ou) occ					ysnev(ivie		2134
37	<u> </u>				Suggested	UCL to Use					
38	<u> </u>			Pata appear Approximate L			ognormal Distri	ibution			
39				ata appear Approximate E	.ognormal,	want to ay E	-ognormal bloth				
40	<u> </u>	Note: Sugge	stions regard	ding the selection of a 95%	LICL are n	provided to help the	he user to selec	t the mos	st annroni	riate 95% LIC	1
41	, i			Recommendations are bas					գեխլօիլ		
42		These recor		s are based upon the resu					aichle ar	nd Lee (2006	1
43				ts will not cover all Real W							
44	110			wiii not cover all riedi vi		, ioi additional	orgini une usei	ay wa		Jan a Statistic	
45											
46	<u> </u>										

	Α	В	С		D		E	F	G		Н					J			<		L
47	Section 2																				
48																					
49									I Statistics	;											
50			lot	al Nui	mber of	Obsei	rvations	203								Distino					
51							ll	0.5					Nui	mbe	er of I	Missin	J Obs				
52							linimum												Mean		
53						IVI	aximum	3110								0.1	_		ledian		
54					(C : - :		SD	408.6								Sta			Mean		8.67
55					oefficier			1.047								0.0			vness		2.141
56					Mean of	riogg	ed Data	5.156								SD	of log	jged	d Data	1	.723
57						NI		Ant - Disable		1101	04-41-41										
58								etric Distribu						1							
59				Da	ata appe	ar Ap	proxima	te Gamma	Distribute	a at :	5% Sigr	mcan	ce Le\	/eı							
60							۸۵	oumina No	rmal Diatri	hutic											
61			059/ 1	Marma	al UCL		AS	suming No	mai Distri	Dulic		E0/ 11		۸ ما:	.atad	for Sk					
62			95%		95% Stu	ıdant'	a + I I CI	437.6								LT UC			100E)	44	1.0
63					95% 511	Juent	S-t UCL	437.0						-		UCL (•		,		
64												9	13 % IVI	ouiii	ieu-ı	UCL (JOHNS	3011-	1970)	430	3.3
65							Nonna	rametric Dis	etribution [Eroo	IICI e										
66					Ω	5% C	LT UCL	437.3		166	UCLS					05%	lackl	knife	e UCL	43	7.6
67			95	% Sta	ndard B			437.9								95% B					-
68					Hall's B		-	441.2					0	5%		entile					
69					BCA B			439.8						J 70	1 610	Cittie	Doors	suap	7001	40	7.0
70			90% (shev(Me			476.2					959	% CI	hehv	shev(N	/lean	Sd) UCI	. 515	5.2
71			97.5% (•			569.2								shev(N					
72			07.070	ЭПОБУ	01107(1710	Juli, C)u) 00L	000.2						70 01	ПСБУ	31107(1		, 00	, 002		
73								Suggested	I UCL to I	Jse											
74				Da	ita anne	ar Anı	proxima	te Gamma,			rv Gamr	na Dis	stributi	on							
75					appo	· · •PI	r. 0/Iu	aariina,	ay wan		.,			J							
76	ı	Note: Suane	estions rega	ırdina	the sele	ction	of a 95%	6 UCL are r	provided to	o hel	p the us	er to s	select	the	most	t appro	priate	e 95	% UC	L.	
77	·							sed upon da			-										
78		These reco	ommendatio													ichle	and I	_ee	(2006).	
79	Но		ulations res			•															
80		,							-,					,							
81																		—			
82																	—				

	Α	В	С	D		Е	F	G	Н		1		J		K		L
83	Section 3																
84																	
85								Statistics									
86			Tota	ıl Number	r of Ol	oservations	270								ervations		
87											Numbe	er of I	Missing	Obse	ervations		
88						Minimum									Mear		2.2
89						Maximum									Mediar		
90						SD							Std.		of Mear		3.32
91						of Variation									kewness).511
92				Mea	an of lo	ogged Data	5.491						SD c	of logo	ged Data	a 1	1.45
93								= 1101	O								
94						•		tion Free UCI									
95					Di	ata do not i	ollow a Disc	ernible Distrib	oution (U.U	<i>,</i> 5)							
96						Λ.	accesina Nam	mal Diatributi									
97			OE9/ N	larmal I IC	~I	As	ssurning ivon	mal Distributi		:0/ IIC	N o (Adi	otod	l for Clu				
98			95% N	lormal UC			F00.0		95		CLs (Adj				-	\	1.0
99				95%	6 Stud	ent's-t UCL	500.6				-			•	en-1995	1	1.3
100										95	% IVIOGI	пеа-т	UCL (J	onnso	on-1978	50	0.8
101						Nonno	romotrio Dio	tribution Free	LICLA								
102					050			Indution Free	UCLS				050/	I = -I-I-	-: (- 1101	T 50	0.0
103			0.50			6 CLT UCL									nife UCL		0.6
104						tstrap UCL					050				ap-t UCI		3.9
105						tstrap UCL					95%	› Perc	entile E	Jootst	trap UCI	L 49	9.9
106						tstrap UCL										<u> </u>	
107				•	•	n, Sd) UCL									Sd) UCI		
108			97.5% C	hebyshev	v(Mea	n, Sd) UCL	. 607.8				99% C	heby	/shev(M	ean,	Sd) UCI	_ 69	4.2
109																	
110								UCL to Use									
111			95% C	nebyshev	(Mea	n, Sd) UCL	. 563.8										
112																	
113	1	Note: Sugg	estions rega				· · · · · · · · · · · · · · · · · · ·	rovided to he					t approp	oriate	95% UC	CL.	
114								ta size, data									
115								nulation stud									
116	Но	wever, sim	ulations resu	Its will no	t cove	r all Real V	Vorld data se	ets; for addition	nal insigh	t the ı	ıser ma	y war	nt to cor	ısult a	a statisti	cian.	
117																	
118																	

	Α	В	С	D		Е	F	G	Н			J		K	L
119	Section 4														
120															
121								Statistics							
122			Total	Number c	of Obse	ervations	108					of Distinct (101
123										Num	ıber	of Missing (Obser	vations	528
124						Minimum	8.0							Mean	346.7
125					N	1aximum	1299							Median	254
126						SD	326.6					Std. E		of Mean	31.43
127						Variation	0.942							ewness	0.927
128				Mean	of logg	ged Data	5.023					SD of	i logge	ed Data	1.702
129	<u> </u>														
130	<u> </u>							tion Free UC							
131					Data	do not f	ollow a Disc	ernible Distril	bution (0.05	i)					
132															
133	<u> </u>					As	suming Nori	mal Distributi							
134	<u> </u>		95% No	ormal UCL			1		95%			sted for Skev			
135				95% S	Studen	t's-t UCL	398.9			•		d-CLT UCL	•	′	401.4
136	<u> </u>									95% Mo	difie	ed-t UCL (Jo	hnsor	า-1978)	399.3
137	<u> </u>														
138	<u> </u>					•		tribution Free	• UCLs						
139						CLT UCL	398.4					95% Ja			398.9
140				Standard			398.4					95% Boo			403.4
141				95% Hall's			404.1			95	;% Р	Percentile Bo	ootstra	эр UCL	400.6
142				95% BCA			400.8								
143				nebyshev(ľ		,						ebyshev(Me		<i>'</i>	483.7
144	<u> </u>		97.5% Cł	nebyshev(ľ	Mean,	Sd) UCL	543			99%	, Che	ebyshev(Me	∍an, S	d) UCL	659.4
145	<u> </u>														
146								UCL to Use							
147	<u> </u>		95% Ch	ebyshev (ľ	Mean,	Sd) UCL	483.7								
148															
149	1	Note: Sugge						rovided to he	•				riate 9	5% UCL	
150								ita size, data							
151								mulation stud						, ,	
152	Но	However, simulations results will not cover all Real World data sets; for additional insight the user may want to										want to cons	sult a	statistici	an.
153															
154															

	Α	В	С	D	Е	F	G	Η				J		K	L	L
155	Section1-2															
156																
157	<u> </u>						Statistics									
158			Tota	l Number of	Observations	258								ervations		
159										Numbe	er of I	Missing	Obse	ervations		
160					Minimum									Mear		
161	<u> </u>				Maximum									Mediar		
162	<u> </u>				SD							Std.		of Mear		
163					nt of Variation									kewness		922
164				Mean c	of logged Data	5.229						SD c	of logo	ged Data	a 1.6	654
165																
166					<u> </u>	etric Distribut										
167				Data appe	ear Approxima	ate Gamma D	Distributed at	5% Signifi	icance	Level						
168																
169					As	ssuming Norr	nal Distributio									
170			95% N	ormal UCL				95				l for Ske				
171	<u> </u>			95% St	udent's-t UCL	497.7				•			`	en-1995	<i>'</i>	
172	<u> </u>								95	% Modi	fied-t	UCL (J	ohnso	on-1978	500.	.7
173																
174					•	rametric Dist	ribution Free	UCLs								
175					95% CLT UCL									nife UCL		
176					Bootstrap UCL									ap-t UCL		
177					Bootstrap UCL					95%	Perc	centile E	3ootst	trap UCL	L 504.	.6
178					Bootstrap UCL											
179			90% CI	hebyshev(M	ean, Sd) UCL	553.6					-	-		Sd) UCL		
180			97.5% CI	hebyshev(M	ean, Sd) UCL	688.1				99% C	Cheby	/shev(M	lean,	Sd) UCL	L 841.	.7
181																
182						-	UCL to Use									
183				Data appe	ar Approxima	ite Gamma, I	May want to t	ry Gamma	a Distr	ibution						
184																
185	١	Note: Sugge	estions regard	ding the sele	ection of a 95°	% UCL are pr	rovided to he	p the user	r to se	lect the	mos	t approp	oriate	95% UC	CL.	
186			ſ	Recommend	dations are ba	sed upon da	ta size, data	distribution	n, and	skewn	ess.					
187		These reco	ommendation	s are based	upon the res	ults of the sin	nulation studi	es summa	arized	in Sing	h, Ma	ichle, a	nd Le	e (2006	i).	
188	Ho	wever, simu	ulations resul	ts will not co	over all Real V	Vorld data se	ts; for addition	nal insigh	t the ι	iser ma	y war	nt to cor	nsult a	a statisti	cian.	
189																
190																
					-	-	-	_								

