COMPLIANCE STATUS REPORT AND COMPLIANCE STATUS CERTIFICATION

Former Aratex Facility 670 DeKalb Avenue Parcel Atlanta, Fulton County, Georgia

Hazardous Site Inventory/Voluntary Remediation Program Site #10704

AEM Project No. 1133-1501-6

November 20, 2014

Prepared For:

Aramark Uniform & Career Apparel, LLC 115 North First Street Burbank, California 91502

Prepared By:

Environmental Consulting, Engineering, Hydrogeologic Services 2580 Northeast Expressway • Atlanta, Georgia 30345 Office (404) 329-9006 • Fax (404) 329-2057

COMPLIANCE STATUS CERTIFICATION

I certify under penalty of law that this report and all attachments were prepared under my direction in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Based on my review of the findings of this report with respect to the risk reduction standards of the Rules for Hazardous Site Response, Rule 391-3-19-.07, I have determined that soil at the former Aratex site, Parcel 14-0020-0000-202-4, 670 DeKalb Avenue, Fulton County, Georgia, is generally in compliance with the Type 3/4; however, the northwest portion of the site is in compliance with Type 5 Risk Reduction Standard for select volatile organic compounds (VOCs). Soils certified to Type 5 RRSs are currently capped (soil cover) using engineering controls. The former Aratex site is currently part of Hazardous Sites Inventory (HSI)/Voluntary Remediation Program Site No. 10704.

Groundwater beneath the former Aratex parcel is not in compliance with Type 3/4 RRSs for the chlorinated VOCs: tetrachloroethene, trichloroethene, and vinyl chloride. However, as a result of past source material removal and/or treatment, tetrachloroethene and trichloroethene groundwater concentrations continue to decrease at the site. Likewise, the detection of VOC degradation products (cis-1,2-dichloroethene and vinyl chloride) confirms that active dechlorination/degradation is occurring at the former Aratex site. Decreasing cis-1,2-dichloroethene and vinyl chloride concentrations are also anticipated with decreasing tetrachloroethene and trichloroethene levels.

Reported releases to groundwater in January 2014 did not exceed HSRA Reportable Quantity per the Reportable Quantity Screening Method (RQSM). In accordance with §12-8-107(g)(2) of the VIRP, corrective action for groundwater is not required, nor is certification of compliance required for groundwater.

November 18, 2014 Date

Doug Helmstetler

Senior Director, Environmental Compliance

and Sustainability

Aramark Uniform & Career Apparel, LLC

PROFESSIONAL GEOLOGIST CERTIFICATION

I certify that I am a qualified groundwater scientist who has received a baccalaureate or postgraduate degree in the natural sciences or engineering and have sufficient training and experience in groundwater hydrology and related fields, as demonstrated by state registration and completion of accredited university courses, that enable me to make sound professional judgments regarding groundwater monitoring and contaminant fate and transport. I further certify that this report was prepared by me or by subordinates working under my direction.

Nov. 19, 2014

Tony L. Gordon, P.G. #1170

(Seal)

Senior Project Geologist

Atlanta Environmental Management, Inc.

TABLE OF CONTENTS

Com	plian	ce Statu	us Certification		
Prof	essior	nal Geo	ologist Certification	i	
Tabl	e of C	Contents	S	ii	
Exec	cutive	Summa	ary	vii	
1.0	Introduction				
	1.1	Site History			
	1.2	Objective			
	1.3	Previous Site Investigations			
	1.4	Historical Document Submittals			
2.0	Site Geology and Groundwater Flow			2-1	
	2.1	Regio	nal Geology	2-1	
		2.1.1	Site Bedrock Geology	2-1	
		2.1.2	Site Residuum Geology	2-1	
	2.2	Regio	nal Hydrogeology	2-2	
	2.3	Site Hydrogeology			
		2.3.1	Groundwater Occurrence	2-2	
		2.3.2	Groundwater Flow Direction and Hydraulic Gradient	2-3	
		2.3.3	Hydraulic Conductivity		
		2.3.4	Groundwater Flow Rate	2-4	
3.0	Site Background and Source Area Description			3-1	
	3.1	Site D	escription	3-1	
	3.2	Responsible Parties			
	3.3	Land Use and Operations History			
	3.4	Site-Specific Chemicals of Concern			
	3.5	Poten	tial Sources	3-2	
		3.5.1	Underground Storage Tanks	3-3	
		3.5.2	Dry-Cleaning Operations Area	3-3	
		3.5.3	Northwest Property Corner	3-3	
	3.6	Potential Release Mechanisms		3-4	
	3.7	Human and Environmental Receptors		3-4	
	3.8	Risk Reduction Standards		3-6	

TABLE OF CONTENTS (CONTINUED)

4.0	Historical Soil Analytical Results				
	4.1	1 1992 DePaul UST Investigation			
	4.2	2001 Bock/LAW Environmental Site Assessment			
	4.3	2003–2006 AEM HSRA Site Assessments	4-3		
		4.3.1 2003 Initial CSR Soil Delineation	4-3		
		4.3.2 2004-2006 Supplemental CSR Soil Delineation	4-4		
	4.4	2005–2006 MACTEC Brownfields Remedial Assessment	4-5		
		4.4.1 2005 CSR Soil Investigation	4-5		
		4.4.2 2006 Remedial Confirmation Sampling	4-5		
	4.5	2008 AEM HSRA Soil Delineation	4-7		
	4.6	2010 AEM HSRA Remedial Confirmation Sampling	4-8		
	4.7	2013 AEM VRP Northwest Corner Source Delineation	4-9		
	4.8	2013 AEM–City of Atlanta Remedial Assessment	4-10		
	4.9	2013 AMEC-Atlanta Beltline Remedial Assessment	4-11		
		4.9.1 Drainage Feature Assessment	4-12		
		4.9.2 Storm Water Retention Basin-Drain Assessment	4-13		
5.0	Corrective Action				
	5.1	UST Soil Excavation and SVE System	5-1		
	5.2	2006–2007 In Situ Chemical Oxidant (ISCO) Injections	5-1		
	5.3	2006 Soil Excavation	5-2		
	5.4	2010 Soil Excavation-Blending With Chemical Oxidant	5-3		
	5.5	2013 Off-Site Soil Excavation	5-4		
	5.6	2013 Northwest Corner Environmental Cap	5-4		

TABLE OF CONTENTS (CONTINUED)

6.0	Groundwater Monitoring			
	6.1	Groundwater Monitoring Procedures		6-1
		6.1.1	Groundwater Sampling	6-1
		6.1.2	Sample Analyses	6-2
	6.2	Historical Groundwater Monitoring		6-2
		6.2.1	Pre–ISCO Corrective Action Monitoring	6-2
		6.2.2	Post–ISCO Corrective Action Monitoring	6-4
		6.2.3	Post–Soil Blending Corrective Action Monitoring	6-6
	6.3	July 2014 Groundwater Monitoring		6-7
		6.3.1	Depth-to-Groundwater Measurements	6-7
		6.3.2	Groundwater Sampling	6-8
		6.3.3	Statistical Evaluation	6-9
7.0	Monitoring Well Installation and Abandonment			
	7.1 Monitoring Well Installation			
	7.2 Monitoring Well Abandonment			7-2
8.0	Summary and Conclusions8-			8-1
9.0	References9-			

LIST OF TABLES

TABLE

- 1 Risk Reduction Standards for Soil
- 2 Risk Reduction Standards for Groundwater
- 3 Summary of Constituents of Concern Detected in Groundwater, July 2014
- 4 Monitoring Well Construction Details

LIST OF FIGURES

FIGURE

1	Facility Location
2	670 DeKalb Avenue Site Layout
3	Historical Soil Boring Sample Location (1993–2014)
4	Historical Monitoring Well and Piezometer Location (1991–2013)
5	Water Table Elevations, Shallow Residuum Aquifer Zone, July 17, 2014
6	1992–2005 Historical PCE Soil Detections Above Type 3/4 Risk Reduction Standards
7	1992–2005 Historical TCE Soil Detections Above Type 3/4 Risk Reduction Standards
8	2006–2008 Historical PCE Soil Detections Above Type 3/4 Risk Reduction Standards
9	2006–2008 Historical TCE Soil Detections Above Type 3/4 Risk Reduction Standards
10	2006–2008 Historical Vinyl Chloride Soil Detections Above Type 3/4 Risk Reduction Standards
11	2010 Confirmatory PCE Soil Detections Above Type 3/4 Risk Reduction Standards
12	2011–2013 Historical PCE Soil Detections Above Type 3/4 Risk Reduction Standards
13	2011–2013 Historical TCE Soil Detections Above Type 3/4 Risk Reduction Standards
14	2005 Sodium Permanganate Pilot Test Injection Locations
15	2006 Full Scale In Situ Chemical Oxidation Corrective Action
16	Tetrachloroethene in Groundwater, July 2014
17	Trichloroethene in Groundwater, July 2014
18	Vinyl Chloride in Groundwater, July 2014
19	Total VOCs in Groundwater Pre and Post Soil Blending

LIST OF ATTACHMENTS

ATTACHMENT

Α	Available Historical Soil Boring Logs/Monitoring Well Construction Logs
В	Groundwater Elevation Data, 2001–2014
С	Legal Description of the 670 DeKalb Avenue Parcel
D	Historical Summary of VOCs Detected in Soil
Е	Georgia EPD Underground Storage Tank No Further Action
F	Historical Summary of VOCs Detected in Groundwater
G	Georgia EPD HSRA and Brownfields Approval of Type 3 and Type 4 Risk Reduction Standards
Н	Environmental Cap Inspection and Maintenance Plan
I	Off-Site Topsoil Laboratory Analytical Results
J	July 2014 Groundwater Field Sampling Sheets
K	Time Trend Charts
L	July 2014 Laboratory Analytical Reports
M	Groundwater Plume Statistical Evaluation

EXECUTIVE SUMMARY

The former Aratex site (the "Site") located at 670 DeKalb Avenue, Atlanta, Georgia, was previously listed as one of two adjacent adjoining parcels known as the Aramark Uniform and Career Apparel, LLC (Aramark) DeKalb Avenue site on the Georgia Environmental Protection Division's (EPD) Hazardous Site Inventory (HSI). The Aramark DeKalb HSI Site is HSI Number 10704. The second parcel (former Dynamic Metals property), located at 690 DeKalb Avenue, was delisted from the HSI on May 30, 2014. A Site location map is provided as Figure 1.

The Site was originally developed as individual residential properties from as early as 1911. Since the late 1940s, the Site was utilized as a commercial uniform laundry cleaning facility. Dry-cleaning operations were conducted at the Site and included the use of chlorinated solvents and mineral spirits. Dry-cleaning operations, which ceased in 1987, were performed with the facility's main production building near Gunby Street. Gasoline and diesel underground storage tanks (USTs) were also utilized at the site to fuel the service vehicles. The Aratex facility subsequently closed in 1995. A detailed Site map is provided as Figure 2.

Under the Georgia UST (GUST) Management Program the mineral spirits and fuel oil USTs at the former Aratex parcel were closed in 1989 (see Figure 2). In 1993 limited soil remediation was implemented for the release of petroleum hydrocarbons. In 1996, the GUST Management Program issued a "No Further Action Required" letter dated September 3, 1996.

The Site was placed on the HSI in October 2001 following notification of a release of chlorinated volatile organic compounds (VOCs) and mineral spirits (July 2001) under the Georgia Hazardous Sites Response Act (HSRA).

Potential contaminant source areas (impacted soils) identified at the Site included the former Dry Cleaning Area, the former Mineral Spirits USTs area, the former gasoline and diesel USTs area, and an unknown chlorinated solvent release detected near the northwest corner of the Site as well as on the adjacent off-site properties (City of Atlanta and Atlanta Beltline). Contaminant source areas are depicted in Figure 2.

Between 1992 and 2013, numerous soil boring samples were collected from the 670 DeKalb Avenue parcel and adjacent properties. Historical soil boring locations are depicted in Figure 3. The various assessments and corrective action activities were performed under the HSRA Program from 2001 to 2004 and from 2007 to 2012, under the Brownfields Program from 2005 to 2006, and under the Voluntary Remediation Program (VRP) from 2013 to the present.

Soil: HSRA Hazardous Substances

Tetrachloroethene (PCE), trichloroethene (TCE), cis-1,2-dichloroethene (cis-1,2-DCE), and vinyl chloride were the only chlorinated VOCs detected above Type 3/4 Risk Reduction Standards (RRSs) calculated for soils collected from the Site (see Table 1). Likewise, sporadic detections of the petroleum hydrocarbon benzene were also originally reported in select soil samples above Type 3/4 RRS. However, based on further evaluation it was determined that the hydrocarbon-impacted soil samples were actually collected below the water table and thus are

not considered true soil samples. Additionally, the petroleum-impacted soil is related to the historical UST releases, which were subsequently regulated under the Georgia EPD UST Management Program and issued a No Further Action.

Groundwater: HSRA Hazardous Substances

PCE, TCE, cis-1,2-DCE, trans-1,2-dichloroethene (trans-1,2-DCE), and vinyl chloride were the only chlorinated VOCs detected above Type 3/4 Risk Reduction Standards (RRSs) in groundwater collected from the Site (see Table 2). Historical groundwater sample locations are depicted in Figure 4.

The Type 3/4 RRSs for soils and Type 3/4 RRSs for groundwater were calculated in accordance with HSRA Rule 391-3-19-.07(6)(c) and were approved by Georgia EPD HSRA on February 14, 2005, and Georgia EPD Brownfields on September 1, 2006.

Corrective Action

Soil corrective action activities implemented at the Site include limited soil excavation and soil vacuum extraction as part of the gasoline and diesel UST closure (1889 and 1993), soil excavation of the former Dry Cleaning and Mineral Spirits UST source areas (2006), and soil excavation and chemical oxidant blending of impacted soil at the former Dry Cleaning and Mineral Spirits UST source areas (2010). For the Northwest Corner Source Area, impacted soils exceeding Type 3/4 RRS were capped with clean soil (2014). Thus, Aramark certifies that, with the use of engineering controls, the northwest corner of the Site is in compliance with Type 5 RRS per Rule 391-3-19-.07. The soil remedial efforts are discussed in Section 5.0. The remainder of the Site is in compliance with Type 3/4 RRSs.

Groundwater corrective action activities implemented at the Site include the *In Situ* Chemical Oxidant injections of sodium permanganate into the shallow water table aquifer in 2006 and 2007. The groundwater remedial efforts are discussed in Section 5.2.

The current groundwater monitoring well network is depicted in Figure 2. All former groundwater sampling locations (including permanent and temporary wells and piezometers) are depicted in Figure 4. Historically, benzene, PCE, TCE, cis-1,2-DCE, 1,1-dichloroethene (1,1-DCE), and vinyl chloride were the only VOCs in groundwater reported at concentrations that exceeded their respective Type 3/4 RRSs.

As of July 2014, only PCE, TCE, and vinyl chloride have been detected in groundwater within one or more monitoring wells at the Site exceeding their respective Type 3/4 RRSs. Type 3/4 RRS exceedences were reported in monitoring wells MW-207P, -212, and -213 for PCE, in MW-212 and MW-213 for TCE, and in MW-213 and MW-403 for vinyl chloride (see Table 3). Aromatic hydrocarbons were not detected in the groundwater monitoring network in July 2014 and have not been detected since 2008.

Based on a review of historical groundwater analytical results, the number of wells impacted as well as the relative concentrations of chlorinated VOCs detected (predominantly

PCE and TCE) in groundwater are declining. As a function of the PCE and TCE degradation-decolonization, temporary increases in cis-1,2-DCE and vinyl chloride concentrations have been detected in groundwater; however, only vinyl chloride was detected above Type 3 RRSs in monitoring wells MW-212, -213, and -403 in 2014.

Reported releases to groundwater in July 2014 did not exceed HSRA Reportable Quantity per the Reportable Quantity Screening Method (RQSM). However, in accordance with §12-8-107(g)(2) of the VIRP, corrective action for groundwater is not required, nor is certification of compliance required for groundwater.

This Compliance Status Report (CSR) and Compliance Status Certification presents historical data collected and includes water table elevation contour maps, soil analytical data summary tables, groundwater analytical data summary tables, and historical time trend charts for select groundwater monitoring wells. Historical laboratory data sheets are provided in CD ROM format. The purpose of this CSR and Compliance Status Certification is to demonstrate that, with the exception of soil beneath the earthen-cap (certified to Type 5 standards), the remaining soil at the former Aratex Site is below the Type 3/4 RRSs for VOCs and to request that the Site be delisted from the HSI and no further action required.

SECTION 1.0 INTRODUCTION

Aramark Uniform & Career Apparel, LLC (Aramark) retained Atlanta Environmental Management, Inc. (AEM) to prepare a Compliance Status Report (CSR) and Compliance Status Certification documenting soil and groundwater assessment and corrective action activities at the former Aratex Services, Inc. (Aratex) facility in Atlanta, Georgia. A facility location map is provided as Figure 1. The former Aratex facility (the "Site"), located at 670 DeKalb Avenue, is one of two separate property parcels that previously comprised the Aramark DeKalb Avenue Hazardous Site Inventory (HSI)/Voluntary Remediation Program Site No. 10704 (HSI Site). The second parcel (former Dynamic Metals property) located at 690 DeKalb Avenue was removed (delisted) from the HSI list in May 2014. A facility diagram is provided as Figure 2. The necessity and requirements for a CSR for the former Aratex parcel are outlined in Hazardous Site Response Act (HSRA) Rule 391-3-19-.06 (Georgia DNR, 2003).

The initial CSR for the HSI Site (670 DeKalb Avenue parcel) was submitted to the Georgia Environmental Protection Division (EPD) HSI Program on June 13, 2003. The CSR was subsequently revised in 2004, 2005, and 2006 to address EPD comments and the request for additional investigation. AEM conducted additional soil and groundwater assessment activities between 2003 and 2005, which were in turn documented within the revised CSRs. Following the temporary acquisition of the Site in 2005 by Brisbane II, LLC, along with the adjacent former Dynamic Metals parcel (690 DeKalb Avenue parcel), a new CSR encompassing both properties was submitted by MACTEC Engineering and Consulting, Inc. (MACTEC) to Georgia EPD's Brownfields Program in June 2006 (MACTEC, 2006).

Historically both parcels (670 and 690 DeKalb Avenue) of the HSI site were treated as a single unit, and previous investigations as well as CSRs (AEM 2003, revised, and MACTEC 2006) included a discussion of both parcels. However, a new CSR and Compliance Status Certification (dated April 18, 2014) prepared by AEM for the former Dynamic Metals parcel was submitted to the Georgia EPD Voluntary Remediation Program (AEM, 2014a). In response to this submittal, Georgia EPD delisted the 690 DeKalb Avenue parcel on May 30, 2014, from the HSI list.

This subsequent CSR addresses the former Aratex parcel separately from the former Dynamic Metals parcel, to demonstrate that the Site is in compliance with the Georgia EPD HSRA Rules.

1.1 SITE HISTORY

Based on the review of historical Sanborn Maps, the area encompassing the former Aratex parcel was initially developed as several individual residential properties as early as 1911. Since the late 1940s, the Aratex parcel was utilized as a commercial uniform laundry cleaning facility. Dry-cleaning operations were conducted at the Aratex parcel for more than 20 years and included the use of chlorinated solvents and mineral spirits. The mineral spirits

and perhaps the chlorinated solvents were stored in underground storage tanks (USTs) located under the main production building near Gunby Street (see Figure 2). Gasoline and diesel USTs were also utilized at the site to fuel the service vehicles (see Figure 2). Dry-cleaning operations ceased in 1987. The Aratex facility subsequently closed in 1995. In December 2000, a fire destroyed the main structure on the Site, leaving only the concrete foundation.

1.2 OBJECTIVE

The purpose of this *CSR* and *Compliance Status Certification* is to demonstrate that the impacted soils at the former Aratex facility have either been remediated to below Type 3/4 RRSs for VOCs or have been capped (certified to Type 5 standards) and to request that the site be removed from the HSI. This CSR was compiled on the basis of property conditions that were primarily characterized through a series of investigations and remedial activities performed at the Site by AEM and MACTEC, between April 2001 and July 2014. However, other data collected between 1989 and 2001 are also presented. The data collected include water table elevation contour maps, soil analytical data summary tables, groundwater summary tables, and historical time trend charts for select groundwater monitoring wells.

1.3 PREVIOUS SITE INVESTIGATIONS

Between 1989 and 2014, numerous soil and/or groundwater characterization studies as well as corrective action events were implemented for the 670 DeKalb Avenue parcel. A summary of the site-specific soil and groundwater investigations and remedial activities is discussed below. Detailed soil contaminant delineation, soil and groundwater corrective action, and groundwater plume delineation efforts completed at the Site are discussed in Sections 4.0, 5.0, and 6.0, respectively.

In September 1989, Farlow Environmental Engineering, Inc. (Farlow) of Indianapolis, Indiana (Farlow, 1989) closed four petroleum hydrocarbon USTs at the former Aratex facility. Two mineral spirits USTs were closed in place while the remaining two tanks (one diesel and one gasoline) were excavated and removed from the site. The tank closure confirmatory samples confirmed the release of hydrocarbons, predominantly mineral spirits, to the underlying soils and groundwater (Farlow, 1989). Notification of the tank closures and hydrocarbon release were made in September 1989 to the Georgia EPD Underground Storage Tank Management Program (USTMP).

In 1990 and 1991, DePaul and Associates, Inc. (DePaul) implemented additional soil and groundwater assessment activities at the Site, which confirmed the release of hydrocarbons, predominantly mineral spirits, to the underlying soils and groundwater (DePaul, 1990, 1991, 1992). Following the submittal of a Corrective Action Plan (DePaul, 1993) and the implementation of limited corrective action (see Section 5.1) the USTMP issued a "No Further Action Required" letter dated September 3, 1996. As part of the UST investigation, DePaul also discover chlorinated solvents, predominately tetrachloroethene (PCE), in soil and groundwater at the former Aratex parcel. In October 1994, Aramark submitted a release notification to the

Georgia Environmental Protection Division (EPD) HSRA program. In response to the notification, a "no listing" letter was issued from the HSRA program in April 1995.

In 2001, additional soil and groundwater assessment activities were performed on behalf of Mr. Arthur Geduldig by Law Engineering and Environmental Services, Inc. (LAW) (unpublished), which further delineated the extent of impacted soil and groundwater at the Site (see Sections 4.2 and 6.2.1). From these studies, it was determined that two primary chlorinated solvent source areas exist at the former Aratex facility. These source areas include (1) the former location of the main production building where dry-cleaning was performed (Dry Cleaning Source Area) and (2) the northwest corner (Northwest Corner Source Area) of the former Aratex property (see Figure 2). A more thorough discussion of the potential source areas is provided in Section 3.5. Based on these findings, a second HSRA notification was reported to EPD in July 2001. In response, EPD placed the 670 and 690 DeKalb Avenue parcels on the HSI list in October 2001.

Between 2003 and 2005, as part of a continuing CSR investigation performed on behalf of Aramark, AEM completed additional soil and groundwater assessment activities at the former Aratex parcel (see Sections 4.3 and 6.2.1). AEM subsequently submitted the initial CSR to Georgia EPD on June 13, 2003 (AEM, 2003, revised). Subsequent revisions of the CSR were submitted in January 2004, July 2004, and March 2005 (AEM, 2003, revised).

In 2005, the 670 and 690 DeKalb Avenue parcels were acquired by Brisbane II, LLC. MACTEC was subsequently retained to complete the CSR investigation for both parcels as well as to implement soil corrective action under the Brownfields program. Additional soil and groundwater assessment activities were performed in 2005 and 2006 (see Sections 4.4 and 6.2.1). Likewise, in accordance with MACTEC's approved Brownfields Correction Action Plan (MACTEC, 2005), remedial action (soil excavation) was implemented at the former Dry Cleaning Area in February and March 2006 (see Section 5.3). The subsequent results for the additional assessment and corrective action activities were provided in the CSR for the combined parcels (MACTEC, 2006).

In accordance with Aramark's approved *Corrective Action Plan* (AEM, 2005a), *In Situ* Chemical Oxidant (ISCO) injections for groundwater were performed in 2006 and 2007 at the 670 DeKalb Avenue property (AEM, 2005b, 2006, 2007a). These ISCO injections were performed in the area of the former dry-cleaning operations as well as downgradient on the adjacent 690 DeKalb Avenue parcel (AEM, 2014a).

In August and November 2008, on behalf of Aramark, AEM conducted additional soil delineation sampling at the former Dry Cleaning Source Area at the Aratex parcel and beneath Gunby Street (AEM, 2010a, revised). This investigation was implemented to characterize the remaining source of VOCs (impacted soil) leaching to groundwater (see Section 4.5) beneath the former Dry Cleaning Source Area and Gunby Street. Likewise, AEM preformed additional semiannual groundwater monitoring in 2007, 2008, and 2009 (AEM, 2007b, 2008a, 2008b, 2010b).

In September and October 2010, AEM conducted additional soil remedial activities (excavations and soil blending) at the former Dry Cleaning Source Area, which included the former Mineral Spirits USTs area as well as the area beneath Gunby Street. As part of the HSRA corrective action effort, AEM collected confirmatory soil samples from the sidewall and bottom of the excavated and blended area as well as from the treated blended soils (see Section 4.6). A summary of the corrective action activities performed by AEM is provided in Section 5.4.

In July 2011, Aramark submitted a Voluntary Remediation Program Application (dated July 25, 2011) and the Voluntary Implementation Remediation Program (VIRP) Work Plan to enter both parcels into the Georgia EPD VRP Program (AEM, 2011). The VRP Application and VIRP Work Plan were approved by Georgia EPD on November 20, 2012. Subsequent, semiannual groundwater monitoring and VRP progress reports for 2013 and 2014 have been prepared by AEM (AEM, 2013a, 2013b, 2014c).

Per the VIRP work plan the chlorinated solvent–impacted soil delineation for the Northwest Corner Source Area and the City of Atlanta property was completed by AEM in 2013 (AEM, 2013a). Engineering controls implemented for the northwest corner source area of the Site included soil capping. Corrective action activities are discussed in detail in Section 5.5. In 2013, subsequent off-site (City of Atlanta) remediation included the removal (excavation) of impacted soils to the water table exceeding Type 3/4 RRS from the City of Atlanta Property (AEM, 2013a). The off-site remedial activities for the City of Atlanta property were implemented in conjunction with the soil excavation completed on the Atlanta Beltline Property by AMEC and overseen by AEM.

1.4 HISTORICAL DOCUMENT SUBMITTALS

Information within the following historical reports and correspondence (in chronological order) was either referenced or utilized in the preparation of this document.

- UST Removal and Summary & Update Notification (Letter Report). Farlow Environmental Engineering, Inc., October 17, 1989.
- Site Characterization Contaminant Assessment Progress Report. Aratex Services, Inc., Atlanta, Georgia. DePaul and Associates, Inc., December 17, 1990.
- Georgia EPD Underground Storage Tank Management Program Letter (dated February 15, 1991).
- Contaminant Assessment Phase II Progress Report. Aratex Services, Inc., Atlanta, Georgia. DePaul and Associates, Inc., September 30, 1991.
- Georgia EPD Underground Storage Tank Management Program Letter (dated December 17, 1991).
- Contaminant Assessment Phase II Task-2 Progress Report. Aratex Services, Inc., Atlanta, Georgia. DePaul and Associates, Inc., June 19, 1992.

- Soil-Corrective Action Plan Soil Vapor Extraction Remediation Plan. Aratex Services, Inc., Atlanta, Georgia. DePaul and Associates, Inc., August 12, 1993.
- December 30, 1994 Groundwater Analytical Results. Pace Environmental Laboratories. January 12, 1995.
- Georgia EPD Hazardous Site Response Program (HSRA) Letter (dated April 20, 1995).
- Georgia EPD Underground Storage Tank Management Program No Further Action Letter (dated September 3, 1996).
- Data Summary Report (Unpublished Draft). Law Engineering and Environmental Services, Inc., May 21, 2001.
- Compliance Status Report. Aratex Services Facility, Atlanta Georgia, June 13, 2003. Atlanta Environmental Management, Inc. (revised: July 14, 2004, January 7, 2005, and March 15, 2006).
- CAP Schedule and Notice of Deficiencies dated September 23, 2004. Georgia EPD HSRA Program, February 14, 2005.
- Corrective Action Plan. Aramark Uniform and Career Apparel, Inc., Atlanta Georgia. Atlanta Environmental Management, Inc., April 23, 2005.
- Underground Injection Control Permit Application for In-Situ Chemical Oxidation (UIC Permit No. 275), Atlanta Environmental Management, Inc. October 21, 2005. Revised April 6, 2010.
- Groundwater Monitoring and Pilot Test Report. Former Aramark Uniform and Career Apparel, Inc., Atlanta Georgia. Atlanta Environmental Management, Inc., November 16, 2005.
- Brownfields Corrective Action Plan, Former Aramark and Dynamics Properties 670 and 690 DeKalb Avenue. MACTAC Engineering and Consulting, Inc., July 27, 2005.
- Compliance Status Report, Former Aramark and Dynamics Properties 670 and 690 DeKalb Avenue. MACTEC Engineering and Consulting, Inc., June 22, 2006.
- Addendum to Compliance Status Report, Response to Comments. MACTEC Engineering and Consulting, Inc., August 7, 2006.
- Corrective Action Plan Supplement (August 2006). Aramark DeKalb Avenue Site 670 DeKalb Avenue, Atlanta, Georgia. Atlanta Environmental Management, Inc., August 8, 2006.
- Limitation of Liability Approval. Georgia EPD Brownfields, September 1, 2006.
- Semiannual Groundwater Monitoring Report. Former Aratex Services Facility 670 DeKalb Avenue, Atlanta, Georgia. Atlanta Environmental Management, Inc., February 7, 2007.
- Request for Monitoring Only Status and Semiannual Groundwater Monitoring Report. Former Aratex Services Facility 670 DeKalb Avenue, Atlanta, Georgia. Atlanta Environmental Management, Inc., August 10, 2007.

- Semiannual Groundwater Monitoring Report. Former Aratex Services Facility 670 DeKalb Avenue, Atlanta, Georgia. Atlanta Environmental Management, Inc., March 24, 2008.
- Semiannual Groundwater Monitoring Report. Former Aratex Services Facility 670 DeKalb Avenue, Atlanta, Georgia. Atlanta Environmental Management, Inc., October 31, 2008.
- Soil Delineation Report and Proposed Remedial Scope. Former Aratex Services, Inc., Atlanta, Georgia. Atlanta Environmental Management, Inc., January 11, 2010 (revised).
- Groundwater Sampling Report. Former Aratex Services Facility 670 DeKalb Avenue, Atlanta, Georgia. Atlanta Environmental Management, Inc., February 1, 2010.
- Underground Injection Control Revised Permit Application In-Situ Chemical Oxidation (UIC Permit No. 275). Former Aramark Facility (HSI No. 10704) 670 DeKalb Avenue, Atlanta, Georgia. Atlanta Environmental Management, Inc., April 6, 2010.
- Voluntary Remediation Program Application. Aramark Uniform and Career Apparel, LLC, 670 & 690 DeKalb Avenue Site, Atlanta, Georgia. Atlanta Environmental Management, Inc., July 15, 2011, revised.
- Supplement to Voluntary Remediation Program Application. Aramark Uniform and Career Apparel, LLC, 670 & 690 DeKalb Avenue Site, Atlanta, Georgia. Atlanta Environmental Management, Inc., July 16, 2012, revised.
- Voluntary Remediation Program First Semiannual Progress Report. Aramark Uniform and Career Apparel, LLC, 670 & 690 DeKalb Avenue, Atlanta, Georgia. Atlanta Environmental Management, Inc., May 20, 2013.
- Voluntary Remediation Program Second Semiannual Progress Report. Aramark Uniform and Career Apparel, LLC, 670 & 690 DeKalb Avenue, Atlanta, Georgia. Atlanta Environmental Management, Inc., November 30, 2013.
- Compliance Status Report and Compliance Status Certification, Former Dynamic Metal, 690 DeKalb Avenue, Atlanta Georgia. Atlanta Environmental Management, Inc., April 28, 2014.
- Environmental Cap Inspection and Monitoring Plan. 670 DeKalb Avenue, Atlanta, Fulton County, Georgia. Aramark Uniform and Career Apparel, LLC. Atlanta Environmental Management, Inc., May 1, 2014.
- Georgia EPD Hazardous Site Response Program (HSRA) Letter (dated May 30, 2014).
- Voluntary Remediation Program Third Semiannual Progress Report. Aramark Uniform and Career Apparel, LLC, 670 & 690 DeKalb Avenue, Atlanta, Georgia. Atlanta Environmental Management, Inc., May 16, 2014.
- Georgia EPD Hazardous Site Response Program (HSRA) Letter (dated June 13, 2014).

SECTION 2.0 SITE GEOLOGY AND GROUNDWATER FLOW

2.1 **REGIONAL GEOLOGY**

The former Aramark facility is located in the Winder Slope District (WSD) of the Georgia Southern Piedmont Physiographic Province (Clark and Zisa, 1976). The geology of the Southern Piedmont, within the Greater Atlanta Area, consists primarily of Late Proterozoic to Lower Paleozoic interlayered schist, gneiss, and amphibolites that have been intruded by upper Paleozoic (Carboniferous) granite (Higgins et al., 1981). Numerous dome-shaped granitic mountains, such as Stone Mountain, are located along the narrow, rounded stream divides. The WSD slopes gradually from an elevation of 1,000 feet in the north to 700 feet at the southern edge.

The gently rolling topography of the WSD is dissected by the headwater tributaries of major regional streams. North of the MARTA tracks bordering the subject property, the streams drain toward tributaries of the Chattahoochee River while, south of the MARTA tracks, the streams drain toward tributaries of the South River. As the Chattahoochee River is part of the Gulf of Mexico drainage system and the South River is part of the Atlantic Ocean drainage system, the drainage divide beneath the MARTA tracks is of regional significance.

The Site topography slopes gently downward from the south-southwest toward the north from an elevation of approximately 1,020 feet along DeKalb Avenue at Airline Street to an approximate elevation of 1,010 feet along the northern property boundary near the Edgewood Avenue overpass (see Figure 2).

2.1.1 **Site Bedrock Geology**

The Site is underlain by metamorphic bedrock of the Late Proterozoic to Middle Ordovician Clarkston Formation (McConnell and Abrams, 1984; Higgins et al., 2003). In general, the Clarkston Formation (undifferentiated) consists of medium-grained, lustrous, pinkto purple-weathering sillimanite schist with lesser amounts of fine-grained, dark green amphibolite. This formation includes a unit composed only of biotite-muscovite schist (Fairburn Member) and a unit similar to the Clarkston undifferentiated (Tar Creek Member).

2.1.2 **Site Residuum Geology**

The residuum, derived from extensive weathering of the underlying parent bedrock, consists of the unconsolidated soil and saprolite. Surficial soil consists primarily of interlayered, red to orange brown, gray, micaceous, sandy silt to silty sand and silty-sandy clay. The saprolite consists of interlayered, orange brown-gray-tan-white-gold, micaceous, sandy silt to silty sand and silty-sandy clay, with trace quartz fragments (gravel). The saprolite contains remnant textural features (mottling/banding), indicative of the parent bedrock. Based on the completion of deeper soil borings (to auger refusal), the thickness of the residuum at the combined Aramark DeKalb HSI parcels ranges from 75 to 109 feet.

2.2 REGIONAL HYDROGEOLOGY

The metamorphic rocks of the Southern Piedmont are generally not considered good producers of groundwater, except where secondary porosity occurs in the form of fractures, faults, and joints. Groundwater occupies these secondary openings, where present, as well as pore spaces in the overlying mantle of residuum soil and saprolite. Water recharges the subsurface openings in the bedrock by the seepage of precipitation through the residuum, or by flowing directly into openings in bedrock where exposed.

The subsurface bedrock beneath the Site is part of Water-Bearing Unit "A" of Cressler, Thurmond, and Hester (1983). Water-Bearing Unit A is a complex aquifer consisting of interlayered amphibolites, gneiss, and schist in varying proportions and thicknesses. The contact zones between the contrasting rock types have the potential for developing increased permeability and providing groundwater to wells. Wells within the unit may penetrate several permeable contact zones that contribute to the total yield. For the Greater Atlanta Area, well yields for this water-bearing unit range from 20 to 275 gallons per minute (GPM), averaging 56 GPM.

As is typical for the residuum overburden in the Georgia Piedmont, the water-table surface is generally a subdued image of the land surface, with groundwater within this aquifer flowing from higher to lower topographic relief. The residuum aquifer zone is recharged locally by precipitation that infiltrates through the shallow soil and/or saprolite down to the water table. Groundwater movement within this zone is characterized as porous-type flow. Wells screened within the residuum typically yield less than 1 GPM.

2.3 SITE HYDROGEOLOGY

2.3.1 Groundwater Occurrence

With the exception of MW-214 on 670 DeKalb Avenue, the current monitoring well network at the HSI Site was completed in the shallow residuum. Monitoring well MW-214 was installed in the deep residuum aquifer zone to a depth of approximately 75 feet below land surface. A location map for the current monitoring well network is included as Figure 2. A historic well construction summary table for the wells installed at the HSI Site from 1990 to 2013 is included as Table 4. Available historic soil boring and monitoring well construction logs are provided in Attachment A. Groundwater has been encountered within the residual soil and saprolite at depths ranging from less than 5 feet to just over 16 feet. More typically, the water table is encountered between depths of 8 to 12 feet. Historic groundwater elevations are recorded in Attachment B.

The discontinuous clay layers present in the saprolite appear to restrict the vertical migration of water. The areas where fill is present, including the northwest corner of the Site and former dry-cleaning area (former soil excavation) on the former Aratex parcel, respond much more rapidly to rainfall infiltration than the undisturbed areas. The increased storage

capacity of the fill materials, particularly where the fill overlies clay-rich saprolite, affects the local groundwater flow in those areas.

2.3.2 Groundwater Flow Direction and Hydraulic Gradient

The latest water table elevation contour map for July 17, 2014, from the existing monitoring well network for the Site is provided as Figure 5. Groundwater within the shallow residuum at the Site was observed to flow toward Edgewood Avenue and Gunby Street. Near DeKalb Avenue, groundwater flow within the water table aquifer at the DeKalb Site is toward the east-northeast, mimicking the surface topography (see Figure 2). Historically, near the northern end of Gunby Street, groundwater flows to the north through a trough (AEM, 2014b). The direction of groundwater flow beyond the northern property boundary is toward the headwaters of Lullwater Creek northeast of the property.

The horizontal hydraulic gradient in the shallow residuum aquifer zone across the Site, for July 17, 2014, ranged from 0.005 to 0.020 ft/ft, averaging 0.013 ft/ft. The vertical gradients, as measured in July 2014 from the well midpoint screen for cluster wells MW-202/MW-208P (0.111 ft/ft), MW-409/MW-409D (0.000 ft/ft), and MW-213/MW-214 (0.013 ft/ft), were generally downward on July 17, 2014. The highest vertical gradient (0.111 ft/ft) was measured between residuum well MW-202 and adjacent shallow well MW-208P, which was installed within the surficial fill material. Well cluster MW-213/MW-214 was installed in 2013 to replace abandoned well cluster MW-103/MW-103D. These well sets were installed within the shallow and deep water-bearing zones of the surficial aquifer, respectively. Downward hydraulic gradients, ranging from 0.008 to 0.038 ft/ft, were also previously measured from former well cluster MW-103/MW-103D between April 2003 and July 2004 (MACTEC, 2006).

2.3.3 Hydraulic Conductivity

A rising head slug test was performed in May 1991 (DePaul, 1991) for former monitoring well MW-2, located near the Edgewood Avenue Bridge on the former Aratex parcel. MW-2 was screened below any surficial fill material, within the residuum to a depth of 26 feet below land surface. Hydraulic conductivity of 1.1 x 10⁻⁴ centimeter per second (cm/sec) or 0.32 foot/day was calculated for the residuum aquifer zone well. This hydraulic conductivity is within the typical range for silty sands to sandy silts.

2.3.4 Groundwater Flow Rate

The seepage velocity (v_s) of a conservative, unretarded contaminant in a homogeneous aquifer is calculated as follows:

$$v_s = -\frac{Kdh}{n_e dl}$$
 where:

 v_s = seepage velocity,

K = hydraulic conductivity (distance/time),

dh/dl = hydraulic gradient (dimensionless), and

 n_e = effective porosity (dimensionless).

A seepage velocity of approximately 0.02 foot/day (7.47 feet/year) was calculated using the average hydraulic gradient (0.013 ft/ft) observed in the shallow residuum water table aquifer on July 17, 2014, the hydraulic conductivity value of 1.1 x 10⁻⁴ cm/sec (0.32 ft/day) calculated from the slug test conducted on well MW-2 (DePaul, 1991), and an assumed effective porosity of 30 percent (0.30) for a silty sand. Seepage velocity represents the rate of groundwater movement along sinuous flow paths through pore spaces around the clay, silt, and sand grains within an aquifer. Seepage velocity overestimates the actual lateral flow velocity from one point to another because the flow paths are sinuous. Thus, in practice, VOCs are typically less mobile than would be expected from estimates of seepage velocity, because of the sinuosity of groundwater flow paths, because of VOC adsorption to clays (retardation), and because of VOC degradation processes.

SECTION 3.0 SITE BACKGROUND AND SOURCE AREA DESCRIPTION

3.1 SITE DESCRIPTION

The Site is located at 670 DeKalb Avenue on approximately 1.743 acres in a mixed industrial/commercial/residential setting within the Atlanta city limits in Fulton County, Georgia (see Figure 1). A legal description of the Site is provided as Attachment C. The Site is located due east of the intersection of DeKalb Avenue and Airline Street NE. Gunby Street lies to the immediate east of the Site. Farther east is the former Dynamic Metal parcel located at 690 DeKalb Avenue. North of the Site is the Edgewood Avenue overpass (City of Atlanta), which crosses over the Atlanta Beltline track. The Atlanta Beltline property also constitutes the northwest boundary of the Site. DeKalb Avenue is located south of the Site, followed by railroad and the Metropolitan Atlanta Rapid Transit Authority. Current access to the Site is via Gunby Street or Airline Street NE.

The current Site surface consists of exposed dirt, vegetation, concrete paving slabs (former building foundation), and asphalt paving (see Figure 2). No building structures remain on the Site. A concrete debris pile, dated back to 2005, is currently situated on the southern portion of the parcel, near DeKalb Avenue.

The Site coordinates are latitude 33° 45' 13" north and longitude 84° 21' 56" west as estimated from the North Atlanta 7.5-minute topographic map (dated 1997). The Site is relatively flat with minimal topographic relief. The topography elevation across the Site ranges from 1,020 feet near the intersection of DeKalb Avenue and Airline Street NE (southwest corner of the Site) to just below 1,010 feet near the northeast corner of the Site near Gunby Street. Consequently, surface water run-off from the site is toward Gunby Street. Site topographic elevations are depicted in Figure 2.

3.2 **RESPONSIBLE PARTIES**

Aramark Uniform & Career Apparel, Inc., is the current owner of the 670 DeKalb Avenue parcel of the HSI Site. The owner's address and site contact is presented below. Attachment C contains the legal description regarding the Site.

HSRA Site Contact

Mailing Address

Mr. Doug Helmstetler Manager, Environmental Health & Safety Aramark Uniform & Career Apparel, LLC 115 North First Street Burbank, California 91502 Telephone: (818) 973-3772

The environmental cap (soil cap) located in the northwest corner of the property (see Figure 2) is subject to a Uniform Environmental Covenant (UEC) for restricted use. A copy of the proposed UEC is also provided in Attachment C.

3.3 LAND USE AND OPERATIONS HISTORY

Sanborn Maps indicate that the former Aratex property was developed as individual residential properties from as early as 1911 until as late as 1945. Since the late 1940s, the Aratex parcel was utilized as a commercial uniform laundry cleaning facility. Dry-cleaning operations were conducted at the Aratex parcel for more than 20 years and included the use of chlorinated solvents and mineral spirits. Dry-cleaning operations ceased in 1989. The Aratex facility subsequently closed in 1995. In December 2000 a fire destroyed the building, leaving only the concrete foundation. The Site use remained idle and no operations have been conducted on the Site.

3.4 SITE-SPECIFIC CHEMICALS OF CONCERN

Site-specific chemicals of concern (COC) are chlorinated volatile organics and to a lesser degree petroleum aromatic volatile organics that were identified during the initial environmental assessments performed between 1992 and 2001 (see Sections 4.1 and 4.2). The primary COCs are PCE along with its daughter byproducts TCE, cis-1,2-DCE, trans-1,2-dichloroethene (trans-1,2-DCE), and vinyl chloride (see Tables 1 and 2). Trace levels of petroleum hydrocarbons, related to the mineral spirits, diesel, and gasoline UST releases from the former Aratex parcel, have also been reported within soil and groundwater at the Site but at concentrations typically below their respective Type 3/4 RRSs.

Of the list of aromatic and chlorinated VOCs detected in historic soil samples collected from the Site (see Attachment D), benzene, PCE, TCE, cis-1,2-DCE, and vinyl chloride were detected above Type 3/4 RRSs within one or more soil samples collected above the water table.

Historically, groundwater COCs consisted of benzene, PCE, TCE, cis-1,2-DCE, trans-1,2-dichloroethene (trans-1,2-DCE), 1,1-dichloroethene (1,1-DCE), and vinyl chloride that exceeded their respective Type 3/4 RRSs (see Table 2). As of July 2014, only PCE, TCE, and vinyl chloride were reported at levels exceeding their respective Type 3/4 RRSs in groundwater within one or more of the monitoring wells at the Site (see Table 3).

3.5 POTENTIAL SOURCES

The potential source areas identified at the former Aratex parcel, which may have impacted groundwater quality at the Site, include the former mineral spirits/fuel oil USTs, the former dry-cleaning area, and the impacted soil at the far northwest corner of the former Aratex parcel. Potential source areas are depicted in Figure 2. No historical releases of chlorinated solvents and/or petroleum hydrocarbons have been reported at the Site.

The following sections provide a brief overview of potential source areas.

3.5.1 Underground Storage Tanks

In 1989, two mineral spirits USTs were abandoned in place while one gasoline UST and one diesel UST were removed by Farlow (Farlow, 1989). The approximate UST locations on the former Aratex parcel are depicted in Figure 2. The two mineral spirits USTs were located beneath the former Aratex building within the dry-cleaning operations area while the fuel USTs were located north of the building. A fifth UST, unearthed during the subsequent soil excavation activities performed by MACTEC in 2006, was also located beneath the former building within the dry-cleaning area. Subsequent testing of this tank's contents indicates that this tank likely stored PCE (MACTEC, 2006).

During the 1989 tank closure activities, a release from the mineral spirits USTs was identified and was subsequently reported to the Georgia EPD Underground Storage Tank Management Program (USTMP) (Farlow, 1989). No releases were reported from the gasoline or diesel UST locations. The aromatic compounds identified in the soils at the site include benzene, toluene, ethylbenzene, xylenes, isopropylbenzene, naphthalene, n-butylbenzene, secbutylbenzene, cyclohexane, methylcyclohexane, p-isopropyltoluene, n-propylbenzene, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenzene.

The results of subsequent contaminant assessments of the UST release were provided in the *Site Characterization Contaminant Assessment Progress Report* (DePaul, 1990), the *Contaminant Assessment Phase II Progress Report* (DePaul, 1991), and the *Contaminant Assessment Phase II Task-2 Progress Reports* (DePaul, 1992). Per Georgia EPD's request (dated December 17, 1991), a *Corrective Action Plan-Soil Vapor Extraction Remediation Plan* (DePaul, 1993) was submitted to USTMP. As part of this plan, a soil vapor extraction (SVE) system was installed in July 1993. On September 3, 1996, USTMP issued a "no further action" (NFA) letter for the UST release at the Aratex facility (Facility ID: 0600608) (see Attachment E).

3.5.2 Dry-Cleaning Operations Area

Dry-cleaning operations were reportedly conducted within the southwest corner of the former Aratex building (see Figure 2) for a period of more than 20 years. A release of chlorinated solvents (predominately PCE) and mineral spirits to the soil and groundwater beneath the former Aratex building site was identified during the UST assessment performed between 1990 and 1992 (DePaul, 1990, 1991, and 1992). As a result of this release, the Aramark DeKalb site was listed on the HSI in October 2001. The chlorinated organic compounds identified in the soils at the former dry-cleaning area include PCE, TCE, cis-1,2-DCE, trans-1,2-DCE, 1,1-dichloroethene (1,1-DCE), vinyl chloride, and 1,1,1-trichloroethane (1,1,1-TCA).

3.5.3 Northwest Property Corner

No historical facility operations were reported at the northwest corner of the former Aratex parcel, which parallels the former Norfolk Southern railroad line (current Atlanta Beltline) and abuts the City of Atlanta right-of-way for Edgewood Avenue overpass (see Figure 2).

Likewise, no virgin or waste chemicals were reportedly stored at this location. Historical aerial photographs depict a small structure (shed) at this location; however, with the exception of a concrete pad, nothing currently remains of this shed. It should be noted that subsequent off-site soil contaminant delineation studies performed by AEM and AMEC (see Sections 4.8 and 4.9) identified the presence of VOC-impacted soil on the adjoining City of Atlanta and Atlanta Beltline properties at concentrations exceeding those found at the Site. Thus, the actual location of the point of release for the organic solvents remains unknown.

Delineation of the lateral and vertical extent of impacted soil and fill material at this source area, to Type 3/4 RRSs, was completed by AEM in 2013 (AEM, 2013b). The chlorinated VOCs identified in the soil near the northern property boundary include PCE and its degradation products TCE, cis-1,2-DCE, trans-1,2-DCE, 1,1-DCE, and vinyl chloride. Concentrations of PCE detected in soil above the water table ranged up to 45,000 µg/kg (GP-9D), located near the northwest corner of the property (see Attachment D). However, only low levels of PCE were historically reported from groundwater samples (MW-203, -205, and -207P) collected from this source area (see Attachment F). Consequently, the Northwest Property Corner is not a probable source for the VOC groundwater plume detected both on and off site.

3.6 POTENTIAL RELEASE MECHANISMS

The actual quantity, time-line, and virgin chemical composition of releases associated with any potential source areas at the former Aratex facility are not known. It is estimated that the release of chlorinated solvents and Stoddard solvents (mineral spirits) occurred between the 1950s and 1989, although the mineral spirit USTs were last used in 1985.

The release(s) of the mineral spirits, beneath the former building, were the probable result of the leaking USTs or underground tank lines. Additionally, smaller amounts of Stoddard solvents may also have spilled during facility operations. As reported in the 1989 UST Removal Summary and Update Notification (Farlow, 1989), the four USTs closed in 1989 were described as "intact and did not show evidence of leakage." It was further surmised that "soil contamination that was associated with the tanks appeared to be due to minor overfilling of fluids and possibly due to leaking pipes."

Likewise, the release(s) of PCE may have derived from a leaking tank or tank lines or during the dry-cleaning operations. A fifth UST was uncovered during the 2005 soil remedial activities (see Section 5.3) by Brisbane II, LLC (MACTEC, 2006). This tank was located beneath the former dry-cleaning area near Gunby Street (see Figure 2). The condition and size of the small tank were not noted; however, it was determined that the tank previously held chlorinated solvents (PCE).

3.7 **HUMAN AND ENVIRONMENTAL RECEPTORS**

Currently no chlorinated solvent or petroleum hydrocarbon-impacted soils exceeding Type 3/4 RRSs remain, above the water table, at the former Dry Cleaning Source Area. Potential exposure to impacted soils exceeding RRSs, which remain at the northwest corner of

the site, has been eliminated by the installation of a soil cap (engineered control) above the affected area (see Figure 2). Likewise, identified off-site source material has been removed (excavated); thus, no apparent exposure risks to humans were identified at the site.

No surface water discharges to the Site, and therefore no human or environmental receptors, exist due to surface water exposure. Exposure to impacted storm water run-off is also unlikely as no impacted surface soils exceeding RRLs were identified on site (see Section 4.0).

No water supply wells have been identified within a three-mile radius of the Site. Thus, no human exposure is suspected.

Construction worker exposure is not expected at the Aratex Site, or along Gunby Street, as VOC-impacted soil was either excavated to a depth of 10-14 feet bls or in situ blended at depths of 14-21 feet bls into the water table. Utility trenches along Gunby Street would not be large enough for volatilized compounds from groundwater to cause a risk for human exposure to construction workers as these trenches would not be large enough for entry.

Since the implementation of corrective action at the former dry-cleaning area, chlorinated VOC levels within the water table aquifer have significantly decreased and continue to decrease (see Section 6.3) within wells installed within the former source area (MW-212 and MW-213). The subsequent decrease in PCE and TCE groundwater concentrations is attributed to both the corrective action efforts and to natural attenuation. Likewise, vinyl chloride and cis-1,2-DCE are the only two chlorinated VOCs detected in groundwater at downgradient monitoring well MW-403. MW-403 is located on the northwest portion of the former Dynamic Metals parcel near Gunby Street (see Figure 2). Before 2010, historically vinyl chloride concentrations in MW-403 ranged up to 1,600 µg/L; however, since 2010, vinyl chloride levels in groundwater have decreased and now range from 80 to 140 µg/L. Thus, active VOC dechlorination-degradation in groundwater is occurring at the Site. Minor short-lived increases in vinyl chloride and cis-1,2-DCE are anticipated with the breakdown of PCE and TCE. Given the short distance between the release area and MW-403 as well as the rapid rate of VOC attenuation, it is highly unlikely that impacted groundwater would migrate any extensive distance from the Site.

As part of the First Semiannual VRP Progress Report (AEM, 2013a), dated May 2, 2013, a vapor intrusion analysis was conducted to assess the potential for vapor intrusion from VOCs in groundwater emanating from the former Aratex parcel toward the downgradient adjacent residential housing complex. An evaluation of the site conditions (i.e., geology, depth to groundwater) and vinyl chloride concentrations, as of October 2012, using the J&E Model indicated that concentrations less than 736 µg/L would not pose a vapor intrusion risk to the adjacent residence (see Section 6.3.3). Concentrations of vinyl chloride in groundwater at monitoring well MW-403 were 140 µg/L in July 2014 and thus do not indicate a potential vapor intrusion risk to the adjacent residence.

3.8 RISK REDUCTION STANDARDS

The Type 3/4 RRSs calculated for soil (see Table 1) were approved by Georgia EPD in February 2005 as part of the HSRA process. Additionally, as part of the Brownfields process, MACTEC calculated Type 3/4 RRSs for both soil and groundwater, which were approved in 2006 (see Attachment G). The only constituents that exceeded Type 3/4 RRSs in soil at the former 670 parcel are PCE, TCE, and cis-1,2-DCE (see Section 4). With the exception of the Northwest Corner Source Area, the remainder of the site certifies to Type 3/4 RRSs for soil. Based on the engineer controls implemented at the Site, the capped northwest corner of the parcel is certified to the Type 5 Standards.

Type 3/4 RRSs for the contaminants of concern in groundwater are depicted in Table 2 and mimic U.S. EPA Region 4 maximum contaminant levels (MCLs) for drinking water quality. Type 3/4 RRS exceedences are discussed in Section 6.2.

SECTION 4.0 HISTORICAL SOIL ANALYTICAL RESULTS

Following the 1989 discovery of a hydrocarbon release (Farlow, 1989) and subsequent 1991 discovery of a chlorinated solvent release (DePaul, 1991) at the Site, a number of environmental assessments have been performed at the former Aratex parcel, as part of a larger soil and groundwater study conducted for the overall Aramark DeKalb HSI Site. These include site contaminate characterization events performed by DePaul in 1991 and 1992 and soil and groundwater sampling (well installation) performed by Law Engineering in 2001. MACTEC in 2005 and 2006, and AEM in 2003 through 2013. Related work was also performed on the adjacent City of Atlanta property by AEM in 2013 and on the Atlanta Beltline property by AMEC (formerly MACTEC) in 2011 to 2013. Limited soil and groundwater sampling was also conducted along the railroad tracks (current Atlanta Beltline) by AEM in 2004.

There is limited information regarding historic soil sampling procedures for the earliest Site investigations conducted before 2001 (discussed below). However, direct-push technology (DPT) was typically utilized to collect subsurface soil samples. Soil borings were continually sampled using acetate-lined DPT sample spoons for lithologic characterization and/or soil analyses. Historical soil samples may also have been collected using either stainless-steel hand augers or hollow-stem auger (HAS) split-spoon samplers. Available lithologic boring logs are provided in Attachment A. A summary of the previous soil investigations conducted at the Site is provided below. A summary of the soil analytical results is provided in Attachment D.

4.1 1992 DEPAUL UST INVESTIGATION

In March and May 1992, DePaul conducted the initial soil investigation on the former Aratex parcel to define the extent of soil impacts as a result of a release from former USTs at the Site. As part of this preliminary study, soil samples collected from twelve soil borings (HA-1, -2, -4, -6, -8, -10, -15, -16, -20, -21, MW-7, and MW-9) were analyzed for the Method 8240 list of VOCs. The soil results were reported in the Contaminant Assessment Phase II Task-2 Progress Report (DePaul, 1992) and Soil-Corrective Action Plan-Soil Vapor Extraction Remediation Plan (DePaul, 1993) and are summarized in Attachment D. Soil boring locations are depicted in Figure 3.

DePaul utilized both hand augers and HSA split-spoon sampling methods to collect soil samples to classify and establish the vertical and lateral extent of contamination. The ten hand auger soil borings (designated "HA") were advanced to a depth of 10 feet. A single soil sample, collected from a depth of either 5 or 10 feet below land surface (bls), was analyzed from each hand auger boring.

During the May 1992 well installation event (see Section 6.2.1), soil samples were collected from two augered boreholes (MW-7 and MW-9) completed at the former Aratex parcel (see Figure 3). The technology utilized consisted of advancing a 1½-inch-diameter hollow steel rod at five-foot intervals (DePaul, 1992 and 1993).

The MW-7 boring was advanced to a depth of 25 feet. A single soil sample was tested from a depth of 10 feet bls for MW-7. Vertical delineation soil boring MW-9 was advanced to a depth of approximately 90 feet. Within the interval of 30 and 65 feet bls, eight soil samples were collected (at 5-foot intervals) from MW-9 and analyzed for VOCs. One additional sample collected at 88 feet bls from MW-9 was submitted for VOC analyses. Note that all MW-9 soil samples were collected from below the water table.

Volatile Organic Compounds

PCE was detected in each of the ten hand auger soil samples at concentrations ranging up to 8,220 micrograms per kilogram (μ g/kg) (see Figure 6). TCE was reported in three hand auger samples (HA-8, -20, and -21) at concentrations ranging from 52 to 2,290 μ g/kg (see Figure 7).

PCE concentrations from the deeper boring MW-9, collected within the interval of 35 and 60 feet, ranged from 11 to 22 μ g/kg. PCE was not detected within the soil samples collected from MW-7 or at the 30-feet and 65-feet sample intervals or the 88-feet sample intervals from MW-9. TCE concentrations from the deeper MW-9 soil samples, collected within the interval of 35 and 60 feet, ranged from 12 to 15 μ g/kg. TCE was not detected within the soil samples collected from MW-7 or at the 30-foot, 65-foot, or 88-foot sample interval from MW-9 (see Attachment D).

PCE concentrations detected in 6 of the 12 soil borings sampled exceeded its Type 3/4 RRS (see Attachment D). Type 3/4 RRS for TCE was exceeded in a single soil sample (HA-20).

Trans-1,2-dichloroethene (trans-1,2-DCE) was only detected within one soil sample collected from hand auger boring HA-1 at 38 μ g/kg, which exceeded the Type 3 RRS but not the Type 4 RRS. 1,1,1-Trichloroethane (1,1,1-TCA) was also reported in one hand auger soil sample HA-20 at 14 μ g/kg, which did not exceed the Type 3/4 RRS. No other chlorinated solvents were detected within the soil samples above Type 3/4 RRS or laboratory reporting levels.

Petroleum Hydrocarbons

Toluene and ethylbenzene were the only petroleum VOCs detected in the soil samples collected from the Site. Toluene was reported within the 10-foot soil samples collected from HA-3 and MW-7 at concentrations of 4 and 20 μ g/kg, respectively (see Attachment D). Ethylbenzene was detected at HA-20 at a concentration of 65 μ g/kg (see Attachment D). These detections are below the Type 3/4 RRS. No petroleum was reported within the samples collected from MW-9.

No petroleum hydrocarbons were detected above the laboratory detection limit within any samples collected below a depth of 30 feet, which is below the water table. Thus, the vertical extent of impacted soil is defined to the shallow water table and below.

4.2 2001 BOCK/LAW ENVIRONMENTAL SITE ASSESSMENT

In April 2001, on behalf of Aramark, Bock performed additional soil and groundwater (well installation) assessment activities at the Site (unpublished documentation). The investigation was conducted as a split-sampling effort with Law Environmental. Additionally, during the April 2001 well installation event (see Section 6.2.1), split-spoon samples were collected (split) by Bock and Law (Law, 2001) from three augered well boreholes (MW-101, -102, and -103) advanced to a depth of between 26 and 33 feet bls at the former Aratex parcel (see Figure 3). Six additional DPT borings (DP-101 through DP-106) were advanced to a depth of between 0 and 30 feet bls at the former Aratex parcel (see Figure 3). Lithologic logs for the above monitoring well and DPT borings are provided in Attachment A.

Three soil samples were collected (at various depths) from each of the following DPT borings: DP-101, -102, -103, 104, and -105. Two soil samples were collected from depths of 4–6 feet and 6–8 feet bls from DP-106. Three soil samples were also collected at varying intervals (between 0 and 16 feet bls) from each of the monitoring well borehole locations (see Figure 3). All soil samples were analyzed for total VOCs (see Attachment D).

The chlorinated solvents PCE, TCE, and cis-1,2-DCE were reported within one or more soil samples. However, only PCE and TCE concentrations exceeded their respective Type 3/4 RRSs. PCE was detected within all 17 DPT soil samples, as well as the 3 monitoring well borings, collected in 2001 at concentrations ranging up to 2,830,300 μ g/kg (see Figure 6). TCE was reported within select soil samples at concentrations ranging up to 1,640 μ g/kg (see Figure 7). Type 3/4 RRS for TCE were exceeded within two soil samples, DP-104 (8–10 feet) and MW-103 (9–11 feet). Likewise, cis-1,2-DCE was reported within select soil samples at concentrations ranging up to 2,250 μ g/kg.

4.3 2003–2006 AEM HSRA SITE ASSESSMENTS

4.3.1 2003 Initial CSR Soil Delineation

In 2003, on behalf of Aramark, AEM completed the initial CSR for the Aramark 670 DeKalb Avenue HSI Site (AEM, 2003, revised). In April and March 2003, AEM performed additional soil assessment activities at the former Aratex parcel. AEM utilized hand augers (designated "HA"), Geoprobe DPT (designated "GP"), and rotary sonic (sonic) sampling methods to further delineate the vertical and lateral extent of impacted soil at the Site. Soil boring locations are depicted in Figure 3.

In April and May 2003, ten shallow DPT borings (GP-1 through GP-10) were advanced to a depth of 12 or 15 feet bls. In April 2003, two sonic borings (MW-203 and MW-205), which were subsequently converted to monitoring wells (see Section 6.2.1), were advanced to depths of 18 and 25 feet bls, respectively. Based on the PID results, recorded in the boring logs (see Attachment A), one or more soil samples from each boring (for a total of 35 samples) were submitted for laboratory VOC analyses (see Attachment D). Three additional shallow hand auger soil borings (HA-1, -2, and -3) were completed to a depth of 12 feet bls in May 2003.

The chlorinated solvents detected within one or more of the DPT and sonic soil samples included PCE, TCE, and cis-1,2-DCE (see Attachment D). No VOCs were reported within the hand auger samples. Excluding soil sample MW-203 (8–10 feet), PCE concentrations (where detected) ranged from 7.2 to 160 μ g/kg (see Figure 6). A PCE concentration of 45,000 μ g/kg was reported in soil sample MW-203 (8–10 feet). TCE was detected within three soil samples (collected from borings GP-3 and MW-203) at concentrations ranging up to 950 μ g/kg (see Figure 7). Likewise, cis-1,2-DCE was reported in two soil samples (collected from boring MW-203) at concentrations ranging up to 520 μ g/kg. Type 3/4 RRSs for PCE and TCE in soil were exceeded within a single sample, MW-203 (8–10 feet). The Type 3/4 RRS for cis-1,2-DCE in soil was not exceeded.

The aromatic hydrocarbons detected within one or more of the DPT and sonic soil samples included ethylbenzene, isopropylbenzene, toluene, naphthalene, and xylenes (see Attachment D). No aromatic VOCs were reported at concentrations above their respective Type 3/4 RRSs.

4.3.2 2004–2006 Supplemental CSR Soil Delineation

The CSR for the Aramark 670 DeKalb Avenue HSI Site (AEM, 2003) was subsequently revised in July of 2004 and again in March of 2006. In July 2004, AEM performed additional soil assessment activities at the former Aratex parcel as well as along the adjoining railroad right-of-way (currently the Atlanta Beltline). AEM utilized Geoprobe DPT (designated "GP") to advance three soil borings, GP-21 (Aratex Parcel) as well as GP-22 and GP-23 (Atlanta Beltline), to a depth of 10 feet bls. A fourth soil boring (GP-24) was advanced to a depth of 4 feet bls from beneath the Edgewood Avenue overpass using stainless steel hand augers.

In March and July 2004, split-spoon soil samples were collected from two augered boreholes (MW-205 and MW-206) completed as monitoring wells at the former Aratex parcel (see Figure 3). Two or more DPT soil samples (for a total of six samples), collected at varying intervals (between 2 and 10 feet bls), were submitted for VOC analyses (see Attachment D).

Between December 2004 and April 2005, an additional nine DPT boreholes (in 2004 GP-25 through GP-31, in 2005 GP-9D and GP-32) were advanced to a depth of approximately 10 to 20 feet bls at the former Aratex parcel (see Figure 3). One or more soil samples from each DPT boring (for a total of 22 samples), collected at varying intervals (between 0 and 14 feet bls), were submitted for VOC analyses (see Attachment D).

In March 2006, three additional shallow soil borings (GP-35, -36, and -37) were completed along the railroad right-of-way beneath and north of the Edgewood Avenue overpass. Soil boring locations are depicted in Figure 3.

The chlorinated solvents detected within one or more of the above soil samples included PCE, TCE, and cis-1,2-DCE (see Attachment D). When detected, PCE concentrations ranged from 4.9 to 130,000 μ g/kg (see Figure 6). TCE was reported at concentrations ranging up to 7,500 μ g/kg (see Figure 7). Likewise, cis-1,2-DCE was reported in soil samples collected from

borings GP-26 and GP-29 at concentrations ranging up to 38 µg/kg (see Attachment D). Type 3/4 RRSs for PCE and/or TCE in soil were exceeded at boring locations GP-24, -25, -26, -27, -28, and -29. The Type 3/4 RRS for cis-1,2-DCE in soil was not exceeded (see Attachment D).

The aromatic hydrocarbons detected within one or more of the DPT and sonic soils samples included ethylbenzene, isopropylbenzene, toluene, naphthalene, and xylenes (see Attachment D). No aromatic VOCs were reported in soil samples at concentrations above their respective Type 3/4 RRSs.

4.4 2005-2006 MACTEC BROWNFIELDS REMEDIAL ASSESSMENT

4.4.1 2005 CSR Investigation

On behalf of Brisbane II, LLC, a CSR for the combined Aramark 670 and 690 DeKalb Avenue HSI Site (MACTEC, 2006) was prepared by MACTEC in June of 2006 under the Georgia EPD Brownfields Program. In August and September 2005, MACTEC completed 30 additional soil borings (GP-31 through GP-61) at the Aramark 670 DeKalb Avenue HSI Site (see Figure 3). MACTEC utilized Geoprobe DPT (designated "GP") sampling methods to further delineate the lateral extent of impacted soil at the Site. One or more soil samples from each DPT boring (for a total of 55 samples), collected at varying intervals (between 0 and 12 feet bls), were submitted for VOC analyses (see Attachment D).

The chlorinated solvents detected within one or more of the above soils boring samples included PCE, TCE, 1,1,1-TCA, and cis-1,2-DCE (see Attachment D). When detected, PCE concentrations ranged up to 100,000 µg/kg (see Figure 6). Significantly lower TCE levels were reported in soil samples collected from borings GP-36, -38, -40, -42, and -58 at concentrations ranging up to 8.0 µg/kg (see Figure 7). Likewise, cis-1,2-DCE was reported in soil samples collected from borings GP-40, -41, -42, and -58 at concentrations ranging up to 440 µg/kg (see Attachment D). 1,1,1-TCA was reported in one soil sample, GP-31 (2-4 feet), at 8.8 µg/kg. Type 3/4 RRS for PCE was exceeded at boring locations GP-31, -35, -36, -38, -39, -49, and 50. The Type 3/4 RRSs for TCE, 1,1,1-TCA, and cis-1,2-DCE in soil were not exceeded (see Attachment D).

4.4.2 2006 Remedial Confirmation Sampling

In February and March 2006, MACTEC conducted soil remedial activities (excavations) at the following source areas: former Dry Cleaning Area (including the mineral spirits USTs), Trench Area, and Petroleum UST Areas. Limited soil removal was also performed for the former PCE UST location (MACTEC, 2006). As part of corrective action effort, MACTEC collected confirmatory soil samples from each of the source area excavations. A summary of the corrective action activities performed by MACTEC is provided in Section 5.3.

Sample designations are as follows: sample "C" from the Dry Cleaning area excavation. sample "T" from the adjacent Trench Area excavation, and sample "B" from the gasoline/diesel

UST source area excavation. Subsequent alphabetic letter designations (A, B, C, and/or D), which follow the numerical boring number (example: C-10A/C-10B and T-2/T-2A), denote differences in sample depths and/or sample dates for the sidewall samples. Confirmation soil sample locations are depicted in Figure 3.

Dry Cleaning Source Area: A total of 37 sidewall soil samples were collected from typical depths of 3.5 feet (example: C-10A) and 10.5 feet (example: C-10B). Subsequent letter designations C and D (example: C-14C and C-14D) typically refer to repeat samples collect once addition impacted soil has been excavated.

The chlorinated solvents detected within one or more of the initial confirmation sidewall samples from the dry-cleaner area excavation included PCE, TCE, cis-1,2-DCE, and trans-1,2-DCE (see Attachment D). PCE soil concentrations ranged up to 2,600,000 µg/kg (see Figure 8). TCE was reported at concentrations ranging up to 60,000 µg/kg (see Figure 10). Cis-1,2-DCE was reported at concentrations ranging up to 9,500 µg/kg (see Figure 11) while trans-1,2-DCE was only reported in one sample (C-15) at 3 µg/kg (see Attachment D). Type 3/4 RRSs for PCE and TCE in soil were exceeded in one or more confirmation samples. The Type 3/4 RRS for cis-1,2-DCE and trans-1,2-DCE were not exceeded (see Attachment D). Subsequent repeat samples (collected following additional excavation) contained PCE and TCE concentrations below their respective Type 3/4 RRSs (see Attachment D). The excavation at the former dry-cleaning area was extended to groundwater (water table); therefore, no vertical confirmatory samples were collected (MACTEC, 2006).

Trench Area: A total of eight sidewall soil samples were collected from depths ranging from 2 to 3 feet. Two additional soil samples (T-5 and T-5A) were collected from depths of 4 and 5 feet bls, respectively (see Attachment D), from the base of the Trench Area for vertical delineation. The letter designations A (example: T-1A) refer to a repeat sample collected once additional impacted soil has been excavated.

The chlorinated solvents detected within one or more of the initial confirmation sidewall samples from the Trench Area excavation included PCE, TCE, and cis-1,2-DCE (see Attachment D). PCE soil concentrations ranged up to 1,400,000 µg/kg (see Figure 8). TCE was reported at concentrations ranging up to 1,100 μg/kg (see Figure 10). Cis-1,2-DCE was reported at concentrations ranging up to 340 µg/kg (see Attachment D). Type 3/4 RRSs for PCE and TCE in soil were exceeded in one or more confirmation samples. Type 3/4 RRS for cis-1,2-DCE in soil was not exceeded. Subsequent repeat sidewall sample (collected following additional excavation) locations contained only PCE, but at concentrations below the Type 3/4 RRS (see Attachment D). Likewise, the vertical confirmatory sample T-5 (4 feet) contained 22,000 µg/kg PCE, while subsequent repeat vertical confirmatory sample T-5A (collected following additional excavation) contained PCE at concentrations below the Type 3/4 RRS (see Attachment D).

Petroleum UST Source Areas: A total of four sidewall soil samples (B-1,-2, -3, and -4) were collected from a depth of 3.5 feet (see Figure 3). The excavation at the former petroleum UST areas was extended to groundwater (water table); therefore, no vertical confirmatory

samples were collected (MACTEC, 2006). PCE was the only chlorinated solvent detected within one or more of the initial confirmation sidewall samples from the UST area (see Attachment D). PCE soil concentrations ranged up to 59 μ g/kg, which is below the Type 3/4 RRS (see Attachment D). Petroleum hydrocarbons were also not detected above laboratory detection limits in any of these samples.

PCE UST Areas: One bottom soil sample (UST Pit) was collected from the UST excavated pit at a depth of 5 feet bls (see Attachment D). PCE (at $8.4~\mu g/kg$) was the only chlorinated solvent detected. No Type 3/4 RRSs were exceeded for soils at this area (see Figure 8).

4.5 2008 AEM HSRA SOIL DELINEATION

In August and November 2008, on behalf of Aramark, AEM conducted additional soil delineation sampling at the former Dry Cleaning Area (AEM, 2009, revised) at the Aratex Parcel. AEM utilized Geoprobe DPT (designated "AEM-GP" and "SD") sampling methods to further delineate the vertical and lateral extent of impacted soil at the former Dry Cleaning Area. Soil boring locations are depicted in Figure 3.

In August 2008, 17 shallow DPT borings (AEM-GP-1 through AEM-GP-17) were advanced to a depth of 7.5 to 9.5 feet bls. Two soil samples per boring (for a total of 34 samples) were submitted for VOC analyses (see Attachment D). Soil samples were collected from depths of 3.5 feet and 7.5 to 9.5 feet bls.

In November 2008, 43 additional shallow DPT borings (DS-1 through DS-20 and DS-22 through DS-42, DP-44, and DS-45) were advanced along a grid-pattern to a depth of 12.5 to 24.5 feet bls. A minimum of two soil samples from each boring (for a total of 110 samples) were submitted for VOC analyses (see Attachment D). Soil samples were collected from varying depths between 8 and 24.5 feet bls. The purpose of the "DS" soil samples was to delineate source material (clayey soils) remaining beneath the 2006 MACTEC soil excavation (see Section 5.3), which had been extended to the water table. Thus, the November 2008 samples were generally collected below the water table and are therefore not indicative of true soil conditions.

The chlorinated solvents detected within one or more of the DPT soil samples collected in 2008 included PCE, TCE, cis-1,2-DCE, trans-1,2-DCE, 1,1-DCE, and vinyl chloride (see Attachment D). Reported PCE concentrations ranged from 7.6 to 480,000 μ g/kg (see Figure 8). TCE was reported at concentrations ranging up to 4,300 μ g/kg (see Figure 9). Cis-1,2-DCE was reported at concentrations ranging up to 3,600 μ g/kg (see Attachment D). Vinyl chloride was reported within 10 soil samples at concentrations ranging from 11 to 710 μ g/kg (see Figure 10). Trans-1,2-DCE was reported within four soil samples at concentrations ranging from 3.9 to 9.6 μ g/kg while 1,1-DCE was reported in a single soil sample, DS-26 (9.5 feet), at a concentration of 4.1 μ g/kg.

Type 3/4 RRSs for PCE, TCE, and vinyl chloride were exceeded. The Type 3/4 RRS for cis-1,2-DCE, trans-1,2-DCE, and 1,1-DCE in soil were not exceeded (see Attachment D). These exceedences were primarily detected from samples collected below the water table and were subsequently remediated as part of the 2010 corrective action effort (see Section 5.4).

The aromatic hydrocarbons detected within one or more of the DPT samples included ethylbenzene, isopropylbenzene, toluene, naphthalene, and With the exception of benzene (2,300 µg/kg) within soil sample DS-44-8 (8 feet), no aromatic VOCs were reported at concentrations above their respective Type 3/4 RRSs. Based on historic water levels for the site, it was determined that sample DS-44-8 (8 feet) was collected from below the water table. The Type 3/4 RRS for benzene was not exceeded within the 9.5- and 14.5-foot samples, which were also collected below the water table, from soil boring DS-44.

It should be noted that samples DS-42, -43, and -44 were located in the area of the former USTs. Thus, the presence of petroleum constituents in this area is related to historical releases from the petroleum USTs. Georgia EPD USTMP issued an NFA in September 1996 (see Attachment E). Additionally, neither benzene, toluene, ethylbenzene or xylenes (BTEX), nor any other petroleum constituents were detected in groundwater during the most recent groundwater sampling event (July 2014) and have not been detected since 2008.

4.6 2010 AEM HSRA REMEDIAL CONFIRMATION SAMPLING

In September and October 2010, AEM conducted soil remediation activities (excavations and soil blending) at the former Dry Cleaning Source Area, which included the former Mineral Spirits USTs Source Area and the City of Atlanta's Gunby Street. As part of this corrective action effort, AEM collected confirmatory soil samples from the sidewall and bottom of the excavated and blended area as well as from the treated blended soils, some of which were collected below the water table to demonstrate that source material had been treated. A summary of the corrective action activities performed by AEM is provided in Section 5.4.

Sample designations are as follows: Confirmatory samples that include an alphabetic letter (A through E), which immediately precedes the numerical boring number, denote repeat samples collected once additional impacted soil had been excavated; thus, the impacted soils from the location of the earlier sample points have been removed and/or treated. Likewise, the use of the designation "BN," "Bottom," and "Pit" denotes samples collected from the base of the excavation or blended area prior to treatment. Confirmation soil sample locations are depicted in Figure 11.

A total of 39 sidewall and 13 (pre- and post-treatment) vertical delineation confirmatory soil samples were collected from the excavated/blended area (see Figure 3). The chlorinated solvents detected within one or more of the confirmation sidewall samples from the Dry Cleaner Area and Gunby Street included PCE, TCE, and cis-1,2-DCE (see Attachment D). PCE soil concentrations ranged up to 10,100 µg/kg (see Figure 11). TCE was reported at concentrations ranging up to 86 µg/kg, while cis-1,2-DCE was reported at concentrations ranging up to

 $75 \mu g/kg$ (see Attachment D). The Type 3/4 RRSs for the chlorinated VOCs in soils were only exceeded for PCE in three sidewall samples. Subsequent repeated sidewall soil samples (collected following additional excavations) succeeded in achieving PCE soil concentrations below Type 3/4 RRSs (see Figure 11).

Only trace levels of the following aromatic hydrocarbons were reported from the sidewall samples: naphthalene, isopropylbenzene, and xylenes (see Attachment D). Therefore, the soil remedial goals (Type 3/4 RRSs) for chlorinated solvents and petroleum hydrocarbons were achieved for the former Dry Cleaning Source Area.

The vertical delineation confirmatory (pre-treatment) samples from the former Dry Cleaning Area and Gunby Street were collected below the water table within the saturated zone. From beneath Gunby Street, soil samples G-090810-13 through G-090810-17 were collected from an approximate depth of 18 feet below the original grade. Only samples G-090810-13 (2,800 μ g/kg) and G-090810-17 (640 μ g/kg) contained PCE at concentrations exceeding the Type 3/4 RRSs (see Figure 11). PCE concentrations within the subsequent deeper samples BN-091310-19N (less than 4.02 μ g/kg) and BN-091310-19S (29.5 μ g/kg), collected from depths of 22 and 23 feet bls, respectively, were well below Type 3/4 RRS. As the soil blending was extended to a depth of approximately 21 feet below Gunby Street (see Section 5.4) and no VOCs were reported in a representative sample of the blended material (Blend-091410-01), the lateral remediation goals of chlorinated solvents and the petroleum hydrocarbons beneath Gunby Street were achieved.

From beneath the former Dry Cleaning Area, the vertical delineation confirmatory soil samples Pit-C1/2 2½, Pit-D3 ½, and Pit-C4 were collected below the water table from an approximate depth of 17 feet below the original grade. Only soil sample Pit-C4 (1,030 µg/kg) contained PCE at concentrations exceeding the Type 3/4 RRS (see Figure 11). No other chlorinated or aromatic VOCs were reported at concentrations exceeding their respective Type 3/4 RRSs (see Attachment D). Soil blending was extended below the water table to a depth of approximately 21 feet bls at the former Dry Cleaning Area and Gunby Street (see Section 5.4). No VOCs were reported in representative samples of the blended material (Cell 1-100410, Cell 2-100410, and Cell 3-100410) at concentrations exceeding Type 3/4 RRSs. Please note that "blended" refers to the blended material itself and does not represent a composite sample. Thus, the lateral remedial goals (Type 3/4 RRS) for chlorinated solvents and the petroleum hydrocarbons at the former Dry Cleaning Source Area were achieved.

4.7 2013 AEM VRP NORTHWEST CORNER SOURCE DELINEATION

Under the Voluntary Remediation Program, the delineation of impacted soil at the Northwest Corner Source Area at the former Aratex Parcel was completed by AEM in 2013 (AEM, 2013b). Between January and May 2013, 23 Geoprobe DPT soil borings (SB-1 through SB-16 and SB-30 through SB-36) were completed at the northwest corner of the Site. Soil boring locations are depicted in Figure 3. Two or more soil samples from each DPT boring (for

a total of 79 samples), collected at varying intervals (between 0–2 and 14–16 feet bls), were submitted for VOC analyses (see Attachment D).

The chlorinated solvents detected within one or more of the DPT soil samples collected in 2013 from the former Aratex Parcel included PCE, TCE, cis-1,2-DCE, and trans-1,2-DCE (see Attachment D). VOC-impacted soil was detected within the surficial fill material as well as the underlying clayey residuum. Likewise, impacted soil was detected both above and below the shallow groundwater encountered at this location. PCE concentrations ranged from 4.7 to 87,000 μ g/kg (see Figure 12). TCE was reported at concentrations ranging up to 10,400 μ g/kg (see Figure 13). Cis-1,2-DCE was reported at concentrations ranging up to 5,250 μ g/kg while trans-1,2-DCE was reported within one soil sample, SB-11 (14–15 feet), collected below the groundwater surface, at 13.6 μ g/kg. Type 3/4 RRSs for PCE and TCE were exceeded in select samples. The Type 3/4 RRS for cis-1,2-DCE and trans-1,2-DCE in soil were not exceeded (see Attachment D). As expected, no aromatic hydrocarbons were reported above laboratory detection levels within the soil samples collect from the northwest corner of the Site.

Within the boundaries of the Site at the Northwest Corner Source Area, the lateral extent of chlorinated VOC-impacted soil (exceeding Type 3/4 RRSs) is defined to the south and east by sample points SB-1, -2, -13, -14, -34, -35, and -36 (see Figures 12 and 13). Likewise, the off-site lateral extent of VOC-impacted soil is defined to the north and west by the excavations performed and confirmatory samples collected by AEM (see Section 4.8) and AMEC (see Section 4.9) in 2013. Therefore, no further soil delineation or corrective action is proposed for this area. Corrective action (Soil Cap) completed at this suspected source area in 2014 is discussed in Section 5.6.

4.8 2013 AEM-CITY OF ATLANTA REMEDIAL ASSESSMENT

In 2013, AEM conducted limited soil investigation and remediation activities (soil excavation) on the adjacent City of Atlanta property, located between the Site and the Edgewood Avenue overpass (see Figure 2). The remediation and sampling activities were implemented in conjunction with ongoing corrective action (performed by AMEC) for the adjoining Atlanta Beltline property (see Section 4.9). A summary of the corrective action activities performed by AEM is provided in Section 5.5.

In April 2013, AEM collected pre-remediation soil samples from nine soil sample locations within excavation trenches (SB-19 and SB-22 through SB-29) completed on the adjacent City of Atlanta right-of-way beneath the footprint of Edgewood Avenue overpass (see Figure 11). Each sample was collected from the backhoe bucket as the excavation proceeded into the water table. Once the sample was collected from the backhoe bucket, the remaining soil within the bucket (from the trench excavation) was stockpiled for off-site disposal by AMEC. One or more soil samples from each location (for a total of 11 samples), collected at varying intervals between 2 and 10 feet bls, were submitted for VOC analyses (see Attachment D). Thus, all soil from the trench was excavated, stockpiled, and disposed off site by AMEC as part of the Atlanta Beltline remediation activities. The trench along the Aramark property boundary

within the City of Atlanta right-of-way was backfilled with gravel and excavated material determined to be below Type 3/4 RRSs.