	Α		В	С	D	Е	F	G	Н		J	K	L
191	Section 3-4												
192													
193								Statistics					
194				Total	Number of	Observations	378				er of Distinct (
195										Numbe	er of Missing (
196						Minimum						Mean	
197						Maximum						Median	
198						SE	-				Std. E	rror of Mean	
199					Coefficier	nt of Variation	0.865					Skewness	0.631
200					Mean o	f logged Data	5.346				SD of	logged Data	1.58
201													
202						-	etric Distribut						
203						Data do not	follow a Disc	ernible Distril	bution (0.05)				
204													
205						A:	ssuming Norr	mal Distributi	on				
206				95% No	rmal UCL				95%	UCLs (Adju	sted for Skev	vness)	
207					95% St	udent's-t UCL	460.6			95% Adjust	ed-CLT UCL	(Chen-1995)	461.2
208										95% Modif	ied-t UCL (Jo	hnson-1978)	460.7
209													
210						Nonpa	rametric Dist	tribution Free	UCLs				
211					9	5% CLT UCL	460.6				95% Ja	ckknife UCL	460.6
212				95%	Standard B	ootstrap UCI	461.1				95% Boo	tstrap-t UCL	461.8
213				9	5% Hall's B	ootstrap UCL	461.4			95%	Percentile Bo	otstrap UCL	460.3
214					95% BCA B	ootstrap UCL	462.1						
215				90% Ch	ebyshev(M	ean, Sd) UCI	486.4			95% C	hebyshev(Me	an, Sd) UCL	512.4
216				97.5% Ch	ebyshev(M	ean, Sd) UCI	548.4			99% C	hebyshev(Me	an, Sd) UCL	619.1
217							+						
218							Suggested	UCL to Use					
219				95% Ch	ebyshev (M	ean, Sd) UCI	512.4						
220							-1	T.					'
221	1	Note	: Sugge	stions regard	ling the sele	ection of a 95	% UCL are pr	rovided to he	lp the user to	select the	most appropr	iate 95% UC	L.
222		Recommendations are based upon data size, data distribution, and skewness.											
223		The	se reco	mmendations	s are based	upon the res	ults of the sin	nulation stud	ies summari	zed in Singh	n, Maichle, an	d Lee (2006)	1.
224	Но	wev	er, simu	lations result	s will not co	ver all Real \	Vorld data se	ets; for addition	onal insight t	he user may	want to cons	ult a statistic	ian.
225													
226													
220													

	Α		В	C)	D		E	F	G	Н			J	K		L
227	Section All																
228																	
229										Statistics							
230					Total	Number o	f Obse	ervations	636					f Distinct C			524
231												Numb	er of	f Missing C)bservatio	วทร	0
232							N	Minimum							Me	ean	429.2
233							M	1aximum							Med	ian	313.2
234								SD	511.1					Std. E	rror of Me	an	20.26
235						Coefficie									Skewne		6.308
236						Mean	of logg	ged Data	5.298					SD of	logged D	ata	1.61
237																	
238										tion Free UC							
239							Data	do not f	ollow a Disc	ernible Distri	bution (0.05))					
240																	
241								As	suming Nori	mal Distributi							
242				95	5% No	rmal UCL					95%	UCLs (Ad	-		-		
243						95% S	tuden	t's-t UCL	462.6			95% Adjus			•	′	468
244												95% Mod	lified-	t UCL (Jol	nnson-19	78)	463.4
245																	
246								Nonpa	rametric Dist	tribution Free	UCLs						
247							95% C	CLT UCL	462.6					95% Ja	ckknife U	CL	462.6
248						Standard		•	462.1					95% Boo	tstrap-t U	CL	468.7
249						5% Hall's		•	472.8			95%	% Pei	rcentile Bo	otstrap U	CL	462.5
250					ç	5% BCA	Bootst	rap UCL	467.9								
251						ebyshev(N		,	490			95% (Cheb	yshev(Me	an, Sd) U	CL	517.5
252				97.5	5% Che	ebyshev(N	/lean,	Sd) UCL	555.8			99% (Cheb	yshev(Me	an, Sd) U	CL	630.8
253									"								
254										UCL to Use							
255				95	% Che	byshev (N	/lean,	Sd) UCL	517.5								
256																	
257		Note	e: Sugge	estions r	egardi	ng the se	ection	of a 95%	% UCL are p	rovided to he	elp the user t	o select the	e mo:	st appropri	ate 95%	UCL	
258					R	ecommen	dation	s are ba	sed upon da	ta size, data	distribution,	and skewn	ness.				
259		The	ese reco	ommend	lations	are base	d upor	the resu	ults of the sir	nulation stud	lies summar	ized in Sing	gh, M	laichle, an	d Lee (20	06).	
260	Н	owev	ver, simu	ulations	results	will not c	over a	ıll Real V	Vorld data se	ets; for addition	onal insight t	he user ma	ay wa	ant to cons	ult a stati	sticia	an.
261																	
	_	_	_	_	_		_	_									

Record	Location	D1 - feet	D2 - feet	Date	Parameter	Result	Units
1	B-39	0	0	2/25/2000	Lead	1.5	mg/Kg
2	LL10	1	1	7/21/2011	Lead		mg/Kg
3	0012	1	1	7/21/2011	Lead		mg/Kg
4	NN14	1	1	7/21/2011	Lead		mg/Kg
5	PP13	1	1	7/21/2011	Lead		mg/Kg
6	0014	1	1	7/21/2011	Lead		mg/Kg
7	PP14	1	1	7/21/2011	Lead		mg/Kg
8	PP12	0	1	7/23/2011	Lead		mg/Kg
9	B-24	1	1	2/25/2000	Lead		mg/Kg
10	MM11	1	1	7/21/2011	Lead		mg/Kg
11	B-19	1	1	3/6/2000	Lead		mg/Kg
12	LL9	1	1	7/21/2011	Lead		mg/Kg
13	LL12	1	1	7/21/2011	Lead		mg/Kg
14	LL9-S	0	1	7/23/2011	Lead		mg/Kg
15	0013	1	1	7/21/2011	Lead		mg/Kg
16	MM12	1	1	7/21/2011	Lead		mg/Kg
17	B-47	1	1	6/14/2000	Lead		mg/Kg
18	MM9	1	1	7/21/2011	Lead		mg/Kg
19	NN12	1	1	7/21/2011	Lead		mg/Kg
20	LL13	1	1	7/21/2011	Lead		mg/Kg
21	B-37	1	1	2/25/2000	Lead		mg/Kg
22	B-65-E4	0	0	2/8/2003	Lead		mg/Kg
23	b-65-22	0	1	3/30/2009	Lead, field		mg/Kg
24	B-38	1	1	2/25/2000	Lead		mg/Kg
25	b-65-22	0	1	3/30/2009	Lead	237.0	mg/Kg
26	B-23-NE	0	0	10/3/2002	Lead		mg/Kg
27	B-46	1	1	6/14/2000	Lead	249.0	mg/Kg
28	LL11	1	1	7/21/2011	Lead	323.0	mg/Kg
29	LL14	1	1	7/21/2011	Lead		mg/Kg
30	B-48	1	1	6/15/2000	Lead	324.2	mg/Kg
31	LL11-S	0	1	7/23/2011	Lead		mg/Kg
32	NN9	1	1	7/21/2011	Lead	344.0	mg/Kg
33	HA-08	1	1	3/6/2000	Lead	370.0	mg/Kg
34	MM10	1	1	7/21/2011	Lead	383.0	mg/Kg
35	HA-07	1	1	3/6/2000	Lead	390.0	mg/Kg
36	KK14	0	1	7/23/2011	Lead	396.0	mg/Kg
37	b-65-27	0	1	3/30/2009	Lead, field	424.7	mg/Kg
38	b-65-21	0	1	3/30/2009	Lead, field	427.1	mg/Kg
39	NN13	1	1	7/21/2011	Lead	429.0	mg/Kg
40	B-40	1	1	2/25/2000	Lead	440.0	mg/Kg
41	B-50	1	1	6/15/2000	Lead	464.7	mg/Kg
42	B-23-SW	0	0	10/3/2002	Lead	476.0	mg/Kg
43	b-65-24	0	1	3/30/2009	Lead, field	510.1	mg/Kg
44	NN10	1	1	7/21/2011	Lead	542.0	mg/Kg
45	B-23-SE	0	0	10/3/2002	Lead	567.0	mg/Kg
46	B-23	0	0	10/3/2002	Lead	630.0	mg/Kg