The chlorinated solvents detected in 2013 from the City of Atlanta property included PCE, TCE, and cis-1,2-DCE (see Attachment D). In general, chlorinated VOC concentrations for PCE and TCE in soils collected from the City of Atlanta property exceeded those collected from the adjacent northwest corner of the former Aratex Parcel (see Section 4.7). Impacted soil was detected both above and below the shallow groundwater encountered at this location. Reported PCE concentrations ranged up to 496,000 µg/kg (see Figure 12). TCE was reported at concentrations ranging up to 61,600 µg/kg (see Figure 13). Cis-1,2-DCE, was reported at concentrations ranging up to 3,270 µg/kg (see Attachment D). PCE and TCE concentrations exceeded their respective Type 3/4 RRSs.

The aromatic hydrocarbons detected, within one DPT soil sample SB-27 (9 feet), included benzene, ethylbenzene, cyclohexane, isopropylbenzene, toluene, naphthalene, and xylenes (see Attachment D). With the exception of benzene (670 µg/kg), within soil sample SB-27 (9 feet), no aromatic VOCs were reported at concentrations above their respective Type 3/4 RRSs. The 9-feet interval sample for SB-27 was collected below the water table as well as removed (excavated) for off-site disposal (see Section 5.5).

The lateral extent of VOC-impacted soil above groundwater (exceeding Type 3/4 RRSs) at the City of Atlanta property was defined to the east by sample points SB-19, -23, -24, and -25 (see Figures 12 and 13). Likewise, the off-site lateral extent of VOC-impacted soil was defined to the south by AEM (see Section 4.7) and to the north and west by AMEC (see Section 4.9). Impacted soils (exceeding Type 3/4 RRSs) above groundwater at the City of Atlanta property and adjacent Atlanta Beltline property were subsequently excavated and disposed off site in 2013 (see Section 5.5). Therefore, no further soil delineation or corrective action is proposed for this area.

4.9 2013 AMEC-ATLANTA BELTLINE REMEDIAL ASSESSMENT

The available laboratory data, as well as approximate sample locations, presented in this section were provided to AEM by the Atlanta Beltline. Sample methodologies and hardcopies of the laboratory analytical data sheets were not made available to AEM for this report; however, they should be found in the Atlanta Beltline files under the Georgia Brownfields Program. Based on discussions with Georgia EPD HSRA/VRP representatives in August 2013, the off-site soil impacts are the responsibility of the Atlanta Beltline under the regulatory guidance of the Georgia EPD Brownfields Program.

In 2013, AMEC (on behalf of the Atlanta Beltline) conducted additional soil delineation and remediation activities (soil excavations) along a drainage feature that parallels the western property boundary separating the Atlanta Beltline from the former Aratex Parcel. excavation was extended northward beneath the footprint of the Edgewood Avenue overpass. Additional soil was excavated from a small storm water retention basin-drain located north of

Edgewood Avenue (see Figure 2). Based on available data provided to AEM, a limited summary of the corrective action activities performed by AMEC are provided in Section 5.5.

4.9.1 **Drainage Feature Assessment**

As part of the corrective action effort for the drainage feature, AMEC collected preliminary soil delineation samples in 2010 and 2011 as well as post-remedial action confirmatory soil samples in 2013. AMEC's sample designations included "CB," "HA," "MW," "SB," "SP," "TP," and "TPA," which were used to denote soil boring samples collected at the Atlanta Beltline property (see Figure 3).

In September and October 2010, 11 shallow soil samples collected from various depths ranging from 0 to 4 feet bls were submitted for VOC analyses (see Attachment D). The 2010 sample boring designations are as follows:

- HA-91+30-B, HA-91+30-C, HA-91+77-B, HA-91+77-C, and HA-91+77-R
- SB-89+47, SB-89+96, SB-91+36, and SB-93+14
- GP-89+47 and MW-90+99

In February and August 2011, 11 additional shallow soil borings were completed at the Atlanta Beltline property. One or more soil samples from each boring (for a total of 17 samples), collected from various depths ranging from 0 to 6 feet bls, were submitted for VOC analyses (see Attachment D). The 2011 sample boring designations are as follows:

- CB-90-97, CB-91+24, and CB-91+49
- HA-89+27, HA-90+02, HA-91+09, HA-91+30-R, HA-91+34, HA-91+87, and HA-92+95
- SB-90+89-2

Between February and April 2013, 13 confirmatory shallow soil borings were completed at the Atlanta Beltline property. One or more soil samples from each boring (for a total of 21 samples), collected from various depths ranging from 1 to 9 feet bls, were submitted for VOC analyses (see Attachment D). The 2013 confirmatory sample boring designations are as follows:

- HA-91+73-A(2), HA-91+94-A(2), and HA-92+12
- SB-91+72, SB-91+98, SB-91+98ES, SB-91+98E2S, SB-92+02ES, and SB-92+07
- TP-1-AOC-2, TP-2-AOC-2, TPA-3, and TPA-4

The chlorinated solvents PCE and TCE were reported within one or more samples at concentrations above their respective Type 3/4 RRSs (see Figures 12 and 13).

The lateral extent of VOC-impacted soil (exceeding Type 3/4 RRSs) above the shallow groundwater at the Atlanta Beltline property is defined to the south by sample points SB-22 and HA-90+89-2, to the west by sample points MW-90-+99, GP-91+20, SB-91+36, HA-91+72-A(2), and HA-91+94-A(2), and to the north by HA-92+12 and SB-92-02ES and SB (see Figures 12

and 13). Likewise, the off-site lateral extent of VOC-impacted soil was defined to the east (former Aratex Parcel and City of Atlanta property) by AEM (see Section 4.8). Impacted soils (exceeding Type 3/4 RRSs) above the groundwater beneath the drainage feature on the Atlanta Beltline property were subsequently excavated and disposed off site by AMEC in 2013 (see Section 5.5).

4.9.2 Storm Water Retention Basin-Drain Assessment

As part of the Brownfields corrective action effort for the small storm water retention basin-drain located north of Edgewood Avenue (see Figure 3), AMEC completed six shallow soil borings in August 2011. AMEC's sample designations included "CB" and "HA." One or more soil samples (for a total of eight samples) from each boring, collected from various depths ranging from 0 to 5.5 feet bls, were submitted for VOC analyses. The 2011 soil boring designations are as follows: CB-93+36, HA-93+21, HA-93+43, HA-93+54, HA-93+64, and HA-93+78 (see Attachment D).

The chlorinated solvents detected within one or more of the soil samples collected from the retention basin-drain in 2013 included PCE and TCE (see Attachment D). The reported PCE soil concentrations ranged from 8.99 to 1,890 μ g/kg (see Figure 12). TCE was reported in a single soil sample, HA-93+54 (2.0–4.0 feet), at a concentration of 10.5 μ g/kg (see Figure 13). Type 3/4 RRS for PCE was exceeded in one soil sample, HA-93+54 (2.0–4.0 feet) (see Attachment D).

SECTION 5.0 CORRECTIVE ACTION

Both soil and groundwater remediation activities have been implemented at the former Aratex Parcel. Under the Georgia Underground Storage Tank (GUST) Program, tank closure and remedial activities, including limited soil excavation (Farlow, 1989) and the installation of a Soil Vapor Extraction (SVE) system (DePaul, 1992, 1993), were performed in response to the release of petroleum hydrocarbons at the former Aratex facility. Subsequent corrective action activities performed under the HSRA and/or Brownfields Programs include the 2006 soil excavation directed by MACTEC (on behalf of Brisbane II, LLC) for the former Dry Cleaning chlorinated solvent source area at the 670 DeKalb Avenue property (MACTEC, 2006), In Situ Chemical Oxidation (ISCO) injections performed by AEM (on behalf of Aramark) on both parcels (September 2005 and June 2006), and 2010 soil blending-excavation corrective action performed by AEM (on behalf of Aramark) on the former Dry Cleaning Source Area. Off-site soil excavation was also performed for the City of Atlanta property by AEM (2013) and for the adjacent Atlanta Beltline property by AMEC (2013). Additionally, in 2014, AEM installed an environmental cap in the northwest corner of the property encapsulating soil that exceeds Type 3/4 RRSs for PCE and TCE. Corrective actions implemented at the 670 DeKalb Avenue properties are discussed below.

5.1 **UST SOIL EXCAVATION AND SVE SYSTEM**

In September 1989, four petroleum hydrocarbon underground storage tanks (USTs) were closed at the former ARATEX facility by Farlow (Farlow, 1989). Two mineral spirits USTs were closed in place while the remaining two tanks (one diesel and one gasoline) were removed for off-site disposal. Approximately 342 cubic yards of petroleum hydrocarbon-impacted soil, from the diesel tank excavation soil stockpile, was transported off site to the Southern State Landfill in Smyrna, Georgia.

Per the Soil-Corrective Action Plan-Soil Vapor Extraction Remediation Plan for the ARATEX facility (DePaul, 1993), an SVE system was installed in the vicinity of the closed mineral spirits USTs. An initial small-scale pilot test was performed in March 1992 to determine the feasibility of using SVE technology. The full-scale system was installed by DePaul in July 1993. An NFA was issued in September 1996 (see Attachment E).

5.2 2006–2007 IN SITU CHEMICAL OXIDANT (ISCO) INJECTIONS

An initial ISCO injection pilot test was performed at the 670 DeKalb Avenue property in September 2005. The field test methods and results of this study are documented in the 2005 Groundwater Monitoring and Pilot Test Report (AEM, 2005c). Sodium permanganate was injected into the impacted residuum water table using temporary DPT injection points (see Figure 14). The study area, near former monitoring wells MW-101 and MW-102, represented a 30-foot by 40-foot grid containing several sumps and drains that were the apparent source of previous releases of chlorinated solvents to the groundwater. Three temporary monitoring wells

were installed hydraulically upgradient (TW-1), sidegradient (TW-2), and downgradient (TW-3) of the pilot test injection area (see Figure 4). The results of this study indicated that those monitoring wells influenced by the oxidant injection (MW-101, MW-102, TW-2, and TW-3) exhibited significant decreases (down to non-detectable levels) in VOC concentrations.

An Underground Injection Control Permit Application for In Situ Chemical Oxidation, dated October 21, 2005, was submitted to Georgia EPD on October 25, 2005 (AEM, 2005b). An Underground Injection Control (UIC) Permit (UIC Permit No. 275), provided by the Georgia Geological Survey, was received in June 2006 and April 2010.

A full-scale implementation of the ISCO injection program was performed in June 2006 at the Aramark DeKalb Avenue HSI Site. The field methods that were implemented are discussed in the *Corrective Action Plan (CAP) Supplement* (AEM, 2006) and the *Semiannual Groundwater Monitoring Report* dated February 7, 2007 (AEM, 2007a). Sodium permanganate was injected into the impacted residuum water table aquifer to break down the PCE and associated daughter products. The permanent sodium permanganate DPT injection points are depicted in Figure 15. The remediation activities were performed at the former Dry Cleaning source area on the former Aratex parcel as well as downgradient of the Dry Cleaning source area on the adjacent former Dynamic Metals parcel. As a result of VOC rebound at former monitoring well MW-301, additional sodium permanganate injections were performed in February 2007. The effectiveness of the ISCO injections on groundwater quality is discussed in Section 6.2.2.

5.3 2006 SOIL EXCAVATION

In February and March 2006, MACTEC excavated impacted soil from the former Dry Cleaning Source Area in accordance with the approved *Brownsfield Corrective Action Plan* (MACTEC, 2005). This remediation effort also included the removal of the Mineral Spirits USTs and associated impacted soil, as well as soils from the adjacent Trench Area, former PCE UST area, and smaller undifferentiated area located north of the former Dry Cleaning Source Area (MACTEC, 2006). Confirmation soil sample results are discussed in Section 4.4.2 (MACTEC, 2006) and are depicted in Figures 8 through 10.

Approximate depictions of the soil excavations provided by MACTEC (2006) are outlined in Figure 2. The main excavation was reported to be approximately 12,000 square feet in size (MACTEC, 2006) and was extended to the water table (approximately 14 feet below ground surface). The small northern excavation (former UST areas) measured approximately 1,200 square feet and was extended to the water table (approximately 6 feet below ground surface). An additional 1,000 square feet of soil were removed to a depth of 5 to 6 feet from the smaller Trench Area and PCE UST Area. Approximately 8,650 tons (6,650 cubic yards) of impacted soil were removed for off-site disposal to the Eagle Point Landfill in Ball Ground Georgia (MACTEC, 2006). According to the June 22, 2006 CSR, MACTEC backfilled the excavation with clean fill. No information was provided by MACTEC to the Georgia EPD Brownfields Division as to the source of the backfill or laboratory analytical results. A limitation

of liability was approved for the corrective action by Georgia EPD Brownfields on September 1, 2006.

5.4 2010 SOIL EXCAVATION-BLENDING WITH CHEMICAL OXIDANT

A revised *Underground Injection Control Permit Application for In Situ Chemical Oxidation (UIC Permit No. 275)* was submitted to Georgia EPD on April 6, 2010 (AEM, 2005b). As part of this application, saturated soil blending with potassium permanganate was proposed for the chlorinated VOC source area at the former Aratex parcel. As chlorinated VOCs were detected within the clayey soils beneath the water table, soil mixing was extended below the shallow water table to address this source material.

Remediation of source area soil above and beneath the water table under the former building on the former Aratex parcel and the adjacent Gunby Street right-of-way (see Figure 11) was completed in October 2010. This work was performed in accordance with the *Corrective Action Plan* (CAP) Supplement submitted to the Georgia Environmental Protection Division (EPD), dated August 8, 2006.

The PCE target cleanup goal for unsaturated soil was 500 μ g/kg. This value was the EPD-approved soil PCE Type 3 RRS for the Aramark DeKalb HSI Site. This RRS did not apply to the soil under the water table (saturated soil) as the contamination is in direct contact with the groundwater. However, a PCE concentration of 100 μ g/kg was selected as the target concentration for soil in the saturated zone. This value was expected to be technologically achievable and would mitigate future groundwater impacts.

From September 4 to September 8, 2010, 1,365 tons of PCE-contaminated shallow soil (PCE > 500 μ g/kg), located adjacent to Gunby Street and outside the right-of-way, was excavated to an approximate depth of 10 feet bls, profiled, and disposed off site. An additional 762 tons of PCE-impacted soil was excavated between October 12 and October 19, 2010. The contaminated non-hazardous soils were removed from the site and were disposed as non-hazardous special waste at the Republic Services Pine Ridge Landfill in Griffin, Georgia. Sidewall verification sampling indicated that all contaminated soil beneath the former Aratex parcel as well as the adjacent Gunby Street right-of-way was removed to HSRA site-specific standards (see Figure 11).

Potassium permanganate and tap water were blended with the remaining impacted soil to a depth of 14 to 21 feet below land surface. For the blended soils beneath Gunby Street, the soil was solidified with Portland cement. Test results of the blended soil below Gunby Street indicate that PCE was treated to concentrations below detection limits. In areas of previous soil excavation and backfill (by Brisbane II, LLC), source material below the water table containing up to $64,000~\mu g/kg$ PCE was treated to levels below $500~\mu g/kg$ (see Figure 11).

Deep soil above the 500 µg/kg PCE criteria and just outside the soil blending area was identified and excavated until confirmatory sampling indicated that sub–500 µg/kg PCE margins

were achieved. The effectiveness of the soil blending on groundwater quality is discussed in Section 6.2.3.

5.5 2013 OFF-SITE SOIL EXCAVATION

As of the date this CSR was compiled, only limited information was made available from the Atlanta Beltline concerning soil excavation activities completed under Georgia EPD's Brownfields Program. Thus, the information provided in this section can only be approximated. Likewise, only summarized laboratory data were provided to AEM (copies of laboratory soil and groundwater data were not made available). The approximate dimensions of the soil excavation completed by AMEC along the storm water drainage feature that separates the Site from the Atlanta Beltline property as well as a smaller excavation north of Edgewood Avenue are depicted in Figure 2. Available confirmation soil sample results are discussed in Section 4.9. As this property is outside the scope of this CSR and no additional data are anticipated from the Beltline, any further requested information should be obtained from the Brownfields Program directly.

In April 2013, off-site soil excavation was expanded by both the Atlanta Beltline and Aramark to include the City of Atlanta property (AEM, 2013a). The impacted property is located due north of the Site along the Edgewood Avenue right-of-way (see Figure 2). Impacted soil (exceeding applicable Type 3/4 RRSs) was excavated to groundwater, which ranged in depth between 6 and 10 feet bls. The delineation of impacted soil on the Edgewood Avenue right-of-way is defined by the Atlanta Beltline excavation completed north, northwest, and west of the City property. Likewise, impacted soils located due south (former Aratex parcel) were capped (see Section 5.6) while the eastern extent of impacted soil was delineated to Type 3/4 RRSs through the sampling activities (see Section 4.9).

5.6 NORTHWEST CORNER ENVIRONMENTAL CAP

In April 2014, AEM completed the installation of a two-foot vegetated soil cover (environmental cap) over impacted surface soil exceeding established Type 3/4 RRSs for PCE, TCE, cis-1,2-DCE, and vinyl chloride. The outline of the cap, located in the northwest corner of the Site, is depicted in Figure 2. The cap is an engineering control providing a physical barrier to on-site environmental exposure and as a result meets Type 5 RRSs as defined in Rule 391-3-19-0.7(10)(a) of the HSRA. A detailed description of the cap was provided in AEM's *Third Semiannual Progress Report* (AEM, 2014c). A copy of the *Environmental Cap Inspection and Maintenance Plan* (AEM, 2014b) is provided in Attachment H.

The perimeter of the cap consists of prefabricated rectangular concrete blocks. Each 1,800-pound block measures 2 feet wide by 2 feet high by 4 feet long. The blocks were placed flush to the property boundary with the Atlanta Beltline as well as the Edgewood Avenue right-of-way. A total of 70 blocks (placed end over end) were utilized to form the outline of the cap. Clean backfill soil obtained from the soil pile on the 690 DeKalb Avenue parcel was then placed and compacted within the interior space formed by the blocks. Additional soil (topsoil) was

placed on the northernmost end of the cap, adjacent to the Edgewood Avenue right of way, obtained from Green Brothers Landscape in Norcross, Georgia. The topsoil was sampled for VOCs, semi-volatile organic compounds, and RCRA metals prior to backfilling (see Attachment I). The soil cover was capped with grass sod, rye seed, and straw to prevent erosion.

SECTION 6.0 GROUNDWATER MONITORING

The earliest groundwater samples were collected from the former Aratex parcel (670 DeKalb Avenue) in August 1990 (DePaul, 1990). Tabulated historical groundwater analytical results for 1990 through 2014 are provided in Attachment F.

Over the course of the Site groundwater assessment (1990 to 2014), numerous temporary and permanent monitoring wells and/or piezometers were sampled at the 670 DeKalb Avenue parcel, as well as the adjoining properties east (690 DeKalb Avenue parcel) and north-northwest (Atlanta Beltline) of the Site. Little or no descriptions are available on the monitoring well sampling activities preformed prior to 2003 or for the offsite Atlanta Beltline monitoring wells. Thus, the general well sampling procedures (discussed below) represent the known methodologies utilized at the site. To the best of our knowledge, as of 2003, the monitoring well sampling procedures performed at the 670 DeKalb Avenue parcel were implemented in accordance with applicable U.S. EPA and Georgia EPD guidelines.

6.1 GROUNDWATER MONITORING PROCEDURES

Groundwater measurements were collected from the existing monitoring wells and piezometers network at the 670 DeKalb Avenue parcel prior to collection of groundwater samples. The groundwater measurements were collected using an electronic water level meter in accordance with approved U.S. EPA and Georgia EPD procedures (guidance documents) in place when the monitoring wells were gauged. Field personnel recorded the depth to groundwater, below the marked (surveyed) top of the polyvinyl chloride (PVC) monitoring well casing, for the existing wells.

6.1.1 Groundwater Sampling

Groundwater samples were collected in accordance with approved U.S. EPA and Georgia EPD procedures (guidance documents) in place when the samples were collected. The following sampling procedures were implemented by AEM between 2003 and 2014.

Groundwater purging and sampling activities for the shallow monitoring wells were implemented using an adjustable-speed peristaltic pump with dedicated Teflon-lined tubing. The deeper vertical delineation wells (MW-103D and MW-214) were historically purged and sampled with the use of a stainless-steel Grundfos RediFlo-2 submersible pump with dedicated Teflon-lined tubing. Conventional purge and sample methods utilized slow-flow techniques to minimize sample volatility. Purge water from the monitoring wells was containerized in 55-gallon steel drums for later profiling and off-site disposal. Based on historic data, the drums were typically labeled as non-hazardous waste.

At a minimum, conductivity, temperature, pH, and turbidity were measured at each sampled well during the purging effort and immediately prior to the collection of groundwater samples. These parameters were recorded in field notebooks and/or groundwater sampling

field logs for each well. Groundwater sampling sheets for the July 2014 monitoring event are provided as Attachment J. The field logs also record the sampling personnel, time and date of sample collection, water level, well depth, purge volume, purge method, and equipment used (pumps and groundwater quality meters).

6.1.2 Sample Analyses

As of 2001, groundwater samples were analyzed for total VOCs (Method 8260B). From 2006 through 2009, select groundwater samples were also analyzed for one or more of the following metals: arsenic, barium, beryllium, chromium, iron, lead, manganese, nickel, sodium, thallium, and zinc (Method 6010B). Likewise, select samples were also analyzed for the following natural attenuation parameters: chlorides, nitrates, nitrites, and sulfides. Permanganate samples were also collected at the 670 DeKalb Avenue parcel for several years following the 2006–2007 ISCO injections (see Attachment F). As of 2003, groundwater samples collected by AEM were submitted to a Georgia-certified laboratory.

6.2 HISTORICAL GROUNDWATER MONITORING

6.2.1 Pre-ISCO Corrective Action Monitoring

Seven initial residuum monitoring wells (MW-1, -2, -3, -4, -7, -8, and -9) were installed at the Site in 1990 (DePaul, 1990). Monitoring well locations are depicted in Figure 4. The monitoring wells were installed using hollow-stem augers. These wells were subsequently sampled between 1990 and 1994 (DePaul, 1990, 1991, 1992; Pace, 1994). The initial VOC results confirmed a release of chlorinated solvents and aromatic hydrocarbons at the former Aratex parcel (see Attachment F). However, only a select list of VOCs was tested as part of the DePaul investigation. Thus, based on the shortened analyte list, the following VOCs were detected in one or more of the wells sampled: PCE, TCE, trans-1,2-DCE, vinyl chloride, benzene, and toluene. Type 3/4 RRSs, which correspond to federal drinking water MCLs, were exceeded for PCE, TCE, and trans-1,2-DCE within one well (MW-4), where dry-cleaning solvents were formerly utilized and stored. Between 1990 and 1994, PCE concentrations ranged up to 47,000 μ g/L while TCE concentrations ranged up to 282 μ g/L. Likewise, trans-1,2-DCE concentrations ranged up to 220 μ g/L in 1991 (see Attachment F).

In response to the first release notification to the Georgia EPD HSRA program, in 1994, a "no listing" letter was issued from the HSRA program in April 1995. As a result, the monitoring wells (MW-1, -2, -3, -4, -7, -8, and -9) were abandoned and no further groundwater monitoring activities were performed at the Aratex Parcel until 2001.

In 2001, the next phase of temporary and permanent monitoring wells were installed and sampled at the former Aratex Parcel. Shallow residuum temporary wells DP-101 through DP-106 were installed and sampled in April 2001 by Law (Law, 2001) (see Figure 4). Split-samples from this sampling effort were collected by Bock (Bock, 2001). In April 2001, three additional permanent residuum wells (MW-101, -102, and -103) were also installed by Law on

the former Aratex parcel (see Figure 4). Following this sampling effort, the temporary wells (DP-101 through DP-106) were abandoned on April 24, 2001.

The subsequent results of the 2001 sampling effort confirmed that a release had occurred on the former Aratex parcel (see Attachment F). PCE concentrations in groundwater ranged up to 8,500 µg/L in temporary well DP-104 (completed just south of MW-4) and up to 14,000 µg/L in monitoring well MW-103 (completed just north of MW-4). As in the past, significantly lower concentrations of the chlorinated solvents TCE, cis-1,2-DCE, trans-1,2-DCE, and vinyl chloride were reported in the wells completed at the Site (see Attachment F). Type 3/4 RRSs were exceeded for PCE, TCE, cis-1,2-DCE, and/or vinyl chloride within one or more of the wells sampled in 2001. Based on these reported findings, both the 670 and 690 DeKalb Avenue parcels were listed on the HSI (HSI Site No. 10704) in October 2001.

From April 2003 to April 2006, seven additional residuum monitoring wells (MW-201, -202, -203, -205, -206, and -208) and one shallow temporary piezometer (PZ-1), installed by AEM (AEM, 2006), and two shallow residuum piezometers (MW-207P and MW-208P), installed by MACTEC (MACTEC, 2006), were constructed across or just below the water table at the former Aratex Parcel (see Figure 4). One additional shallow well (MW-204) was installed by AEM on Gunby Street near the intersection with DeKalb Avenue. A single deeper residuum monitoring well (MW-103D) was completed by AEM on the former Aratex parcel for vertical plume delineation (see Figure 4).

Piezometer PZ-1 was sampled once on April 9, 2003, for total VOCs. PCE (at 6.7 μ g/L) was the only VOC reported from this well (see Attachment F).

Between April 2003 and April 2006, five groundwater monitoring events were implemented by AEM at the Site (see Attachment F). For this monitoring period, PCE concentrations in groundwater at monitoring wells MW-101, -102, and -103 ranged up to 35,000 μg/L, 8,400 μg/L, and 16,200 μg/L, respectively. Likewise, TCE concentrations from these wells ranged up to 201 μg/L, 26 μg/L, and 1,500 μg/L, respectively. Cis-1,2-DCE, trans-1,2-DCE, and vinyl chloride concentrations were also significantly higher in MW-103 (see Attachment F). Notably lower VOC concentrations were detected in monitoring wells MW-204, -205, -206, and -208 constructed near or downgradient of the Dry-Cleaning Source Area. Likewise, only trace levels (at most) of chlorinated VOCs were detected in upgradient monitoring wells MW-201, -202, -203, and piezometers MW-207P and MW-208P (see Attachment F) installed along the northwest and south perimeters of the former Aratex parcel.

No VOCs were detected within the deep residuum well MW-103D between April 2003 and April 2006. Thus, the vertical extent of the VOC plume at the Dry Cleaning Source Area was defined by MW-103D (see Attachment F).

In late 2005, monitoring wells MW-101, -102, -103, -103D, and -201 were abandoned by MACTEC as part of their soil remediation effort (see Section 5.3). Likewise, PZ-1 was reportedly abandoned in early 2006.

In April 2006, the groundwater monitoring well network for the Site was expanded once again with the installation of eight additional residuum wells. Monitoring wells MW-301, -302, -303, and -306 were installed by AEM (AEM, 2007b) on the former Aratex parcel to replace abandoned wells MW-101, -102, and -103 (see Figure 4). Monitoring wells MW-401, -403, -405, and -406 were installed on the Site by MACTEC (MACTEC, 2006). MW-401 and MW-405 were installed as upgradient monitoring wells on the former Aratex parcel while monitoring well MW-404 was constructed along the Gunby Street right-of-way adjacent to the Site (see Figure 4). Two additional wells (MW-402 and MW-403) were installed by MACTEC on the adjacent Dynamics Metals Parcel (MACTEC, 2006).

In April 2006, groundwater at monitoring wells MW-301, -302, and -303, installed in the vicinity of the Dry Cleaning Source Area, contained PCE concentrations of less than 5 μ g/L, 31 μ g/L, and 4,530 μ g/L, respectively (see Attachment F). For comparison, July 2005 PCE concentrations in groundwater at monitoring wells MW-101 (replaced by MW-301) and MW-102 (replaced by MW-302) were 25,100 μ g/L and 1,140 μ g/L, respectively. The notable reduction in PCE concentrations, as well its daughter products, observed in groundwater at MW-301 and MW-302 is attributed to the September 2005 ISCO injection pilot test (see Section 5.2) performed near the former location of monitoring wells MW-101 and MW-102 (see Figure 15). As part of the pilot test, three temporary shallow residuum wells (TW-1, -2, and -3) were installed by AEM at the former Dry Cleaning Source Area. These temporary wells were subsequently abandoned following the pilot test (AEM, 2005b).

Monitoring wells MW-401, -404, and -405 were also sampled in April 2006 (see Attachment F). With the exception of off-site well MW-403, no VOCs were detected in these wells. The predominant VOC constituents detected in MW-403 included the PCE breakdown products cis-1,2-DCE (at 2,600 μ g/L), trans-1,2-DCE (at 14 μ g/L), and vinyl chloride (at 1,500 μ g/L). Historical groundwater monitoring results of the former Dynamics Metals Parcel monitoring wells are provided in the CSR for the 690 DeKalb Avenue property (AEM, 2014a).

6.2.2 Post-ISCO Corrective Action Monitoring

In accordance with AEM's Corrective Action Plan (CAP) Supplement (AEM, 2006), and following the full June 2006 ISCO injection effort (see Section 5.2), quarterly groundwater monitoring was proposed for the following monitoring wells located on the former Aratex Parcel and Gunby Street:

- **670 DeKalb Avenue wells:** MW-202, -203, -205, -206, -208, -301, -302, -303, and -306
- Gunby Street well: MW-204

In addition to the above ten wells listed in the CAP, MW-404, and MW-405 were periodically sampled as part of one or more of the quarterly monitoring events. Monitoring wells sampled on the adjacent former Dynamics Metals Parcel are discussed in the CSR for the 690 DeKalb Avenue Parcel (AEM, 2014a).

Per the CAP, the monitoring wells were sampled for VOCs as well as for select monitored natural attenuation parameters (MNAs). In addition, the UIC Permit required monitoring for potential by-products such as dissolved-phase metals and chloride, to demonstrate restoration of natural background conditions (see Attachment F).

In April 2007, MACTEC installed a further five residuum wells (MW-406, -407, -408, -409, and -409D) on the former Aratex parcel (see Figure 4). With the exception of MW-409D, the new wells were screened across the water. MW-409D was screened below the water table to a depth of 30 feet below ground surface (see Table 2).

In August 2008, three soil borings (see Section 4.5) were converted by AEM to temporary wells TMW-1, -2, and -3 at the former Dry Cleaning Source Area (see Figure 4). These temporary wells were subsequently sampled in September 2008 and December 2009 (see Attachment F).

Per the CAP, quarterly groundwater monitoring at the former Aratex Parcel was performed in August 2006, November 2006, February 2007, May/June 2007, September 2007, December 2007, March 2008, June 2008, and September 2008 (AEM, 2007a, 2007b, 2008a, 2008b). In addition to the proposed monitoring program within the CAP, select additional wells (including MW-403, -404, -406, -407, -408, -409, and -409D) were also sampled between 2006 and 2009. Following the completion of the quarterly monitoring program, the monitoring well network (including MW-409 and MW-409D) was monitored annually and/or semiannually in December 2009, June 2011, October 2012, July 2013, and most recently in January and July 2014 (AEM, 2010b, 2011, 2013a, 2013b, 2014c). Historical groundwater analytical results for this time period are summarized in Attachment F.

In July 2010, prior to the implementation of additional soil remediation (soil excavation/blending) activities by AEM (see Section 5.4), monitoring wells MW-208, -301, -302, -303, -404, -406, -407, -408, and temporary wells TMW-1, -2, and -3 were abandoned (see Section 7.2). As the result of ongoing demolition and reconstruction of the Edgewood Avenue overpass, monitoring well MW-203 (covered by a soil stockpiling and/or debris) could not be accessed for sampling in 2012 and 2013. Likewise, MW-205, last sampled in October 2012, was damaged during the Atlanta Beltline construction activities and was subsequently abandoned in 2013.

For a period of approximately two years following the June 2006 ISCO injection at the Site, concentrations of VOCs in groundwater (predominately cis-1,2-DCE and vinyl chloride) significantly decreased at the former Dynamics Metals Parcel monitoring wells (including MW-403 (AEM, 2014c). Time trend graphs depicting cis-1,2-DCE and vinyl chloride concentrations for off-site monitoring well MW-403 are provided in Attachment K.

Chlorinated VOCs (predominately PCE) significantly decreased in monitoring wells MW-301, -302, and -303 (see Attachment F) following the ISCO injections. For a period of approximately one year (dispersed between August 2006 and September 2009), no VOCs were detected in groundwater at these three monitoring wells. Time trend graphs depicting PCE, TCE, cis-1,2-DCE, and/or vinyl chloride concentrations for select wells are provided in

Attachment K. Likewise, VOCs were not detected in groundwater at monitoring well MW-407 from December 2007 to June 2008, while only trace levels of VOCs were detected in monitoring wells MW-209/209P and MW-404.

Between June 2007 and December 2009, PCE concentrations in groundwater rebounded at MW-301, -302, and -303 (see Attachment F). Similarly, for MW-407, PCE concentrations in September 2008 (53 µg/L) and December 2009 (130 µg/L) rebounded as compared to December 2007 to June 2008 levels (see Attachment F). These increases were attributed to the release of PCE and TCE from source material remaining in the clayey soils beneath the water table at the former dry-cleaning area.

The temporary rebound in VOC levels, predominantly cis-1,2-DCE and vinyl chloride, was also detected in groundwater at select off-site monitoring wells from June 2008 through June 2011 (AEM, 2013a). These increases were attributed to the degradation of PCE and TCE to their daughter products cis-1,2-DCE and vinyl chloride.

The June 2006 ISCO injections had no apparent effect on the VOC plume in the vicinity of wells MW-208 and MW-406. When detected, only trace levels of VOCs were reported in groundwater at monitoring well MW-306 from April 2006 to June 2008 and at MW-208 from April 2006 to September 2007 (see Attachment F). As with the above wells, a slight rebound was reported in MW-306 from September 2008 to January 2014 and in MW-208 from December 2007 to December 2009.

Additionally, when sampled, only trace to low levels of VOCs (predominately PCE) were detected from 2006 onward in groundwater in one of more of the following monitoring wells: MW-202, -203, -204, -206, -207P, -306, -406, -409, and -409D (see Attachment F). No VOCs have historically been detected in upgradient wells MW-401 and MW-405 (see Attachment F). Time trend graphs depicting PCE and TCE concentrations in groundwater for monitoring wells MW-109, -203, -204, -205, -207P, -208P, -403, and -409 are provided in Attachment K.

6.2.3 Post-Soil Blending Corrective Action Monitoring

In 2010, AEM conducted additional soil corrective action (soil excavation/blending) at the former Dry Cleaner Source Area and beneath Gunby Street, to address the PCE source area remaining above and below the water table (see Section 5.4). Thus, since June 2011, VOC groundwater concentrations have again shown a significant downward trend in former Dynamics Metals Parcel monitoring wells (including MW-403) from October 2012 to January 2014 (AEM, 2014). Additionally, cis-1,2-DCE in groundwater at monitoring well MW-403 has decreased to below the Type 3/4 RRS and, although vinyl chloride exceeds the Type 3/4 RRS, concentrations detected continue to exhibit a decreasing trend up to January 2014 (see Attachment F and Attachment K). With the remediation of the remaining source material (both above and below the water table) in 2010 at the former Dry Cleaning Source Area and beneath Gunby Street, decreasing PCE and TCE concentrations are anticipated to continue in groundwater at the Site. With the degradation of PCE and TCE, temporary increases in cis-1,2-DCE and/or vinyl chloride (observed in July 2014) at the source area (MW-212 and MW-213) and just downgradient

(MW-403) can be anticipated before total VOCs concentrations decrease to below regulatory levels.

In May 2013, AEM installed the last three replacement wells (MW-212, -213, and -214) at the former Aratex Parcel (see Figure 2). Monitoring wells MW-212 and MW-213 were screened across the water table within the Dry Cleaning and Mineral Spirits Source Areas, respectively, as replacement wells for MW-301 and MW-303 (see Figure 4). Monitoring well MW-214 (replacement well for MW-103D) is located next to MW-213 and was screened within the deep residuum to a depth of approximately 75 feet below ground surface. In June 2014, monitoring wells MW-109, -110, -111, -210, -211, and -402 were abandoned at the former Dynamic Metals Parcel (see Table 4 and Section 7.2).

Monitoring wells MW-212, -213, and -214 were initially sampled in June 2013 and then again in July 2013, January 2014, and July 2014 as part of the VRP semiannual monitoring events (AEM 2013a, 2013b, 2014c). Since their installation, VOC concentrations in MW-212 and MW-213 have exhibited decreasing trends. Over a period of one year, PCE concentrations reported in June 2013 from MW-212 (160 μg/L) and MW-213 (720 μg/L) decreased to 88 μg/L (MW-212) and 86 μg/L (MW-213) in July 2014. Similar trends were reported for TCE (see Attachment F). As expected from the degradation of PCE and TCE, slightly increasing trends were observed for cis-1,2-DCE and vinyl chloride. The predominant VOC in groundwater at MW-212 and MW-213 in July 2014 was cis-1,2-DCE at 180 and 800 μg/L, respectively (see Attachment F). It is anticipated that, with the continual depletion of PCE and TCE, decreasing trends for cis-1,2-DCE and vinyl chloride will also occur. As with MW-103D, no VOCs have been detected to date within the vertical delineation well MW-214.

6.3 JULY 2014 GROUNDWATER MONITORING

6.3.1 Depth-to-Groundwater Measurements

As described in Section 6.1, depth-to-groundwater measurements were last collected July 17, 2014 (see Attachment B). The groundwater measurements were taken using a Solinst® (Model 101) electronic water level meter. AEM personnel collected water level measurements by recording the depth to groundwater below the marked (surveyed) top of casing for each well. Measurements were recorded (in field notebooks and sample sheets) in monitoring wells in the order of least to most contaminated. To prevent fluctuations caused by local weather, depth-to-water measurements were collected within an 8-hour period.

Historical groundwater depth and elevation data (including the latest July 17, 2014, measurements) are summarized in Attachment B. The July 17, 2014, measurements were used to prepare a water elevation contour diagram for the shallow residuum (see Figure 5). The groundwater flow paths at the former Aratex parcel in July 2014 were toward the north-northeast. There also appears to be a southeasterly groundwater flow component on the south side of the parcel along DeKalb Avenue.

6.3.2 **Groundwater Sampling**

AEM personnel, under the supervision of a Georgia-licensed professional geologist (PG), conducted the latest groundwater monitoring activities at the 670 DeKalb Avenue parcels between July 10 and July 11, 2014. Groundwater samples were collected in accordance with U.S. EPA SESD Field Branch Quality System and Technical Procedure SESDPROC-301-R3 (Groundwater Sampling) dated March 6, 2013.

Groundwater samples were collected from on-site wells MW-202, -203, -206, -207P, -208P, -212, -213, -214, -306, -401, and -405, as well as off-site wells MW-204 (Gunby Street) and MW-403 (690 DeKalb Avenue). Quality control samples included one duplicate sample, one equipment rinsate sample, and one trip blank. The groundwater and quality control samples were submitted for VOC Method 8260B analysis.

Groundwater purging and sampling activities for the shallow monitoring wells were implemented using an adjustable-speed peristaltic pump with dedicated Teflon-lined tubing. The deeper vertical delineation well (MW-214) was purged and sampled with the use of a stainless-steel Grundfos RediFlo-2 submersible pump with dedicated Teflon-lined tubing. Conventional purge and sample methods, utilizing slow-flow techniques to minimize sample volatility, were utilized. Purge water from the monitoring wells was containerized in 55-gallon steel drums for later profiling and disposal. Based on historical data, the drums were labeled as non-hazardous waste.

Temperature, pH, turbidity, and conductivity were measured at each sampled well during the purging effort and immediately prior to the collection of groundwater samples. These parameters were recorded on groundwater sampling field logs for each well (see Attachment J). The field logs record the sampling personnel, time and date of sample collection, well depth, purge volume, and purge method.

The groundwater samples were delivered to Xenco for analysis of Environmental Protection Agency (EPA) Method 8260 list VOCs. The laboratory analytical data report for the groundwater samples collected in July 2014 is included in Attachment L.

Table 3 presents a summary of all VOCs detected in groundwater during the July 2014 sampling event. Tables in Attachment F present an updated historical summary of VOCs detected in groundwater at all active monitoring wells at the 670 DeKalb Avenue site.

Shallow Residuum Aquifer

The shallow residuum aquifer is monitored by the following wells that are screened across the water table: MW-203, -204, -206, -212, -213, -401, -403, -405, and -409. Shallow piezometers 207P and 208P were constructed within the shallow (saturated) fill. The following constituents were detected in groundwater above the applicable Type 3/4 RRSs in samples collected from one or more of the above wells: PCE, TCE, and/or vinyl chloride (see Table 3).

The following wells are screened below/near the water table: MW-202, -306, and -409D. Chlorinated VOCs were not detected above laboratory reporting limits in groundwater samples

collected from these wells (see Table 3). Figures 16 to 18 present the current extent of PCE, TCE, cis-1,2-DCE, and vinyl chloride, respectively, exceeding their respective Type 3/4 RRSs in the shallow residuum.

When concentrations of historical VOCs in groundwater prior to and following corrective measures (ISCO injections and soil blending) are compared, the analytical results clearly indicate that the corrective measures were successful in treating source material as well as VOCs in groundwater (see Attachment F). In the former Dry Cleaning Source Area, concentrations of VOCs decreased an order of magnitude from 9,360 µg/L in 2009 to 948 µg/L (MW-213) in July 2014. The primary constituents detected in January and July 2014 are the PCE daughter products cis-1,2-DCE and vinyl chloride. This indicates that reductive dechlorination continues to occur. Figure 19 presents a comparison of total VOCs in groundwater in December 2009, prior to conduct of the final corrective measures, and in January 2014. Tables in Attachment F provide a summary of historical detections of VOCs in all monitoring wells at the Site. In general, concentrations of total VOCs remain stable, or are trending downward, in groundwater at the 670 DeKalb Avenue parcel. Trend charts are provided for select upgradient and downgradient monitoring wells (see Attachment K).

Deep Residuum

Monitoring well MW-214 monitors the deep residuum. VOCs were not detected in the groundwater sample collected from this monitoring well in 2014. Thus, the vertical extent of the VOC plume remains defined at the Site.

6.3.3 **Statistical Evaluation**

A Mann-Kendall statistical trend analysis was performed for cis-1,2-DCE and vinyl chloride concentrations detected in groundwater at monitoring well MW-403. The trend analysis in monitoring well MW-403 was performed to determine the increasing or decreasing trends of groundwater contaminants as they relate to plume stability. A stable plume is defined as exhibiting either stationary (mean concentration not changing) or declining concentrations using unbiased means (statistics). A complete summary of the statistical analysis is provided in Attachment M.

Figure 1 in Attachment M presents a graphical overview of the groundwater concentrations for cis-1,2-DCE and vinyl chloride from the date of installation of MW-403. The remediation events are marked on the figure. It can be observed that cis-1,2-DCE and vinyl chloride have similar trends. To examine the trend following the most recent soil remediation activities (i.e., 2010 excavation/soil blending), five sampling events post remediation (2011-2014) were used for the trend analysis.

Vinyl chloride concentrations after remediation appear to closely follow expectations and prior experience with these systems, and the resulting post-remediation declining trend is highly probable based on both Mann-Kendall trend analysis and also on a high goodness of fit (R²) for the assumed decay model. Cis-1,2-DCE also follows this post-remediation declining trend;

however, the statistical probability that this downward trend will continue downward is in the range of 77% rather than the 95% probability exhibited by the vinyl chloride trend. Under no circumstances do these data show a post-remediation increasing trend. As with vinyl chloride, the cis-1,2-DCE first order biological decay model shows data that fit an exponential decline (i.e., asymptotically approaching zero over time).

Currently, groundwater beneath the Former Aratex parcel is not in compliance with Type 3/4 RRSs for the primary chlorinated VOCs tetrachloroethene, trichloroethene, and vinyl chloride. However, clearly as a result of past source material removal and/or treatment, both tetrachloroethene and trichloroethene groundwater concentrations are trending down at the site. Likewise, the detection of VOC degradation products (cis-1,2-dichloroethene and vinyl chloride) confirms that active dechlorination/degradation is the likely cause for the parent compound decline.

Statistical analysis performed using the data collected after source remediation indicates with high probability that an overall declining trend for cis-1,2-DCE and vinyl chloride concentrations in groundwater at MW-403 is occurring and that the concentrations will continue to asymptotically decline. Additionally, the good data correlation with the asymptotic decline model corroborates the trend of a slowly decreasing cis-1,2-dichloroethene and vinyl chloride concentration in parallel with the decreasing parent compounds tetrachloroethene and trichloroethene.

SECTION 7.0 MONITORING WELL INSTALLATION AND ABANDONMENT

7.1 MONITORING WELL INSTALLATION

Over the course of the groundwater assessment and corrective action effort (1999 to 2014) numerous temporary and permanent monitoring wells and/or piezometers were installed at the 670 and 690 DeKalb Avenue parcels, as well as the adjoining properties north of the former Aramark facility (Atlanta Beltline). Only limited descriptions are available for the well installation activities performed prior to 2003 or for the off-site Atlanta Beltline wells. Thus, the well installation procedures (discussed below) represent the known methodologies utilized at the site. To the best of our knowledge, as of 2003 the well installation procedures performed at the 670 and 690 DeKalb Avenue parcels were implemented in accordance with applicable U.S. EPA and Georgia EPD guidelines.

Permanent monitoring wells were installed with the use of either hollow-stem augers (HSA) or sonic drilling. With the exception of wells installed by AEM in 2003 and 2013, the remaining monitoring well boreholes were advanced to the desired depth using HSA in conjunction with a truck- or track-mounted rig. Select temporary wells and/or piezometers were also installed with the use of a DPT rig. DPT boreholes were advanced using stainless-steel rods that were pneumatically driven to the desired depth. Available well construction—lithologic boring logs are provided in Attachment A.

Sonic well drilling and well installation activities were performed by Southern Sonic Solutions (formally Pro-Sonic/Boart Longyear) of Aiken, South Carolina. In May 2013, the work was performed using a TSi 150T Sonic Rig and support truck. The sonic drilling procedure included the use of a double cased system to install the residuum boreholes. Thus, the boring is continuously cased, preventing borehole collapse and/or downhole sample contamination. Continuous soil samples were collected for lithologic characterization directly from the 4-inchdiameter inner-core-barrel, which was advanced (vibrated downward) at 10-feet intervals to the desired depth. The borehole diameter was enlarged using a 6-inch-diameter override casing, which was advanced over the 4-inch-diameter core-barrel. Soil cores were obtained, for lithologic characterization, from the inner-core-barrel, which was extracted from the override casing. Well construction-lithologic boring logs are provided in Attachment A.

Deep residuum monitoring wells MW-214 and MW-103D (abandoned) were installed to a depth of approximately 75 feet below ground surface. The monitoring well was constructed through the 6-inch-diameter override casing following the removal of the inner-core-barrel. Well construction specifications for the wells installed on the former Dynamics Metal Parcel are provided in the CSR for the 690 DeKalb Avenue property (AEM, 2014).

In general, the construction materials utilized for the installation of the permanent HSA and sonic wells were the same. Likewise, with the exception of the casing diameter, the temporary wells and piezometers were also constructed similarly. Monitoring well construction details are summarized in Table 4. Well construction materials were as follows:

- Casing: Pre-cleaned 2-inch-diameter schedule 40 polyvinyl chloride (PVC) riser and screen (1-inch-diameter schedule 40 PVC casing utilized for temporary wells and piezometers). Well screens consisted of 5- or 10-feet lengths of 0.010-inch slot screen.
- Filter Pack: 20 to 40 mesh silica sand was installed from the base of the borehole to approximately 2.0 feet above the top of the well screen.
- **Bentonite Seal:** High-grade bentonite pellets were installed atop the sand pack and allowed to hydrate.
- **Grout:** Portland Type I cement plus 5% high-grade bentonite slurry was placed from the top of the bentonite plug to within 1 foot of the ground surface.
- Pad and Protective Cover: Metal protective well covers consisted of either (a) 4-inch by 4-inch metal stick-up cover or (b) 8-inch-diameter flush-mounted well vault. Each protective cover was completed within a 2-foot by 2-foot by 4-inch concrete pad and sealed with a pressure cap and lock.

In general, monitoring well development activities performed by AEM included both the surging and evacuation of groundwater from each well. Well surging was implemented to extract fines (silts and clays) from the sand pack as well as increase flow to the well. The evacuation (pumping) of the wells allowed for the removal of fines as well as any water introduced to the well during its construction. All soil and wastewater (formation/decontamination and development water) investigation-derived waste (IDW) was containerized for off-site disposal.

7.2 MONITORING WELL ABANDONMENT

Over the course of the groundwater assessment and corrective action effort (1999 to 2014) numerous temporary and permanent monitoring wells and/or piezometers have been installed and subsequently abandoned from the 670 DeKalb Avenue parcel as well as the off-site properties (690 DeKalb Avenue, Gunby Street, and Atlanta beltline). A list of the historical sample points (former temporary and permanent monitoring wells and DPT boreholes) abandoned is included in Table 4. Based on available documentation, former temporary and permanent monitoring wells and DPT boreholes were abandoned (grouted) in place. However, select 1-inch temporary wells (TW-1, -2, and -3, TMW-1, -2, and -3, and ED-1 through ED-5) and piezometers (PZ-1), completed by AEM, were closed by removing the casing and screen and tremie grouting the open borehole from the bottom upward.

Upon the eventual delisting of the Site and with EPD approval, Aramark will abandon the existing monitoring well network (MW-202, -203, -204, -206, -207P, -208P, -212, -213, -214, -306, -401, -403, -405, -409 and -409D) at the 670 and 690 DeKalb Avenue properties according to procedures set forth in EPA's Region 4 Field Branches Quality System and Technical Procedures document SESDGUID-101-R1 (*Design and Installation of Monitoring Wells*) (U.S. EPA, 2013b). Proposed well abandonment procedures are outlined below.

It is proposed that the wells not be over-drilled because all the wells were properly constructed at the time of installation and all the annular spaces were grouted, thus preventing

vertical migration of groundwater around the wells. The wells will be abandoned by tremie grouting the schedule 40 polyvinyl chloride (PVC) well screens and casings from the well bottom to land surface. Thus, the grout will migrate through the screen to grout the sand pack.

The well casing/grout as well as the existing concrete pads, for wells completed in unpaved areas, will be removed to a depth of one to two feet below land surface. A concrete patch will then be placed over the abandoned well and the well covered with native soil to grade.

Wells completed in concrete or asphalt areas will be grouted flush to land surface, including the area inside the well vaults. Likewise, stick-up well casings and their concrete pads will be removed flush to the ground. Thus, these wells will be effectively covered with a concrete pad after abandonment is complete, preventing the vertical migration of groundwater in the area of the abandoned monitoring wells.

SECTION 8.0 SUMMARY AND CONCLUSIONS

Based on a review of the historical VOC data collected for soil at the former Site (670 DeKalb Avenue), Aramark is certifying to the Type 3/4 RRS for VOCs in soil at the former Dry Cleaning Area as well as former Mineral Spirits/PCE UST Areas. However, Aramark is certifying to the Type 5 RRS for VOCs in soil beneath the soil cap at the Northwest Corner Source Area. Based on the site being certified to Type 5 RRSs for soil, Aramark requests that the former Site be removed from the HSI. Per the *Environmental Cap Inspection and Monitoring Plan*, AEM, 2014b), the facility will continue to maintain the integrity of the cap and surface vegetated cover. Source material (impacted soil) identified on site has either been remediated (excavated/blended) or capped using engineer control; thus, no apparent exposure risks to humans are currently identified at the site.

Although slight increases in cis-1,2-DCE and vinyl chloride have recently been detected (July 2014) in groundwater above Type 3/4 RRSs at monitoring wells MW-213 and MW-403, the concentrations of total VOCs generally exhibit a decreasing trend. This slight rebound in cis-1,2-DCE and vinyl chloride was anticipated as these VOCs are degradation products of PCE and TCE. Likewise, PCE and TCE concentrations in groundwater, derived from the treated Dry Cleaning Source Area at the former Aratex parcel, continue to decrease at the Site. Over time, VOCs are expected to continue to decrease in groundwater at the source areas wells MW-212 and MW-213 as well as downgradient well MW-403.

In 2014, reported releases to groundwater (groundwater pathways) did not exceed the HSRA Reportable Quantity Threshold (Georgia EPD, 1994, revised) per the Reportable Quantity Screening Method (RQSM). In accordance with §12-8-107(g)(2) of the VIRP, corrective action for groundwater is not required, nor is certification of compliance required for groundwater. Even though groundwater would not be listed under HSRA, statistical analysis performed using the data collected after source remediation indicates with high probability that an overall declining trend for cis-1,2-DCE and vinyl chloride concentrations in groundwater at MW-403 is occurring and that the concentrations will continue to asymptotically decline. Thus, no additional groundwater sampling is proposed, as the VOC plume has been shown to be either stable or decreasing in concentration.

Aramark requests that monitoring wells at the Site be abandoned as discussed in Section 7.2 of this report. This *CSR* and *Compliance Status Certification* demonstrates that, with the exception of soil beneath the earthen-cap (certified to Type 5 standards), the remaining soil at the former Aratex Site is below the Type 3/4 RRSs for VOCs. Aramark requests that the Site be delisted from the HSI and no further action required.

SECTION 9.0 REFERENCES

- Atlanta Environmental Management, Inc. 2003. *Compliance Status Report.* Aratex Services Facility, Atlanta Georgia. June 13, 2003 (Revised July 14, 2004, January 7, 2005, and March 15, 2006).
- 2005a. Corrective Action Plan. Aramark Uniform and Career Apparel, Inc., Atlanta Georgia. April 23, 2005.
- —. 2005b. Underground Injection Control Revised Permit Application In Situ Chemical Oxidation (UIC Permit No. 275). Former Aramark Facility (HSI No. 10704) 670 DeKalb Avenue, Atlanta, Georgia. April 6, 2010.
- 2005c. Groundwater Monitoring and Pilot Test Report. Former Aramark Uniform and Career Apparel, Inc., Atlanta Georgia. November 16, 2005.
- —. 2006. Corrective Action Plan Supplement (August 2006). Aramark DeKalb Avenue Site 670 DeKalb Avenue, Atlanta, Georgia. August 8, 2006.
- 2007a. Semiannual Groundwater Monitoring Report. Former Aratex Services Facility 670 DeKalb Avenue, Atlanta, Georgia. February 7, 2007.
- —. 2007b. Request for Monitoring Only Status and Semiannual Groundwater Monitoring Report. Former Aratex Services Facility 670 DeKalb Avenue, Atlanta, Georgia. August 10, 2007.
- 2008a. Semiannual Groundwater Monitoring Report. Former Aratex Services Facility 670 DeKalb Avenue, Atlanta, Georgia. March 24, 2008.
- —. 2008b. Semiannual Groundwater Monitoring Report. Former Aratex Services Facility 670 DeKalb Avenue, Atlanta, Georgia. October 31, 2008.
- 2010a. Soil Delineation Report and Proposed Remedial Scope. Former Aratex Services, Inc., Atlanta, Georgia. January 11, 2010 (revised).
- 2010b. Groundwater Sampling Report. Former Aratex Services Facility 670 DeKalb Avenue, Atlanta, Georgia. February 1, 2010.
- —. 2010c. Underground Injection Control Revised Permit Application In Situ Chemical Oxidation (UIC Permit No. 275). Former Aramark Facility (HSI No. 10704) 670 DeKalb Avenue, Atlanta, Georgia. April 6, 2010.

- 2011. Voluntary Remediation Program Application. Aramark Uniform and Career Apparel, LLC, 670 & 690 DeKalb Avenue Site, Atlanta, Georgia. July 15, 2011, revised.
- 2012. Supplement to Voluntary Remediation Program Application. Aramark Uniform and Career Apparel, LLC, 670 & 690 DeKalb Avenue Site, Atlanta, Georgia. July 16, 2012, revised.
- —. 2013a. Voluntary Remediation Program First Semiannual Progress Report. Aramark Uniform and Career Apparel, LLC, 670 & 690 DeKalb Avenue, Atlanta, Georgia. May 20, 2013.
- —. 2013b. Voluntary Remediation Program Second Semiannual Progress Report. Aramark Uniform and Career Apparel, LLC, 670 & 690 DeKalb Avenue, Atlanta, Georgia. November 30, 2013.
- —. 2014a. Compliance Status Report and Compliance Status Certification, Former Dynamic Metal, 690 DeKalb Avenue, Atlanta Georgia. April 28, 2014.
- —. 2014b. Environmental Cap Inspection and Monitoring Plan. 670 DeKalb Avenue, Atlanta, Fulton County, Georgia. Aramark Uniform and Career Apparel, LLC. May 1, 2014.
- —. 2014c. Voluntary Remediation Program Third Semiannual Progress Report. Aramark Uniform and Career Apparel, LLC, 670 & 690 DeKalb Avenue, Atlanta, Georgia. May 16, 2014.
- Clark W. Z., and Zisa, A. C. 1976. Physiographic Map of Georgia. Georgia Department of Natural Resources, Georgia Geological Survey, Atlanta, 1976.
- Cressler, C. W., Thurmond, C. J., and Hester, W. G. 1983. *Ground Water in the Greater Atlanta Region, Georgia.* U.S. Geological Survey Information Circular 63, 144 p.
- DePaul. 1990. Site Characterization Contaminant Assessment Progress Report. Aratex Services, Inc., Atlanta, Georgia. DePaul and Associates, Inc., December 17, 1990.
- —. 1991. Contaminant Assessment Phase II Progress Report. Aratex Services, Inc., Atlanta, Georgia. DePaul and Associates, Inc., September 30, 1991.
- —. 1992. Contaminant Assessment Phase II Task-2 Progress Report. Aratex Services, Inc., Atlanta, Georgia. DePaul and Associates, Inc., June 19, 1992.
- —. 1993. Soil-Corrective Action Plan Soil Vapor Extraction Remediation Plan. Aratex Services, Inc., Atlanta, Georgia. DePaul and Associates, Inc., August 12, 1993.

- Farlow. 1989. UST Removal and Summary & Update Notification (Letter Report). Farlow Environmental Engineering, Inc., October 17, 1989.
- Georgia Environmental Protection Division. 1994. Hazardous Site Response Program Manual for the Reportable Quantity Screening Method. February 19, 1994 (revised March 1994 and December 2004).
- Higgins, M. W., and Atkins, R. L. 1981. "The Stratigraphy of the Piedmont Southeast of the Brevard Zone in the Atlanta, Georgia, Area." In Wigley, P. B. (Ed.), *Latest Thinking on the Stratigraphy of Selected Areas in Georgia*. Georgia Geologic Survey Information Circular 54-A, pp. 3–40.
- Higgins, M. W., Crawford, T. J., Atkins, R. L., and Crawford, R. F. 2003. *Geologic map of the Atlanta 30' x 60' quadrangle, Georgia*. Scientific Investigations Map 2602. U.S. Geologic Survey, Reston, VA.
- Law. 2001. *Data Summary Report (Unpublished Draft)*. Law Engineering and Environmental Services, Inc. May 21, 2001.
- MACTEC. 2005. Brownfields Corrective Action Plan, Former Aramark and Dynamics Properties 670 and 690 DeKalb Avenue. MACTEC Engineering and Consulting, Inc. July 27, 2005.
- MACTEC. 2006. Compliance Status Report, Former Aramark and Dynamics Properties 670 and 690 DeKalb Avenue. MACTEC Engineering and Consulting, Inc. June 22, 2006.
- McConnell, K. I., and Abrams, C. E. 1984. *Geology of the Greater Atlanta Region.* Georgia Geological Survey Bulletin 96, 127 p.
- United States Environmental Protection Agency (EPA) Region 4. 2007a. U.S. EPA Region 4 SESD *Operating Procedure—Field Equipment Cleaning and Decontamination*, SESDPROC-205-R2 (effective date December 20, 2011).
- 2013a. Operating Procedures—Groundwater Sampling, SESDPROC-301-R3 (effective date March 6, 2013).
- 2013b. Field Branches Quality System and Technical Procedures Document SESDGUID-101-R1 (Design and Installation of Monitoring Wells). January 29, 2013.

TABLES

Table 1. Risk Reduction Standards for Soil.
Aramark DeKalb HSI/VRP Site 10704

	Type 1 RRS	Type 3 RRS	Type 4 RRS	Selected RRS
Regulated Substance	(μg/kg)	(μg/kg)	(μg/kg)	(μg/kg)
Chlorinated VOCs (µg/kg)				
Tetrachloroethene	500	500*	340**	500
1,1,1-Trichloroethane	20,000	20,000**	260,000**	260,000
Trichloroethene	500	500*	360**	500
1,1-Dichloroethene	700	700*	NC	700
1,2-Dichloroethane	500	500*	NC	500
1,1-Dichloroethane	400,000	400,000*	NC	400,000
Chloroethane	170	170*	NC	170
cis-1,2-Dichloroethene	7,000	530*	19,000**	19,000
trans-1,2-Dichloroethene	10,000	10,000*	52,000**	52,000
Vinyl Chloride	200	200*	27**	200
Aromatic Hydrocarbons				
Benzene	500	500*	250**	500
Ethylbenzene	70,000	70,000*	340,000**	340,000
Toluene	100,000	100,000*	400,000**	400,000
Chlorobenzene	10,000	NC	NC	10,000
Cyclohexane	200,000	20,000**	1,400,000**	1,400,000
Naphthalene	100,000	100,000*	16,000**	100,000
o-xylene	1,000,000	1,000,000*	1,100,000**	1,100,000
m,p-Xylene	1,000,000	1,000,000*	1,100,000**	1,100,000
Xylenes, total	1,000,000	1,000,000*	1,100,000**	1,100,000
Isopropylbenzene	21,888	22,000*	94,000**	94,000
Other VOCs				
2-Butanone	200,000	NC	NC	200,000
Acetone	400,000	400,000**	390,000**	400,000
Carbon Disulfide	400,000	400,000**	98,000**	400,000
Methylene Chloride	500	NC	NC	500

Notes:

VOCs-Volatile Organic Compounds

RRS-Risk Reduction Standard

μg/kg- micrograms per kilogram

NC- Not calculated

NR-Not regulated

*RRS approved by Georgia EPD HSRA on February 15, 2005

^{**}RRS approved by Georgia EPD Brownfields on September 1, 2006

Table 2. Risk Reduction Standards for Groundwater.
Aramark DeKalb HSI/VRP Site 10704

Regulated Substance	Type 1 RRS (μg/L)	Type 3 RRS (μg/L)	Type 4 RRS (μg/L)	Selected RRS (µg/L)
Chlorinated VOCs				
Tetrachloroethene	5	5*	3.82**	5
1,1,1-Trichloroethane	200	200**	5,260**	5,260
Trichloroethene	5	5*	0.65**	5
1,1-Dichloroethene	7	7*	548**	548
1,2-Dichloroethane	5	NC	NC	5
1,1-Dichloroethane	4,000	4,000*	NC	4,000
Chloroethane	5	5**	987*	987
cis-1,2-Dichloroethene	5	5**	1,020*	1,020
trans-1,2-Dichloroethene	100	100*	2,040*	2,040
Vinyl Chloride	2	2*	1.58**	2
Aromatic Hydrocarbons				
Benzene	5	5*	8.8**	8.8
Ethylbenzene	700	700*	2,300**	2,300
Toluene	1,000	1,000*	5,200**	5,200
Chlorobenzene	100	NC	NC	100
Cyclohexane	5	5**	17,400**	17,400
Naphthalene	20	20*	8.75**	20
o-xylene	10,000	10,000*	292**	10,000
m,p-Xylene	10,000	10,000*	292**	10,000
Xylenes, total	10,000	10,000*	292**	10,000
Isopropylbenzene	5	5**	1,010**	1,010
Other VOCs				
2-Butanone	2,000	NC	NC	2,000
Acetone	4,000	4,000**	92,000**	92,000
Carbon Disulfide	4,000	4,000**	1,700**	4,000

Notes:

VOCs-Volatile Organic Compounds

RRS-Risk Reduction Standard

μg/L- micrograms per liter

NC- Not calculated

NR- Not Regulated

*RRS approved by Georgia EPD HSRA on February 15, 2005

^{**}RRS approved by Georgia EPD Brownfields on September 1, 2006

Table 3. Summary of Constituents of Concern Detected in Groundwater, July 2014. ARAMARK DeKalb Avenue VRP/HSI Site No. 10704 Atlanta, Georgia

			MW-202 07/10/14	MW-203 07/11/14	MW-204 07/11/14	MW-206 07/11/14	MW-207P 07/11/14	MW-208P 07/10/14	MW-212 07/11/14	MW-213 07/11/14	MW-214 07/10/14	MW-306 07/11/14	MW-401 07/10/14	MW-403 07/11/14
Chlorinated VOCs		Selected RRS												
Tetrachloroethene	μg/L	5	<5	<5	7.6	<5	15	<5	88	86	<5	31	<5	<5
1,1,1-Trichloroethane	μg/L	5,260	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Trichloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	15	41	<5	<5	<5	<5
1,1-Dichloroethene	μg/L	548	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chloroethane	μg/L	987	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
cis-1,2-Dichloroethene	μg/L	1,020	<5	<5	<5	<5	<5	<5	180	800	<5	<5	<5	81
trans-1,2-Dichloroethene	μg/L	2,040	<5	<5	<5	<5	<5	<5	<5	11	<5	<5	<5	<5
Vinyl Chloride	μg/L	2	<2	<2	<2	<2	<2	<2	15	9.6	<2	<2	<2	140
Aromatic Hydrocarbons														
Benzene	μg/L	8.8	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Ethylbenzene	μg/L	2,300	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Toluene	μg/L	5,200	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene	μg/L	100	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Cyclohexane	μg/L	17,400	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Naphthalene	μg/L	20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
o-xylene	μg/L	10,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
m,p-Xylene	μg/L	10,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Xylenes, total	μg/L	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Isopropylbenzene	μg/L	1,010	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Non-Chlorinated VOCs														
2-Butanone (MEK)	μg/L	2,000	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
Acetone	μg/L	92,000	<50	<50	<50	<50	<50	<50	64	<50	<50	<50	<50	<50
Carbon Disulfide	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Methylene Chloride	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5

Notes:

VOCs-volatile organic compounds μg/L- micrograms per liter

NA-not analyzed

Exceeds Selected RRS (See Table 2 of CSR)

Table 3. Summary of Constituents of Concern Detected in Groundwater, July 2014.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

			MW-405 07/10/14	MW-409 07/11/14	MW-409D 07/10/14
Chlorinated VOCs		Selected RRS			
Tetrachloroethene	μg/L	5	<5	12	<5
1,1,1-Trichloroethane	μg/L	5,260	<5	<5	<5
Trichloroethene	μg/L	5	<5	<5	<5
1,1-Dichloroethene	μg/L	548	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5
Chloroethane	μg/L	987	<4	<4	<4
cis-1,2-Dichloroethene	μg/L	1,020	<5	<5	<5
trans-1,2-Dichloroethene	μg/L	2,040	<5	<5	<5
Vinyl Chloride	μg/L	2	<2	<2	<2
Aromatic Hydrocarbons					
Benzene	μg/L	8.8	<5	<5	<5
Ethylbenzene	μg/L	2,300	<5	<5	<5
Toluene	μg/L	5,200	<5	<5	<5
Chlorobenzene	μg/L	100	<5	<5	<5
Cyclohexane	μg/L	17,400	<5	<5	<5
Naphthalene	μg/L	20	<5	<5	<5
o-xylene	μg/L	10,000	<5	<5	<5
m,p-Xylene	μg/L	10,000	<5	<5	<5
Xylenes, total	μg/L	10,000	NA	NA	NA
Isopropylbenzene	μg/L	1,010	<5	<5	<5
Non-Chlorinated VOCs					
2-Butanone (MEK)	μg/L	2,000	<50	<50	<50
Acetone	μg/L	92,000	<50	<50	<50
Carbon Disulfide	μg/L	4,000	<5	<5	<5
Methylene Chloride	μg/L	5	<5	<5	<5

Notes:

VOCs-volatile organic compounds

μg/L- micrograms per liter

NA-not analyzed

Exceeds Selected RRS (See Table 2 of CSR)

Table 4. Monitoring Well Construction Details ARAMARK DeKalb VRP/HSI Site No. 10704 Atlanta, Georgia

Well No.	Date Installed	Date Abandoned	Consultant	Aquifer Zone	TOC Elevation (ft AMSL)	Total Depth (TOC)	Well Bottom Elevation (ft AMSL)	Casing Diameter (in)	Screen Interval (ft)	Screen Elevation (ft AMSL)	Screen Length (ft)
MW-1	8/1/1990	Unknown	Depaul	Shallow Residuum	1023.99	26	997.99	2.00	17-26	1047.99-997.99	9
MW-2	8/2/1990	Unknown	Depaul	Shallow Residuum	1015.20	25	990.20	2.00	16-26	1000.2-990.2	10
MW-3	8/2/1990	Unknown	Depaul	Shallow Residuum	1017.62	23	994.62	2.00	14-23	1003.62-994.62	9
MW-4	8/2/1990	Unknown	Depaul	Shallow Residuum	1021.62	22	999.62	2.00	10-25	1009.62-999.62	10
GP-8	5/22/1991	Unknown	Depaul	Soil Boring	NA	10	NA	NA	NA	NA	NA
MW-5	5/20/1992	Unknown	Depaul	Shallow Residuum	1019.76	25	994.76	2.00	15-25	1004.76-994.76	10
MW-6	5/20/1992	Unknown	Depaul	Shallow Residuum	1019.88	25	994.88	2.00	10-25	1001.88-994.88	10
MW-7	5/21/1992	Unknown	Depaul	Shallow Residuum	1020.39	25	995.39	2.00	10-25	1005.39-995.39	10
MW-8	5/21/1992	Unknown	Depaul	Shallow Residuum	NA	NA	NA	NA	NA	NA	NA
MW-9	5/21/1992	Unknown	Depaul	Deep Residuum	NA	88	NA	2.00	78-88	NA	10
B-1	9/28/1999	9/28/1999	QORE	Shallow Residuum	NA	25-30	NA	2.00	NA	NA	NA
B-2	9/28/1999	9/28/1999	QORE	Shallow Residuum	NA	25-30	NA	2.00	NA	NA	NA
B-3	9/28/1999	9/28/1999	QORE	Shallow Residuum	NA	25-30	NA	2.00	NA	NA	NA
BH-1	11/3/2000	11/3/2000	Pickering	Shallow Residuum	NA	28.00	NA	NA	NA	NA	NA
BH-2	11/3/2000	11/3/2000	Pickering	Shallow Residuum	NA	28.00	NA	NA	NA	NA	NA
BH-3	11/3/2000	11/3/2000	Pickering	Shallow Residuum	NA	28.00	NA	NA	NA	NA	NA
DP-101	4/24/2001	4/24/2001	Law	Shallow Residuum	NA	28	NA	2.00	NA	NA	NA
DP-102	4/25/2001	4/25/2001	Law	Shallow Residuum	NA	28	NA	2.00	NA	NA	NA
DP-103	4/24/2001	4/24/2001	Law	Shallow Residuum	NA	28	NA	2.00	NA	NA	NA
DP-104	4/25/2001	4/25/2001	Law	Shallow Residuum	NA	28	NA	2.00	NA	NA	NA
DP-105	4/25/2001	4/25/2001	Law	Shallow Residuum	NA	26	NA	2.00	NA	NA	NA
MW-101	4/24/2001	2005	Law	Shallow Residuum	1016.05	27.97	988.08	2.00	17.97-27.97	998.08 - 988.08	10
MW-102	4/23/2001	2005	Law	Shallow Residuum	1011.86	32.94	978.92	2.00	22.94-32.94	988.92 - 978.92	10
MW-103	4/24/2001	2005	Law	Shallow Residuum	1009.96	25.75	984.21	2.00	15.75-25.75	994.21 - 984.21	10
MW-104	8/31/2001	Under soil pile	Bock	Shallow Residuum	1013.75	24.17	989.58	2.00	14.17-24.17	999.58 - 989.58	10
MW-105	8/14/2001	Under soil pile	Bock	Shallow Residuum	NA	25.00	NA	2.00	NA	NA	15
MW-106	8/15/2001	Under soil pile	Bock	Shallow Residuum	1014.14	25.17	988.97	2.00	10.17-25.17	1,003.97 - 988.97	15
MW-107	8/14/2001	Under soil pile	Bock	Shallow Residuum	1014.19	25.17	989.02	2.00	7.17-22.17	1,004.02 - 989.02	15
MW-108	8/15/2001	Under soil pile	Bock	Shallow Residuum	1013.59	25.17	988.42	2.00	15.17-25.17	998.42 - 988.42	10
MW-109	8/16/2001	6/26/2014	Bock	Shallow Residuum	1012.74	25.17	987.57	2.00	7.17-25.17	1,002.57 - 987.57	15
MW-110	8/16/2001	6/26/2014	Bock	Shallow Residuum	1013.11	22.17	990.94	2.00	15.17-22.17	997.94 - 990.94	7
MW-111	8/15/2001	6/26/2014	Bock	Shallow Residuum	1013.73	25.00	988.73	2.00	10-25	1,003.73 - 988.73	15
MW-103D	4/17/2003	2005	AEM	Deep Residuum	1009.25	75.00	934.25	2.00	65-75	944.25 - 934.25	10
MW-201	4/14/2003	2005	AEM	Shallow Residuum	1015.76	23.82	991.94	2.00	13.82-23.82	1,001.94 - 991.94	10
MW-202	4/14/2003	Active	AEM	Shallow Residuum	1012.69	22.00	990.69	2.00	12-22	1,000.69 - 990.69	10
MW-203	4/15/2003	Active	AEM	Shallow Residuum	1013.47	25.00	988.47	2.00	15-25	998.47 - 988.47	10
MW-204	5/2/2003	Active	AEM	Shallow Residuum	1015.01	24.50	990.51	2.00	14.50-24.50	1,000.51 - 990.51	10
MW-205	3/31/2004	6/27/2013	AEM	Shallow Residuum	1009.90	17.00	992.90	2.00	7-17	1,002.90 - 992.90	10
MW-206	7/23/2004	Active	AEM	Shallow Residuum	1008.45	14.50	993.95	2.00	4.50-14.50	1003.95-993.95	10
MW-207	4/13/2006	7/7/2010	AEM	Shallow Residuum	1013.19	27.65	985.54	2.00	17.65-27.65	995.54-985.54	10
MW-208	4/3/2006	7/7/2010	AEM	Shallow Residuum	1011.57	29.18	982.39	2.00	19.18-29.18	992.39-982.39	10
MW-207P	9/2/2005	Active	MACTEC	Saturated Fill	1012.40	10.00	1002.40	1.00	5.00-10.00	1007.40-1002.40	5
MW-208P	9/2/2005	Active	MACTEC	Saturated Fill	1012.86	13.12	999.74	1.00	3.26-13.26	1009.74 - 999.74	10
MW-209P (PZ-2)	9/2/2005	7/7/2010	MACTEC	Saturated Fill	1013.20	16.52	998.78	1.00	6.52-16.52	1008.78 - 998.78	10

Table 4. Monitoring Well Construction Details ARAMARK DeKalb VRP/HSI Site No. 10704 Atlanta, Georgia

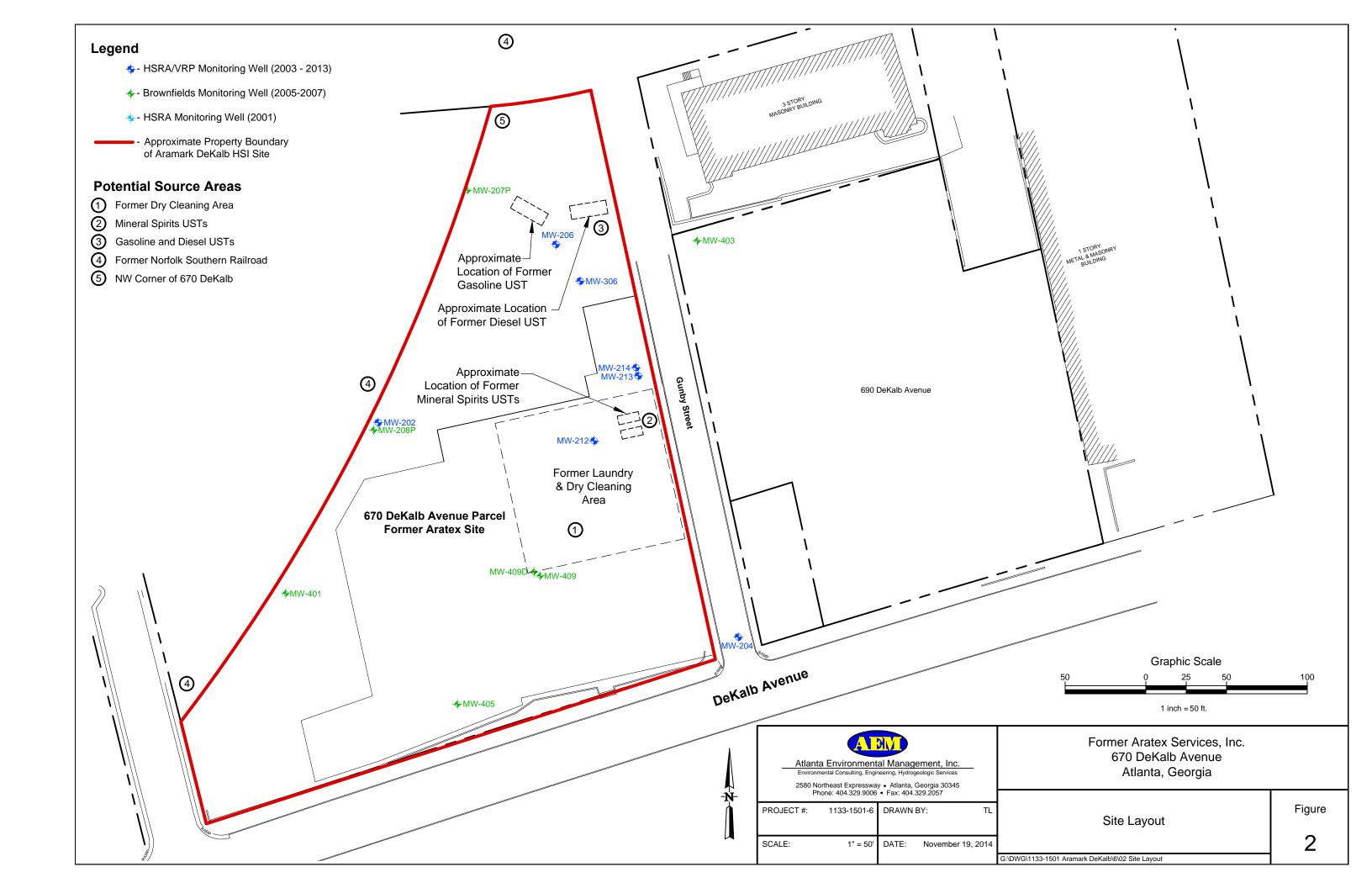
				Aquifer	TOC Elevation	Total Depth	Well Bottom Elevation	Casing Diameter	Screen Interval	Screen Elevation	Screen Length
Well No.	Date Installed	Date Abandoned	Consultant	Zone	(ft AMSL)	(TOC)	(ft AMSL)	(in)	(ft)	(ft AMSL)	(ft)
MW-210	5/22/2013	6/26/2014	AEM	Shallow Residuum	1016.28	23.00	993.28	2.00	13.00 -23.00	1003.28 - 993.28	10
MW-211	5/22/2013	6/26/2014	AEM	Shallow Residuum	1016.37	21.00	995.37	2.00	11.00 - 21.00	1005.37 - 995.37	10
MW-212	5/22/2013	Active	AEM	Shallow Residuum	1014.06	17.50	996.56	2.00	7.50 - 17.50	1006.56 - 996.56	10
MW-213	5/22/2013	Active	AEM	Shallow Residuum	1009.79	17.00	992.79	2.00	7.00 -17.00	1002.79 - 992.79	10
MW-214	5/22/2013	Active	AEM	Deep Residuum	1009.40	74.50	934.90	2.00	64.50 - 74.50	944.90 - 934.90	10
TW-34	12/8/2004	Unknown	MACTEC	Shallow Residuum	NA	20.00	NA	2.00	5-20	NA	15
TW-35	12/8/2004	Unknown	MACTEC	Shallow Residuum	NA	15.00	NA	2.00	10-15	NA	5
TW-36	12/7/2004	Unknown	MACTEC	Shallow Residuum	NA	11.00	NA	2.00	2-12	NA	10
MW-301	4/4/2006	7/7/2010	AEM	Shallow Residuum	1012.60	27.98	984.62	2.00	17.98-27.98	994.62 - 984.62	10
MW-302	4/4/2006	7/7/2010	AEM	Shallow Residuum	1011.91	29.97	981.94	2.00	19.97-29.97	991.94 - 981.94	10
MW-303	4/4/2006	7/7/2010	AEM	Shallow Residuum	1009.39	28.98	980.41	2.00	18.98-28.98	990.41 - 980.41	10
MW-306	4/3/2006	Active	AEM	Shallow Residuum	1008.50	30.67	977.83	2.00	20.67-30.67	987.83 - 977.83	10
MW-401	4/13/2006	Active	MACTEC	Shallow Residuum	1013.69	15.95	997.74	2.00	5.95-15.95	1007.74 - 997.74	10
MW-402	4/13/2006	6/26/2014	MACTEC	Shallow Residuum	1016.21	19.47	996.74	2.00	9.47-19.47	1006.74 - 996.74	10
MW-403	4/13/2006	Active	MACTEC	Shallow Residuum	1015.22	22.61	992.61	2.00	12.61-22.61	1002.61 - 992.61	10
MW-404	4/14/2006	7/7/2010	MACTEC	Shallow Residuum	1009.13	13.93	995.20	2.00	3.93-13.93	1005.20 - 995.20	10
MW-405	4/14/2006	Active	MACTEC	Shallow Residuum	1015.84	18.60	997.24	2.00	8.60-18.60	1007.24 - 997.24	10
MW-406	4/18/2006	Active	MACTEC	Shallow Residuum	1015.00	22.26	992.74	2.00	12.26-22.26	1002.74 - 992.74	10
MW-407	4/18/2007	7/7/2010	MACTEC	Shallow Residuum	1012.89	19.48	993.41	2.00	9.48-19.48	1003.41 - 993.41	10
MW-408	4/18/2007	7/7/2010	MACTEC	Shallow Residuum	1009.91	16.00	993.91	2.00	6-16	1003.91 - 993.91	10
MW-409	4/19/2007	Active	MACTEC	Shallow Residuum	1016.36	20.29	996.07	2.00	10.29-20.29	1006.07 - 996.07	10
MW-409D	4/19/2007	Active	MACTEC	Shallow Residuum	1016.07	30.70	985.37	2.00	28.70-30.70	987.37 - 985.37	2
PZ-1 (TPZ-1)	4/8/2003	2006	AEM	Shallow Residuum	1009.31	20.00	989.31	1.00	4.50-19.50	1,004.31 - 989.31	15
TW-1 ¹	9/7/2005	2005	AEM	Shallow Residuum	NA	25.5	NA	2.00	15.20-25.20	NA	10
TW-2 ¹	9/7/2005	2005	AEM	Shallow Residuum	NA	25.2	NA	2.00	15.20-25.20	NA	10
TW-3 ¹	9/7/2005	2005	AEM	Shallow Residuum	NA	25.2	NA	2.00	15.20-25.20	NA	10
TMW-1 (AEM-GP-4)	8/5/2008	7/7/2010	AEM	Shallow Residuum	NA	18.00	NA	1.00	8.00-18.00	NA	10
TMW-2 (AEM-GP-10)	8/5/2008	7/7/2010	AEM	Shallow Residuum	NA	19.55	NA	1.00	9.55-19.55	NA	10
TMW-3 (AEM-GP-14)	8/5/2008	7/7/2010	AEM	Shallow Residuum	NA	19.50	NA	1.00	9.50-19.50	NA	10
ED-1	12/7/2005	12/20/2005	AEM	Shallow Residuum	1028.59	32.5	996.09	1.00	22.5-32.5	1006.09-996.09	10
ED-2	12/7/2005	12/20/2005	AEM	Shallow Residuum	1028.28	29.35	998.93	1.00	19.35-29.35	1008.93-998.93	10
ED-3	12/7/2005	12/20/2005	AEM	Shallow Residuum	1028.89	32.7	996.19	1.00	22.70-32.70	1006.19-996.19	10
ED-4	12/7/2005	12/20/2005	AEM	Shallow Residuum	1028.81	34.3	994.51	1.00	24.30-34.30	1004.51-994.51	10
ED-5	12/7/2005	12/20/2005	AEM	Shallow Residuum	1031.5	42.1	989.40	1.00	32.10-42.10	999.40-989.40	10