Section 1 Soil Lead Data Summary - ProUCL Input

Record	Location	D1 - feet	D2 - feet	Date	Parameter	Result	Units
47	B-23-NW	0	0	10/3/2002	Lead	654.0	mg/Kg
48	b-65-24	0	1	3/30/2009	Lead	685.0	mg/Kg
49	b-65-28	0	1	3/30/2009	Lead, field	725.9	mg/Kg
50	KK12	0	1	7/23/2011	Lead	861.0	mg/Kg
51	MM13	1	1	7/21/2011	Lead	1,200.0	mg/Kg
52	b-65-23	0	1	3/30/2009	Lead, field	1,276.2	mg/Kg
53	b-65-23	0	1	3/30/2009	Lead	2,560.0	mg/Kg
54	RR21-SR	0	1	8/13/2011	Lead	4,070.0	mg/Kg
55	OO10-SP	0	1	8/13/2011	Lead	8,020.0	mg/Kg

Record	Location	D1 - feet	D2 - feet	Date	Parameter	Result	Units
1	b-63	0	0	9/30/2002	Lead	0.5	mg/Kg
2	b-63-sw	0	0	10/1/2002	Lead		mg/Kg
3	ha-01	0	0	10/1/2002	Lead	0.5	mg/Kg
4	ha-01-ne	0	0	10/1/2002	Lead	0.5	mg/Kg
5	ha-01-sw	0	0	10/2/2002	Lead	0.5	mg/Kg
6	HH20-S	0	1	7/30/2011	Lead	0.5	mg/Kg
7	ha-01-ne	0	0	10/1/2002	Lead	0.7	mg/Kg
8	ha-01-nw	0	0	10/1/2002	Lead	2.1	mg/Kg
9	b-65	0	0	10/4/2002	Lead	4.5	mg/Kg
10	1123	0	1	7/23/2011	Lead	5.7	mg/Kg
11	HH27	0	1	7/30/2011	Lead	7.0	mg/Kg
12	b-63-ese5	0	0	11/16/2003	Lead	7.0	mg/Kg
13	LL25	1	1	7/22/2011	Lead	8.9	mg/Kg
14	HH25	0	1	7/30/2011	Lead	9.8	mg/Kg
15	JJ26	1	1	7/22/2011	Lead	12.4	mg/Kg
16	HH21	1	1	7/30/2011	Lead		mg/Kg
17	ha-01	0	0	10/1/2002	Lead	19.6	mg/Kg
18	JJ37-SS	0	1	8/13/2011	Lead	20.5	mg/Kg
19	HH26	1	1	7/30/2011	Lead	21.2	mg/Kg
20	HH21-SS	0	1	7/30/2011	Lead	21.6	mg/Kg
21	GG36	0	1	7/16/2011	Lead	22.2	mg/Kg
22	NN25	0	1	7/30/2011	Lead		mg/Kg
23	GG38	1	1	7/16/2011	Lead	25.2	mg/Kg
24	JJ18	0	1	7/23/2011	Lead	25.7	mg/Kg
25	JJ31-S	0	1	8/16/2011	Lead	26.2	mg/Kg
26	FF38	0	1	7/16/2011	Lead		mg/Kg
27	KK33	1	1	8/13/2011	Lead		mg/Kg
28	KK32	1	1	8/16/2011	Lead		mg/Kg
29	MM26	0	1	7/23/2011	Lead	31.8	mg/Kg
30	KK31-S	0	1	8/16/2011	Lead	33.3	mg/Kg
31	1125	0	1	7/23/2011	Lead	33.9	mg/Kg
32	KK29	1	1	7/23/2011	Lead		mg/Kg
33	0015	1	1	7/21/2011	Lead		mg/Kg
34	HH37	1	1	8/4/2011	Lead		mg/Kg
35	JJ35-2	1	1	8/10/2011	Lead		mg/Kg
36	gg39-S	0	1	7/16/2011	Lead		mg/Kg
37	O28-SE	0	1	8/11/2011	Lead		mg/Kg
38	JJ39-SN	0	1	8/13/2011	Lead		mg/Kg
39	MM15	1	1	7/21/2011	Lead		mg/Kg
40	PP24	0	1	8/1/2011	Lead		mg/Kg
41	GG39	0	1	7/16/2011	Lead		mg/Kg
42	RR24-S	0	1	8/16/2011	Lead		mg/Kg
43	1127	1	1	7/22/2011	Lead		mg/Kg
44	LL24	1	1	7/22/2011	Lead		mg/Kg
45	JJ33-S	0	1	8/13/2011	Lead		mg/Kg
46	151	1	1	8/16/2011	Lead	68.6	mg/Kg

Record	Location	D1 - feet	D2 - feet	Date	Parameter	Result	Units
47	LL26	1	1	7/22/2011	Lead	70.1	mg/Kg
48	0017	1	1	7/21/2011	Lead	73.9	mg/Kg
49	II38-S	0	1	8/13/2011	Lead	75.1	mg/Kg
50	0024	1	1	8/1/2011	Lead	76.3	mg/Kg
51	KK28	1	1	7/23/2011	Lead	78.4	mg/Kg
52	PP26	0	1	8/1/2011	Lead	82.8	mg/Kg
53	LL20	1	1	7/22/2011	Lead	83.8	mg/Kg
54	B-52	1	1	6/21/2000	Lead	89.3	mg/Kg
55	P27	1	1	8/16/2011	Lead	90.9	mg/Kg
56	MM19	1	1	7/22/2011	Lead	92.5	mg/Kg
57	NN26-S	0	1	8/13/2011	Lead	96.6	mg/Kg
58	PP27	0	1	8/1/2011	Lead	101.0	mg/Kg
59	B-63-N2	0	0	10/1/2002	Lead	103.0	mg/Kg
60	151-S	0	1	8/16/2011	Lead	107.0	mg/Kg
61	b-65-s8	0	0	2/8/2003	Lead		mg/Kg
62	0027-S	0	1	8/1/2011	Lead		mg/Kg
63	1129	1	1	7/23/2011	Lead		mg/Kg
64	HH37-S	0	1	8/4/2011	Lead	110.0	mg/Kg
65	1126	1	1	7/22/2011	Lead		mg/Kg
66	KK15	0	1	7/23/2011	Lead	123.0	mg/Kg
67	RR23-S	0	1	8/16/2011	Lead		mg/Kg
68	MM25	1	1	7/22/2011	Lead		mg/Kg
69	K39-S	0	1	8/9/2011	Lead		mg/Kg
70	NN25-SE	0	1	8/10/2011	Lead		mg/Kg
71	gg38-S	0	1	7/16/2011	Lead		mg/Kg
72	J39	0	1	7/27/2011	Lead		mg/Kg
73	KK18	1	1	7/21/2011	Lead		mg/Kg
74	LL17	1	1	7/21/2011	Lead		mg/Kg
75	0026-2	1	1	8/13/2011	Lead	161.0	mg/Kg
76	PP19-S	1	1		Lead		mg/Kg
77	SD-04	1	1	6/16/2000	Lead		mg/Kg
78	0026	1	1	8/1/2011	Lead		mg/Kg
79	NN20	1	1	7/22/2011	Lead		mg/Kg
80	0027-S2	0	1	8/13/2011	Lead		mg/Kg
81	QQ16	0	1	7/23/2011	Lead		mg/Kg
82	JJ19	1	1	7/22/2011	Lead		mg/Kg
83	B-65-4	0	0.5	2/24/2009	Lead		mg/Kg
84	LL27	1	1	7/23/2011	Lead		mg/Kg
85	0027	1	1	8/1/2011	Lead		mg/Kg
86	NN19	1	1	7/22/2011	Lead		mg/Kg
87	FF39	1	1	7/16/2011	Lead		mg/Kg
88	b-63-ene5	0	0	1/16/2003	Lead		mg/Kg
89	GG26	0	1	7/30/2011	Lead		mg/Kg
90	NN17	1	1	7/21/2011	Lead		mg/Kg
91	P26-S	0	1	8/16/2011	Lead		mg/Kg
92	SD-05	1	1	6/20/2000	Lead	205.7	mg/Kg