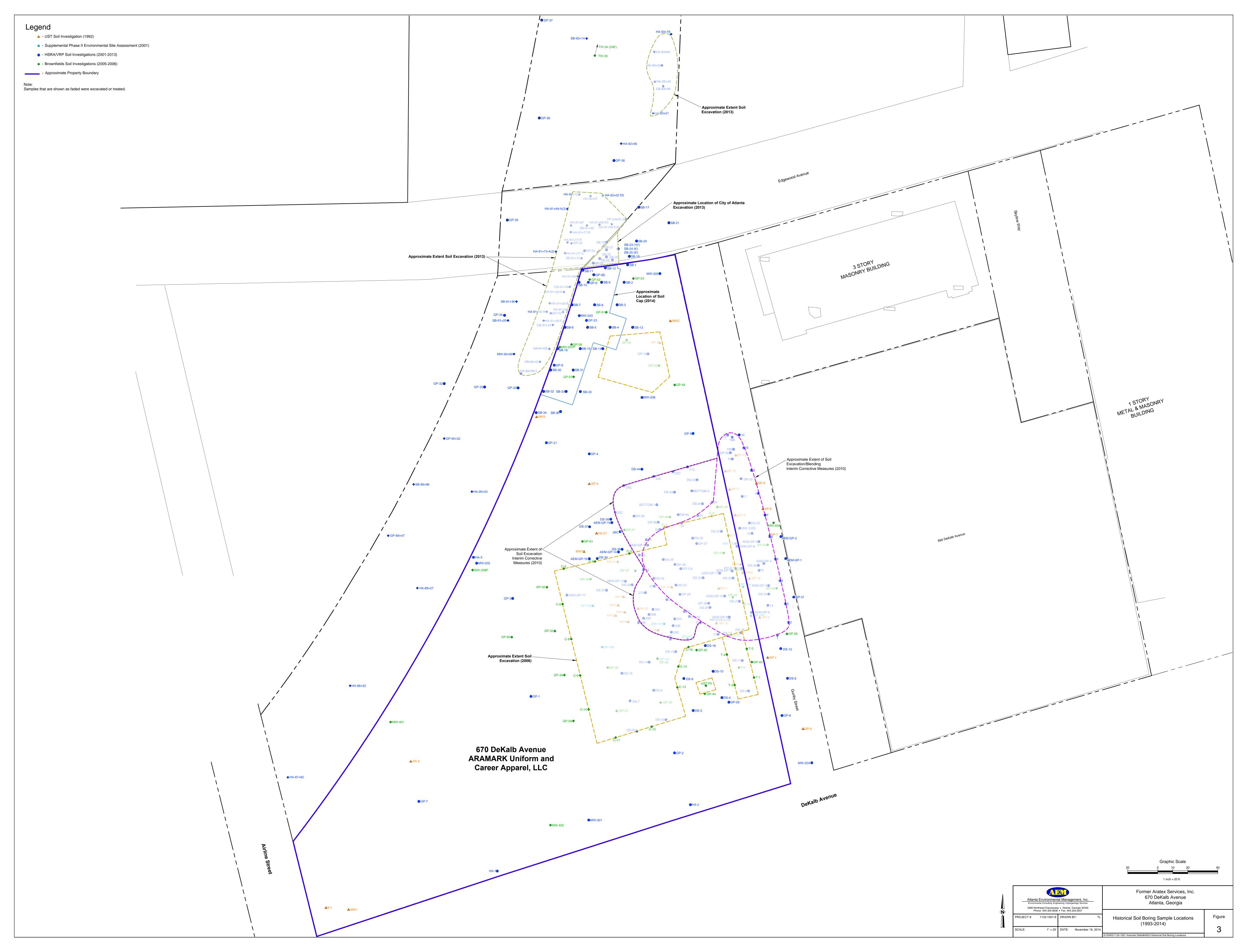
NA- Not Available

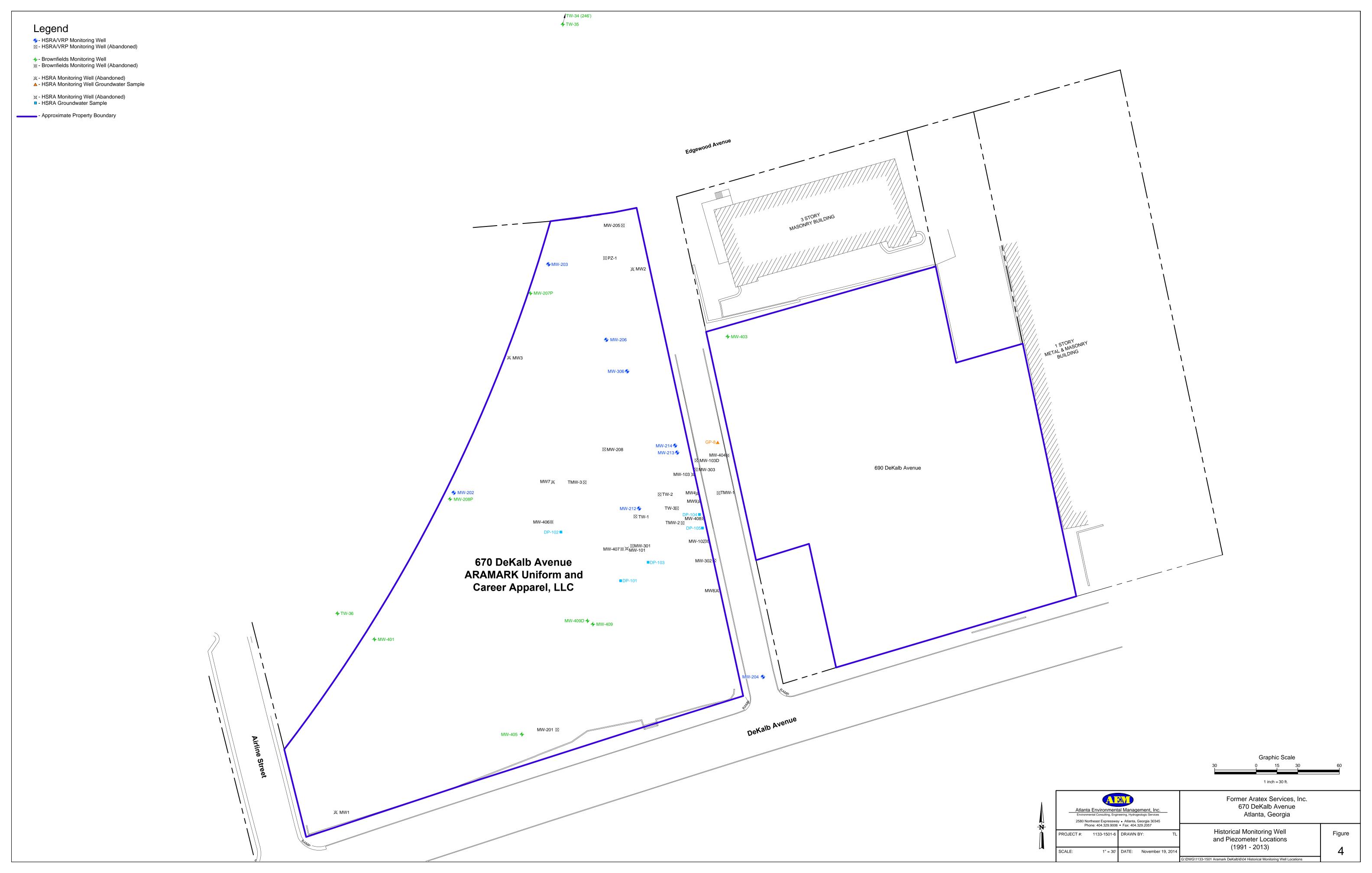
AMSL - Above Mean Sea Level

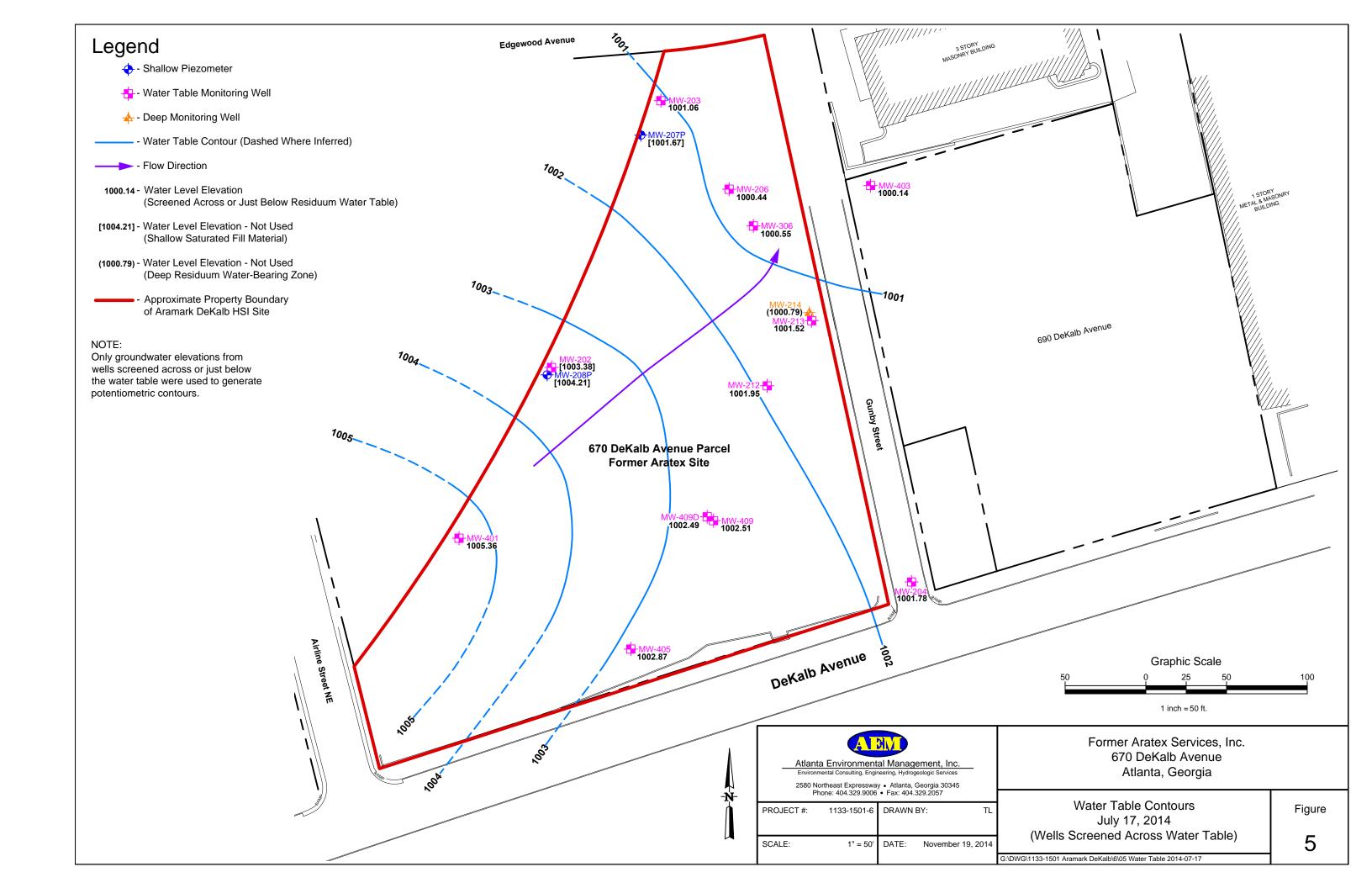
TOC - Top Of Casing

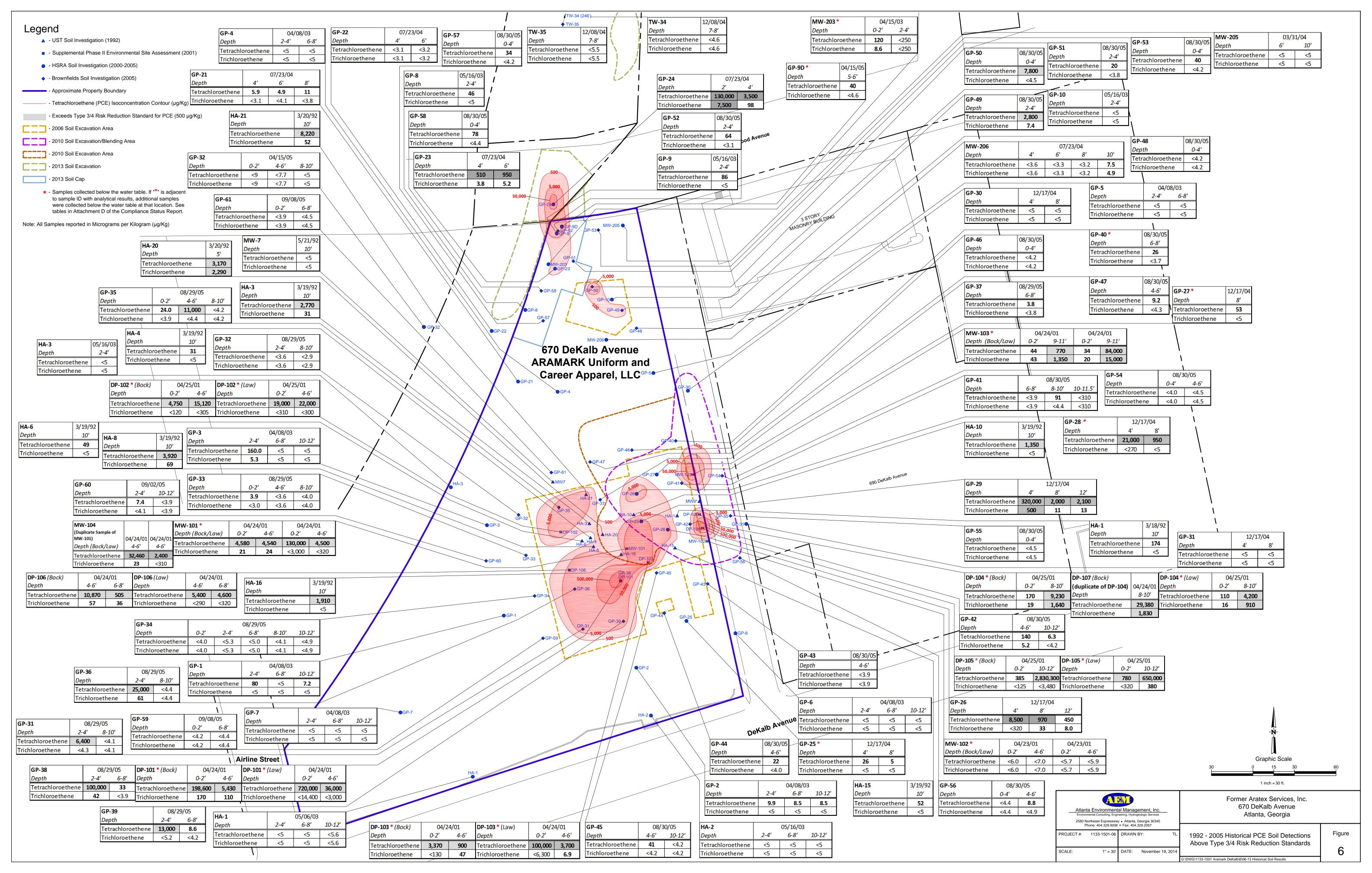
ft - feet

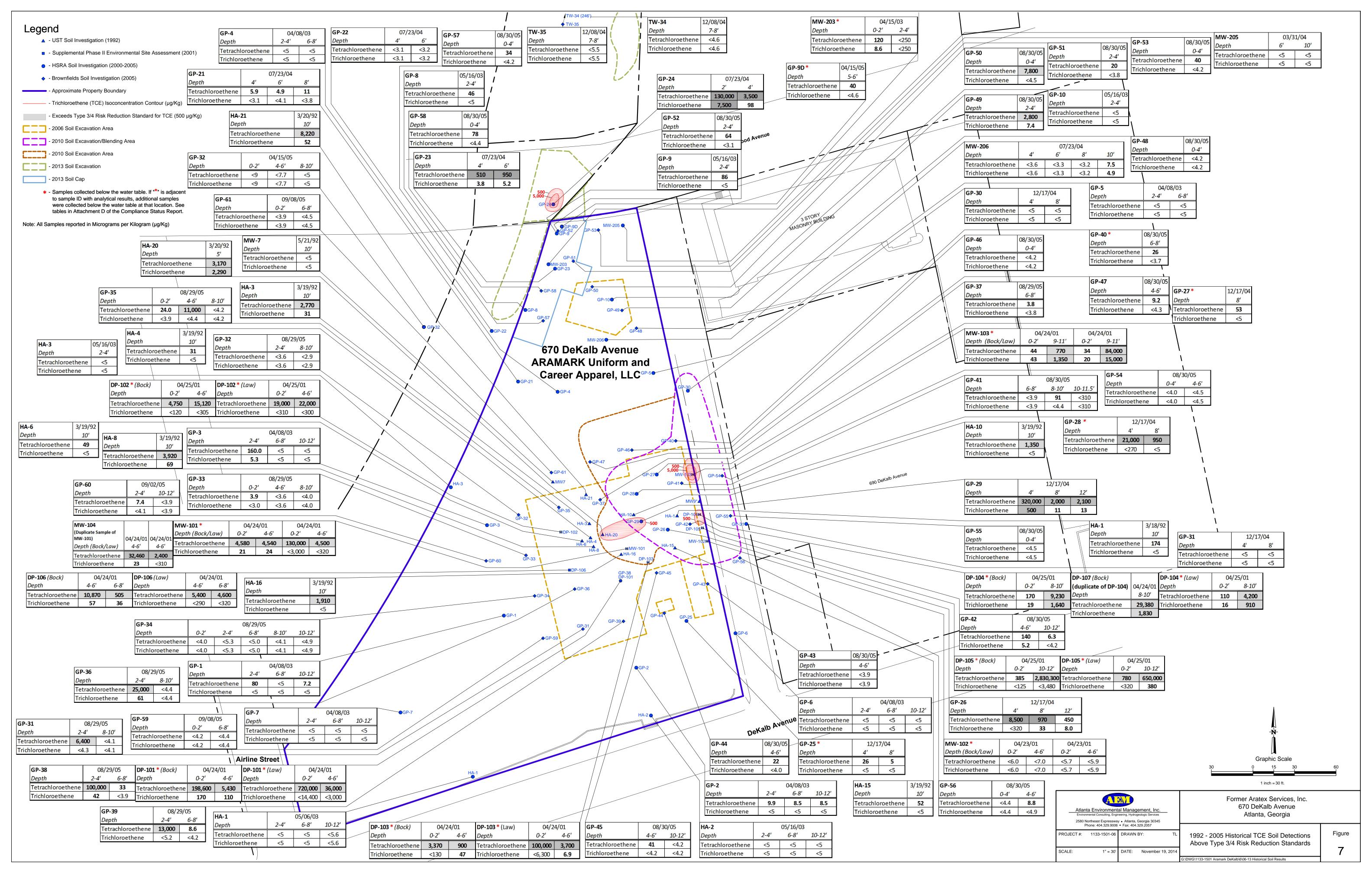

in - inches

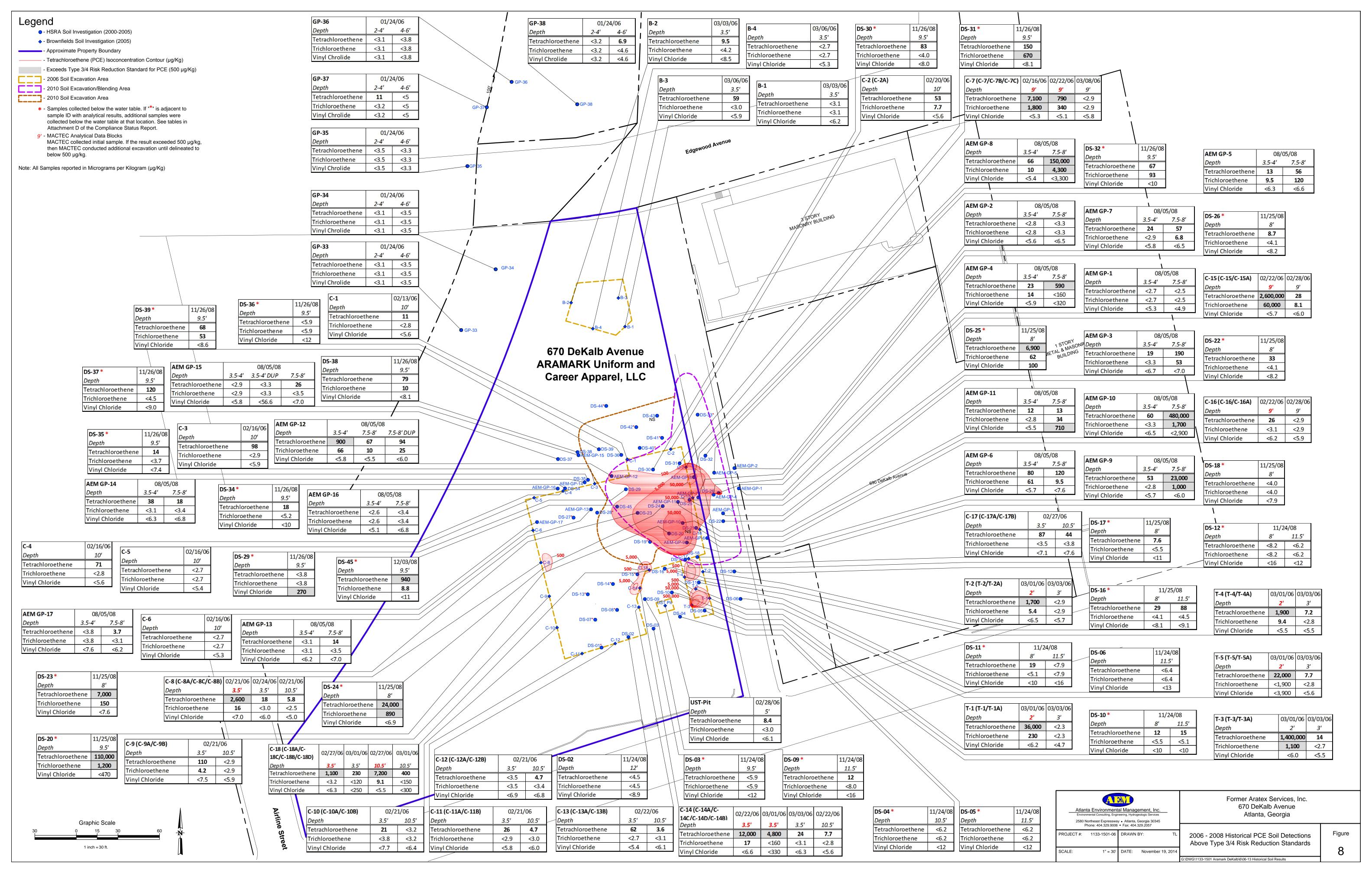

¹ Not surveyed (In- situ chemical oxydation pilot test temporary wells)

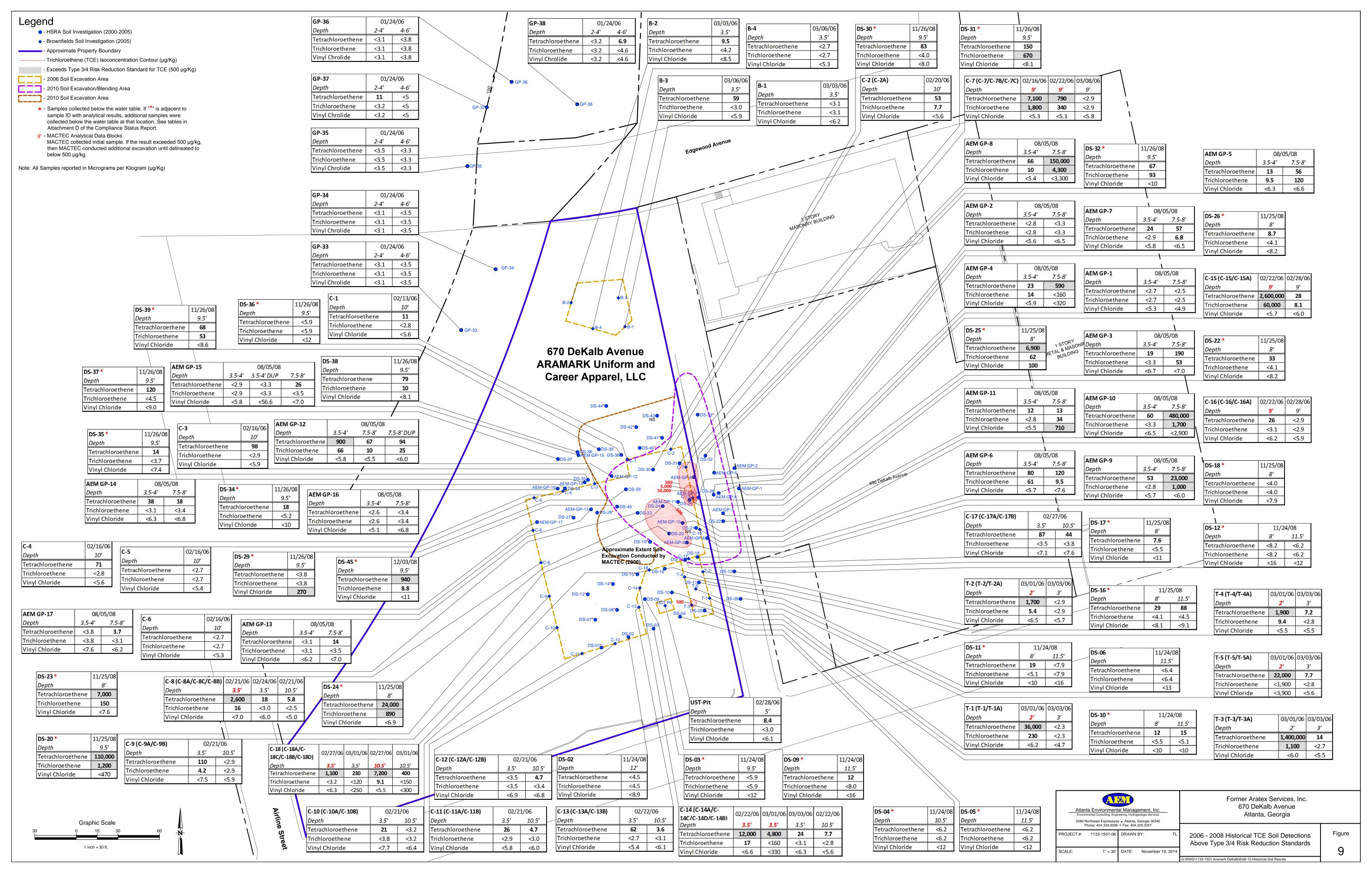

FIGURES

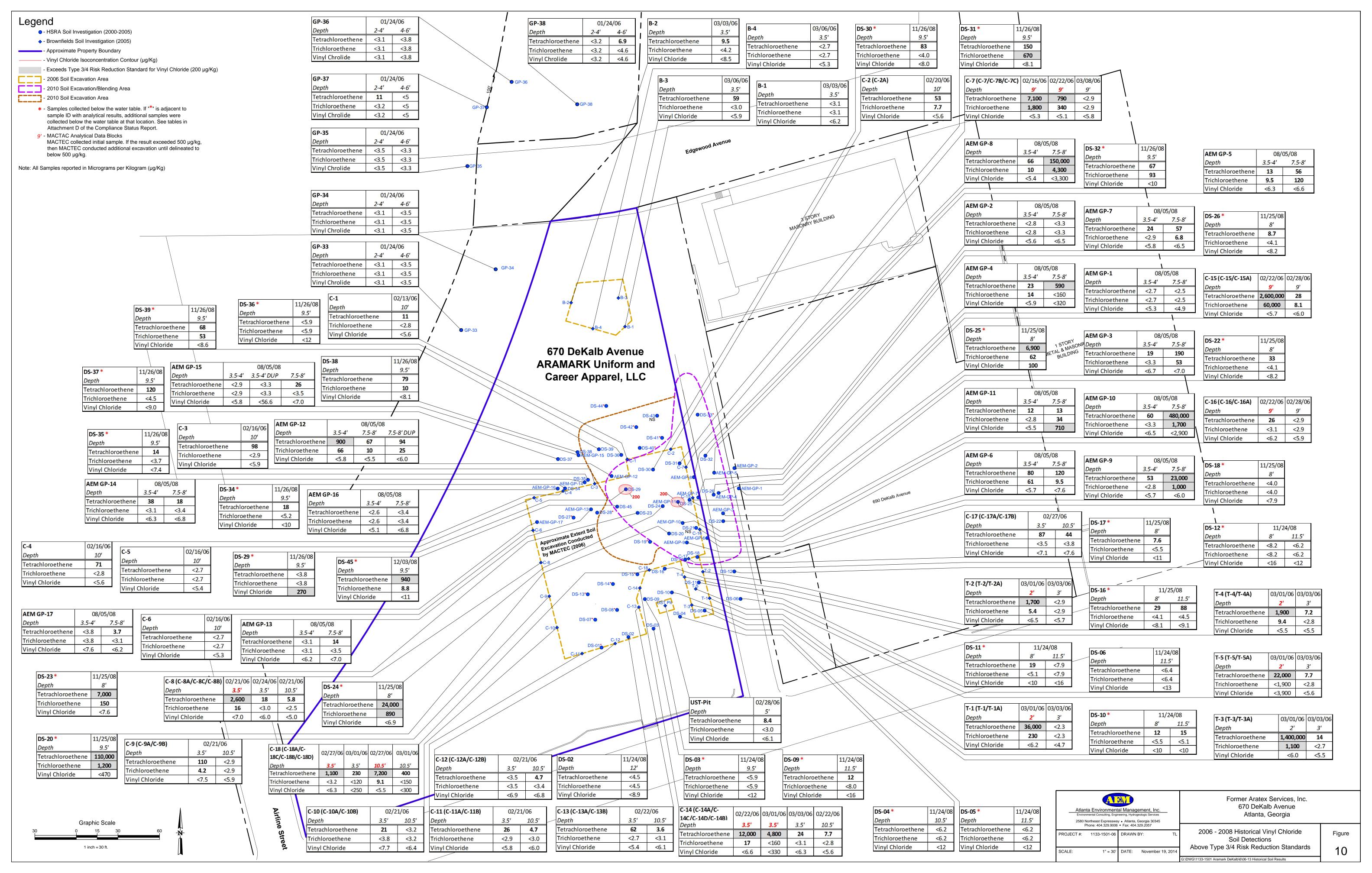


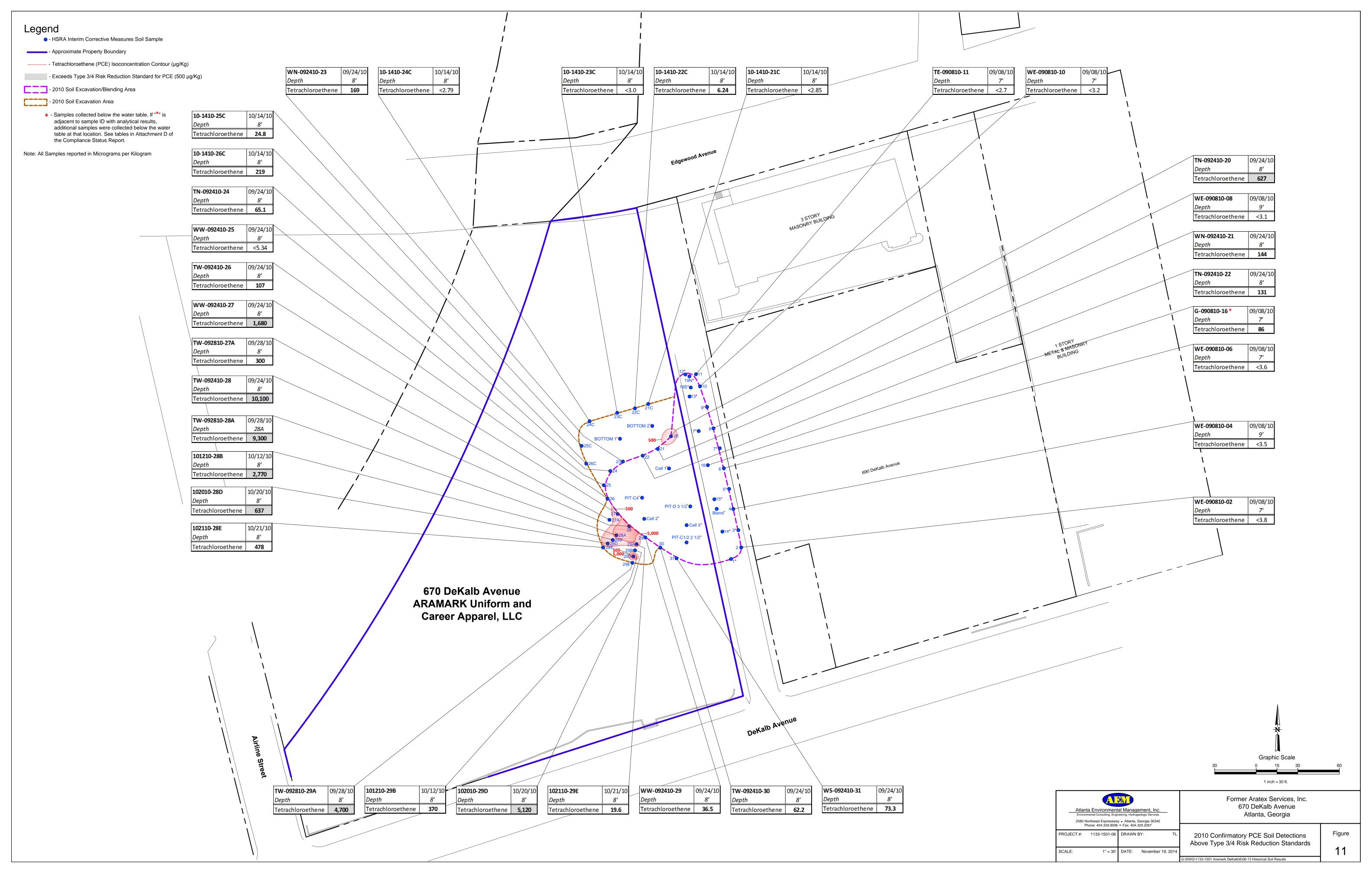


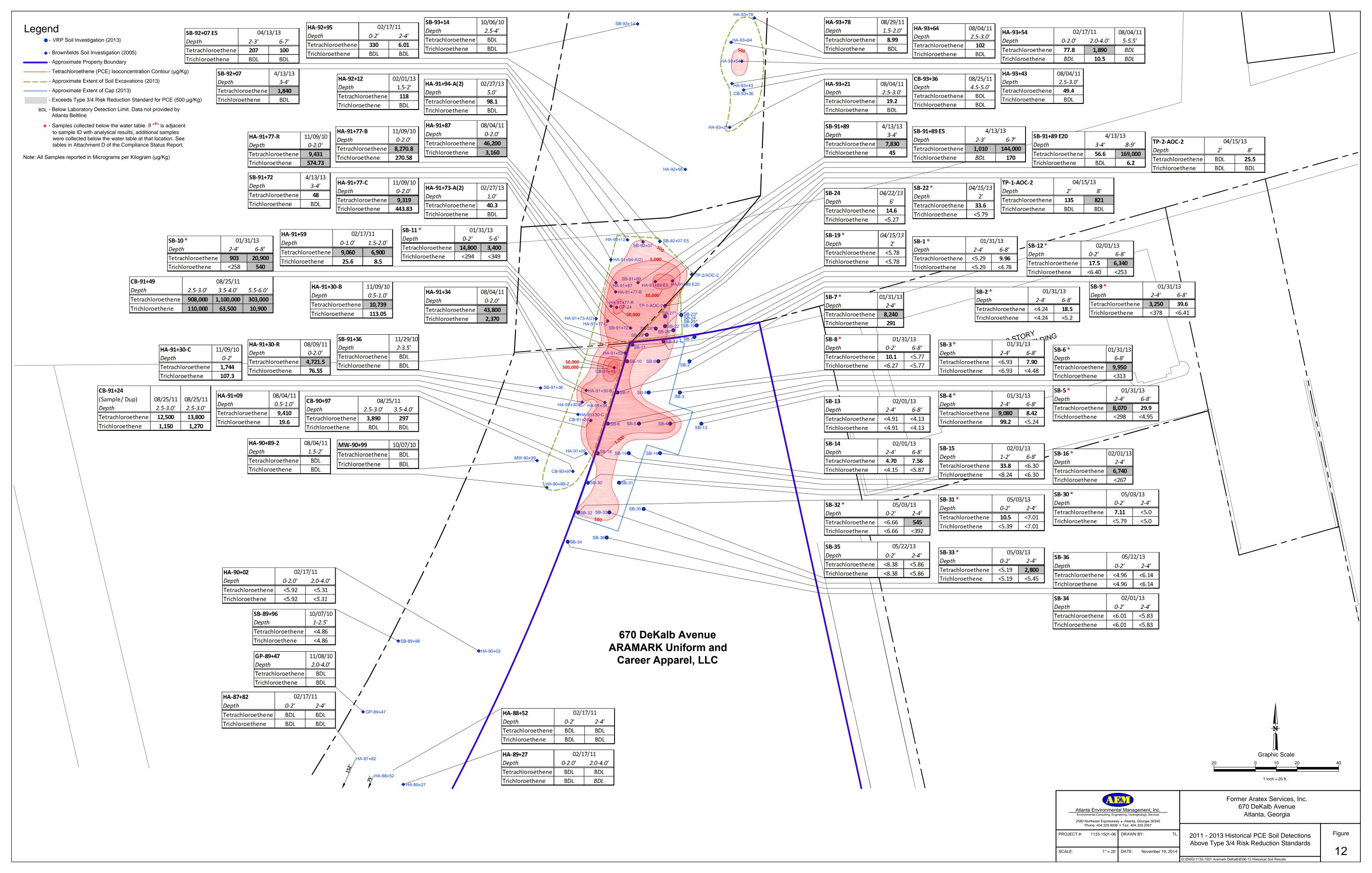


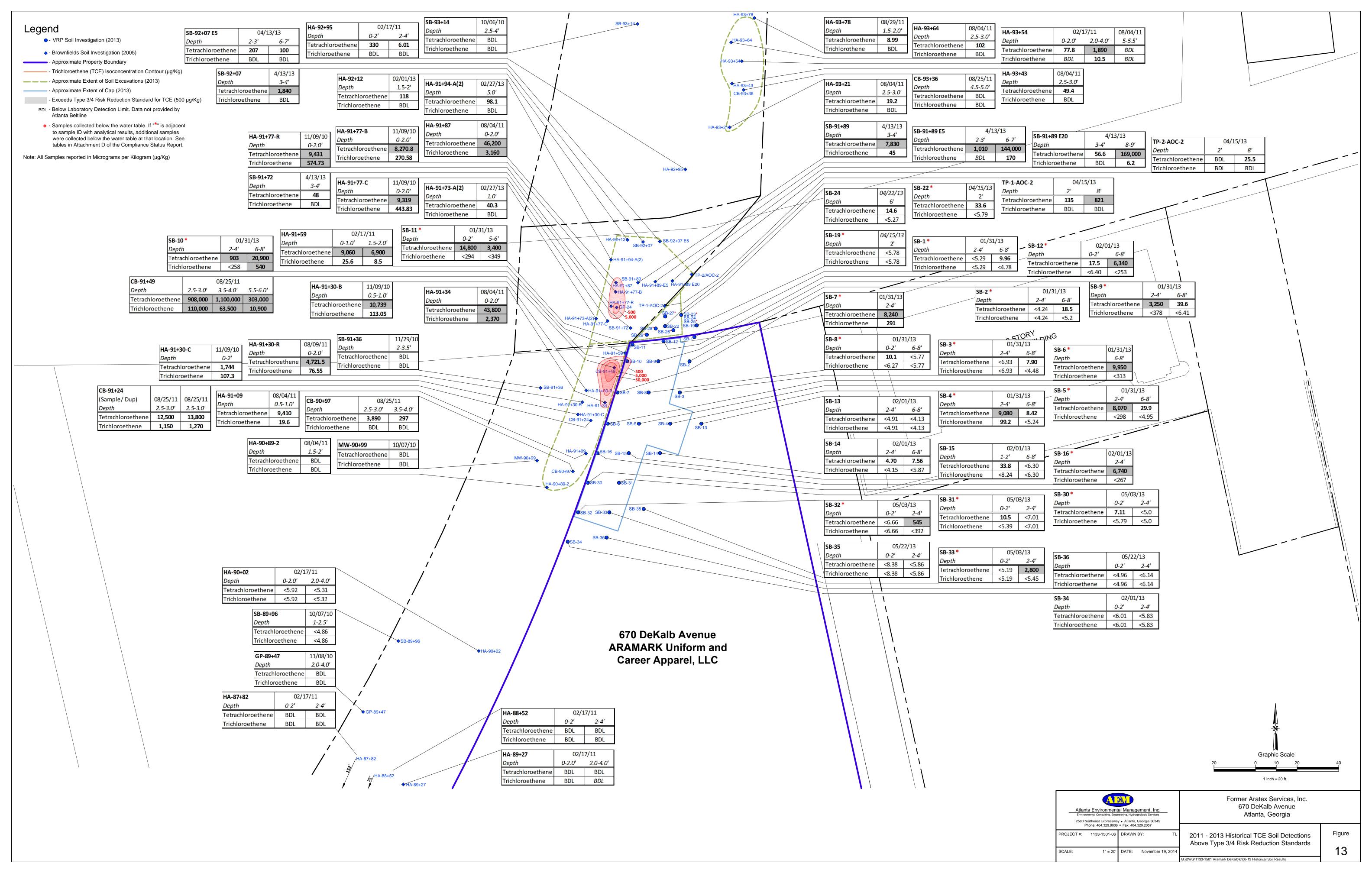


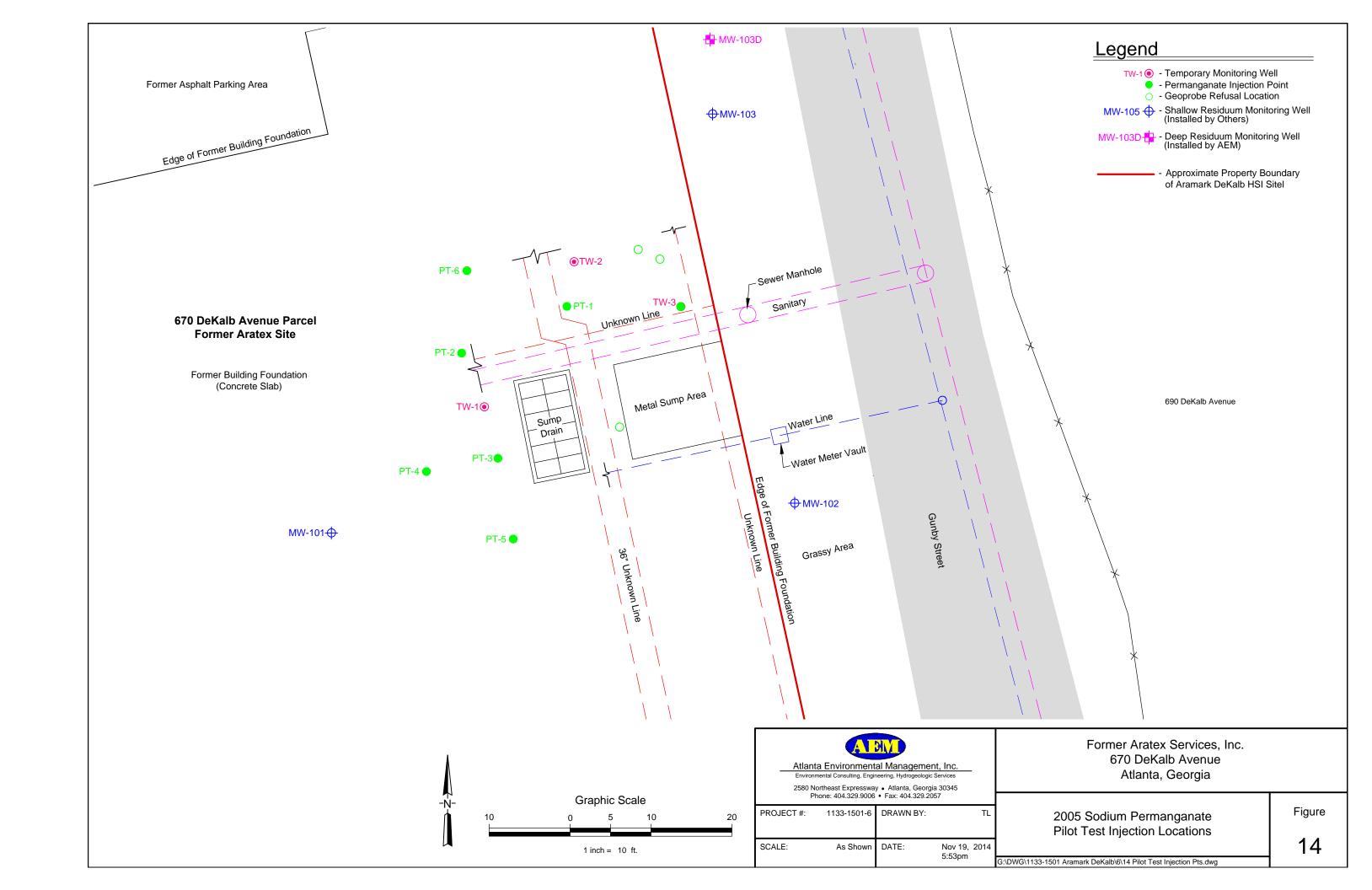


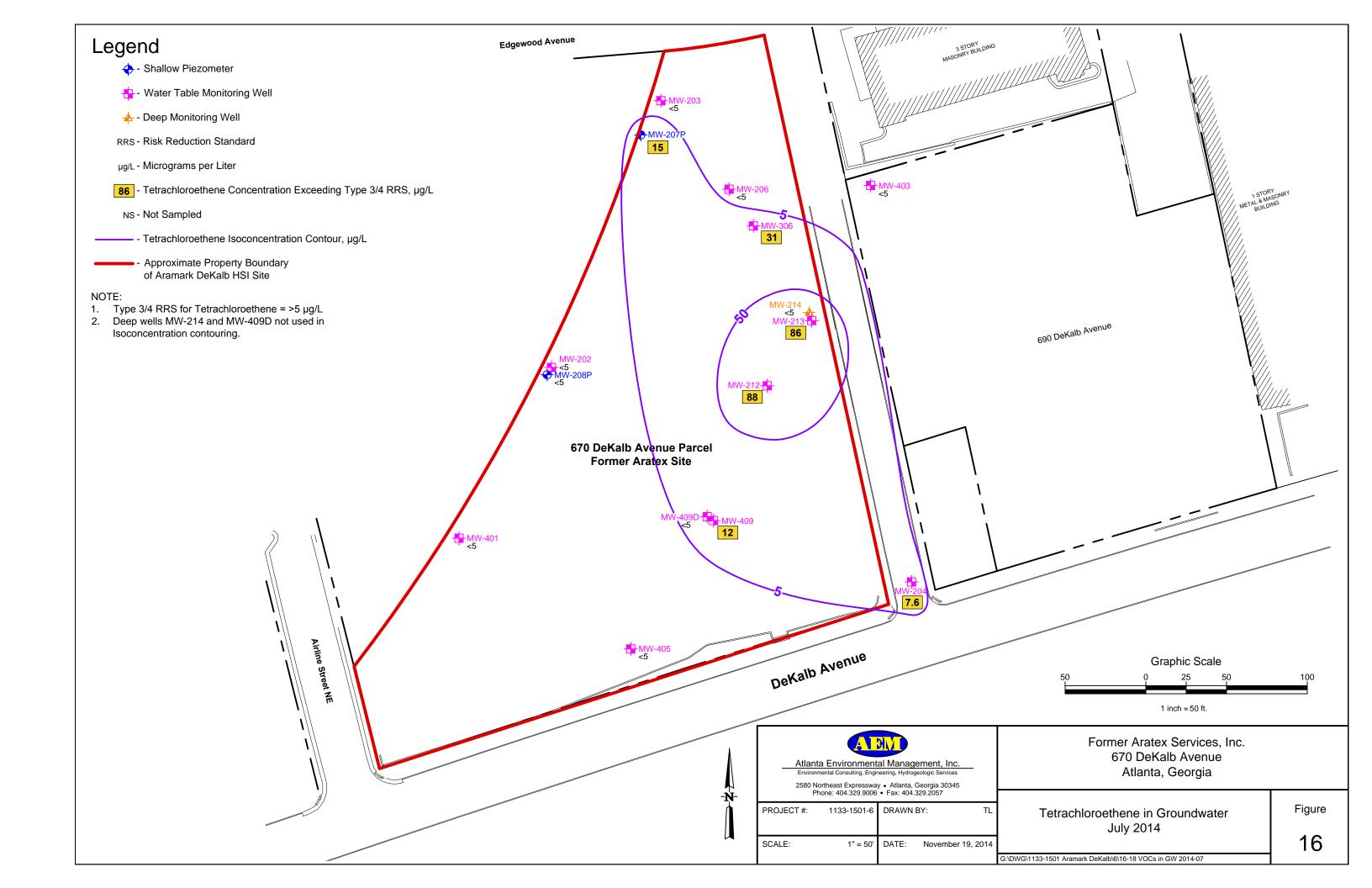


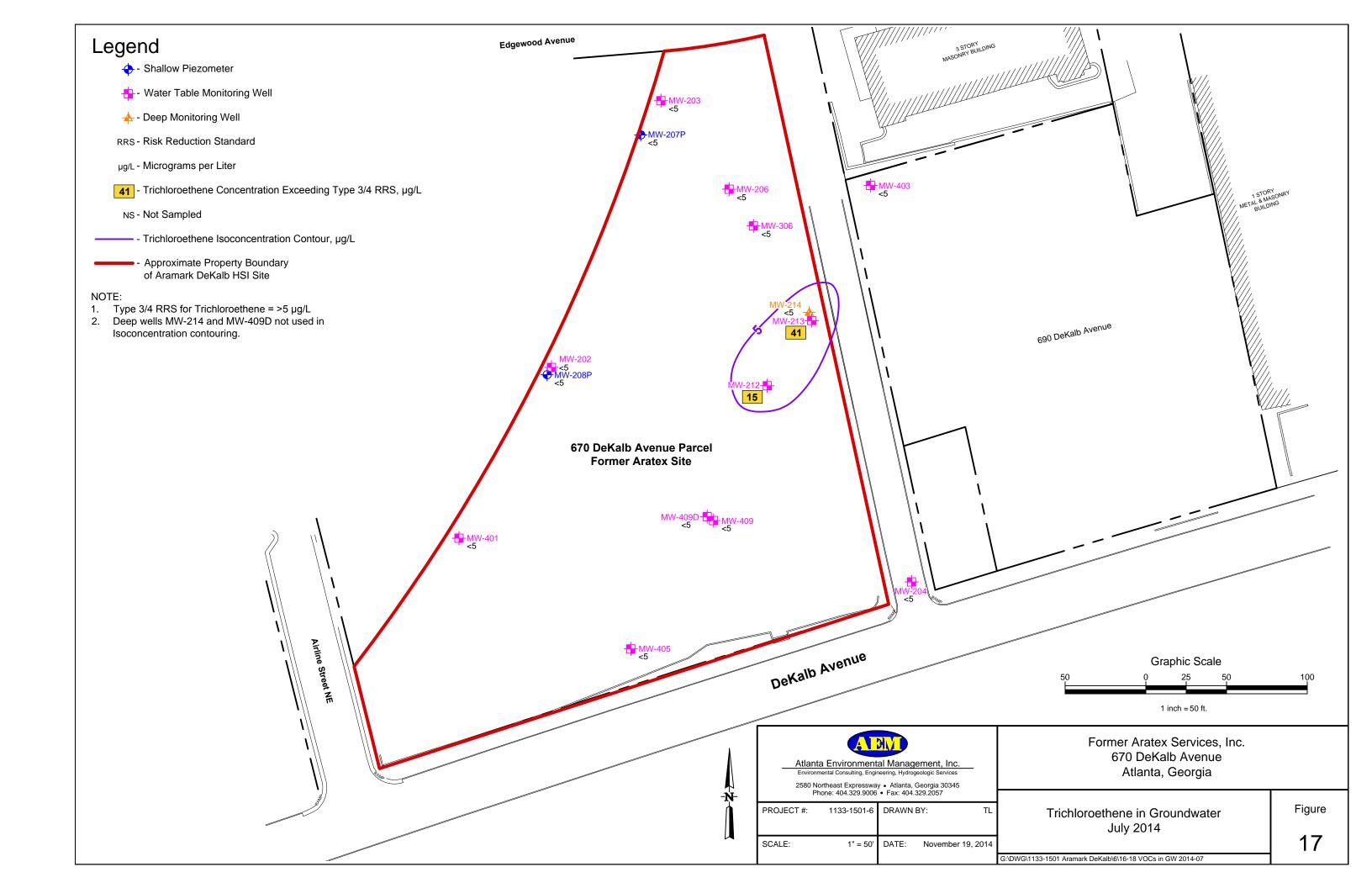


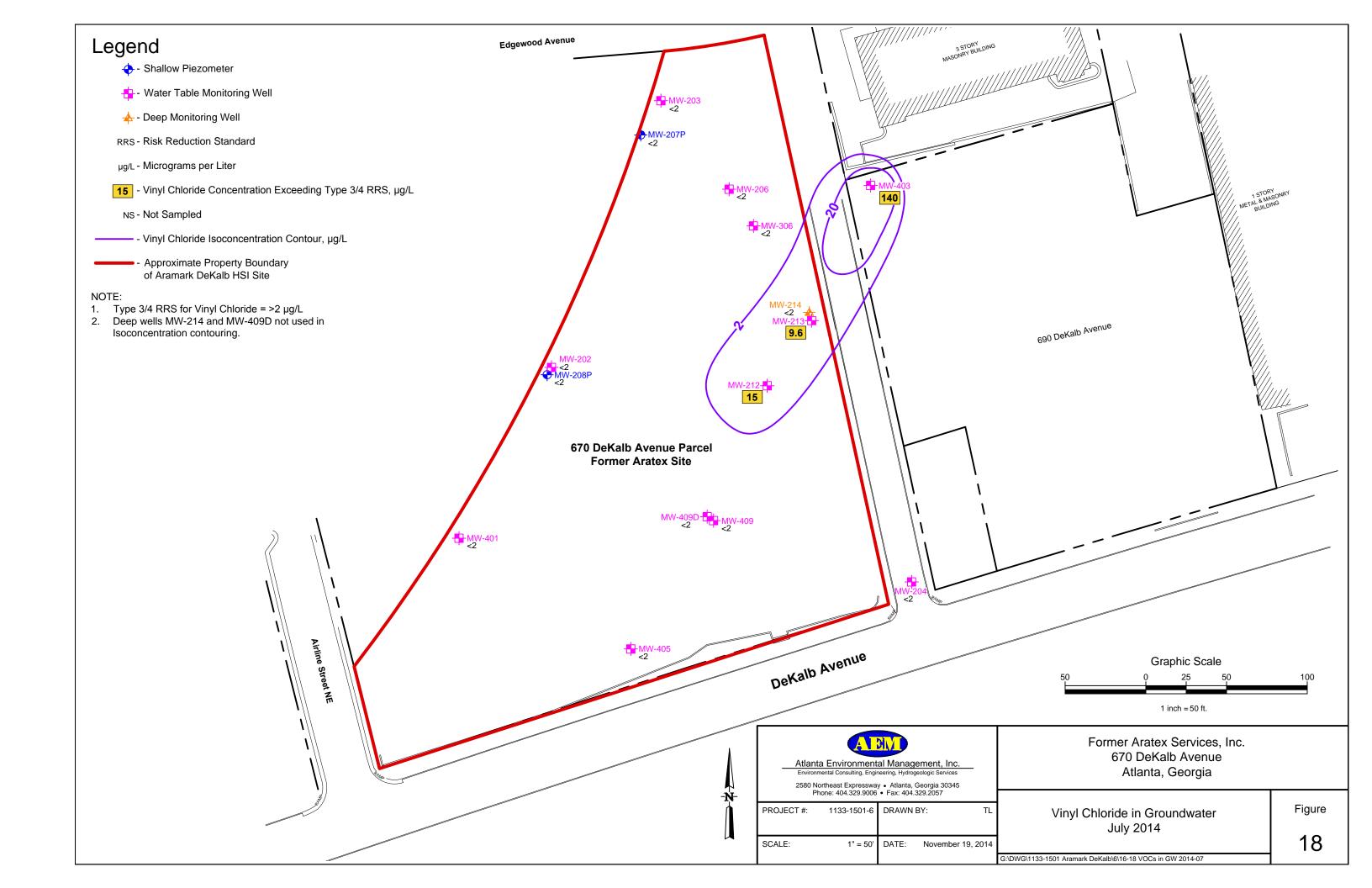


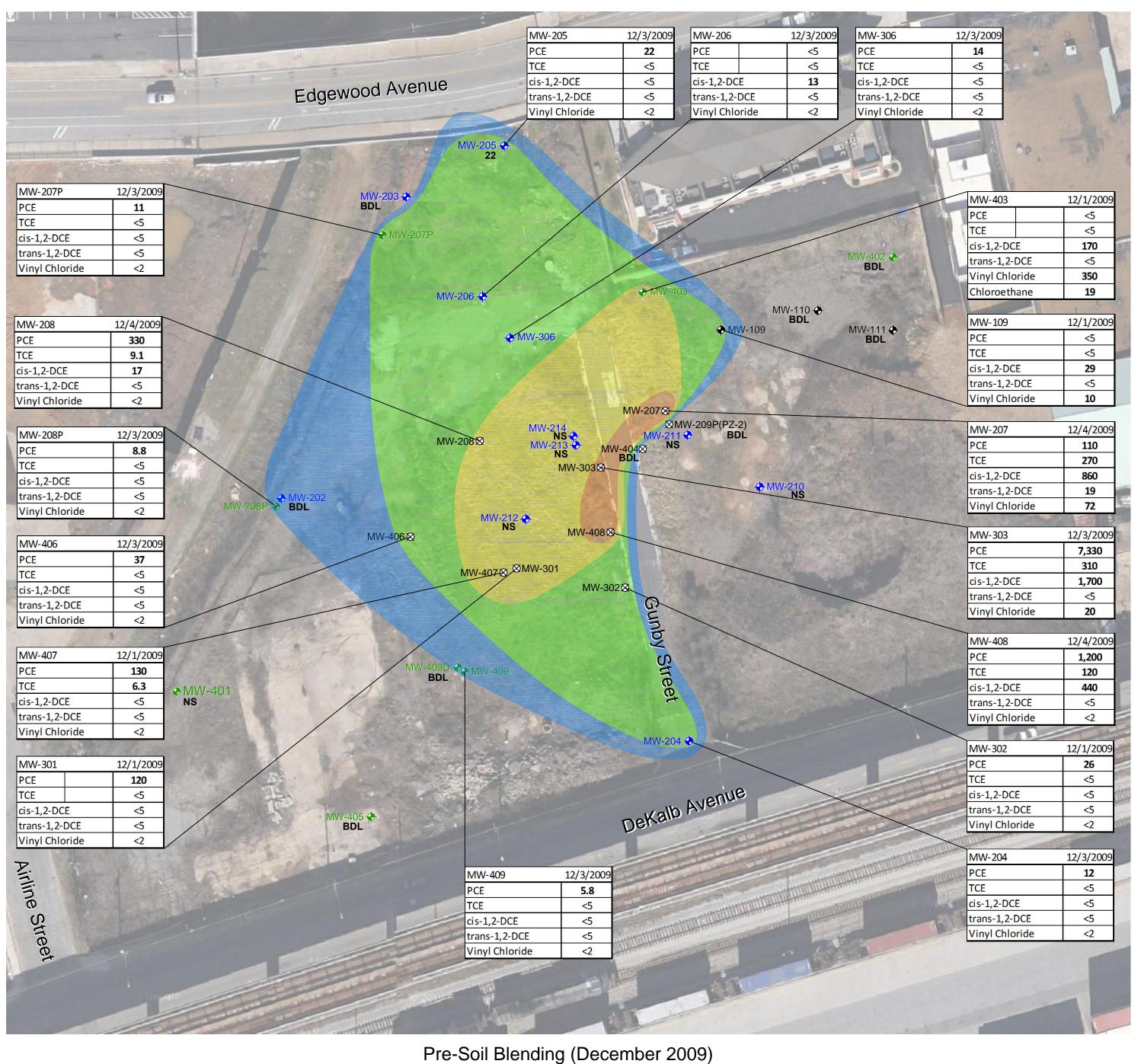












lending (December 2009)
Post-Soil Blending (July 2014)

- 5 to 9 μg/L

NS - Not Sampled

<2, <5 - Below Detection Limit

348 - VOCs Concentration, μg/L

Atlanta Environmental Management, Inc.

Environmental Consulting, Engineering, Hydrogeologic Services

2580 Northeast Expressway • Atlanta, Georgia 30345
Phone: 404.329.9006 • Fax: 404.329.2057

PROJECT #: 1133-1501-6 DRAWN BY: TL

Total VOCs in Groundwater
Pre and Post Soil Blending

SCALE: 1"=40' DATE: November 19, 2014

Figure

19

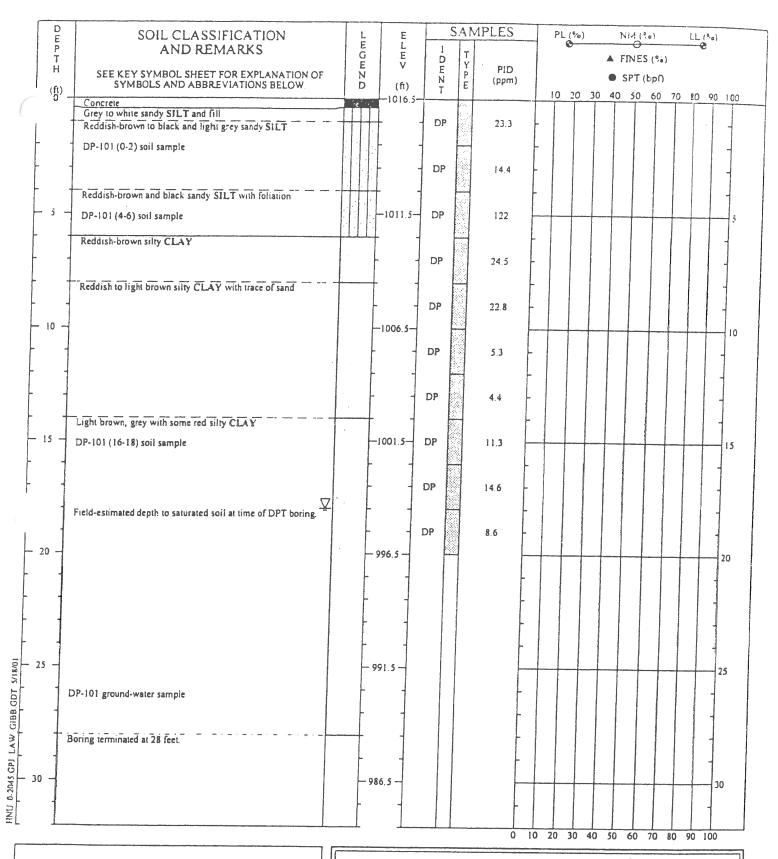
ATTACHMENT A Available Historical Soil Boring Logs/ Monitoring Well Construction Logs

DE370T

AND ASSOCIATES, INC. Environmental engineers LOG OF BORING: B1

Page 1 of 2

CLIE	NT: ARAT	ΕX						LOCATION: ATLANTA, GA		<u> </u>				
DATE	E DRILLED:	5/1	9/92)				SURFACE ELEVATION: N.	A Feet M	1SLD				
DRIL	ILLING METHOD: HOLLOW STEM AUGER ILLING COMPANY: LAYNE ENVIRONMENTAL						GER	TOTAL DEPTH: 105 Feet						
DRIL	LING COMPA	ANY:	LA	YNE	ENV1	RON	MENTAL	LOGGED BY: PAUL CHARLES LUNA						
DЕРТН feet	SAMPLE SAMP. NO.	RECOVERY (in.)	N-VALUE	FIELD VOC (ppm)	GRAPHIC LOG	SOIL CLASS	DESC	RIPTION AND REMARKS		WELL DIAGRAM				
5- 10- 15- 20- 30-						CL		feet, cuttings reveal a tan sandy CLAY ned sand, moderately well bound	ABANDONED WITH CEMENT/BENTONITE					
35-	B1-35FT	18	33	ND		SC	White/tan clayey SAN minor gravel present,		ABANDONED WI		-			
45-	B1-45FT	24	25	ND		SM	Tan, white, black clay banded, medium dense	ey SAND "micaceous, v.f. grained sand, well bound		000				
50	B1-50FT	24	31	ND	9		Brown silty SAND Micaceous, banded		Y		-			
55-	B1-55FT	2	50	ND		-	Brown, tan, and white mottled, minor gravel p							
60-	81-60FT	18	35	ND			Tan, black silty SAND micaceous, banded, zo tan, black and white s	ones of coarse grained gravel, v.f. grained sands and present			- - -			


JOB NUMBER: 1309

DE370T

AND ASSOCIATES, INC. Environmental engineers LOG OF BORING: B1

Page 2 of 2

CLIENT: ARATEX LOCATION: ATLANTA, GA DATE DRILLED: 5/19/92 SURFACE ELEVATION: NA Feet MSLD DRILLING METHOD: HOLLOW STEM AUGER TOTAL DEPTH: 105 Feet DRILLING COMPANY: LAYNE ENVIRONMENTAL LOGGED BY: PAUL CHARLES LUNA GRAPHIC LOG CLASS RECOVERY (in.) FIELD VOC N-VALUE SAMP. NO (mdd) feet DESCRIPTION AND REMARKS WELL DIAGRAM Brown, black silty SAND 23 ND micaceous, banded, trace gravel (0.25 cm), white feldspar present B1-65FT 24 65v.f. grained Brown, black silty SAND micaceous, banded B1-70FT : 24 21 ND GC Pink sandy GRAVEL minor clay, 3 cm sized gravel, spoon wet, spoon refused B1-75FT 2 R ND 75 SC Ten clayey SAND well bound, coarse grained sand, some gravel (2 cm), refused B1-80FT , ND 80 SM Brown, black and tan silty SAND B1-85FT v.f. grained, banded, minor gravel (0.75 cm) 85 12 46 ND Brown, tan silty SAND micaceous, sampler refused B1-90FT ND 90-Brown, black and white silty SAND 95 B1-95FT 6 R ND banded, v.f. grained, sampler refused Dark brown silty SAND fine to medium grained, minor gravel present, sampler refused B1-100FT ! 4 R ND 100-Black, dark brown silty SAND miceceous, v.f. grained sand, weathered bedrock present, refused B1-105FT ND 105-Tagged bedrock with spoon at 105 feet 110-115 120

DRILLER: ESN
EQUIPMENT: Mega Probe
MFTHOD: Direct Push
DIA: 2-inch

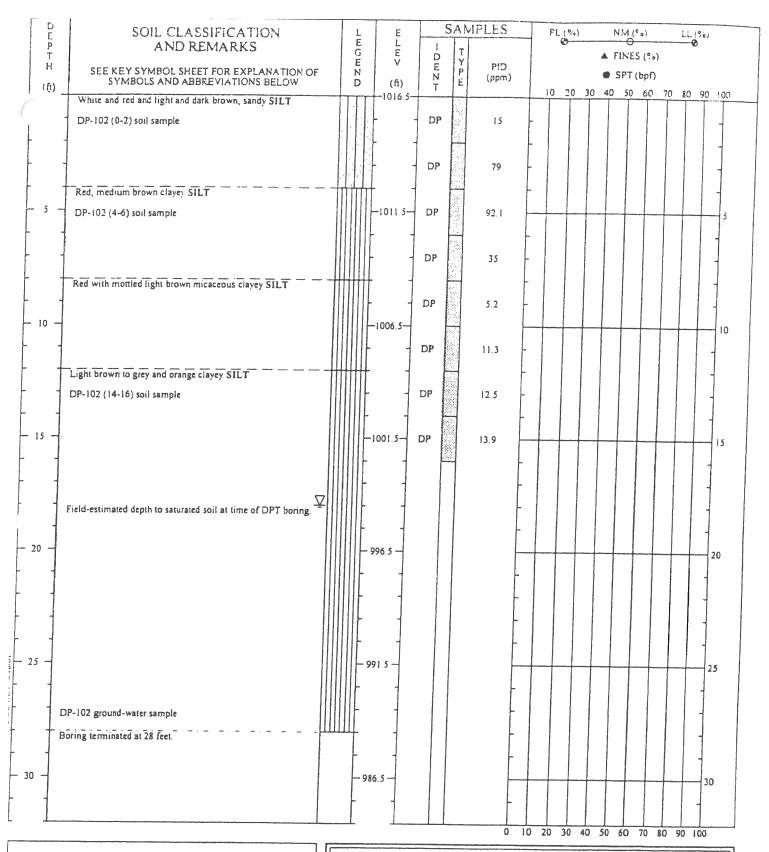
ARKS: Boring filled with grout upon completion of sampling.

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BEWEEN STRATA ARE APPROXIMATE.

SOIL TEST BORING RECORD

PROJECT: Dekalb Avenue

DRILLED: April 24, 2001


BORING NO.: DP-101

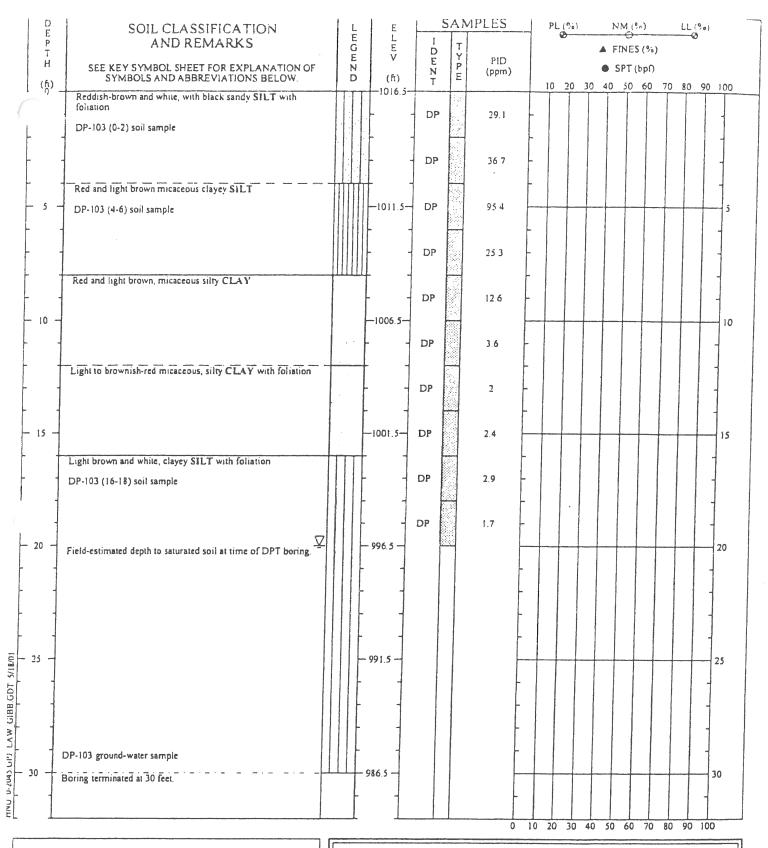
PROJ. NO.: 12000-0-2045

PAGE | OF |

DRILLER: EQUIPMENT: Mega Probe METHOD: Direct Push HC LA.:

2-inch

RI KS: Boring filled with grout upon completion of sampling.


THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION OCATION. SUBSURFACE CONDITIONS AT OTHER OCATIONS AND AT OTHER TIMES MAY DIFFER. NTERFACES BEWEEN STRATA ARE APPROXIMATE.

SOIL TEST BORING RECORD

PROJECT: Dekalb Avenue

DRILLED: April 25, 2001 BORING NO.: DP-102

PROJ. NO.: 12000-0-2045 PAGE 1 OF 1

DRILLER: ESN
EQUIPMENT: Mega Probe
METHOD: Direct Push
H DIA: 2-inch

US: Boring filled with grout upon completion of sampling.

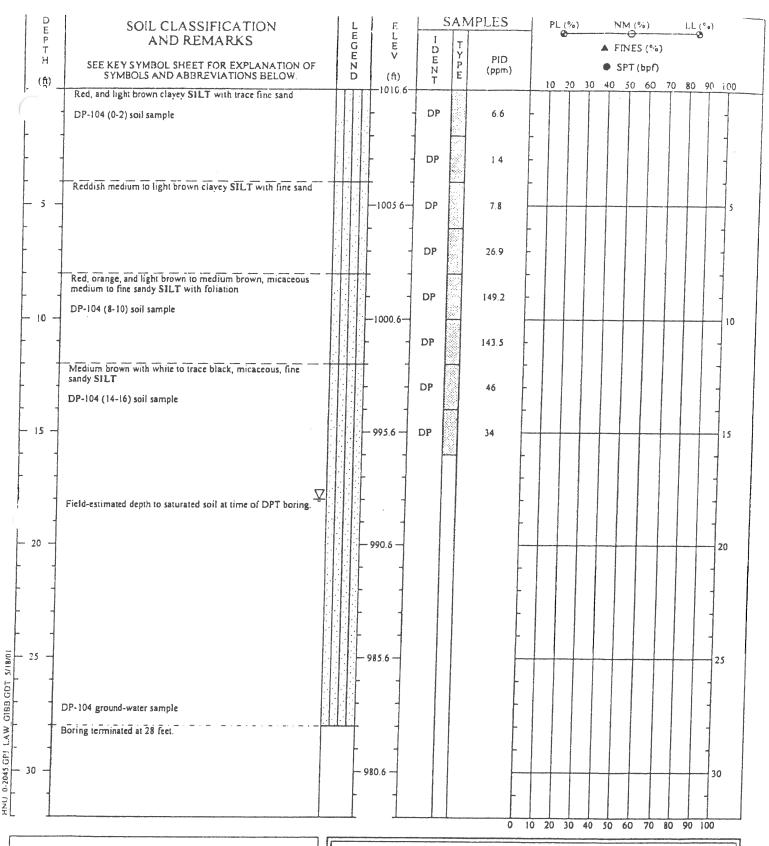
THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BEWEEN STRATA ARE APPROXIMATE.

THE ANSITIONS BETWEEN STRATA MAY BE GRADULA!

SOIL TEST BORING RECORD

PROJECT: Dekalb Avenue

DRILLED: April 24, 2001


BORING NO.: DP-103

PROJ. NO.: 12000-0-2045

PAGE 1 OF 1

DRILLER: ESN
EQUIPMENT: Mega Probe
METHOD: Direct Push

DIA.: 2-inch

RKS: Boring filled with grout upon completion of sampling.

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BEWEEN STRATA ARE APPROXIMATE.

SOIL TEST BORING RECORD

PROJECT: Dekalb Avenue

DRILLED: April 25, 2001

BORING NO.: DP-104

PROJ. NO.: 12000-0-2045

PAGE 1 OF 1

	SOIL CLASSIFICATION	1.1-	1 5	AMPLES	1 2		
P	AND REMARKS	E E V	1	T	PL (%)	NM (%)	LL(°°)
H	SEE KEY SYMBOL SHEET FOR EXPLANATION OF	E V	DENT	Y DID		▲ FINES (%)	
(fi	SYMBOLS AND ABBREVIATIONS BELOW.	D (fi)	T	P (ppm)	10 20 3	• SPT (bpf) 0 40 50 60 7	70 80 90 100
	Red, light brown to dark brown micaceous firm silty CLAY	1011.7	DCD				0 00 70 100
L	DP-105 (0-2) soil sample		DCP	4.5			
	Red, light brown micaceous firm silty fine SAND		1				
	1		DCP	2.3	-		
	1				-		
- 5	1	-1006.7-	DCP	4.9			5
	Light brown and red, firm, micaceous, sandy, SILT with fine sand				-		
	DP-105 (10-12) soil sample	-	DCP	5.1	-		
-	os (16 12) son sample	-			-		
-		-	DCP	336	-		
- 10	Ked, medium to light, brown, micaceous, sandy SILT with	1001.7-					10
+	loliation		DCP	576	.		
}	DP-105 (12-14) soil sample				. 1		
-			DCP	84.9	.		
-							
- 15 -	[:	996.7					
-	Field estimated death to account of the state of the stat						15
-	Field-estimated depth to saturated soil at time of DPT boring.						
į	ŀ						
7							
- 20 -				ļ.			
		991.7					20
	- 1			ŀ			
				+			
				-			
				-			
- 25 -	DP-105 ground-water sample	986.7		-			25
t t	Boring terminated at 26 feet			-			
1		+ +		-			
+ 1		+ +		-			
-				-			
- 30 -		981.7					30
		1					
				0 1	0 20 30 40	50 60 70 80	90 100

DRILLER: **ESN** EQUIPMENT: Mega Probe METHOD: Direct Push H-DIA.: 2-inch

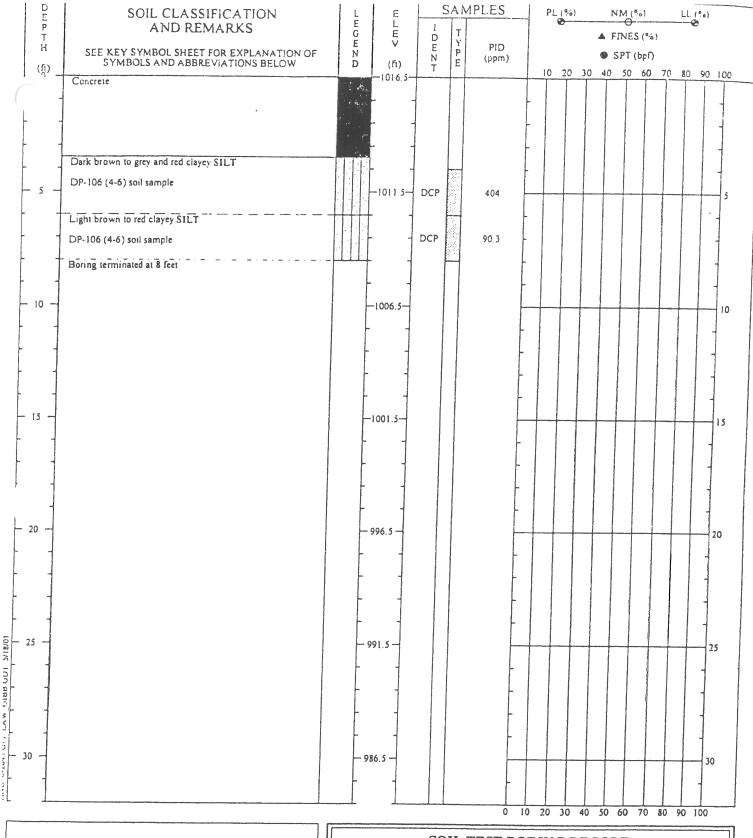
וואותו חומםיחחו אואיחו

UKS: Boring filled with grout upon completion of sampling.

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. NTERFACES BEWEEN STRATA ARE APPROXIMATE.

SOIL TEST BORING RECORD

PROJECT: Dekalb Avenue


DRILLED: April 25, 2001

BORING NO.: DP-105

PROJ. NO.: 12000-0-2045

PAGE 1 OF 1

DRILLER: **ESN** EQUIPMENT: Mega Probe METHOD: Direct Push DIA.: 2-inch

TUD BBIU

UKS: Boring filled with grout upon completion of sampling.

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BEWEEN STRATA ARE APPROXIMATE.