Record	Location	D1 - feet	D2 - feet	Date	Parameter	Result	Units
93	B-63-ESE3	0	0	11/8/2002	Lead	206.0	mg/Kg
94	NN21	1	1	7/22/2011	Lead	229.0	mg/Kg
95	LL22	1	1	7/22/2011	Lead	235.0	mg/Kg
96	NN18	1	1	7/21/2011	Lead	241.0	mg/Kg
97	JJ30	0	1	7/23/2011	Lead	243.0	mg/Kg
98	B-65-5	0	0.5	2/24/2009	Lead	250.0	mg/Kg
99	0016	1	1	7/21/2011	Lead	251.0	mg/Kg
100	b-42a-66	0	0.5	3/11/2009	Lead, field	251.6	mg/Kg
101	b-65-nw	0	0	10/4/2002	Lead	253.0	mg/Kg
102	LL28	1	1	7/23/2011	Lead	265.0	mg/Kg
103	B-65-10	0	0.5	2/24/2009	Lead	278.0	mg/Kg
104	II21	0	1	7/23/2011	Lead	283.0	mg/Kg
105	JJ28	1	1	7/23/2011	Lead	284.0	mg/Kg
106	O28-S	0	1	8/4/2011	Lead	286.0	mg/Kg
107	NN20-S	0	1	8/16/2011	Lead	294.0	mg/Kg
108	0025	1	1	8/1/2011	Lead	295.0	mg/Kg
109	NN22	1	1	7/22/2011	Lead	296.0	mg/Kg
110	HH21-SE	0	1	7/30/2011	Lead	304.0	mg/Kg
111	PP21	1	1	7/22/2011	Lead	307.0	mg/Kg
112	0025-S	0	1	8/1/2011	Lead	318.0	mg/Kg
113	KK19	1	1	7/22/2011	Lead	319.0	mg/Kg
114	JJ36-SN	0	1	8/10/2011	Lead	321.0	mg/Kg
115	MM28	0	1	7/23/2011	Lead	339.0	mg/Kg
116	b-42a-125	0	1	3/30/2009	Lead, field	344.5	mg/Kg
117	b-65-sw3	0	0	1/16/2003	Lead	346.0	mg/Kg
118	JJ24	1	1	7/22/2011	Lead	359.0	mg/Kg
119	0026-S	0	1	8/1/2011	Lead	364.0	mg/Kg
120	LL15	1	1	7/21/2011	Lead	379.0	mg/Kg
121	JJ29	1	1	7/23/2011	Lead	387.0	mg/Kg
122	b-63-ne2	0	0	9/30/2002	Lead	387.0	mg/Kg
123	QQ19	0	1	7/23/2011	Lead	390.0	mg/Kg
124	LL16	1	1	7/21/2011	Lead	394.0	mg/Kg
125	b-42a-126	0	1	3/30/2009	Lead, field	394.3	mg/Kg
126	b-42a-122	0	1	3/30/2009	Lead, field	397.6	mg/Kg
127	N31-SS	0	1	7/14/2011	Lead	408.0	mg/Kg
128	QQ17	0	1	7/23/2011	Lead	419.0	mg/Kg
129	b15-9	0	1	3/30/2009	Lead, field	426.7	mg/Kg
130	ha-01-nw	0	0	10/1/2002	Lead	428.0	mg/Kg
131	b15-7	0	1	3/30/2009	Lead, field	431.0	mg/Kg
132	b15-6	0	1	3/30/2009	Lead, field	432.3	mg/Kg
133	GG40	1	1	7/16/2011	Lead	435.0	mg/Kg
134	PP25	0	1	8/1/2011	Lead	459.0	mg/Kg
135	KK17	0	1	7/23/2011	Lead	461.0	mg/Kg
136	RR25-S	0	1	8/16/2011	Lead	461.0	mg/Kg
137	HH29	0	1	7/23/2011	Lead	465.0	mg/Kg
138	b-65-ne	0	0	10/4/2002	Lead		mg/Kg

Record	Location	D1 - feet	D2 - feet	Date	Parameter	Result	Units
139	B-65-1	0	0.5	2/24/2009	Lead	475.0	mg/Kg
140	B-22	1	1	6/16/2000	Lead		mg/Kg
141	B-63-2	0	0.5	2/24/2009	Lead		mg/Kg
142	LL29	1	1	7/23/2011	Lead	487.0	mg/Kg
143	0025-2	1	1	8/10/2011	Lead	487.0	mg/Kg
144	1128	1	1	7/23/2011	Lead	500.0	mg/Kg
145	b-63-se2	0	0	10/1/2002	Lead	513.0	mg/Kg
146	QQ20	0	1	7/23/2011	Lead	518.0	mg/Kg
147	KK34	1	1	8/10/2011	Lead	519.0	mg/Kg
148	NN9-SP	0	1	8/13/2011	Lead	519.0	mg/Kg
149	0024-S	0	1	8/1/2011	Lead		mg/Kg
150	MM18	1	1	7/21/2011	Lead		mg/Kg
151	N30-S	0	1	7/14/2011	Lead		mg/Kg
152	B-65-3	0	0.5	2/24/2009	Lead		mg/Kg
153	LL31	0	1	7/30/2011	Lead		mg/Kg
154	B-65-2	0	0.5	2/24/2009	Lead		mg/Kg
155	JJ35-SW	0	1	8/10/2011	Lead		mg/Kg
156	b-65-14	0	1	3/30/2009	Lead, field		mg/Kg
157	139	0	1	7/27/2011	Lead		mg/Kg
158	KK34-SE	0	1	8/10/2011	Lead		mg/Kg
159	KK40	1	1	7/18/2011	Lead		mg/Kg
160	NN16	1	1	7/21/2011	Lead		mg/Kg
161	HA-01-a	0	0.5	2/24/2009	Lead		mg/Kg
162	b-65-e2	0	0	10/4/2002	Lead		mg/Kg
163	B-65-11	0	0.5	2/24/2009	Lead		mg/Kg
164	0019	1	1	7/22/2011	Lead		mg/Kg
165	QQ21	1	1	7/23/2011	Lead		mg/Kg
166	ff40-S	0	1	7/16/2011	Lead		mg/Kg
167	N29-S	0	1	8/4/2011	Lead	722.0	mg/Kg
168	GG37	1	1		Lead		mg/Kg
169	LL18	1	1	7/21/2011	Lead		mg/Kg
170 171	PP15	1	1	7/21/2011 7/23/2011	Lead		mg/Kg
172	HH28 MM20	1	1		Lead Lead		mg/Kg mg/Kg
173	N29	0	1	7/22/2011 7/14/2011	Lead		mg/Kg
174	FF40	1	1	7/14/2011	Lead		mg/Kg
175	MM30	1	1	7/10/2011	Lead		mg/Kg
176	HH36	0	1	7/23/2011	Lead		mg/Kg
177	0024-2	1	1	8/10/2011	Lead		mg/Kg
178	b-65-25	0	1	3/30/2009	Lead, field		mg/Kg
179	N31-SW	1	1	7/14/2011	Lead		mg/Kg
180	0024-SN	0	1	8/10/2011	Lead		mg/Kg
181	KK20	1	1	7/22/2011	Lead		mg/Kg
182	KK39	1	1	7/18/2011	Lead		mg/Kg
183	ha-01-sw	0	0	10/2/2002	Lead		mg/Kg
184	b-63-sw	0	0	10/1/2002	Lead		mg/Kg

Section 2 Soil Lead Data Summary - ProUCL Input

Record	Location	D1 - feet	D2 - feet	Date	Parameter	Result	Units
185	P31	0	1	7/14/2011	Lead	987.0	mg/Kg
186	b-65-sw2	0	0	10/4/2002	Lead	1,050.0	mg/Kg
187	PP16	1	1	7/21/2011	Lead	1,110.0	mg/Kg
188	b-42a-123	0	1	3/30/2009	Lead, field	1,129.5	mg/Kg
189	JJ34-S	0	1	8/10/2011	Lead	1,130.0	mg/Kg
190	0021	1	1	7/22/2011	Lead	1,160.0	mg/Kg
191	PP22-S	0	1	7/30/2011	Lead	1,220.0	mg/Kg
192	ha-01-sw	0	0.5	2/24/2009	Lead	1,230.0	mg/Kg
193	b-65-25	0	1	3/30/2009	Lead	1,240.0	mg/Kg
194	HA-01-c	0	0.5	2/24/2009	Lead	1,240.0	mg/Kg
195	b-65-sw	0	0	10/4/2002	Lead	1,250.0	mg/Kg
196	NN15	1	1	7/21/2011	Lead	1,260.0	mg/Kg
197	JJ20	1	1	7/22/2011	Lead	1,280.0	mg/Kg
198	b-65-15	0	1	3/30/2009	Lead, field	1,286.7	mg/Kg
199	HH28-S	0	1	7/23/2011	Lead	1,290.0	mg/Kg
200	MM24-S	0	1	7/23/2011	Lead	1,290.0	mg/Kg
201	P30	0	1	7/14/2011	Lead	1,290.0	mg/Kg
202	b-42a-124	0	1	3/30/2009	Lead, field	1,293.6	mg/Kg
203	RR22-SR	0	1	8/13/2011	Lead	3,110.0	mg/Kg

Record	Location	D1 - feet	D2 - feet	Date	Parameter	Result	Units
1	S64	1	1	7/15/2011	Lead	5.6	mg/Kg
2	b-63-sw	0	0	10/1/2002	Lead	0.5	mg/Kg
3	N57	0	1	7/26/2011	Lead	4.9	mg/Kg
4	M61	1	1	7/15/2011	Lead	5.6	mg/Kg
5	M64	1	1	7/15/2011	Lead	5.6	mg/Kg
6	L55	1	1	7/26/2011	Lead	6.2	mg/Kg
7	M60	1	1	7/15/2011	Lead	6.3	mg/Kg
8	B-90	1	1	9/20/2000	Lead	6.5	mg/Kg
9	M63	1	1	7/15/2011	Lead	6.5	mg/Kg
10	S53	1	1	7/16/2011	Lead	8.6	mg/Kg
11	R53	1	1	7/16/2011	Lead	9.4	mg/Kg
12	K40-SS	0	1	7/27/2011	Lead	10.5	mg/Kg
13	S47	1	1	7/27/2011	Lead	12.9	mg/Kg
14	R54	1	1	7/16/2011	Lead		mg/Kg
15	S51	1	1	7/16/2011	Lead		mg/Kg
16	L61-2	1	1	8/3/2011	Lead	15.4	mg/Kg
17	T58	1	1	7/27/2011	Lead		mg/Kg
18	L51	1	1	7/26/2011	Lead	15.9	mg/Kg
19	S52	1	1	7/16/2011	Lead	20.1	mg/Kg
20	152-SS	0	1	8/4/2011	Lead	21.5	mg/Kg
21	N53	1	1	8/4/2011	Lead		mg/Kg
22	S49	1	1	7/27/2011	Lead		mg/Kg
23	N60	0	1	7/26/2011	Lead	24.5	mg/Kg
24	N54-SN	0	1	8/4/2011	Lead		mg/Kg
25	gg41-S	0	1	7/16/2011	Lead		mg/Kg
26	L61	1	1	7/15/2011	Lead	27.2	mg/Kg
27	K62	1	1	7/15/2011	Lead	27.6	mg/Kg
28	J64	1	1	7/25/2011	Lead	28.1	mg/Kg
29	J56	1	1	7/25/2011	Lead	28.6	mg/Kg
30	J60	1	1	7/25/2011	Lead	30.7	mg/Kg
31	158	1	1	7/25/2011	Lead		mg/Kg
32	S58	1	1	7/27/2011	Lead	31.7	mg/Kg
33	Q53	0	1	7/16/2011	Lead	34.9	mg/Kg
34	R52	1	1	7/16/2011	Lead	36.3	mg/Kg
35	J61	1	1	7/25/2011	Lead	39.0	mg/Kg
36	N61	0	1	7/26/2011	Lead	39.1	mg/Kg
37	L62	1	1	7/15/2011	Lead	41.6	mg/Kg
38	M56	1	1	7/25/2011	Lead	42.5	mg/Kg
39	R58	1	1	7/27/2011	Lead		mg/Kg
40	S48	1	1	7/27/2011	Lead	44.9	mg/Kg
41	T48	1	1	7/27/2011	Lead	46.5	mg/Kg
42	S57	1	1	7/27/2011	Lead	47.5	mg/Kg
43	L64	1	1	7/15/2011	Lead	48.8	mg/Kg
44	K57	1	1	7/25/2011	Lead	51.5	mg/Kg
45	M58	1	1	7/25/2011	Lead	53.0	mg/Kg
46	R60-S	0	1	8/11/2011	Lead	57.2	mg/Kg

Record	Location	D1 - feet	D2 - feet	Date	Parameter	Result	Units
47	J52	1	1	8/4/2011	Lead	61.9	mg/Kg
48	T49	1	1	7/27/2011	Lead	63.2	mg/Kg
49	Z65	1	1	7/15/2011	Lead	64.9	mg/Kg
50	T56	1	1	7/27/2011	Lead	67.0	mg/Kg
51	T55	1	1	7/27/2011	Lead	70.6	mg/Kg
52	M65	1	1	7/15/2011	Lead	73.4	mg/Kg
53	M57	1	1	7/25/2011	Lead	74.7	mg/Kg
54	B-41	1	1	3/6/2000	Lead	75.0	mg/Kg
55	K50-S	0	1	8/16/2011	Lead	76.6	mg/Kg
56	B-29	1	1	6/13/2000	Lead		mg/Kg
57	S55	1	1	7/27/2011	Lead	82.5	mg/Kg
58	K65	1	1	7/15/2011	Lead	84.9	mg/Kg
59	Q50	0	1	7/27/2011	Lead		mg/Kg
60	B-44	1	1	6/13/2000	Lead		mg/Kg
61	S50	1	1	7/27/2011	Lead		mg/Kg
62	L51-S	0	1	7/26/2011	Lead	88.2	mg/Kg
63	H51-S	0	1	8/16/2011	Lead		mg/Kg
64	K56	1	1	7/25/2011	Lead		mg/Kg
65	J49	1	1	8/16/2011	Lead		mg/Kg
66	L63	1	1	7/15/2011	Lead		mg/Kg
67	R50	1	1	7/27/2011	Lead		mg/Kg
68	T50	1	1	7/27/2011	Lead		mg/Kg
69	S59	1	1	7/27/2011	Lead		mg/Kg
70	L54	1	1	7/26/2011	Lead		mg/Kg
71	K42-SE	0	1	7/27/2011	Lead		mg/Kg
72	I50-SE	0	1	8/16/2011	Lead		mg/Kg
73	T59	1	1	7/27/2011	Lead		mg/Kg
74	K64	1	1	7/15/2011	Lead		mg/Kg
75	S56	1	1	7/27/2011	Lead		mg/Kg
76	I51-SN	0	1	8/16/2011	Lead		mg/Kg
77	L57	1	1	7/25/2011	Lead		mg/Kg
78	H41	1	1	7/27/2011	Lead		mg/Kg
79	R56	1	1	7/27/2011	Lead		mg/Kg
80	G41	0	1	7/27/2011	Lead		mg/Kg
81	M55	1	1	7/26/2011	Lead		mg/Kg
82	R49	1	1	7/27/2011	Lead		mg/Kg
83	K39-S	0	1	8/9/2011	Lead		mg/Kg
84	O27-S	0	1	8/16/2011	Lead		mg/Kg
85	b-42a-74	0	0.5	3/11/2009	Lead, field		mg/Kg
86	R60	1	1	8/11/2011	Lead		mg/Kg
87	044	1	1	7/27/2011	Lead		mg/Kg
88	R51	1	1	7/16/2011	Lead		mg/Kg
89	S54	1	1	7/16/2011	Lead		mg/Kg
90	J39	0	1	7/27/2011	Lead		mg/Kg
91	K59	1	1	7/15/2011	Lead		mg/Kg
92	L53	1	1	7/26/2011	Lead	160.0	mg/Kg

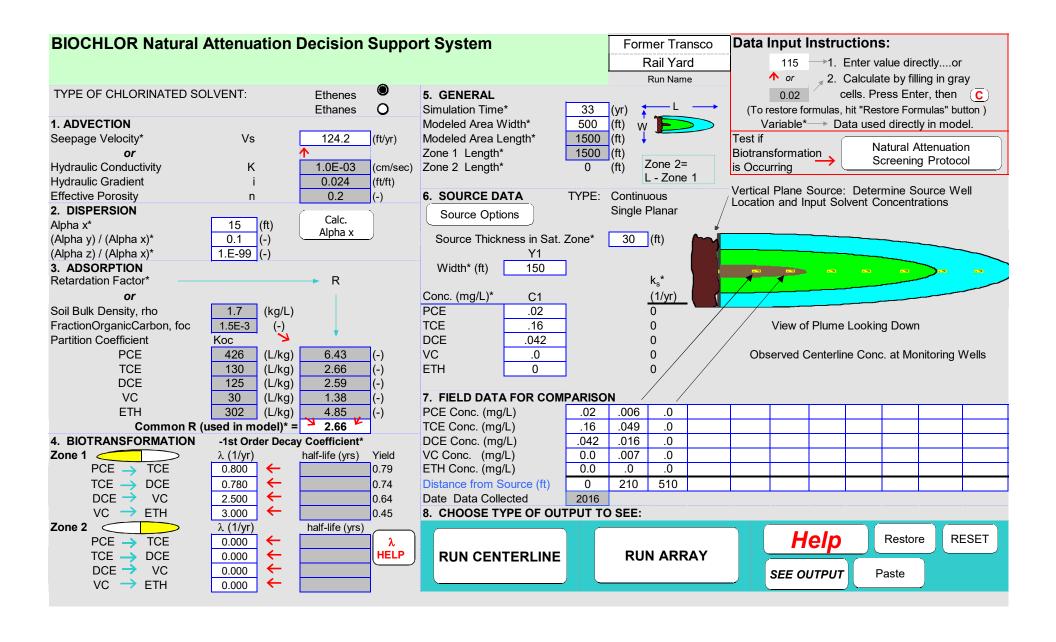
Record	Location	D1 - feet	D2 - feet	Date	Parameter	Result	Units
93	N56	0	1	7/26/2011	Lead	162.0	mg/Kg
94	K63	1	1	7/15/2011	Lead	163.0	mg/Kg
95	B-42-SE	0	0	10/3/2002	Lead	166.0	mg/Kg
96	Y65	1	1	7/15/2011	Lead	184.0	mg/Kg
97	153	1	1	8/4/2011	Lead	186.0	mg/Kg
98	159	1	1	7/25/2011	Lead	189.0	mg/Kg
99	J58	1	1	7/25/2011	Lead	200.0	mg/Kg
100	162	1	1	7/25/2011	Lead	201.0	mg/Kg
101	K55	1	1	7/26/2011	Lead	208.0	mg/Kg
102	K43-SE	0	1	8/9/2011	Lead	208.0	mg/Kg
103	H40	0	1	7/14/2011	Lead	210.0	mg/Kg
104	J49-S	0	1	8/16/2011	Lead	222.0	mg/Kg
105	M62	1	1	7/15/2011	Lead	224.0	mg/Kg
106	W65	1	1	7/15/2011	Lead		mg/Kg
107	Q58-S	0	1	8/4/2011	Lead		mg/Kg
108	J43-2	1	1	8/9/2011	Lead		mg/Kg
109	B-53	1	1	6/22/2000	Lead		mg/Kg
110	S65	1	1	7/15/2011	Lead	254.0	mg/Kg
111	ff41-S	0	1	7/16/2011	Lead		mg/Kg
112	b-42a-76	0	0.5	3/11/2009	Lead, field	266.4	mg/Kg
113	K53	1	1	7/26/2011	Lead		mg/Kg
114	163-S	0	1	7/26/2011	Lead		mg/Kg
115	161	1	1	7/25/2011	Lead		mg/Kg
116	AA65	1	1	7/15/2011	Lead		mg/Kg
117	Q54	0	1	7/27/2011	Lead		mg/Kg
118	X65	1	1	7/15/2011	Lead		mg/Kg
119	H53-S	0	1	8/4/2011	Lead		mg/Kg
120	b-42a-71	0	0.5	3/11/2009	Lead		mg/Kg
121	T47	1	1	7/27/2011	Lead		mg/Kg
122	b-63-5	0	1	3/30/2009	Lead, field		mg/Kg
123	R55	1	1	7/27/2011	Lead		mg/Kg
124	JJ41	0	1	7/18/2011	Lead		mg/Kg
125	b-63-ssw4	0	0	11/8/2002	Lead		mg/Kg
126	R57	1	1	7/27/2011	Lead		mg/Kg
127	b-42a-71	0	0.5	3/11/2009	Lead, field		mg/Kg
128	V65	1	1	7/15/2011	Lead		mg/Kg
129	HA-04	0	0	3/6/2000	Lead		mg/Kg
130	BB65	1	1	7/15/2011	Lead		mg/Kg
131	GG41	1	1	7/16/2011	Lead		mg/Kg
132	N52-S	0	1	8/4/2011	Lead		mg/Kg
133	Q49	0	1	7/27/2011	Lead		mg/Kg
134	b-42a-13	0	0.5	3/11/2009	Lead, field		mg/Kg
135	FF41	1	1	7/16/2011	Lead		mg/Kg
136	Q60-S	0	1	8/11/2011	Lead		mg/Kg
137	b-42a-51	0	0.5	3/11/2009	Lead, field		mg/Kg
138	R47	1	1	7/27/2011	Lead	415.0	mg/Kg