SOIL TEST BORING RECORD

PROJECT: Dekalb Avenue

DRILLED: April 24, 2001 **BORING NO.: DP-106**

PROJ. NO.: 12000-0-2045

PAGE | OF 1

	Sc	il B	orin	a F	3_10	1		
Project: ARAMARK - Dekalb		-		y i	7-10	1	Total (October 1997)	
	Drill Rig: Sonic Rig						Top of Casing Elevation	
Date: April 18, 2003		Sampler: 10 Ft. Core					Initial Groundwater Dep	
Logged By: Tony L. Gordon P.G.	Hole Diam	eter:	6-inch				Final Groundwater Dep	th: Not Measured
Description		USCS Class) Depth	Sample Interval	Recovery (Feet)	PID (ppm)		
Concrete Pad (floor) with gravel base			- 0 -	П				
Red-brown, black CLAY with fine-coarse silty sar trace-little gravel and concrete fragments, trace to glass, metal, etc.) very low-low plasticity, moist -	rash (broken	CL	- 1 2 3 4 5 6 7 8 0			(22.0)		
Red-brown-orange brown, silty fine-medium SAND trace-little clay, very low plasticity, moist-wet	D,	ML	9		0.0/10.0	(5.8)		
Orange brown, gray, very stiff, mottled CLAY, little- line-coarse sand, medium plasticity, moist	-some (CL -	13 —		(4.8)		
Orange brown-tan-gold SILT, trace-some fine sand lay, banded, mottled, micaceous, non-plastic, wet	, trace M		16—			i.8)		
Atlanta Environmental Management, Inc. Environmental Consulting Engineering Hydrogeologic Services 2580 Northeast Expressway - Atlanta Georgia 30345 Telephone: (404) 329-9006 - Fax: (404) 329-2057	1 2 3	lotes: USCS Groun PID re	= Unified dwater m adings, ir	easur ppm	ed from t , were m	op of ca easured	stern. using. during boring installation Print Date: Jun 04, 2003 - 9:44am	Project No. 1133-04 Page 1 of 2

Soil Boring B-101									
Project: ARAMARK - Dekalb		the last divine a		9 1	J-10	1	T- (0 : 5:		
	Drill Rig: Sonic Rig					Top of Casing Elevation			
Date: April 18, 2003		Sampler: 10 Ft. Core Hole Diameter: 6-inch					Initial Groundwater Dep		
Logged By: Tony L. Gordon P.G.	Hole Diam	leter:	6-Inch		T		Final Groundwater Dep	th: Not Measured	
Description		USCS Class	00 Depth	Sample Interval	Recovery (Feet)	PID (ppm)			
Orange brown-tan-gold SILT, trace-some fine sa clay, banded, mottled, micaceous, non-plastic, w		ML	- 21 - - 21 -						
Orange brown, tan, gray, gold silty fine SAND, tra micaceous, non-plastic, wet		SM	- 22		10.0/10.0	(7.4)			
Orange brown-tan-white-pink silty fine-coarse SA little quartz gravel, trace-little clay, low-medium pl micaceous, wet		SM/	- 27		7.0/7.0	(3.6)			
Terminate Soil Boring 35 Ft. bgs		-	- 34 — - 35 — - 36 — - 37 — - 38 — - 39 — - 40 —			2.1)			
Atlanta Environmental Management, Inc. Environmental Consulting, Engineering, Hydrogeologic Services 2580 Northeast Expressway • Atlanta Georgia 30345 Telephone: (404) 329-9006 • Fax: (404) 329-2057	Notes: 1. USCS = Unified Soil Classification System. 2. Groundwater measured from top of casing. 3. PID readings, in ppm, were measured during boring installation File name: C:\DWG\1133-04\well logs.dwg						Project No. 1133-04 Page 2 of 2		

	Sc	oil I	30ri	n	n	3-10	12		
Soil Boring B-102 Project: ARAMARK - Dekalb Drill Rig: Sonic Rig Top of Casing Elevat									Not Massured
Date: May 16, 2003	Sampler: 10 Ft. Core						Initial Groundwater Dept		
Logged By: Tony L. Gordon P.G.	-	Hole Diameter: 6-inch					Final Groundwater Depti		
Description		USCS Class	o Depth		- Sample Interval	Recovery (Feet)	PID (ppm)		
Gray, fine-coarse SAND and gravel, little silt, no moist - Fill Red brown, stiff clayey fine SAND, very low-low moist		SC					(1.2)		
Red brown, orange brown SILT, little clay, trace sand, micaceous, moist, non-plastic (percent sa with depth)		ML	- 4 - 5 - 6 - 7 - 8			8.0/8.0	(2.0)		
Orange brown, white silty fine-coarse SAND, transcending the non-plastic, wet-very moist, mottled Orange brown, red brown, brown SILT, some fine clay, non-plastic, micaceous, wet, mottled		SM ML/	- 10 - - 11 - - 12 - - 13 -		1	0.0/10.0	(1.8)		
Red brown, orange brown, gray and gold SILT, livery fine sand, trace clay, micaceous, mottled/banon-plastic		ML	- 14 15 17 19		=		(2.5)		
Atlanta Environmental Management, Inc. Environmental Consulting, Engineering, Hydrogeologic Services 2580 Northeast Expressway - Atlanta Georgia 3034; Telephone: (404) 329-9006 - Fax: (404) 329-2057	Environmental Management, Inc. Engineering. Hydrogeologic Services theast Expressway • Atlanta Georgia 30345 1. USCS = Unified Soil Classification System. 2. Groundwater measured from top of casing. 3. PID readings, in ppm, were measured during boring installation						1 1		

Soil Boring B-102									
Project: ARAMARK - Dekalb				9 1	J-10	-	T(0-1	At	
Date: May 18, 2003	Drill Rig: Sonic Rig Sampler: 10 Ft. Core					Top of Casing Elevation			
Logged By: Tony L. Gordon P.G.	Hole Diar						Initial Groundwater Dep		
Logged by. Tony L. Gordon P.G.	Hole Diar	neter:	6-Inch	_	T	T	Final Groundwater Dept	th: Not Measured	
Description		USCS Class	S Depth	Sample Interval	Recovery (Feet)	PID (ppm)			
Red brown, orange brown, gray and gold SILT very fine sand, trace clay, micaceous, mottled/non-plastic White, pink, brown, gold, mottled silty fine-coar quartz gravel (weathered quartz-rich zone)	banded,	ML SM/			10.0/10.0	(9.0)			
Brown orange, brown, gray SILT, little-some ve trace clay, very micaceous, non-plastic, wet	ry fine SAND,	ML	- 25 26 27			(5.1)			
Brown, orange-brown white, pink, gold mottled slittle-some fine-coarse sand, non-plastic, micace	SILT with lous, wet	ML/	- 28	+		(1.4)			
			- 32	110	0.0/10.0	(1.6)			
Gray, white silty fine SAND, very micaceous, nor	-plastic, wet	SM	36 - 37 - 38 - 38 - 38	_	(1.5)			
Atlanta Environmental Management, Inc. Environmental Consulting Engineering, Hydrogeologic Servicus 2580 Northeast Expressway • Atlanta Georgia 3034		2. Grou	S = Unified	neasu	red from	lop of c	asing.	Project No. 1133-04	
Environmental Controlling, Engineering, Hydrogeologic Servicus 2580 Northeast Expressway • Atlanta Georgia 3034 Telephone: (404) 329-9006 • Fax: (404) 329-2057	ay • Atlanta Georgia 30345 2. Groundwater measured from top of casing. 3. PID readings, in ppm, were measured during boring installation								

	S	oil E	3orii	ng	GP-	.1		
Project: ARAMARK - Dekalb	Drill Rig:						Top of Casing Elevation	on: Not Measured
Date: April 8, 2003	Sampler:	pler: 5' Macro Core						epth: Approx. 12' bgs
Logged By: Tony L. Gordon P.G.	Hole Dian	neter:	2-inch				Final Groundwater De	
Description		USCS Class	Depth	Sample Interval	Recovery (Feet)	PID (ppm)		
Orange brown, red brown, black silty fine-coarse S trace-little clay, trace-little brick fragments, very lov dry - Fill	SAND, w plasticity,	SM	- 1 2 3 4		3.5/5.0	(4.2)		
Red brown, orange brown, very silty CLAY, trace-lit sand, low plasticity, trace mica, dry	ttle fine	CL	- 5 7 8 9		5.0/5.0	(4.5)		
Orange-tan fine-coarse sandy CLAY, little-some silt, plasticity, dry Orange brown, brown, weakly banded SILT, little clavery fine sand, micaceous, non-plastic, wet		+	11 —	4	.5/5.0	5.4)		
Terminate Soil Boring 15 Ft. bgs		- 1 - 1	15					
Atlanta Environmental Management, Inc. Environmental Consulting, Engineering, Hydrogeologic Services 2580 Northeast Expressway - Atlanta Georgia 30345 Telephone: (404) 329-9006 - Fax: (404) 329-2057	1. 2. 3.	Ground PID rea	dwater m adings, ir	easure ppm,	ed from to		m. ig. iring boring installation Print Date: Jun 04, 2003 - 9 43am	Project No. 1133-04 Page 1 of 1

	Sc	oil E	3orin	g	GP-	2		···
Project: ARAMARK - Dekalb	Drill Rig: 0	eop	robe				Top of Casing Elevation	n: Not Measured
Date: April 8, 2003	Sampler: 5	5' Ma	cro Core	9		Initial Groundwater Dep	oth: Approx. 12' bgs	
Logged By: Tony L. Gordon P.G.	Hole Diame	eter:	2-inch		T		Final Groundwater Dep	th: Not Measured
Description		USCS Class	Depth .	Sample Interval	Recovery (Feet)	PID (ppm)		
Orange brown silty CLAY, trace fine sand, mediumoist	m plasticity,	CL	0 -	T				
			1 — - 2 — - 3 — - 4 —		2.5/5.0	(5.8)		
Red brown, tan silty CLAY, very stiff, low plasticity		CL	- 5 8 9		5.0/5.0	(4.2)		
Orange brown, tan clayey SILT, trace very fine-fine nicaceous, non-plastic	e sand, A	AL -	-10 = -11	L.	5.0/5.0	(3.8)		
erminate Soil Boring 15 Ft. bgs			15 — 1 16 — 1 17 — 1 18 — 1 20 — 20 —					
Atlanta Environmental Management, Inc. 2580 Northeast Expressway • Atlanta Georgia 30345 Telephone: (404) 329-9006 • Fax: (404) 329-2057	1. U 2. U 3. F	Groun PID re	= Unified :	asur ppm,	ed from t	op of casir easured du	m. ng. uring boring installation Print Date: Jun 04, 2003 - 9:43am	Project No. 1133-04 Page 1 of 1

	Soil Boring GP-	3
Project: ARAMARK - Dekalb	Drill Rig: Geoprobe	Top of Casing Elevation: Not Measured
Date: April 8, 2003	Sampler: 5' Macro Core	Initial Groundwater Depth: Approx. 12' bgs
Logged By: Tony L. Gordon P.G.	Hole Diameter: 2-inch	Final Groundwater Depth: Not Measured
Description	USCS Class o Depth Sample Interval Recovery (Feet)	PiD (ppm)
Orange-brown, red-brown, black silty fine-coarse brick fragments. This interval is interlayered with orange-brown clayey sand Fill	SAND, little SM/ SC	(5.8)
Red-brown, orange brown, stiff, silty CLAY, trace sand, low-medium plasticity, moist	- 6	(4.0)
Red-brown fine-coarse sand and GRAVEL Orange brown, gray mottled silty CLAY, little-some medium plasticity, moist	- 13 - 5.0/5.0 - 14 - - 14 -	
Terminate Soil Boring 15 Ft. bgs	- 15 - L - 16 - 17 - 18 - 19 - 20	
Atlanta Environmental Management, Inc. Environmental Consulting Engineering Hydrogeologic Servicus 2580 Northcast Expressway - Atlanta Georgia 30345 Telephone: (404) 329-9006 - Fax: (404) 329-2057	Notes: 1. USCS = Unified Soil Classifica 2. Groundwater measured from t 3. PID readings, in ppm, were measured. File name: C:\DWG\1133-04\well log.	op of casing. pasured during boring installation Page 1 of 1

Project: ARAMARK - Dekalb	Drill Rig:	Drill Rig: Geoprobe Top of Casing Elevation						n: Not Measured
Date: April 8, 2003	Sampler:	5' Macr	o Core	?			Initial Groundwater De	pth: Not Measured
Logged By: Tony L. Gordon P.G.	Hole Dian	neter: 2-	inch				Final Groundwater Dep	oth: Not Measured
Description		USCS Class	o Depth	Sample Interval	Recovery (Feet)	PID (ppm)		
Red-brown, orange-brown, black, silty CLAY, tr sand, micaceous, low plasticity, moist	ace-little fine	CL -	2 - 3 - 4		5.0/5.0	(5.9)		
Red-brown, orange brown, silty clayey fine SAN very low plasticity, very moist		SM/ SC	6 - 7 - 3 - 3		5.0/5.0	(3.6)		
Orange-brown, gray, mottled silty clayey fine-me trace mica, low plasticity, wet Terminate Soil Boring 15 Ft. bgs	dium SAND,	SC/ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2	5.	0/5.0			
		- 16 - 17 - 18 - 19 - 20						
Atlanta Environmental Management, Inc. Environmental Consulting, Engineering, Hydrogeologic Services 2580 Northeast Expressway - Atlanta Georgia 30345 Telephone: (404) 329-9006 - Fax: (404) 329-2057	1 2 3	lotes: USCS = t Groundw PID readi	ater me ngs, in p	asure ppm,	d from to were me	op of ca easured	stem. sing. during boring installation Print Date: Jun 04, 2003 - 9:43am	Project No. 1133-04 Page 1 of 1

	Soil Boring GP-5								
Project: ARAMARK - Dekalb	Drill Rig:	Drill Rig: Geoprobe Top of C							: Not Measured
Date: April 8, 2003	Sampler:	5' Ma	acro Co	re				Initial Groundwater Dep	th: Not Measured
Logged By: Tony L. Gordon P.G.	Hole Diameter: 2-inch						Final Groundwater Dep	th: Not Measured	
Description		USCS Class	O Depth	Sample Interval	Recovery	(Leet)	PID (ppm)		
Orange-brown, brown, stiff silty CLAY, trace-som sand, trace mica, low plasticity (percent sand decidepth)		CL	- 1 - 2 3 4		5.0/5.		3.7)		
Orange brown, brown, gray silty CLAY, little-some trace mica, moist. This interval is interbedded with orange-red brown fine-medium sand, trace-little si	2"-3"	CL	5 6 7 8 9		5.0/5.0		·.o)		
Gray highly plastic CLAY, trace silt and very fine satisfies or ange-red brown grades into gray CLAY and fine medium-coarse sand, low plasticity, very moist.		CH	- 10		5.0/5.0	(4	0)		
Atlanta Environmental Management, Inc. Environmental Street Street 2580 Nonheast Expressway - Atlanta Georgia 30345 Telephone: (404) 329-9006 - Fax: (404) 329-2057	1 2 3	Notes . USC . Grou	S = Unifie	neas in pp	ured from m, were	n top mea	of casi sured du		Project No. 1133-04 Page 1 of 1

Soil Boring GP-6									
Project: ARAMARK - Oekalb	Drill Rig: Geoprobe	Top of Casing Elevation: Not Measured							
Date: April 8, 2003	Sampler: 5' Macro Core	nitial Groundwater Depth: Not Measured							
Logged By: Tony L. Gordon P.G.	Hole Diameter: 2-inch	inal Groundwater Depth: Not Measured							
Description	USCS Class Depth Sample Interval Recovery (Feet) PID (ppm)								
Red-brown orange brown stiff silty CLAY, trace-fi									
plasticity, moist	- 1 - 3.0/5.0 (21.1) - 4 -								
Red-brown, orange brown, mottled SILT, trace-litt trace very fine sand, non-plastic, trace mica, very	e clay, ML 5 — T								
Red-brown, orange brown silty CLAY, trace-little fir sand, micaceous, low plasticity	e-medium CL								
Gray, white, pink silty fine-coarse quartz SAND, trac micaceous, non-plastic, wet Terminate Soil Boring 15 Ft. bgs	- 14 — - 15 — - 16 — - 17 — - 18 — - 19 — - 20 —								
Atlanta Environmental Management, Inc. Environmental Consulting, Engineering, Hydrogeologic Services 2580 Northcast Expressway - Atlanta Georgia 30345 Telephone: (404) 329-9006 - Fax: (404) 329-2057	Notes: 1. USCS = Unified Soil Classification System. 2. Groundwater measured from top of casing. 3. PID readings, in ppm, were measured during bori	Project No. 1133-04 ing installation te: Jun 04, 2003 - 9.43am Page 1 of 1							

	S	oil Borin	ıg	GP-	7		
Project: ARAMARK - Dekalb	: ESN, Inc. Top of Casing Elevat					on: Not Measured	
Date: May 16, 2003	Sampler:	Sample Spoo	on		Initial Groundwater De	epth: Not Measured	
Logged By: Tony L. Gordon P.G.	Hole Dia	meter: 2-inch				Final Groundwater De	pth: 10.5 Ft. bgs
Description Suficial asphalt (2"-3" thick)		USCS Class	Sample Interval	Recovery (Feet)	PiD (ppm)		
Dark gray, black, silty fine-coarse SAND, trace gwood fragments - Fill Orange-brown, SILT, some-and clay, little fine-samica, very low plasticity, moist (Note: Percent silt increases with depth)	and, trace	SM (Fill)		2.0/4.0			
Orange brown, tan, gold, banded (mottled), SILT, clay, trace very fine sand, micaceous, non-plastic (Note: Groundwater at 10.5 feet bgs) Terminate Soil Boring 12 Ft. bgs	trace-little , very moist	ML 9		.0/4.0			
		- 13 14 15 16 17 18 19 20					
Atlanta Environmental Management, Inc. Environmental Consulting, Engineering, Hydrogenologic Services 2580 Northeast Expressway - Atlanta Georgia 30345 Telephone: (404) 329-9006 - Fax: (404) 329-2057	1 2 3	Notes: USCS = Unified S Groundwater mea PID readings, in p	ppm, v	from top vere mea	of cas sured d	em. ing. Iuring boring installation Print Date: Jun 04, 2003 - 9:43am	Project No. 1133-04 Page 1 of 1

	S	oil Boring (GP-8		
Project: ARAMARK - Dekalb	Drill Rig:	ESN, Inc.		Top of Casing Elevation	on: Not Measured
Date: May 16, 2003	Sampler:	Sample Spoon		Initial Groundwater De	pth: 3-4 Ft. bgs
Logged By: Tony L. Gordon P.G.	Hole Dian	neter: 2-inch		Final Groundwater De	pth: Not Measured
Description Sufficial asphalt (2"-3" thick)		USCS Class O Depth Sample Interval	Recovery (Feet) PID (ppm)		
Dark gray, orange brown, red brown, silty, fine-co	arse SAND,	SM/			
Dark gray, black, fine-coarse SAND, little-some g concrete, brick and rock fragments, saturated - Fi	ravel size	SW 2 3 4	2.0/4.0 19.4		
Brown, fine-coarse SAND, little gravel size rock an	d concrete	- 7 - - 8 - - 9 - - 9 -	0/4.0 26.1		
fragments, non-plastic, saturated - Fill Terminate Soil Boring 12 Ft. bgs		- 11			
Atlanta Environmental Management, Inc. Environmental Consulting, Engineering, Hydrogeologic Services 2580 Northeast Expressway • Atlanta Georgia 30345 Telephone: (404) 329-9006 • Fax: (404) 329-2057	1. 2. 3.	otes: USCS = Unified Soil Cla Groundwater measured PID readings, in ppm, w name: C:\DWG\1133-04\v	from top of cas ere measured of	ern. ing. Juring boring installation Print Date: Jun 04, 2003 - 9:44am	Project No. 1133-04 Page 1 of 1

	Soil Boring GP-9	
Project: ARAMARK - Dekalb	Drill Rig: ESN, Inc.	Top of Casing Elevation: Not Measured
Date: May 16, 2003	Sampler: Sample Spoon	Initial Groundwater Depth: Not Measured
Logged By: Tony L. Gordon P.G.	Hole Diameter: 2-inch	Final Groundwater Depth: Not Measured
Description	USCS Class Depth Sample Interval Recovery (Feet)	
Suficial asphalt (2"-3" thick)	0 + 1 + 1 + 1	
Dark gray, black, silty fine-coarse SAND, trace gray wood fragments - Fill	avel, trace SM - 1 - 1	
Asphalt paving		
Orange-brown, tan brown, clayey-silty, fine-mediu micaceous, moist - Fill	m SAND, SM/ 3 -	
Gray, black, brown, coarse-fine SAND, little gravel and brick fragments, trace-little silt and clay, very low-non-plastic, saturated - Fill	Size rock SW 4 — T	
Orange-brown, gray, mottled, very stiff CLAY, little ine-medium sand, high plasticity, moist	CH 9 - 2.0/4.0 14.7 - 11	
erminate Soil Boring 12 Ft. bgs	- 12 - 1 - 13	
Atlanta Environmental Management, Inc. 4-ronmental Consulting, Engineering, Hydrogeologic Services 2580 Northeast Expressway • Atlanta Georgia 30345 Telephone: (404) 329-9006 • Fax: (404) 329-2057	Notes: 1. USCS = Unified Soil Classification System 2. Groundwater measured from top of casing 3. PID readings, in ppm, were measured duril File name: C:\DWG\1133-04\well logs.dwg	1133-04

	Soil Boring GP-10	
Project: ARAMARK - Dekalb	Drill Rig: ESN, Inc.	Top of Casing Elevation: Not Measured
Date: May 16, 2003	Sampler: Sample Spoon	Initial Groundwater Depth: Not Measured
Logged By: Tony L. Gordon P.G.	Hole Diameter: 2-inch	Final Groundwater Depth: Not Measured
Description	USCS Class Depth Sample Interval Recovery (Feet)	
Suficial asphalt (2"-3" thick)	0	
Dark gray, tan coarse-fine SAND with gravel size fragments, little silt, trace clay, non-plastic, satura	ted - Fill	
Orange briwn, red brown, stiff, silty CLAY, trace visand, trace gravel, low-medium plasticity, moist	ery fine CL 2 1.0/4.0 16.	7
At 4-7 Ft: Same as above (CL) very moist	- 4 - T - 3.0/4.0 26.3 - 7 - 7 8 - T - 7	
At 8-12 Ft Same as above, trace mica (CL) very mo	oist - 9 - 4.0/4.0 25.4	
erminate Soil Boring 12 Ft. bgs	12— 13— — 14— — 15— — 16— — — 17— — — — — — — — — — — — — — — —	
Atlanta Environmental Management, Inc. vironmental Consulting Engineering, Phydrogeologic Servicus 2580 Northeast Expressway - Atlanta Georgia 30345 Telephone: (404) 329-9006 - Fax: (404) 329-2057	Notes: 1. USCS = Unified Soil Classification S 2. Groundwater measured from top of 3. PiD readings, in ppm, were measure	casing. 1133-04

Telephone: (404) 329-9006 • Fax: (404) 329-2057

File name: C:\DWG\1133-04\well logs.dwg Print Date: Jun 04, 2003 - 9:43am Page 1 of 1

	S	oil Boring HA-1						
Project: ARAMARK - Dekalb	Drill Rig:	Top of Casing Elevation:	Not Measured					
Date: May 6, 2003	Sampler:	Grab	Initial Groundwater Dept	h: Not Measured				
Logged By: Mike Dickinson	Hole Dian	neter: 3.5-inch	Final Groundwater Depth	n: Not Measured				
	Hole Dian		Final Groundwater Depth					
Terminate Soil Boring 12 Ft. bgs		11 — 12 — 1.7 - 13 — - 14 — - 15 — - 16 — 17 — 18 — 19 — - 20 — - 20 —						
Atlanta Environmental Management, Inc. 2580 Northeast Expressway - Atlanta Georgia 30345 Telephone: (404) 329-9006 - Fax: (404) 329-2057 Telephone: (404) 329-9006 - Fax: (404) 329-2057 Notes: 1. USCS = Unified Soil Classification System. 2 Groundwater measured from top of casing. 3. PID readings, in ppm, were measured during boring installation File name: C:\DWG\1133-04\well logs.dwg								

pullary as misspersed a dance series as paying graph and a series and	Soil Boring HA-2	
Project: ARAMARK - Dekalb	Driil Rig: <i>Hand Auger</i>	Top of Casing Elevation: Not Measured
Date: May 6, 2003	Sampler: Grab	Initial Groundwater Depth: Not Measured
Logged By: Mike Dickinson	Hole Diameter: 3.5-inch	Final Groundwater Depth: Not Measured
Description	USCS Class Depth Sample Interval Recovery (Feet) PID (ppm)	
Orange brown silty fine-medium SAND, trace-little micaceous, dry White-orange red, silty fine-coarse SAND, trace-littly very micaceous, dry Terminate Soil Boring 12 Ft. bgs	Clay, SM	
Atlanta Environmental Management, Inc. Environmental Consulting, Engineering, Hydrogeologic Services 2580 Northeast Expressway - Atlanta Georgia 30345 Telephone: (404) 329-9006 - Fax: (404) 329-2057	Notes: 1. USCS = Unified Soil Classification System 2. Groundwater measured from top of casing 3. PID readings, in ppm, were measured duri	11133-04

	S	011	Roul	ng	НА-	3		
Project: ARAMARK - Dekalb	Drill Rig:	Drill Rig: Hand Auger					Top of Casing Elevation	on: Not Measured
Date: <i>May 6, 2003</i>	Sampler:	Grab					Initial Groundwater De	pth: Not Measured
Logged By: Mike Dickinson	Hole Diam	neter:	3.5-inci	h		****	Final Groundwater De	pth: Not Measured
Description		USCS Class	Depth	Sample Interval	Recovery (Feet)	PID (ppm)		
Orange-brown fine-coarse sandy CLAY, little-so micaceous, moist Hand Auger Refusal 4.5 Ft. bgs	me silt, very	SC	- 1			2.2		
			- 5					
Atlanta Environmental Management, Inc. Myronmental Consulting, Engineering, Hydrogeologic Services 2580 Northeast Expressway - Atlanta Georgia 30345 Telephone: (404) 329-9006 - Fax: (404) 329-2057	1. 2. 3.	Groun PID re	= Unified : dwater me adings, in	asure ppm,	ed from to were mea	p of casin	m. ng. uring boring installation	Project No. 1133-04 Page 1 of 1

File name: C:\DWG\1133-04\well logs.dwg Print Date: Jun 11, 2003 - 1:45pm

Client/Location ARATEX - Atlanta, GA Job No. 1309 Date August 1, 1990 Boring No. MW-1 Drilling Co. Layne Engineering Surface Elevation 1023.99 Foreman Tim Queen Casing Used Sch 40 PVC	
Drilling Co. <u>Layne Engineering</u> Surface Elevation 1023.99	
Assistant <u>Ishmael and Jerry</u> Split Spoon Size <u>2</u> "	
Weather <u>overcast/warm</u> Wt. of Hammer <u>140</u>	
Temperature <u>80 °F</u> Logged By <u>S. Kline</u>	
DEDTU CAUSE STORY	
IN FEET NO. 140 LBS INTERVAL (ppm) SAMPLE DESCRIPTION GRAPHIC SYMBOL	
0 =	
Asphalt AS SM Q Q	7
4 - MR-1-1 3/5/7/7 2.0 ft	-
medium to fine grained red micaceous sand; no coarse grained material	COVER
10 - Westberged foldered and in the state of	-
med. to fine gr. micac. sand: TT GP 9	-
14-MM-1-3 2/5/3/5 2.0 ft mottled lt. to drk. brown: no coarse grained material ML	_
fine grained micaceous silty	
18 slightly damp and cohesive coarse grained cohesive coarse grained cohesive	-
18	_
24 MM-1-5 11/9/14/18 2.0 ft CORPRE OFFICE Wanthood	-
26 11/9/14/18 2.0 ft coarse grained weathered	\exists
28	=
30 = MW-1-6 8/13/11/11 2.0 ft	=
Coarse grained weathered feldspar	=
34 MX-1-7 2/5/11/12 2.0 ft GM	
36-3	=
40 HX-1-8 3/12/13/14 2.0 ft	7
coarse grains: weathered 1 1 42-	=
44 - WM-1-9 4/10/12/12 2.0 ft dark micaceous silty sand	4
46-	7
48 HM-1-10 6/12/13/14 2.0 ft	=
50	_

AND ASSOCIATES, INC.

SOIL BORING LOGS

Page <u>1</u> of <u>1</u>

Cl	ient/L	ocation _	ABATEX -	- Atlant	a. GA Job No. <u>1309</u>					
Da	te _ <i>_</i>	August 2, 19	990		Boring NoMW	Boring No. MW-2				
				Surface Elevati						
Fo	reman	Tim Queer	<u> </u>		Casing Used <u>S</u>	ch 40 PVC				
					Split Spoon Size					
					Wt. of Hammer .					
					Logged By <u>S. l</u>					
DEPTH IN FEET	SAMPLE NO.	BLOWS PER 6" _140 LBS	SAMPLE INTERVAL	VA (ppm)	SAMPLE DESCRIPTION	GRAPHIC SYMBOL				
0- 2- 4-	MX-2-1	3/3/4/6	2.0 ft		gravely fill material mixed with red micaceous sand	9 0 0 d				
6- 8-					fine grained micaceous silty sand; red; damp; cohesive	SW CAU				
10-	M H-2-2	2/5/6/7	2.0 ft		coarse grained weathered feldspar interbedded with red mic. silty sand	Ititili GM [4 T 4]				
12 14 1 16 1	MX-2-3	3/5/9/11	2.0 ft		fine grained silty micaceous sand; grey; damp and cohesive					
18-	MX-2-4	7/5/5/9	2.0 ft		coarse weathered feldspar	-JOHA OWS				
22		,			medium to fine grained highly micaceous sand; wet; slightly cohesive					
24 26	X ¥-2-5	B/10/15/27	2.0 ft		interbedded coarse weathered feldspar and micac. sand; wet	GM				
-82 -82 -03					medium to fine grained micaceous sand; mottled red and grey; wet and lightly cohesive					
30 <u> </u>										

AND ASSOCIATES, INC.

SOIL BORING LOGS

Page __1 of __1

					a. <u>G</u> A Job No. <u>1309</u>				
Da	ate _	August 2, 19	990	Boring No. MW-	Boring No. <u>MW-3</u>				
Dr	rillin	g Co. <u>Layı</u>	ne Engi	Surface Elevatio	n 1017.62				
Fo	oreman	Tim Queer	<u> </u>		Casing Used <u>Sc</u>	ch 40 PVC			
As	ssista	nt <u>Ishmae</u> :	l and Je	erry	Split Spoon Size	2 *			
We	ather	_overcast/	/warm		Wt. of Hammer _	140			
Te	Cline								
DEPTH IN FEET	SAMPLE NO.	BLOKS PER 6" _140_ LBS	SAMPLE INTERVAL	(ppm)	SAMPLE DESCRIPTION	GRAPHIC SYMBOL			
0-					Asphalt	AS THE			
2-					Aspnait	0 0 0 d			
4-	XW-3-1	4/3/3/2	2.0 ft		gravely fill material mixed with red, medium grained micaceous sand				
6-						0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
8-	W-3-2	2/2/3/3	2.0 ft			SM p ₹0			
12-					fine grained micaceous silty sand; red; slightly damp; cohesive	Tawitz			
14	MX-3-3	3/6/7/7	2.0 ft			GM -			
16					hit water coarse grained weathered feldspar interbeded with				
18-					red micac. Bilty Band	SUM PACK			
_ o⊆	MW-3-4	2/1/3/2	2.0 ft			SM			
22-					medium to fine grained micac. sand; mottled brown and grey; cohesive	M M M M M M M M M M M M M M M M M M M			
24-	MX-3-5	3/4/6/8	2.0 ft		medium grained sand, highly micaceous, wet, noncohesive				
		Fig. 1880 1887 1887 1887							

SOIL BORING LOGS

AND ASSOCIATES, INC.

Page <u>1</u> of <u>1</u>

Cl	ient/L	.ocation $_A$	RATEX -	Atlanta	<u>. G</u> A Job No. <u>1309</u>				
Da	te _A	ugust 2, 19	190		Boring No. <u>MW-</u>	Boring No. <u>MW-4</u>			
Dr	illing	Co. Layr	e Engin	eering	Surface Elevation	Surface Elevation 1021.62			
Fo	reman	Tim			Casing Used <u>Sc</u>	h 40 PVC			
As	sistan	t <u>Ishmael</u>	and Je	rry	Split Spoon Size	2 *			
We	ather	_cloudy/ra	iny		Wt. of Hammer _	140			
Te	nperat	ure <u>75 °F</u>			Logged By <u>S. K</u>	line			
DEPTH IN FEET	SAMPLE NO.	BLOWS PER 6" _140_ LBS	SAMPLE INTERVAL	√A (ppm)	SAMPLE DESCRIPTION	GRAPHIC SYMBOL			
0-					black organic top soil	PT			
4-	MW-4-1	4/10/10/11	2.0 ft		medium to fine grained micaceous sand; red; slightly compressable	M CONER			
6-	-				brown micaceous sand; odor detected				
10-	MW-4-2	2/4/5/6	2.0 ft		silty sand with clay; grey; odor detected				
12-									
14-	MW-4-3	5/10/7/5	2.0 ft		coarse grained weathered feldspar and qtz.; odor detected	+ + ::1≡ ::1 '			
16-						SW PACK			
18-	MN-4-4	2/4/5/8	2.0 ft		fine grained sand interbeded with coarse grained gravel and weathered feldspar; mottled brown and grey; no odor				
22-	WW-4-5	3/5/7/9	2.0 ft						
26									
28-	MX-4-6	4/7/10/16	2.0 ft	The state of the s					
30-						J I-I I-I bearing			

AND ASSOCIATES, INC.

SOIL BORING LOGS

Page $\underline{1}$ of $\underline{1}$

AND ASSOCIATES, INC.
ENVIRONMENTAL ENGINEERS

LOG OF BORING: MW5

Page 1 of 1

LOCATION: ATLANTA, GA CLIENT: ARATEX SURFACE ELEVATION: 1019.76 Feet MSLD DATE DRILLED: 5/20/92 DRILLING METHOD: HOLLOW STEM AUGER TOTAL DEPTH: 25 Feet DRILLING COMPANY: LAYNE ENVIRONMENTAL LOGGED BY: PAUL CHARLES LUNA GRAPHIC LOG CLASS FIELD VOC (ppm) RECOVERY (in.) N-VALUE DEPTH feet DESCRIPTION AND REMARKS WELL DIAGRAM SOIL Black-tan silty SAND very fine grained abundant glass and wood debris present 9 | ND MW5-5FT 24 Lt. brown/tan sandy CLAY moderately plastic, mottled, fine to medium grained sand MW5-10FT 24 5 ND 10-Lt. brown/tan sandy CLAY moderately plastic, mottled, sand in matrix is fine to medium grained 15. MW5-15FT 24 8 ND SLOTTED PVC SCREEN SILICA Lt. tan sandy CLAY moderately plastic, mottled, medium grained sand MW5-20FT 24 6 ND 20-Tan silty SAND fine grained, well sorted 17 ND 25-MW5-25FT 24 30-

AND ASSOCIATES, INC. Environmental engineers LOG OF BORING: MW6

Page 1 of 1

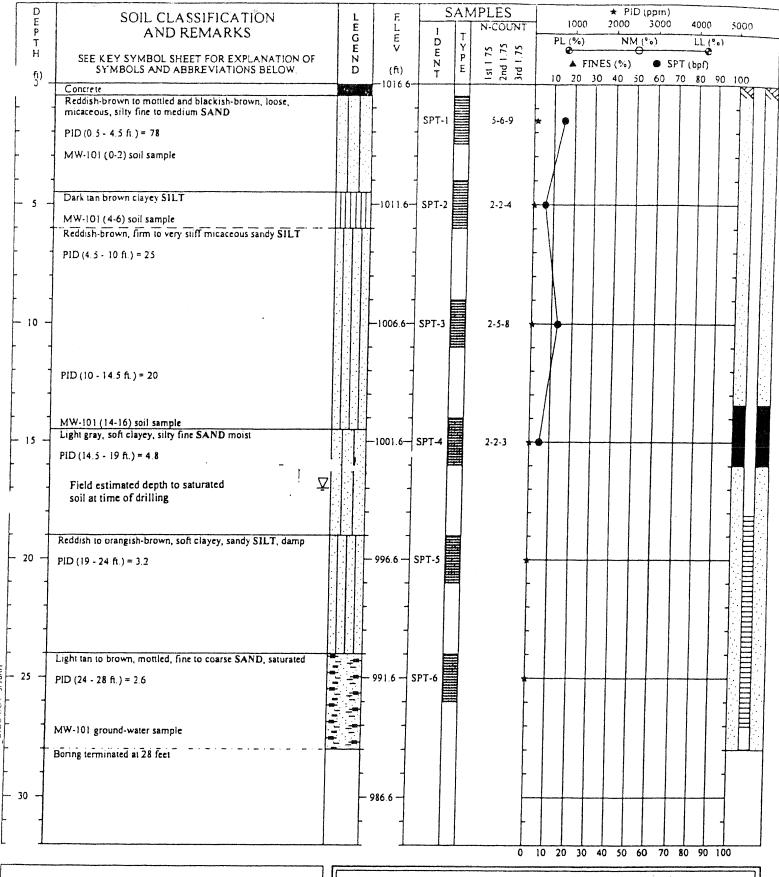
CLIENT: ARATEX LOCATION: ATLANTA, GA DATE DRILLED: 5/20/92 SURFACE ELEVATION: 1019.68 Feet MSLD DRILLING METHOD: HOLLOW STEM AUGER TOTAL DEPTH: 25 Feet DRILLING COMPANY: LAYNE ENVIRONMENTAL LOGGED BY: PAUL CHARLES LUNA CLASS FIELD VOC RECOVERY (in.) N-VALUE SAMPLE DEPTH feet (mdd) GRAPHIC SAMP. 1 DESCRIPTION AND REMARKS WELL DIAGRAM Brown sandy CLAY moderately plastic, medium to coarse grained sand, mottled black/brown MW6-5 FT ND 10 24 SM BENTONITE-Black/brown silty SAND fine to medium grained sand, micaceous, minor gravel (0.33 cm) present MW6-10 FT 24 7 ND 10-Lt. brown/tan clayey SAND micaceous, poorly sorted, V.F. grained sand, banded black/brown MW6-15 FT 24 6 ND 15-SILICA SAND Brown clayey SAND micaceous,minor white gravel (0.75 cm), mottled, thin layers of brown-tan-white, v.f. grained sand, wet spoon MW6-20 FT 24 7 ND 20-SC Brown clayey SAND micaceous, v.f. grained sand, minor white gravel (0.5 cm), layers of brown, dark brown, black, and white ND MW6-25 FT 24 9 25-30

AND ASSOCIATES, INC. Environmental engineers LOG OF BORING: MW7

Page 1 of 1

CLIENT: ARATEX					LO	LOCATION: ATLANTA, GA		
DATE DRILLED: 5/21/92						SURFACE ELEVATION: 1020.39 Feet MSLD		
DRILLING METHOD: HOLLOW STEM AUGER					? TC	TOTAL DEPTH: 25 Feet		
DRILLING COMPA	any: l	AYNE :	ENVIRO	ONME.	V <i>TAL</i> LO	GGED BY: PAUL CHARLE	ES LUNA	
DEPTH feet SAMPLE SAMP. NO.	RECOVERY (in.)	N-VALUE FIELD VOC (ppm)	GRAPH	SOIL CLASS	DESCRIPTI	ION AND REMARKS	WELL DIAGRAM	
5— MW7-5FT		:		SM	Lt. brown slity SAND v.f. grained sand, micaceous, Lt. brown/tan sandy CLAY sand in matrix is fine to mediu mottled and micaceous		2 PVC — 2 PVC	
15 — MW7-15FT		II ND		SM -	non plastic, micaceous, black White/gray silty SAND v.f. grained, micaceous, band	/tan mottled, minor gravel (1.5 cm)	0.01 SLOTTED PVC SCREEN ———————————————————————————————————	
20 - MW7-20F		7 ND		SM	Lt. brown/tan siity SAND v.f. grained, micaceous, poor	iy sorted,banded white/tan		

AND ASSOCIATES, INC. Environmental engineers LOG OF BORING: B1


Page 1 of 2

CLIENT: ARATEX LOCATION: ATLANTA, GA DATE DRILLED: 5/19/92 SURFACE ELEVATION: NA Feet MSLD DRILLING METHOD: HOLLOW STEM AUGER TOTAL DEPTH: 105 Feet DRILLING COMPANY: LAYNE ENVIRONMENTAL LOGGED BY: PAUL CHARLES LUNA GRAPHIC LOG CLASS FIELD VOC (ppm) RECOVERY (in.) N-VALUE SAMP. NO DEPTH feet SAMPL DESCRIPTION AND REMARKS WELL DIAGRAM 15 Drilled straight to 30 feet, cuttings reveal a tan sandy CLAY coarse to medium grained sand, moderately well bound 20 ABANDONED WITH CEMENT/BENTONITE 25 30 SC White/tan clayey SAND 33 ND minor gravel present, banded, poorly sorted 18 B1-35FT 35 40 Tan, white, black clayey SAND banded, medium dense micaceous, v.f. grained sand, well bound B1-45FT 24 25 ND 45-Brown silty SAND Micaceous, banded ND 50 -B1-50FT 24 31 Brown, tan, and white silty SAND mottled, minor gravel present (.25 cm) 55-50 ND 2 B1-55FT Tan, black silty SAND micaceous, banded, zones of coarse grained gravel, v.f. grained sands B1-60FT 35 ND 18 60tan, black and white sand present

AND ASSOCIATES, INC. Environmental engineers LOG OF BORING: B1

Page 2 of 2

DATE DRILLED: 5/19/92 DRILLING METHOD: HOLLOW STEM AUGER DOTAL DEPTH: 105 Feet TOTAL DEPTH: 105 Feet DRILLING COMPANY: LAYNE ENVIRONMENTAL LOGGED BY: PAUL CHARLES LI LOGGED BY: PAUL CHARLES LI					
DESCRIPTION AND REMARKS BI-65FT 24 23 ND SN SN Siron, black sity SAND micaceus, banded, trace gravel (0.25 cm), white feldspar present v.f. grained sand, some gravel (2 cm), refused BI-85FT 2	SURFACE ELEVATION: NA Feet MSLD				
H	TOTAL DEPTH: 105 Feet				
B1-65FT 24 23 ND B1-70FT 24 21 ND B1-70FT 24 21 ND B1-70FT 2 R ND B1-80FT 17 R ND B1-80FT 17 R ND B1-80FT 12 46 ND B1-90FT 6 R ND B1-90FT 7 R ND B1-90FT 7 R ND B1-90FT 7 R ND B1-90FT 8 R ND B1-90FT 9 R ND B1-9	LUNA				
B1-65FT 24 23 ND B1-70FT 24 21 ND B1-70FT 2 B ND B1-70FT 2 B ND B1-80FT 17 B ND B1-80FT 12 46 ND B1-80FT 12 46 ND B1-80FT 12 46 ND B1-80FT 14 B ND B1-80FT 15 B1-90FT 6 B ND B1-80FT 16 B ND B1-80FT 17 B ND B1-80FT 17 B ND B1-80FT 18 B1-80FT 19	WELL DIAGRAM				
Pink sandy GRAVEL minor clay, 3 cm sized gravel, spoon wet, spoon refused SC B1-80FT 17 R ND SM Brown, black and tan sity SAND v.f. grained, banded, minor gravel (0.75 cm) B1-90FT 6 R ND B1-90FT 6 R ND Brown, black and white sity SAND micaceous, sampler refused Brown, black and white sity SAND panded, v.f. grained, sampler refused Brown, black and white sity SAND panded, v.f. grained, sampler refused Brown, black and white sity SAND panded, v.f. grained, sampler refused Barown, black and white sity SAND panded, v.f. grained, sampler refused Black, derk brown sity SAND micaceous, v.f. grained sand, weathered bedrock present, refused					
80 B1-80FT 17 R ND SM well bound, coarse grained sand, some gravel (2 cm), refused 85 B1-85FT 12 46 ND SM SM SITY SAND 90 B1-90FT 6 R ND STOWN, black and tan sitty SAND micaceous, sampler refused Brown, black and white slity SAND bended, v.f. grained, sampler refused Dark brown sity SAND fine to medium grained, minor gravel present, sampler refused Black, dark brown sity SAND micaceous, v.f. grained sand, weathered bedrock present, refused					
Brown, tan silty SAND micaceous, sampler refused Brown, black and white silty SAND banded, v.f. grained, sampler refused Dark brown silty SAND fine to medium grained, minor gravel present, sampler refused Black, dark brown silty SAND micaceous, v.f. grained sand, weathered bedrock present, refused	ABANDONED WITH CEMENT/BENTOWITE				
B1-95FT 6 R ND Dark brown silty SAND fine to medium grained, minor gravel present, sampler refused B1-100FT 4 R ND Black, dark brown silty SAND micaceous, v.f. grained sand, weathered bedrock present, refused	ABANDONEDI				
B1-100FT 4 R ND fine to medium grained, minor gravel present, sampler refused Black, dark brown silty SAND micaceous, v.f. grained sand, weathered bedrock present, refused	0000				
B1-105FT 2 R ND Bloaceous, v.f. grained sand, weathered bedrock present, refused					
	¥ 2 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
115-					

DRILLER: LAV

EQUIPMENT: Truck Mounted Drill Rig

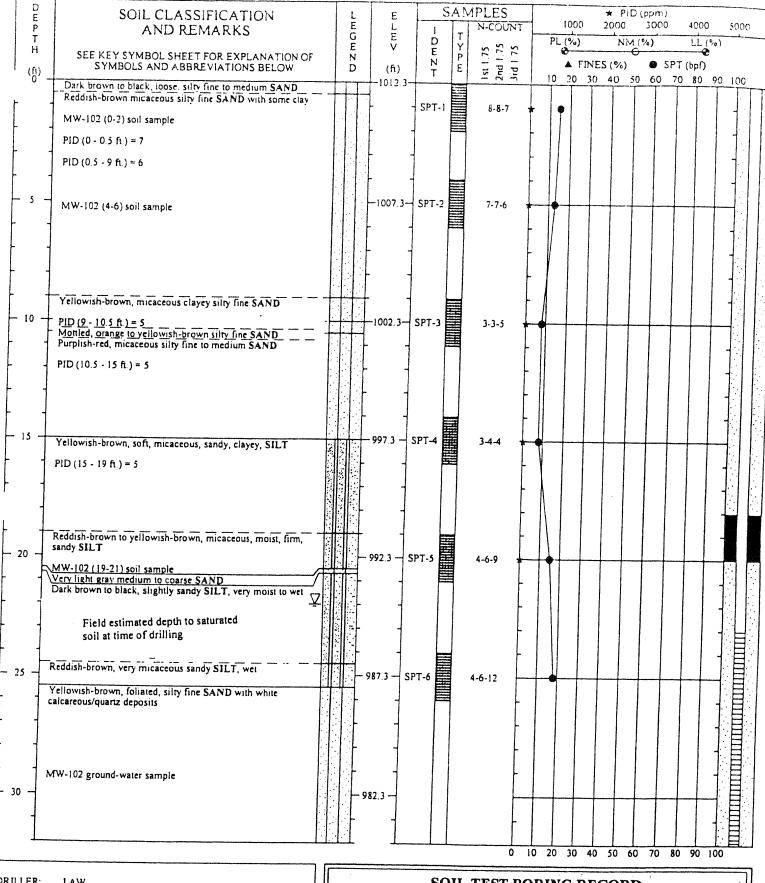
OD: Hollow Stem Auger

DIA.: 6.5-inch

REWARKS: Completed as Type II Monitoring Well. Top of Casing

Elevation 1016.34 ft.

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER.


SOIL TEST BORING RECORD

PROJECT: Dekalb Avenue

DRILLED: April 24, 2001 BORING NO.: MW-101

PROJ. NO.: 12000-0-2045 PAGE 1 OF 1

LAW

DRILLER: LAW

GIBB.GDT

GPJ LAW

EQUIPMENT: Truck Mounted Drill Rig METHOD: Hollow Stem Auger

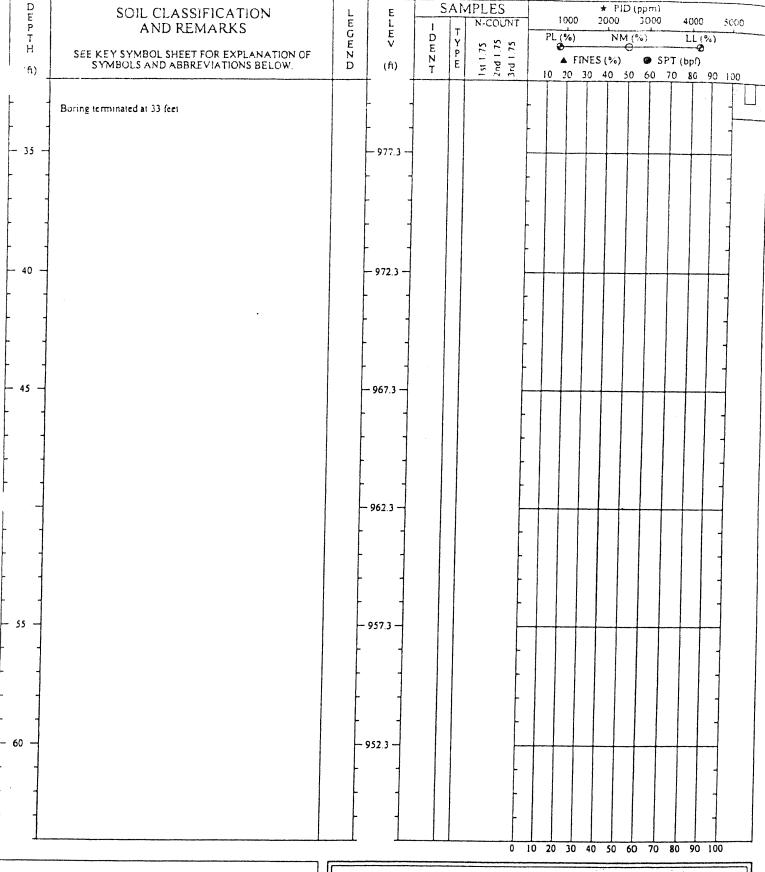
DIA.: 6.5-inch

AKS: Completed as Type II Monitoring Well. Top of Casing

Elevation 1011.92 ft.

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BEWEEN STRATA ARE APPROXIMATE

SOIL TEST BORING RECORD


PROJECT: Dekalb Avenue

DRILLED: April 23, 2001 BORING NO.: MW-102

PROJ. NO.: 12000-0-2045 PAGE 1 OF 2

LAW

PAGE 1 OF

DRILLER: LAW

RL

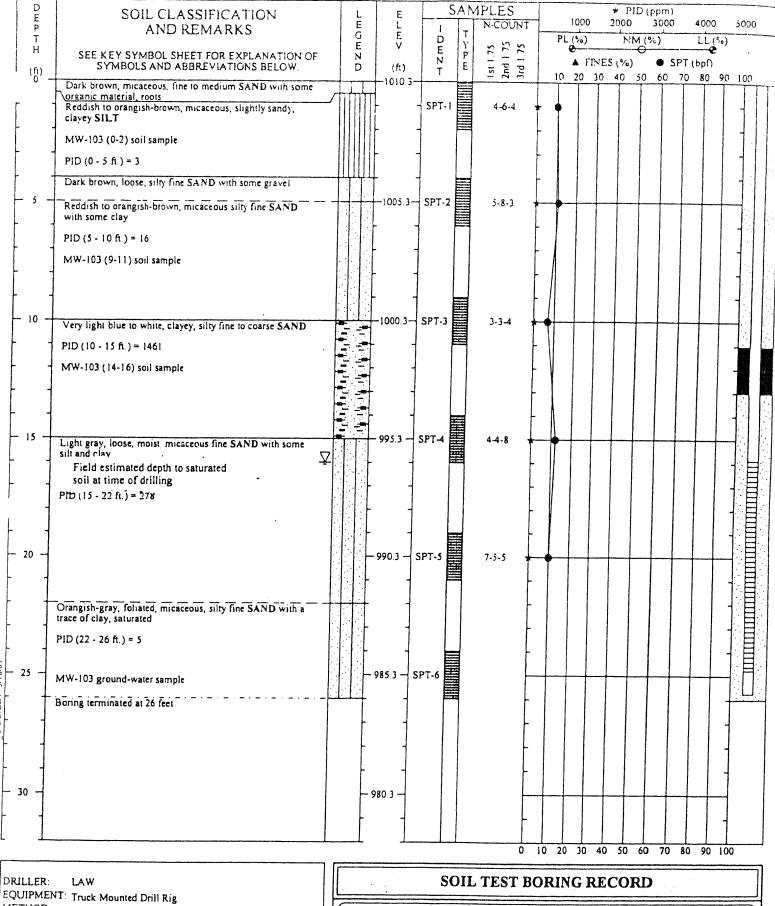
EQUIPMENT: Truck Mounted Drill Rig

MFTHOD: Hollow Stem Auger

Completed as Type II Monitoring Well. Top of Casing

Elevation 1011.92 ft.

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER.


SOIL TEST BORING RECORD

PROJECT: Dekalb Avenue

DRILLED: April 23, 2001 BORING NO.: MW-102

PROJ. NO.: 12000-0-2045 PAGE 2 OF 2

LAW

METHOD: H

R

Hollow Stem Auger

CAIC JKS:

Completed as Type II Monitoring Well. Top of Casing

Elevation 1010,00 ft.

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. NTERFACES BEWEEN STRATA ARE APPROXIMATE

PROJECT: Dekalb Avenue

DRILLED: April 24, 2001 BORING NO.: MW-103

PROJ. NO.: 12000-0-2045 PAGE 1 OF 1

Uniform S 670 DeKa	MARK ervices, Inc. lb Avenue a, GA.	MW-104 Surface Elevation: NA Total Well Depth: 24.0-ft Date Drilled: 8/13/01	Bock Environmental Services, Inc. 3108 Rolling Acres Pl. Suite A Valrico, FL			
DEPTH (Feet)	BLOW COUNTS	LITHOLOGIC DESCRIPTIONS	OVA (ppm)	WELL DIAGRAM DETAILS		
0 - 2	-	Concrete with a gravel base.	-	2-ft x 2-ft pad w/8-in metal manhole.		
2 - 4 4 - 6 6 - 8 8 - 10 10 - 12	17-8-11-18 5-5-7-10 7-6-7-10 6-9-13-6 7-4-7-10	Mottled beige-orange-brown, dense, slightly crumbly, micaceous, silty clay. " " No Returns.	425 400 325 575	14-ft 2-in PVC casing & 10-ft PVC 0.01 slotted screen. 20/40 sandpack, bentonite seal, grout to surface.		
12 - 14 14 - 16 16 - 18 18 - 20 20 - 22 22 - 24 24 - 26	4-5-7-10 6-8-11-13 4-8-14-16 5-5-8-7 4-8-14-17 5-8-12-14 13-48-55-5	Mottled beige-gold-brown, loose, crumbly, micaceous, silty clav. Wet. " " " " Beige to white limerock at base. Total Well Depth at 24-ft.	250 220 225 3 10 65 25			

)

ADAN	AADV	TMW-105	Bock Environmental				
ARAMARK Uniform Services, Inc.		Surface Elevation: NA	Services, Inc. 3108 Rolling Acres Pl.				
0.0 2002	ilb Avenue a, GA.	Total Well Depth: 25.0-ft		Suite A Valrico, FL			
	,	Date Drilled: 8/14/01		varico, PL			
DEPTH (Feet)	BLOW COUNTS	LITHOLOGIC DESCRIPTIONS	OVA (ppm)	WELL DIAGRAM DETAILS			
0 - 2	-	Concrete with a gravel base.	-	2-ft x 2-ft pad w/8-in metal manhole.			
2 - 4 4 - 6 6 - 8 8 - 10 10 - 12	3-4-4-6 4-2-2-7 5-6-9-8 5-4-4-7 5-10-12-14	Orange-brown-black, soft, slightly moldable, silty clay. Trace of sand. " " " "	>900 38 8 7 4	10-ft 2-in PVC casing & 15-ft PVC 0.01 slotted screen. 20/40 sandpack bentonite seal, grout to surface.			
12 - 14 14 - 16 16 - 18 18 - 20 20 - 25	4-8-14-16 6-8-14-15 4-9-17-19 Refusal	Mottled beige-orange, dense, slightly moldable, micaceous, silty clay. Moist. Gold to gray, soft, moldable, micaceous, silty clay. Wet. Total Well Depth at 25-ft.	0 190 60 - -				

ARAMARK Uniform Services, Inc.		MW-106	Bock Environmental			
		Surface Elevation: NA	Surface Elevation: NA			
	alb Avenue a, GA.	Total Well Depth: 24.0-ft	- Carried State Conference on the Conference of the Conference of the Conference of the Conference of the Confe	3108 Rolling Acres Pl. Suite A		
		Date Drilled: 8/15/01		Valrico, FL		
DEPTH (Feet)	BLOW COUNTS	LITHOLOGIC DESCRIPTIONS	OVA (ppm)	WELL DIAGRAM DETAILS		
0 - 2	-	Concrete with a gravel base.	_	2-ft x 2-ft pad w/8-in metal manhole.		
2 - 4 4 - 6 6 - 8 8 - 10 10 - 12	4-8-7-10 5-9-7-10 5-6-5-7 4-4-7-8 3-5-6-9	Mottled beige-orange-brown, dense, dry, crumbly, silty clay with trace of sand & pebbles. Gold with black streaks, loose, micaceous, silty clay.	0 0 0 0	15-ft 2-in PVC casing & 9-ft PVC 0.01 slotted screen. 20/40 sandpack bentonite seal, grout to surface.		
12 - 14 14 - 16 16 - 18 18 - 20 20 - 24	3-5-7-9 silty clay. Moist. 4-10-13-18 " Mottled gold-black-white, crumbly, micaceous		0 0 0 - -			

ARAMARK Uniform Services, Inc. 670 DeKalb Avenue Atlanta, GA.		MW-107 Surface Elevation: NA Total Well Depth: 25.0-ft Date Drilled: 8/14/01	Bock Environmental Services, Inc. 3108 Rolling Acres Pl. Suite A Valrico, FL	
DEPTH (Feet)	BLOW COUNTS	LITHOLOGIC DESCRIPTIONS	OVA (ppm)	WELL DIAGRAM DETAILS
0 - 2	-	Concrete with a gravel base.	-	2-ft x 2-ft pad w/8-in metal manhole.
2 - 4 4 - 6 6 - 8 8 - 10 10 - 12	4-5-9-7 6-4-6-7 3-3-4-6 2-3-4-6 3-3-8-7	-6-7 slightly moldable, silty clay4-6 " -4-6 Orange dense moist moldable clay with		10-ft 2-in PVC casing & 15-ft PVC 0.01 slotted screen. 20/40 sandpack, bentonite seal, grout to surface.
12 - 14 14 - 16 16 - 18 18 - 25	3-4-9-7 3-6-9-4 3-3-5-5 No Returns	" " pebbles absent. " " Total Well Depth at 25-ft.	28 2 - -	

Uniform S 670 DeKa	MARK ervices, Inc. lb Avenue a, GA.	MW-108 Surface Elevation: NA Total Well Depth: 25.0-ft	Bock Environmental Services, Inc. 3108 Rolling Acres Pl. Suite A Valrico, FL	
		Date Drilled: 8/15/01		,
DEPTH (Feet)	BLOW COUNTS	LITHOLOGIC DESCRIPTIONS	OVA (ppm)	WELL DIAGRAM DETAILS
0 - 2	•	Concrete with a gravel base.	-	2-ft x 2-ft pad w/8-in metal manhole.
2 - 4 4 - 6 6 - 8 8 - 10 10 - 12	5-15-8-7 4-4-4-4 6-6-4-6 3-3-3-15 4-8-10-12	Mottled black-orange-brown, dense, dry, crumbly, silty clav with rock fragments. Gold-gray-white, dry, silty clay with a trace of coarse grain sand. Hard rock at 10-ft.	100 12 12 2 2	15-ft 2-in PVC casing & 10-ft PVC 0.01 slotted screen. 20/40 sandpack, bentonite seal, grout to surface.
12 - 14 14 - 16 16 - 25	3-4-5-5 3-4-3-4 -	Gold, moist, micaceous, silty clay. Wet. " " Total Well Depth at 25-ft.	6 8 -	

ARAN	ЛARK	TMW-109	Bock Environmental						
ARAMARK Uniform Services, Inc.		Surface Elevation: NA	Surface Elevation: NA						
1 1	ilb Avenue a, GA.	Total Well Depth: 25.0-ft		3108 Rolling Acres Pl. Suite A					
		Date Drilled: 8/16/01		Valrico, FL					
DEPTH (Feet)	BLOW COUNTS	LITHOLOGIC DESCRIPTIONS	WELL DIAGRAM DETAILS						
0 - 2	-	Orange-brown-black, moist, silty clay with fragmented debris.	-	2-ft x 2-ft pad w/8-in metal manhole.					
2 - 4 4 - 6 6 - 8 8 - 10 10 - 12	4-3-2-4 6-9-11-10 4-3-4-5 6-22-33-Rf 9-6-4-5	Dark brown, slightly moist, grainy, dirty, clayey silt. Refusal at 10-ft. Dark brown to orange, slightly moldable, micaceous silt with a trace of sand.	>1000 >1000 >400 >150 50	10-ft 2-in PVC casing & 15-ft PVC 0.01 slotted screen. 20/40 sandpack, bentonite seal, grout to surface.					
12 - 14 14 - 16 16 - 18 18 - 25	4-4-3-4 4-4-6-9 - -	No Recovery. Wet. Light brown to gray, soft, moldable, micaceous, silty clay with trace of sand.	- - -						
		Total Well Depth at 25-ft.							

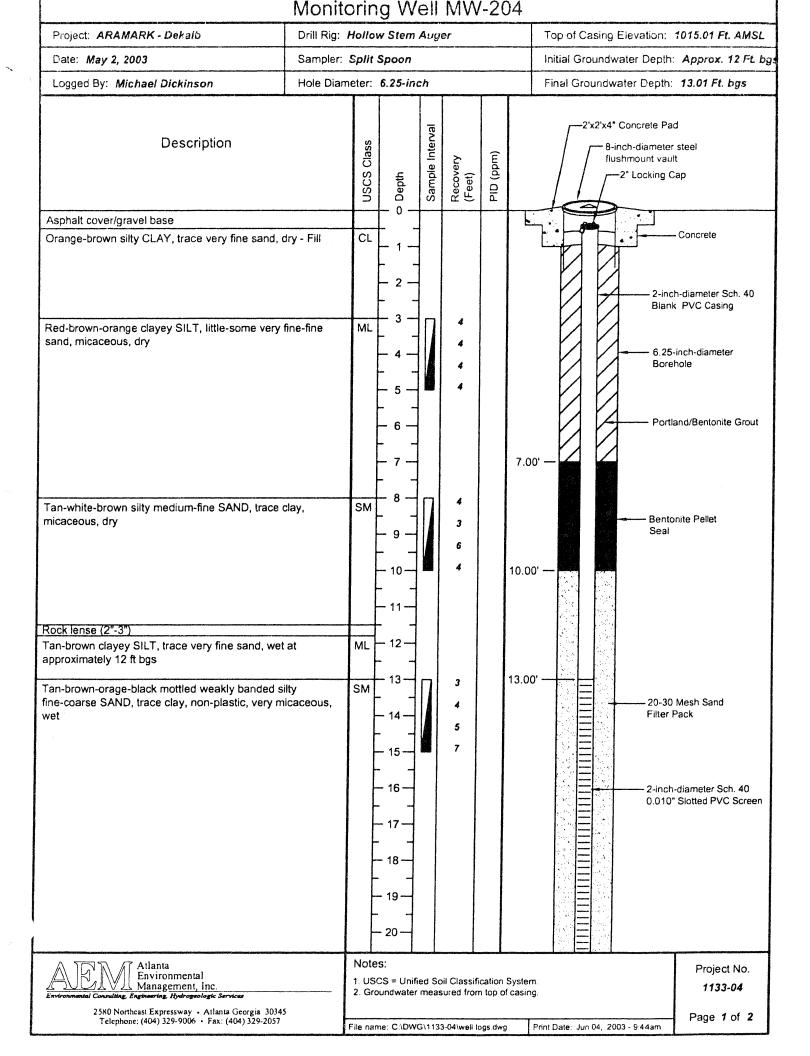
ARAN	MARK	MW-110	Bock Environmental			
13	ervices, Inc.	Surface Elevation: NA		Services, Inc. 3108 Rolling Acres Pl.		
II	llb Avenue a, GA.	Total Well Depth: 22.0-ft		Suite A		
		Date Drilled: 8/16/01		Valrico, FL		
DEPTH (Feet)	BLOW COUNTS	LITHOLOGIC DESCRIPTIONS	WELL DIAGRAM DETAILS			
0 - 2	•	Concrete with a gravel base.	-	2-ft x 2-ft pad w/8-in metal manhole.		
2 - 4 4 - 6 6 - 8 8 - 10 10 - 12	8-7-6-13 4-6-9-9 3-6-7-9 4-3-4-6 4-3-4-5	No Recovery. Orange, dense, dry, crumbly, slightly micaceous, silt. Gold, dry, crumbly, micaceous silt with trace of coarse grain sand. Moist.	- >500 450 340 290	15-ft 2-in PVC casing & 7-ft PVC 0.01 slotted screen. 20/40 sandpack, bentonite seal, grout to surface.		
12 - 14 14 - 16 16 - 22	4-7-8-10 4-6-6-14 -	No Recovery. Wet. No Recovery. Total Well Depth at 24-ft.	- - - -			

.

ARAMARK Uniform Services, Inc. 670 DeKalb Avenue Atlanta, GA.		MW-111 Surface Elevation: NA Total Well Depth: 25.0-ft Date Drilled: 8/15/01	Bock Environmental Services, Inc. 3108 Rolling Acres Pl. Suite A Valrico, FL	
DEPTH (Feet)	BLOW COUNTS	LITHOLOGIC DESCRIPTIONS	OVA (ppm)	WELL DIAGRAM DETAILS
0 - 2	-	Concrete with a gravel base.	-	2-ft x 2-ft pad w/8-in metal manhole.
2 - 4 4 - 6 6 - 8 8 - 10 10 - 12	3-4-6-8 5-3-4-5 3-2-3-5 5-4-5-8 3-4-4-7	Orange, dry, crumbly, micaceous, silty, clay. Gold, loose, moist, micaceous, silty clay. """	5 11 30 30 80	10-ft 2-in PVC casing & 15-ft PVC 0.01 slotted screen. 20/40 sandpack, bentonite seal, grout to surface.
12 - 14 14 - 16 16 - 18 18 - 25	5-9-15-12 3-9-27-30 7-15-17-13	" " with quartz fragments. " " Total Well Depth at 25-ft.	37 1 - -	

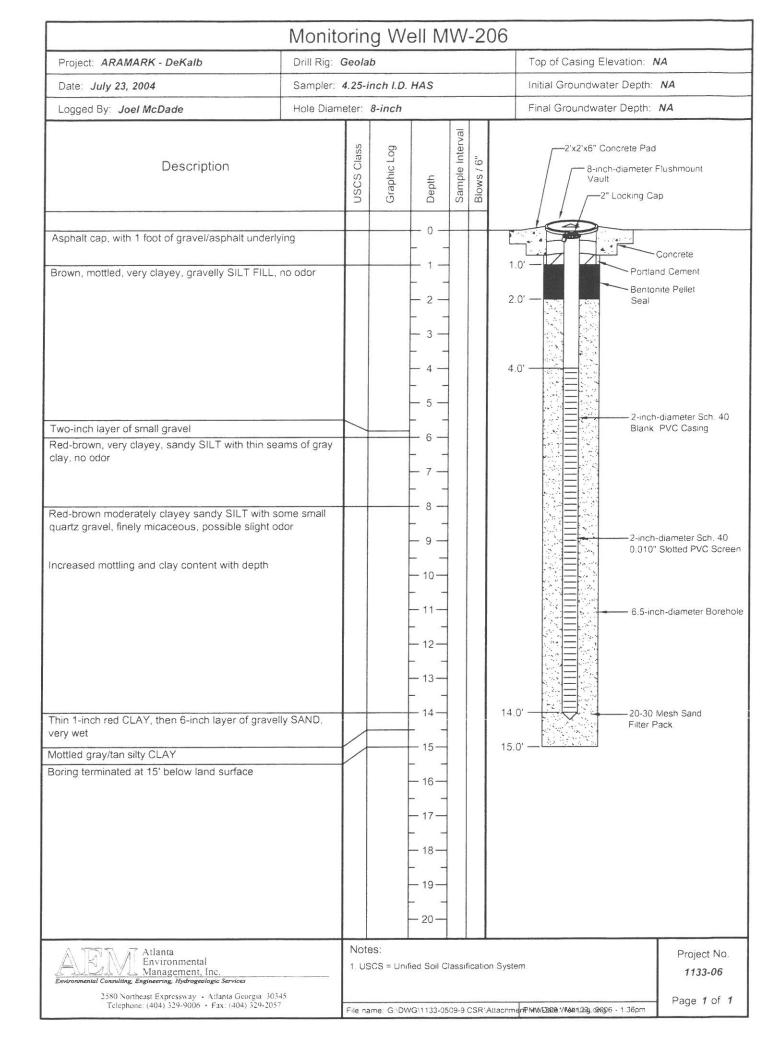
ě

()	Monit	orir	ig vv	ell	IVIV	- 2	UT			
Project: ARAMARK - Dekalb	Drill Rig:	Soni	c Rig					Top of	Casing Elevation	: 1015.76 Ft. AMSL
Date: April 14, 2003	Sampler: 10 Ft. Core						Initial G	Groundwater Dep	th: 13.0 Ft. bgs	
Logged By: Tony L. Gordon, P.G.	Hole Dian	neter:	6-inch					Final G	Groundwater Dept	h: 12.70 Ft. bgs
Description		USCS Class	Depth	Sample Interval	Recovery (Feet)	PID (ppm)			-2'x2'x4" Concrete I 8-inch-diame flushmount vi -2" Locking	ter steel ault
Concrete pad (floor) with gravel base		T	十 º -	T		T			1	
Red-brown, stiff, silty CLAY, trace-little fine-coar trace gravel, low plasticity, moist (percent sand with depth)		CL	- 1 - 2 - 3 4		8.0/8.0	(1.4)			Bla	— Concrete nch-diameter Sch. 40 ank PVC Casing
Orange brown, tan, light gray, white, brown, mot with very fine sand, trace-little clay, micaceous, moist/wet (saprolite)		ML	5 — 6 — 7 — 7 — 8 — — 9 — — — 10 —	1		(2.3) (2.3)	9.50			rtland/Bentonite Grout
			 - 11 - 12			(1.3)	12.00		→ Ber Sea	otonite Pellet al
@ 13 Ft. bgs water table			13 14 15		10.0/10.0	(0.9)	13.85			30 Mesh Sand ir Pack
Light gray, white, black, orange brown, gold, mot fine-coarse SAND, trace clay, micaceous, non-pl (saprolite)		SM	- 16			(1.0)				ch-diarneter Sch. 40 0" Slotted PVC Screen
Brown, gold, orange brown, black, white, mottled very fine sand, trace medium-coarse sand, micac non-plastic, wet (saprolite)		ML	- 18 - - 19 - - 20 -		(1.2)				
Atlanta Environmental Management, Inc. Environmental Consulting, Engineering, Hydrogeologic Services 2580 Northeast Expressway - Atlanta Georgia 3034 Telephone: (404) 329-9006 - Fax: (404) 329-2057	}	2. Gr 3. PI	CS = Unifi oundwater	meas , in pp	ured from m, were r	top o	of casing ured duri	ng boring ir	nstallation un 04, 2003 - 9:44am	Project No. 1133-04 — Page 1 of 2


				uterativet.		-20	
Project: ARAMARK - Dekalb	Drill Rig: 5		···	do and 11 a a 17 a		····	Top of Casing Elevation: 1015.76 Ft.
Date: April 14, 2003							Initial Groundwater Depth: 13.0 Ft. bg
Logged By: Tony L. Gordon, P.G.	Hole Diam	eter:	6-inch	- Auto-O		Final Groundwater Depth: 12.70 Ft. by	
Description		USCS Class	Depth	Sample Interval	Recovery (Feet)	PID (ppm)	
Brown, gold, orange brown, black, white mottl very fine sand, trace medium-coarse sand, m non-plastic, wet (saprolite)		ML	- 20 22 23 24		6.5/6.5	(1.1)	20-30 Mesh Sand Filter Pack 2-inch-diameter Sch 0.010* Slotted PVC
Terminate Soil Boring 24.50 Ft. bgs			- 25				24.50'—
A TAN A Atlanta		Note	Project I				
Environmental Management, Inc. Environmental Consulting, Engineering, Hydrogeologic Services		2. Gr	CS = Unifi oundwater	meas	sured from	n top of	

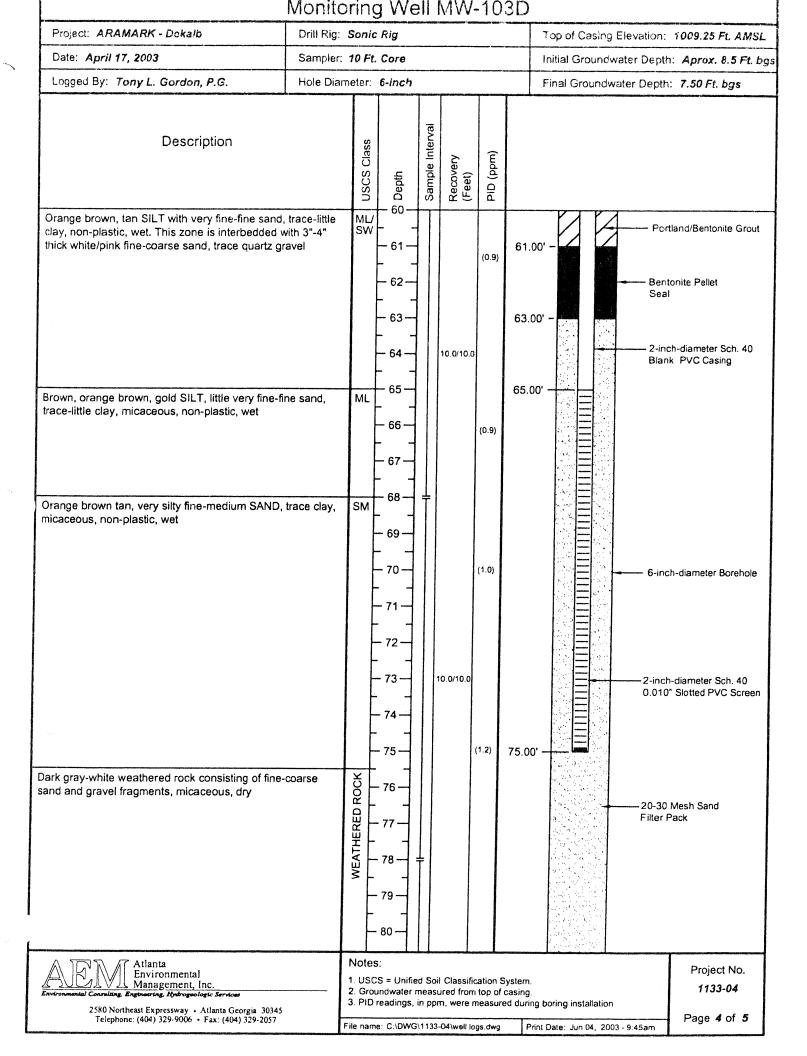
	Monito	orin	ıg	We	ell	MM	/-2(02
Project: ARAMARK - Dekalb	Drill Rig:	Sonic	Rig					Top of Casing Elevation: 1012.69 Ft. AMSL
Date: April 14, 2003	Sampler: 10 Ft. Core							Initial Groundwater Depth: 10.0 Ft. bgs
Logged By: Tony L. Gordon, P.G.	Hole Diam	eter:	6-in	ch				Final Groundwater Depth: 8.30 Ft. bgs
Description		USCS Class		v Deptn	Sample Interval	Recovery (Feet)	PID (ppm)	8-inch-diameter steel flushmount vault —2" Locking Cap
Asphalt paving			I'	,]	Π			
Red-brown, stiff silty CLAY, little-some fine-medi low plasticity, moist	um sand,	CL	- - -	1			(1.8)	Concrete
Red-brown SILT with fine sand, little-some clay, very low plasticity	micaceous,	ML/	- - -	-		5.0/8.0		2-inch-diameter Sch. 40 Blank PVC Casing
Red-orange-brown silty fine-medium SAND, trace micaceous, low plasticity, moist	e clay,	SM		4		5.0/G.U	(1.9)	6-inch-diameter Borehole
Red-brown, orange-brown, gray CLAY with fine-c	coarse sand.	CL	- - - -	, † , † ; †				Portland/Bentonite Grout
little silt, low plasticity, wet at approximately 10 ft.			- S - 10	- - -			(2.1)	9.50' — Bentonite Pellet
Gray-orange, brown, mottled, very stiff CLAY, littl fine-medium sand, medium plasticity (percent sand increases with depth)	e-some	CL	- 1: - 1: - 1:	2-		8.0/8.0	(1.6)	12.00' —
Orange-brown and gray mottled fine-coarse SAN trace-little silt, trace clay, low plasticity, trace quant (percent sand increases with depth)		SC	- 14 - - 15 - - 16	5-			(2.8)	20-30 Mesh Sand Filler Pack
			— 17 — 18 - — 19 - — 20			4.0/4.0		2-inch-diameter Sch. 40 0.010* Slotted PVC Screen
Atlanta Environmental Management, Inc. Environmental Consulting Engineering Hydrogeologic Services 2580 Northeast Expressway - Atlanta Georgia 3034: Telephone: (404) 329-9006 - Fax: (404) 329-2057	1-	2. Gr 3. Pil	CS = ound O read	water dings,	mea in p	sured fro	m top o	ured during boring installation Page 1 of 2

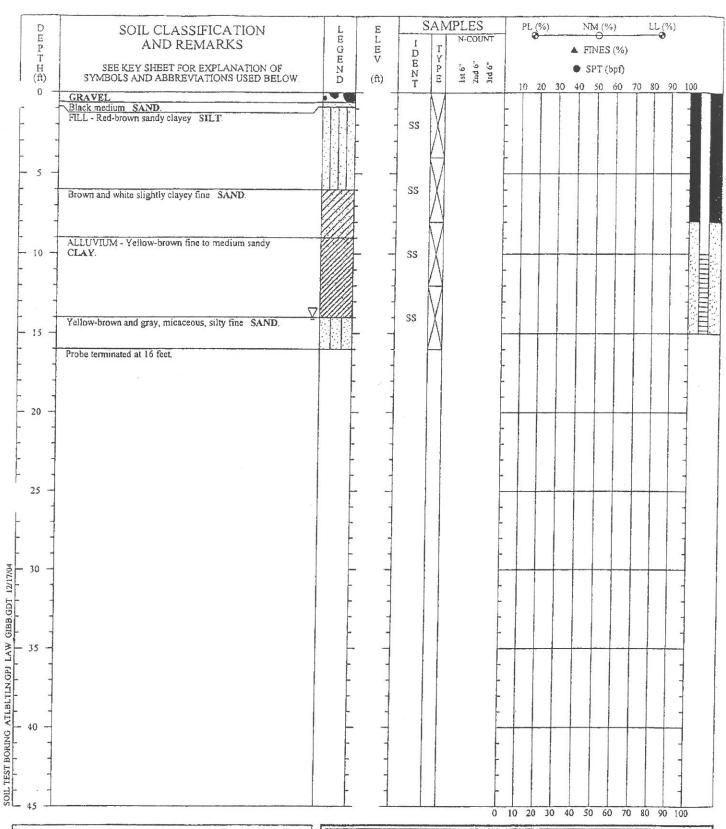
Monitoring Well MW-202								
Project: ARAMARK - Dekalb	Drill Rig: So	nic Rig				Top of Casing Elevation: 1012.69 Ft. AMSL		
Date: April 14, 2003	Sampler: 10 Ft. Core					Initial Groundwater Depth: 10.0 Ft. bgs		
Logged By: <i>Tony L. Gordon, P.G.</i>	Hole Diameter: 6-inch					Final Groundwater Depth: 8.30 Ft. bgs		
Description Orange-brown and gray mottled fine-coarse SAN trqace-little silt, trace clay, low plasticity, trace qui (percent sand increases with depth) Terminate Soil Boring 22.00 Ft. bgs	ID,	SC	Sample Interval Recovery	(Feet)		20-3 Filte 2-inc 0.01	0 Mesh Sand r Pack ch-diameter Sch. 40 0" Slotted PVC Screen	
Atlanta Environmental Management, Inc. Environmental Consulting, Engineering, Hydrogeologic Services	Notes: 1. USCS = Unified Soil Classification System.						Project No. 1133-04	
Environmental Consulting, Engineering, Hydrogeologic Services 2580 Northeast Expressway - Atlanta Georgia 30345 Telephone: (404) 329-9006 - Fax: (404) 329-2057	2. Groundwater measured from top of casing. 3. PID readings, in ppm, were measured during boring installation File name: C:\DWG\1133-04\well logs.dwg						Page 2 of 2	


Monitoring Well MW-203									
Project: ARAMARK - Dekalb	Drill Rig: So	onic Rig			Top of Casing Elevation: 1009.21 Ft. AMSL				
Date: April 15, 2003	Sampler: 10	0 Ft. Core			Initial Groundwater Depth: Aprox. 8.0 Ft. bg.				
Logged By: Tony L. Gordon, P.G.	Hole Diame	ter: 6-inch			Final Groundwater Depth	: 7.09 Ft. bgs			
Description		USCS Class Depth	Sample interval Recovery (Feet)	PID (ppm)	8-inch-diamete flushmount va	er steel ult			
Red-brown, orange brown, fine-coarse SAND with plasticity, moist - Fill Dark gray-black, silty fine-coarse SAND, little-sor non-plastic, stong hydrocarbon odor and trace ruscrap metal) - Fill	ne gravel	SC			1 /1 1 /1	— Concrete ch-diameter Sch. 40 nk PVC Casing			
		- 4 - 5 - 6 	6.0/8.0	18.7)		ch-diameter Borehole			
		- 7		7.0)	Por	tland/Bentonite Grout			
Orange brown, gray mottled silty fine SAND with plasticity, (percent clay increases with depth)	clay, low S	SC/ 10 — 11 — — 12 — — 13 — — 13 —	10.0/10.0	12.50					
Orange brown, stiff CLAY with trace silt, medium-	high	14 CH	(3	.9)	→ Bent Seal	onite Pellet			
plasticity		- 15 - - 16 - - 17 -	(4	.5)	20-3	0 Mesh Sand Pack			
Gray fine SAND with clay, micaceous, non-plastic Gray-orange brown mottled silty fine-medium SAN micaceous, non-plastic, wet		18 — T	(2.	2)		n-diameter Sch. 40 " Slotted PVC Screen			
Atlanta Environmental Management, Inc. Environmental Consulting Engineering Hydrogeologic Services 2580 Northeast Expressway - Atlanta Georgia 30345 Telephone: (404) 329-9006 - Fax: (404) 329-2057	1 2 3 5 Fi	Project No. 1133-04 - Page 1 of 2							

Monitoring Well MW-203								
Project: ARAMARK - Dekalb	Drill Rig: Sonic Rig						Top of Casing Elevation: 1009.21 Ft. AMSL	
Date: April 15, 2003	Sampler: 10 Ft. Core						Initial Groundwater Depth: Aprox. 8.0 Ft. bgs	
Logged By: Tony L. Gordon, P.G.	Hole Diame	le Diameter: 6-inch					Final Groundwater Depth: 7.09 Ft. bgs	
Description		USCS Class	Depth	Sample Interval	Recovery (Feet)	PID (ppm)		
Gray-orange brown mottled silty fine-medium SA micaceous, non-plastic, wet	ND,	SM	- 20 24 25		7.5/7.5	(3.7)	2-inch-diameter Sch. 40 0.010" Slotted PVC Screen	
Terminate Soil Boring 25.50 Ft. bgs			- 26				25.50'—	
Atlanta Environmental Management, Inc. Environmental Consulting, Engineering, Hydrogeologic Services 2580 Northeast Expressway • Atlanta Georgia 3034: Telephone: (404) 329-9006 • Fax: (404) 329-2057	5	Notes: 1. USCS = Unified Soil Classification System. 2. Groundwater measured from top of casing. 3. PID readings, in ppm, were measured during boring installation File name: C:\DWG\1133-04\well logs.dwg					of casing. 1733-04 sured during boring installation Page 2 of 2	

Monitoring Well MW-204									
Project: ARAMARK - Dekalb	Drill Rig: I	Hollow Ste	m Au	ıger			Top of Casing Elevation: 1015.01 Ft. AMSL		
Date: <i>May 2, 2003</i>	Sampler:	Split Spoc	n				Initial Groundwater Depth: Approx. 12 Ft. bg		
Logged By: Michael Dickinson	Hole Diam	iameter: 6.25-inch					Final Groundwater Depth: 13.01 Ft. bgs		
Description		USCS Class	Sample Interval	Recovery	(Feet)	(hidd) ar			
Tan-brown-orage-black mottled weakly banded s fine-coarse SAND, trace clay, non-plastic, very n wet	silty nicaceous,	ML - 20 ML - 21 - 22 - 23 - 24					3.00'	30 Mesh Sand r Pack ch-diameter Sch. 40 0" Slotted PVC Screen	
Terminate Soil Boring 24.50 Ft. bgs		- 25 - 26 - 27 - 28 - 29 - 30 - 31 - 32 - 33 - 34 - 35 - 36 - 37 - 38 - 39 - 40 - 40				2	8 Bore	ehole	
Atlanta Environmental Management, Inc. Environmental Consulting Engineering Protrogeologic Services 2580 Northeast Expressway - Atlanta Georgia 30345 Telephone: (404) 329-9006 - Fax: (404) 329-2057		Notes: 1. USCS = Unified Soil Classification System. 2. Groundwater measured from top of casing.						Project No. 1133-04	
Telephone: (404) 329-9006 • Fax: (404) 329-2057	File name: C\DWG\1133-04\well logs.dwg Print Date: Jun 04, 2003 - 9:45am						Page 2 of 2		


Monitoring Well MW-205											
Project: ARAMARK - DeKalb	Drill Rig: <i>D</i>	Prilling	Top of Casing Elevation: NA								
Date: March 31, 2004	Sampler: 4	1.25-ii	nch I.D.	HAS	·		Initial Groundwater Depth: NA				
Logged By: <i>Tom Lawrence</i>	Hole Diame	eter: (8-inch		T. CAN-11/4-1-1-10	mate sum	Final Groundwater Depth: NA				
Description		USCS Class	Graphic Log	Depth	Sample Interval	Blows / 6"	2'x2'x6" Concrete Pad 8-inch-diameter Flushmount Vault —2" Locking Cap				
Concrete Slab				L 0 –							
Red silty CLAY <u>fill</u> , with coarse sand and mica		CL		- - 1 -			Concrete				
Concrete obstruction Red silty CLAY <u>fill</u> , with coarse sand and mica		\cl		- 2 - - 2 - - 3 -			Portland Cement				
				- 4 - - 4 - - 5 -			Bentonite Pellet Seal 5.0' — 2-inch-diameter Sc	ch 40			
				- 6 - - 7 - - 8 -			7.0'				
Black silty CLAY fill grades with depth into gray to clayey SILT fill, with coarse sand and pebble size terra cotta tile pieces. Tan to light brown silty fine SAND fill, with angula	e broken	CL/ ML		 - 9 - 10			2-inch-diameter So 0.010" Slotted PVC	-			
sand and pebbles. Water saturated.	ii, coaise			11 12			6.5-inch-diameter	Borehole			
				14 15 16			20-30 Mesh Sand Filter Pack				
Tan silty CLAY Residuum		CL		- 16 - - 17 - 			17.0'				
Boring terminated at 18 feet below land surface.				- 18 - 19 - 20			18.0' — [**********************************				
Atlanta Environmental Management, Inc. Environmental Consulting, Engineering, Hydrogeologic Services		Note		ied Soil Cl	assific	cation	n System. Project 1133:				
2580 Northeast Expressway • Atlanta Georgia 3034 Telephone: (404) 329-9006 • Fax: (404) 329-2057	F	File nan	ne: C:\DW	G\1133-040	06\well	l logs.	.dwg Print Date: Jul 06, 2004 - 10:59am Page 1	of 1			


	Monitor	ing Well MW	-103D)	
Project: ARAMARK - Dekalb	Drill Rig: S	Sonic Rig	WW.State.Bull. I G. M.State.Co. Co. Co. Co. Co. Co. Co. Co. Co. Co.	Top of Casing Elevation	: 1009.25 Ft. AMSL
Date: April 17, 2003	Sampler: 10	0 Ft. Core		Initial Groundwater Dept	th: Aprox. 8.5 Ft. bg.
Logged By: Tony L. Gordon, P.G.	Hole Diame	eter: 6-inch		Final Groundwater Dept	h: 7.50 Ft. bgs
Description		USCS Class Depth Sample Interval Recovery	PID (ppm)	2'x2'x4" Concrete F 8-inch-diamet flushmount va —2" Locking	er steel ault
Red brown, orange brown, very silty CLAY, som low plasticity, moist Red brown, orange brown, fine-medium silty SA coarse sand, trace-some clay, very low-low plas micaceous, moist	ND, trace	CL	(1.0)		— Concrete
		- 4 - 8.0/8.0 - 5 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8	(1.1)		nch-diameter Sch. 40 nk PVC Casing
Gray, olive green, mottled, stiff silty CLAY, little-s sand, low-medium plasticity, moist Orange-brown gray, mottled very stiff CLAY, little fine-medium sand, trace coarse sand and quartz (gravel) low plasticity, wet (saprolite)	e-some (CL 8 -	(7.6)	6-ir	nch-diameter Borehole
		- 11 - 12 - 10.0/10.0 - 13 - 10.0/10.0 - 14 - 15 - 15 - 1	(2.9)	Por	tland/Bentonite Grout
Dark gray, orange brown, brown, white mottled Silittle-some fine-medium sand, trace-little clay, norwet (saprolite)	n-plastic, S	16 —	(4.7)		
Orange brown, gray, white, pink fine-coarse SANI trace-little silt, trace quartz gravel (fragmented), trace-plastic, micaceous, wet (saprolite)		- 19 -	(2.6)		
Atlanta Environmental Management, Inc. Environmental Consulting Engineering Hydrogeologic Services 2580 Northeast Expressway • Atlanta Georgia 3034: Telephone: (404) 329-9006 • Fax: (404) 329-2057	5	Notes: 1. USCS = Unified Soil Classi 2. Groundwater measured fro 3. PID readings, in ppm, were ile name: C:\DWG\1133-04\well	m top of casin measured du	ng.	Project No. 1133-04 Page 1 of 5

Drill R.g. Sonte Rig Date: April 17, 2003 Sampler: 10 Ft. Core Indial Groundwater Depth: Aprox. 8,5 Ft. Amounts of the Core Indial Groundwater Depth: Aprox. 8,5 Ft. Amounts of the Core Indial Groundwater Depth: Aprox. 8,5 Ft. Amounts of the Core Description Description Description Description Description Sample: 10 Ft. Core Indial Groundwater Depth: 7,50 Ft. bgs India Groundwater Depth: 7,50 Ft. bgs Description Sample: 10 Ft. Core India Groundwater Depth: 7,50 Ft. bgs India Groundwater Depth: 7,50 Ft. bgs India Groundwater Depth: 7,50 Ft. bgs Description Sample: 10 Ft. Core India Groundwater Depth: 7,50 Ft. bgs I		Monito	ring W	ell	MW-	1031				
Description Descr	Project: ARAMARK - Dekalb	Drill Rig:	Sonic Rig				Top of Casing Elevation	of Casing Elevation: 1009.25 Ft. AMSL		
Description Bay Bay	Date: April 17, 2003	Sampler:	10 Ft. Core				Initial Groundwater Dep	oth: Aprox. 8.5 Ft. bg		
Orange brown, gray, white, pink fine-coarse SAND, trace-little slit, trace guartz gravel (fragmentes), trace day, non-plastic, micro-plastic,	Logged By: Tony L. Gordon, P.G.	Hole Diam	neter: 6-incl				Final Groundwater Dep	th: 7.50 Ft. bgs		
Orange brown, gray, white, pink fine-coarse SAND, trace-liftle sit, trace quartz gravel (fragmented), trace clay, non-plastic, micareous, wet (saprolle) NOTE: white/pink intervals contain coarse sand and gravel only Orange brown, tan, white, very sitly fine-medium SAND, trace only Orange brown, tan, white, very sitly fine-medium SAND, trace only Orange brown, tan, white, very sitly fine-medium SAND, trace only Orange brown, tan, white, very sitly fine-medium SAND, trace only Orange brown, tan, white, very sitly fine-medium SAND, trace only Orange brown, tan, white, very sitly fine-medium SAND, trace only Orange brown, tan, white, very sitly fine-medium SAND, trace only Orange brown, tan, white, very sitly fine-medium SAND, trace only Orange brown, tan, white, very sitly fine-medium SAND, trace 10.010.0 Orange brown, tan, white, very sitly fine-medium SAND, trace 11.0 Orange brown, tan, white, very sitly fine-medium SAND, trace 11.0 Orange brown, tan, white, very sitly fine-medium SAND, trace 11.0 Orange brown, tan, white, very sitly fine-medium SAND, trace 11.0 Orange brown, tan, white, very sitly fine-medium SAND, trace 11.0 Orange brown, tan, white, very sitly fine-medium SAND, trace 11.0 Orange brown, tan, white, very sitly fine-medium SAND, trace 11.0 Orange brown, tan, white, very sitly fine-medium SAND, trace 11.0 Orange brown, tan, white, very sitly fine-medium SAND, trace 11.0 Orange brown, tan, white, very sitly fine-medium SAND, trace 11.0 Orange brown, tan, white, very sitly fine-medium SAND, trace 11.0 Orange brown, tan, white, very sitly fine-medium SAND, trace 11.0 Orange brown, tan, white, very sitly fine-medium SAND, trace 11.0 Orange brown, tan, white, very sitly fine-medium SAND, trace 11.0 Orange brown, tan, white, very sitly fine-medium SAND, trace 11.0 Orange brown, tan, white, very sitly fine-medium SAND, trace 11.0 Orange brown, tan, white, very sitly fine-medium SAND, trace 11.0 Orange brown, tan, white, very sitly fine-medium SAND, trace 11	Description		USCS Class Depth	Sample Interval	Recovery (Feet)	(mdd) Ola				
(saprolite)	trace-little silt, trace quartz gravel (fragmented non-plastic, micaceous, wet (saprolite) NOTE: white/pink intervals contain coarse san only Orange brown, tan, white, very silty fine-mediu	d and gravel	SM _ 20 - SM _ 21 - 22 - 23 - 24 - 25 - 26 - 27 - 28 - 28 - 28 - 28 - 20 - 20 - 20 - 20	8	10.0/10.0		Bia	ank PVC Casing		
Dark gray gold, brown mottled SILT, little-some fine sand, very micaceous, wet (saprolite) Atlanta Environmental Environmental Environmental Environmental Environmental Environmental Concludes Notes: 1. USCS = Unified Soil Classification System. 2. Groundwater measured from top of casing. 1133-04		nastic, wet	- 30 - 31 - 32 - 33 - 34 - 34 - 34 - 34 - 34 - 34	1	0.0/10.0		Por	rtland/Bentonite Grout		
Environmental Management, Inc. Environmental Consulting, Engineering, Hydrogeologic Services 1. USCS = Unified Soil Classification System. 2. Groundwater measured from top of casing. 1133-04	Dark gray gold, brown mottled SILT, little-some very micaceous, wet (saprolite)	fine sand,	ML 36 37 38 39							
2580 Nontheast Expressway • Atlanta Georgia 30345 Telephone: (404) 329-9006 • Fax: (404) 329-2057 Telephone: (404) 329-9006 • Fax: (404) 329-2057 Telephone: (404) 329-9006 • Fax: (404) 329-2057	Environmental Management, Inc. Environmental Conniliting Engineering, Hydrogeologic Services 2580 Northeast Expressway - Atlanta Georgia 30	45	1. USCS = Unif 2. Groundwater	measu	red from	top of casi	ng.	1133-04		

	D						
Project: ARAMARK - Dekalb	Drill Rig: Senic Rig Top of						Top of Casing Elevation: 1009.25 Ft. AMSL
Date: April 17, 2003	Sampler: 1	0 Ft.	Core				Initial Groundwater Depth: Aprox. 8.5 Ft. bg
Logged By: Tony L. Gordon, P.G.	Hole Diame	eter:	6-inch				Final Groundwater Depth: 7.50 Ft. bgs
Description		USCS Class	Depth	Sample Interval	Recovery (Feet)	PID (ppm)	
Dark gray gold, brown mottled SILT, little-some fivery micaceous, wet (saprolite) White pink, light gray, fine-coarse quartz SAND, gravel, trace silt. This zone is interbedded with or SILT, little-some clay, trace-little fine sand, very livet	trace quartz	ML SW/	- 40 - 41 - 42 - 43 - 44 - 45 - 46		10.0/10.0	(10)	2-inch-diameter Sch. 40 Blank PVC Casing
Orange brown, tan brown, gray-gold very silty fine little-some clay, very low plasticity. This zone is in with 4"-6" thick zones of white/pink fine-coarse S/quartz gravel	terbedded	SM/ SW	- 46			(1.0)	6-inch-diameter Borehole
			- 51		0.0/10.0	(1.0)	Portland/Bentonite Grout
Orange brown, tan SILT with very fine-fine sand, tr clay, non-plastic, wet. This zone is interbedded wit thick white/pink fine-coarse sand, trace quartz grav	h 3"-4" S	1L/ SW -	- 56 - 57 - 58 - 59 - 60			1.0)	
Atlanta Environmental Management, Inc. Environmental Consulting, Engineering, Hydrogeologic Services 2580 Northeast Expressway • Atlanta Georgia 30345 Telephone: (404) 329-9006 • Fax: (404) 329-2057	1 2 3	2. Gro 3. PID	S = Unified	neasi n ppr	n, were n	top of ca neasured	

	Monitor	ing)3D					
Project: ARAMARK - Dekalb	Drill Rig: S	onic	Rig	M reprinte dia pangan		i reinario para la c	Top of Casing Elevation: 1009.251 F	t. AMSL
Date: April 17, 2003	Sampler: 1	0 Ft.	Core				Initial Groundwater Depth: Aprox. 8.	5 Ft. bgs
Logged By: Tony L. Gordon, P.G.	Hole Diame	eter:	6-inch				Final Groundwater Depth: 7.50 Ft. b	នួន
Description		USCS Class	Depth	Sample Interval	Recovery (Feet)	PID (ppm)		
Dark gray-white weathered rock consisting of fine sand and gravel fragments, micaceous, dry	e-coarse	WEATHERED ROCK	- 80 - 81 - 82 		5.0/8.0		6-inch-diameter B 20-30 Mesh Sand Filter Pack	
Terminate Soil Boring 83.00 Ft. bgs			- 83 84				83.00' —	
Atlanta Environmental Management, Inc. Environmental Connulting, Engineering, Hydrogeologic Services 2580 Northeast Expressway • Atlanta Georgia 30345 Telephone: (404) 329-9006 • Fax: (404) 329-2057		2. Grou 3. PID	:S = Unifie undwater r	neasi in ppr	ured from m, were n	top of neasur	of casing. 1733- ured during boring installation Page 5	04

DRILLER:

T. Baker

EQUIPMENT:

Geoprobe

METHOD:

Direct Push 3 inches

HOLE DIA.: "EMARKS:

Probe terminated at 16 feet. Groundwater encountered at

14 feet. 1-inch Type I well set.

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION, SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BEWEEN STRATA ARE APPROXIMATE. TO ANSITIONS RETWEEN STRATA MAY BE GRADUAL.

SOIL/IESTEBORING REGORD

BORING NO.:

TW-35

PROJECT:

Madison Beltline

LOCATION:

Atlanta, GA

DRILLED:

December 8, 2004

PROJECT NO: 6305-04-0231

D E	SOIL CLASSIFICATION AND REMARKS	L E G	E L E V	S		IPLES N-COUNT	PL (NM (%)	LL (%)
P T H	SEE KEY SHEET FOR EXPLANATION OF SYMBOLS AND ABBREVIATIONS USED BELOW.	E N		D E N T	T Y P E	1st 6" 2nd 6" 3rd 6"	-	▲ FINES (%◆ SPT (bpf)	
(ft) - 0 -	FILL - Light brown to dark gray silty fine to medium	D	(ft)	T	E	1st 2ng 3rg	10		70 80 90 100
_ 5 _	SAND.		 				-		-
-	RESIDUAL - Gray to brown slightly micaceous sandy clayey SILT.								
10 -	<u>.</u>								
	*		 						
_ 15 _	Boring terminated at 15 feet.								
			-				-		
20 -							-		
-			 	-					
25 -			 				-		
9 30		i ya					-		
SOIL TEST BORING ARAMARK2.GPJ LAW GIBB.GDT 6/7/06 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							-		
TAW GIB WH 35 -							-		
IARK2.GPJ		-	- - -			·	-		
NG ARAM		-					-		_
TEST BORI		-					-		
10S 45 1							-	40 50 60	70 80 90 100

DRILLER: MACTEC

EQUIPMENT: Geoprobe METHOD: Direct Push

HOLE DIA.: 2 inches

REMARKS: Groundwater monitoring well installed. Stabilized

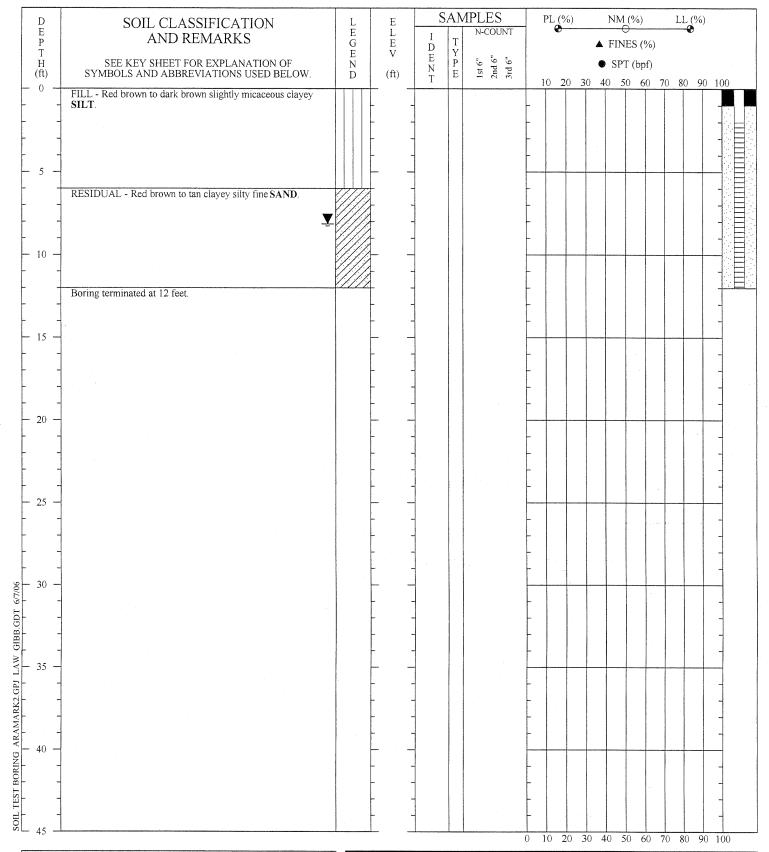
groundwater depth 10.94 feet.

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BEWEEN STRATA ARE APPROXIMATE. TRANSITIONS BETWEEN STRATA MAY BE GRADUAL.

SOIL TEST BORING RECORD

BORING NO.: MW-209 PROJECT:

Aramark


LOCATION: **DRILLED:**

Atlanta, Georgia

PROJECT NO.: 6305-05-0321

September 2, 2005

DRILLER: MACTEC EQUIPMENT: Geoprobe METHOD: Direct Push

HOLE DIA .:

REMARKS: Groundwater monitoring well installed. Stabilized

groundwater depth 8.14 feet.

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BEWEEN STRATA ARE APPROXIMATE TRANSITIONS BETWEEN STRATA MAY BE GRADUAL.

SOIL TEST BORING RECORD

BORING NO.: MW-208P **PROJECT:** Aramark

LOCATION:

Atlanta, Georgia **DRILLED:** September 2, 2005

PROJECT NO.: 6305-05-0321

	D E P	SOIL CLASSIFICATION AND REMARKS	L E G	E L E V	ı		APLES N-COUNT	PL	(%)		M (%) ⊖ INES (%)	LL (%)	
	T H (ft)	SEE KEY SHEET FOR EXPLANATION OF SYMBOLS AND ABBREVIATIONS USED BELOW.	E N D	V (ft)	D E N T	T Y P E	1st 6" 2nd 6" 3rd 6"	10	20 3	• S	PT (bpf)	70 80 90	100
-		FILL - Dark brown to gray clayey fine to medium sandy SILT with some gravel.		 				-					
	- 5 - - 5 -	RESIDUAL - Red brown fine sandy SILT.		 									
		Red brown to tan clayey silty fine SAND.											
	· .	Boring terminated at 12 feet.						-					
	- 15 - 												-
	- 20 -			 									-
-	 25 -							-					
			4.0					-					-
DI 6/7/06	- 30 -									-			
LAW GIBB.C	- 30 - 35 - 35 - 40 - 45												-
NAMARK2.GPJ	-			 				-					
T BORING AR	- 40 - -			-						-			
SOIL TES	- - 45 —						(- -) 10	20 30) 40	50 60	70 80 90	100

DRILLER: MACTEC EQUIPMENT: Geoprobe

METHOD: Direct Push HOLE DIA.: 2 inches

REMARKS: Groundwater monitoring well installed. Stabilized

groundwater depth 7.85 feet.

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BEWEEN STRATA ARE APPROXIMATE. TRANSITIONS BETWEEN STRATA MAY BE GRADUAL.

SOIL TEST BORING RECORD

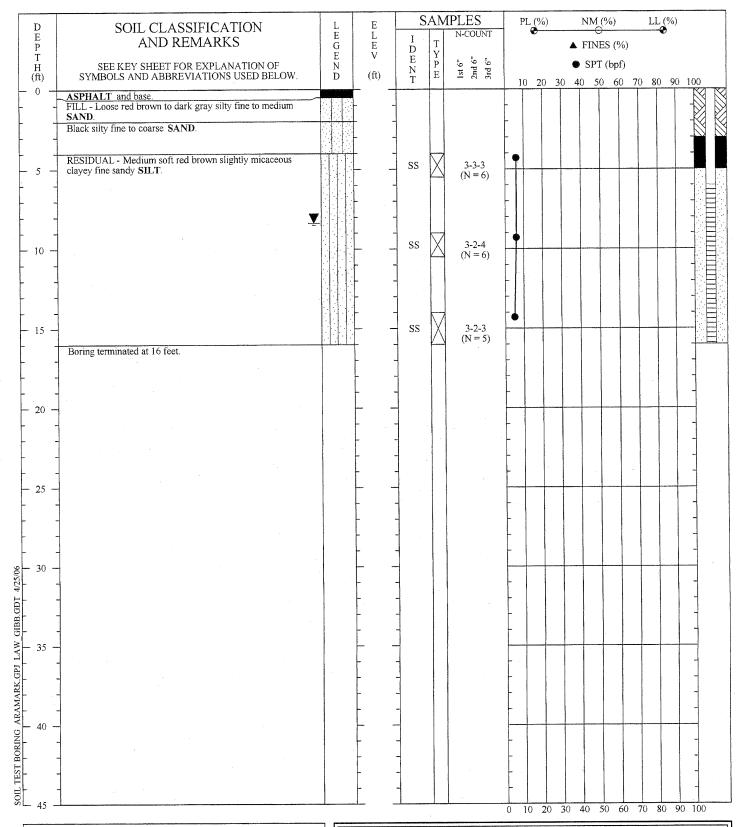
BORING NO.: MW-207P **PROJECT:** Aramark

LOCATION: Atlanta, Georgia

DRILLED: September 2, 2005

PROJECT NO.: 6305-05-0321

		Monit	orir	ıg W	ell M	W-2	07			
	Project: ARAMARK - DeKalb	Drill Rig:	Geop	robe 661	ODT HS	A		Top of Casing	g Elevation: 1	013.191 AMSL
	Date: April 13, 2006	Sampler:	Split	Spoon				Initial Ground	water Depth:	11.97' TOC
	Logged By: Tony L. Gordon, P.G.	Hole Dian	neter:	8-inch				Final Ground	water Depth:	11.50' TOC
	Description		USCS Class	Graphic Log	Depth	Sample Interval Blows / 6"		/8	s" Concrete Pad I-inch-diameter F /ault —2" Locking Ca	
	Concrete Paving		\vdash		- o -	+	F			
	Red-brown, clayey SILT, trace-little fine sand, ver plasticity, moist	ry low	ML/ CL		- 2 - - 4 -	X	1.5' —		4 -	Concrete
	- No Sample Recovery - From auger cuttings: Red brown, brown, silty CLAY, little-some fine-coolow plasticity, moist (CL)	arse sand,	CL		- 6 - - 8 - - 8 -				Portlan	d Cement
	Red-brown, light gray, mottled, stiff CLAY, little sit fine-coarse, sand, medium plasticity, moist (% sat increases with depth)	lt, trace-little nd	CL/ CH		- 10 - 12 - 12 - 14 - 14 - 14 - 14 - 14 - 14		13.5			diameter Sch. 40 PVC Casing
(Note: Sample recovery: 1.5/5.0 ft. only: Gray, orange-brown, white banded, SILT and fine SAND. Trace quartz gravel, trace clay, non-plastic moist	c, very	SM/ ML	-	- 16 - 2 - 16 - 2 - 18		15.8 17.8		Bentoni Seal 20-30 N Filter Pa	lesh Sand
	Gray, brown, tan, white, gold, banded SILT and fir SAND, trace clay, micaceous, (gold), non-plastic,	ne-medium wet	SM/ ML		- 20 22 24 26					iameter Sch. 40 Slotted PVC Screen
	Tan, brown, silty fine SAND, non-plastic, wet		SM		- 28 -	$\langle $	27.8' 28.3' 29.0'		8-inch-c	liameter Borehole
	Terminate soil boring				- 32 34 36					
(,					38-					
)	Atlanta Environmental Management, Inc. Environmental Consulting, Engineering, Hydrogeologic Services 2580 Northeast Expressway - Atlanta Georgia 30345 Telephone: 4004) 329-9006 - Fax: (404) 329-2057		Note:	S: CS = Unifie	d Soil Clas	ssification	System			Project No. 1133-0509 Page 1 of 1
l	- 11-g. 1319 (777) 227 2000 - 1 d.A. (40-1) 329-203		File nan	ne: G: DWG	11133-0406	well logs.	dwg F	Pont Date: Apr 25, 2	006 - 2:32pm	


	Monit	orir	ng W	ell N	100	-2	08
Project: ARAMARK - DeKalb	Drill Rig:	Geop	robe 66	10DT H	SA		Top of Casing Elevation: 1011.566' AMSL
Date: April 3, 2006	Sampler:	Split	Spoon				Initial Groundwater Depth: 10.38' TOC
Logged By: Tony L. Gordon, P.G.	Hole Dian	neter:	8-inch	,			Final Groundwater Depth: 9.30' TOC
Description		USCS Class	Graphic Log	Depth	Sample Interval	Blows / 6"	3-inch-diameter Flushmount Vault 2" Locking Cap
Concrete paving				<u> </u>			
Red brown, silty CLAY, trace-little fine sand, trace-l	ace gravel, depth), moist	CL		2 -	X		Concrete
Red-brown, tan-brown, light gray, mottled, clay very fine sand, trace mica, very low-non-plastic		ML/ CL		- 6 - - 8 -			Portland Cement
Red-brown, silty CLAY, little-some fine sand, lovery moist		CL/ SC		10-			2-inch-diameter Sch. 40
Red-brown, orange brown, light gray, mottled s trace-little fine sand, low-medium plasticity, mo increases with depth)	ist (% sand	CL SC/		12-			Blank PVC Casing
Light gray, blue-green, silty CLAY and fine-coavery low plasticity, moist Red-brown, light gray, mottled silty clay, trace-light		CL CL		- 14 			15.0"
low plasticity, very moist/wet				— 16 — –	IXI		Bentonite Pellet Seal
Orange-brown, light gray, mottled SILT, and ve trace clay, micaceous, non-plastic, very moist/v		ML/ SM		— 18 — — —	/ \		19.5'
Orange-brown, light gray, white, mottled SILT a trace clay, micaceous, non-plastic, wet	ind fine SAND,	ML/ SM		- 20 - - 22 - - 24 -			20-30 Mesh Sand Filter Pack
Orange-brown, light-gray, mottled soft, very silty SAND, trace-little clay, very low plasticity, wet/s		SM/ SC		- 26			2-inch-diameter Sch. 40 0.010" Slotted PVC Screen
Terminate soil boring				- 30 - - 32 -	/ \		29.5' 30.0' 30.5'
			-	- 34 36 38 40			
Atlanta Environmental Management, Inc. Environmental Consulting, Engineering, Hydrogeologic Services 2580 Northeast Expressivay - Atlanta Georgia 30	345	Note 1 US	s: CS = Unifi	ed Soil Cl	assific	ation	1133-0509
Talephone (404) 329-9006 • Fax. (404) 329-20:	57	File na	me G DW	G\1133-04(06\well	logs.	dwg Print Date: May 15, 2006 - 1 36pm Page 1 of 1

	Monito	orir	ng W	ell M	W	-3	01				
Project: ARAMARK - DeKalb	Drill Rig:	Geop	robe Tra	ick Rig				Top of C	asing Elev	/ation:	1012.601 AMSL
Date: April 4, 2006	Sampler:	10 Ft	Core S	onic Rig				Initial Gr	oundwater	Depth:	NA
Logged By: Tony L. Gordon P.G. (2003)	Hole Diam	eter:	8-inch					Final Gr	oundwater	Depth:	10.40' TOC
Description (From soil boring B-101, dated April 1 Red-brown, black CLAY with fine-coarse silty sar	nd,	다 USCS Class	Graphic Log	o Depth	Sample Interval	Blows / 6"			Flushm	crete Pad diameter ount Vaul ocking Ca	Steel It
trace-little gravel and concrete fragments, trace t glass, metal, etc.) very low-low plasticity, moist - - Replaced By Soil Fill -				- 2 - - 4 - - 6 -			2' -			Portlar	Concrete nd/Bentonite Grout
Red-brown-orange brown, silty fine-medium SAN trace-little clay, very low plasticity, moist-wet	D.	ML		8 10 12 14			1;	3' —		Blank	-diameter Sch. 40 PVC Casing
Orange brown, gray, very stiff, mottled CLAY, little fine-coarse sand, medium plasticity, moist	e-some	CL		- 14 16 - 18	\bigvee		17.3	5' —		Seal	nite Pellet
Orange brown-tan-gold SILT, trace-some fine sar clay, banded, mottled, micaceous, non-plastic, we	et	ML		- 20							Slotted PVC Screen
Orange brown, tan, gray, gold silty fine SAND, tra micaceous, non-plastic, wet	ce clay,	SM		- 24	$\left \begin{array}{c} \\ \\ \end{array} \right $						Mesh Sand
Orange brown-tan-white-pink silty fine-coarse SAI little quartz gravel, trace-little clay, low-medium planicaceous, wet		SM		- 28			27.3 28	i i			
Terminate Soil Boring 35 Ft. bgs				- 30							
Atlanta Environmental Management, Inc. Environmental Consulting Engineering, Hydrogeologic Services 2580 Northeast Expressway - Atlanta Georgia 3034:	5	Note 1 US		ed Soil Cla	essific	cation	n Syster	n.			Project No. 1133-0509-6
Telephone. (404) 329-9006 - Fax: (404) 329-2057	-	File name : G1DWG11133-0406 well logs dwg Print Date: May 15: 2006 - 1:38pm							1:38pm	Page 1 of 1	

	Monit	orin	g W	ell N	1W	-3	02				
Project: ARAMARK - DeKalb	Drill Rig:	Geopi	robe Tra	ack Rig				Top of C	asing Elev	ation: 1	011.911 AMSL
Date: April 4, 2006	Sampler:	None						Initial Gr	oundwater	Depth:	NA
Logged By: Tony L. Gordon P.G. (2003)	Hole Dian	neter:	8-inch	-				Final Gro	oundwater	Depth:	10.37' TOC
Description (From soil boring B-102, dated April	16, 2003)	USCS Class	Graphic Log	Depth	Sample Interval	Blows / 6"			Flushme	crete Pad diameter : ount Vaul ocking Ca	Steel t
Gray, fine-coarse SAND and gravel, little silt, nor moist - Fill - Replaced by Soil Fill -	n-plastic,	SP		0 -			2' -			1 1 1	Concrete
Red brown, stiff clayey fine SAND, very low-low moist - Replaced by Soil Fill -		sc					2 -			— Portlar	nd/Bentonite Grout
Red brown, orange brown SILT, little clay, tracesand, micaceous, moist, non-plastic (percent sar with depth) - Replaced by Soil Fill -		ML/		- 6 - - 8 -							-diameter Sch. 40 PVC Casing
Orange brown, white silty fine-coarse SAND, trace non-plastic, wet-very moist, mottled	ce clay,	SM		10-	$\left\ \cdot \right\ $						
Orange brown, red brown, brown SILT, some fine clay, non-plastic, micaceous, wet, mottled	e sand, trace	ML		- 12 - 	1						
Red brown, orange brown, gray and gold SILT. li very fine sand, trace clay, micaceous, mottled/banon-plastic	nded,	ML		- 16			16' 17' 19'			— 2-inch-	ite Pellet Seal
Red brown, orange brown, gray and gold SILT, lit very fine sand, trace clay, micaceous, mottled/ba non-plastic		ML		 - 22 -							Slotted PVC Scree
White, pink, brown, gold, mottled silty fine-coarse quartz gravel (weathered quartz-rich zone)		SM		- 24 -	$ \Lambda $					— 8-inch-	diameter Borehole
Brown orange, brown, gray SILT, little-some very trace clay, very micaceous, non-plastic, wet	fine SAND,	ML		- 26 - - 28 -						–20-30 N Filter Pa	Mesh Sand ack
Brown, orange-brown white, pink, gold mottled SI little-some fine-coarse sand, non-plastic, micaceo Terminate Soil Boring 30 Ft. bgs		ML		- 30			29' 29.50' 30'				
				32 34 36 38 40							
A:lanta Environmental Management, Inc. Environmental Consulting, Engineering, Hydrogeologic Services		Notes		ed Soil Cl	lassific	cation	ı System.				Project No. 1133-0509-6
2580 Northeast Expressivay - Atlanta Georgia 3034 Telephone. (404) 329-9006 - Fax: (404) 329-2057	ŝ	File name: GrDWG\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\						ıy 15. 2006 -	1 42pm	Page 1 of 1	

	Monito	orir	ng W	ell M	IW	-3	03	
Project: ARAMARK - DeKalb	Drill Rig:	Geop	robe Tra	ick Rig			Top of Casing Elevation	n: 1009.386 AMSL
Date: April 4, 2006	Sampler:	None)				initial Groundwater Dep	oth: Approx 8.5 ft. bg
Logged By: Tony L. Gordon P.G. (2003)	Hole Diam	neter:	8-inch				Final Groundwater Dep	th: 7.73 ft TOC
Description (From well log MW-103D, dated April 1 Red brown, orange brown, very silty CLAY, some low plasticity, moist - Replaced by Soil Fill -	,	D USCS Class	Graphic Log	ODepth	Sample Interval	Blows / 6"	3'x3'x4" Concrete 8-inch-diame Flushmount 2" Lockin	eter Steel Vault g Cap
Red brown, orange brown, fine-medium silty SAN coarse sand, trace-some clay, very low-low plastic micaceous, moist - Replaced by Soil Fill -	city,	SC		2			2-	— Concrete ortland/Bentonite Grout
Gray, olive green, mottled, stiff silty CLAY, little-so sand, low-medium plasticity, moist Orange-brown gray, mottled very stiff CLAY, little-fine-medium sand, trace coarse sand and quartz f (gravel) low plasticity, wet (saprolite)	-some	CL/		8 — 10 — 12 — 14 — 14 — 14 — 14 — 14 — 14 — 14			13' — Bei	/C Casing
Dark gray, orange brown, brown, white mottled SIL little-some fine-medium sand, trace-little clay, non-wet (saprolite) Orange brown, gray, white, pink fine-coarse SAND trace-little silt, trace quartz gravel (fragmented), tranon-plastic, micaceous, wet (saprolite) Orange brown, gray, white, pink fine-coarse SAND trace-little silt, trace quartz gravel (fragmented), tranon-plastic, micaceous, wet (saprolite) NOTE: white/pink intervals contain coarse sand an only Orange brown, tan, white, very silty fine-medium Scoarse sand, trace-little clay, micaceous, non-plastic (saprolite)	-plastic, D, ace clay, ace clay, add gravel	SM SM		- 16			16' — 18' — 2-ii — 0.0	nch-diameter Sch. 40 10" Slotted PVC Screen nch-diameter Borehole 30 Mesh Sand er Pack
Terminate soil boring 29 Feet BGS			-	- 32 34 36				
Atlanta Environmental Management, Inc. Environmental Consulting Engineering, Hydrogeologic Services 2580 Northcast Expressway - Atlanta Georgia 30345 Telephone: (404) 329-3006 - Fax: (404) 329-2057			CS = Unifie					Project No. 1133-0509-6 Page 1 of 1

	Monit	orir	ıg W	ell N	1VV	-3	06		
Project: ARAMARK - DeKalb	Drill Rig:						Top of Casing Elevation:	108.496' AMSL	
Date: April 3, 2006	Sampler:	Split	Spoon				Initial Groundwater Depth:	Initial Groundwater Depth: NA	
Logged By: Tony L. Gordon, P.G.	Hole Dian	neter:	8-inch				Final Groundwater Depth:	7.50' TOC	
Description Asphalt paving		USCS Class	Graphic Log	o Depth	Sample Interval	Blows / 6"	3'x3'x6" Concrete Pac 8-inch-diameter Vault 2" Locking Ca	Flushmount	
Red-brown, orange-brown, gray, mottled silty CL trace-some fine sand, low to very low plasticity. In with thin (1-2") seams of clayey fine sand	AY, nterbedded	CL		2 - 4 - 6 - 8			Portlar	Concrete	
Red brown, stiff, silty fine-coarse SAND, trace cla gravel, non-plastic, very moist/wet Red-brown, blue gray, light gray, orange brown, n CLAY, little-some fine sand, low-medium plasticity sand increases with depth)	nottled, silty	CL		- 10 - 12 - 14 - 16			15.0' — Blank	-diameter Sch. 40 PVC Casing	
ight-gray, clayey SILT, some fine sand, very low noist		ML/ CL		- 18 -			Seal 18.5' — Na C		
Light gray, silty CLAY, trace-little fine sand, low-molasticity, moist (% sand increases with depth) Gray, tan, orange0brown, white, banded SILT and fine-coarse SAND, trace-little clay, non-plastic, we will depth) Ferminate soil boring		SM		- 20			2-inch-e 0.010"	Mesh Sand ack diameter Sch. 40 Slotted PVC Screen diameter Borehole	
Atlanta Environmental Management, Inc. Environmental Consulting, Engineering, Hydrogeologic Services 2580 Northeast Expressivay - Atlanta Georgia 30345 Telephone: (404) 329-9006 - Fax. (404) 329-2057			S: S = Unifie e: G: DWG					Project No. 1133-0509 Page 1 of 1	

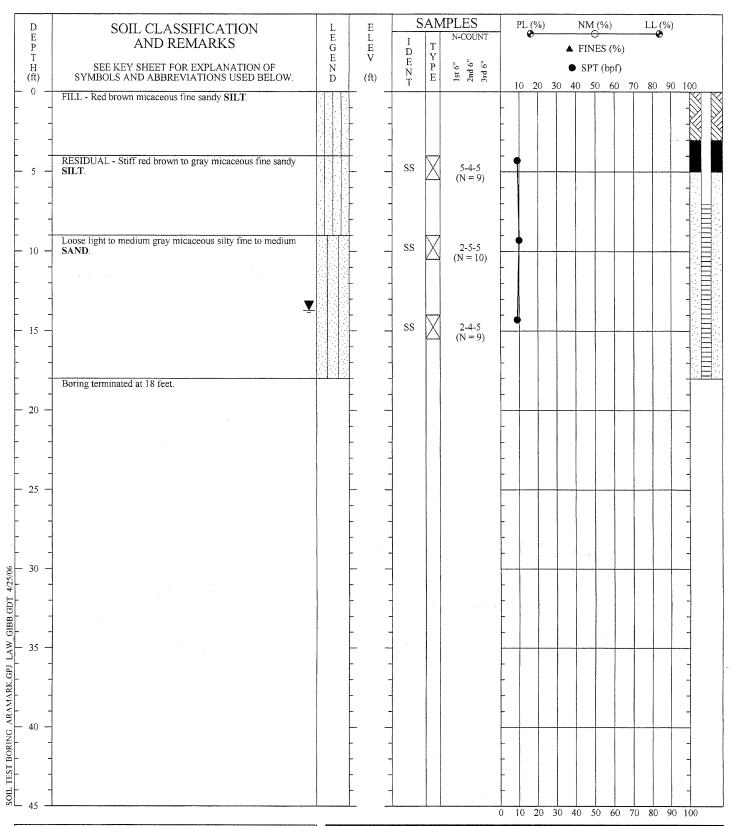
DRILLER: MACTEC EQUIPMENT: CME 550

METHOD: Hollow Stem Auger

HOLE DIA.: 8 inches

REMARKS: Type II well installed. Stabilized groundwater depth 8.37

feet below TOC.


THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BEWEEN STRATA ARE APPROXIMATE. TRANSITIONS BETWEEN STRATA MAY BE GRADUAL.

SOIL TEST BORING RECORD

BORING NO.: MW-401
PROJECT: ARAMARK
LOCATION: Atlanta, Georgia

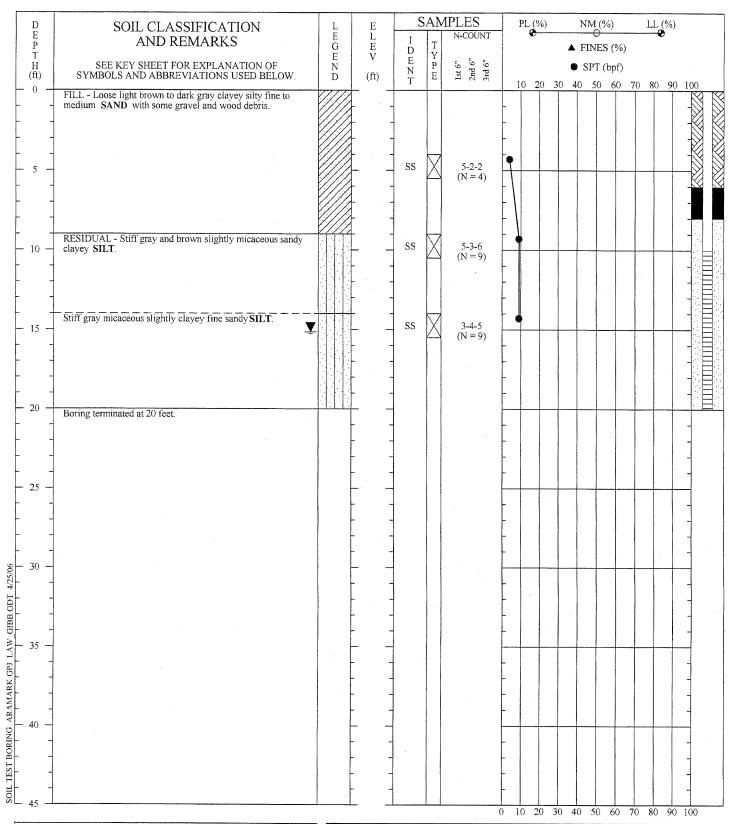
DRILLED: April 13, 2006 **PROJECT NO.:** 6306-05-0097

DRILLER: MACTEC
EQUIPMENT: CME 550
METHOD: Hollow Stem Auger

HOLE DIA.: 8 inches

REMARKS: Type II well installed. Stabilized groundwater depth

13.72 feet below TOC.


THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER INTERFACES BEWEEN STRATA ARE APPROXIMATE. TRANSITIONS BETWEEN STRATA MAY BE GRADUAL.

SOIL TEST BORING RECORD

BORING NO.: MW-402
PROJECT: ARAMARK
LOCATION: Atlanta, Georgia

DRILLED: April 13, 2006 **PROJECT NO.:** 6306-05-0097

DRILLER: MACTEC EQUIPMENT: CME 550

METHOD: Hollow Stem Auger

HOLE DIA.: 8 inches

REMARKS: Type II well set. Stabilized groundwater depth 15.16 feet

below TOC.

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BEWEEN STRATA ARE APPROXIMATE. TRANSITIONS BETWEEN STRATA MAY BE GRADUAL.

SOIL TEST BORING RECORD

BORING NO.:

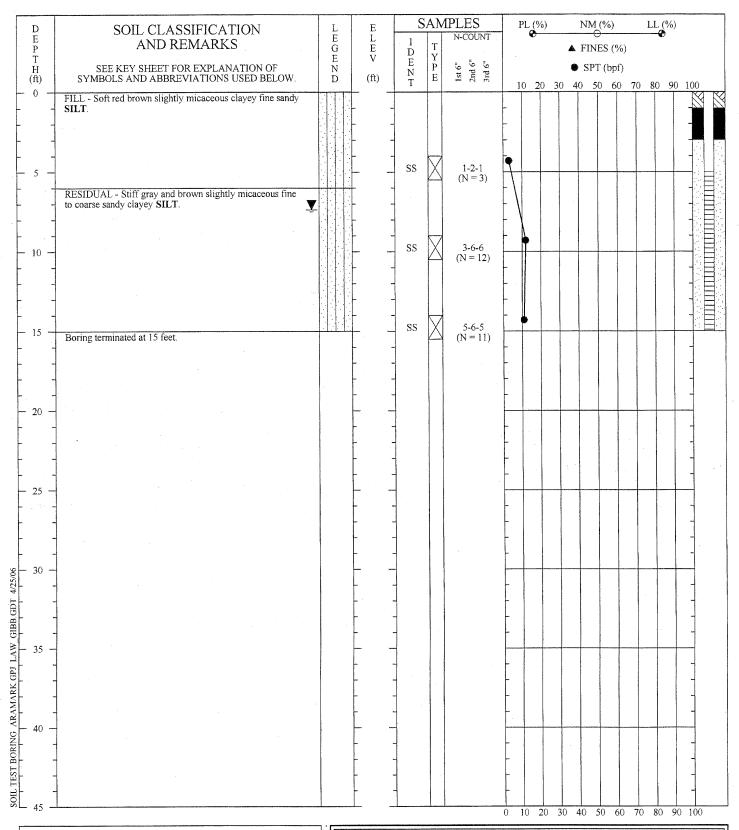
MW-403

PROJECT:

ARAMARK

LOCATION:

Atlanta, Georgia


DRILLED:

PROJECT NO.:

April 13, 2006 6306-05-0097

MACTEC

DRILLER: MACTEC EQUIPMENT: CME 550

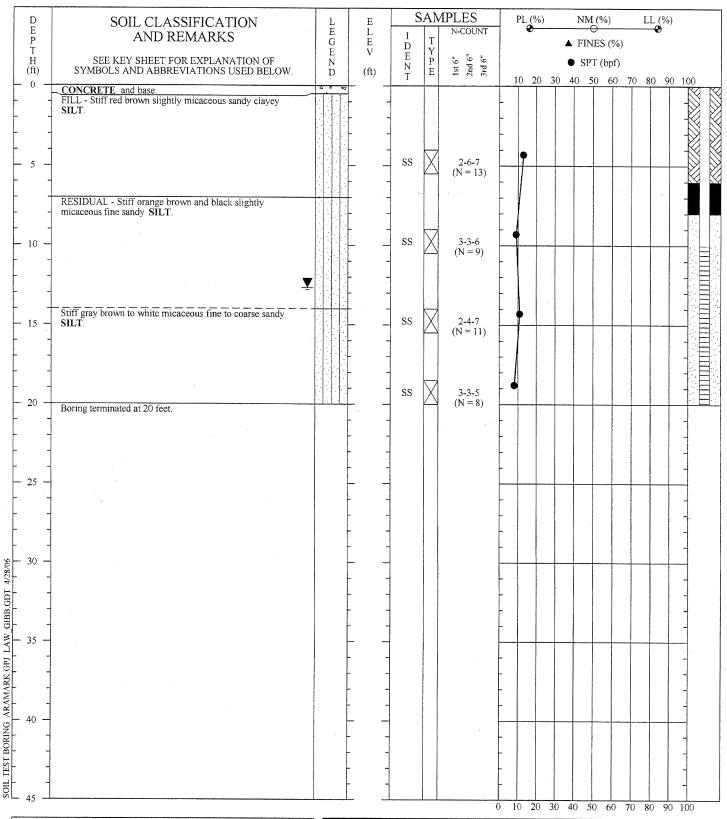
METHOD: Hollow Stem Auger

HOLE DIA .:

REMARKS: Type II well installed. Stabilized groundwater depth 7.36

feet below TOC.

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BEWEEN STRATA ARE APPROXIMATE. TRANSITIONS BETWEEN STRATA MAY BE GRADUAL.


SOIL TEST BORING RECORD

MW-404 **BORING NO.:** PROJECT: **ARAMARK** LOCATION: Atlanta, Georgia

April 14, 2006 DRILLED:

PROJECT NO.: 6306-05-0097

DRILLER: MACTEC
EQUIPMENT: CME 550
METHOD: Hollow Stem Auger

HOLE DIA.: 8 inche

REMARKS: Type II well installed. Stabilized groundwater depth

12.68 feet below TOC.

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BEWEEN STRATA ARE APPROXIMATE. TRANSITIONS BETWEEN STRATA MAY BE GRADUAL.

SOIL TEST BORING RECORD

BORING NO.: MW-405
PROJECT: ARAMARK
LOCATION: Atlanta, Georgia

DRILLED: April 14, 2006

PROJECT NO.: 6306-05-0097

MACTEC

Client:	Aramark	_ Boring Name:	GP-21
Site	Dekalb Ave. Facility	Date:	7/23/2004
Address:	620 Dekalb Ave.	Driller:	Geolab
City:	Atlanta	Geologist:	J. McDade
State:	Georgia	Drilling Method:	GP-push
Zip:	30307	Water Level:	NA

Depth (fe	et bls)		LICCC	
From	То	Lithologic Description	USCS Classification	Remarks
0	2	No recovery		
2	1	Prown rad vary alayov CII To tight		No odor
4	4	Brown-red very clayey SILT; tight		NO OGOI
4	5	Brown-red slightly clayey fine-medium SAND		
5	6	Grey-black very clayey SILT		No odor
6	8	Grey-black (ligher than avove) moderately clayey		No odor
		SILT; Wet	-	
8	10	Orange-brown, moderately clayey fine SILT; Very wet		No odor
		End of boring - 10 feet BLS		
			1	
		Samples of 2-4', 4-6', and 6-8' collected for		
		VOC analysis.	-	
			+	
			_	
			1	

Client:	Aramark	Boring Name:	GP-22
Site	Dekalb Ave. Facility	Date:	7/23/2004
Address:	620 Dekalb Ave.	Driller:	Geolab
City:	Atlanta	Geologist:	J. McDade
State:	Georgia	Drilling Method:	GP-push
Zip:	30307	Water Level:	NA

Depth (f	eet bls)		USCS	
From	То	Lithologic Description	Classification	Remarks
0	2	No recovery		
2	4	Brown-red moderately clayey SILT; tight;		No odor
		some fine sand,		
4	6	As above, not as tight.		No odor
		As above, not as light.		140 0001
6	8	Grey-brown moderately clayey SILT with some fine		No odor
		sand. Wet.		
8	10	Mottled grey-tan very clayey SILT. Wet.		No odor
		End of having 10 fact DLC		
		End of boring - 10 feet BLS		
		Samples of 2-4' and 4-6' collected for VOC		
		analysis. Elevation of this boring is less than		
		GP-21, which is onsite inside fence.		
	•			

Client:	Aramark	Boring Name:	GP-23
Site	Dekalb Ave. Facility	Date:	7/23/2004
Address:	620 Dekalb Ave.	Driller:	Geolab
City:	Atlanta	Geologist:	J. McDade
State:	Georgia	Drilling Method:	GP-push
Zip:	30307	Water Level:	NA

Depth (f	eet bls)		USCS	
From	То	Lithologic Description	Classification	Remarks
0	2	No recovery		
2	4	Tight, orange-brown moderately clayey SILT		No odor
		with some fine sand.	-	
4	6	As above, not as tight, some dark staining.	<u> </u>	No odor
4	U	As above, not as light, some dark staining.		140 0001
6	8	Orange-brown very clayey SILT. Contains	1	No odor
		thin layer of weathered feldspar. Wet.		
8	10	As above but less clayey and with some fine sand.		No odor
		End of having 10 foot DLC	-	
		End of boring - 10 feet BLS	 	
		Samples of 2-4' and 4-6' collected for VOC	1	
		analysis. This boring is also offsite at a lower		
		elevation.	1	
			<u> </u>	
			 	
			1	
			1	
			+	
			+	
			†	

Client:	Aramark	Boring Name:	GP-24
Site	Dekalb Ave. Facility	Date:	7/23/2004
Address:	620 Dekalb Ave.	Driller:	Geolab
City:	Atlanta	Geologist:	J. McDade
State:	Georgia	Drilling Method:	Hand Auger
Zip:	30307	Water Level:	NA

Depth (f	eet bls)		11000	
From	То	Lithologic Description	USCS Classification	Remarks
0	1	Orange-brown surface soil.		
1	3	Dry, sand to small gravel size mix of asphalt		No odor
		crush mixed with sand.		
3	4	Orange-brown moderately clayey SILT.		No odor
		Foliation in a series of the PLO		
		End of hand auger boring - 4 feet BLS		
 				
		Samples collected at 2' and 4' for VOC analysis		
 		Camples collected at 2 and 4 for VOC analysis		
		Note: Boring location is in a 1-1.5' deep drainage		
		trench. Hand auger was used because boring		
		location was very near multiple fiber-optic		
		cables.		
-				
l				
 				
 				

Client: Aramark-Dekalb Boring Name: GP-25	
Site 1134-0406-1 Date: 12/17/2004	
Address: 670 Dekalb Avenue Driller: Geolabs	
City: Atlanta Geologist: Jason T.K. Anglin	
State: GA Drilling Method: Geoprobe	
Zip: 30307 Water Level: 14 to 15 ft bls	

Ground Coverage: Concrete 4 inches in thickness.

Depth (feet bls)	USCS		Percent	
From	To		Lithologic Description	Recovery	Remarks
0	2	FLM	Mottled Red-FLM-Clayey Fill Like Material-Dry	83%	
_			Gravel<20%		
2	4	FLM	Mottled Brown-FLM-Clayey Fill Like Material-Dry	83%	
			to Moist-Gravel<20%		
4	6	CL	Red-CL-Clay with Silty and Sandy Clay Lenses-	92%	
			Moist to Dry-Medium Stiff to Stiff.		
6	8	CL	Red-CL- Silty Clay-Dry-Medium Stiff to Stiff	92%	
			Silt<20%		
8	10	CL	Red-CL-Clay with Silty and Sandy Clay Lenses-	92%	
			Moist to Dry-Medium Stiff to Stiff		
10	12	ML	Red-ML-Silty Clayey F.G.Sand mix-Dry-Soft	92%	
			Mica<10%		
12	14	ML	Mottled Reddish Yellow-ML-Silty F.G. Sand Clayey	92%	
			Mix-Dry to Moist-Relict Granitic Texture-Soft		
14	16	ML	Same as Above-Moist to Wet	75%	
16	18	ML	Same as Above-Moist to Wet	75%	
18	20	ML	Same as Above-Saturated.	50%	
			Boring Terminated at 20 ft bls.		
	Note:				

Client:	Aramark-Dekalb	Boring Name:	GP-26
Site	1134-0406-1	Date:	12/17/2004
Address:	670 Dekalb Avenue	Driller:	Geolabs
City:	Atlanta	Geologist:	Jason T.K. Anglin
State:	GA	Drilling Method:	Geoprobe
Zip:	30307	Water Level:	12 to 14 ft bls
Ground C	Coverage: Concrete 4 inches in thickness.		

Depth (f	eet bls)	USCS		Percent	
From	To		Lithologic Description	Recovery	Remarks
0	2	FLM	Red-Clayey Fill Like Material-Dry to Moist-Soft	75%	
			Gravel<20%		
2	4	FLM	Same as Above	75%	
4	6	CL	Red-CL-Silty Clay-Dry-Medium Stiff-Silt<30%	83%	
			F.G. Sand<5%		
6	8	CL	Red-CL w/ML lenses-Silty Clay w/ML Lenses	83%	
			Dry-Medium Stiff to Soft		
8	10	CL	Same as Above	83%	
10	12	CL	Yellowish Red-CL w/ML lenses- Silty Clay w/ML	83%	
			lenses- Dry to Moist-Medium Stiff to Stiff		
12	14	ML	Light Yellowish Brown-ML-Silty Sandy Clayey Mix	83%	
			Moist to Wet-Soft-Minor Clay lenses-Mica<5%		
ļ					
ļ			Boring Terminated at 14 ft bls		
-					
					
H					
H					
-					
-					
1					
	· · · · ·	_			

Client:	Aramark-Dekalb	Boring Name:	GP-27
Site	1134-0406-1	Date:	12/17/2004
Address:	670 Dekalb Avenue	Driller:	Geolabs
City:	Atlanta	Geologist:	Jason T.K. Anglin
State:	GA	Drilling Method:	Geoprobe
Zip:	30307	Water Level:	14 to 15 ft bls
Ground (Coverage: Concrete 4 inches in thickness.		

Depth (f	eet bls)	USCS		Percent	
From	To		Lithologic Description	Recovery	Remarks
0	2	FLM	Fill Like material - Poor Recovery	16%	
_					
2	4	FLM	Fill Like Material-Poor Recovery	16%	
			,		
4	6	CL	Red-CL-Silty Clay-dry to moist-Medium Stiff to	83%	
			Stiff-Silt<20%		
6	8	CL	Red-CL-Silty Clay-dry to moist-Medium Stiff to	83%	
			Stiff-Silt<20%-Mica <5%-Slight HCLO		
8	10	CL	Yellowish Red-CL-Silty Clay- Dry to Moist-Medium	92%	
			Stiff-Silt<30%-Mica<5%-HCLO		
10	12	CL/ML	Yellowish Red-CL/ML-Mixed layers of Clay & Silty	92%	
			F.G. Sandy Clay-Moist-Clay Medium Stiff- HCLO		
12	14	CL/ML	Yellowish Brown-Same As Above-Heavy HCLO	92%	
			Sheen Observed on Soil		
14	15	CL	Yellowish Brown-CL-Clay-Wet-Silt/Sand<10%	92%	
			Stiff HCLO		
			Boring Terminated at 15 ft bls		
	Notes:		HCLO: Hydrocarbon Like Odor		

Client:	Aramark-Dekalb	_ Boring Name:	GP-28
Site	1134-0406-1	Date:	12/17/2004
Address:	670 Dekalb Avenue	Driller:	Geolabs
City:	Atlanta	Geologist:	Jason T.K. Anglin
State:	GA	Drilling Method:	Geoprobe
Zip:	30307	Water Level:	14 to 15 ft bls
Ground C	Coverage: Concrete 4 inches in thickness.		

		ı			
Depth (feet bls)	USCS		Percent	
From	To		Lithologic Description	Recovery	Remarks
0	2	FLM	Reddish Brown-FLM-Clayey Fill Like Material-	83%	Romano
		1 LIVI	Moist to Dry-Stiff to M.Stiff- Gravel/Debris<10%	0370	
2	4	FLM	Very Dark Brown-FLM-Sandy Silty Fill Like Material	50%	
	-	I LIVI	Dry-Loose	30 /6	
4	6	CL	Yellowish Red-CL-Silty Clay-Dry to Moist	83%	
	-	OL	Stiff to Medium Stiff-Silt<20%	0370	
6	8	CL	Yellowish Red-CL-Silty Clay- Dry- Medium Stiff	83%	
	-	OL	Silt <30%	0370	
8	10	ML	Red-ML-Clayey Silty F.G. Sand Mix-Dry-	83%	
- 0	10	IVIL	Medium Stiff to Soft	03 /6	
10	12	CL	Strong Brown-CL-Silty Clay-Dry to Moist-Medium	83%	
10	12	OL	Stiff-Silt<30%-F.G. Sand<10%	0370	
12	14	CL	Strong Brown-CL-Silty Clay-Dry to Moist-Medium	83%	
12	14	OL	Stiff-Silt<20%-HCLO	0370	
14	15	CL	Yellwoish Brown-CL-Silty Clay-Moist to Wet-	92%	
14	13	CL	Medium Stiff to Stiff.	92 /0	
			Medium Sun to Sun.		
			Boring Terminated at 15 ft bls		
			Borning Terminated at 15 it bis		
		-		1	
		-		1	
		-		1	
		-		 	
		 		 	
		-		1	
		-		 	
	Nata	<u> </u>	HCLO Hudroparhan Liko Oder	 	
	Note:	ı	HCLO=Hydrocarbon Like Odor	 	

Client:	Aramark-Dekalb	Boring Name:	GP-29
Site	1134-0406-1	Date:	12/17/2004
Address:	670 Dekalb Avenue	Driller:	Geolabs
City:	Atlanta	Geologist:	Jason T.K. Anglin
State:	GA	Drilling Method:	Geoprobe
Zip:	30307	Water Level:	14 to 15 ft bls
Ground C	Coverage: Concrete 4 inches in thickness.		

Depth (feet bls)		USCS		Percent	
From	To	Classification	Lithologic Description	Recovery	Remarks
0	2	FLM	Mottled Reddish Yellow/Dk. Reddish Brown-FLM	83%	
			Fill Like Material-Dry-Moist-Soft-Gravel/Debris<5%		
2	4	FLM	Same As Above-Dry-Brick Fragments<10%	83%	
4	6	FLM	Top .5 ft Same As Above-Remaining-Red/Yellowish	83%	
		CL	Brown-CL-Silty Clay-Dry to Moist-M.Stiff to Stiff		
6	8	CL	Reddish Yellow-CL-Clay-Moist to Dry-Stiff-	83%	
			Silt<20%		
8	10	CL	Yellowish Red-CL-Silty Clay-Moist to Dry-Lenses	83%	
			of F.G. Sandy clay-M.Stiff to Soft		
10	12	CL/SC	Yellowish Red-Intermixed layers of Clay & Clayey	83%	
			Sand-Moist to dry-		
12	14	CL/SC	Same as Above-Moist to Wet	83%	
14	15	CL	Brownish Yellow-CL-Clay-Moist to Wet-Stiff	83%	
			to Medium Stiff.		
-					
-			Boring Terminated at 15 ft bls.		
			Boring Terminated at 15 it bis.		
	Note:		HCLO=Hydrocarbon Like Odor		

Client: Aramark-Dekalb	Boring Name: GP-30
Site 1134-0406-1	Date: 12/17/2004
Address: 670 Dekalb Avenue	Driller: Geolabs
City: Atlanta	Geologist: Jason T.K. Anglin
State: GA	Drilling Method: Geoprobe
Zip: 30307	Water Level: Assumed 10 to 11 ft bls
Ground Coverage: Ground/Moathored Asphalt	

Depth (f		USCS		Percent	
From	To		Lithologic Description	Recovery	Remarks
0	2	FLM	Mottled Brown/Red-FLM-Clayey Sand Fill Like	92%	
			Material-Wet to Dry-F.G. to M.G. Sand>50%		
2	4	FLM	Same As Above- Moist to Dry	92%	
4	6	FLM	Mottled Brown/Red-Clayey Sandy Silty Fill Like	92%	
			Material-Dry to Moist-		
6	8	FLM	Yellowish Brown-FLM-Silty Clayey Fill Like Material	92%	
			Moist-Soft		
8	9.5	FLM	Same As Above-Geoprobe Refusal at 9.5 ft bls.	92%	
			Refusal at 9.5 ft bls.		
	Note:		HCLO=Hydrocarbon Like Odor		

Client:	Aramark-Dekalb	Boring Name:	GP-31
Site	1134-0406-1	Date:	12/17/2004
Address:	670 Dekalb Avenue	Driller:	Geolabs
City:	Atlanta	Geologist:	Jason T.K. Anglin
State:	GA	Drilling Method:	Geoprobe
Zip:	30307	Water Level:	8 to 10 ft bls
Ground C	Coverage: Asphalt 2 inches in thickness.		

Depth (feet bls)		USCS		Percent	
From	To	Classification	Lithologic Description	Recovery	Remarks
0	2	FLM	Top Black FLM-Silty Sandy Mix-Compacted-Dry	83%	
			Btm-Red-FLM-Silty Clayey Sandy Fill-Stiff-Dry		
2	4	FLM	Top -Same as Above-Bottom-Red-CL-Clay-Dry	83%	
		CL	Silt<20%-Stiff		
4	6	CL	Yellowish Red/Red-Silty Clay-Dry to Moist-	83%	
			Silt<20%-Stiff to medium Stiff		
6	8	CL	Yellowish Red-CL-Silty Clay-Moist-Disturbed	83%	
			Medium Stiff to Stiff-ML Lenses		
8	10	CL	Mottled Red/Yellowish Brown-Silty Clay-Moist to	83%	
			Wet-Silt<20%-ML Lenses observed		
			Boring Terminated at 10 ft bls		
ļ					
ļ .					
ļ .					
	NI-4-		HOLO, I hadas sada sa 1 ilas Odas	_	
ļ .	Note:		HCLO=Hydrocarbon Like Odor	1	

Client:	Aramark Uniform & Career Apparel, Inc	Boring Name:	GP-32
Site	Aramark Dekalb	Date:	4/15/2005
Address:	670 Dekalb Avenue	Driller:	Geolab, Inc.
City:	Atlanta	Geologist:	Tony L Gordon
State:	Georgia	Drilling Method:	Geoprobe DPT
Zip:	30307	Water Level:	Appox. 11 ft. bgs

Depth (feet bls)	Lithologic Description	USCS Classification	Remarks
0 2		Gray, gray-brown, silty, fine-coarse Sand, little gravel, non-plastic, wet (Fill)	SM	Sample Spoon 0-4.5 ft. Soil VOC Sample (0-2 ft). (PID: 0.0 ppm)
2	4.5	Orange-brown, red-brown, Silt, Clay, trace-little fine- medium sand, trace clay, very micaceous, non- plasticity, moist (no odor)	ML/SM	(i i i i i i i i i i i i i i i i i i i
5	9	Red-brown, orange-brown, Clay and fine-coarse Sand, little silt, very low/low plasticity, moist, (no odor)	SC/CL	Sample Spoon 5-9 ft. Soil VOC Sample (4-6 ft), (PID: 0.0 ppm)
9	10	No Recovery		
10	15	Red-brown, silty, fine-coarse Sand, some clay, very low/low plasticity, moist/wet	SC	Sample Spoon 10-15 ft. Soil VOC Sample (10 ft), (PID: 0.0 ppm)
	15	Terminate Soil Boring		, , ,

Client:	Aramark Uniform & Career Apparel, Inc	Boring Name:	GP-9D
Site	Aramark Dekalb	Date:	4/15/2005
Address:	670 Dekalb Avenue	Driller:	Geolab, Inc.
City:	Atlanta	Geologist:	Tony L Gordon
State:	Georgia	Drilling Method:	Geoprobe DPT
Zip:	30307	Water Level:	NA

	feet bls)		USCS					
From	То	Lithologic Description	Classification	Remarks				
0	0.2	Surface Paving (Asphalt)						
0.2	1.5	Red-brown, silty, fine-coarse Sand, trace gravel and red-brick fragments, trace clay, non-plastic (Fill)	SM					
1.5	3	Orange-brown, tan, gold, Silt, little-some fine sand, very micaceous, non-plasticity, moist (no odor)	ML/SM					
3	5	No Recovery						
5	8	Orange-brown, Silt and Clay, trace-little fine sand, very low plasticity (no odor)	CL/ML	Soil VOC Sample (5-6 ft), (PID: 0.0 ppm)				
8	10	Black, fine-coarse Sand, trace-little gravel (no odor) - Fill	SW/GW	Soil VOC Sample (9-10 ft), (PID: 0.0 ppm)				
	10	Terminate Soil Boring						
	-	+						
		<u>†</u>						
		 						
	ı							

	D	CON CLASSIFICATION		F.	S	AN	IPLES	P	L (%	(b)	N	IM (%	 ó)	LI	(%)	
	D E P	SOIL CLASSIFICATION AND REMARKS	L E G E	E L E V	I D	T	N-COUNT		9 -			INES			•	
	T H	SEE KEY SHEET FOR EXPLANATION OF SYMBOLS AND ABBREVIATIONS USED BELOW.	E N D	(ft)	D E N	Y P E	1st 6" 2nd 6" 3rd 6"					SPT (
	(ft) 0 —		D 0 0	- (11)	T		3 2 1	10) 20	30	40	50	60 7	0 80	90	100
-	-	CONCRETE slab. Red to dark brown clayey sandySILT.		-	SS	M										1
F	-			 	SS	M		-								-
-	_			-	00	M		-								5
-	5 —				SS	A										-
-	-	RESIDUAL - Red brown to tan slightly micaceous sandy clayey SILT.		-	SS	X		-								1
	_				SS	M]
-	10 —			_		Θ				+	+	+	-		_	10
-	-			<u> </u>	SS	M										
-	_	Boring terminated at 12 feet.		-				-					İ			+
-	-			<u> </u>						\perp						15
-	15 —			-				-								-
-	_			-												
	-			-				-								-
-	20 —			_				\vdash		+	+		+			20
	- -			-				-								
-	-			-				-								+
+	25 —															25
F	23 —			-				-								+
-	-															1
	_							-								+
90)	30 —			_	-						1		+			30
90/9/9 L	-			[.				F								-
3B.GD	-			-	-			-								+
Ξ}- ≫L	35 —			_		į					1	_	-		_	35
PJ LA	-			-				-								-
RK.G	-															1
KAMA	_			-				-								+
4G AI	40 —			-											\top	40
BORE	-			[.				-								-
SOIL TEST BORING ARAMARK.GPJ LAW GIBB.GDT	-	-		-				-								
SOIL	45 —							0 1		0 30	40	50	60	70 0	0 90	100

DRILLER: MACTEC
EQUIPMENT: Geoprobe
METHOD: Direct Push
HOLE DIA.: 2 inches

REMARKS:

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BEWEEN STRATA ARE APPROXIMATE. TRANSITIONS BETWEEN STRATA MAY BE GRADUAL.

SOIL TEST BORING RECORD

BORING NO.: GP-31
PROJECT: ARAMARK
LOCATION: Atlanta, Georgia
DRILLED: August 29, 2005

PROJECT NO.: 6306-05-0097

D E P	SOIL CLASSIFICATION AND REMARKS	L E G	E L E V	S I D	TT	MPLES N-COUNT	PI	(%)		NM (%		LL	(%) •	
T H (ft)	SEE KEY SHEET FOR EXPLANATION OF SYMBOLS AND ABBREVIATIONS USED BELOW.	E N D	V (ft)	E N T	T Y P E	1st 6" 2nd 6" 3rd 6"	10	20.	•	SPT (b	opf)			
	CONCRETE slab. FILL - Red brown to dark gray slightly micaceous clayey SILT.	400	 	SS SS	X		-	20 3	0 40	50	60 7	0 80	90	100
- 5 -			 	SS SS			-							5
- 10 -	RESIDUAL - Red brown to tan clayey silty fine SAND. Boring terminated at 11 feet.			SS			-							10
- 15 —														15
		-	1				-							-
- 20 -		-					-							20
25 —		-					-							25
90/5							-							30
/ GIBB.GDT 6/6/06		-	1				-						-	
SOIL TEST BORING ARAMARK GPJ LAW GIBB G		-	-				-						-	35
BORING ARAW		-	_			-						+	-	40
SOIL TEST 42			1			0		0 30						

DRILLER: MACTEC
EQUIPMENT: Geoprobe
METHOD: Direct Push
HOLE DIA.: 2 inches

REMARKS:

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BEWEEN STRATA ARE APPROXIMATE. TRANSITIONS BETWEEN STRATA MAY BE GRADUAL.

SOIL TEST BORING RECORD

BORING NO.: GP-32
PROJECT: ARAMARK
LOCATION: Atlanta, Georgia
DRILLED: August 29, 2005

DRILLED: August 29, 2005 **PROJECT NO.:** 6306-05-0097

	D E P	SOIL CLASSIFICATION AND REMARKS	L E G	E L	I		APLES N-COUNT	P	L (%)			1 (%)		LL (%	6)
	T H (ft)	SEE KEY SHEET FOR EXPLANATION OF SYMBOLS AND ABBREVIATIONS USED BELOW.	E N D	E V (ft)	D E N T	T Y P E	1st 6" 2nd 6" 3rd 6"				• SP	NES (% T (bpf))		
	- 0 - 	CONCRETE slab. FILL - Red brown slightly clayey silty fine to medium SAND.		-	SS	M		10	20	30	40 5	50 60	70	80 9	90 100
-		RESIDUAL - Red brown silty clayey fine to medium			SS	X									
-	- 5 - ·	SAND.		 	SS	A							+	+	5
-	- 10 -				SS	M		-							
-	- 10 -	Boring terminated at 12 feet.			SS										10
	- - 15 —							-							15
-	-							-							- 15
	- 20 -			 											20
	-														
	25 —		_					-					-		25
-	-			· -											
90/9/9	30 -														30
되	-			-				-							
PJ LAW G	35 –							-							35
SOIL TEST BORING ARAMARK.GPJ LAW GIBB.G	1							-							
ORING AR	40 -		-					-							40
OIL TEST B	-		-	7											
ĭ.	45						0	10	20 3	0 40	50	60	70 80	0 90	100

DRILLER: MACTEC EQUIPMENT: Geoprobe METHOD: Direct Push HOLE DIA .: 2 inches

REMARKS:

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BEWEEN STRATA ARE APPROXIMATE. TRANSITIONS BETWEEN STRATA MAY BE GRADUAL.

SOIL TEST BORING RECORD

BORING NO.: GP-33

PROJECT:

ARAMARK

LOCATION:

Atlanta, Georgia

DRILLED: PROJECT NO.: 6306-05-0097

August 29, 2005

D E P	SOIL CLASSIFICATION AND REMARKS	L E G	E L E		T	APLES N-COUNT		PL (%			M (%)		LL (%))
T H (ft)	SEE KEY SHEET FOR EXPLANATION OF SYMBOLS AND ABBREVIATIONS USED BELOW.	E N D	V (ft)	I D E N T	T Y P E	1st 6" 2nd 6" 3rd 6"				• S	NES (% PT (bp:	f)		
- 0 -	CONCRETE slab.	000	_ `´ _	1			1	0 2	0 30	40	50 60	70	80 90	0 100
-	FILL - gravel, dark brown silty clayey fine to medium SAND.			SS	X		-							-
- 5 -				SS	A		-							-
	RESIDUAL - Reddish-brown to tan slightly clayey silty fine to medium SAND.			SS	A									5
-	to medium SAND.		- -	SS	A		-							
10 -	D. H. C. L. L. CYC			SS	M									10
	Red brown fine sandy clayey SILT.						L							10
	Boring terminated at 11 feet.	-	_				-							
-		-	-				-							
- 15 -			_]											15
-		-	-				-							- 13
-		1 +	-				-							-
														1
- 20 -								\perp						
		 	-				-							-
							-							-
							-							
- 25 -		-					\dashv	\dashv	-	+		-	\vdash	25
			-				-							-
							-							
		-	-				-							-
90/9/9							\dashv	\dashv	-			+-	-	30
DI. 6/]]
BB.Gl		-	4				-							-
5			+	l		}	.							-
₩ 35 -								\top			\top			35
K.GP		-	-			[]
MAR		-	+			ŀ								+
40 - 40		-	-			ŀ								+
RING				19										40
SOIL TEST BORING ARAMARK.GPJ LAW GIBB.G		-	4			-								
		-	+			-								+
5[₄₅]			1											-
						0	10	20	30 4	0 50	60	70 8	90	100

MACTEC Geoprobe Direct Push 2 inches

REMARKS:

HOLE DIA .:

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BEWEEN STRATA ARE APPROXIMATE. TRANSITIONS BETWEEN STRATA MAY BE GRADUAL.

SOIL TEST BORING RECORD

BORING NO.: GP-34

PROJECT: LOCATION: ARAMARK

DRILLED:

Atlanta, Georgia August 29, 2005

PROJECT NO.: 6306-05-0097

D E P T H (ft)	SOIL CLASSIFICATION AND REMARKS SEE KEY SHEET FOR EXPLANATION OF SYMBOLS AND ABBREVIATIONS USED BELOW.	L E G E N	E L E V	I D E N	T Y P	Jet 6" 1st 6" 2nd 6" 3rd 6"]	PL (%		▲ FI	M (%) O NES (%		LL (%)	
- 0 -	CONCRETE slab. Reddish brown slightly micaceous slightly clayey fine sandy SILT with some gravel.	D	(ft)	SS SS	E	1s 2r 3r	-	0 20	30	40	50 60	70	80	90 1	100
- 5 -	Dark gray to brown sandy SILT with glass fragments.			SS	M		-					_		+	5
	RESIDUAL - Reddish brown slightly clayey fine sandy SILT. Reddish brown silty SAND.		- - -	SS	X		-								
- 10 -	Red brown clayey SILT.			SS	X		-					_	_	-	10
	Boring terminated at 11.5 feet.		- - -	SS	A									-	
- 15 -															15
						į								-	
20 -		-					-						_		20
		-	-				-							-	
25 —		-					-								25
		-	-				-								
30 -		-	.]				-							-	30
GDT 6/6/		-	-											-	
- 35 -															35
RK.GPJ L		-	-			-								-	
A ARAMA		-												-	40
SOIL TEST BORING ARAMARK GPJ LAW GIBB GDT 6/6/06		-	-			-									40
SOIL TES		-				-								-	
						0	10	20	30 40	0 50	60	70 8	0 90) 100)

MACTEC Geoprobe Direct Push

HOLE DIA.:

2 inches

REMARKS:

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BEWEEN STRATA ARE APPROXIMATE. TRANSITIONS BETWEEN STRATA MAY BE GRADUAL.

SOIL TEST BORING RECORD

BORING NO.: GP-35

PROJECT:

ARAMARK

LOCATION:

Atlanta, Georgia

DRILLED:

August 29, 2005

PROJECT NO.: 6306-05-0097

D E P	SOIL CLASSIFICATION AND REMARKS	L E G	E L E V	I D		N-COUNT	P	L (%			M (%)		LL (%)	
T H (ft)	SEE KEY SHEET FOR EXPLANATION OF SYMBOLS AND ABBREVIATIONS USED BELOW.	E N D	V (ft)	E N T	T Y P E	1st 6" 2nd 6" 3rd 6"	10) 20		• S	PT (b	pf)	0 00	90 10	00
- 0 -	CONCRETE slab. FILL -SAND, clay and gravel.	Δ 4 4	 	SS	M		-		, 30	40	30 (1	1	90 10	10
 	RESIDUAL - Dark brown to red clayey sandy SILT.			SS	M		- -								
- 5 -				SS	A		-	\dagger						+ :	5
			- - -	SS SS			-								
- 10 -				SS			-							1	10
	Light brown to gray micaceous fine sandy SILT.		- - -	SS			-								
- 15 -	Light brown to gray micaceous fine sandy SILT.			SS	M		-		-						15
	Boring terminated at 17 feet.	-	-				-							-	
- 20 -							-	+					+	2	20
-		-	-				-								
- 25 -							-	+	-			_		2:	25
-		-					-								
30 -						-	-	-				+		30	10
-			-											1	
35 –		-	-					-						35	5
-		-													
40 -		-				-	-							40	0
1		-				-								-	
45						-								-	

MACTEC Geoprobe Direct Push

HOLE DIA .:

2 inches

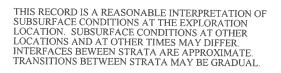
REMARKS:

SOIL TEST BORING RECORD

BORING NO.: GP-36

PROJECT:

ARAMARK


LOCATION:

Atlanta, Georgia

DRILLED:

August 29, 2005

PROJECT NO.: 6306-05-0097

D E	SOIL CLASSIFICATION	L E G	E L		SAN	MPLES N-COUNT]	PL (9	%)]	NM (%)]	LL (%))	
P T	AND REMARKS	E	L E V	I D E	T Y P E							S (%)				
H (ft)	SEE KEY SHEET FOR EXPLANATION OF SYMBOLS AND ABBREVIATIONS USED BELOW.	N D	(ft)	N T	P E	1st 6" 2nd 6" 3rd 6"		0.2	0 30			(bpf)	70	80 90	0 10	in
- 0 -	CONCRETE slab. FILL - Reddish brown slightly clayey fine sandy SILT.			SS	M		_ 1	0 2	.0 30	1	7 30		T	1		
-	Tibb Addam Grown signal, Glayer Time states (SID).]			-								-	
-			-	SS	M		-								-	
- 5 -	Brown clayey SILT.			SS	M					4						5
-	Blown clayey StE1.		-		\mathbb{H}		-								+	
			-	SS	A											
-	RESIDUAL - Alternating layers of reddish brown slightly clayey sandy SILT and silty sandy.			SS	X		-								+	
10 -				SS	M					+	1		\dagger			10
-				55			-								-	
	Light brown yellow to light gray clayey SILT.			SS	M										-	
- 15 -	Boring terminated at 15 feet.							_	_	-	\perp	- -	-	\sqcup	_	15
-	2011119 00111111111111111111111111111111														+	
															1	
							-								-	
20 -				,						\top	\dagger				7	20
							-								-	
							-									
- 25 -										-	+	+				25
							-	l							1	
			.]												-	
							-								1	
90/9/5			_				- 1								-	30
TOD I		-													-	
CIBBB																
35 -		1							+	+	+			-		35
							-			ļ					1	
AARK		-					-									
- 40 -		-	-				-								1	
Y T		F					-								4	.0
1 BO		-	-				-								+	
2011 1ESJ HORING ARAMARK, GPJ LAW GIBB GDJ 6/606			1				-									
%L ₄₅ ⊥				22			10	20	30	40	50	60	70 8	0 90	100	

DRILLER: MACTEC
EQUIPMENT: Geoprobe
METHOD: Direct Push

HOLE DIA.: 2 inches

REMARKS: Poor recovery 0 to 4 feet.

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BEWEEN STRATA ARE APPROXIMATE. TRANSITIONS BETWEEN STRATA MAY BE GRADUAL.

SOIL TEST BORING RECORD

BORING NO.: GP-37

PROJECT: ARAMARK **LOCATION:** Atlanta, Georgia

DRILLED: August 29, 2005

PROJECT NO.: 6306-05-0097

	D E	SOIL CLASSIFICATION	L E	E L			APLES N-COUNT		PL (%)	1	VM (%	6)	L	L (%)	
	P T H	AND REMARKS SEE KEY SHEET FOR EXPLANATION OF	G E N	L E V	I D E	T Y P E	1st 6" 2nd 6" 3rd 6"					FINES SPT (
	(ft) - 0 -	SYMBOLS AND ABBREVIATIONS USED BELOW. CONCRETE slab.	D	(ft)	N T	Е	1st 2mc 3rd		10 2	20 30				70 8	80 90	100
-		FILL - Brown clayey fine sandy SILT with organics.	TIT	-	SS	X		-								-
				_	SS	M			1							
				_				-								-
	- 5 -				SS	M										5
		RESIDUAL - Red brown to brown slightly micaceous clayey silty fine to medium SAND.			SS	M		-								-
	· -				SS	M		-								
	- 10 -					\mathbb{H}		-			+	+	+	-		10
-	_				SS	A		-								
					SS	X		-								-
F	- 15 -	Gray brown micaceous fine sandy SILT.	////		SS	M				_	-	-	-			15
	-			- -	SS	M		-								
F	-				DD	A		-								
	- 20 -	Boring terminated at 19 feet.	1.1.1.1					-								20
-	-							-								- 20
F																
F	-							-								-
	- 25 -							_								25
F	-							-								-
-	-							-								
90/9/9	30 -		-							+	+	+			+	30
늄			-	1			-	-								
IBB.G			-	-			-	-								-
O MV	35 —			-]					_		\perp	_		_		35
GPJ L	}			+				-	disconnection							+
AARK	-			1			-									
ARAN	40 —		-	-				.								-
RING	40						-									40
STBO			-	-			-									1
SOIL TEST BORING ARAMARK.GPJ LAW GIBB.G	-			1			-									
ΣL	45						0	10	20	30	40	50 6	0 70	80	90	100

MACTEC Geoprobe

HOLE DIA .:

Direct Push 2 inches

REMARKS:

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BEWEEN STRATA ARE APPROXIMATE. TRANSITIONS BETWEEN STRATA MAY BE GRADUAL.

SOIL TEST BORING RECORD

BORING NO.: GP-38

PROJECT:

ARAMARK

LOCATION:

Atlanta, Georgia

DRILLED:

August 29, 2005

PROJECT NO.: 6306-05-0097

	D E	SOIL CLASSIFICATION	L	Е	5	SAN	MPLES	PL	(%)	1	VM (%)		LL (%)	
	P	AND REMARKS	E G	E L E V	I D	T	N-COUNT		•		TINES (-	
	T H	SEE KEY SHEET FOR EXPLANATION OF	E N		E	T Y P E	1st 6" 2nd 6" 3rd 6"				SPT (bp			
	(ft) - 0 -	SYMBOLS AND ABBREVIATIONS USED BELOW. CONCRETE slab.	D	(ft)	N T	E	1si 2n 3rd	10	20 3				80 90	100
	-	FILL - Gravel, rock and reddish brown clayey sandy SILT; dark brown to black silty clay; broken glass.			SS	X		-						-
		and order to stack only stay, stoken glass.			SS	M		 - 						-
	-	RESIDUAL - Reddish brown clayey SILT.			33									
	- 5 -	Access of the control			SS	X		-	+		\dashv	-	++	5
					SS	M								
	-	Red brown slightly clayey fine sandy SILT.				A		-						
	10 -			-	SS	M		-						-
	-				SS	M		-						10
	-	Gray micaceous fine sandy SILT.		-		\mathbb{H}		-						-
					SS	M								
	- 15 -	Boring terminated at 15 feet.							+	-	+		-	15
														+
			-					-						
	20 -			-				-						-
				7				-						20
	-		-	-				-						-
				1				-						
	- 25 -		-					-	-	-	+			25
	-]							-						1
			-	-				-]
	- 30 -			-				-						-
90/9/9								-						30
5			-	+			ł	-						-
GIBB	_]			1				-						
LAW	- 35 -		-						\vdash		+	-		35
GPJ				1				-						+
MARK			-	-										
ARA	- 10		-	-										-
RING	- 40 -		_											40
T BO			-	4										
SOIL TEST BORING ARAMARK, GPJ LAW GIBB GI				-										1
SO	- 45						0	10 1	0 30	40	50 60	70 9/	0 90 1	
_							U	10 4	.0 .50	1 ∪ .	00	10 80	J 70]	VV

DRILLER: MACTEC EQUIPMENT: Geoprobe METHOD: Direct Push

HOLE DIA .: 2 inches

REMARKS:

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BEWEEN STRATA ARE APPROXIMATE. TRANSITIONS BETWEEN STRATA MAY BE GRADUAL.