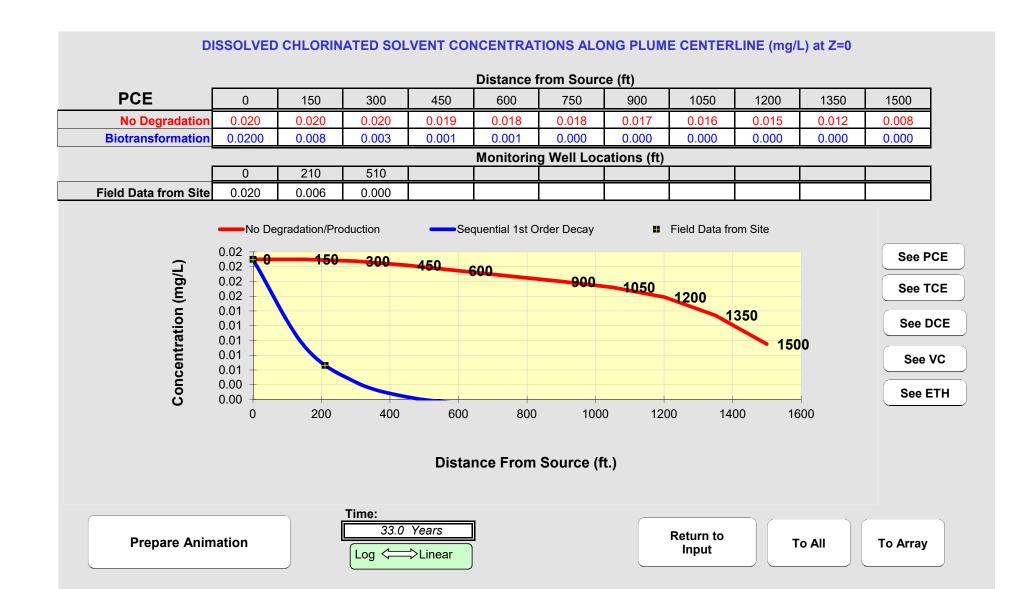
Record	Location	D1 - feet	D2 - feet	Date	Parameter	Result	Units
139	b-42a-73	0	0.5	3/11/2009	Lead	420.0	mg/Kg
140	K51	1	1	7/26/2011	Lead	432.0	mg/Kg
141	b-42a-14	0	0.5	3/11/2009	Lead, field	434.9	mg/Kg
142	GG40	1	1	7/16/2011	Lead	435.0	mg/Kg
143	b-42a-117	0	1	3/30/2009	Lead, field	447.2	mg/Kg
144	b-42a-82	0	0.5	3/11/2009	Lead, field	452.3	mg/Kg
145	b-42a-83	0	0.5	3/11/2009	Lead, field	457.7	mg/Kg
146	b-42a-40	0	0.5	3/11/2009	Lead, field	459.6	mg/Kg
147	b-42a-29	0	0.5	3/11/2009	Lead, field	487.4	mg/Kg
148	b-42a-58	0	0.5	3/11/2009	Lead, field	497.0	mg/Kg
149	Q55	0	1	7/27/2011	Lead	498.0	mg/Kg
150	J44-S	0	1	8/9/2011	Lead		mg/Kg
151	Q51	0	1	7/16/2011	Lead		mg/Kg
152	b-42a-43	0	0.5	3/11/2009	Lead, field		mg/Kg
153	J63	1	1	7/25/2011	Lead		mg/Kg
154	S59-S	0	1	7/27/2011	Lead		mg/Kg
155	b-42a-56	0	0.5	3/11/2009	Lead, field		mg/Kg
156	L59	1	1	7/15/2011	Lead		mg/Kg
157	M59	1	1	7/15/2011	Lead		mg/Kg
158	B-63-SSE5	0	0	1/16/2003	Lead		mg/Kg
159	B-63-SSW5	0	0	1/16/2003	Lead		mg/Kg
160	Q57-SN	0	1	8/4/2011	Lead		mg/Kg
161	b-42a-28	0	0.5	3/11/2009	Lead, field		mg/Kg
162	b-42a-121	0	1	3/30/2009	Lead, field		mg/Kg
163	L65	1	1	7/15/2011	Lead		mg/Kg
164	b-42a-77	0	0.5	3/11/2009	Lead, field		mg/Kg
165	B-42-SW	0	0	10/3/2002	Lead		mg/Kg
166	163	1	1	7/25/2011	Lead		mg/Kg
167	B-31a-1	0	0.5	2/24/2009	Lead	563.0	mg/Kg
168	b-42a-118	0	1	3/30/2009	Lead, field		mg/Kg
169	GG42	0	1	7/16/2011	Lead		mg/Kg
170	b-42a-18	0	0.5	3/11/2009	Lead, field		mg/Kg
171	Q47	0	1	7/27/2011	Lead		mg/Kg
172	SD-01	1	1	6/22/2000	Lead		mg/Kg
173	U65	1	1	7/15/2011	Lead		mg/Kg
174 175	162-S 139	0	1	7/26/2011 7/27/2011	Lead Lead		mg/Kg mg/Kg
-	N54	0	1		+		mg/Kg mg/Kg
176 177	L58	1	1	7/26/2011	Lead Lead		mg/Kg mg/Kg
177	b-63-6	0	1	7/25/2011 3/30/2009	Lead, field		mg/Kg
179	T65	1	1	7/15/2011	Lead, Heid		mg/Kg
180	b-42a-72	0	0.5	3/11/2009	Lead, field		mg/Kg
181	K52	1	1	7/26/2011	Lead, Heid		mg/Kg
182	b-42a-46	0	0.5	3/11/2009	Lead, field		mg/Kg
183	044-S	0	1	7/27/2011	Lead, Heid		mg/Kg
184	KK40	1	1	7/27/2011	Lead		mg/Kg
104	NN4U	Т	Т	1/10/2011	Leau	044.0	IIIR/ VR