SOIL TEST BORING RECORD

BORING NO.:

PROJECT:

GP-39 **ARAMARK**

LOCATION:

Atlanta, Georgia

DRILLED: **PROJECT NO.:** 6306-05-0097

August 29, 2005

	D E P T	SOIL CLASSIFICATION AND REMARKS	L E G	E L E	I	TYP	N-COUNT	P	(%)		NM (L	L (%)	
	H (ft)	SEE KEY SHEET FOR EXPLANATION OF SYMBOLS AND ABBREVIATIONS USED BELOW.	E N D	V (ft)	E N	P E	1st 6" 2nd 6" 3rd 6"				SPT				
	- 0 -	CONCRETE slab. FILL - Red brown clayey sandy SILT with some gravel.	4 0 €	_ (11)	T		3 2	10	20	30 40	0 50	60	70 80	0 90	100
		FILL - Red brown clayey sandy SILT with some gravel.		-	SS	X		-							+
					SS	M									1
	-			-	55			-							
	5 -				SS	X					_	+		_	- 5
		RESIDUAL - Reddish brown clayey silty fine to medium SAND.		_	SS	M									
	-			-		\mathbb{H}		-							
	10 -				SS	M		-							+
	-	Red brown clayey fine sandy SILT. Boring terminated at 11 feet.						_							10
		Borning terminated at 11 feet.	-	-				-							
			1	-				-							-
	- 15 -			_]											15
	-		-	-				-							
				-				-							-
								_							1
	— 20 —		-							_	_			_	20
			1 -	-			-	-							-
			-	4	į			-							
	- 25 - -			-			}		+	+	+		_	+	25
			-	+			-							-	
	- 30 -			-			-							-	
90/9/9	. "														30
10			-	-			-							-	
SIBB.				1			-							-	
AW 6	- 35			1										-	35
J FIST	+		-	4			-							-	33
VRK.0]		-	1			+							-	
RAM	-														
ζĞ	- 40		-	-			-	-		_			_		40
SORT			-	+			+								
ESTE				1											
SOIL TEST BORING ARAMARK.GPJ LAW GIBB.G	-		-	-			[
ωL	- 45 <u> </u>						0	10 2	20 30	40	50 6	0 70	80	90 10	0

MACTEC Geoprobe Direct Push

HOLE DIA .: REMARKS:

2 inches

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BEWEEN STRATA ARE APPROXIMATE. TRANSITIONS BETWEEN STRATA MAY BE GRADUAL.

SOIL TEST BORING RECORD

BORING NO.: GP-40

PROJECT:

ARAMARK

LOCATION:

Atlanta, Georgia

DRILLED:

PROJECT NO.: 6306-05-0097

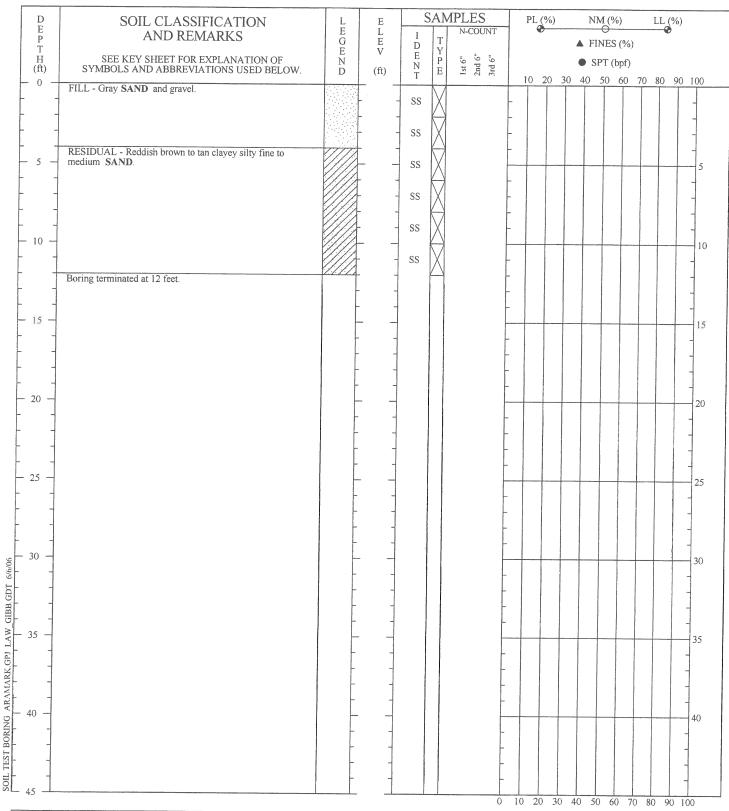
August 29, 2005

	D	SOIL CLASSIFICATION	ı	Е	5	SAN	/IPLES	PI (%)	N	M (%)	II (04)	
	D E P	AND REMARKS	L E G	L E	I		N-COUNT	PL (%)		M (%) NES (%)	LL (%)	
	T	SEE KEY SHEET FOR EXPLANATION OF	E N	V	D E	T Y P E	1st 6" 2nd 6" 3rd 6"			PT (bpf)		
	(ft) - 0 -	SYMBOLS AND ABBREVIATIONS USED BELOW. CONCRETE slab.	D	(ft) 	N T	Е	1st 2nc 3rd	10 20 3			70 80 90	100
	-	FILL - Reddish brown clayey silty fine SAND with some gravel.			SS	X		-				-
	-				SS	M		-				-
	-				55	A						
	- 5 - 				SS	M						5
	_	RESIDUAL - Red brown clayey fine sandy SILT.		_	SS	M	[-				
					00	\forall		-				-
	- 10 -	Reddish brown to tan clayey silty fine SAND.			SS	М		-				10
		Boring terminated at 11.5 feet.		_				-				-
			-]				-				
	 - 15 -		-	_				-				
			-	-								15
			-	-				.				-
ŀ			[]								
	- 20 -						-					20
-]								
			-	1			-					1
	- 25 -						-					25
			-	+			-					-
-							-					1
	- 30 -		-	-			-					-
90/9/9	30 -						-					30
GDT	-		-	+			-					-
GIBB]			1			ļ					
LAW	- 35 —			+			-					35
K.GPJ												-
MARI	-		-	4			-]
ARA	40											10
DRING	-		-	-			-					40
ST B(1			+			-					
SOIL TEST BORING ARAMARK.GPJ LAW GIBB.GDT 6/6/06	-]			F					
ώL	45 —						0	10 20 30	40 50	60 70	80 90 1	00

DRILLER: MACTEC
EQUIPMENT: Geoprobe
METHOD: Direct Push
HOLE DIA.: 2 inches

REMARKS: Concrete encountered at 6 feet. Strong 6 to 11.5 feet.

Little recovery at 1 foot.


THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BEWEEN STRATA ARE APPROXIMATE. TRANSITIONS BETWEEN STRATA MAY BE GRADUAL.

SOIL TEST BORING RECORD

BORING NO.: GP-41 **PROJECT:** ARAM

PROJECT: ARAMARK
LOCATION: Atlanta, Georgia
DRILLED: August 29, 2005
PROJECT NO.: 6306-05-0097

DRILLER: EQUIPMENT: MACTEC

METHOD: HOLE DIA .: Geoprobe Direct Push 2 inches

REMARKS:

Poor recovery at 1 foot.

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BEWEEN STRATA ARE APPROXIMATE. TRANSITIONS BETWEEN STRATA MAY BE GRADUAL.

SOIL TEST BORING RECORD

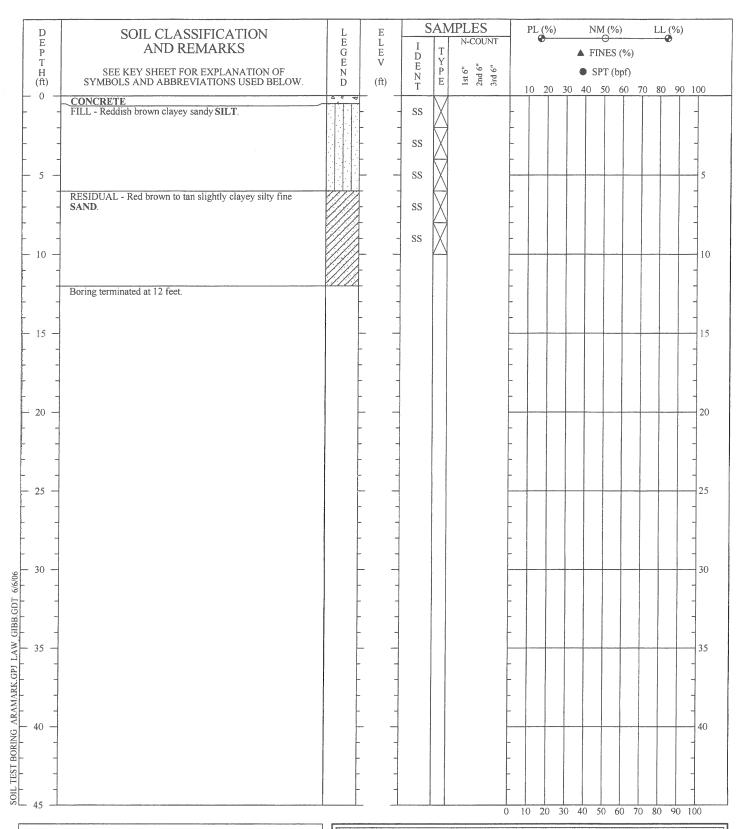
BORING NO.:

GP-42

PROJECT:

ARAMARK

LOCATION:


Atlanta, Georgia

DRILLED:

August 29, 2005

PROJECT NO.: 6306-05-0097

MACTEC

DRILLER: MACTEC
EQUIPMENT: Geoprobe
METHOD: Direct Push

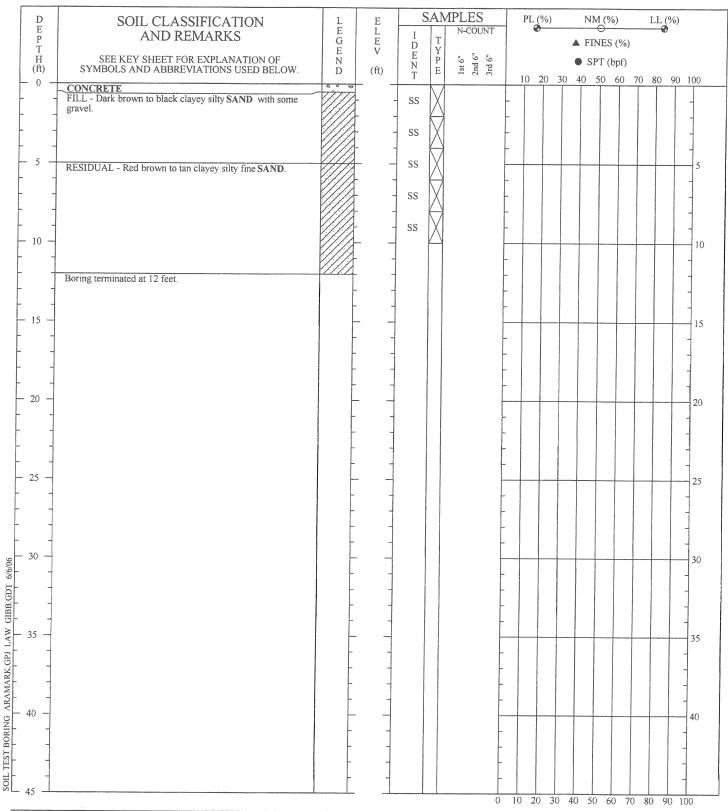
HOLE DIA.: 2 inches

REMARKS: Poor recovery at 1 foot.

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BEWEEN STRATA ARE APPROXIMATE. TRANSITIONS BETWEEN STRATA MAY BE GRADUAL.

SOIL TEST BORING RECORD

BORING NO.: GP-43


PROJECT: ARAMARK

LOCATION: Atlanta, Georgia

DRILLED: August 29, 2005

PROJECT NO.: 6306-05-0097

DRILLER: MACTEC
EQUIPMENT: Geoprobe
METHOD: Direct Push
HOLE DIA.: 2 inches

REMARKS: Gravel encountered at 0.5 to 4 feet.

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER LOCATIONS EWEEN STRATA ARE APPROXIMATE. TRANSITIONS RETWEEN STRATA MAY BE GRADITAL

SOIL TEST BORING RECORD

BORING NO.: GP-44
PROJECT: ARAMARK
LOCATION: Atlanta, Georgia
DRILLED: August 29, 2005

DRILLED: August 29, 2005 **PROJECT NO.:** 6306-05-0097

D	SOIL CLASSIFICATION	L E	Е	5	SAN	APLES	PL	(%)	N	M (%)		LL (%	5)	
E P T	AND REMARKS	G E	L E V	I D E	T	N-COUNT	`	,		NES (%				
H (ft)	SEE KEY SHEET FOR EXPLANATION OF SYMBOLS AND ABBREVIATIONS USED BELOW.	N D	(ft)	E N T	PE	1st 6" 2nd 6" 3rd 6"	1.0	20 20		PT (bpi		00 0	00 10	20
- 0	CONCRETE	V////	-	SS	M		10	20 30	40	50 60	70	80 9	0 10	00
-	FILL - Reddish brown clayey silty fine to medium SAND and gravel.			33			F						_	
-	-			SS	X		-						-	
5	RESIDUAL - Red brown to tan clayey silty fine to medium SAND.		_	ss				-	-		_			5
-	-		-	-	\mathbb{H}		-						-	
-				SS	A									
-	-			SS	X		-						-	10
10				SS	M		-							10
-	Boring terminated at 12 feet.		-	-	H		 		-				-	
- 15	_										-	_		15
													-	
-	-						-						-	
- 20			-											20
-	_		-				-						-	
			-										1	
-							-						-	
_ 25			<u> </u>									1		25
-			-				-							
E			-											
9 30							-	-	-		-	-		30
90/9/9														
B.GD			-				-						-	
A GIB	-												-	35
M − 35	7		-				-	\prod					-	دد
SOIL TEST BORING ARAMARK GPJ LAW GIBB GDT	†		-											
SAMA]						F						-	
40 92 92	-		-						+					40
BOR]						[
TEST	-		-				-							
	1						0 10	20 30	10	50 60	70	90 0	0.10	0

DRILLER:

MACTEC

EQUIPMENT: METHOD:

Geoprobe Direct Push

HOLE DIA.:

2 inches

REMARKS:

Tone of bright red clay at 7 feet.

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BEWEEN STRATA ARE APPROXIMATE. TRANSITIONS BETWEEN STRATA MAY BE GRADUAL.

SOIL TEST BORING RECORD

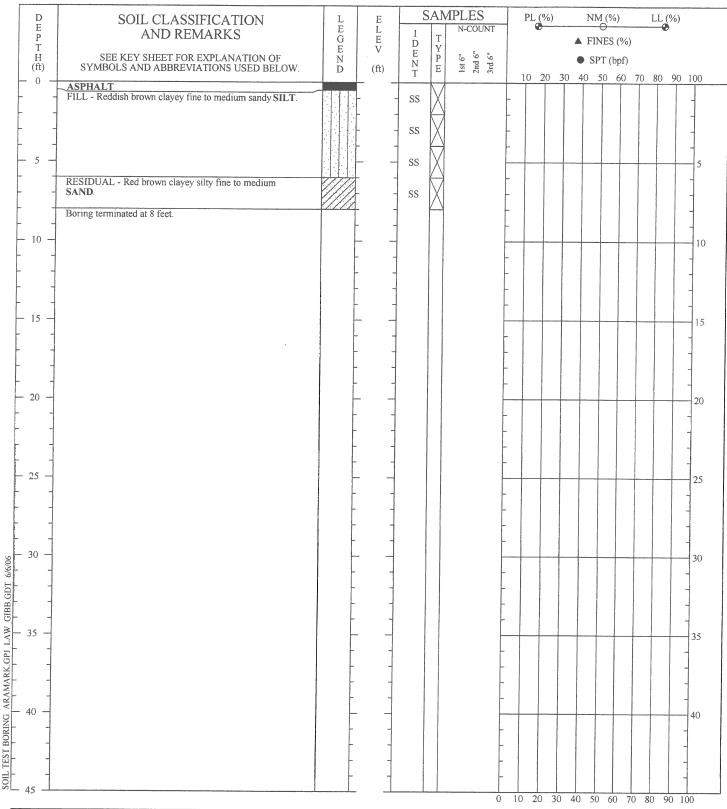
BORING NO.:

GP-45

PROJECT:

ARAMARK

LOCATION:


Atlanta, Georgia

DRILLED:

August 29, 2005

PROJECT NO.: 6306-05-0097

DRILLER: MACTEC
EQUIPMENT: Geoprobe
METHOD: Direct Push
HOLE DIA.: 2 inches

REMARKS:

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BEWEEN STRATA ARE APPROXIMATE. TRANSITIONS RETWEEN STRATA MAY BE GRADIIAL

SOIL TEST BORING RECORD

BORING NO.: GP-46 **PROJECT:** ARAMARK

LOCATION:

Atlanta, Georgia

DRILLED:

August 29, 2005

PROJECT NO.: 6306-05-0097

	D E P	SOIL CLASSIFICATION AND REMARKS	L E G	E L	I		IPLES N-COUNT	P	L (%)		VM (%		LL (%))
	T H	SEE KEY SHEET FOR EXPLANATION OF	E N	E V	D E N	T Y P E	1st 6" 2nd 6" 3rd 6"				FINES SPT (t			
-	(ft) 0 -	SYMBOLS AND ABBREVIATIONS USED BELOW. ASPHALT	D	(ft)	N T	E	1st 2n 3rc	10	20 3				80 90	100
-	-	FILL - Reddish brown clayey fine sandy SILT.			SS	M		-						-
ļ				-	SS	M								-
-	-				22									
E	5	RESIDUAL - Red brown to tan clayey silty fine SAND.			SS	X		\vdash			-		++	5
-	-				SS	M								
F	+	Boring terminated at 8 feet.		-		H		-						-
F	10			- 1										10
-	+		-	-				-						10
ļ				1										+
-	-		-	-										
	15								+	-	+		++	15
-	-		F]				-						
E				+				-						-
-	20 —			.]										
-	-		-	+				-						-
F				1										1
-			-	4				-						-
	25			-									++	25
-	-		-	-				-						
	1			+				-						-
- 190	30 -		-								1			30
DT 6/6/06			-	-				-						-
(B) (G)	-		[-						
N GIE	25		}	+										-
TA	35 -			1										35
K.GP	-		-	-			-	.						
AMA			F	-			-							-
G AR	40		F											40
SORIN	1		F	+			-							-
EST I							ļ							1
SOIL TEST BORING ARAMARK, GPJ LAW, GIBB, G	-		-	-			-							-
- 4	15 —						0	10	20 30	40 :	50 60	70 8	80 90	100

DRILLER: MACTEC
EQUIPMENT: Geoprobe
METHOD: Direct Push
HOLE DIA.: 2 inches

REMARKS:

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER LOCATIONS EBWEEN STRATA ARE APPROXIMATE. TRANSITIONS BETWEEN STRATA MAY BE GRADUAL

SOIL TEST BORING RECORD

BORING NO.: GP-47

PROJECT:

ARAMARK

LOCATION: DRILLED:

Atlanta, Georgia August 29, 2005

PROJECT NO.: 6306-05-0097

D E P	SOIL CLASSIFICATION AND REMARKS	L E G	E L F		AM	PLES N-COUNT	PL	(%)		M (%)		L (%)	
T H (ft)	SEE KEY SHEET FOR EXPLANATION OF SYMBOLS AND ABBREVIATIONS USED BELOW.	E N D	E V (ft)	I D E N T	Y P E	1st 6" 2nd 6" 3rd 6"	10	20 20	• SI	NES (%) PT (bpf)		20. 00	100
- 0 -	ASPHALT Light reddish brown to brown clayey fine sandy SILT.			SS	X		-	20 30	40	50 60	70 8	0 90	100
- 5 -	DECIDIAL Dallace de la 11. 12. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15			SS									5
	RESIDUAL - Red brown to tan and gray silty clayey fine to medium SAND. Boring terminated at 8 feet.		-	SS	M		_						
- 10 -	S	-					-				\perp		10
			-			-	-						
- 15 -			-]				-						15
			-				-						
20			-				-						-
		-					-						20
		-	-			-							-
_ 25 _		-	-			-							25
		-	-										
90/9/9		-	1			-				-			30
IBB.GDT		-	-			-							-
35 –						-						-	35
MARK.GP		-				[Armer - Historica - Charles				-	
NG ARAN		-	-			-					_		40
SOUL TEST BORRING ARAMARK.GPJ LAW.GIBB.GDT 6/6/06		-	-			-						-	
31			1			-				60 70			

DRILLER: MACTEC EQUIPMENT: Geoprobe METHOD: Direct Push HOLE DIA.: 2 inches

REMARKS:

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BEWEEN STRATA ARE APPROXIMATE. TRANSITIONS RETWEEN STRATA MAY BE GRADUAL

SOIL TEST BORING RECORD

BORING NO.: GP-48 PROJECT: **ARAMARK** LOCATION: Atlanta, Georgia DRILLED:

August 29, 2005 **PROJECT NO.:** 6306-05-0097

D	SOIL CLASSIFICATION	L	E	5	SAN	APLES N-COUNT	PL	(%)	NM	1 (%)	LI	. (%) •	
E P T	AND REMARKS	L E G E	E L E V	I D E	T Y P E				▲ FIN	NES (%)			
H (ft)	SEE KEY SHEET FOR EXPLANATION OF SYMBOLS AND ABBREVIATIONS USED BELOW.	N D	(ft)	N T	P E	1st 6" 2nd 6" 3rd 6"	10	20 30		T (bpf)	70 90	00	100
- 0 -	ASPHALT FILL - Light brown to dark gray sandy clayey SILT.			SS	M		- 10	1 1	40 .		70 80	90	100
			-	SS	M		-						1
- 5 -			-		\mathbb{A}		-						
	RESIDUAL - Red brown to tan clayey silty fine to medium SAND.		-	SS	A		-						5
- 1	Boring terminated at 8 feet.		-	SS	M		-						
10 -	Bornig terminated at 6 rect.		_										10
-			-				-						710
			-										1
15												_	15
			-										-
							-						-
- 20 -													20
		-	-				-						
		-	-				-						
25		-					_						25
							-						
			-				-						
90/9/9		-	-				-					١.	30
IB.GDT		-	-										
₹ 35 -			-				-					-	35
SOIL TEST BORING ARAMARK GPJ LAW GIBB GI		-	-				-					-	33
MARK			1									-	
40 – 40		-	-										40
BORIN		-	-									-	
L TEST												-	
			1			0	10 2	0 30 4	10 50	60 70	0 80	90 10	00

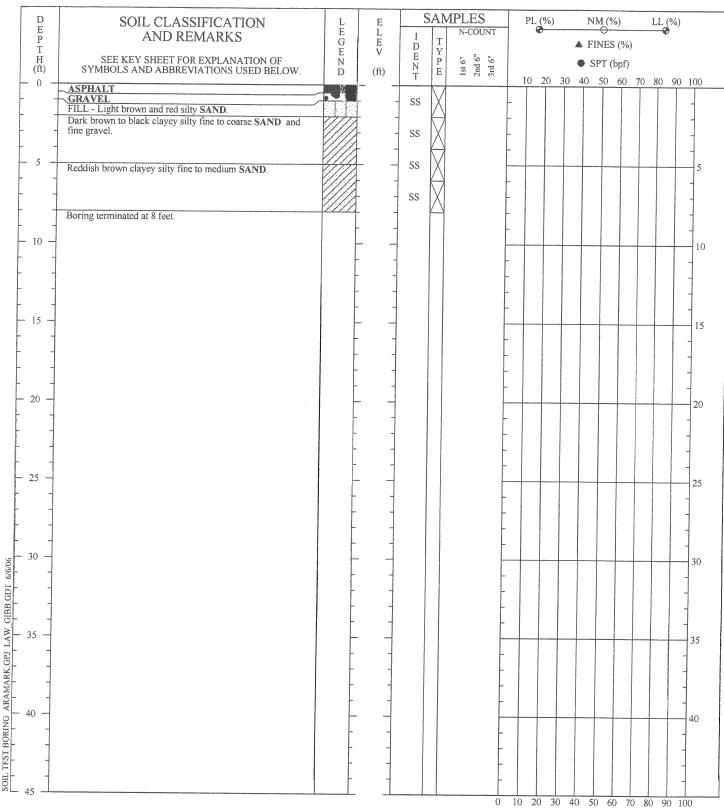
DRILLER: MACTEC **EQUIPMENT:** Geoprobe METHOD: Direct Push HOLE DIA .: 2 inches

REMARKS:

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BEWEEN STRATA ARE APPROXIMATE. TRANSITIONS RETWEEN STRATA MAY RE GRADIIAL

SOIL TEST BORING RECORD

BORING NO.: GP-49 **PROJECT:** ARAMARK


LOCATION:

Atlanta, Georgia

DRILLED: PROJECT NO.: 6306-05-0097

August 29, 2005

DRILLER: MACTEC EQUIPMENT: Geoprobe METHOD: Direct Push HOLE DIA .: 2 inches

REMARKS:

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER LOCATIONS BEWEEN STRATA ARE APPROXIMATE. TRANSITIONS BETWEEN STRATA MAY BE GRADUAL

SOIL TEST BORING RECORD

BORING NO.:

GP-50

PROJECT:

ARAMARK

LOCATION:

DRILLED:

Atlanta, Georgia

August 29, 2005

PROJECT NO.: 6306-05-0097

D E P T H	SOIL CLASSIFICATION AND REMARKS SEE KEY SHEET FOR EXPLANATION OF	L E G E N	E L E V	I D E N T	T Y P E	N-COUNT	P	L (%)			ES (%)		L (%)	
(ft)	SYMBOLS AND ABBREVIATIONS USED BELOW.	D	(ft)	N T	E	1st 6" 2nd 6" 3rd 6"	10	20			(bpf)	70 1	80 90	100
- 0 -	ASPHALT FILL - Reddish brown to brown sandy clayey SILT with some gravel.			SS SS	X		-							
- 5 -			 - - -	SS SS			-							5
	Boring terminated at 8 feet.		-				-							
10		-												10
		-					- -							-
15							-							15
		-	-				-							
20 -							-							20
		-					-							
25		-	-				-							25
		-					-							
90/9/9 I		-	-			-								30
GIBB.GD		-				-								
₩ - 35 -		-	-			-							-	35
SOIL TEST BORING ARAMARK GPJ LAW GIBB.GDT 6/6/06		-	-			-							-	-
RING AR		-				-						+		40
TEST BC		-	-			-							-	
\(\begin{align*}			1			0	10	20 30) 40	50	60 70	80	90 10	00

DRILLER: MACTEC
EQUIPMENT: Geoprobe
METHOD: Direct Push
HOLE DIA.: 2 inches
REMARKS: Poor recovery.

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BEWEEN STRATA ARE APPROXIMATE. TRANSITIONS RETWEEN STRATA MAY RE GRADUAL

SOIL TEST BORING RECORD

BORING NO.: GP-51 **PROJECT:** ARAM **LOCATION:** Atlanta

ARAMARK Atlanta, Georgia

DRILLED: August 29, 2005

PROJECT NO.: 6306-05-0097 **PAGE** 1 **OF** 1

D E P T H	SOIL CLASSIFICATION AND REMARKS SEE KEY SHEET FOR EXPLANATION OF	L E G E N	E L E V	I D E N T	T Y P E	N-COUNT	F	PL (%	▲ FI	M (%) O NES (9)		LL (%))
(ft) 0	SEE KEY SHEET FOR EXPLANATION OF SYMBOLS AND ABBREVIATIONS USED BELOW. ASPHALT	D	(ft)	N T	Ē	1st 6" 2nd 6" 3rd 6"	10) 20				80 90	0 100
	Reddish tan silty CLAY.		-	SS	X		-						
5 -	RESIDUAL - Red brown to gray micaceous fine sandy SILT.		· _	SS			-				+		5
 	Boring terminated at 8 feet.		-	SS	X		-						
- 10 -			- - -				-						10
		-	-				-						- The second sec
			-				-						15
20 -			-										20
		- - -	-				-						
25 -		-											25
-		-	-				-						
- 30 -		-					-						30
 		-	-				- - -						
- 35 -		-	-				-						35
- 35 40 45		-					-						-
- 40 -		-	-										40
45		-				ż							-

MACTEC Geoprobe

HOLE DIA .:

Direct Push

REMARKS:

2 inches

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BEWEEN STRATA ARE APPROXIMATE. TRANSITIONS RETWEEN STRATA MAY BE GRADUAL

SOIL TEST BORING RECORD

BORING NO.:

GP-52

PROJECT:

ARAMARK

LOCATION:

Atlanta, Georgia

DRILLED:

PROJECT NO.: 6306-05-0097

August 29, 2005

D E P	SOIL CLASSIFICATION AND REMARKS	L E	E L		TT	IPLES N-COUNT	P	L (%)		NM ((%)	LL	(%)	
1 T		G E	L E V	I D E N	TY						ES (%)			
H (ft)	SEE KEY SHEET FOR EXPLANATION OF SYMBOLS AND ABBREVIATIONS USED BELOW.	N D	(ft)	N T	Ŷ P E	1st 6" 2nd 6" 3rd 6"				SPT				
0 -	CONCRETE	400	-		1		10	20	30 4	0 50	60	70 80	90 10	00
	Reddish brown clayey SILT.			SS	M		1							
				SS	\bigvee									
				00			- 1							
- 5 -				SS	IXI		-	-	+-	-		++		5
				0.0	M		-							
	Dark brown clayey SILT. Boring terminated at 8 feet.			SS	М									
+ +	boring terminated at 8 feet.		_				-							
10 -								-	+	_			+	10
							-							
- 15 -								+-		+	-		+	15
							-						1 +	
							-							
- 20 -		-						+	-	-	-		+	20
		t					-						1 +	
		[
+ +		-					-							
- 25 -								+		-	+		1 2	25
							-							
]				_							
		-	-				-							
90/9/9									-	-	+	-	3	30
19 1		Ĺ]											
5 dg		-	_											
5		-	-											
35 J						ŀ			-		++	-	3	5
]											
MAR H		-	-											
ARA -		-	+			-								
40		-	_			-		+	+	+-	++	+	40	0
DA -														
3		-	-											
SOLD IEST BORUNG ARAMARK GPJ LAW GIBB GDT OP OP OP OP OP OP OP OP OP O		-	-			-								
45						0	10 :	20 30	40	50 (50 70	80 9	0 100	

MACTEC Geoprobe Direct Push

HOLE DIA.:

2 inches

REMARKS:

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BEWEEN STRATA ARE APPROXIMATE. TRANSITIONS DETWIEN STRATA MAY BE CRADUAL

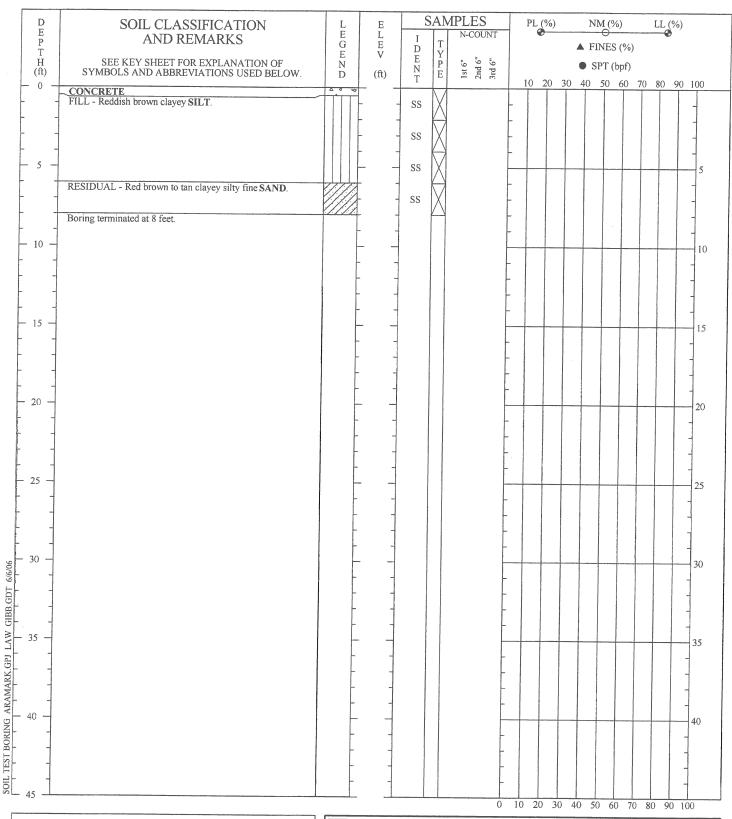
SOIL TEST BORING RECORD

BORING NO.:

GP-53

PROJECT:

ARAMARK


LOCATION: **DRILLED:**

Atlanta, Georgia

PROJECT NO.: 6306-05-0097

August 29, 2005

MACTEC Geoprobe Direct Push

HOLE DIA.: REMARKS:

2 inches

SOIL TEST BORING RECORD

BORING NO.: GP-54

PROJECT:

ARAMARK

LOCATION:

Atlanta, Georgia

DRILLED: PROJECT NO.: 6306-05-0097

August 29, 2005

PAGE 1 OF 1

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT THE EAPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BEWEEN STRATA ARE APPROXIMATE. TRANSITIONS RETWEEN STRATA MAY RE GRADIIAL

	D E P	SOIL CLASSIFICATION AND REMARKS	L E G E N	E L E	I	SAM	IPLES N-COUNT	PL (%)	M (%)	L (%)	
-	T H	SEE KEY SHEET FOR EXPLANATION OF SYMBOLS AND ABBREVIATIONS USED BELOW.	E	V	D E N T	Y P	1st 6" 2nd 6" 3rd 6"		NES (%) PT (bpf)		
-	(ft) - 0 -	SYMBOLS AND ABBREVIATIONS USED BELOW. CONCRETE	D	(ft) 	T	Е	1st 2nd 3rd	10 20 3		0 90	100
-	 	FILL - Red brown to dark brown slightly clayey silty fine to medium SAND.			SS		-				-
-	- 5 -	RESIDUAL - Red brown silty fine to medium SAND.			SS SS		-				5
-	- 10 -	Boring terminated at 8 feet.	-	- - -			-				10
-			-	-			-				-
-	- 15 -			.]			-				15
-	20 -		-	-			-				
-	-						_				20
-	25 -						-			-	25
	-									-	
30/9/9 TO	30		-	-			-			-	30
V GIBB.GD	-		-	-						-	
K.GPJ LAV	35 -		-	-							35
ARAMARI	40 -		-	-			-				
SOIL TEST BORING ARAMARK.GPJ LAW. GIBB.G	.		-	-			-			+	40
SOIL TEE	45		-	-			_	10 20 30			

DRILLER: MACTEC EQUIPMENT: METHOD: HOLE DIA .:

Geoprobe Direct Push 2 inches

REMARKS:

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BEWEEN STRATA ARE APPROXIMATE. TRANSITIONS RETWEEN STRATA MAY BE GRADUAL

SOIL TEST BORING RECORD

BORING NO.:

GP-55

PROJECT:

ARAMARK

LOCATION:

Atlanta, Georgia

DRILLED: PROJECT NO.: 6306-05-0097

August 29, 2005

	SOIL CLASSIFICATION AND REMARKS	L E G	E L E V	I	T	IPLES N-COUNT	Pl	(%)		NM ((%) ES (%)	L	L (%)	
	T T H SEE KEY SHEET FOR EXPLANATION OF R SYMBOLS AND ABBREVIATIONS USED BELOW.	E N D	V (ft)	D E N	T Y P E	1st 6" 2nd 6" 3rd 6"			•	SPT	(bpf)			
1	CONCRETE			Т		3 2 =	10	20	30 40	0 50	60	70 8	0 90	100
	FILL - Red brown clayey silty fine to medium SAND.			SS	M									
-	1			SS	X		-							-
	RESIDUAL - Red brown micaceous silty fine to medium			SS	M									5
-	SAND.				Θ		-							-
F]			SS	А								-	1
- 1	Boring terminated at 9 feet.	5-44-164												10
'	-						-							- 10
														1
	-	-					-							-
- 1	5 -													15
Ł	_		_											-
-							$\lceil \rceil$			į				
- 2	0 -								\Box				+	20
and the second			-				-							-
nh.							-							-
_ 2	5 —	-						-			-			25
F	-	F	-											-
		-	-											
90/9/9	0 –	-								-				30
DI 6/6	-	F	1											-
IBB.GI	-	ŀ	-				-							-
% - 35	5 –	-									-			35
GPU L		E]
MARK	-	-												-
ARAI 4			.]											40
ORING	-	-	-				-							-
EST B		ļ	1				-							1
SOIL TEST BORING ARAMARK GPJ LAW GIBB G			-				-							
- 43						() 10	20 3	0 40	50	60 7	0 80	90 1	00

DRILLER: MACTEC EQUIPMENT: Geoprobe METHOD: Direct Push HOLE DIA .: 2 inches

REMARKS:

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER INTERFACES BEWEEN STRATA ARE APPROXIMATE. TRANSITIONS BETWEEN STRATA MAY BE GRADULAL

SOIL TEST BORING RECORD

BORING NO.: GP-56 **PROJECT:** ARAMARK LOCATION: Atlanta, Georgia DRILLED:

August 29, 2005 PROJECT NO.: 6306-05-0097

Brown slightly clayey silty fine to mediumSAND. Brown slightly clayey silty fine to mediumSAND. Boring terminated at 8 feet.	▲ FINES (%) ■ SPT (bpf) 10 20 30 40 50 60 70 80 90 100
ASPHALT FILL - Gravel in reddish brown to dark gray clayey silty SS SS SS Brown slightly clayey silty fine to mediumSAND. SS Boring terminated at 8 feet. - 10	10 20 30 40 50 60 70 80 90 100
FILL - Gravel in reddish brown to dark gray clayey silty FILL - Gravel in reddish brown to dark gray clayey silty SS SS Brown slightly clayey silty fine to mediumSAND. SS Boring terminated at 8 feet. - 10	
Brown slightly clayey silty fine to mediumSAND. Boring terminated at 8 feet. - 10	
- 15	
	15
	20
	25
800 A 30	30
35 – J	35
30	40

DRILLER: MACTEC
EQUIPMENT: Geoprobe
METHOD: Direct Push
HOLE DIA.: 2 inches

REMARKS:

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BEWEEN STRATA ARE APPROXIMATE. TRANSITIONS DETWIED STRATA MAY BE GRADUAL

SOIL TEST BORING RECORD

BORING NO.: GP-57
PROJECT: ARAMARK
LOCATION: Atlanta, Georgia
DRILLED: August 29, 2005

PROJECT NO.: 6306-05-0097

AND REMARKS	D	SOIL CLASSIFICATION	1.	Е	5	SAN	/PLES		PL (%)	N	IM (%	,)	L	L (%)	
SEE REFY SHIPET FOR REXIDENCY AND TO BE STORY STREET FOR REXIDENCY AND ABBREVIATION USED BELOW. Y	E P	AND REMARKS	L E G	l L	I	T	N-COUNT		•						•	
ASPHALT ROCK grovel, wood and charcoal. SS Rock grovel, wood and charcoal. SS SS Rock grovel grows sity SAND. SS SS Rock grovel grows sity SAND. SS SS Rock grovel grows gro	H	SEE KEY SHEET FOR EXPLANATION OF	E N		E	Y P	.e" de" 16"									
FILL - BOCK, gravel, wood and charcoul. Reddish brown clayey sity SAND Dark gray sity SAND. RISTIDUAL - Reddish brown clayey sity fine to medium SS SS SS RISTIDUAL - Reddish brown clayey sity fine to medium In oring terminated at 8 Izet. 10 - 15 - 15 - 20 - 25 - 25 - 25 - 25 - 25 - 25 - 2	1		D	(ft)	T	E	1st 2no 3rd		10 2	20 30				0 8	0 90	100
5 Dark gray slity SAR SS SS SS SS SS SS SS	-	- FILL - ROCK, gravel, wood and charcoal.			ss	M		-								-
5 Dark gray slity SAR SS SS SS SS SS SS SS	-	-		_	-	\mathbb{H}		+								-
Dark gray SAVD Reddish brown clayey silty fine to medium SS		Reddish brown clayey silty SAND.			SS]
RESIDIAL - Reddish brown clayey sity fine to medium SAD Bering terminated at 8 feet. 10 - 15 - 15 - 20 - 20 - 25 - 25 - 25 - 25 - 25 - 2	- 5	Dark gray silty SAND.	_////		SS	M			_		\perp	+				5
Boring terminated at 8 feet. 10 10 11 15 15 20 20 20 30 30 31 40 40 40	+	RESIDUAL - Reddish brown clavev silty fine to medium	////			\forall		-								-
- 15 - 15 - 15 - 15 - 20 - 20 - 25 - 25 - 25 - 25 - 25 - 2					SS	M										
- 15 - 15 - 15 - 15 - 15 - 15 - 15 - 15	-	Boring terminated at 8 feet.						-]
	10	-									+	+	\vdash		+	10
]]
	-							-								
	-	-		-				-								-
25 - 25 - 25 - 25 - 25 - 25 - 25 - 25 -	- 15													1	\top	15
25 - 25 - 25 - 25 - 25 - 25 - 25 - 25 -	-	-	-					-								
25 - 25 - 25 - 25 - 25 - 25 - 25 - 25 -		-		-				-								+
25 - 25 - 25 - 25 - 25 - 25 - 25 - 25 -	20 -							-								120
30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 -	-	-	1 -					-								720
30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 -	-	-	-					-								+
30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 -		-														
	- 25 -		-							_	_			_	_	25
	-	-	-					-								-
																1
	-		-	_				-]
	g - 30 -		-								+	-	\vdash	+	_	30
35 - 35 - 35 - 35 - 36 - 36 - 36 - 36 -	9/9 L								Ì							-
35 - 35 - 35 - 36 - 36 - 37 - 37 - 37 - 37 - 37 - 37	99	-	-													
	Bl-			+				-								-
	₹ 35 -			-										+	-	35
	K GPJ		-													
	MAR.		-	4				-								-
	AK 10 -			-				-								-
	D TO							-			T					40
	- 1		-	-				-								-
	<u>-</u>		-	-				-								-
0 10 20 30 40 50 60 70 80 90 100	45 -															

DRILLER: MACTEC
EQUIPMENT: Geoprobe
METHOD: Direct Push
HOLE DIA.: 2 inches
REMARKS:

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BEWEEN STRATA ARE APPROXIMATE. TRANSITIONS RETWEEN STRATA MAY BE GRADIIAL

SOIL TEST BORING RECORD

BORING NO.: GP-58
PROJECT: ARAMARK
LOCATION: Atlanta, Georgia
DRILLED: August 29, 2005

PROJECT NO.: 6306-05-0097

Client:	Aramark Uniform & Career Apparel, Inc	Boring Name:	GP-33
Site	Aramark Dekalb	Date:	1/24/2006
Address:	670 Dekalb Avenue	Driller:	Geolab, Inc.
City:	Atlanta	Geologist:	Tony L Gordon
State:	Georgia	Drilling Method:	Geoprobe DPT
Zip:	30307	Water Level:	Appox. 6.5 ft. bgs

Depth (f	feet bls) To	Lithologic Description	USCS Classification	Remarks
0	1.8	Brown, Dark gray-black, fine-coarse Sand and Gravel, non-plastic, wet (Fill)	GP	Rail Road Gravel Base
1.8	2.5	Red-brown, silty Clay, trace-little fine sand, medium plasticity, moist (no odor)	CL	Sample Spoon 0-5 ft
2.5	3.5	Red-brown, silty Clay and fine-medium Sand, low plasticity, moist, (no odor)	SC/CL	Soil Sample (2-4 ft)
3.5	5	No Recovery		
5	9	Red-brown, silty Clay and fine-medium Sand, low plasticity, moist, (no odor) (percent clay decreases with depth)	sc	Sample Spoon 5-9 ft. Soil Sample (4-6 ft).
	9	Terminate Soil Boring		

Client:	Aramark Uniform & Career Apparel, Inc.	Boring Name:	GP-34
Site	Aramark Dekalb	Date:	1/24/2006
Address:	670 Dekalb Avenue	Driller:	Geolab, Inc.
City:	Atlanta	Geologist:	Tony L Gordon
State:	Georgia	Drilling Method:	Geoprobe DPT
Zip:	30307	Water Level:	Appox. 5.5-6.0 ft. bgs

Depth (1	feet bls)		USCS	
From	To	Lithologic Description	Classification	Remarks
0	0.5	Brown, Dark gray-black, fine-coarse Sand and Gravel, non-plastic, wet (Fill)	GP	Rail Road Gravel Base
0.5	1	Red-brown, silty Clay, little fine sand, medium plasticity, moist (no odor)	CL	Sample Spoon 0-5 ft
1	3.5	Red-brown, orange-brown, silty Clay and fine- medium Sand, trace mica, low plasticity, moist (no odor)	SC/CL	Soil Sample (2-4 ft)
3.5	5	No Recovery		
5	5.5	Red-brown, orange-brown, silty Clay and fine- medium Sand, trace mica, low plasticity, moist (no odor)	SC/CL	Sample Spoon 5-10 ft. Soil Sample (4-6 ft).
5.5	7	Red-brown, silty, fine-medium Sand, trace mica, non-plasticity, wet/saturated, (no odor)	SM	
7	8	Red-brown, silty Clay, little, fine-medium sand, low-medium plasticity, very moist/wet (no odor)	CL	
8	10	No Recovery		
	10	Terminate Soil Boring		
			1	
		<u> </u>	 	
		<u> </u>	 	
			1	
		<u> </u>	 	
			1	

Client:	Aramark Uniform & Career Apparel, Inc	Boring Name:	GP-35
Site	Aramark Dekalb	Date:	1/24/2006
Address:	670 Dekalb Avenue	Driller:	Geolab, Inc.
City:	Atlanta	Geologist:	Tony L Gordon
State:	Georgia	Drilling Method:	Geoprobe DPT
Zip:	30307	Water Level:	NM

Depth (From	feet bls) To	Lithologic Description	USCS Classification	Remarks
0	2	Brown, red-brown, silty fine-coarse Sand, trace-little clay, very low to non-plasticity, dry (no odor)	Ciassination	Sample Spoon 0-5 ft
2	5	Red-brown, silty Clay, trace-little, fine-medium Sand, trace mica, low-medium plasticity, moist, (no odor)	SC/CL	Soil Sample (2-4 ft)
5	6.5	Red-brown, silty Clay, trace-little, fine-medium Sand, trace mica, low-medium plasticity, moist, (no odor)	SC/CL	Sample Spoon 5-6.5 ft. Soil Sample (4-6 ft).
	6.5	Terminate Soil Boring		

Client:	Aramark Uniform & Career Apparel, Inc	Boring Name:	GP-36
Site	Aramark Dekalb	Date:	1/24/2006
Address:	670 Dekalb Avenue	Driller:	Geolab, Inc.
City:	Atlanta	Geologist:	Tony L Gordon
State:	Georgia	Drilling Method:	Geoprobe DPT
Zip:	30307	Water Level:	Appox. 7.5-8.0 ft. bgs

Depth (1 From	feet bls) To	Lithologic Description	USCS Classification	Remarks
0	1.3	Brown, dark gray-black, Gravel, little-some coarse sand, non-plastic, moist (Fill)	GP	Rail Road Gravel Base
1.3	4	Red-brown, orange-brown, Clay, little silt. trace fine sand, medium-high plasticity, moist (no odor)	СН	Sample Spoon 0-5 ft Sample (2-4 ft).
4	5	No Recovery		(= 114)
5	6.5	Orange-brown, tan-brown, silty Clay and fine-medium Sand, trace mica, low-medium plasticity, moist, (no odor)	SC/CL	Sample Spoon 5-10 ft Soil Sample (4-6 ft).
6.5	9.6	Red-brown, orange-brown, gray, motted, clayey fine- medium Sand, trace mica, very low-low plasticity, very moist/wet (no odor)	SC	
9.6	10	Orrange-brown, gray, mottled, silty, fine Sand, non-plastic, wet, (no odor)	SM	
	10	Terminate Soil Boring		
		+		
		+		

Client:	Aramark Uniform & Career Apparel, Inc	Boring Name:	GP-37
Site	Aramark Dekalb	Date:	1/24/2006
Address:	670 Dekalb Avenue	Driller:	Geolab, Inc.
City:	Atlanta	Geologist:	Tony L Gordon
State:	Georgia	Drilling Method:	Geoprobe DPT
Zip:	30307	Water Level:	Appox. 7-5-8.0 ft. bgs

Depth (feet bls)			USCS	_
From	To	Lithologic Description	Classification	Remarks
0	0.5	Dark brown, very silty, fine-medium Sand, trace-little clay, very low to non-plastic, organic matter (roots) moist)	SM	Sample Spoon 0-5 ft
0.5	4	Red-brown, orange-brown, clayey, fine-coarse Sand and Gravel, trace mica, low plasticity, very moist (no odor)	SC	Soil Sample (2-4 ft)
4	5	No Recovery		
5	10	Orange-brown, light gray, motted, silty Clay and fine- medium Sand, trace mica, low-medium plasticity, very moist, lenes of quartz gravel within last two feet of sample spoon, (no odor)	CL/SC	Sample Spoon 5-10 ft. Soil Sample (4-6 ft).
	10	Terminate Soil Boring		
		<u> </u>		
		<u> </u>		
	 	 		
		1		
		<u> </u>		

Client:	Aramark Uniform & Career Apparel, Inc	Boring Name:	GP-38
Site	Aramark Dekalb	Date:	1/24/2006
Address:	670 Dekalb Avenue	Driller:	Geolab, Inc.
City:	Atlanta	Geologist:	Tony L Gordon
State:	Georgia	Drilling Method:	Hand Auger
Zip:	30307	Water Level:	NM

Depth (for	eet bls) To	Lithologic Description	USCS Classification	Remarks
0	1	Dark brown, black, silty, fine-coarse Sand, trace clay, non-plastic, organic matter (roots), moist	SM	
1	3.5	Red-brown, orange-brown, clayey, fine-medium Sand, trace mica, low plasticity, moist (no odor)	SC	Soil Sample (2-4 ft)
3.5	5.5	Red-brown, orange-brown, gray, motted, Silt, trace- some fine-coarse sand, trace clay, very micaceous, non-plastic, moist, saprilite (no odor)	ML/SM	Soil Sample (4-6 ft).
5.5	6	Orange-brown, brown, light gray, motted, silty Clay, little fine-medium sand, trace mica, low-medium plasticity, moist (no odor)	CL	
	6	Terminate Soil Boring		

Client:	Aramark Uniform & Career Apparel, Inc	Boring Name:	GP-39
Site	Aramark Dekalb	Date:	1/24/2006
Address:	670 Dekalb Avenue	Driller:	AEM
City:	Atlanta	Geologist:	Tony L Gordon
State:	Georgia	Drilling Method:	Hand Auger
Zip:	30307	Water Level:	NM

Depth (From	feet bls) To	Lithologic Description	USCS Classification	Remarks
0	1	Dark brown, brown, silty, fine-coarse Sand, trace-little clay, non-plastic, organic matter (roots), moist	SM	
1	3	Red-brown, orange-brown, clayey, fine-medium Sand, trace mica, low plasticity, moist (no odor)	SC	Soil Sample (1-2 ft)
3	4	Red-brown, orange-brown, silty Clay, trace-little fine-medium sand, medium plasticity, moist (no odor)	CL	. Soil Sample (3.5-4 ft).
	4	Terminate Soil Boring		

Client:	Aramark Uniform & Career Apparel, Inc	Boring Name:	DS-1
Site	Aramark Dekalb	Date:	11/24/2008
Address:	670 Dekalb Avenue	Driller:	AEM
City:	Atlanta	Geologist:	Tom Lawrence
State:	Georgia	Drilling Method:	DPT
Zip:	30307	Water Level:	NM

Depth (feet bls)		USCS	
From	To	Lithologic Description	Classification	Remarks
		Red to Yellow mottled clayey silt with occational		Romano
0	11	crushed rock gravel (fill)	SC	
11	20	crushed rock gravel (fill) Buff fine sandy silt (residum)	SM	
- ''	20	Terminate Soil Boring	Olvi	
	20	Torrinate con Boring		
		†		

Client:	Aramark Uniform & Career Apparel, Inc	Boring Name:	DS-2
Site	Aramark Dekalb	Date:	11/24/2008
Address:	670 Dekalb Avenue	Driller:	AEM
City:	Atlanta	Geologist:	Tom Lawrence
State:	Georgia	Drilling Method:	DPT
Zip:	30307	Water Level:	NM

		1		
Depth (feet bls)			USCS	
From	To	Lithologic Description	Classification	Remarks
0	3	Red clayey silt with crushed rock pebbles (fill)	SC	
3	5	Tan, red mottled fine sands (fill)	SP	
5	10.5	Red, light brown mottled clayey silt (fill)	SC	12-12.5
10.5	11.5	Red to tan course sandy silt (residuum)	SM	14.5-15.0
10.5 11.5	15	Red to tan course sandy silt (residuum) Brown micaceous fine sandy silt (residuum)	MH	
	15	Terminate Soil Boring		
		•		

Client:	Aramark Uniform & Career Apparel, Inc	Boring Name:	DS-3
Site	Aramark Dekalb	Date:	11/24/2008
Address:	670 Dekalb Avenue	Driller:	AEM
City:	Atlanta	Geologist:	Tom Lawrence
State:	Georgia	Drilling Method:	DPT
Zip:	30307	Water Level:	NM

Donath (f 4 - - \		11000	
Depth (To	Lithologic Description	USCS Classification	Remarks
0	2	Red, clayey silt with wood and plastic debris, some pebbles (fill)	OL	Romano
2	3	Tan fine sandy silt with some pebbles (fill)	SM	
3	4		CL	
4	5	Red, brown mottled clayey silt (fill) Dark brown , black mottled clayey fine sand with silt (fill)	SC	
5	11	Red clayey silt (fill)	CL	
11	15	Red, light brown micaceous banded fine sandy silt	MH	
	15	Terminate Soil Boring		
		+		
		1		
		+		
		<u> </u>		
L				

Client:	Aramark Uniform & Career Apparel, Inc	Boring Name:	DS-4
Site	Aramark Dekalb	Date:	11/24/2008
Address:	670 Dekalb Avenue	Driller:	AEM
City:	Atlanta	Geologist:	Tom Lawrence
State:	Georgia	Drilling Method:	DPT
Zip:	30307	Water Level:	NM

		_	1	
Depth (feet bls)		USCS	
From	To	Lithologic Description	Classification	Remarks
0	2	Red, tan clayey silt with plant and wood debris with crushed rock pebbles (fill)	OL	
2	2.5	crushed rock pebbles (fill) Dark brown find sandy silt with red brick fragments (fill)	SM	
2.5	4.5	Red , light brown mottled clayey silt (fill)	CL	
9.5	10	Red, light brown mottled clayey course sandy silt (fill)	SM	
10	15	Tan, red/brown course sandy silt (pegmatite) to fine sandy silt (residuim)	SM	
	15	Terminate Soil Boring		
	l			

Client:	Aramark Uniform & Career Apparel, Inc	Boring Name:	DS-5
Site	Aramark Dekalb	Date:	11/24/2008
Address:	670 Dekalb Avenue	Driller:	AEM
City:	Atlanta	Geologist:	Tom Lawrence
State:	Georgia	Drilling Method:	DPT
Zip:	30307	Water Level:	NM

		1		
Depth	(feet bls)		USCS	
From	To	Lithologic Description	Classification	Remarks
0	0.5	Red clayey silt with roots and small pebbles (fill)	OL	
0.5	2	Tan clayey silt with pebbles (fill)	CL	
2	4	Brown, red mottled clayey silt with roots (fill)	OH	
4	8.5	Brown, red mottled clayey silt (fill)	CL	
8.5	9.5	Brown, red mottled clayey course sandy silt (fill)	SM	
		Tan , red layered micacesous fine sandy silt	·	
9.5	15	(residuum).	MH	
	15	Terminate Soil Boring		
			+	
			+	
			+	
			+	
			+	
			+ +	

Client:	Aramark Uniform & Career Apparel, Inc	Boring Name:	DS-6
Site	Aramark Dekalb	Date:	11/24/2008
Address:	670 Dekalb Avenue	Driller:	AEM
City:	Atlanta	Geologist:	Tom Lawrence
State:	Georgia	Drilling Method:	DPT
Zip:	30307	Water Level:	NM

Depth (feet bls)		USCS	
From	То	Lithologic Description	Classification	Remarks
		Surface asphalt		
0	11.5	Red, brown, tan mottled micaceous sandy clayey silt with crushed rock pebbles (fill). Roots after 7'.	МН	
11.5	12.5	Tan course sandy silt (pegamitic).	SM	
12.5	15	Tan layered fine sandy silt (residuum).	SM	
	15	Terminate Soil Boring		
	1			

Client:	Aramark Uniform & Career Apparel, Inc	Boring Name:	DS-7
Site	Aramark Dekalb	Date:	11/24/2008
Address:	670 Dekalb Avenue	Driller:	AEM
City:	Atlanta	Geologist:	Tom Lawrence
State:	Georgia	Drilling Method:	DPT
Zip:	30307	Water Level:	NM

	feet bls) To	Lithologic Description	USCS Classification	Remarks
From 0	3	Red clayey silt with crushed stone pebbles (fill)	ML	Remarks
0	3	Red clayey slit with crushed stone peobles (iiii)		
3	14.5	Red , light brown banded clayey silt with pebbles (fil)	ML	
14.5	20	Tan layered micaceous find sandy silt (residuum).	MH	
	20	Terminate Soil Boring		
L	l			

Client:	Aramark Uniform & Career Apparel, Inc	Boring Name:	DS-8
Site	Aramark Dekalb	Date:	11/24/2008
Address:	670 Dekalb Avenue	Driller:	AEM
City:	Atlanta	Geologist:	Tom Lawrence
State:	Georgia	Drilling Method:	DPT
Zip:	30307	Water Level:	NM

D 41 4				
Depth (f	reet bis) To	Lithologic Description	USCS Classification	Remarks
0	1.5		ML	Remains
-	1.0	Red clayey silt with crushed rock pebbles (fill)		
1.5	15	Light brown clayey silt wth crushed rock pebbles (fill)	ML	
15	20	Tan , light brown micaceous layered clayey silt (residuum).	МН	
	20	Boring terminated		
		<u> </u>		
		+		

Client:	Aramark Uniform & Career Apparel, Inc	Boring Name:	DS-9
Site	Aramark Dekalb	Date:	11/24/2008
Address:	670 Dekalb Avenue	Driller:	AEM
City:	Atlanta	Geologist:	Tom Lawrence
State:	Georgia	Drilling Method:	DPT
Zip:	30307	Water Level:	NM

Depth (feet bls)		USCS	
From	То	Lithologic Description	Classification	Remarks
0	10.5	Red, tan clayey silt to fine sandy silt with crushed stone pebbles (fill)	ML	
10.5	15	stone pebbles (fill) Light brown, dark red micaceous layered fine sand (fill).	МН	
	15	Boring terminated		
	_			

Client:	Aramark Uniform & Career Apparel, Inc	Boring Name:	DS-10
Site	Aramark Dekalb	Date:	11/24/2008
Address:	670 Dekalb Avenue	Driller:	AEM
City:	Atlanta	Geologist:	Tom Lawrence
State:	Georgia	Drilling Method:	DPT
Zip:	30307	Water Level:	NM

	feet bls)		USCS	
From	То	Lithologic Description	Classification	Remarks
0	3	Red clayey silt with crushed stone pebbles (fill)	CL	
3	5.5	Brown clayey silt to fine sand (fill)	SC	
5.5	11	Red, brown mottled clayey silt (fill)	CL	
11	12	Red course sand, some quartz pebbles, to clayey silt (pegmatite).	SP/CL	
12	15	Brown, dark red micaceous layered fine sandy silt (Residuim)	МН	
	15	Boring terminated		

Client:	Aramark Uniform & Career Apparel, Inc	Boring Name:	DS-11
Site	Aramark Dekalb	Date:	11/24/2008
Address:	670 Dekalb Avenue	Driller:	AEM
City:	Atlanta	Geologist:	Tom Lawrence
State:	Georgia	Drilling Method:	DPT
Zip:	30307	Water Level:	NM

		T	1 1	
Depth (feet bls)		USCS	
From	То	Lithologic Description	Classification	Remarks
0	2.5	Brown, tan fine sandy silty clay with crushed stone pebbles (fill)	SC	
2.5	9.5	Red, light brown mottled clayey silt with small crushed pebbles (fill)	CL	
9.5	12	Red, brown micaceous fine sandy silt (residuum)	MH	
12	14	Red, brown layered micaceous fine sandy silt (residuum)	МН	
14	15	Course sandy silt with pink and grey layering (pegmatite)		
	15	Boring terminated		
			1	
			1	
			+ +	
			 	
			1	
			<u> </u>	
			1	

Client:	Aramark Uniform & Career Apparel, Inc	Boring Name:	DS-12
Site	Aramark Dekalb	Date:	11/24/2008
Address:	670 Dekalb Avenue	Driller:	AEM
City:	Atlanta	Geologist:	Tom Lawrence
State:	Georgia	Drilling Method:	DPT
Zip:	30307	Water Level:	NM

Depth (f	eet bls)		USCS	
From	То	Lithologic Description	Classification	Remarks
		Asphalt surface		
0	0.33	Rock base		
0.33	7.5	Red clavev silt (fill)	CL	
7.5	15	Red clayey silt (fill) Tan layered micaceous clayey silt (residuum)	MH	
7.0	15	Boring terminated		
	10	Dorning torriminated		
			+	
			+	
			++	

Client:	Aramark Uniform & Career Apparel, Inc	Boring Name:	DS-13
Site	Aramark Dekalb	Date:	11/24/2008
Address:	670 Dekalb Avenue	Driller:	AEM
City:	Atlanta	Geologist:	Tom Lawrence
State:	Georgia	Drilling Method:	DPT
Zip:	30307	Water Level:	NM

Depth (f	feet bls)		USCS	
From	To	Lithologic Description	Classification	Remarks
0	14.5	Red, brown silty sandy clay with crushed stone	SC	
14.5	20	pebbles (fill) Light tan, light brown granular textured silty sandy clay (residuum). Granitic in appearance.	SC	
	20	Boring terminated		
			+	
		+		
_				
			+	
			+	
			1	
			-	
			1	
		+	1	
				

Client:	Aramark Uniform & Career Apparel, Inc	Boring Name:	DS-29
Site	Aramark Dekalb	Date:	11/26/2008
Address:	670 Dekalb Avenue	Driller:	AEM
City:	Atlanta	Geologist:	Tom Lawrence
State:	Georgia	Drilling Method:	DPT
Zip:	30307	Water Level:	NM

				1
Depth (f	feet bls)		USCS	
From	То	Lithologic Description	Classification	Remarks
0	3	Red clayey silt with crushed stone pebbles (fill)	CL	
3	5	Tan fine sandy silt with pebbles (fill)	SM	
5	8	Red clayey silt with pebbles(fill)	CL	
8	17	Grey, red mottled silty clay to silty sandy clay lensed (fill)	SM/CL	
17	18	Red fine sandy silty clay with pebbles and wood fragments (fill)	OH/SC	
18	20	Tan , orange layered (saporolite) to micaceous course to fine silty sand (residuum).	MH	
	20	Boring terminated		

Client:	Aramark Uniform & Career Apparel, Inc	Boring Name:	DS-30
Site	Aramark Dekalb	Date:	11/26/2008
Address:	670 Dekalb Avenue	Driller:	AEM
City:	Atlanta	Geologist:	Tom Lawrence
State:	Georgia	Drilling Method:	DPT
Zip:	30307	Water Level:	NM

Depth (f	feet bls)		USCS	
From	To	Lithologic Description	Classification	Remarks
0	5	Red tan loose sandy silt with crushed stone pebbles (fill)	SM	Odor detected
5	8.5	Red, brown mottled silty sandy clay (fill). 7.5-8' pieces of charcoal or coal.	SC	Odor detected
8.5	17	Grey dense sandy silt	SM	Wet @ 17' and below
17	20	Red, tan granular in appearance (granitic saporlite?) soft wet silty sand (residuum).	SM	
	20	Boring terminated		

Client:	Aramark Uniform & Career Apparel, Inc	Boring Name:	DS-31
Site	Aramark Dekalb	Date:	11/26/2008
Address:	670 Dekalb Avenue	Driller:	AEM
City:	Atlanta	Geologist:	Tom Lawrence
State:	Georgia	Drilling Method:	DPT
Zip:	30307	Water Level:	NM

	feet bls)		USCS	
From	То	Lithologic Description	Classification	Remarks
0	8	Brown soft fine sandy silt with organics and pebbles (fill) leaf at 5.5'.	SM	Odor detected
8	10	Tan Dense silty sandy clay (fine to med sand) with quartz pebbles (fill).	SC	Odor detected
10	14.5	Tan silty sandy clay, layered with granular texture (saporlite)	SC	Odor detected
14.5	15.5	Red, grey silty sandy clay mottled (residuum)	SC	
15.5	20	Tan fine to course sand granitic texture (residuum).	SW	15.5-18' extremely wet and loose
	20	Boring terminated		
-				
-				

Client:	Aramark Uniform & Career Apparel, Inc	Boring Name:	DS-32
Site	Aramark Dekalb	Date:	11/26/2008
Address:	670 Dekalb Avenue	Driller:	AEM
City:	Atlanta	Geologist:	Tom Lawrence
State:	Georgia	Drilling Method:	DPT
Zip:	30307	Water Level:	NM

		T		
Depth (L.,	USCS	
From	То	Lithologic Description	Classification	Remarks
0	0.5	Aspalt with rock base		
0.5	5.5	Red, sandy silt	SM	
5.5	14	Brown, gray dense mottled silty sandy clay	SC	
14	15	Grey, yellow mottled silty sand	SM	
	15	Boring terminated		
-				
-				
			+	
			1	
		<u> </u>		
		 		

Client:	Aramark Uniform & Career Apparel, Inc	Boring Name:	DS-33
Site	Aramark Dekalb	Date:	11/26/2008
Address:	670 Dekalb Avenue	Driller:	AEM
City:	Atlanta	Geologist:	Tom Lawrence
State:	Georgia	Drilling Method:	DPT
Zip:	30307	Water Level:	NM

	feet bls)		USCS	
From	To	Lithologic Description	Classification	Remarks
0	0.67	Asphalt surface with base rock		
0.67	8	Brown, red silty sand with organics (fill)	SM	
8	10	Yellow, grey mottled dense sitly sand (fill)	SM	
10	12	Grey dense silty sandy clay with pebbles (fill)	SC	
12	15	Grey course silty sand	SM	Wet
	15	Boring terminated		
			+	

Client:	Aramark Uniform & Career Apparel, Inc	Boring Name:	DS-34
Site	Aramark Dekalb	Date:	11/26/2008
Address:	670 Dekalb Avenue	Driller:	AEM
City:	Atlanta	Geologist:	Tom Lawrence
State:	Georgia	Drilling Method:	DPT
Zip:	30307	Water Level:	NM

Depth (f		Lithelesia Description	USCS Classification	Damada
From	To	Lithologic Description	Classification	Remarks
0	0.75	Asphalt with base		
0.75	13.5	Red, yellow mottled dense silty sandy clay (fill). Coal pieces.	SC	
13.5	15.5	Grey fine sandy clay (fill)	SM	
		Red, grey mottled fined sandy clay (fill). Organic		
15	18.5	crumbly sand at 18'.	SM	
18.5	20	Grey micaceous fine silty sand (residuum)	MH	
	20	Boring terminated		
		3' north of 1" temp well		
		Old geoprobe boring with bentonite located half way between DSW-34 and DS-37		
		+		
		<u> </u>		
_				

Client:	Aramark Uniform & Career Apparel, Inc	Boring Name:	DS-35
Site	Aramark Dekalb	Date:	11/26/2008
Address:	670 Dekalb Avenue	Driller:	AEM
City:	Atlanta	Geologist:	Tom Lawrence
State:	Georgia	Drilling Method:	DPT
Zip:	30307	Water Level:	NM

		1		
Depth (feet bls)		USCS	
From	To	Lithologic Description	Classification	Remarks
0	1	Asphalt surface with base rock		
1	12.5	Brown, dark brown silty sandy clay (fill) Grey, red, black dense silty clay (fill) Grey micaceous layered silty clay.	SC	
12.5	18	Grey, red, black dense silty clay (fill)	CL	
18	20	Grey micaceous layered silty clay.	MH	
	20	Boring terminated		
				_
				_
			1	
			<u> </u>	
			+	
		1	1	

Client:	Aramark Uniform & Career Apparel, Inc	Boring Name:	DS-36
Site	Aramark Dekalb	Date:	11/26/2008
Address:	670 Dekalb Avenue	Driller:	AEM
City:	Atlanta	Geologist:	Tom Lawrence
State:	Georgia	Drilling Method:	DPT
Zip:	30307	Water Level:	NM

	feet bls)	Line I. S. D. L. e.	USCS	
From	То	Lithologic Description	Classification	Remarks
0	1	Burnt material and charcoal surface along with broken concrete rubble.		
1	4	Red, brown sandy silt (fill). Red brick at 3'.	SM	
4	10	Red, brown mottled sitly sandy clay Pebbles and asphault at 9' (fill)	SC	
10	14	Possible void. Some dark crushed pebbles matted with crushed stone pebbles.		
14	18	Grey fine sandy silt	SM	
18	20	Grey, brown micaceous fine sandy clay with silt (fill).	MH	
	20	Boring terminated		
-				
 				
			1	

Client:	Aramark Uniform & Career Apparel, Inc	Boring Name:	DS-37
Site	Aramark Dekalb	Date:	11/26/2008
Address:	670 Dekalb Avenue	Driller:	AEM
City:	Atlanta	Geologist:	Tom Lawrence
State:	Georgia	Drilling Method:	DPT
Zip:	30307	Water Level:	NM

Depth (f	feet bls)		USCS	
From	To	Lithologic Description	Classification	Remarks
0	0.75	Asphalt and base		rtomante
		Red, brown, black silty sandy clay with crushed stone		
0.75	3	pebbles. Black burn zone 2.5-3'.	SC	
3	11	Red, brown mottled fine sandy clay trace silt (fill)	SC	
11	17	Grey dense silty sandy clay, some pea gravel.	SC	
17	17.5	Light brown silty sandy clay	SC	
		Grey silty sandy clay. Refusal at 20' on quartz and		
17.5	20	mica schist pebbles.	SC	
	20	Boring terminated		

Client:	Aramark Uniform & Career Apparel, Inc	Boring Name:	DS-38
Site	Aramark Dekalb	Date:	11/26/2008
Address:	670 Dekalb Avenue	Driller:	AEM
City:	Atlanta	Geologist:	Tom Lawrence
State:	Georgia	Drilling Method:	DPT
Zip:	30307	Water Level:	NM

				1
Depth (feet bls)		USCS	
From	To	Lithologic Description	Classification	Remarks
0	0.75	Asphalt surface and base		
0.75	11.5	Dark grey, red-brown mottled dense silty clay (fill) Grey dense silty sandy clay, brown mottled.	CL	
11.5	20	Grey dense silty sandy clay, brown mottled.	CL	
	20	Boring terminated		
		<u> </u>		
		 		
		 		

Client:	Aramark Uniform & Career Apparel, Inc	Boring Name:	DS-39
Site	Aramark Dekalb	Date:	11/26/2008
Address:	670 Dekalb Avenue	Driller:	AEM
City:	Atlanta	Geologist:	Tom Lawrence
State:	Georgia	Drilling Method:	DPT
Zip:	30307	Water Level:	NM

		T	I	
Depth (f	feet bls)		uscs	
From	To	Lithologic Description	Classification	Remarks
0	0.5	Asphalt and subgrade	Glacomodilon	Remarks
0.5	1	Red, dark brwon mottled clayey silt (fill)	ML	
		Burn zone with dark grey pebbles sandy silt and		
1	1.5	charcoal.	ML	
1.5	4	Red fine sandy clayey silt	ML	
4	5	Red course sandy clayey silt	ML	
5	10.5	Red, brown mottled sandy clayey silt	ML	
10.5	12.5	Bown, grey mottled dense		
12.5	15	Grey fine to medium sandy silty clay dense, layered	CL	
15	20	Fine sandy clayey silt micaceous light brown layereing (residium) Saporlite.	ML	15-20' push soft with 2.5' of recovery
	20	Boring terminated		recovery
	20	Bonning terminated		
		<u> </u>		
		<u> </u>		
			1	
1	<u> </u>		<u> </u>	

Client:	Aramark Uniform & Career Apparel, Inc	Boring Name:	DS-40
Site	Aramark Dekalb	Date:	11/26/2008
Address:	670 Dekalb Avenue	Driller:	AEM
City:	Atlanta	Geologist:	Tom Lawrence
State:	Georgia	Drilling Method:	DPT
Zip:	30307	Water Level:	NM

Depth (feet his)		USCS	
From	To	Lithologic Description	Classification	Remarks
0	0.5	Concrete slab	Glacomoation	Remarks
	0.5	Red micaceous fine sandy clayey silt with pebbles		
0.5	10.5	(fill)	MH	
		Demse grey, light brown mottled fine sandy clayey silt		
10.5	12	with angular quartz pebbles.		
12	24	NA		
24	25	NA		
	25	Boring terminated		
		ÿ		
		ļ		

Client:	Aramark Uniform & Career Apparel, Inc	Boring Name:	DS-41
Site	Aramark Dekalb	Date:	11/26/2008
Address:	670 Dekalb Avenue	Driller:	AEM
City:	Atlanta	Geologist:	Tom Lawrence
State:	Georgia	Drilling Method:	DPT
Zip:	30307	Water Level:	NM

Depth (feet bis) From To Lithologic Description 0.5 Concrete slab			T		
From To Lithologic Description Classification Remarks 0 0.5 Concrete slab Red micaceous fine sandy clayey silt with pebbles (fill) 12 24 Demse grey, light brown mottled fine sandy clayey silt SC with angular quartz pebbles. SM SM	Depth (feet bls)		USCS	
0 0.5 Concrete slab Red micaceous fine sandy clayey silt with pebbles (fill) 12 Concrete slab Red micaceous fine sandy clayey silt with pebbles (fill) 12 Concrete slab MH SC With angular quartz pebbles. SM SM			Lithologic Description		Remarks
Red micaceous fine sandy clayey silt with pebbles (fill) 12 Demse grey, light brown mottled fine sandy clayey silt sc with angular quartz pebbles. 24 Se Grey, brown micaceous layered (Saporlite) sandy silt.					. temane
0.5 12 (fill) 12 Demse grey, light brown mottled fine sandy clayey silt with angular quartz pebbles. 24 Srey, brown micaceous layered (Saporlite) sandy silt.			Red micaceous fine sandy clayey silt with pebbles		
with angular quartz pebbles. 24 25 Grey, brown micaceous layered (Saporlite) sandy silt.	0.5	12	(fill)		
with angular quartz peobles. 24 25 Grey, brown micaceous layered (Saporlite) sandy silt.	10	24	Demse grey, light brown mottled fine sandy clayey silt	22	
24 25 Grey, brown micaceous layered (Saporlite) sandy slit.	12	24	with angular quartz pebbles.	30	
24 25 Grey, brown micaceous layered (Saporlite) sandy slit.				SM	
25 Boring terminated	24	25	Grey, brown micaceous layered (Saporlite) sandy silt.	0	
		25	Boring terminated		
			<u> </u>		
			<u> </u>		

Client:	Aramark Uniform & Career Apparel, Inc	Boring Name:	DS-42
Site	Aramark Dekalb	Date:	11/26/2008
Address:	670 Dekalb Avenue	Driller:	AEM
City:	Atlanta	Geologist:	Tom Lawrence
State:	Georgia	Drilling Method:	DPT
Zip:	30307	Water Level:	NM

Depth (f	foot blo		USCS	
From	To	Lithologic Description	Classification	Domorko
	0.5		CiassilicatiOff	Remarks
0	0.5	Concrete slab Red, brown mottled sandy micaceous silt (fill) with		
0.5	12.5	broken glass and pebbles.	MH	
12.5	17.5	Croy dones conducitively (fill)	SC	
17.5	17	Grey dense sandy silty clay (fill) Brown micaceous fine sandy silt (residuum)	SM	
17	19	Grey, brown layered micaceous (saporlite) course	1	
19	25	sand.	SP	
	25	Boring terminated		
	20	Borning terminated		
		_		
		_		

Client:	Aramark Uniform & Career Apparel, Inc	Boring Name:	DS-43
Site	Aramark Dekalb	Date:	11/26/2008
Address:	670 Dekalb Avenue	Driller:	AEM
City:	Atlanta	Geologist:	Tom Lawrence
State:	Georgia	Drilling Method:	DPT
Zip:	30307	Water Level:	NM

Depth (f	feet bls)		USCS	
From	To	Lithologic Description	Classification	Remarks
0	0.5	Concrete slab		
			CM	
0.5	4.5	Red micaceous fine silty sand (fill) with rock pebbles	SM	
4.5	8	Brown sandy clayey silt (fill)	SC	
		Red, brown clayey sandy silt (fill) with some silty	SC/SM	
8	14	sand approx. 2" thick		
14	14.5	Brown medium sandy silt (fill)	SM	
14.5		Grey dense med-course sandy silty clay with quartz	sc	
	22	pebbles (fill)		
22	24	Transition residuum micaceous pebbles (quartz)	sc	
		sandy clayey silt.		
24	25	Grey , brown micaceous layered (saporlite) course-	MH	
		fine sandy silt. Boring terminated		
	25	During terminated	 	
			1	

Client:	Aramark Uniform & Career Apparel, Inc	Boring Name:	DS-44
Site	Aramark Dekalb	Date:	11/26/2008
Address:	670 Dekalb Avenue	Driller:	AEM
City:	Atlanta	Geologist:	Tom Lawrence
State:	Georgia	Drilling Method:	DPT
Zip:	30307	Water Level:	NM

				1
Depth (feet bls)		USCS	
From	То	Lithologic Description	Classification	Remarks
0	0.5	Asphalt and base		
0.75	4	Red, brown mottled clayey fine sandy silt with coal	SC	
4	17	Layers of brown, red, black course to fine sand (fill)	SW	
17	21	Grey dense sandy silty clay (fill)	SC	
21	23	Grey fine sandy clayey silt (transition)	SC	
23	25	Grey micaceous fine sandy silt Granular texture (granitic saporlite) (Residuum).	МН	
	25	Boring terminated		
		<u> </u>		
			-	
			1	
				_

Client:	Aramark Uniform & Career Apparel, Inc	Boring Name:	DS-45
Site	Aramark Dekalb	Date:	11/26/2008
Address:	670 Dekalb Avenue	Driller:	AEM
City:	Atlanta	Geologist:	Tom Lawrence
State:	Georgia	Drilling Method:	DPT
Zip:	30307	Water Level:	NM

		T	ı	
Depth (feet bls)		USCS	
From	То	Lithologic Description	Classification	Remarks
		Brown, grey crumbly sandy silt with crushed stone		
0	9.5	gravel pebbles.	SM	
9.5	11	Brown, red mottled dense sandy silty clay (fill)	SC	
11	13.5	Grey sandy silt (fill)	MH	
13.5	15.5	Brown (transisiton) micaceous fine sandy silt	MH	
15.5	20	Brown, grey layered (saporlite) micaceous course to fine sandy silt (residuim).	MH	
	20	Boring terminated		

Monitoring Well GP-4 (TMW-1)							
Project: ARAMARK - DeKalb	Drill Rig: (Top of Casing Elevation:
Date: August 5, 2008	Driller: Geolab					Initial Groundwater Depth:	
Logged By: Skip Saylor	Hole Diam	eter: 8	8-inch				Final Groundwater Depth:
Description		USCS Class	Graphic Log	Depth	Sample Interval	Blows / 6"	8-inch-diameter Flushmount Vault 2" Locking Cap
Asphalt and Subgrade				0 -			Concrete
Red clayey, sandy silt		SC		- 1 - 2 - 3 - 4 	×		Bentonite Pellet Seal
Tan silty clay		SC		5 — - 6 — - 7 — - 8 —	×		2-inch-diameter Sch. 40 Blank PVC Casing
Red clayey, sandy silt		SC		9 —			8-inch-diameter Borehole
Gray saprolite, very weathered Terminate soil boring		IVIL		- 11			20-30 Mesh Sand Filter Pack 2-inch-diameter Sch. 40 0.010" Slotted PVC Screen
		Not	L			ш	Project No.
Atlanta Environmental Management, Inc. Environmental Consulting, Engineering, Hydrogeologic Services 2580 Northeast Expressway • Atlanta Georgia 30 Telephone: (404) 329-9006 • Fax: (404) 329-202	345 57	1. U 2. G 3. B	SCS = Ur iroudwate GS- belov	r measure v ground s	d from	n top e.	Project No. 1133-1303-1 ata\local\terminatcPatrickA_GS48\wadthldgs2dWgm Project No. 1133-1303-1 Page 1 of 1

Monitoring Well GP-10 (TMW-2)						
Project: ARAMARK - DeKalb	Drill Rig: G				Top of Casing Elevation:	
	Driller: G	eolab			Initial Groundwater Depth:	
	Hole Diame	ter: 8-inch			Final Groundwater Depth:	
Date: August 5, 2008 Logged By: Skip Saylor Description Asphalt and Subgrade Poorly-graded sands, gravelly sands, little or no fines			HtdəO	Sample Interval	Final Groundwater Depth: 2'x2'x6" Concrete Pad 8-inch-diameter Flushmount Vault 2" Locking Cap Concrete Bentonite Pellet Seal 2-inch-diameter Sch. 40 Blank PVC Casing 8-inch-diameter Borehole 20-30 Mesh Sand Filter Pack	
Terminate soil boring			- 18 - - 18 - - 19 - - 20 -		2-inch-diameter Sch. 40 0.010" Slotted PVC Scree	
Atlanta Environmental Management, Inc. Environmental Consulting, Engineering, Hydrogeologic Services 2580 Northeast Expressway • Atlanta Georgia 36	0345	2. Groudwa 3. BGS- be	iter measur low ground	ed from surface.	Page 1 of 1	
2580 Northeast Expressway • Atlanta Georgia 30 Telephone: (404) 329-9006 • Fax: (404) 329-20	File name: C	\Users\Tom I	_ongo\ap	pdata\local\te <mark>rApiMtDatidisA_E6048\v&drildgs2dWgm</mark>		

Monitoring Well GP-14 (TMW-3)								
Project: ARAMARK - DeKalb	Drill Rig:						Top of Casing Elevation:	
Date: August 5, 2008	Driller:	Geola	b				Initial Groundwater Depth:	
Logged By: Skip Saylor	Hole Dia	meter:	8-inch				Final Groundwater Depth:	
Description		USCS Class	Graphic Log	Depth	Sample Interval	Blows / 6"	8-inch-diameter Flushmount Vault —2" Locking Cap	
Asphalt and Subgrade				- 0 -			Concrete	
Poorly-graded sands, gravelly sands, little or no fines Terminate soil boring		SP		- 1			2-inch-diameter Sch. 40 Blank PVC Casing — 8-inch-diameter Boreho — 20-30 Mesh Sand Filter Pack 14.0' — — — — — — — — — — — — — — — — — — —	ble
				20-				_
Atlanta Environmental Management, Inc. Environmental Consulting, Engineering, Hydrogeologic Services 2580 Northeast Expressway • Atlanta Georgia 30: Telephone: (404) 329-9006 • Fax: (404) 329-205	345 77	2. G 3. B	SCS = Ur Groudwate GS- belov	r measure w ground s	ed froi surfac	n top e.	Project No 1133-1303- p casing (TOC). Page 1 of	-1

Client:	Aramark Uniform & Career Apparel, LLC	Boring Name:	SB-1
Site	Former Aramark DeKalb Facility	Date:	1/31/2013
Address:	670 DeKalb Avenue	Driller:	Geolab, Inc.
City:	Atlanta	Geologist:	Tony L Gordon
State:	Georgia	Drilling Method:	Geoprobe DPT
Zip:	30307	Water Level:	5-6 ft BGS

Depth (From	feet bls) To	Lithologic Description	USCS Classification	Remarks
0	3.4	Fill: Red-brown, Silt and fine-medium Sand, tracelittle clay, micaceous, very low plasticity, moist (no odor)	SM/SC	Soil Sample (2-4 ft)
3.4	5	No Recovery		
5	8.5	Fill: Red-brown, Silt and fine-medium Sand, tracelittle clay, micaceous, very low plasticity, very moist (no odor)	SM/SC	Soil Sample (6-8 ft)
8.5	9	Fill: Black, coarse Sand and Gravel size fragments (coal/brick/concrete/rock), wet	GW	
9	10	No Recovery		
10	11.5	Fill: Black, coarse Sand and Gravel size fragments (coal/brick/concrete/rock), wet	GW	Soil Sample (10-12 ft)
11.5	16	Saprolite: Orange-brown, gray, mottled, silt Clay, trace-little fine sand, low-medium plasticity, moist (no odor)	CL/CH	Soil Sample (14-16 ft)
16		Terminate Soil Boring		
	ļ			
		<u> </u>		
	ļ	 		
	-	+		
	-	1		
	 	<u>†</u>		
	 	<u>†</u>		
	1			

Client:	Aramark Uniform & Career Apparel, LLC	Boring Name:	SB-2
Site	Former Aramark DeKalb Facility	Date:	1/31/2013
Address:	670 DeKalb Avenue	Driller:	Geolab, Inc.
City:	Atlanta	Geologist:	Tony L Gordon
State:	Georgia	Drilling Method:	Geoprobe DPT
Zip:	30307	Water Level:	4-5 ft BGS

Depth (feet bls) From To		Lithologic Description	USCS Classification	Remarks
0	2.5	Fill: Red-brown, silty, fine-coarse Sand and Gravel, aboundent concrete fragments, non-plasticity, moist (no odor)	GW	Soil Sample (2-4 ft)
2.5	5	No Recovery		
5	6.5	Fill: Orange-brown, brown, Silt, trace-little fine sand, trace clay, non-plastic, very moist/wet (no odor)	ML	
6.5	8	Fill: Red-brown, silty Clay, trace fine sand, low-plasticity, wet (no odor)	CL	Soil Sample (6-8 ft)
8	10	No Recovery		
10	10.5	Fill: Black, coarse Sand and Gravel size fragments (coal/brick/concrete/rock), wet	GW	Soil Sample (10-12 ft)
10.5	16	Saprolite: Orange-brown, red-brown, silt Clay, aboundent seams of fine-coarse sand, low-medium plasticity, moist (no odor)	CL/CH	Soil Sample (14-16 ft)
16		Terminate Soil Boring		
	ļ			
	-			

Client:	Aramark Uniform & Career Apparel, LLC	Boring Name:	SB-3
Site	Former Aramark DeKalb Facility	Date:	1/31/2013
Address:	670 DeKalb Avenue	Driller:	Geolab, Inc.
City:	Atlanta	Geologist:	Tony L Gordon
State:	Georgia	Drilling Method:	Geoprobe DPT
Zip:	30307	Water Level:	3.45 ft BGS

Depth (feet bls) To	Lithologic Description	USCS Classification	Remarks
0	0.5	Fill: Black, coarse Sand and Gravel size fragments	GW	Asphalt
0.5	3.4	Fill: Red-brown, silty, fine-coarse Sand, non-plasticity, moist (no odor)	SM	Soil Sample (2-4 ft) PID: 0.0 ppm
3.4	5	No Recovery		
5	8.6	Fill: Orange-brown, silty Clay, trace fine sand, low-plasticity, wet (no odor)	CL	Soil Sample (6-8 ft) PID: 0.0 ppm
8.6	10	No Recovery		
10	10.5	Fill: Black, coarse Sand and Gravel size fragments (coal/brick/concrete/rock), wet	GW	Soil Sample (10-12 ft) PID: 0.5 ppm
10.5	16	Saprolite: Orange-brown, red-brown, silt Clay, abundant seams of fine-coarse sand, low-medium plasticity, moist (no odor)	CL/CH	Soil Sample (14-16 ft) PID: 0.2 ppm
16		Terminate Soil Boring		

 Client:
 Aramark Uniform & Career Apparel, LLC
 Boring Name:
 SB-4

 Site
 Former Aramark DeKalb Facility
 Date:
 1/31/2013

 Address:
 670 DeKalb Avenue
 Driller:
 Geolab, Inc.

 City:
 Atlanta
 Georgia
 Tony L Gordon

 State:
 Georgia
 Drilling Method:
 Geoprobe DPT

 Zip:
 30307
 Water Level:
 3.50 ft BGS

Terminate Soil Boring Fill: Orange-brown, brown, silty, fine-coarse Sand, trace gravel, non-plastic, moist (no odor) Fill: Bark, white, fine-coarse Sand, trace gravel, non-plastic, wet (no odor) No Recovery Red-Brown, orange-brown, silty Clay, trace fine sand, low-plasticity, moist (no odor) Red-Brown, orange-brown, mottled, silt Clay, trace fine sand, low-plasticity, moist (no odor) Red-Brown, orange-brown, mottled, silt Clay, trace fine sand, low-medium plasticity, moist (no odor) Saprolite: Tan, gray, orange-brown, mottled, silt Clay, trace fine sand, low-medium plasticity, moist (no odor) Red-Brown, orange-brown, mottled, silt Clay, trace fine sand, low-medium plasticity, moist (no odor) Red-Brown, orange-brown, mottled, silt Clay, trace fine sand, low-medium plasticity, moist (no odor) Terminate Soil Boring Ferminate Soil Boring	Depth (feet bls) From To		Lithologic Description	USCS Classification	Remarks
gravel, non-plastic, wet (no odor) No Recovery Fill: Black, white, fine-coarse Sand, trace gravel, non-plastic, wet (no odor) SW Soil Sample (6-8 ft) Soil Sample (6-8 ft) PID: 0.1 ppm Red-Brown, orange-brown, silty Clay, trace fine sand, low-plasticity, moist (no odor) No Recovery 10 No Recovery 10 10.8 Saprolite: Tan, gray, orange-brown, mottled, silt Clay, trace fine sand, low-medium plasticity, moist (no odor) 14.5 Saprolite: Tan, gray, orange-brown, mottled, silt Clay, trace fine sand, low-medium plasticity, moist (no odor) 15 17 Light-gray, silty Clay, trace-little fine sand, low-plasticity, moist (no odor) CL Soil Sample (14-16 ft) PID: 0.1 ppm	0	2		SM	
5.5 Fill: Black, white, fine-coarse Sand, trace gravel, non-plastic, wet (no odor) 8.2 Red-Brown, orange-brown, silty Clay, trace fine sand, low-plasticity, moist (no odor) 8.2 10 No Recovery 10 10.8 Orange-brown, brown, fine-medium Sand, trace clay, very low to non-plastic, very moist 10.8 Saprolite: Tan, gray, orange-brown, mottled, silt Clay, trace fine sand, low-medium plasticity, moist (no odor) 14.5 15 No Recovery 15 17 Light-gray, silty Clay, trace-little fine sand, low-plasticity, moist (no odor) CL Soil Sample (10-12 ft) PID: 0.1 ppm	2	3		SW	
Sw Plastic, wet (no odor) Sw	3	5	No Recovery		
Soil Sample (10-12 ft) Saprolite: Tan, gray, orange-brown, mottled, silt (10 odor) CL/CH Silt (10 odor) CL/CH Silt (10 odor) CL/CH Soil Sample (10-12 ft) PID: 0.1 ppm CL/CH CL/	5	5.5	plastic, wet (no odor)	SW	
10.8 Orange-brown, brown, fine-medium Sand, trace clay, very low to non-plastic, very moist Saprolite: Tan, gray, orange-brown, mottled, silt Clay, trace fine sand, low-medium plasticity, moist (no odor) 14.5 15 No Recovery 15 17 Light-gray, silty Clay, trace-little fine sand, low-plasticity, moist (no odor) CL Soil Sample (10-12 ft) PID: 0.1 ppm CL Soil Sample (14-16 ft) PID: 0.1 ppm			low-plasticity, moist (no odor)	CL	
very low to non-plastic, very moist Saprolite: Tan, gray, orange-brown, mottled, silt Clay, trace fine sand, low-medium plasticity, moist (no odor) 14.5 15 No Recovery Light-gray, silty Clay, trace-little fine sand, low-plasticity, moist (no odor) CL Soil Sample (10-12 ft) PID: 0.1 ppm	8.2	10			
10.8 14.5 Clay, trace fine sand, low-medium plasticity, moist (no odor) 14.5 15 No Recovery 15 17 Light-gray, silty Clay, trace-little fine sand, low-plasticity, moist (no odor) CL PID: 0.1 ppm PID: 0.1 ppm CL Soil Sample (14-16 ft) PID: 0.1 ppm	10	10.8	very low to non-plastic, very moist	SC	Soil Sample (10-12 ft)
Light-gray, silty Clay, trace-little fine sand, low-plasticity, moist (no odor) Light-gray, silty Clay, trace-little fine sand, low-PID: 0.1 ppm			Clay, trace fine sand, low-medium plasticity, moist (no odor)	CL/CH	
plasticity, moist (no odor)	14.5	15			
17 Terminate Soil Boring		17	plasticity, moist (no odor)	CL	
	17		Terminate Soil Boring		
		Ì			

 Client:
 Aramark Uniform & Career Apparel, LLC
 Boring Name:
 SB-5

 Site
 Former Aramark DeKalb Facility
 Date:
 1/31/2013

 Address:
 670 DeKalb Avenue
 Driller:
 Geolab, Inc.

 City:
 Atlanta
 Geologist:
 Tony L Gordon

 State:
 Georgia
 Drilling Method:
 Geoprobe DPT

 Zip:
 30307
 Water Level:
 3.47 ft BGS

Depth (From	feet bls) To	Lithologic Description	USCS Classification	Remarks
0	2.2	Fill: Red-brown, brown, gray, interlayered, fine-coarse Sand and Gravel, non-plastic, moist/wet (no odor)	SW/GW	Soil Sample (0-2 ft) PID: 0.0 ppm
2.2	5	No Recovery		
5	6	Fill: Black, fine-coarse Sand and Gravel, non-plastic, wet (no odor)	SW/GW	Soil Sample (6-8 ft)
6	8.5	Orange-brown, silty Clay and fine-medium Sand, low-plasticity, moist (no odor)	SC	PID: 0.0 ppm
8.5	10	No Recovery		
10	14	Orange-brown, silty Clay, trace-little fine sand, low plasticity, moist (no odor)	CL	Soil Sample (10-12 ft) PID: 0.3-0.4 ppm
14	17.5	Light-gray, silty Clay, trace very fine sand, medium plasticity, moist (no odor)	CL/CH	Soil Sample (14-16 ft) PID: 0.2 ppm
17.5	<u> </u>	Terminate Soil Boring		
		, , , , , , , , , , , , , , , , , , ,		
	-			
	ļ			
	<u> </u>			
	I			

Client:	Aramark Uniform & Career Apparel, LLC	Boring Name:	SB-6
Site	Former Aramark DeKalb Facility	Date:	1/31/2013
Address:	670 DeKalb Avenue	Driller:	Geolab, Inc.
City:	Atlanta	Geologist:	Tony L Gordon
State:	Georgia	Drilling Method:	Geoprobe DPT
Zip:	30307	Water Level:	3.48 ft BGS

Depth (From	feet bls) To	Lithologic Description	USCS Classification	Remarks
0	5	No Recovery		No Sample
5	6.2	Fill: Brown, gray, fine-coarse Sand, trace-little gravel,trace silt, non-plastic, wet (no odor)	SW/GW	
6.2	7.8	Fill: Black, gray, coarse Sand and Gravel, non-plastic, wet (no odor)	GP	Soil Sample (6-8 ft) PID: 0.0 ppm
7.8	10	No Recovery		
10	15	Fill: Black, dark-gray, coarse Sand and Gravel, abounant brick and tile fragments, non-plastic, wet (no odor)	GP	Soil Sample (10-12 ft) PID: 0.0 ppm
15	17.5	Saprolite: Light-gray, orange-brown, mottled, silty Clay, low-medium plasticity, moist (no odor)	CL/CH	Soil Sample (14-16 ft) PID: 0.0 ppm
17.5		Terminate Soil Boring		
	-	<u> </u>		
	 			
	-			

Client:	Aramark Uniform & Career Apparel, LLC	Boring Name:	SB-7
Site	Former Aramark DeKalb Facility	Date:	1/31/2013
Address:	670 DeKalb Avenue	Driller:	Geolab, Inc.
City:	Atlanta	Geologist:	Tony L Gordon
State:	Georgia	Drilling Method:	Geoprobe DPT
Zip:	30307	Water Level:	3.61 ft BGS

Soil Sample (0-2 ft) PID: 0.0 ppm	Depth (i	feet bls) To	Lithologic Description	USCS Classification	Remarks
5 6 Fill: Orange-brown, brown, silty, fine-coarse Sand, trace gravel, non-plastic, wet (no odor) 6 7.2 Fill: Red-brown, Clay and fine-coarse Sand, low-plasticity, moist (no odor) 7.2 8 Fill: Black, coarse Sand and Gravel, non-plastic, wet (no odor) 8 10 No Recovery 10 12.5 Fill: Brown, gray, black, coarse Sand and Gravel, non-plastic, wet (no odor) 12.5 15 No Recovery Saprolite: Light-gray, brown, mottled, silty Clay, trace-little very fine sand, low-medium plasticity, moist (no odor) SM SC/CL Soil Sample (6-8 ft) PID: 0.1 ppm GP Soil Sample (10-12 ft) PID: 0.0 ppm CL/CH Soil Sample (14-16 ft) PID: 0.2 ppm	0	2		SM	
trace gravel, non-plastic, wet (no odor) Fill: Red-brown, Clay and fine-coarse Sand, low-plasticity, moist (no odor) Sc/CL Soil Sample (6-8 ft) PID: 0.1 ppm Fill: Black, coarse Sand and Gravel, non-plastic, wet (no odor) No Recovery To 12.5 Fill: Brown, gray, black, coarse Sand and Gravel, non-plastic, wet (no odor) No Recovery To No Recovery Saprolite: Light-gray, brown, mottled, silty Clay, trace-little very fine sand, low-medium plasticity, moist (no odor) To 17.5 Soil Sample (14-16 ft) PID: 0.2 ppm	2	5	No Recovery		
plasticity, moist (no odor) 7.2 8 Fill: Black, coarse Sand and Gravel, non-plastic, wet (no odor) 8 10 No Recovery 10 12.5 Fill: Brown, gray, black, coarse Sand and Gravel, non-plastic, wet (no odor) 12.5 15 No Recovery 15 17.5 Soil Sample (6-8 ft) PID: 0.1 ppm GP Soil Sample (10-12 ft) PID: 0.0 ppm CL/CH Soil Sample (14-16 ft) PID: 0.2 ppm	5	6		SM	
7.2 8 (no odor) 8 10 No Recovery 10 12.5 Fill: Brown, gray, black, coarse Sand and Gravel, non-plastic, wet (no odor) 12.5 15 No Recovery 15 17.5 Saprolite: Light-gray, brown, mottled, silty Clay, trace-little very fine sand, low-medium plasticity, moist (no odor) 17.5 Soil Sample (10-12 ft) PID: 0.2 ppm	6	7.2		SC/CL	
10 12.5 Fill: Brown, gray, black, coarse Sand and Gravel, non-plastic, wet (no odor) 12.5 15 No Recovery Saprolite: Light-gray, brown, mottled, silty Clay, trace-little very fine sand, low-medium plasticity, moist (no odor) Fill: Brown, gray, black, coarse Sand and Gravel, non-plastic (10-12 ft) PID: 0.0 ppm Soil Sample (10-12 ft) PID: 0.2 ppm			(no odor)	GP	PID: 0.1 ppm
plastic, wet (no odor) 12.5 plastic, wet (no odor) 12.5 No Recovery Saprolite: Light-gray, brown, mottled, silty Clay, trace-little very fine sand, low-medium plasticity, moist (no odor) Soil Sample (14-16 ft) PID: 0.2 ppm	8	10			
Saprolite: Light-gray, brown, mottled, silty Clay, trace-little very fine sand, low-medium plasticity, moist (no odor) Soil Sample (14-16 ft) PID: 0.2 ppm			plastic, wet (no odor)	GP	
15 17.5 little very fine sand, low-medium plasticity, moist (no CL/CH PID: 0.2 ppm odor)	12.5	15			
	15	17.5	little very fine sand, low-medium plasticity, moist (no		
	17.5				
			Ü		

 Client:
 Aramark Uniform & Career Apparel, LLC
 Boring Name:
 SB-8

 Site
 Former Aramark DeKalb Facility
 Date:
 1/31/2013

 Address:
 670 DeKalb Avenue
 Driller:
 Geolab, Inc.

 City:
 Atlanta
 Geologist:
 Tony L Gordon

 State:
 Georgia
 Drilling Method:
 Geoprobe DPT

 Zip:
 30307
 Water Level:
 3.65 ft BGS

Depth (From	(feet bls) To	Lithologic Description	USCS Classification	Remarks
0	0.35	Asphalt		
0.35	2.3	Fill: Orange-brown, red-brown, silty, fine-coarse Sand and Gravel, non-plastic, dry/moist (no odor)	SM	Soil Sample (2-4 ft) PID: 0.0 ppm
2.3	5	No Recovery		
5	7	Red-brown, silty Clay, little-some fine-medium sand, low-plasticity, moist/wet (no odor)	CL	Soil Sample (6-8 ft) PID: 0.0 ppm
8	10	No Recovery		
10	11.5	Interlayerd orange-brown, sitly Clay, little fine sand, low-plasticity & orange-brown, fine-coarse Sand, non-plastic, wet (no odor)	CL & SW	Soil Sample (10-12 ft) PID: 0.2 ppm
11.5	14	Saprolite: Light-gray, orange-brown, mottled, silty Clay, trace fine sand, low-medium plasticity, moist (no odor)	CL/CH	PID: 0.0 ppm
14	15	No Recovery		
15	17	Saprolite: Light-gray, orange-brown, mottled, silty Clay, trace fine sand, low-medium plasticity, moist (no odor)	CL/CH	Soil Sample (14-16 ft) PID: 0.0 ppm
17		Terminate Soil Boring		
				<u> </u>
		<u> </u>		
	-	+		
	<u> </u>	<u> </u>		

 Client:
 Aramark Uniform & Career Apparel, LLC
 Boring Name:
 SB-9

 Site
 Former Aramark DeKalb Facility
 Date:
 1/31/2013

 Address:
 670 DeKalb Avenue
 Driller:
 Geolab, Inc.

 City:
 Atlanta
 Geologist:
 Tony L Gordon

 State:
 Georgia
 Drilling Method:
 Geoprobe DPT

 Zip:
 30307
 Water Level:
 3.45 ft BGS

Depth (feet bls) To	Lithologic Description	USCS Classification	Remarks
0	2	Fill: Black, coarse Sand and Gravel size fragments,	GW	PID: 0.0 ppm
2	2.8	non-plastic, dry Fill: Red-brown, Silt, trace-little fine sand, trace clay, micaceous, non-plastic, moist (no odor)	ML/SM	Soil Sample (2-4 ft) PID: 0.1 ppm
2.8	5	No Recovery		
5	7.2	Fill: Red-brown, Silt, trace-little fine sand, trace-little clay, micaceous, non-plastic, moist (no odor)	ML/SM	Soil Sample (6-8 ft)
7.2	8	Fill: Black, fine-coarse Sand and Gravel size fragments, non-plastic, wet	GW	PID: 0.0 ppm
8	10	No Recovery		
10	12.5	Saprolite: Red-brown, gray, mottled, silt Clay, trace- little fine sand, low-plasticity, very moist (no odor)	CL	Soil Sample (10-12 ft) PID: 0.1 ppm
12.5	14	Saprolite: Light-gray, orange-brown, mottled, silty Clay, trace fine sand, medium plasticity, moist (no odor)	СН	PID: 0.2 ppm
14	15	No Recovery		•
15	17.6	Saprolite: Light-gray, orange-brown, mottled, silty Clay, trace-little fine sand, low plasticity, moist (no odor)	CL	Soil Sample (14-16 ft) PID: 0.1 ppm
17.6		Terminate Soil Boring		
			 	
			1	
				<u> </u>
			ļļ	
			 	

Client:	Aramark Uniform & Career Apparel, LLC	Boring Name:	SB-10
Site	Former Aramark DeKalb Facility	Date:	1/31/2013
Address:	670 DeKalb Avenue	Driller:	Geolab, Inc.
City:	Atlanta	Geologist:	Tony L Gordon
State:	Georgia	Drilling Method:	Geoprobe DPT
Zip:	30307	Water Level:	4.27 ft BGS

Depth (f	feet bls) To	Lithologic Description	USCS Classification	Remarks
0	2.5	Fill: Red-brown, brown, silty, fine-coarse Sand, trace clay, trace concrete and brick fragments, non-plastic,	SM	Soil Sample (2-4 ft) PID: 0.2 ppm
2.5	5	moist (no odor)		
2.5	5	No Recovery		
5	7	Fill: Red-brown, brown, silty, fine-coarse Sand, trace clay, trace concrete and brick fragments, non-plastic, moist (no odor)	SM	Soil Sample (6-8 ft)
7	7.5	Fill: Black, coarse Sand and Gravel, non-plastic, wet (no odor)	GP	PID: 0.3 ppm
7.5	10	No Recovery		
10	11.5	Fill: Red, black, coarse Sand and Gravel, trace red brick fragments, non-plastic, wet (no odor)	GP	Soil Sample (10-12 ft) PID: 0.2 ppm
11.5	15	No Recovery		
15	15.8	Fill: Red, black, coarse Sand and Gravel, trace red brick fragments, non-plastic, wet (no odor)	GP	Soil Sample (14-16 ft)
15.8	19	Saprolite: Light-gray, orange-brown, mottled, Clay and fine-coares Sand, low-plasticity, very moist (no odor)	SC/CL	PID: 0.1-0.2 ppm
19		Terminate Soil Boring		

 Client:
 Aramark Uniform & Career Apparel, LLC
 Boring Name:
 SB-11

 Site
 Former Aramark DeKalb Facility
 Date:
 2/1/2013

 Address:
 670 DeKalb Avenue
 Driller:
 Geolab, Inc.

 City:
 Atlanta
 Geologist:
 Tony L Gordon

 State:
 Georgia
 Drilling Method:
 Geoprobe DPT

 Zip:
 30307
 Water Level:
 4.27 ft BGS

Depth (feet bls) To	Lithologic Description	USCS Classification	Remarks
0	1.5	Fill: Red-brown, fine-coarse Sand, trace gravel, non-plastic, moist (no odor)	SM	Soil Sample (0-2 ft) PID: 0.3 ppm
1.5	5	No Recovery		
5	6	Fill: Red-brown, Silt, fine Sand, trace clay, non-plastic, wet (no odor)	SM	
6	6.5	Fill: Black, fine-coarse Sand and Gravel, non-plastic, wet (no odor)	GW	Soil Sample (6-8 ft) PID: 0.2 ppm
6.5	10	No Recovery		
10	14.5	Fill: Dark-gray, black, fine-coarse Sand and Gravel, non-plastic, wet (no odor)	GW	Soil Sample (10-12 ft) PID: 0.0 ppm
14.5	15	No Recovery		
15	21	Saprolite: Light blue-gray, silty Clay, little-some fine sand, low-plasticity, very moist/wet (no odor)	SC/CL	Soil Sample (24-25 ft) PID: 0.1 ppm
21	25	Saprolite: Orange-brown, white, gray, weakly banded, Silt and fine-coares Sand, trace-clay, trace mica, non-plastic, wet (no odor)	SM	Soil Sample (24-25 ft) PID: 0.0 ppm
25		Terminate Soil Boring		
		<u> </u>		

 Client:
 Aramark Uniform & Career Apparel, LLC
 Boring Name:
 SB-12

 Site
 Former Aramark DeKalb Facility
 Date:
 2/1/2013

 Address:
 670 DeKalb Avenue
 Driller:
 Geolab, Inc.

 City:
 Atlanta
 Geologist:
 Tony L Gordon

 State:
 Georgia
 Drilling Method:
 Geoprobe DPT

 Zip:
 30307
 Water Level:
 5-6 ft BGS

Depth (From	feet bls) To	Lithologic Description	USCS Classification	Remarks
0	1.5	Fill: Red-brown, gray, silty, fine-coarse Sand, tracelittle clay, aboundant brick and concrete fragments, micaceous, very-low to non-plastic, moist (no odor)	SM	Soil Sample (0-2 ft) PID: 0.0 ppm
1.5	5	No Recovery		
5	6.5	Fill: Red-brown, silty Clay, trace-little fine-medium sand, low-plastic, micaceous, wet (no odor)	SM	Soil Sample (6-8 ft)
6.5	7.5	Fill: Black, fine-coarse Sand, little gravel, little silt, micaceous, non-plastic, wet (no odor)	SM	PID: 0.0 ppm
7.5	10	No Recovery		
10	12.5	Fill: Black, fine-coarse Sand, little gravel, little silt, micaceous, non-plastic, wet (no odor)	SM	Soil Sample (10-12 ft) PID: 0.0 ppm
12.5	14	Saprolite: Light-gray, orange-brown, mottled, Clay, trace-little silt, medium-high plasticity, moist (no odor)	СН	PID: 0.1 ppm
14	14.4	Saprolite: Light-gray, silty Clay and fine-coarse sand, low-plasticity, very moist/wet (no odor)	SC/CL	PID: 0.0 ppm
14.4	15	No Recovery		
15	17	Saprolite: Light-gray, silty Clay and fine-coarse sand, low-plasticity, very moist/wet (no odor)	CL/CH	Soil Sample (14-16 ft) PID: 0.0 ppm
17		Terminate Soil Boring		
		<u> </u>		
		+	-	
1				

Client:	Aramark Uniform & Career Apparel, LLC	Boring Name:	SB-13
Site	Former Aramark DeKalb Facility	Date:	1/31/2013
Address:	670 DeKalb Avenue	Driller:	Geolab, Inc.
City:	Atlanta	Geologist:	Tony L Gordon
State:	Georgia	Drilling Method:	Geoprobe DPT
Zip:	30307	Water Level:	4.0 ft BGS

Depth (fe From	eet bls) To	Lithologic Description	USCS Classification	Remarks
0	0.35	Asphalt		
0.35	2.5	Fill: Red-brown, silty, fine-coarse Sand, trace clay, micaceous, non-plastic, moist (no odor)	SM	Soil Sample (2-4 ft) PID: 0.1 ppm
2.5	5	No Recovery		
5	8	Saprolite: Red-brown, orange-brown, lighty-gray, mottled, silty Clay and fine-coarse Sand, trace mica, low-plasticity, moist (no odor)	CL/SC	Soil Sample (6-8 ft) PID: 0.3 ppm
8	10	No Recovery		
10	15	Saprolite: Interlayerd orange-brown, light-gray sitly Clay, little fine sand, low-plasticity & orange-brown, fine-coarse Sand, non-plastic, wet (no odor)	CL & SW	Soil Sample (10-12 ft) PID: 0.2 ppm
11.5	14	Saprolite: Light-gray, orange-brown, mottled, silty Clay, trace fine sand, low-medium plasticity, moist (no odor)	CL/CH	PID: 0.0 ppm
14	15	No Recovery		_
15	17	Saprolite: Light-gray, silty Clay, trace fine sand, medium plasticity, moist (no odor)	СН	Soil Sample (14-16 ft) PID: 0.0 ppm
17		Terminate Soil Boring	1	
	-			
		+	+	
			 	
			 	
			 	
		<u> </u>		
			 	
		+	 	

Client:	Aramark Uniform & Career Apparel, LLC	Boring Name:	SB-14
Site	Former Aramark DeKalb Facility	Date:	2/1/2013
Address:	670 DeKalb Avenue	Driller:	Geolab, Inc.
City:	Atlanta	Geologist:	Tony L Gordon
State:	Georgia	Drilling Method:	Geoprobe DPT
Zip:	30307	Water Level:	3.5-4 ft BGS

Depth (From	feet bls) To	Lithologic Description	USCS Classification	Remarks
0	3	Red-brown, Silt and fine-medium Sand, trace-little clay, trace gravel, very-low to non-plastic, moist (no odor)	SM	Soil Sample (2-4 ft) PID: 0.1 ppm
3	5	No Recovery		
5	8.5	Red-brown, silty Clay, trace-little fine sand, low- plasticity, very moist/wet (no odor)	SM	Soil Sample (6-8 ft) PID: 0.1 ppm
8.5	10	No Recovery		
10	11	Orange-brown, Clay and fine-coarse Sand, low plasticity, moist (no odor)	CL/SC	Soil Sample (10-12ft) PID: 0.0 ppm
11	16	Saprolite: Light-gray, orange-brown, mottled, Clay, little silt, trace fine sand, medium-plasticity, moist (no odor)	CL/CH	Soil Sample (14-16 ft) PID: 0.0 ppm
16	18	Saprolite: Light-gray, Clay and fine-coarse Sand, low-medium plasticity, moist (no odor)	CL/SC	PID: 0.2 ppm
18		Terminate Soil Boring		

Client:	Aramark Uniform & Career Apparel, LLC	Boring Name:	SB-15
Site	Former Aramark DeKalb Facility	Date:	2/1/2013
Address:	670 DeKalb Avenue	Driller:	Geolab, Inc.
City:	Atlanta	Geologist:	Tony L Gordon
State:	Georgia	Drilling Method:	Geoprobe DPT
Zip:	30307	Water Level:	4.02 ft BGS

Depth (From	feet bls) To	Lithologic Description	USCS Classification	Remarks
0	2	Fill: Red, red-brown, brown, fine-coarse Sand, little gravel fragments (rock, brick, and concrete), non-plastic, dry/moist (no odor)	SM/GW	Soil Sample (1-2 ft) PID: 0.2 ppm
2	5	No Recovery		
5	7.5	Brown, orange-brown, silty Clay, little-some fine- medium sand, low-plasticity, wet (no odor)	CL	Soil Sample (6-8 ft) PID: 0.1 ppm
7.5	10	No Recovery		
10	12	Saprolite: Orange-brown, light-gray, Clay, little silt, trace very fine sand, medium plasticity, very moist (no odor)	СН	Soil Sample (10-12 ft) PID: 0.2 ppm
12	15	No Recovery		
15	17.5	Saprolite: Light-gray, Clay, trace-some fine-medium sand, trace silt, medium plasticity, moist (no odor)	CL/CH	Soil Sample (14-16 ft) PID: 0.0 ppm
17.5		Terminate Soil Boring		

 Client:
 Aramark Uniform & Career Apparel, LLC
 Boring Name:
 SB-16

 Site
 Former Aramark DeKalb Facility
 Date:
 2/1/2013

 Address:
 670 DeKalb Avenue
 Driller:
 Geolab, Inc.

 City:
 Atlanta
 Geologist:
 Tony L Gordon

 State:
 Georgia
 Drilling Method:
 Geoprobe DPT

 Zip:
 30307
 Water Level:
 4.50 ft BGS

Depth (feet bls) To	Lithologic Description	USCS Classification	Remarks
0	2	Fill: Brown, red-brown, red, silty Clay and fine-coarse Sand, aboundant brick, fragments, little gravel, low-plastic, moist (no odor)	CL/SC	No Sample
2	2.5	Fill: Black, brown, fine-coarse Sand, little gravel, non-plastic, wet (no odor)		Soil Sample (2-4 ft) PID: 0.1 ppm
2.5	5	No Recovery		
5	7.5	Fill: Black, gray, orange-brown, fine-coarse Sand, little silty clay, aboundant gravel fragments (coal/brick), non-plastic, wet (no odor)	SW/GW	Soil Sample (6-8 ft) PID: 0.0 ppm
7.5	10	No Recovery		
10	11	Fill: Coarse Sand, Pebble, Gravel (clean-washed/no fines), wet (no odor)	GW	
11	13	Saprolite: Light-gray, orange-brown, mottled, silty Clay, little fine sand. low plasticity, moist (no odor)	CL	Soil Sample (10-12 ft) PID: 0.2 ppm
13	15	No Recovery		
15	17	Saprolite: Light-gray, orange-brown, mottled, Clay, little silt, fine sand, medium plasticity, moist (no odor)	СН	Soil Sample (14-16 ft) PID: 0.1 ppm
17		Terminate Soil Boring		

Client:	Aramark Uniform & Career Apparel, LLC	Boring Name:	SB-30
Site	Former Aramark DeKalb Facility	Date:	5/3/2013
Address:	670 DeKalb Avenue	Driller:	Geolab, Inc.
City:	Atlanta	Geologist:	Tony L Gordon
State:	Georgia	Drilling Method:	Geoprobe DPT
Zip:	30307	Water Level:	5-6 ft BGS

Depth (From	feet bls) To	Lithologic Description	USCS Classification	Remarks	
0	2.5	Fill: Brown, red-brown, red, silty fine-coarse Sand, trace clay, aboundant concete and brick fragments, little gravel, non-plastic, moist (no odor)	SM	Soil Sample (0-2 ft) Odor	No
2.5	3.5	Fill: Red-brown, silty-clayey, fine-medium Sand, micaceous, vey low plasticity, moist	SC	Soil Sample (2-4 ft) Odor	No
3.5	5	No Recovery			
5	6	Fill: G ray, orange-brown, brown, silty Clay, little fine-coarse sand, low-plasticity, very moist/wet	CL	No Odor	
6	10.8	Fill: Black, dark-gray, fine-coarse Sand and gravel (coal/rock), non-plastic, wet	GW	Soil Sample (6-8 ft) Odor	No
10.8	14	Saprolite: Light-gray, orange-brown, mottled, silty Clay, trace-little fine sand, low plasticity, moist	CL	Soil Sample (10-12 ft) Odor	No
14	15	No Recovery			
15		Terminate Soil Boring			
		 			
	-	+			
	-	1			
	 				
	<u> </u>				
	1				

 Client:
 Aramark Uniform & Career Apparel, LLC
 Boring Name:
 SB-31

 Site
 Former Aramark DeKalb Facility
 Date:
 5/3/2013

 Address:
 670 DeKalb Avenue
 Driller:
 Geolab, Inc.

 City:
 Atlanta
 Geologist:
 Tony L Gordon

 State:
 Georgia
 Drilling Method:
 Geoprobe DPT

 Zip:
 30307
 Water Level:
 5-6 ft BGS

Depth (i	feet bls) To	Lithologic Description	USCS Classification	Remarks
0	0.35	Asphalt Paving		
0.35	0.85	Fill: Black dark-gray, fine-coarse Sand and Gravel, non-plastic, moist	GW	
0.85	2.5	Fill: Red-brown, silty, fine-coarse Sand, aboundant gravel size fragments (rock, brick, and concrete), moist	GW	Soil Sample (0-2 ft) No Odor
2.5	3.5	Red-brown, silty-clayey, fine-medium Sand, micaceous, very-low plasticity, moist		Soil Sample (2-4 ft) No Odor
3.5	5	No Recovery		
5	10	Red-brown, orange-brown, tan-brown, silty Clay and fine-medium Sand, low-plasticity, moist/wet	CL/SC	Soil Sample (6-8 ft) No Odor
10	12.5	Red-brown, orange-brown, tan-brown, silty Clay and fine-medium Sand, low-plasticity, moist/wet	CL/SC	Soil Sample (10-12 ft) No Odor
12.5	15	Saprolite: Light-gray, orange-brown, mottled, silty Clay, little-some fine-medium sand, low-medium plasticity, moist (no odor)	CL	No Odor
15		Terminate Soil Boring		
		_		
		_		
		<u> </u>		

Client:	Aramark Uniform & Career Apparel, LLC	Boring Name:	SB-32
Site	Former Aramark DeKalb Facility	Date:	5/3/2013
Address:	670 DeKalb Avenue	Driller:	Geolab, Inc.
City:	Atlanta	Geologist:	Tony L Gordon
State:	Georgia	Drilling Method:	Geoprobe DPT
Zip:	30307	Water Level:	5.5 ft BGS

Depth (feet bls) To	Lithologic Description	USCS Classification	Remarks	
0	1.5	Fill: Red-brown, silty Clay, little-some, fine-coarse sand, trace gravel, micaceous, moist	CL	Soil Sample (0-2 ft) Odor	No
1.5	3.6	Fill: Red-brown, gray, black, fine-coares Sand and Gravel size fragments (concete, rock, and brick)	GW	Soil Sample (2-4 ft) Odor	No
3.6	5	No Recovery			
5	7.7	Fill: Red-brown, gray, black, fine-coares Sand and Gravel size fragments (concete, rock, and brick), trace metal fragments	GW	Soil Sample (6-8 ft) Odor	No
7.7	10	No Recovery			
10	11.5	Fill: Red-brown, gray, black, fine-coares Sand and Gravel size fragments (concete, rock, and brick)	GW	No Odor	
11.5	12	Saprolite: Light-gray, orange-brown, mottled, silty Clay, trace fine sand, low plasticity, moist/wet	CL	Soil Sample (10-12 ft) Odor	No
12	15	No Recovery			
15		Terminate Soil Boring			
			†		
			1		
			1		
			1		
			1		
			1		
			1		
			1		
			1		
	 	+	1		

Client:	Aramark Uniform & Career Apparel, LLC	Boring Name:	SB-31
Site	Former Aramark DeKalb Facility	Date:	5/3/2013
Address:	670 DeKalb Avenue	Driller:	Geolab, Inc.
City:	Atlanta	Geologist:	Tony L Gordon
State:	Georgia	Drilling Method:	Geoprobe DPT
Zip:	30307	Water Level:	10.6 ft BGS

Depth (feet bls) To	Lithologic Description	USCS Classification	Remarks
0	0.35	Asphalt Paving		
0.35	2	Fill: Gray, red-brown, orange brown, fine-coarse Sand, trace-little silt, aboundant red brick fragments, non-plastic, moist	SM/SW	Soil Sample (0-2 ft) No Odor
2	3	Fill: Red-brown, dark-gray, silty, fine-medium Sand, traclittle clay, low-plasticity, moist	SC	Soil Sample (2-4 ft) No Odor
3	5	No Recovery		
5	5.5	Fill: Red-brown, dark-gray, silty, fine-medium Sand, traclittle clay, low-plasticity, moist	SC	No Odor
5.5	8.5	Red-brown, orange-brown, silty Clay, little-some fine sand, lowmedium plasticity, very moist	CL	Soil Sample (6-8 ft) No Odor
8.5	10	No Recovery		
10	11.5	Orange-brown, tan-brown, silty, fine-coarse Sand, trace-little clay, non-plastic, wet	SM	Soil Sample (10-12 ft) No Odor
11.5	14.2	Saprolite: Light-gray, orange-brown, mottled, silty Clay and fine Sand, low plasticity, moist/wet	CL/SC	No Odor
15		Terminate Soil Boring		
	1	+		
	1			
	1			
	1			
<u> </u>	L		I.	

 Client:
 Aramark Uniform & Career Apparel, LLC
 Boring Name:
 SB-34

 Site
 Former Aramark DeKalb Facility
 Date:
 5/3/2013

 Address:
 670 DeKalb Avenue
 Driller:
 Geolab, Inc.

 City:
 Atlanta
 Geologist:
 Tony L Gordon

 State:
 Georgia
 Drilling Method:
 Geoprobe DPT

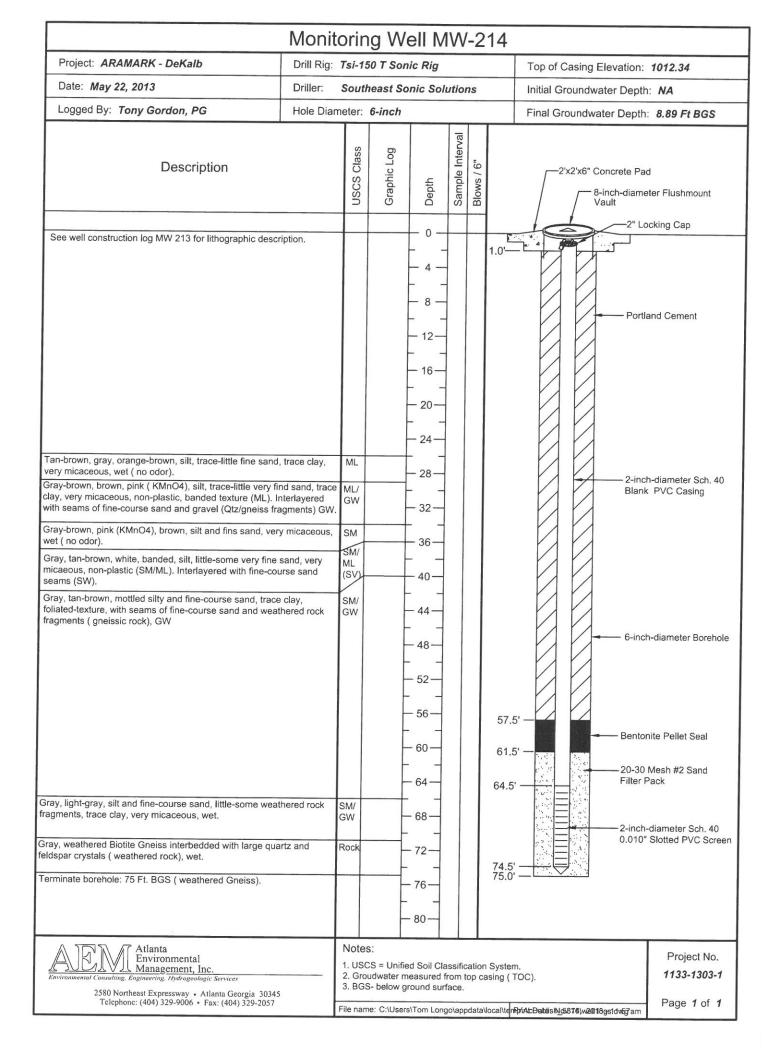
 Zip:
 30307
 Water Level:
 5.8 ft BGS

Depth (From	feet bls) To	Lithologic Description	USCS Classification	Remarks
0	0.35	Asphalt Paving		
0.35	2	Fill: Red-brown, orange-brown, silty-clayey, fine-coarse Sand, low-to non-plastic, moist	SC	Soil Sample (0-2 ft) No Odor
2	2.5	Fill: Red-brown, gray, black, fine-coares Sand and Gravel size fragments (concete, rock, and brick)	GW	No Odor
2.5	4	Fill: Red-brown, silty Clay and fine-medium Sand, micaceous, low-plasticty, moist		Soil Sample (2-4 ft) No Odor
4	4.5	Fill: Red-brown, gray, black, fine-coares Sand and Gravel size fragments (concete, rock, and brick)	GW	No Odor
4.5	5	No Recovery		
5	7	Fill: dark-gray, black, fine-coares Sand and Gravel, trece silt and clay, non-plastic, wet	GW	Soil Sample (6-8 ft) No Odor
7	8	Fill: Gray, brown, orange-brown, medium-coarse Sand, trace gravel, non-plastic, wet	SP	No Odor
8	10	No Recovery		
10	15	Saprolite: Light-gray, orange-brown, brown, mottled, silty Clay, little-some fine sand, low-medium plasticity, moist/wet	CL	Soil Sample (10-12 ft) No Odor
15		Terminate Soil Boring		

Client:	Aramark Uniform & Career Apparel, LLC	Boring Name:	SB-35
Site	Former Aramark DeKalb Facility	Date:	5/22/2013
Address:	670 DeKalb Avenue	Driller:	NA
City:	Atlanta	Geologist:	Gerald Ingle
State:	Georgia	Drilling Method:	Hand Auger
Zip:	30307	Water Level:	8 ft BGS

Depth From	(feet bls) To	Lithologic Description	USCS Classification	Remarks	
0	0.35	Asphalt Paving			
0.35	2	Dark Brown with Black very fine sandy silt	ML/SM	Soil Sample (0-2 ft) Odor	No
2	4	Dark Brown with Black very fine sandy silt	ML/SM	Soil Sample (2-4 ft) Odor	No
4	8	Dark Brown with Black very fine sandy silt	ML/SM	Soil Sample (6-7 ft) Odor; wet at 7 ft	No

Client:	Aramark Uniform & Career Apparel, LLC	Boring Name:	SB-36
Site	Former Aramark DeKalb Facility	Date:	5/22/2013
Address:	670 DeKalb Avenue	Driller:	NA
City:	Atlanta	Geologist:	Gerald Ingle
State:	Georgia	Drilling Method:	Hand Auger
Zip:	30307	Water Level:	8 ft BGS


Depth (feet bls) To	Lithologic Description	USCS Classification	Remarks	
0	0.35	Asphalt Paving			
0.35	2	Gravel encountered, approximately six inches thick; Dark Brown with Black very fine sandy silt	ML/SM	Soil Sample (0-2 ft) Odor	No
2	4	Dark Brown with Black very fine sandy silt	ML/SM	Soil Sample (2-4 ft) Odor	No
5	8	Dark Brown with Black very fine sandy silt	ML/SM	Soil Sample (6-8 ft) Petroleum Odor	
					=

	Monito	orir	210	_				
Project: ARAMARK - DeKalb	Drill Rig:	Tsi-1	50 T Son	ic Rig			Top of Casing Elevation: 1016.28	
Date: <i>May 22, 2013</i>	Driller:	Souti	heast So	nic Solu	ıtior	าร	Initial Groundwater Depth: 11.0 Ft Bbs	
Logged By: Tony Gordon, PG	Hole Diam	neter:	6-inch				Final Groundwater Depth: 13.56 Ft. TOC	
Description		USCS Class	Graphic Log	Depth	Sample Interval	Blows / 6"	Metal Stick-up Cover 2'x2'x4" Concrete Pa	
Occupation Countries Count		_		0 -				
Concrete, Gravel, Paving Red-brown, brown, silty sand, trace gravel, non-moist (fill).	plastic,	SM		 _ 2 _			Portland I/ Bentonite	
Red-brown, dark-gray-black, clayey silt, trace-littl sand, trace glass fragments, very low plasticity (ML/ CL		- 4 -			Grout 2-inch-diameter Sch. 4 Blank PVC Casing	10
Dark-gray, clayey-silt and fine-course sand, trace trace burnt wood fragments, low plasticity, moist	gravel, (fill).	CL/ SC		- 6 - 8 - - 8 -			7.5'	
Red-brown, brown, light gray, mottled, silty clay, I fine-medium sand , low-medium plasticity, very r odor).		CL/ SC		10 12 14 16			Bentonite Seal 13' 20-30 Mesh Sand Filter Pack	
Gray, orange-brown, silty fine-course sand, trace (weathered rock) trace clay, trace mica, wet (no one-plastic, wet (no odor).	gravel odor),	SM		- 18 - - 20 - - 22 -			2-inch-diameter Sch. 40 0.010" Slotted PVC Screen	
Tan-brown, white, light gray, silty fine-course sand weathered rock fragments (granitic texture), no o	d, trace-little dor.	SM/ GW		 - 24 - 			23' Borehole Cave in	
Terminate boring hole : 26 Ft. BGS.				- 26 28 30 32 34 36 38 40 40			26'	
Atlanta Environmental Management, Inc. Environmental Consulting, Engineering, Hydrogeologic Services 2580 Northeast Expressway • Atlanta Georgia 3034; Telephone: (404) 329-9006 • Fax: (404) 329-2057		2. Gro 3. BG	CS = Unificoudwater n	neasured t ground sur	from face.	top c	Project No. 1133-1303-1 casing (TOC). 1133-1303-1 tallocal\tenpriAbDebtis\text{bld6876\walkstarter} Page 1 of 1	

	Monito	orin										
Project: ARAMARK - DeKalb	Drill Rig:	Tsi-1	50 T Son	ic Rig	11 12"			Top of Casing Elevation: 1016.37				
Date: <i>May 22, 2013</i>	Driller:	Souti	heast So	nic Solu	utio	าร		Initial Groundwater Depth: 8.30 Ft Bbs				
Logged By: Tony Gordon, PG	Hole Diam	eter:	6-inch					Final Groundwater Depth: 13.21 Ft. TOC				
Description		USCS Class	Graphic Log	Depth	Sample Interval	Blows / 6"	2'	Stick-up 2'x2'x4" Concrete Pad				
Concrete, gravel paving		\vdash		├ o			1					
Red-brown, brown, gray, silty clay, little fine-countrace debris (red brick fragments, burnt wood) , I moist (fill).	se sand, ow plasticity,	CL		- 2 - - 2 - - 4 -				Concrete Portland I - Bentonite Grout 6-inch-diameter Sch. 40 Blank PVC Casing				
Dark-gray , black, silty fine-course sand, trace cladebris (red brick fragments, rocks and glass fragnon-plastic, moist (fill).		SM		- 6 - 8 -				9.0' Bentonite Seal				
Red-brown , silty clay and fine-medium sand, low plasticity, very moist/wet (no odor).	-medium	CL/ SC		10 12 14 14			<u>_</u>	7 11' ——————————————————————————————————				
Tan-brown, light gray, orange-brown, mottled silty trace-little fine sand, medium plasticity, very moist odor), "saporlite" (% sand increases with depth).		CL/ CH		- 16 - 18 - 20 - 22				2-inch-diameter Sch. 40 0.010" Slotted PVC Screen 6 inch-diameter				
Gray, very silty fine-course sand, banded relic form micaceous, non-plastic , wet.	mation, very	SM		 - 24 - 			22	Borehole Cave in				
Terminate Borehole: 26 Ft. BGS.				- 26 28 32 34 38 40				26' —				
Atlanta Environmental Management, Inc. Environmental Consulting, Engineering, Hydrogeologic Services 2580 Northeast Expressway • Atlanta Georgia 3034 Telephone: (404) 329-9006 • Fax: (404) 329-2057	2. Gr 3. BG	SCS = Unifi oudwater r SS- below (measured ground su	from rface	top c	asing (

	Monit	Monitoring Well MW-212										
Project: ARAMARK - DeKalb	Drill Rig:	Tsi-1	50 T Son	ic Rig				Top of Casing Elevation: 1014.06				
Date: <i>May 22, 2013</i>	Driller:	Sout	heast So	nic Sol	utio	ns		Initial Groundwater Depth: 7.0	00 Ft. BGS			
Logged By: Tony Gordon, PG	Hole Dian	neter:	6-inch					Final Groundwater Depth: 10.	19 Ft. TOC			
Description	S	USCS Class	Graphic Log	Depth	Sample Interval	Blows / 6"	2.1'	Metal	Stick-up Cover 2'x2'x4" Concrete Pad			
Red-brown, clayey silt, trace-little fine sand, mica non-plastic, moist (fill) (back fill).	ceous,	ML		- 0 - 2 -			٧		I I - Bentonite			
Red-brown, silty-clay, trace-little fine sand, low-pl micaceous, very moist (backfill) " black plastic at	asticity, 6' BGS".	CL		- 4 - 		NA		3.5' Grout 5.5' Bentor	ite Seal			
Red-brown, silty clay, little-some fine-medium sar low-medium plasticity, wet.	nd,	CL/ SC		- 6 8 10 12		NA	Ī	7.5' Blank P' 6 inch-c Borehol	lesh Sand			
Red-brown, brown, light gray, mottled sitly-clayey fine-medium sand, low plastcity "saprolite".		SM/ SC		- 14 16 18				2-inch-dia 40 0.010' PVC Scre				
Tan-brown, light gray, white, purple (KMn04), mo silty fine-course sand, trace clay with seams of fin sand and weathered rock fragments, granitic-textu "saprolite".	e-course	SM/ GW	-	- 20 — - 22 — - 24 —		NA		Cave in				
Terminate borehole : 26 Ft, BGS				- 26				26'				
Atlanta Environmental Management, Inc. Environmental Consulting. Engineering. Hydrogeologic Services 2580 Northeast Expressway • Atlanta Georgia 30345 Telephone: (404) 329-9006 • Fax: (404) 329-2057		2. Gro 3. BG	CS = Unifie oudwater m S- below gr	easured fround sur	from t face.	top ca	asing (m. TOC).	Project No. 133-1303-1 age 1 of 1			

	Monito	onitoring Well MW-213										
Project: ARAMARK - DeKalb	Drill Rig:			Top of Casing Elevation	: Pending							
Date: May 22, 2013	Driller:	Souti	heast So	nic Sol	utio	ns	Initial Groundwater Dep					
Logged By: Tony Gordon, PG	Hole Diam	eter:	6-inch				Final Groundwater Dept	h: 6.97 Ft. BGS				
Description		USCS Class	Graphic Log	Depth	Sample Interval	Blows / 6"	1 / 1	ad neter Flushmount Locking Cap				
Red-brown, clayey-silt, little-some fine-medium sand, tracine in micaeous, non-plastic (no odor) (backfill). Red-brown, brown, silty clay and fine-medium sand, traclow-plasticity, very moist (no odor) (backfill) @ 7.0' wet. Tan-brown, gray, orange-brown, white, light-gray, mottled fine-course sand, trace rock fragments, trace clay, granitibanding, micaceous, wet "saprolite". Tan-brown, gray, orange-brown, silt, trace-little fine sand, very micaceous, wet (no odor) "saprolite" Terminate borehole: 26 Ft. BGS.	e-little gravel,	SM ML		- 0			1.0' 3.0' Bei 5.0' 7.0' 20- Filto 0.0	tland Cement Intonite Pellet Seal Inch-diameter Sch. 40 Ink PVC Casing 30 Mesh #2 Sand Inch-diameter Sch. 40 Inch-diameter Sch. 40 Inch-diameter Sch. 40 Inch-diameter Borehole				
Atlanta Environmental Management, Inc. Environmental Consulting. Engineering. Hydrogeologic Services 2580 Northeast Expressway • Atlanta Georgia 30345 Telephone: (404) 329-9006 • Fax: (404) 329-2057	-	2. Gro 3. BG	s: CS = Unifie budwater m S- below gr	easured fround surf	rom t ace.	ор са	n System. asing (TOC). local\telfmpiAtbBabtislN_&876\v&119gs1dv&7an	Project No. 1133-1303-1 Page 1 of 1				

ATTACHMENT B Groundwater Elevation Data, 2001–2014

MW-110		MW-109		MW-108		MW-107		MW-106		MW-104		MW-103D		MW-103		MW-102		MW-101		Observation Well:
8/16/2001		8/16/2001		8/15/2001		8/14/2001		8/15/20011		8/13/2001		4/17/2003		4/24/2001		4/23/2001		4/24/2001		Installation Date:
allow Residuum	Sh	Shallow Residuum	;	llow Residuum	Sha	low Residuum	Sha	allow Residuum	S	llow Residuum	Sh	eep Residuum	1	ow Residuum	Shall	hallow Residuum	SI	hallow Residuum	S	Monitored Zone:
																				Elevation, ft. AMSL ^{1,2,3} :
1,013.106		1,012.741		1,013.591		1,014.191		1,014.141		1,013.746		1,009.251		1,009.956		1,011.856		1,016.046		Access Port/Well Casing.
•		,		,		,		•		,		•		,		,		•		Elevation, ft. AMSL ¹ :
997.94-990.94		1001.94-991.94		98.42-988.42	Q	04.02-989.02	100	003.97-988.97	,	99.25-989.25		44.25-934.25		4.21-984.21	99	988.92-978.92		989.08-988.08		Well Screen Interval
Ground-		Ground-		Ground-	·	Ground-		Ground-	'	Ground-		Ground-	`	Ground-	00	Ground-		Ground-		Tron Coroon miorra
Water	Depth to	Water	Depth to		Depth to		Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water	Depth to		Depth to		Depth to	
Elevation,	Water,	Elevation,	Water,	Elevation,	Water,	Elevation.	Water,		Water,		Water,	Elevation,	Water,	Elevation,	Water,	Elevation.	Water,	Elevation,	Water,	
ft. AMSL	feet	ft. AMSL	feet	ft. AMSL	feet	ft. AMSL	feet	Elevation, ft. AMSL	feet	Elevation, ft. AMSL	feet	ft. AMSL	feet	ft. AMSL	feet	ft. AMSL	feet	ft. AMSL	feet	Date
II. AIVISL	ieei	II. AIVIOL	ieei	II. AIVISL	ieet	II. AIVISL	ieet	II. AIVISL	ieet	II. AIVISL	ieet	II. AIVISL	ieei	II. AIVISL	ieei	II. AIVISL	ieei	II. AIVIOL	ieet	Date
1,001.49	11.62	1,001.36	11.38	1,001.30	12.29	1,002.05	12.14	1,000.66	13.48	1,000.08	13.67	NM	NI	1,001.24	8.72	1,001.39	10.47	1,002.09	13.96	08/17/01
1,002.43	10.68	1,001.98	10.76	1,002.04	11.55	1,002.91	11.28	1,002.90	11.24	1,001.93	11.82	NM	NI	1,001.54	8.42	1,001.55	10.31	1,002.40	13.65	03/04/03
1,003.02	10.09	1,002.46	10.28	1,002.41	11.18	1,003.32	10.87	1,003.33	10.81	1,002.29	11.46	1,001.75	7.50	1,002.12	7.84	1,002.02	9.84	1,002.90	13.15	04/22/03
1,002.92	10.19	1,002.26	10.48	1,002.53	11.06	1,003.57	10.62	1,003.50	10.64	1,002.39	11.36	1,001.65	7.60	1,002.09	7.87	1,001.91	9.95	1,002.86	13.19	05/02/03
1,003.98	9.13	1,003.13	9.61	1,002.86	10.73	1,003.93	10.26	1,003.69	10.45	1,002.86	10.89	1,002.95	6.30	1,003.37	6.59	1,003.00	8.86	1,006.19	9.86	05/07/03
1,004.36	8.75	1,003.24	9.50	1,003.08	10.51	1,004.18	10.01	1,003.94	10.20	1,003.09	10.66	1,002.83	6.42	1,003.54	6.42	1,003.20	8.66	1,007.83	8.22	05/16/03
NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	12/17/03
1,001.96	11.15	1,001.46	11.28	1,001.70	11.89	1,002.53	11.66	1,002.60	11.54	1,001.57	12.18	1,000.82	8.43	1,001.29	8.67	1,001.21	10.65	1,001.89	14.16	04/06/04
1,001.91	11.20	NM	NM	1,001.71	11.88	1.002.00	12.19	NM	NM	1,001.55	12.20	1,000.24	9.01	1,002.11	7.85	1.001.94	9.92	1,003.71	12.34	07/27/04
1,004.60	8.51	1,004.04	8.70	1,003.78	9.81	1,004.59	9.60	NM	NM	1,003.90	9.85	1,004.34	4.91	NM	NM	1,004.65	7.21	1,008.85	7.20	07/12/05
1,003.01	10.10	1.002.34	10.40	1,002.93	10.66	1.003.54	10.65	NM	NM	1.003.09	10.66	1.002.13	7.12	NM	NM	1,002,29	9.57	1,003.43	12.62	09/07/05
1,002.64	10.47	1,001.98	10.76	1,002.71	10.88	1,003.11	11.08	NM	NM	1,002.46	11.29	1,001.58	7.67	NM	NM	1,002.05	9.81	1,002.60	13.45	09/19/05
NM	NM	1,002.18	10.56	NM	NM	NM	NM	NM	NM	1,002.43	11.32	1,002.23	7.02	NM	NM	1,002.32	9.54	1,003.51	12.54	10/11/05
NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	ABN	ABN	ABN	ABN		ABN	ABN	ABN	12/13/05
1,002.15	10.96	1,002.00	10.74	1.002.09	11.50	1,002.63	11.56	NM	NM	1,002.23	11.52	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	12/20/05
1,002.64	10.47	1,002.69	10.05	1,002.39	11.20	1.002.93	11.26	1,002.93	11.21	1,002.28	11.47	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	01/25/06
1,002.51	10.47	1,002.65	11.09	1,002.19	11.40	1.003.10	11.09	1,002.33	10.98	1,002.10	11.65	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	04/10/06
1,002.28	10.83	1,001.63	11.11	1,002.04	11.55	1,002.85	11.34	1,002.90	11.24	1,001.89	11.86	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	05/15/06
1,001.11	12.00	1,000.73	12.01	NM	NM	NM	NM	NM	NM	NM	NM	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	08/14/06
NM	NM	1,000.41	12.33	NM	NM	NM	NM	NM	NM	NM	NM	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	11/07/06
1,001.39	11.72	1,001.04	11.70	NM	NM	NM	NM	NM	NM	NM	NM	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	02/07/07
1,000.50	12.61	999.99	12.75	NM	NM	NM	NM	NM	NM	NM	NM	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	05/30/07
999.32 998.54	13.79 14.57	999.02 998.23	13.72 14.51	NM NM	NM NM	NM NM	NM NM	NM NM	NM NM	NM NM	NM NM	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	09/17/07
998.54 999.71	13.40	998.23	12.82	NM	NM	NM	NM	NM NM	NM	NM	NM	ABN ABN	ABN ABN	ABN ABN	ABN ABN	ABN ABN	ABN ABN	ABN ABN	ABN ABN	12/04/07 03/05/08
1,000.33	12.78	999.98	12.76	NM	NM	NM	NM	NM	NM	NM	NM	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	06/04/08
999.25	13.86	999.10	13.64	NM	NM	NM	NM	NM	NM	NM	NM	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	09/09/08
NM	NM	998.94	13.80	NM	NM	NM	NM	NM	NM	NM	NM	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	08/07/09
1,002.55	10.56	1,002.22	10.52	NM	NM	NM	NM	NM	NM	NM	NM	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	11/30/09
1,001.53	11.58	1,001.24	11.50	NM	NM	NM	NM	NM	NM	NM	NM	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	02/18/11
1,002.14	10.97	1,001.58	11.16	NM	NM	NM	NM	NM	NM	NM	NM	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	05/31/11
1,000.15	12.96	999.72	13.02	NM	NM	NM	NM	NM	NM	NM	NM	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	10/08/12
NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	06/03/13
1,003.02	10.09	1,002.48	10.26	NM	NM	NM	NM	NM	NM	NM	NM	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	07/17/13
1,003.02	10.09	1,002.74	10.00	NM	NM	NM	NM	NM	NM	NM	NM	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	01/06/14
	ABN	ABN	ABN	NM	NM	NM	NM	NM	NM	NM	NM	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	07/14/14

MW-208		MW-207P		MW-207		MW-206		MW-205		MW-204		MW-203		MW-202		MW-201		MW-111		Observation Well:
4/3/200		NA		4/3/2006		7/23/2004		3/31/2004		5/2/2003		4/15/2003		4/14/2003		4/14/2003		8/15/2001		Installation Date:
allow Residuur	Shall	llow Residuum	Shal	ow Residuum	Shal	ow Residuum	Shall	ow Residuum	Shall	low Residuum	Sha	allow Residuum	Sha	low Residuum	Shall	llow Residuum	Sha	low Residuum	Shal	Monitored Zone:
1,011.56		1,009.400	4	1,013.191		1,008.446		1,009.911		1,015.101		1,009.221	4	1,012.686		1,015.766		1,013.726		Elevation, ft. AMSL ^{1,2,3} : Access Port/Well Casing.
		1012.40	lew TOC⁴									1013.47	lew TOC⁴							Elevation, ft. AMSL':
992.39-982.3	99	99.40-989.40	99	5.54-985.54	99	3.95-993.95	100	2.90-992.90	100	05.51-990.51	10	994.22-984.22	(00.69-990.69	100	01.94-991.94	10	3.73-988.73	100	Well Screen Interval
Groun		Ground-		Ground-		Ground-		Ground-		Ground-		Ground-		Ground-		Ground-		Ground-		
Wat	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	
Elevatio	Water,	Elevation,	Water,	Elevation,	Water,	Elevation,	Water,	Elevation,	Water,	Elevation,	Water,	Elevation,	Water,	Elevation,	Water,	Elevation,	Water,	Elevation,	Water,	
ft. AMS	feet	ft. AMSL	feet	ft. AMSL	feet	ft. AMSL	feet	ft. AMSL	feet	ft. AMSL	feet	ft. AMSL	feet	ft. AMSL	feet	ft. AMSL	feet	ft. AMSL	feet	Date
	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NM	NM	08/17/01
ĺ	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NM	NM	03/04/03
ı	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	1,002.75	6.47	1,005.03	7.66	1,003.21	12.56	NM	NM	04/22/03
ı	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	1.001.43	7.79	1.004.61	8.08	1.003.41	12.36	NM	NM	05/02/03
	NI	NI	NI	NI	NI	NI	NI	NM	NI	1,003.33	11.77	1,004.94	4.28	1,006.60	6.09	1,004.19	11.58	NM	NM	05/07/03
	NI	NI	NI	NI	NI	NI	NI	NM	NI	1,003.55	11.55	1,004.95	4.27	1,006.68	6.01	1.004.48	11.29	NM	NM	05/16/03
	NI	NI	NI	NI	NI	NI	NI	NM	NI	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	12/17/03
	NI	NI	NI	NI	NI	NI	NI	1,000.70	9.21	1,001.61	13.49	1,001.20	8.02	1,003.60	9.09	1,002.42	13.35	NM	NM	04/06/04
	NI	NI	NI	NI	NI	994.96	13.49	1,000.70	7.07	1,001.78	13.32	1,003.42	5.80	1,005.08	7.61	1,002.97	12.80	NM	NM	07/27/04
	NI	NI	NI	NI	NI	NM	NM	1.005.45	4.46	1,004.85	10.25	1,005.81	3.41	1,003.00	4.22	1,007.29	8.48	NM	NM	07/12/05
' !	NI	NI	NI	NI	NI	1,004.60	3.85	1,000.98	8.93	1,002.99	12.11	1,003.60	5.62	1,005.16	7.53	1,007.23	11.46	NM	NM	09/07/05
	NI	NI	NI	NI NI	NI	1,004.00	4.32	1,000.98	9.50	1,002.99	12.11	1,003.00	6.45	1,003.10	8.19	1,004.31	12.02	NM	NM	09/07/05
	NI	NI NI	NI	NI NI	NI NI	1,004.13 NM	4.32 NM	1,000.41 NM	9.50 NM	•	12.36	1,002.77 NM	NM	1,004.50 NM	NM	1,003.75	11.52	NM	NM	10/11/05
<u>!</u>	NI	NI	NI	NI	NI NI	NM	NM	NM	NM	1,002.74 NM	12.30 NM	NM	NM	NM	NM		ABN	NM	NM	
' '	NI	NI NI	NI NI	NI NI	NI NI											ABN				12/13/05
	NI NI			NI NI	NI NI	NM	NM 4.07	1,000.86	9.05	1,002.21	12.89	1,002.24	6.98	1,005.12	7.57	ABN	ABN	NM	NM	12/20/05
1,002.2	9.30	NI NI	NI NI	1.001.69	11.50	1,004.38 1,003.01	4.07 5.44	1,003.42 998.32	6.49 11.59	1,002.71 1.002.15	12.39 12.95	1,004.39 1,001.34	4.83 7.88	1,006.36 1,004.21	6.33 8.48	ABN ABN	ABN ABN	NM 1.002.54	NM 10.57	01/25/06 04/10/06
1,002.2	9.31	1,002.10	7.30	1,001.64	11.55	1,003.01	7.07	998.70	11.21	1,002.13	13.17	1,001.54	7.58	1,004.21	8.45	ABN	ABN	1,002.34	11.15	05/15/06
1,001.3	10.19	NM	NM	1,000.79	12.40	1,001.51	6.94	998.61	11.30	1,000.98	14.12	NM	NM	1,003.47	9.22	ABN	ABN	NM	NM	08/14/06
1,001.1	10.41	1,001.41	7.99	1,000.55	12.64	1,001.07	7.38	998.19	11.72	1,000.81	14.29	1,000.94	8.28	1,003.14	9.55	ABN	ABN	NM	NM	11/07/06
1,001.8	9.68	1,001.19	8.21	1,001.19	12.00	1,000.85	7.60	998.80	11.11	1,001.41	13.69	1,001.58	7.64	1,003.61	9.08	ABN	ABN	NM	NM	02/07/07
1,000.3	11.20	1,000.27	9.13	1,000.04	13.15	1,000.12	8.33	996.85	13.06	1,000.35	14.75	999.97	9.25	1,002.16	10.53	ABN	ABN	NM	NM	05/30/07
999.8	11.71	1,002.18	7.22	999.42	13.77	1,003.02	5.43	998.02	11.89	999.19	15.91	999.76	9.46	1,002.13	10.56	ABN	ABN	NM	NM	09/17/07
998.7	12.82	999.45	9.95	998.34	14.85	998.52	9.93	996.00	13.91	997.47	17.63	998.80	10.42	1,000.50	12.19	ABN	ABN	NM NM	NM	12/04/07
1,001.4 1,000.7	10.12 10.80	1,004.42 1.000.67	4.98 8.73	1,004.09 999.78	9.10 13.41	998.28 1.000.84	10.17 7.61	999.73 997.70	10.18 12.21	1,000.12 1.000.20	14.98 14.90	1,001.99 1,000.52	7.23 8.70	1,003.53 1,002.38	9.16 10.31	ABN ABN	ABN ABN	NM	NM NM	03/05/08 06/04/08
999.6	11.93	1,000.07	9.36	999.28	13.41	1.000.48	7.01	996.99	12.21	999.36	15.74	999.89	9.33	1,002.38	10.31	ABN	ABN	NM	NM	09/09/08
N	NM	NM	NM	1,000.10	13.09	NM	NM	997.27	12.64	1,000.07	15.03	NM	NM	NM	NM	ABN	ABN	NM	NM	08/07/09
1,003.2	8.34	1,003.85	5.55	1,002.53	10.66	1,001.47	6.98	999.79	10.12	1,002.63	12.47	1,002.94	6.28	1,005.16	7.53	ABN	ABN	1,002.20	10.91	11/30/09
Al	ABN	1,002.19	7.21	ABN	ABN	1,001.64	6.81	999.10	10.81	1,001.54	13.56	1,001.54	7.68	1,003.74	8.95	ABN	ABN	1,001.19	11.92	02/18/11
AE	ABN	1,002.94	6.46	ABN	ABN	1,000.53	7.92	999.60	10.31	1,001.94	13.16	1,002.03	7.19	1,004.18	8.51	ABN	ABN	1,001.82	11.29	05/31/11
A	ABN	1,002.35	7.05	ABN	ABN	999.53	8.92	998.67	11.24	999.90	15.20	NM	NM	NM	NM	ABN	ABN	NM	NM	10/08/12
Al	ABN	NM	NM	ABN	ABN	NM	NM	ABN	ABN	NM	NM	NM	NM	NM	NM	ABN	ABN	NM	NM	06/03/13
Al	ABN	1,005.42	3.98	ABN	ABN	1,003.54	4.91	ABN	ABN	1,002.65	12.45	NM	NM	1,006.19	6.50	ABN	ABN	1,002.71	10.40	07/17/13
AE	ABN	1,007.66	1.74	ABN	ABN	1,003.94	4.51	ABN	ABN	1,002.83	12.27	NM	NM	1,006.25	6.44	ABN	ABN	1,002.75	10.36	01/06/14
AE	ABN	1.001.67	10.73	ABN	ABN	1.000.44	8.01	ABN	ABN	1.001.87	13.23	1.001.06	12.41	1.003.38	9.31	ABN	ABN	ABN	ABN	07/14/14

Observation Well:		MW-208P	MW	/-209P(PZ-2)		MW-210		MW-211		MW-212		MW-213 ³		MW-214 ³		MW-301		MW-302
Installation Date:		NA		NA		5/22/2013		5/22/2013		5/22/2013		5/22/2013		5/22/2013		4/4/2006		4/4/2006
Monitored Zone:	Shalle	ow Residuum	Shall	low Residuum	Shall	ow Residuum	Shall	ow Residuum	Shal	low Residuum	Shalle	ow Residuum	De	eep Residuum	Sha	llow Residuum	Sha	allow Residuum
Elevation, ft. AMSL ^{1,2,3} :																		
Access Port/Well Casing.		1,013.000		1,013.200		1,016.230		1,016.370		1,014.060		1,009.790		1,009.400		1,012.600		1,011.911
Elevation, ft. AMSL1:	NewTOC ³	1012.86																
Well Screen Interval	100	9.74-999.74	100	8.78-998.78	100	3.28-993.28	100	5.37-995.37	100	6.56-996.56	100	2.79-992.79	94	4.90-934.90	9	94.62-984.62	9	991.94-981.94
		Ground-		Ground-		Ground-		Ground-		Ground-						Ground-		Ground-
	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water		Ground-		Ground-	Depth to	Water	Depth to	Water
	Water,	Elevation,	Water,	Elevation,	Water,	Elevation,	Water,	Elevation,	Water,	Elevation,	Depth to	Water	Depth to	Water	Water,	Elevation,	Water,	Elevation,
Date	feet	ft. AMSL	feet	ft. AMSL	feet	ft. AMSL	feet	ft. AMSL	feet	ft. AMSL	Water,	Elevation,	Water,	Elevation,	feet	ft. AMSL	feet	ft. AMSL
08/17/01	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NM
03/04/03	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NM
04/22/03	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NM
05/02/03	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NM
05/07/03	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NM
05/16/03	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NM
12/17/03	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NM
04/06/04	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NM
07/27/04	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NM
07/12/05	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NM
09/07/05	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NM
09/19/05	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NM
10/11/05	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NM
12/13/05	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NM
12/20/05	NI	NI	NI	NI	NI	NI	NI	NI	NI NI	NI	NI	NI	NI	NI	NI	NI	NI	NM
01/25/06	NI	NI	9.65	1,003.55	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NM	NI	NM
04/10/06	NI	NM	11.03	1,003.33	NI	NI	NI NI	NI	NI	NI	NI	NI	NI NI	NI	10.40	1,002.20	10.37	1,001.54
05/15/06	8.31	1,004.69	10.91	1,002.29	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	10.49	1,002.11	10.46	1,001.45
08/14/06	9.02	1,003.98	12.08	1,001.12	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	11.31	1,001.29	10.99	1,000.92
11/07/06	8.75	1,004.25	12.41	1,000.79	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	11.46	1,001.14	11.13	1,000.78
02/07/07	8.25	1,004.75	11.14	1,002.06	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	10.96	1,001.64	10.77	1,001.14
05/30/07	9.76	1,003.24	13.03	1,000.17	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	12.17	1,000.43	11.62	1,000.29
09/17/07	9.42	1,003.58	13.97	999.23	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	12.96	999.64	12.35	999.56
12/04/07	12.82	1,000.18	14.74	998.46	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	13.86	998.74	13.36	998.55
03/05/08	6.98	1,006.02	10.33	1,002.87	NI NI	NI	NI NI	NI NI	NI NI	NI NI	NI NI	NI NI	NI NI	NI NI	11.91	1,000.69	11.68	1,000.23
06/04/08 09/09/08	9.46 10.03	1,003.54 1,002.97	12.86 13.74	1,000.34 999.46	NI NI	NI NI	NI NI	NI NI	NI NI	NI NI	NI NI	NI NI	NI NI	NI NI	12.05 13.03	1,000.55 999.57	11.55 12.34	1,000.36 999.57
08/07/09	10.03 NM	1,002.97 NM	13.74 NM	999.40 NM	NI	NI	NI NI	NI NI	NI	NI	NI	NI NI	NI NI	NI	13.03 NM	999.37 NM	12.34 NM	NM
11/30/09	7.36	1.005.64	9.59	1,003.61	NI	NI	NI NI	NI	NI	NI	NI	NI	NI	NI	9.76	1,002.84	9.74	1,002.17
02/18/11	8.18	1.004.82	ABN	ABN	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI —	ABN	ABN	ABN	ABN
05/31/11	7.90	1,005.10	ABN	ABN	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	ABN	ABN	ABN	ABN
10/08/12	NM	NM	ABN	ABN	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	ABN	ABN	ABN	ABN
06/03/13	NM	NM	ABN	ABN	13.56	1,002.67	13.21	1,003.16	10.18	1,003.88	10.29	999.50	10.85	998.55	ABN	ABN	ABN	ABN
07/17/13	7.90	1,005.10	ABN	ABN	13.36	1,002.87	12.45	1,003.92	9.99	1,004.07	6.76	1,003.03	7.35	1,002.05	ABN	ABN	ABN	ABN
01/06/14	5.13	1,003.10	ABN	ABN	13.25	1,002.98	11.76	1,003.52	9.91	1,004.15	6.51	1,003.28	6.91	1,002.49	ABN	ABN	ABN	ABN
07/14/14	8.65	1.004.21	ABN	ABN	ABN	1,002.90 ABN	ABN	ABN	12.11	1.001.95	8.27	1,003.20	8.61	1.000.79	ABN	ABN	ABN	ABN
07/14/14	0.00	1,004.21	ADIN	ADIV	ADIN	ADIN	ADIN	ADIN	12.11	1,001.93	0.21	1,001.32	0.01	1,000.79	ADIN	ADIN	ADIV	ADIN

MW-408		MW-407		MW-406		MW-405		MW-404		MW-403		MW-402		MW-401		MW-306		MW-303		Observation Well:
4/18/2007		4/18/2007		4/18/2007		4/14/2006		4/14/2006		4/13/2006		4/13/2006		4/13/2006		4/3/2006		4/4/2006		Installation Date:
allow Residuum	Sha	ow Residuum	Shall	ow Residuum	Shalle	ow Residuum	Shall	ow Residuum	Shal	ow Residuum	Shall	low Residuum	Shal	low Residuum	Shal	low Residuum	Shall	ow Residuum	Shallo	Monitored Zone:
																				Elevation, ft. AMSL ^{1,2,3} :
1,009.910		1,012.890		1,015.000		1,015.840		1,009.130		1,015.220		1,016.210		1,013.690		1,008.496		1,009.386		Access Port/Well Casing.
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		.,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1,0101010		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		.,		.,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Elevation, ft, AMSL ¹ :
003.91-993.91	100	3.41-993.41	100	2.74-992.74	100	7.24-997.24	100	5.20-995.20	100	2.61-992.61	100	06.74-996.74	100	7.74-997.74	100	37.83-977.83	gg	0.41-980.41	99	Well Screen Interval
	100		100		100		100		100		100		100		100		30		330	vveii Goreen intervar
Ground- Water	Donth to	Ground-	Donth to	Ground-	Danth to	Ground-	Donath to	Ground-	Donth to	Ground-	Danth to	Ground-	Donth to	Ground-	Danth to	Ground-	Donth to	Ground-	Donth to	
	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	
Elevation, ft. AMSL	Water, feet	Elevation, ft. AMSL	Water, feet	Elevation, ft. AMSL	Water, feet	Elevation, ft. AMSL	Water, feet	Elevation, ft. AMSL	Water, feet	Elevation, ft. AMSL	Water, feet	Elevation, ft. AMSL	Water, feet	Elevation, ft. AMSL	Water, feet	Elevation, ft. AMSL	Water, feet	Elevation, ft. AMSL	Water, feet	Date
NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI NI	NI	NI	NI	NI	NI	NI	NI	NI NI	08/17/01
NI	NI	NI	NI	NI	NI	NI NI	NI	NI	NI	NI		NI	NI	NI	NI	NI	NI	NI	NI	03/04/03
NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	04/22/03
NI NI	NI NI	NI NI	NI NI	NI NI	NI NI	NI NI	NI NI	NI NI	NI NI	NI NI	NI NI	NI NI	NI NI	NI NI	NI NI	NI NI	NI NI	NI NI	NI NI	05/02/03
NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	05/07/03
NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	05/16/03
NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	12/17/03
NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	04/06/04
NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	07/27/04
NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	07/12/05
NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	09/07/05
NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	09/19/05
NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	10/11/05
NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	12/13/05
NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	12/20/05
NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	01/25/06
NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	1,001.00	7.50	1,001.66	7.73	04/10/06
NI	NI	NI	NI	NI	NI	1,003.28	12.56	1,003.36	5.77	1,000.34	14.88	1,002.39	13.82	1,005.99	7.70	1,001.02	7.48	1,001.60	7.79	05/15/06
NI	NI	NI	NI	NI	NI	NM	NM	1,001.67	7.46	999.68	15.54	1,001.15	15.06	1,005.03	8.66	1,000.31	8.19	1,000.74	8.65	08/14/06
NI	NI	NI	NI	NI	NI	1,001.99	13.85	1,001.98	7.15	999.52	15.70	1,000.84	15.37	1,004.86	8.83	1,000.09	8.41	1,000.60	8.79	11/07/06
NI NM	NI NM	NI_ NM	NI NM	NI _ NM	NI NM	1,002.50	13.34 14.75	1,002.85	6.28 8.78	1,000.11 998.84	15.11	1,001.39 1,000.56	14.82 15.65	NM NM	NM NM	1,000.09 999.36	8.41	1,001.11 1,000.01	8.28 9.38	02/07/07
NM	NM	NM	NM	NM	NM	1,001.09 1,000.17	15.67	1,000.35 998.88	10.25	998.35	16.38 16.87	999.35	16.86	NM	NM	999.03	9.14 9.47	999.26	10.13	05/30/07 09/17/07
998.56	11.35	998.80	14.09	999.61	15.39	999.22	16.62	997.50	11.63	997.47	17.75	999.33 NM	NM	NM	NM	997.93	10.57	998.33	11.06	12/04/07
1,003.58	6.33	1,000.72	12.17	1,002.39	12.61	1,001.09	14.75	1,003.27	5.86	999.63	15.59	999.71	16.50	NM	NM	1,000.24	8.26	999.94	9.45	03/05/08
1,000.45	9.46	1,000.59	12.30	1,001.54	13.46	1,001.18	14.66	1,000.57	8.56	999.03	16.19	1,000.39	15.82	NM	NM	999.68	8.82	1,000.04	9.35	06/04/08
999.59	10.32	999.90	12.99	1,001.00	14.00	1,000.59	15.25	998.79	10.34	998.41	16.81	999.27	16.94	NM	NM	999.08	9.42	999.37	10.02	09/09/08
NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	998.91	16.31	NM	NM	NM	NM	NM	NM	NM	NM	08/07/09
1,002.35	7.56	1,003.04	9.85	1,004.19	10.81	1,004.12	11.72	1,003.31	5.82	1,001.18	14.04	1,002.60	13.61	NM	NM	1,001.92	6.58	1,002.28	7.11	11/30/09
ABN	ABN	ABN	ABN	ABN	ABN	1,002.70	13.14	ABN	ABN	999.99	15.23	1,001.59	14.62	NM	NM	1,000.59	7.91	ABN	ABN	02/18/11
ABN	ABN	ABN	ABN	ABN	ABN	1,003.19	12.65	ABN	ABN	1,000.40	14.82	1,002.19	14.02	NM	NM	1,000.64	7.86	ABN	ABN	05/31/11
ABN	ABN	ABN	ABN	ABN	ABN	NM	NM	ABN	ABN	998.70	16.52	1,000.02	16.19	NM	NM	NM	NM	ABN	ABN	10/08/12
ABN	ABN	ABN	ABN	ABN	ABN	NM	NM	ABN	ABN	NM	NM	NM	NM	NM	NM	NM	NM	ABN	ABN	06/03/13
ABN	ABN	ABN	ABN	ABN	ABN	1,004.65	11.19	ABN	ABN	1,000.77	14.45	1,003.17	13.04	1,008.00	5.69	1,001.60	6.90	ABN	ABN	07/17/13
ABN	ABN	ABN	ABN	ABN	ABN	1,004.28	11.56	ABN	ABN	1,001.83	13.39	1,003.17	13.04	1,007.58	6.11	1,002.46	6.04	ABN	ABN	01/06/14
ABN	ABN	ABN	ABN	ABN	ABN	1,002.87	12.97	ABN	ABN	1,000.14	15.08	ABN	ABN	1,005.36	8.33	1,000.55	7.95	ABN	ABN	07/14/14

Observation Well: Installation Date:		MW-409 4/19/2007		MW-409D 4/19/2007		PZ-1 4/8/2003	T\	N-1 9/17/2005	Т	W-2 9/17/2005	TV	V-3 9/17/2005	TI	MW-1 8/5/2008	TI	MW-2 8/5/2008	Т	MW-3 8/5/2008
Monitored Zone:	Shal	llow Residuum		Deep Residuum	5	Shallow Residuum	Sh	allow Residuum	S	hallow Residuum	Sh	nallow Residuum		Shallow Residuum		Shallow Residuum	Sha	allow Residuum
Elevation, ft. AMSL ^{1,2,3} : Access Port/Well Casing. Elevation, ft. AMSL ¹ :		1,016.360		1,016.070		1,009.286		No Survey										
Well Screen Interval	100	06.07-996.07		978.37-985.37		1004.31-989.31		NA										
		Ground-		Ground-		Ground-		Ground-		Ground-		Ground-		Ground-		Ground-		Ground
	Depth to	Water	Depth to	Water	Depth to	Water		Water	Depth to	Wate								
	Water,	Elevation,	Water,	Elevation,	Water,	Elevation,		Elevation,	Water,	Elevation								
Date	feet	ft. AMSL	feet	ft. AMSL	feet	ft. AMSL		ft. AMSL	feet	ft. AMSL								
08/17/01	NI	NI	NI	NM	NI	NI	NI	N										
03/04/03	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	N
04/22/03	NI	NI	NI	NI	4.48	1,004.81	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI NI	NI	N
05/02/03	NI	NI	NI	NI	5.83	1,003.46	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI NI	NI	N
05/07/03	NI	NI	NI	NI	2.02	1,003.40	NI	NI	NI	N								
05/16/03	NI	NI	NI	NI NI	NM	1,007.27 NM	NI	NI	NI	N								
12/17/03	NI	NI NI	NI	NI	NM	NM	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI NI	NI	N
	NI	NI NI	NI NI						NI		NI NI	NI NI	NI NI	NI		NI NI	NI NI	N
04/06/04				NI	7.30	1,001.99	NI	NI		NI					NI			
07/27/04	NI	NI NI	NI	NI	3.97	1,005.32	NI	NI	NI	NI	NI	NI	NI 	NI	NI 	NI_	NI 	N
07/12/05	NI	NI	NI	NI	1.83	1,007.46	NI	NI	NI	N								
09/07/05	NI	NI	NI	NI	6.59	1,002.70	14.04	No survey	14.31	No survey	13.85	No survey	NI	NI	NI	NI	NI	N
09/19/05	NI	NI	NI	NI	7.20	1,002.09	14.37	No survey	13.11	No survey	14.20	No survey	NI	NI	NI	NI	NI	N
10/11/05	NI	NI	NI	NI	NM	NM	13.69	No survey	12.90	No survey	13.41	No survey	NI	NI	NI	NI	NI	N
12/13/05	NI	NI	NI	NI	NM	NM	ABN	ABN	ABN	ABN	ABN	ABN	NI	NI	NI	NI	NI	N
12/20/05	NI	NI	NI	NI	5.43	1,003.86	ABN	ABN	ABN	ABN	ABN	ABN	NI	NI	NI	NI	NI	N
01/25/06	NI	NI	NI	NI	2.83	1,006.46	ABN	ABN	ABN	ABN	ABN	ABN	NI	NI	NI	NI	NI	N
04/10/06	NI	NI	NI	NI	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	NI	NI	NI	NI	NI	N
05/15/06	NI	NI	NI	NI	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	NI	NI	NI	NI	NI	N
08/14/06	NI NI	NI NI	NI NI	NI NI	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	NI NI	NI NI	NI NI	NI NI	NI NI	N N
11/07/06 02/07/07	NI NI	NI NI	NI NI	NI NI	ABN ABN	ABN ABN	ABN ABN	ABN ABN	ABN ABN	ABN ABN	ABN ABN	ABN ABN	NI NI	NI NI	NI NI	NI NI	NI NI	N N
05/30/07	NM	NM _	NM	NM =	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	NI	NI	NI	NI	NI	N N
09/17/07	NM	NM	NM	NM	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	NI	NI	NI	NI NI	NI	N
12/04/07	17.32	999.04	17.00	999.07	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	NI	NI	NI	NI	NI	N
03/05/08	15.32	1,001.04	15.00	1,001.07	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	NI	NI	NI	NI	NI	N
06/04/08	15.46	1,000.90	15.15	1,000.92	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	NI	NI	NI	NI	NI	N
09/09/08	15.79	1,000.57	16.10	999.97	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	10.2	No survey	11.61	No survey	10.90	No surve
08/07/09	NM	NM	NM	NM	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	NM	No survey	NM	No survey	NM	No surve
11/30/09	12.82	1,003.54	12.62	1,003.45	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	7.83	No survey	8.85	No survey	8.36	No surve
02/18/11 05/31/11	14.08 13.60	1,002.28 1,002.76	13.80 13.34	1,002.27 1,002.73	ABN ABN	ABN ABN	ABN ABN	ABI ABI										
	NM	•	13.34 NM	1,002.73 NM														
10/08/12		NM			ABN	ABN	ABN	AB										
06/03/13	NM	NM	NM	NM	ABN	ABN	ABN	AB										
07/17/13	12.39	1,003.97	12.07	1,004.00	ABN	ABN	ABN	AB										
01/06/14	12.46	1,003.90	12.15	1,003.92	ABN	ABN	ABN	AB										
07/14/14	13.85	1,002.51	13.58	1,002.49	ABN	ABN												

Observation Well:	ED-	-1	ED-	2	ED-	3	ED-	4	ED-5 12/7/2005 Shallow Residuum		
Installation Date:		12/7/2005		12/7/2005		12/7/2005		12/7/2005			
Monitored Zone:	Shal	low Residuum	Shall	low Residuum	Shal	low Residuum	Shall	ow Residuum			
Elevation, ft. AMSL ^{1,2,3} :											
Access Port/Well Casing.		1028.59		1028.28		1028.89		1028.81		1031.50	
Elevation, ft. AMSL ¹ :											
Well Screen Interval	100	06.09-996.09	100	08.93-998.93	100	06.19-996.19	100	4.51-994.51	9	99.40-989.40	
		Ground-		Ground-		Ground-	.00	Ground-	· ·	Ground	
	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Wate	
	Water,	Elevation,	Water,	Elevation,	Water,	Elevation,	Water,	Elevation,	Water,	Elevation	
Date	feet	ft. AMSL	feet	ft. AMSL	feet	ft. AMSL	feet	ft. AMSL	feet	ft. AMSL	
08/17/01	NI	NI	NI	NI	NI	NI	NI	NI	NI	N	
03/04/03	NI	NI	NI	NI	NI	NI	NI	NI	NI	N	
04/22/03	NI	NI	NI	NI	NI	NI	NI	NI	NI	N	
05/02/03	NI NI	NI	NI	NI	NI	NI	NI	NI	NI	N	
05/02/03	NI	NI	NI	NI	NI	NI	NI	NI	NI	N	
05/16/03	NI	NI	NI	NI	NI	NI	NI	NI	NI	N	
12/17/03	NI	NI	NI	NI	NI	NI	NI	NI	NI NI	N	
04/06/04	NI	NI	NI	NI	NI	NI	NI	NI	NI	N	
07/27/04	NI	NI	NI	NI	NI	NI	NI	NI	NI	N	
07/12/05	NI	NI	NI	NI	NI	NI	NI	NI	NI	N N	
09/07/05	NI	NI	NI	NI NI	NI	NI	NI	NI	NI NI	N	
09/07/05	NI NI	NI	NI	NI NI	NI	NI	NI	NI	NI	N	
10/11/05	NI NI	NI	NI	NI NI	NI NI	NI NI	NI NI	NI NI	NI NI	N	
12/13/05	29.11	999.48	26.79	1,001.49	28.20	1,000.69	28.93	999.88	33.51	997.9	
12/20/05	29.11	998.71		1,001.45	27.90	1,000.09		999.85	33.54	997.9	
01/25/06	29.00 ABN	990.7 I ABN	26.63 ABN	1,001.05 ABN	27.90 ABN	•	28.96 ABN	999.05 ABN	33.54 ABN	997.90 ABI	
04/10/06	ABN	ABN	ABN	ABN	ABN	ABN ABN	ABN	ABN	ABN	ABI	
05/15/06	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABI	
08/14/06	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	AB	
11/07/06	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	AB	
02/07/07	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	AB	
05/30/07	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	AB	
09/17/07	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	AB	
12/04/07 03/05/08	ABN ABN	ABN ABN	ABN ABN	ABN ABN	ABN ABN	ABN ABN	ABN ABN	ABN ABN	ABN ABN	AB AB	
06/04/08	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	AB	
09/09/08	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	AB	
08/07/09	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	AB	
11/30/09	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	AB	
02/18/11	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	AB	
05/31/11	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	AB	
10/08/12	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	AB	
06/03/13	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	AB	
07/17/13	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	AB	
01/06/14	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	AB	
07/14/14	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	AB	

- 1. Feet above mean sea level.
- 2. Represents updated top-of-casing elevations. Monitoring wells MW-102, -201 through -205, and PZ-1 were resurveyed on July 30, 2004.
- Monitoring wells MW-208P, MW-213 and MW-214 were resurveyed on October 21, 2013
- 4 Monitoring wells MW-203 and MW-207P were resurveyed in May 2014
- NI Well not installed.NM Not measured.NA Not AvailableABN Well Abandoned
- Note: No potentiometric data available for: (1) DePaul monitoring wells MW-1, -2, -3, and -4 installed in August 1990 and MW-5, -6, -7, -8, and -9 installed in May 1992;
 - (2) Pickering Environmental Consultants Geoprobe sample points BH-1. BH-2, and BH-2 completed December 2002; (3) QORE Geoprobe Borings B-1, B-2, and B-3;
 - (4) Laws direct Push Borings DP-101, DP-201, DP-103, DP-104, and DP-105; (5) MACTEC Temp. Wells TW-34, TW-35, and TW-36

ATTACHMENT C Legal Description of the 670 DeKalb Avenue Parcel

Compliance Status Report and Compliance Status Certification Former Aratex Services, Inc.—670 DeKalb Avenue, Atlanta, Georgia Aramark Uniform & Career Apparel, LLC November 20, 2014

ATTACHMENT C ENTIRE SITE LEGAL DESCRIPTION

ALL THAT TRACT OR PARCEL OF LAND LYING AND BEING IN LAND LOT 20 OF THE 14TH LAND DISTRICT, CITY OF ATLANTA, FULTON COUNTY GEORGIA, BEING MORE PARTICULARLY DESCRIBED AS FOLLOWS:

BEGINNING AT AN "X" MARK SET IN A CONCRETE SIDEWALK AT THE INTERSECTION OF DEKALB AVENUE-VARIABLE RIGHT OF WAY AND AIRLINE STREET-40 FOOT RIGHT OF WAY; THENCE ALONG THE EASTERN RIGHT OF WAY OF AIRLINE AVENUE NORTH 13 DEGREES 34 MINUTES55 SECONDS WEST A DISTANCE OF 69.15 FEET TO A CAPPED 5/8 INCH REBAR SET; THENCE LEAVING THE AFOREMENTIONED RIGHT OF WAY AND ALONG THE PROPERTY LINE COMMON TO THE ATLANTA BELTLINE INC., FOLLOWING A CURVE TO THE LEFT HAVING A RADIUS OF 1007.03 FEET AND AN ARC LENGTH OF 332.72 FEET BEING SUBTENDED BY A CHORD OF NORTH 30 DEGREES 48 MINUTES 22 SECONDS EAST FOR A DISTANCE OF 332.21 FEET TO A CONCRETE NAIL SET: THENCE WITH A CURVE TO THE LEFT HAVING A RADIUS OF 1152.43 FEET AND AN ARC LENGTH OF 95.82 FEET BEING SUBTENDED BY A CHORD OF NORTH 19 DEGREES 15 MINUTES 40 SECONDS EAST FOR A DISTANCE OF 95.79 FEET TO A CAPPED 5/8 INCH IRON PIN SET ON THE SOUTHERN RIGHT OF WAY OF EDGEWOOD AVENUE: THENCE ALONG AFOREMENTIONED RIGHT OF WAY FOLLOWING A CURVE TO THE LEFT HAVING A RADIUS OF 242.21 FEET AND AN ARC LENGTH OF 62.58 FEET BEING SUBTENDED BY A CHORD OF NORTH 82 DEGREES 50 MINUTES 26 SECONDS EAST FOR A DISTANCE OF 62.41 FEET TO A CAPPED 5/8 INCH IRON PIN SET; THENCE LEAVING SAID RIGHT OF WAY AND ALONG THE WESTERN RIGHT OF WAY OF GUNBY STREET SOUTH 11 DEGREES 14 MINUTES 15 SECONDS EAST A DISTANCE OF 361.44 FEET TO A "X" MARK FOUND IN CONCRETE AT THE NORTHWEST INTERSECTION OF GUNBY STREET AND DEKALB AVENUE; THENCE ALONG THE NORTHERN VARIABLE RIGHT OF WAY OF DEKALB AVENUE FOLLOWING A CURVE TO THE LEFT HAVING A RADIUS OF 13560.50 FEET AND AN ARC LENGTH OF 331.38 FEET BEING SUBTENDED BY A CHORD OF SOUTH 73 DEGREES 16 MINUTES 10 SECONDS WEST FOR A DISTANCE OF 331.37 FEET TO AN "X" MARK SET IN CONCRETE, SAID POINT BEING THE POINT OF BEGINNING.