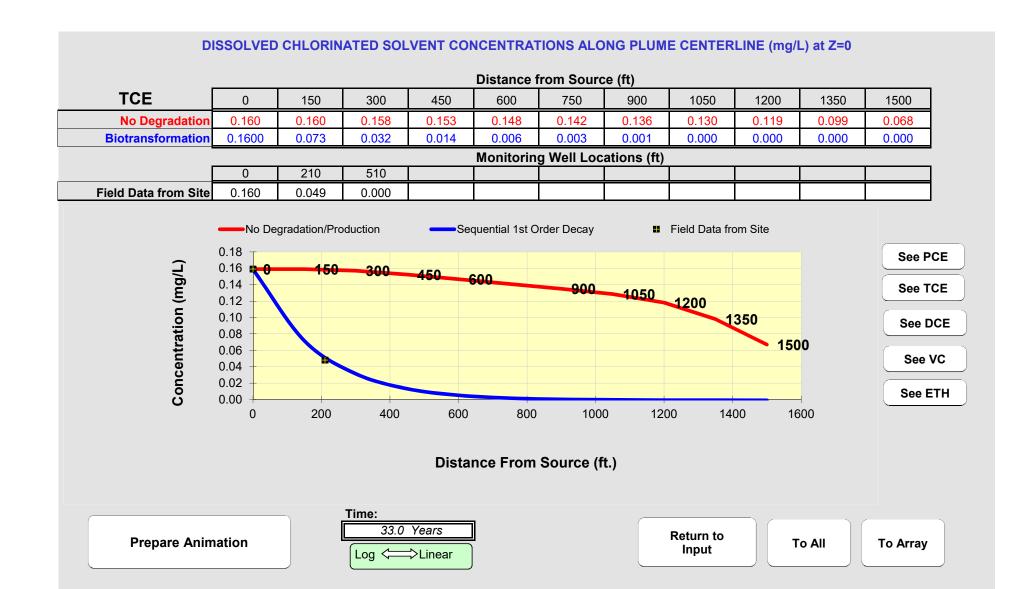
Record	Location	D1 - feet	D2 - feet	Date	Parameter	Result	Units
185	J43-SW	0	1	8/9/2011	Lead	644.0	mg/Kg
186	b-42a-75	0	0.5	3/11/2009	Lead		mg/Kg
187	157-S	0	1	7/26/2011	Lead	653.0	mg/Kg
188	b-42a-29	0	0.5	3/11/2009	Lead	655.0	mg/Kg
189	157	1	1	7/25/2011	Lead		mg/Kg
190	b-42a-75	0	0.5	3/11/2009	Lead, field	656.7	mg/Kg
191	B-42-NW	0	0	10/3/2002	Lead	658.0	mg/Kg
192	N46	1	1	7/27/2011	Lead	675.0	mg/Kg
193	J62	1	1	7/25/2011	Lead	681.0	mg/Kg
194	b-42a-120	0	1	3/30/2009	Lead, field	694.8	mg/Kg
195	b-42a-69	0	0.5	3/11/2009	Lead, field	698.0	mg/Kg
196	b-42a-89	0	0.5	3/11/2009	Lead, field	717.0	mg/Kg
197	BB66	0	1	7/15/2011	Lead	719.0	mg/Kg
198	b-42a-89	0	1	3/30/2009	Lead, field	720.3	mg/Kg
199	b-63-sw2	0	0	10/1/2002	Lead		mg/Kg
200	N44-S	0	1	7/27/2011	Lead	733.0	mg/Kg
201	K61	1	1	7/15/2011	Lead		mg/Kg
202	b-42a-39	0	0.5	3/11/2009	Lead, field	744.5	mg/Kg
203	H64-S	0	1	7/26/2011	Lead	771.0	mg/Kg
204	J50	1	1	8/11/2011	Lead		mg/Kg
205	T46	1	1	7/27/2011	Lead		mg/Kg
206	b-42a-24	0	0.5	3/11/2009	Lead, field		mg/Kg
207	N44	1	1	7/27/2011	Lead		mg/Kg
208	P55-S2	0	1	8/11/2011	Lead		mg/Kg
209	b-42a-35	0	0.5	3/11/2009	Lead, field		mg/Kg
210	FF40	1	1	7/16/2011	Lead		mg/Kg
211	156	0	1	7/26/2011	Lead		mg/Kg
212	164	1	1	7/25/2011	Lead		mg/Kg
213	P57-S	0	1	8/11/2011	Lead	813.0	mg/Kg
214	I52-SE	0	1		Lead		mg/Kg
215	N58	0	1	8/3/2011	Lead		mg/Kg
216	L40-S	0	1	8/9/2011	Lead		mg/Kg
217	159-S	0	1	7/26/2011	Lead		mg/Kg
218	O46-S	0	1	7/27/2011	Lead		mg/Kg
219	053-S	0	1	8/4/2011	Lead		mg/Kg
220	056-S	0	1	8/11/2011	Lead		mg/Kg
221	154-S	0	1	8/4/2011	Lead		mg/Kg
222	K42-SN	0	1	7/27/2011	Lead		mg/Kg
223	b-42a-48	0	0.5	3/11/2009	Lead, field		mg/Kg
224	O46	1	1	7/27/2011	Lead		mg/Kg
225	P59-S	0	1	8/4/2011	Lead		mg/Kg
226	H42	0	1	7/14/2011	Lead		mg/Kg
227	M54	1	1	7/26/2011	Lead		mg/Kg
228	154	0	1	7/26/2011	Lead		mg/Kg
229	MM42	1	1	7/18/2011	Lead		mg/Kg
230	J55	1	1	7/26/2011	Lead	953.0	mg/Kg

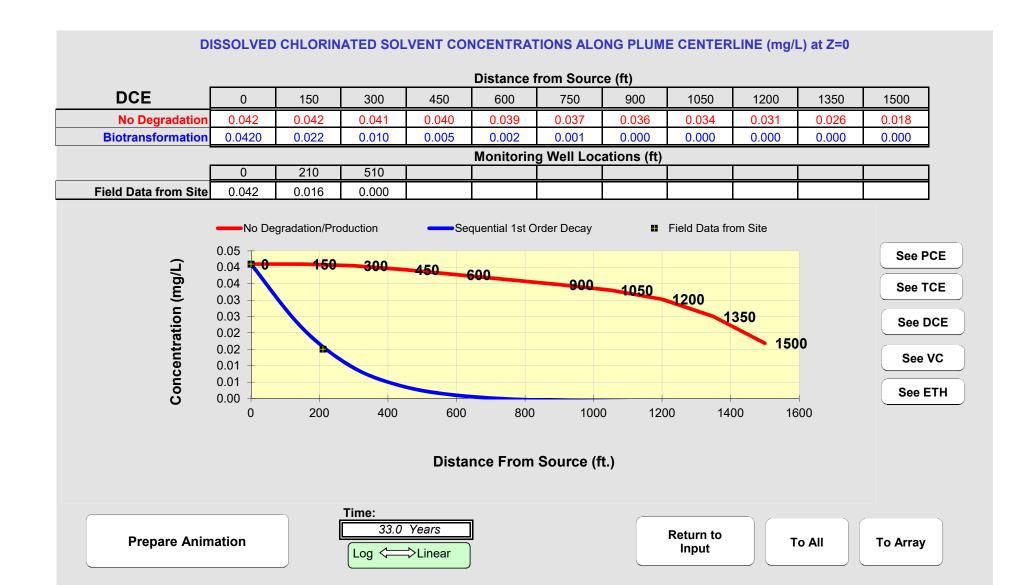
Record	Location	D1 - feet	D2 - feet	Date	Parameter	Result	Units
231	B-31a-2	0	0.5	2/24/2009	Lead	966.0	mg/Kg
232	b-42a-49	0	0.5	3/11/2009	Lead, field	966.1	mg/Kg
233	M52	0	1	7/26/2011	Lead	983.0	mg/Kg
234	b-63-sw	0	0	10/1/2002	Lead	986.0	mg/Kg
235	b-42a-57	0	0.5	3/11/2009	Lead, field	989.7	mg/Kg
236	N46-S	0	1	7/27/2011	Lead	998.0	mg/Kg
237	LL43	0	1	7/18/2011	Lead	999.0	mg/Kg
238	b-42a-47	0	0.5	3/11/2009	Lead, field	1,001.1	mg/Kg
239	b-42a-64	0	0.5	3/11/2009	Lead, field	1,002.2	mg/Kg
240	b-42a-54	0	0.5	3/11/2009	Lead, field	1,003.6	mg/Kg
241	R46	1	1	7/27/2011	Lead	1,010.0	mg/Kg
242	b-42a-63	0	0.5	3/11/2009	Lead, field	1,016.4	mg/Kg
243	LL42	1	1	7/18/2011	Lead	1,020.0	mg/Kg
244	B-42-NE	0	0	10/3/2002	Lead	1,020.0	mg/Kg
245	b-42a-61	0	0.5	3/11/2009	Lead, field	1,027.9	mg/Kg
246	b-42a-62	0	0.5	3/11/2009	Lead, field	1,054.9	mg/Kg
247	Q57	0	1	7/27/2011	Lead	1,060.0	mg/Kg
248	160-S	0	1	7/26/2011	Lead	1,090.0	mg/Kg
249	G65	0	1	7/26/2011	Lead	1,100.0	mg/Kg
250	J53	1	1	7/26/2011	Lead	1,120.0	mg/Kg
251	Q46	0	1	7/27/2011	Lead	1,120.0	mg/Kg
252	N45	1	1	7/27/2011	Lead	1,130.0	mg/Kg
253	N63	0	1	7/26/2011	Lead	1,130.0	mg/Kg
254	Q55-S	0	1	8/4/2011	Lead	1,130.0	mg/Kg
255	H65	1	1	7/25/2011	Lead	1,170.0	mg/Kg
256	160	1	1	7/25/2011	Lead	1,170.0	mg/Kg
257	B-31a-3	0	0.5	2/24/2009	Lead	1,170.0	mg/Kg
258	K60	1	1	7/15/2011	Lead	1,180.0	mg/Kg
259	KK43	0	1	7/18/2011	Lead	1,200.0	mg/Kg
260	J65	1	1	7/25/2011	Lead	1,220.0	mg/Kg
261	b-42a-86	0	0.5	3/11/2009	Lead, field	1,227.7	
262	R48	1	1	7/27/2011	Lead	1,230.0	mg/Kg
263	b-42a-55	0	0.5	3/11/2009	Lead, field	1,232.3	mg/Kg
264	b-42a-50	0	0.5	3/11/2009	Lead, field	1,241.9	mg/Kg
265	b-42a-119	0	1	3/30/2009	Lead, field	1,242.4	mg/Kg
266	O59	0	1	8/3/2011	Lead	1,250.0	mg/Kg
267	b-42a-59	0	0.5	3/11/2009	Lead, field	1,267.6	mg/Kg
268	L41	0	1	7/27/2011	Lead	1,280.0	mg/Kg
269	b-31a	0	0.5	2/24/2009	Lead	1,290.0	mg/Kg
270	143	0	1	7/27/2011	Lead	1,290.0	mg/Kg

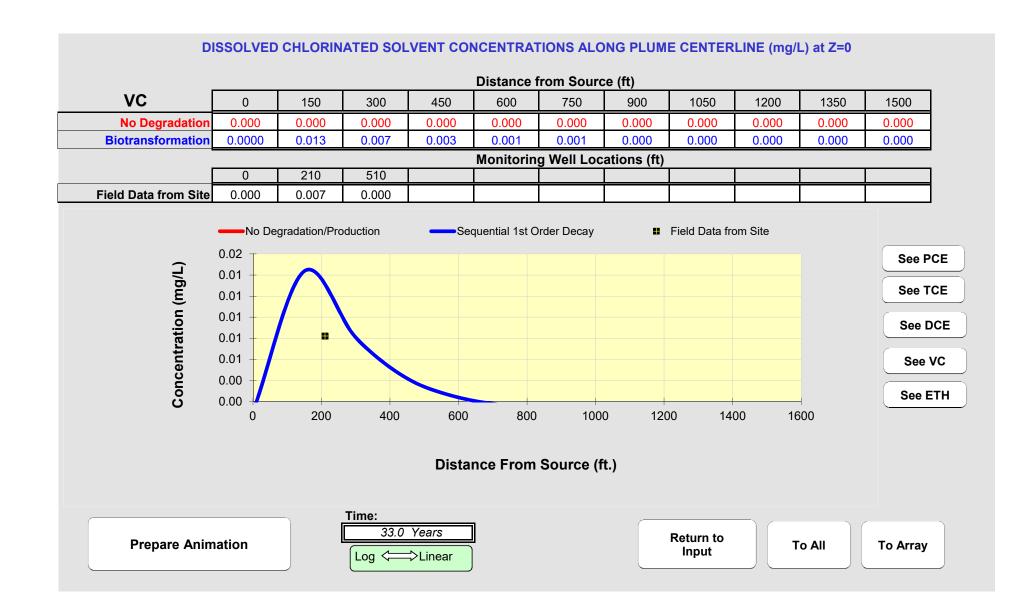
Record	Location	D1 - feet	D2 - feet	Date	Parameter	Result	Units
1	B-2-NE	0	0	10/2/2002	Lead	1.5	mg/Kg
2	B-2-NW	0	0	10/2/2002	Lead		mg/Kg
3	B-2-SE	0	0	10/2/2002	Lead	1.5	mg/Kg
4	B-2-SW	0	0	10/2/2002	Lead		mg/Kg
5	B-2	0	0	10/2/2002	Lead		mg/Kg
6	L66	1	1	7/15/2011	Lead	5.5	mg/Kg
7	M67	1	1	7/15/2011	Lead	9.1	mg/Kg
8	J67	1	1	7/25/2011	Lead	9.6	mg/Kg
9	TW-06	1	1	6/12/2000	Lead	15.0	mg/Kg
10	B-03	1	1	2/23/2000	Lead	16.0	mg/Kg
11	167	1	1	7/25/2011	Lead	17.6	mg/Kg
12	L67	1	1	7/15/2011	Lead	17.7	mg/Kg
13	O67-S	0	1	8/31/2011	Lead	18.0	mg/Kg
14	N66-2	1	1	8/3/2011	Lead	20.9	mg/Kg
15	Y67	1	1	8/1/2011	Lead		mg/Kg
16	Z67	1	1	8/1/2011	Lead		mg/Kg
17	J69	1	1	7/25/2011	Lead	24.0	mg/Kg
18	066-2	1	1	8/31/2011	Lead	25.3	mg/Kg
19	L68	1	1	7/15/2011	Lead	28.9	mg/Kg
20	K68	1	1	7/15/2011	Lead	29.9	mg/Kg
21	M68	1	1	7/15/2011	Lead	30.1	mg/Kg
22	H68	1	1	7/25/2011	Lead	35.6	mg/Kg
23	168	1	1	7/25/2011	Lead		mg/Kg
24	X67	1	1	8/1/2011	Lead		mg/Kg
25	L70	1	1	7/25/2011	Lead		mg/Kg
26	P66-S	0	1	8/31/2011	Lead		mg/Kg
27	TW-05	1	1	6/12/2000	Lead		mg/Kg
28	B-34	1	1	2/24/2000	Lead		mg/Kg
29	O65-S	0	1	8/31/2011	Lead	56.5	mg/Kg
30	M66	1	1	7/15/2011	Lead		mg/Kg
31	L69	1	1	7/25/2011	Lead		mg/Kg
32	M65	1	1	7/15/2011	Lead		mg/Kg
33	B-41	1	1	3/6/2000	Lead		mg/Kg
34	B-54	1	1	6/22/2000	Lead		mg/Kg
35	K65	1	1	7/15/2011	Lead		mg/Kg
36	169	1	1	7/25/2011	Lead		mg/Kg
37	B-36	1	1	2/24/2000	Lead		mg/Kg
38	B-94	1	1	9/20/2000	Lead		mg/Kg
39	J68	1	1	7/25/2011	Lead		mg/Kg
40	L71	1	1	7/25/2011	Lead		mg/Kg
41	B-33	1	1	2/25/2000	Lead		mg/Kg
42	B-95	1	1	9/20/2000	Lead		mg/Kg
43	J66	1	1	7/25/2011	Lead		mg/Kg
44	B-02	1	1	2/24/2000	Lead		mg/Kg
45	S66	0	1	7/15/2011	Lead		mg/Kg
46	B-01	1	1	2/23/2000	Lead	210.0	mg/Kg


Record	Location	D1 - feet	D2 - feet	Date	Parameter	Result	Units
47	B-57	1	1	6/22/2000	Lead	220.7	mg/Kg
48	M69	1	1	7/25/2011	Lead	222.0	mg/Kg
49	AA66	1	1	7/15/2011	Lead	229.0	mg/Kg
50	M70	1	1	7/25/2011	Lead	229.0	mg/Kg
51	B-58	1	1	6/23/2000	Lead	245.2	mg/Kg
52	X66	0	1	7/15/2011	Lead	248.0	mg/Kg
53	H68-S	0	1	7/26/2011	Lead	249.0	mg/Kg
54	S65	1	1	7/15/2011	Lead	254.0	mg/Kg
55	aa66-S	0	1	7/15/2011	Lead	254.0	mg/Kg
56	K66	1	1	7/15/2011	Lead	279.0	mg/Kg
57	B-32	1	1	2/24/2000	Lead	280.0	mg/Kg
58	Z67-S	0	1	7/22/2011	Lead	301.0	mg/Kg
59	b-42a-108	0	1	3/30/2009	Lead, field	312.1	mg/Kg
60	B-30	1	1	3/6/2000	Lead	320.0	mg/Kg
61	b-42a-107	0	1	3/30/2009	Lead, field		mg/Kg
62	K69	1	1	7/25/2011	Lead		mg/Kg
63	N68	0	1	7/26/2011	Lead		mg/Kg
64	W67	1	1	8/1/2011	Lead	340.0	mg/Kg
65	B-04	1	1	2/24/2000	Lead		mg/Kg
66	b-42a-113	0	1	3/30/2009	Lead, field	357.9	mg/Kg
67	N67	0	1	7/26/2011	Lead		mg/Kg
68	b-42a-102	0	1	3/30/2009	Lead, field		mg/Kg
69	MW-01	1	1	2/25/2000	Lead		mg/Kg
70	B-35	1	1	2/24/2000	Lead		mg/Kg
71	V66-SW	0	1	8/9/2011	Lead		mg/Kg
72	b-42a-117	0	1	3/30/2009	Lead, field		mg/Kg
73	b-42a-103	0	1	3/30/2009	Lead, field		mg/Kg
74	b-42a-108	0	1	3/30/2009	Lead		mg/Kg
75	b-42a-116	0	1	3/30/2009	Lead		mg/Kg
76	V67-S	0	1	7/22/2011	Lead		mg/Kg
77	K67	1	1	7/15/2011	Lead		mg/Kg
78	b-42a-112	0	1	3/30/2009	Lead, field		mg/Kg
79	L65	1	1	7/15/2011	Lead		mg/Kg
80	169-S	0	1	7/26/2011	Lead		mg/Kg
81	b-42a-30	0	0.5	3/11/2009	Lead, field		mg/Kg
82	b-42a-105	0	1	3/30/2009	Lead, field		mg/Kg
83	X67-S	0	1	7/22/2011	Lead		mg/Kg
84	J70	0	1	7/26/2011	Lead		mg/Kg
85	U65	1	1	7/15/2011	Lead		mg/Kg
86	T65	1	1	7/15/2011	Lead field		mg/Kg
87	b-42a-101	0	1	3/30/2009	Lead, field		mg/Kg
88	U66	0	1	7/15/2011	Lead		mg/Kg
89	B-31a-5	0	0.5	2/24/2009	Lead		mg/Kg
90	L71-S K70	0	1	7/26/2011	Lead		mg/Kg
91			1	7/25/2011	Lead		mg/Kg
92	G67	0	1	7/26/2011	Lead	/03.0	mg/Kg


Section 4 Soil Lead Data Summary - ProUCL Input


Record	Location	D1 - feet	D2 - feet	Date	Parameter	Result	Units
93	BB66	0	1	7/15/2011	Lead	719.0	mg/Kg
94	H67	1	1	7/25/2011	Lead	740.0	mg/Kg
95	b-42a-116	0	1	3/30/2009	Lead, field	741.0	mg/Kg
96	166	1	1	7/25/2011	Lead	745.0	mg/Kg
97	b-42a-106	0	1	3/30/2009	Lead, field	800.7	mg/Kg
98	K71	0	1	7/26/2011	Lead	820.0	mg/Kg
99	b-42a-104	0	1	3/30/2009	Lead, field	826.3	mg/Kg
100	b-42a-111	0	1	3/30/2009	Lead, field	877.6	mg/Kg
101	H66	1	1	7/25/2011	Lead	896.0	mg/Kg
102	B-31a-7	0	0.5	2/24/2009	Lead	905.0	mg/Kg
103	B-31a-6	0	0.5	2/24/2009	Lead	984.0	mg/Kg
104	G65	0	1	7/26/2011	Lead	1,100.0	mg/Kg
105	N67-SN	0	1	8/3/2011	Lead	1,130.0	mg/Kg
106	H65	1	1	7/25/2011	Lead	1,170.0	mg/Kg
107	J65	1	1	7/25/2011	Lead	1,220.0	mg/Kg
108	b-42a-110	0	1	3/30/2009	Lead, field	1,298.9	mg/Kg




APPENDIX K Groundwater Model Input and Output