SAID PARCEL HAVING AN AREA OF 1.740 ACRES OR 75,809 SQUARE FEET, INCLUDING THE CAP AREA.

Compliance Status Report and Compliance Status Certification Former Aratex Services, Inc.—670 DeKalb Avenue, Atlanta, Georgia Aramark Uniform & Career Apparel, LLC November 20, 2014

CAP AREA (TRACT 1) DESCRIPTION

ALL THAT TRACT OR PARCEL OF LAND LYING AND BEING IN LAND LOT 20 OF THE 14TH LAND DISTRICT, CITY OF ATLANTA, FULTON COUNTY GEORGIA, BEING MORE PARTICULARLY DESCRIBED AS FOLLOWS:

COMMENCING AT AN "X" MARK SET IN A CONCRETE SIDEWALK AT THE INTERSECTION OF DEKALB AVENUE - VARIABLE RIGHT OF WAY AND AIRLINE STREET - 40 FOOT RIGHT OF WAY: THENCE ALONG THE EASTERN RIGHT OF WAY OF AIRLINE AVENUE NORTH 13 DEGREES 34 MINUTES 55 SECONDS WEST A DISTANCE OF 69.15 FEET TO A CAPPED 5/8 INCH REBAR SET: THENCE LEAVING THE AFOREMENTIONED RIGHT OF WAY AND ALONG THE PROPERTY COMMON TO THE ATLANTA BELTLINE INC., FOLLOWING A CURVE TO THE LEFT HAVING A RADIUS OF 1007.03 FEET AND AN ARC LENGTH OF 332.72 FEET BEING SUBTENDED BY A CHORD OF NORTH 30 DEGREES 48 MINUTES 22 SECONDS EAST FOR A DISTANCE OF 331.21 FEET TO A CONCRETE NAIL SET; THENCE LEAVING AFOREMENTIONED PROPERTY LINE AND ALONG A TIE LINE SOUTH 34 DEGREES 45 MINUTES 46 SECONDS EAST A DISTANCE OF 1.65 TO THE CORNER OF A BLOCK WALL, SAID POINT BEING THE POINT OF BEGINNING.

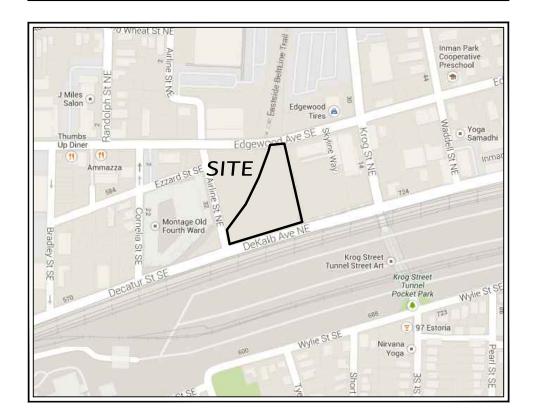
THENCE ALONG THE EXTERIOR OF A CONCRETE BLOCK WALL THE FOLLOWING BEARINGS AND DISTANCES: NORTH 19 DEGREES 46 MINUTES 39 SECONDS EAST A DISTANCE OF 38.27 FEET TO THE CORNER OF A BLOCK WALL; THENCE SOUTH 77 DEGREES 25 MINUTES 42 SECONDS EAST A DISTANCE OF 1.74 FEET TO THE CORNER OF A BLOCK WALL; THENCE NORTH 18 DEGREES 10 MINUTES 20 SECONDS EAST A DISTANCE OF 3.59 FEET TO THE CORNER OF A BLOCK WALL; THENCE NORTH 61 DEGREES 30 MINUTES 39 SECONDS WEST A DISTANCE OF 1.10 FEET TO THE CORNER OF A BLOCK WALL; THENCE NORTH 16 DEGREES 57 MINUTES 51 SECONDS EAST A DISTANCE OF 54.27 FEET TO THE CORNER OF A BLOCK WALL; THENCE NORTH 83 DEGREES 50 MINUTES 04 SECONDS EAST A DISTANCE OF 2.89 FEET TO A POINT ON THE SOUTHERN RIGHT AWAY OF EDGEWOOD AVENUE; THENCE ALONG SAID RIGHT OF WAY FOLLOWING A CURVE TO THE LEFT HAVING A RADIUS OF 242.21 FEET AND AN ARC LENGTH OF 21.56 FEET BEING SUBTENDED BY A CHORD OF NORTH 87 DEGREES 01 MINUTES 08 SECONDS EAST FOR A DISTANCE OF 21.55 FEET; THENCE LEAVING AFOREMENTIONED RIGHT OF WAY SOUTH 09 DEGREES 56 MINUTES 46 SECONDS EAST A DISTANCE OF 1.70 FEET TO THE CORNER ON THE BLOCK WALL: THENCE SOUTH 22 DEGREES 10 MINUTES 18 SECONDS WEST A DISTANCE OF 9.36 FEET TO A POINT ON THE WALL; THENCE SOUTH 14 DEGREES 30 MINUTES 09 SECONDS WEST A DISTANCE OF 28.89 FEET TO THE CORNER OF A BLOCK WALL; THENCE SOUTH 73 DEGREES 15 MINUTES 08 SECONDS EAST A DISTANCE OF 12.65 FEET TO THE CORNER OF A BLOCK WALL; THENCE SOUTH 17 DEGREES 01 MINUTES 51 SECONDS WEST A DISTANCE OF 22.58 FEET TO THE CORNER OF A BLOCK WALL; THENCE NORTH 72 DEGREES 13 MINUTES 13 SECONDS WEST A DISTANCE OF 16.21 FEET TO THE CORNER OF A BLOCK WALL; THENCE SOUTH 17 DEGREES 49 MINUTES 52 SECONDS WEST A DISTANCE OF 44.43 FEET TO THE CORNER OF A BLOCK WALL; THENCE NORTH 69 DEGREES 11 MINUTES 51 SECONDS WEST A DISTANCE OF 22.49

Compliance Status Report and Compliance Status Certification Former Aratex Services, Inc.—670 DeKalb Avenue, Atlanta, Georgia Aramark Uniform & Career Apparel, LLC November 20, 2014

FEET TO THE CORNER OF A BLOCK WALL; SAID POINT BEING THE POINT OF BEGINNING.

SAID PARCEL HAVING AN AREA OF 0.0600 ACRES OR 2,593 SQUARE FEET.

CAP AREA (TRACT 2) DESCRIPTION


ALL THAT TRACT OR PARCEL OF LAND LYING AND BEING IN LAND LOT 20 OF THE 14TH LAND DISTRICT, CITY OF ATLANTA, FULTON COUNTY GEORGIA, BEING MORE PARTICULARLY DESCRIBED AS FOLLOWS:

COMMENCING AT AN "X" MARK SET IN A CONCRETE SIDEWALK AT THE INTERSECTION OF DEKALB AVENUE - VARIABLE RIGHT OF WAY AND AIRLINE STREET - 40 FOOT RIGHT OF WAY: THENCE ALONG THE EASTERN RIGHT OF WAY OF AIRLINE AVENUE NORTH 13 DEGREES 34 MINUTES 55 SECONDS WEST A DISTANCE OF 69.15 FEET TO A CAPPED 5/8 INCH REBAR SET; THENCE LEAVING THE AFOREMENTIONED RIGHT OF WAY AND ALONG THE PROPERTY COMMON TO THE ATLANTA BELTLINE INC., FOLLOWING A CURVE TO THE LEFT HAVING A RADIUS OF 1007.03 FEET AND AN ARC LENGTH OF 332.72 FEET BEING SUBTENDED BY A CHORD OF NORTH 30 DEGREES 48 MINUTES 22 SECONDS EAST FOR A DISTANCE OF 331.21 FEET TO A CONCRETE NAIL SET; THENCE LEAVING AFOREMENTIONED PROPERTY LINE AND ALONG A TIE LINE SOUTH 34 DEGREES 45 MINUTES 46 SECONDS EAST A DISTANCE OF 1.65 TO THE CORNER OF A BLOCK WALL; THENCE ALONG THE EXTERIOR OF A CONCRETE BLOCK WALL THE FOLLOWING BEARINGS AND DISTANCES: NORTH 19 DEGREES 46 MINUTES 39 SECONDS EAST A DISTANCE OF 38.27 FEET TO THE CORNER OF A BLOCK WALL; THENCE SOUTH 77 DEGREES 25 MINUTES 42 SECONDS EAST A DISTANCE OF 1.74 FEET TO THE CORNER OF A BLOCK WALL; THENCE NORTH 18 DEGREES 10 MINUTES 20 SECONDS EAST A DISTANCE OF 3.59 FEET TO THE CORNER OF A BLOCK WALL; THENCE NORTH 61 DEGREES 30 MINUTES 39 SECONDS WEST A DISTANCE OF 1.10 FEET TO THE CORNER OF A BLOCK WALL; THENCE NORTH 16 DEGREES 57 MINUTES 51 SECONDS EAST A DISTANCE OF 54.27 FEET TO THE CORNER OF A BLOCK WALL; THENCE NORTH 83 DEGREES 50 MINUTES 04 SECONDS EAST A DISTANCE OF 2.89 FEET TO A POINT ON THE SOUTHERN RIGHT AWAY OF EDGEWOOD AVENUE: SAID POINT BEING THE POINT OF BEGINNING.

THENCE NORTH 83 DEGREES 50 MINUTES 04 SECONDS EAST A DISTANCE OF 21.44 FEET TO THE CORNER OF THE BLOCK WALL; THENCE SOUTH 09 DEGREES 56 MINUTES 46 SECONDS EAST A DISTANCE OF 1.20 FEET TO A POINT ON THE SOUTHERN RIGHT OF WAY OF EDGEWOOD AVENUE; THENCE ALONG SAID RIGHT OF WAY FOLLOWING A CURVE TO THE RIGHT HAVING A RADIUS OF 242.21 FEET AND AN ARC LENGTH OF 21.56 FEET BEING SUBTENDED BY A CHORD OF SOUTH 87 DEGREES 01 MINUTES 08 SECONDS WEST FOR A DISTANCE OF 21.55 FEET TO A POINT ON THE AFOREMENTIONED RIGHT OF WAY: SAID POINT BEING THE POINT OF BEGINNING.

SAID PARCEL HAVING AN AREA OF 0.0004 ACRES OR 16 SQUARE FEET.

VICINITY MAP - N.T.S.

OVERALL TRACT DESCRIPTION

ALL THAT TRACT OR PARCEL OF LAND LYING AND BEING IN LAND LOT 20 OF THE 14TH LAND DISTRICT, CITY OF ATLANTA, FULTON COUNTY GEORGIA, BEING MORE PARTICULARLY DESCRIBED AS FOLLOWS:

BEGINNING AT AN "X" MARK SET IN A CONCRETE SIDEWALK AT THE INTERSECTION OF DEKALB AVENUE — VARIABLE RIGHT OF WAY AND AIRLINE STREET — 40 FOOT RIGHT OF WAY; THENCE ALONG THE EASTERN RIGHT OF WAY OF AIRLINE AVENUE NORTH 13 DEGREES 34 MINUTES 55 SECONDS WEST A DISTANCE OF 69.15 FEET TO A CAPPED 5/8 INCH REBAR SET; THENCE LEAVING THE AFOREMENTIONED RIGHT OF WAY AND ÁLONG THE PROPERTY LINE COMMON TO THE ATLANTA BELTLINE INC., FOLLOWING A CURVE TO THE LEFT HAVING A RADIUS OF 1007.03 FEET AND AN ARC LENGTH OF 332.72 FEET BEING SUBTENDED BY A CHORD OF NORTH 30 DEGREES 48 MINUTES 22 SECONDS EAST FOR A DISTANCE OF 331.21 FEET TO A CONCRETE NAIL SET; THENCE WITH A CURVE TO THE LEFT HAVING A RADIUS OF 1152.43 FEET AND AN ARC LENGTH OF 95.82 FEET BEING SUBTENDED BY A CHORD OF NORTH 19 DEGREES 15 MINUTES 40 SECONDS EAST FOR A DISTANCE OF 95.79 FEET TO A CAPPED 5/8 INCH IRON PIN SET ON THE SOUTHERN RIGHT OF WAY OF EDGEWOOD AVENUÉ: THENCE ALONG AFOREMENTIONED RIGHT OF WAY FOLLOWING A CURVE TO THE LEFT HAVING A RADIUS OF 242.21 FEET AND AN ARC LENGTH OF 62.58 FEET BEING SUBTENDED BY A CHORD OF NORTH 82 DEGREES 50 MINUTES 26 SECONDS EAST FOR A DISTANCE OF 62.41 FEET TO A CAPPED 5/8 INCH IRON PIN SET; THENCE LEAVING SAID RIGHT OF WAY AND ALONG THE WESTERN RIGHT OF WAY OF GUNBY STREET SOUTH 11 DEGREES 14 MINUTES 14 SECONDS EAST A DISTANCE OF 361.44 FEET TO A "X" MARK FOUND IN CONCRETE AT THE NORTHWEST INTERSECTION OF GUNBY STREET AND DEKALB AVENUE; THENCE ALONG THE NORTHERN VARIABLE RIGHT OF WAY OF DEKALB AVENUE FOLLOWING A CURVE TO THE LEFT HAVING A RADIUS OF 13560.50 FEET AND AN ARC LENGTH OF 331.38 FEET BEING SUBTENDED BY A CHORD OF SOUTH 73 DEGREES 16 MINUTES 10 SECONDS WEST FOR A DISTANCE OF 331.37 FEET TO AN "X" MARK SET IN CONCRETE, SAID POINT BEING THE POINT OF BEGINNING.

SAID PARCEL HAVING AN AREA OF 1.740 ACRES OR 75,809 SQUARE FEET. INCLUDING THE CAP AREA.

CAP AREA (TRACT 1) DESCRIPTION

ALL THAT TRACT OR PARCEL OF LAND LYING AND BEING IN LAND LOT 20 OF THE 14TH LAND DISTRICT, CITY OF ATLANTA, FULTON COUNTY GEORGIA, BEING MORE PARTICULARLY DESCRIBED AS FOLLOWS:

COMMENCING AT AN "X" MARK SET IN A CONCRETE SIDEWALK AT THE INTERSECTION OF DEKALB AVENUE - VARIABLE RIGHT OF WAY AND AIRLINE STREET - 40 FOOT RIGHT OF WAY; THENCE ALONG THE EASTERN RIGHT OF WAY OF AIRLINE AVENUE NORTH 13 DEGREES 34 MINUTES 55 SECONDS WEST A DISTANCE OF 69.15 FEET TO A CAPPED 5/8 INCH REBAR SET; THENCE LEAVING THE AFOREMENTIONED RIGHT OF WAY AND ALONG THE PROPERTY COMMON TO THE ATLANTA BELTLINE INC., FOLLOWING A CURVE TO THE LEFT HAVING A RADIUS OF 1007.03 FEET AND AN ARC LENGTH OF 332.72 FEET BEING SUBTENDED BY A CHORD OF NORTH 30 DEGREES 48 MINUTES 22 SECONDS EAST FOR A DISTANCE OF 331.21 FEET TO A CONCRETE NAIL SET; THENCE LEAVING AFOREMENTIONED PROPERTY LINE AND ALONG A TIE LINE SOUTH 34 DEGREES 45 MINUTES 46 SECONDS EAST A DISTANCE OF 1.65 TO THE CORNER OF A BLOCK WALL, SAID POINT BEING THE POINT OF BEGINNING.

THENCE ALONG THE EXTERIOR OF A CONCRETE BLOCK WALL THE FOLLOWING BEARINGS AND DISTANCES: NORTH 19 DEGREES 46 MINUTES 39 SECONDS EAST A DISTANCE OF 38.27 FEET TO THE CORNER OF A BLOCK WALL; THENCE SOUTH 77 DEGREES 25 MINUTES 42 SECONDS EAST A DISTANCE OF 1.74 FEET TO THE CORNER OF A BLOCK WALL; THENCE NORTH 18 DEGREES 10 MINUTES 20 SECONDS EAST A DISTANCE OF 3.59 FEET TO THE CORNER OF A BLOCK WALL; THENCE NORTH 61 DEGREES 30 MINUTES 39 SECONDS WEST A DISTANCE OF 1.10 FEET TO THE CORNER OF A BLOCK WALL; THENCE NORTH 16 DEGREES 57 MINUTES 51 SECONDS EAST A DISTANCE OF 54.27 FEET TO THE CORNER OF A BLOCK WALL; THENCE NORTH 83 DEGREES 50 MINUTES 04 SECONDS EAST A DISTANCE OF 2.89 FEET TO A POINT ON THE SOUTHERN RIGHT AWAY OF EDGEWOOD AVENUE; THENCE ALONG SAID RIGHT OF WAY FOLLOWING A CURVE TO THE LEFT HAVING A RADIUS OF 242.21 FEET AND AN ARC LENGTH OF 21.56 FEET BEING SUBTENDED BY A CHORD OF NORTH 87 DEGREES 01 MINUTES 08 SECONDS EAST FOR A DISTANCE OF 21.55 FEET; THENCE LEAVING AFOREMENTIONED RIGHT OF WAY SOUTH 09 DEGREES 56 MINUTES 46 SECONDS EAST A DISTANCE OF 1.70 FEET TO THE CORNER ON THE BLOCK WALL; THENCE SOUTH 22 DEGREES 10 MINUTES 18 SECONDS WEST A DISTANCE OF 9.36 FEET TO A POINT ON THE WALL; THENCE SOUTH 14 DEGREES 30 MINUTES 09 SECONDS WEST A DISTANCE OF 28.89 FEET TO THE CORNER OF A BLOCK WALL; THENCE SOUTH 73 DEGREES 15 MINUTES 08 SECONDS EAST A DISTANCE OF 12.65 FEET TO THE CORNER OF A BLOCK WALL; THENCE SOUTH 17 DEGREES 01 MINUTES 51 SECONDS WEST A DISTANCE OF 22.58 FEET TO THE CORNER OF A BLOCK WALL; THENCE NORTH 72 DEGREES 13 MINUTES 13 SECONDS WEST A DISTANCE OF 16.21 FEET TO THE CORNER OF A BLOCK WALL; THENCE SOUTH 17 DEGREES 49 MINUTES 52 SECONDS WEST A DISTANCE OF 44.43 FEET TO THE CORNER OF A BLOCK WALL; THENCE NORTH 69 DEGREES 11 MINUTES 51 SECONDS WEST A DISTANCE OF 22.49 FEET TO THE CORNER OF A BLOCK WALL; SAID POINT BEING THE

SAID PARCEL HAVING AN AREA OF 0.060 ACRES OR 2,593 SQUARE FEET.

GENERAL NOTES

- 1. THE FIELD DATA UPON WHICH THIS SURVEY IS BASED HAS A CLOSURE PRECISION OF ONE FOOT IN 25,079 FEET AND AN ANGULAR ERROR OF 1 SECOND PER ANGLE AND WAS ADJUSTED USING LEAST SQUARES. A TRIMBLE S6 WAS USED TO OBTAIN LINEAR AND ANGULAR MEASUREMENTS. WORK WAS COLLECTED 07-15-2014 THRU 07-16-2014 AND 11-13-2014. THIS PLAT HAS BEEN CALCULATED FOR CLOSURE AND HAS BEEN FOUND TO BE ACCURATE WITHIN ONE FOOT IN 64,379 FEET.
- 2.THIS SURVEY IS RELATIVE TO THE GEORGIA STATE PLANE COORDINATE SYSTEM, WEST ZONE AS REFERENCED TO NAD83 (2011) HORIZONTAL AND NAVD88 (GEOID2012A) VERTICAL. COORDINATES WERE DERIVED FROM NETWORK GPS MEASUREMENTS USING A LEICA VIVA GS15 GPS RECEIVER. ALL POINTS SHOWN HAVE A POSITIONAL ACCURACY OF LESS THAN 0.07 FEET.
- 3.NO PORTION OF THIS PROPERTY IS LOCATED WITHIN A FLOOD HAZARD AREA AS PER FEMA FLOOD INSURANCE RATE MAPS OF COBB COUNTY, GEORGIA, AS SHOWN ON
- 4. CORNERS NOTED HEREON AS IRON PIN SET (IPS) ARE 5/8 INCH REBARS WITH A PLASTIC CAP STAMPED "ACCURA ENG. LSF 001140".
- 5. THE PROPERTY MAY BE SUBJECT TO EASEMENTS, RESERVATIONS, RIGHTS OF WAY, OR RESTRICTIONS WHICH ARE NOT RECORDED OR NOT DISCLOSED BY THE TITLE COMMITMENT OR OTHERWISE UNKNOWN TO THE SURVEYOR; THEREFORE EXCEPTION IS TAKEN TO ANY SUCH ITEMS.
- 6. PERMANENT EASEMENT SHOWN IS FOR THE CONSTRUCTION, MAINTENANCE, AND

CAP AREA (TRACT 2) DESCRIPTION

ALL THAT TRACT OR PARCEL OF LAND LYING AND BEING IN LAND LOT 20 OF THE 14TH LAND DISTRICT, CITY OF ATLANTA, FULTON COUNTY GEORGIA, BEING MORE PARTICULARLY DESCRIBED AS FOLLOWS:

DEKALB AVENUE - VARIABLE RIGHT OF WAY AND AIRLINE STREET - 40 FOOT RIGHT OF WAY; THENCE ALONG THE EASTERN RIGHT OF WAY OF AIRLINE AVENUE NORTH 13 DEGREES 34 MINUTES 55 SECONDS WEST A DISTANCE OF 69.15 FEET TO A CAPPED 5/8 INCH REBAR SET; THENCE LEAVING THE AFOREMENTIONED RIGHT OF WAY AND ALONG THE PROPERTY COMMON TO THE ATLANTA BELTLINE INC., FOLLOWING A CURVE TO THE LEFT HAVING A RADIUS OF 1007.03 FEET AND AN ARC LENGTH OF 332.72 FEET BEING SUBTENDED BY A CHORD OF NORTH 30 DEGREES 48 MINUTES 22 SECONDS EAST FOR A DISTANCE OF 331.21 FEET TO A CONCRETE NAIL SET; THENCE LEAVING AFOREMENTIONED PROPERTY LINE AND ALONG A TIE LINE SOUTH 34 DEGREES 45 MINUTES 46 SECONDS EAST A DISTANCE OF 1.65 TO THE CORNER OF A BLOCK WALL, THENCE ALONG THE EXTERIOR OF A CONCRETE BLOCK WALL THE FOLLOWING BEARINGS AND DISTANCES: NORTH 19 DEGREES 46 MINUTES 39 SECONDS EAST A DISTANCE OF 38.27 FEET TO THE CORNER OF A BLOCK WALL; THENCE SOUTH 77 DEGREES 25 MINUTES 42 SECONDS EAST A DISTANCE OF 1.74 FEET TO THE CORNER OF A BLOCK WALL; THENCE NORTH 18 DEGREES 10 MINUTES 20 SECONDS EAST A DISTANCE OF 3.59 FEET TO THE CORNER OF A BLOCK WALL; THENCE NORTH 61 DEGREES 30 MINUTES 39 SECONDS WEST A DISTANCE OF 1.10 FEET TO THE CORNER OF A BLOCK WALL; THENCE NORTH 16 DEGREES 57 MINUTES 51 SECONDS EAST A DISTANCE OF 54.27 FEET TO THE CORNER OF A BLOCK WALL; THENCE NORTH 83 DEGREES 50 MINUTES 04 SECONDS EAST A DISTANCE OF 2.89 FEET TO A POINT ON THE SOUTHERN RIGHT AWAY OF

THENCE NORTH 83 DEGREES 50 MINUTES 04 SECONDS EAST A DISTANCE OF 21.44 FEET TO THE CORNER OF THE BLOCK WALL; THENCE SOUTH 09 DEGREES 56 MINUTES 46 SECONDS FAST A DISTANCE OF 1.20 FFFT TO A POINT ON THE SOUTHERN RIGHT OF WAY OF EDGEWOOD AVENUE; THENCE ALONG SAID RIGHT OF WAY FOLLOWING A CURVE TO THE RIGHT HAVING A RADIUS OF 242.21 FEET AND AN ARC LENGTH OF 21.56 FEET BEING SUBTENDED BY A CHORD OF SOUTH 87 DEGREES 01 MINUTES 08 SECONDS WEST FOR A DISTANCE OF 21.55 FEET TO A POINT ON THE AFOREMENTIONED RIGHT OF WAY; SAID POINT BEING THE POINT OF BEGINNING.

SAID PARCEL HAVING AN AREA OF 0.0004 ACRES OR 16 SQUARE FEET.

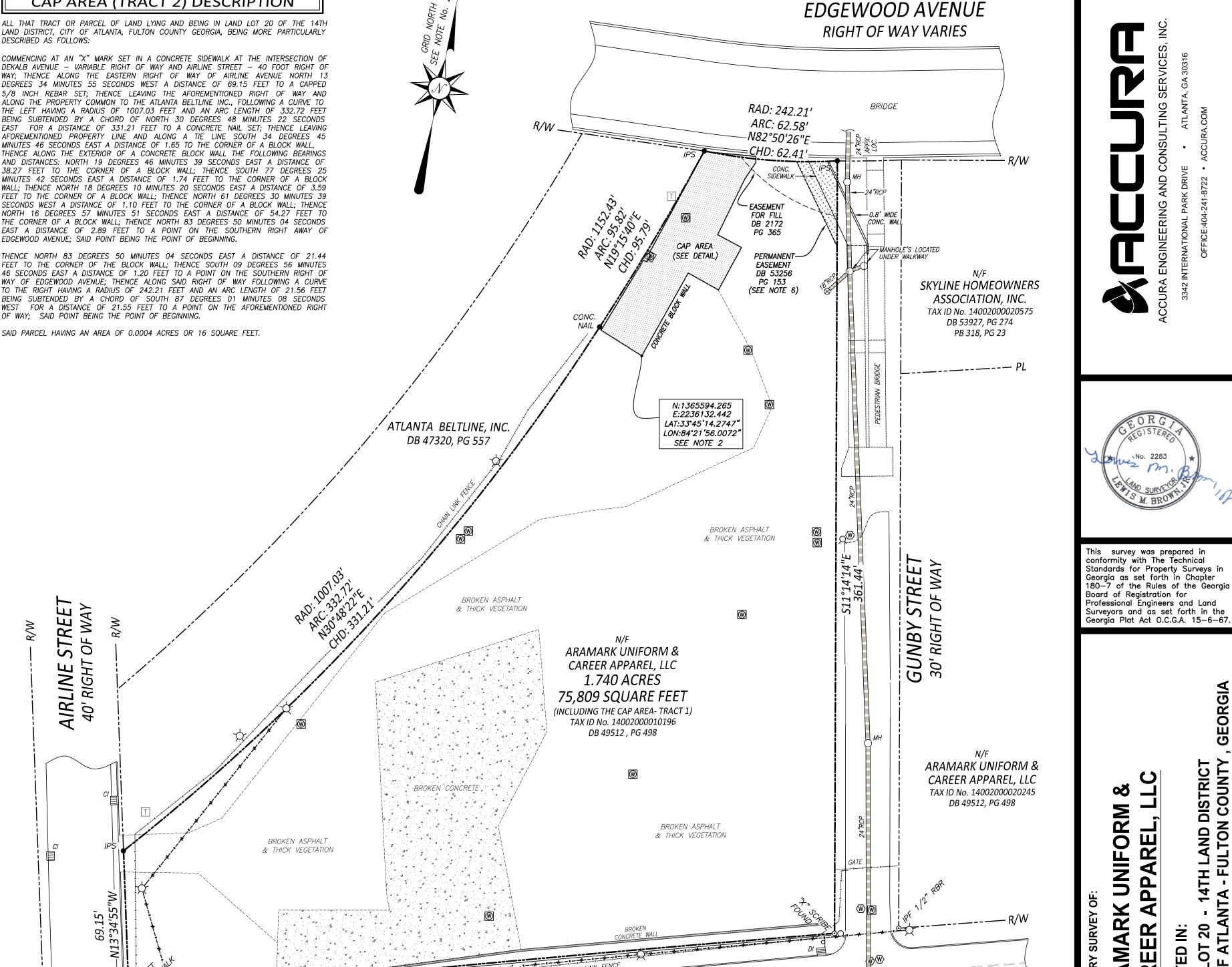
RE

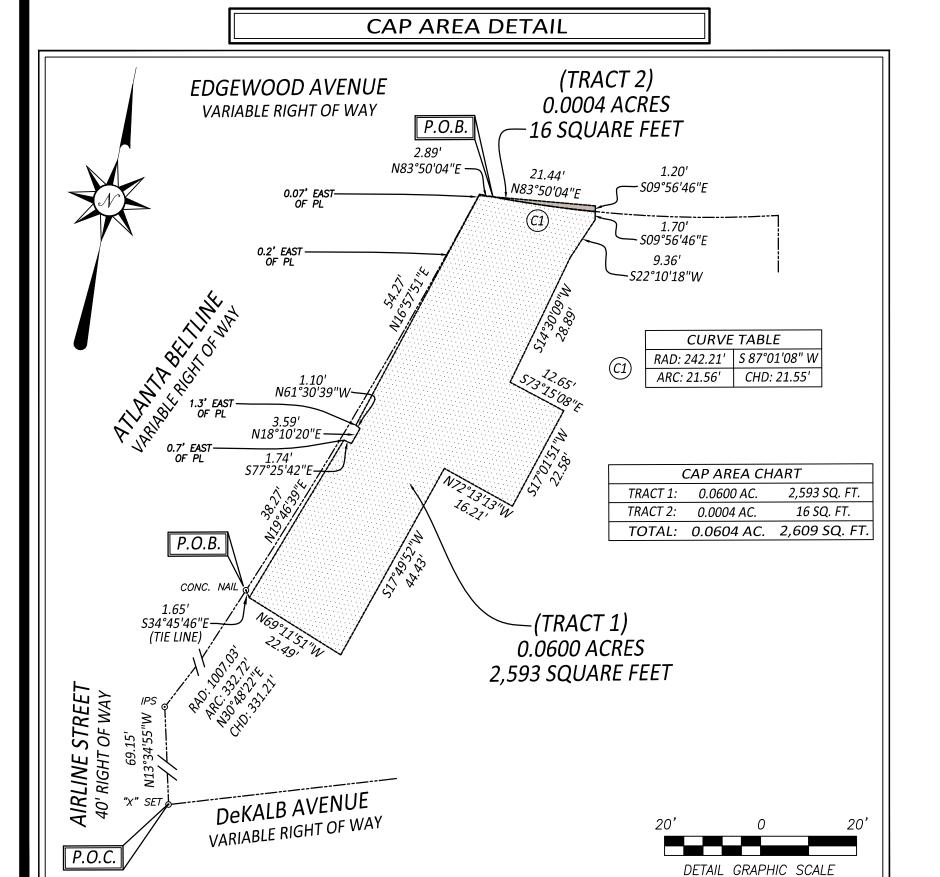
OF

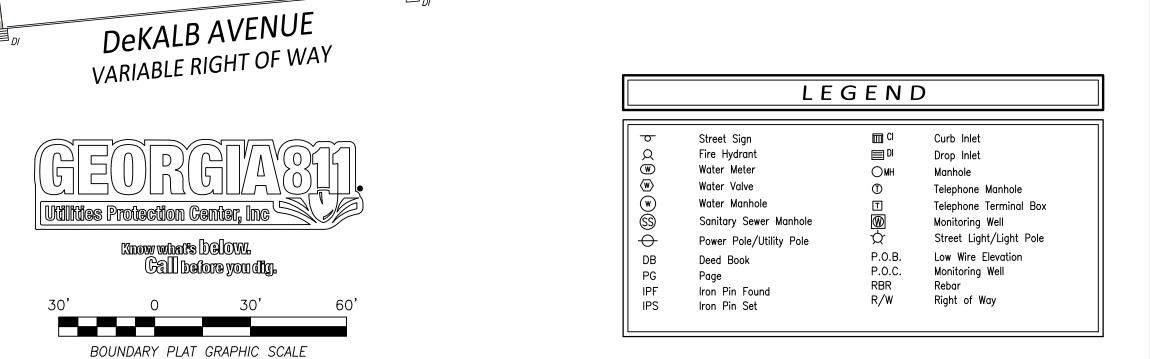
RIGHT

REVISION 1: CAP AREA WAS EXPANDED

TO EDGEWOOD AVENUE. 11-19-2014


BROKEN ASPHALT


573°16'10"W


CHD: 331.37

AIRLINI 40' RIGH

EDGEWOOD AVENUE; SAID POINT BEING THE POINT OF BEGINNING.

ARAMARK CAREER OCATED IN: **CREW CHIEF:** FIELD WORK: 07/15/2014 **AMW** DRAWN BY: **CHECKED BY:** LMB DATE: 07/23/2014 SCALE: 1"=30' JOB No. 20010 SHEET NUMBER

C

PPAREL

<

∞

ORM

DeKalb Cap Survey R1.dwg

After Recording Return to:

Georgia Environmental Protection Division Response and Remediation Program 2 Martin Luther King, Jr. Drive, SE Suite 1462 East Atlanta, Georgia 30334

Environmental Covenant

This instrument is an Environmental Covenant executed pursuant to the Georgia Uniform Environmental Covenants Act, O.C.G.A. § 44-16-1, *et seq.* This Environmental Covenant subjects the Property identified below to the activity and/or use limitations specified in this document. The effective date of this Environmental Covenant shall be the date upon which the fully executed Environmental Covenant has been recorded in accordance with O.C.G.A. § 44-16-8(a).

Grantor: Aramark Uniform & Career Apparel, LLC

115 North First Street Burbank, California 91502

Grantee: Aramark Uniform & Career Apparel, LLC

115 North First Street Burbank, California 91502

Entity with State of Georgia

express power to enforce: Department of Natural Resources

Environmental Protection Division 2 Martin Luther King Jr. Drive, SE

Suite 1054 East Tower Atlanta, GA 30334

Property:

The property subject to this Environmental Covenant is located at 670 DeKalb Avenue, Atlanta, Fulton County, Georgia and more particularly described as Parcel 1 on **Exhibit "A"** attached hereto and incorporated by reference (hereinafter "Property"). This tract of land was conveyed on November 2, 2010 from Brisbane II, LLC to Grantor recorded in Deed Book 49512, Page 498, Fulton County Records. The area is located in Land Lot 20 of the 14th District of Fulton County, Georgia, and contains 1.637 acres. A map of the area is attached as Exhibit B.

Tax Parcel Number(s):

14 -0020-0001-019-6 of Fulton County, Georgia

Name and Location of Administrative Records:

The environmental condition and corrective action taken at the Property that is the subject of this Environmental Covenant are described in documents on file with the Georgia Environmental Protection Division, HSI Site No. 10704.

These documents are available at the following location:

Georgia Environmental Protection Division Response and Remediation Program 2 MLK Jr. Drive, SE, Suite 1462 East Tower Atlanta, GA 30334 M-F 8:00 AM to 4:30 PM excluding state holidays

Description of Contamination and Corrective Action:

This Property has been listed on the state's hazardous site inventory and has been designated as needing corrective action due to the presence of hazardous wastes, hazardous constituents, or hazardous substances regulated under state law. Contact the property owner or the Georgia Environmental Protection Division for further information concerning this Property. This notice is provided in compliance with the Georgia Hazardous Site Response Act.

This Environmental Covenant is made pursuant to the Georgia Uniform Environmental Covenants Act, O.C.G.A. § 44-16-1 *et seq.* by Grantor, its successors and assigns, Grantee, its successors and assigns, and the State of Georgia, Department of Natural Resources, Environmental Protection Division (hereinafter "EPD"), its successors and assigns. This Environmental Covenant is required because a release of tetrachloroethene and other volatile organic compounds at the Property. Tetrachloroethene, trichloroethene, cis-1,2-dichloroethene, trans-1,2-dichloroethene, 1,2-dichloroethane, vinyl chloride, 1,1,1-trichloroethane, 1,1-dichloroethane, chloroethane, benzene, toluene, ethylbenzene, chlorobenzene, cyclohexane, naphthalene, isopropylbenzene, and xylenes (soil and groundwater) are "regulated substances" as defined under the Georgia Hazardous Site Response Act, O.C.G.A. § 12-8-90 *et seq.*, and the rules promulgated there under (hereinafter "HSRA" and "Rules", respectively). The Corrective Action consists of the installation and maintenance of engineering controls including a protective soil cap consisting of concrete, clean soil and a vegetative cover, and institutional controls prohibiting the use or extraction of groundwater beneath the Property for drinking water, irrigation, livestock, or for any other non-remedial purposes, and prohibiting residential and certain other uses, to protect human health and the environment.

Grantor hereby binds Grantor, its successors and assigns, to the activity and use restriction(s) for the Property identified herein and grants such other rights under this Environmental Covenant in favor of Grantee and EPD. EPD shall have full right of enforcement of the rights conveyed under this Environmental Covenant pursuant to HSRA, O.C.G.A. § 12-8-90 *et seq.*, and the rules promulgated thereunder. Failure to timely enforce compliance with this Environmental Covenant or the use or activity limitations contained herein by any person shall not bar subsequent enforcement by such person and shall not be deemed a waiver of the person's right to take action to enforce any non-compliance. Nothing in this Environmental Covenant shall restrict EPD from exercising any authority under applicable law.

Grantor makes the following declaration as to limitations, restrictions, and uses to which the Property may be put and specifies that such declarations shall constitute covenants to run with the land,

pursuant to O.C.G.A. § 44-16-5(a); is perpetual, unless modified or terminated pursuant to the terms of this Covenant pursuant to O.C.G.A. § 44-16-9; and shall be binding on all parties and all persons claiming under them, including all current and future owners of any portion of or interest in the Property (hereinafter "Owner"). Should a transfer or sale of the Property occur before such time as this Environmental Covenant has been amended or revoked then said Environmental Covenant shall be binding on the transferee(s) or purchaser(s).

The Environmental Covenant shall inure to the benefit of Grantee, EPD, Grantor, and their respective successors and assigns and shall be enforceable by the Director or his agents or assigns, Grantee or its successors and assigns, Grantor or its successors and assigns, and other party(ies) as provided for in O.C.G.A. § 44-16-11 in a court of competent jurisdiction.

Activity and/or Use Limitation(s)

- 1. <u>Registry.</u> Pursuant to O.C.G.A. § 44-16-12, this Environmental Covenant and any amendment or termination thereof, may be contained in EPD's registry for environmental covenants.
- 2. <u>Notice.</u> The Owner of the Property must give thirty (30) day advance written notice to EPD and Grantee of the Owner's intent to convey any interest in the Property. No conveyance of title, easement, lease, or other interest in the Property shall be consummated by the Owner without adequate and complete provision for continued monitoring, operation, and maintenance of the Corrective Action. The Owner of the Property must also give thirty (30) day advance written notice to EPD and Grantee of the Owner's intent to change the use of the Property, apply for building permit(s), or propose any site work that would affect the Property.
- 3. <u>Notice of Limitation in Future Conveyances.</u> Each instrument hereafter conveying an interest in the Property subject to this Environmental Covenant shall contain a notice of the activity and use limitations set forth in this Environmental Covenant and shall provide the recorded location of the Environmental Covenant.
- 4. <u>Monitoring.</u> The Owner shall implement maintenance and monitoring of the soil cap to ensure that the soil cap remains in place and intact to prevent exposure to human health and the environment. The maintenance and monitoring program is defined in the *Soil Cap Operations and Maintenance Plan*, dated May 20, 2014, and as amended jointly in the future by EPD and the Owner.
- 5. <u>Periodic Reporting.</u> Annually, by no later than December 31st following the effective date of this Environmental Covenant, the Owner shall submit to EPD and Grantee an Annual Report as specified in the *Soil Cap Operations and Maintenance Plan*, which certifies compliance with the activities and use limitations in this Environmental Covenant, along with documenting compliance with the Plan requirements, including quarterly soil cap inspections and maintenance activities conducted during the calendar year.
- 6. Activity and Use Limitation(s). The Property shall be used only for non-residential uses, as defined in Section 391-3-19-.02 of the Rules and defined in and allowed under the Fulton County's zoning regulations as of the date of this Environmental Covenant. There shall be no agricultural use of the Property (e.g., forestry, fishing, grazing and mining); no hotels or lodging; no recreational uses (e.g., amusement parks, parks, camps, museums, zoos, or gardens), and no educational uses (e.g., elementary and secondary schools, or child day care or elderly day care services), without prior written notice provided to EPD and Grantee, and written pre-approval of that use or activity provided by EPD. Any residential use on the Property shall be prohibited. Any activity or inactivity on the Property that may result in the release or migration of, or exposure to, the regulated substances that were contained or otherwise addressed as part of the Corrective Action, or create a new exposure pathway, or damage monitoring equipment or existing engineering or institutional or other controls to protect human health and the environment, is prohibited. With the exception of

work necessary for the maintenance, repair, or replacement of engineering controls, activities that are prohibited in the capped areas include, but are not limited to the following: any surface disturbance, e.g., drilling, digging, placement of any objects or use of any equipment which deforms or stresses the surface beyond its load bearing capability, piercing the surface with a rod, spike or similar item, bulldozing, construction or earthwork. Should the Site be sold/transferred to another entity, and that entity wishes to use the property for residential purposes, a vapor intrusion assessment must be conducted in consultation with Georgia EPD.

Should the Owner wish to remove or otherwise modify the capped area for development or other purposes, the Owner shall provide advanced written notice and a plan to EPD and Grantee, for EPD's review and written approval. No removal, modification or other work relating to the soil cap shall be conducted without prior written consent and approval from EPD.

Additionally, should the Owner desire to develop and use the Property for residential or other purposes not currently permitted under this Environmental Covenant, the Owner shall provide advanced written notice and a plan to EPD and Grantee, for EPD's review and written approval. Such plan shall include a demonstration that contaminant concentrations meet applicable residential risk reduction standards and that there is no risk due to soil vapor intrusion.

- 7. <u>Groundwater Use Limitation.</u> The use or extraction of groundwater beneath the Property for drinking water, irrigation or livestock use, or for any other non-remedial purposes, shall be prohibited.
- 8. <u>Permanent Markers.</u> Permanent markers on each side of the concrete and vegetative cap shall be installed and maintained that delineate the restricted area as specified in Section 391-3-19-.07(10) of the Rules. Disturbance or removal of such markers is prohibited.
- 9. <u>Right of Access.</u> In addition to any rights already possessed by EPD and/or Grantee, the Owner shall allow authorized representatives of EPD and/or Grantee the right to enter the Property at reasonable times for the purpose of evaluating the Corrective Action; to take samples, to inspect the Corrective Action conducted at the Property, to determine compliance with this Environmental Covenant, to inspect records that are related to the Corrective Action, or to otherwise comply with EPD requirements.
- 10. Recording of Environmental Covenant and Proof of Notification. Within thirty (30) days after the date of the Director's signature, the Owner shall file this Environmental Covenant with the Recorders of Deeds for each County in which the Property is located, and send a file stamped copy of this Environmental Covenant to EPD within thirty (30) days of recording. Within that time period, the Owner shall also send a file-stamped copy to each of the following: (1) Grantee, (2) each person holding a recorded interest in the Property subject to the covenant, (3) each person in possession of the real property subject to the covenant, (4) each municipality, county, consolidated government, or other unit of local government in which real property subject to the covenant is located, and (5) each owner in fee simple whose property abuts the property subject to the Environmental Covenant.
- 11. <u>Termination or Modification.</u> The Environmental Covenant shall remain in full force and effect in accordance with O.C.G.A. § 44-5-60, unless and until the Director determines that the Property is in compliance with the Type 1, 2, 3, or 4 Risk Reduction Standards, as defined in Rules Section 391-3-19-.07 and removes the Property from the Hazardous Site Inventory, whereupon the Environmental Covenant may be amended or revoked in accordance with Section 391-3-19-08(7) of the Rules and O.C.G.A. § 44-16-1 *et seq.*
- 12. <u>Severability</u>. If any provision of this Environmental Covenant is found to be unenforceable in any respect, the validity, legality, and enforceability of the remaining provisions shall not in any way be affected or impaired.

13. No Property Interest Created in EPD. This Environmental Covenant does not in any way create any interest by EPD in the Property that is subject to the Environmental Covenant. Furthermore, the act of approving this Environmental Covenant does not in any way create any interest by EPD in the Property in accordance with O.C.G.A. § 44-16-3(b).

Representations and Warranties.

Grantor hereby represents and warrants to the other signatories hereto:

- a) That the Grantor has the power and authority to enter into this Environmental Covenant, to grant the rights and interests herein provided and to carry out all obligations hereunder;
- b) That the Grantor is the sole owner of the Property and holds fee simple title which is free, clear and unencumbered:
- c) That the Grantor has identified all other parties that hold any interest (e.g., encumbrance) in the Property and notified such parties of the Grantor's intention to enter into this Environmental Covenant:
- d) That this Environmental Covenant will not materially violate, contravene, or constitute a material default under any other agreement, document or instrument to which Grantor is a party, by which Grantor may be bound or affected;
- e) That the Grantor will serve each of the people or entities referenced in Section 10 above with an identical copy of this Environmental Covenant in accordance with O.C.G.A. § 44-16-4(d).
- f) That to Grantor's knowledge this Environmental Covenant will not materially violate or contravene any zoning law or other law regulating use of the Property; and
- g) That to Grantor's knowledge this Environmental Covenant does not authorize a use of the Property that is otherwise prohibited by a recorded instrument that has priority over the Environmental Covenant.

Notices.

Any document or communication required to be sent pursuant to the terms of this Environmental Covenant shall be sent to the following persons:

For Grantor:

Aramark Uniform & Career Apparel, LLC c/o Mr. Doug Helmstetler 115 North First Street Burbank, California 91502

For Entity with express power to enforce: Georgia Environmental Protection Division Branch Chief Land Protection Branch 2 Martin Luther King Jr. Drive SE Suite 1154 East Tower Atlanta, GA 30334

For Grantee:

Aramark Uniform & Career Apparel, LLC c/o Mr. Doug Helmstetler
115 North First Street
Burbank, California 91502

Grantor has caused this Environmental Environmental Covenants Act, on the				-	to	The	Georgia	Uniform
GRANTOR Aramark Uniform & Career Apparel,	LLC							
[Name of Signatory] [Title]								
Dated:								
WITNESS								
[Name of Signatory] [Title]								
Dated:								
On this day of, appeared before me, acknowledged that he authorized to execute this instrument, and authority] of such party for the uses and purposes mental authority.	e/she signo l acknowle _ [name of	ed this dged it party]	instrument as the to be the	t, on oath	sta	ted tl	nat he/she [type	e was of
			y Public in					
			gia, residin opointmen					

GRANTEE

Aramark Uniform & Career Apparel, LLC

[Name of Person Acknowledging Receipt] [Title]		
Dated:		
WITNESS		
[Name of Signatory] [Title]		
Dated:		
authorized to execute this instrument, and acknowledge	ertify that	e of
	Notary Public in and for the State of Georgia, residing at My appointment expires	
STATE OF GEORGIA ENVIRONMENTAL PROTECTION DIVIS [Name of Person Acknowledging Receipt] [Title]	SION	
Dated:		
On this day of,, I ce appeared before me, acknowledged that he/she authorized to execute this instrument, and acknowledged that he/she authority] of [namesuch party for the uses and purposes mentioned]	ertify that	personally he was e of l deed of

Notary Public in and for the State of	
Georgia, residing at	
My appointment expires	

Exhibit A Legal Description

ENTIRE SITE LEGAL DESCRIPTION

ALL THAT TRACT OR PARCEL OF LAND LYING AND BEING IN LAND LOT 20 OF THE 14^{TH} LAND DISTRICT, CITY OF ATLANTA, FULTON COUNTY GEORGIA, BEING MORE PARTICULARLY DESCRIBED AS FOLLOWS:

BEGINNING AT AN "X" MARK SET IN A CONCRETE SIDEWALK AT THE INTERSECTION OF DEKALB AVENUE—VARIABLE RIGHT OF WAY AND AIRLINE STREET—40 FOOT RIGHT OF WAY: THENCE ALONG THE EASTERN RIGHT OF WAY OF AIRLINE AVENUE NORTH 13 DEGREES 34 MINUTES55 SECONDS WEST A DISTANCE OF 69.15 FEET TO A CAPPED 5/8 INCH REBAR SET: THENCE LEAVING THE AFOREMENTIONED RIGHT OF WAY AND ALONG THE PROPERTY LINE COMMON TO THE ATLANTA BELTLINE INC., FOLLOWING A CURVE TO THE LEFT HAVING A RADIUS OF 1007.03 FEET AND AN ARC LENGTH OF 332.72 FEET BEING SUBTENDED BY A CHORD OF NORTH 30 DEGREES 48 MINUTES 22 SECONDS EAST FOR A DISTANCE OF 332.21 FEET TO A CONCRETE NAIL SET: THENCE WITH A CURVE TO THE LEFT HAVING A RADIUS OF 1152.43 FEET AND AN ARC LENGTH OF 95.82 FEET BEING SUBTENDED BY A CHORD OF NORTH 19 DEGREES 15 MINUTES 40 SECONDS EAST FOR A DISTANCE OF 95.79 FEET TO A CAPPED 5/8 INCH IRON PIN SET ON THE SOUTHERN RIGHT OF WAY OF EDGEWOOD AVENUE: THENCE ALONG AFOREMENTIONED RIGHT OF WAY FOLLOWING A CURVE TO THE LEFT HAVING A RADIUS OF 242.21 FEET AND AN ARC LENGTH OF 62.58 FEET BEING SUBTENDED BY A CHORD OF NORTH 82 DEGREES 50 MINUTES 26 SECONDS EAST FOR A DISTANCE OF 62.41 FEET TO A CAPPED 5/8 INCH IRON PIN SET; THENCE LEAVING SAID RIGHT OF WAY AND ALONG THE WESTERN RIGHT OF WAY OF GUNBY STREET SOUTH 11 DEGREES 14 MINUTES 15 SECONDS EAST A DISTANCE OF 361.44 FEET TO A "X" MARK FOUND IN CONCRETE AT THE NORTHWEST INTERSECTION OF GUNBY STREET AND DEKALB AVENUE: THENCE ALONG THE NORTHERN VARIABLE RIGHT OF WAY OF DEKALB AVENUE FOLLOWING A CURVE TO THE LEFT HAVING A RADIUS OF 13560.50 FEET AND AN ARC LENGTH OF 331.38 FEET BEING SUBTENDED BY A CHORD OF SOUTH 73 DEGREES 16 MINUTES 10 SECONDS WEST FOR A DISTANCE OF 331.37 FEET TO AN "X" MARK SET IN CONCRETE, SAID POINT BEING THE POINT OF BEGINNING.

SAID PARCEL HAVING AN AREA OF 1.740 ACRES OR 75,809 SQUARE FEET, INCLUDING THE CAP AREA.

CAP AREA (TRACT 1) DESCRIPTION

ALL THAT TRACT OR PARCEL OF LAND LYING AND BEING IN LAND LOT 20 OF THE 14TH LAND DISTRICT, CITY OF ATLANTA, FULTON COUNTY GEORGIA, BEING MORE PARTICULARLY DESCRIBED AS FOLLOWS:

COMMENCING AT AN "X" MARK SET IN A CONCRETE SIDEWALK AT THE INTERSECTION OF DEKALB AVENUE - VARIABLE RIGHT OF WAY AND AIRLINE STREET - 40 FOOT RIGHT OF WAY; THENCE ALONG THE EASTERN RIGHT OF WAY OF AIRLINE AVENUE NORTH 13 DEGREES 34 MINUTES 55 SECONDS WEST A DISTANCE OF 69.15 FEET TO A CAPPED 5/8 INCH REBAR SET; THENCE LEAVING THE AFOREMENTIONED RIGHT OF WAY AND ALONG THE PROPERTY COMMON TO THE ATLANTA BELTLINE INC., FOLLOWING A CURVE TO THE LEFT HAVING A RADIUS OF 1007.03 FEET AND AN ARC LENGTH OF 332.72 FEET BEING SUBTENDED BY A CHORD OF NORTH 30 DEGREES 48 MINUTES 22 SECONDS EAST FOR A DISTANCE OF 331.21 FEET TO A CONCRETE NAIL SET; THENCE LEAVING AFOREMENTIONED PROPERTY LINE AND ALONG A TIE LINE SOUTH 34 DEGREES 45 MINUTES 46 SECONDS EAST A DISTANCE OF 1.65 TO THE CORNER OF A BLOCK WALL, SAID POINT BEING THE POINT OF BEGINNING.

THENCE ALONG THE EXTERIOR OF A CONCRETE BLOCK WALL THE FOLLOWING BEARINGS AND DISTANCES: NORTH 19 DEGREES 46 MINUTES 39 SECONDS EAST A DISTANCE OF 38.27 FEET TO THE CORNER OF A BLOCK WALL: THENCE SOUTH 77 DEGREES 25 MINUTES 42 SECONDS EAST A DISTANCE OF 1.74 FEET TO THE CORNER OF A BLOCK WALL: THENCE NORTH 18 DEGREES 10 MINUTES 20 SECONDS EAST A DISTANCE OF 3.59 FEET TO THE CORNER OF A BLOCK WALL; THENCE NORTH 61 DEGREES 30 MINUTES 39 SECONDS WEST A DISTANCE OF 1.10 FEET TO THE CORNER OF A BLOCK WALL; THENCE NORTH 16 DEGREES 57 MINUTES 51 SECONDS EAST A DISTANCE OF 54.27 FEET TO THE CORNER OF A BLOCK WALL: THENCE NORTH 83 DEGREES 50 MINUTES 04 SECONDS EAST A DISTANCE OF 2.89 FEET TO A POINT ON THE SOUTHERN RIGHT AWAY OF EDGEWOOD AVENUE: THENCE ALONG SAID RIGHT OF WAY FOLLOWING A CURVE TO THE LEFT HAVING A RADIUS OF 242.21 FEET AND AN ARC LENGTH OF 21.56 FEET BEING SUBTENDED BY A CHORD OF NORTH 87 DEGREES 01 MINUTES 08 SECONDS EAST FOR A DISTANCE OF 21.55 FEET; THENCE LEAVING AFOREMENTIONED RIGHT OF WAY SOUTH 09 DEGREES 56 MINUTES 46 SECONDS EAST A DISTANCE OF 1.70 FEET TO THE CORNER ON THE BLOCK WALL; THENCE SOUTH 22 DEGREES 10 MINUTES 18 SECONDS WEST A DISTANCE OF 9.36 FEET TO A POINT ON THE WALL: THENCE SOUTH 14 DEGREES 30 MINUTES 09 SECONDS WEST A DISTANCE OF 28.89 FEET TO THE CORNER OF A BLOCK WALL; THENCE SOUTH 73 DEGREES 15 MINUTES 08 SECONDS EAST A DISTANCE OF 12.65 FEET TO THE CORNER OF A BLOCK WALL: THENCE SOUTH 17 DEGREES 01 MINUTES 51 SECONDS WEST A DISTANCE OF 22.58 FEET TO THE CORNER OF A BLOCK WALL: THENCE NORTH 72 DEGREES 13 MINUTES 13 SECONDS WEST A DISTANCE OF 16.21 FEET TO THE CORNER OF A BLOCK WALL; THENCE SOUTH 17 DEGREES 49 MINUTES 52 SECONDS WEST A DISTANCE OF 44.43 FEET TO THE CORNER OF A BLOCK WALL; THENCE NORTH 69 DEGREES 11 MINUTES 51 SECONDS WEST A DISTANCE OF 22.49 FEET TO THE CORNER OF A BLOCK WALL; SAID POINT BEING THE POINT OF BEGINNING.

SAID PARCEL HAVING AN AREA OF 0.0600 ACRES OR 2,593 SQUARE FEET.

CAP AREA (TRACT 2) DESCRIPTION

ALL THAT TRACT OR PARCEL OF LAND LYING AND BEING IN LAND LOT 20 OF THE 14TH LAND DISTRICT, CITY OF ATLANTA, FULTON COUNTY GEORGIA, BEING MORE PARTICULARLY DESCRIBED AS FOLLOWS:

COMMENCING AT AN "X" MARK SET IN A CONCRETE SIDEWALK AT THE INTERSECTION OF DEKALB AVENUE - VARIABLE RIGHT OF WAY AND AIRLINE STREET - 40 FOOT RIGHT OF WAY: THENCE ALONG THE EASTERN RIGHT OF WAY OF AIRLINE AVENUE NORTH 13 DEGREES 34 MINUTES 55 SECONDS WEST A DISTANCE OF 69.15 FEET TO A CAPPED 5/8 INCH REBAR SET: THENCE LEAVING THE AFOREMENTIONED RIGHT OF WAY AND ALONG THE PROPERTY COMMON TO THE ATLANTA BELTLINE INC., FOLLOWING A CURVE TO THE LEFT HAVING A RADIUS OF 1007.03 FEET AND AN ARC LENGTH OF 332.72 FEET BEING SUBTENDED BY A CHORD OF NORTH 30 DEGREES 48 MINUTES 22 SECONDS EAST FOR A DISTANCE OF 331.21 FEET TO A CONCRETE NAIL SET; THENCE LEAVING AFOREMENTIONED PROPERTY LINE AND ALONG A TIE LINE SOUTH 34 DEGREES 45 MINUTES 46 SECONDS EAST A DISTANCE OF 1.65 TO THE CORNER OF A BLOCK WALL: THENCE ALONG THE EXTERIOR OF A CONCRETE BLOCK WALL THE FOLLOWING BEARINGS AND DISTANCES: NORTH 19 DEGREES 46 MINUTES 39 SECONDS EAST A DISTANCE OF 38.27 FEET TO THE CORNER OF A BLOCK WALL; THENCE SOUTH 77 DEGREES 25 MINUTES 42 SECONDS EAST A DISTANCE OF 1.74 FEET TO THE CORNER OF A BLOCK WALL; THENCE NORTH 18 DEGREES 10 MINUTES 20 SECONDS EAST A DISTANCE OF 3.59 FEET TO THE CORNER OF A BLOCK WALL; THENCE NORTH 61 DEGREES 30 MINUTES 39 SECONDS WEST A DISTANCE OF 1.10 FEET TO THE CORNER OF A BLOCK WALL; THENCE NORTH 16 DEGREES 57 MINUTES 51 SECONDS EAST A DISTANCE OF 54.27 FEET TO THE CORNER OF A BLOCK WALL; THENCE NORTH 83 DEGREES 50 MINUTES 04 SECONDS EAST A DISTANCE OF 2.89 FEET TO A POINT ON THE SOUTHERN RIGHT AWAY OF EDGEWOOD AVENUE: SAID POINT BEING THE POINT OF BEGINNING.

THENCE NORTH 83 DEGREES 50 MINUTES 04 SECONDS EAST A DISTANCE OF 21.44 FEET TO THE CORNER OF THE BLOCK WALL; THENCE SOUTH 09 DEGREES 56 MINUTES 46 SECONDS EAST A DISTANCE OF 1.20 FEET TO A POINT ON THE SOUTHERN RIGHT OF WAY OF EDGEWOOD AVENUE; THENCE ALONG SAID RIGHT OF WAY FOLLOWING A CURVE TO THE RIGHT HAVING A RADIUS OF 242.21 FEET AND AN ARC LENGTH OF 21.56 FEET BEING SUBTENDED BY A CHORD OF SOUTH 87 DEGREES 01 MINUTES 08 SECONDS WEST FOR A DISTANCE OF 21.55 FEET TO A POINT ON THE AFOREMENTIONED RIGHT OF WAY; SAID POINT BEING THE POINT OF BEGINNING.

SAID PARCEL HAVING AN AREA OF 0.0004 ACRES OR 16 SQUARE FEET.

Exhibit B Site Map

ATTACHMENT D Historical Summary of VOCs Detected in Soil

Table D-1. Summary of VOCs Detected in Soil Samples for DePaul Monitoring Wells, 1992.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

			MW-7					MW-9				
			5/21/92	201	251	401	4.41	5/21/92	551	col	CEL	221
			10'	30'	35'	40'	44'	50'	55'	60'	65'	88'
Chlorinated VOCs		Selected RRS										
Tetrachloroethene	μg/kg	500	<5	<5	17	11	13	12	22	11	<5	<5
1,1,1-Trichloroethane	μg/kg	260,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Trichloroethene	μg/kg	500	<5	<5	15	14	12	12	12	13	<5	<5
1,1-Dichloroethene	μg/kg	700	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane	μg/kg	500	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane	μg/kg	400,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chloroethane	μg/kg	170	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
cis-1,2-Dichloroethene	μg/kg	19,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
trans-1,2-Dichloroethene	μg/kg	52,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl Chloride	μg/kg	200	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Aromatic Hydrocarbons												
Benzene	μg/kg	500	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Ethylbenzene	μg/kg	340,000	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Toluene	μg/kg	400,000	20	<2	<2	<2	<2	<2	<2	<2	<2	<2
Chlorobenzene	μg/kg	10,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Cyclohexane	μg/kg	1,400,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	μg/kg	100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
o-Xylene	μg/kg	1,100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
m,p-Xylene	μg/kg	1,100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Xylenes, Total	μg/kg	1,100,000	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Isopropylbenzene	μg/kg	94,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Non-Chlorinated VOCs												
2-Butanone	μg/kg	200,000	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
Acetone	μg/kg	400,000	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
Carbon Disulfide	μg/kg	400,000	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Methylene Chloride	μg/kg	500	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5

RRS-Risk Reduction Standard (see Table 1 of CSR)

VOCs-volatile organic compounds

μg/kg- micrograms per kilogram

NA-not analyzed

Bold-analyte detected

Table D-2. Summary of VOCs Detected in Soil from DePaul Hand Auger Samples, 1992. ARAMARK DeKalb Avenue VRP/HSI Site No. 10704 Atlanta, Georgia

			HA-1 3/18/92 10'	HA-3 3/19/92 10'	HA-4 3/19/92 10'	HA-6 3/19/92 10'	HA-8 3/19/92 10'	HA-10 3/19/92 10'	HA-15 3/19/92 10'	HA-16 3/19/92 10'	HA-20 3/20/92 5'	HA-21 3/20/92 10'
Chlorinated VOCs		Selected RRS	10	10	10	10	10		10	10	3	10
Tetrachloroethene	μg/kg	500	174	2,770	31	49	3,920	1,350	52	1,910	3,170	8,220
1,1,1-Trichloroethane	μg/kg	260,000	<5	<5	<5	<5	<5	<5	<5	<5	14	<5
Trichloroethene	μg/kg	500	<5	31	<5	<5	69	<5	<5	<5	2,290	52
1,1-Dichloroethene	μg/kg	700	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane	μg/kg	500	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane	μg/kg	400,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chloroethane	μg/kg	170	<50	<5	<5	<5	<5	<5	<5	<5	<5	<5
cis-1,2-Dichloroethene	μg/kg	19,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
trans-1,2-Dichloroethene	μg/kg	52,000	38	<5	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl Chloride	μg/kg	200	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
Aromatic Hydrocarbons												
Benzene	μg/kg	500	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Ethylbenzene	μg/kg	340,000	<2	<2	<2	<2	<2	<2	<2	<2	65	<2
Toluene	μg/kg	400,000	<2	4.0	<2	<2	<2	<2	<2	<2	<2	15
Chlorobenzene	μg/kg	10,000	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Cyclohexane	μg/kg	1,400,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	μg/kg	100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
o-Xylene	μg/kg	1,100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
m,p-Xylene	μg/kg	1,100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Xylenes, Total	μg/kg	1,100,000	<2	<2	<2	<2	<2	<2	<2	<2	87	<2
Isopropylbenzene	μg/kg	94,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Non-Chlorinated VOCs												
2-Butanone	μg/kg	200,000	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
Acetone	μg/kg	400,000	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500
Carbon Disulfide	μg/kg	400,000	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Methylene Chloride	μg/kg	500	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10

Notes:

RRS-Risk Reduction Standard (see Table 1 of CSR)

VOCs-volatile organic compounds

μg/kg- micrograms per kilogram

NA-not analyzed

Bold-analyte detected

Bold-analyte detected above Selected RRSs

Table D-3. Summary of VOCs Detected in Soil for LAW Samples, 2001.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

				DP-101			DP-102			DP-103			DP-104	
				04/24/01			04/25/01			04/24/01			04/25/01	
			0-2'	4-6'	16-18'	0-2'	4-6'	14-16'	0-2'	4-6'	16-18'	0-2'	8-10'	14-16'
		Selected												
Chlorinated VOCs		RRS												
Tetrachloroethene	μg/kg	500	720,000	36,000	1,100	19,000	22,000	6,800	100,000	3,700	670 E	110	4,200	2,000 E
1,1,1-Trichloroethane	μg/kg	260,000	<14,000	<3,000	<360	<310	<300	<320	<6,300	<6.3	<6.6	<6.5	<310	<7.4
Trichloroethene	μg/kg	500	<14,000	<3,000	<360	<310	<300	<320	<6,300	6.9	<6.6	16	910	49
1,1-Dichloroethene	μg/kg	700	<14,000	<3,000	<360	<310	<300	<320	<6,300	<6.3	<6.6	<6.5	<310	<7.4
1,2-Dichloroethane	μg/kg	500	<14,000	<3,000	<360	<310	<300	<320	<6,300	<6.3	<6.6	<6.5	<310	<7.4
1,1-Dichloroethane	μg/kg	400,000	<14,000	<3,000	<360	<310	<300	<320	<6,300	<6.3	<6.6	<6.5	<310	<7.4
Chloroethane	μg/kg	170	<14,000	<3,000	<360	<310	<300	<320	<6,300	<6.3	<6.6	<6.5	<310	<7.4
cis-1,2-Dichloroethene	μg/kg	19,000	<14,000	<3,000	<360	<310	<300	<320	<6,300	<6.3	<6.6	41	1,700	780
trans-1,2-Dichloroethene	μg/kg	52,000	<14,000	<3,000	<360	<310	<300	<320	<6,300	<6.3	<6.6	<6.5	<310	<7.4
Vinyl Chloride	μg/kg	200	<28,000	<6,000	<720	<620	<600	<630	<13,000	<13	<13	<13	<620	<15
Aromatic Hydrocarbons														
Benzene	μg/kg	500	<14,000	<3,000	<360	<310	<300	<320	<6,300	<6.3	<6.6	<6.5	<310	<7.4
Ethylbenzene	μg/kg	340,000	<14,000	<3,000	<360	<310	<300	<320	<6,300	<6.3	<6.6	<6.5	<310	<7.4
Toluene	μg/kg	400,000	<14,000	<3,000	<360	<310	<300	<320	<6,300	<6.3	<6.6	<6.5	<310	<7.4
Chlorobenzene	μg/kg	10,000	<28,000	<6,000	<720	<620	<600	<630	<13,000	<13	<13	<13	<620	<15
Cyclohexane	μg/kg	1,400,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	μg/kg	100,000	<28,000	<6,000	<720	<620	<600	<630	<13,000	<13	<13	<13	<620	<15
o-Xylene	μg/kg	1,100,000	<14,000	<3,000	<360	<310	<300	<320	<6,300	<6.3	<6.6	<6.5	<310	<7.4
m,p-Xylene	μg/kg	1,100,000	<14,000	<3,000	<360	<310	<300	<320	<6,300	<6.3	<6.6	<6.5	<310	<7.4
Xylenes, Total	μg/kg	1,100,000	<14,000	<3,000	<360	<310	<300	<320	<6,300	<6.3	<6.6	<6.5	<310	<7.4
Isopropylbenzene	μg/kg	94,000	<28,000	<6,000	<720	<620	<600	<630	<13,000	<13	<13	<13	<620	<7.4
Non-Chlorinated VOCs														
2-Butanone	μg/kg	200,000	<280,000	<60,000	<7,200	<6,200	<6,000	<6,300	<130,000	<130	<130	<130	<6,200	<150
Acetone	μg/kg	400,000	<280,000	<60,000	<7,200	<6,200	<6,000	<6,300	<130,000	<130	<130	<130	<6,200	<150
Carbon Disulfide	μg/kg	400,000	<28,000	<6,000	<720	<620	<600	<630	<13,000	<13	<13	<13	<620	<15
Methylene Chloride	μg/kg	500	<28,000	<6,000	<720	<620	<600	<630	<13,000	<13	<13	<13	<620	<15

RRS-Risk Reduction Standard (see Table 1 of CSR)

VOCs-volatile organic compounds

μg/kg- micrograms per kilogram

NA-not analyzed

E-Concentration exceeded the established method calibration range but is within the working range of the instrument

Bold-analyte detected

Bold-analyte detected above Selected RRSs

^{*}Reportedly a duplicate sample; however, location unknown

Table D-3. Summary of VOCs Detected in Soil for LAW Samples, 2001. ARAMARK DeKalb Avenue VRP/HSI Site No. 10704 Atlanta, Georgia

				DP-105		DP-	106	DP-107*
				04/25/01		04/2	4/01	04/24/01
			0-2'	10-12'	12-14'	4-6'	6-8'	20-22'
Chlorinated VOCs		Selected RRS						
Tetrachloroethene	μg/kg	500	780	650,000	23,000	5,400	4,600	14,000
1,1,1-Trichloroethane	μg/kg	260,000	<320	<350	<350	<290	<320	<350
Trichloroethene	μg/kg	500	<320	380	<350	<290	<320	1,700
1,1-Dichloroethene	μg/kg	700	<320	<350	<350	<290	<320	<350
1,2-Dichloroethane	μg/kg	500	<320	<350	<350	<290	<320	<350
1,1-Dichloroethane	μg/kg	400,000	<320	<350	<350	<290	<320	<350
Chloroethane	μg/kg	170	<320	<350	<350	<290	<320	<350
cis-1,2-Dichloroethene	μg/kg	19,000	<320	<350	<350	<290	<320	2,300
trans-1,2-Dichloroethene	μg/kg	52,000	<320	<350	<350	<290	<320	<350
Vinyl Chloride	μg/kg	200	<640	<690	<690	<590	<630	<700
Aromatic Hydrocarbons								
Benzene	μg/kg	500	<320	<350	<350	<290	<320	<350
Ethylbenzene	μg/kg	340,000	<320	<350	<350	<290	<320	<350
Toluene	μg/kg	400,000	<320	<350	<350	<290	<320	<350
Chlorobenzene	μg/kg	10,000	<640	<690	<690	<590	<630	<700
Cyclohexane	μg/kg	1,400,000	NA	NA	NA	NA	NA	NA
Naphthalene	μg/kg	100,000	<640	<690	<690	<590	<630	<700
o-Xylene	μg/kg	1,100,000	<320	<350	<350	<290	<320	<350
m,p-Xylene	μg/kg	1,100,000	<320	<350	<350	<290	<320	<350
Xylenes, Total	μg/kg	1,100,000	<320	<350	<350	<290	<320	<350
Isopropylbenzene	μg/kg	94,000	<640	<690	<690	<590	<630	<700
Non-Chlorinated VOCs								
2-Butanone	μg/kg	200,000	<6,400	<6,900	<6,900	<5,800	<6,300	<7,000
Acetone	μg/kg	400,000	<6,400	<6,900	<6,900	<5,800	<6,300	<7,000
Carbon Disulfide	μg/kg	400,000	<640	<690	<690	<590	<630	<700
Methylene Chloride	μg/kg	500	<640	<690	<690	<590	<630	<700

Notes:

RRS-Risk Reduction Standard (see Table 1 of CSR)

VOCs-volatile organic compounds μg/kg- micrograms per kilogram

NA-not analyzed

E-Concentration exceeded the established method calibration range but is within the working range of the instrument

Bold-analyte detected

Bold-analyte detected above Selected RRSs

^{*}Reportedly a duplicate sample; however, location unknown

Table D-4. Summary of VOCs Detected in Soil for LAW Samples from MW-101-MW-104, 2001. ARAMARK DeKalb Avenue VRP/HSI Site No. 10704 Atlanta, Georgia

				MW-101			MW-102			MW-103		MW-104*
				04/24/01			04/23/01			04/24/01		04/24/01
			0-2'	4-6'	14-16'	0-2'	4-6'	19-21'	0-2'	9-11'	14-16'	4-6'
Chlorinated VOCs		Selected RRS										
Tetrachloroethene	μg/kg	500	130,000	4,500	5,300	<5.7	<5.9	18	34	84,000	90,000	2,400
1,1,1-Trichloroethane	μg/kg	260,000	<3,000	<320	<370	<5.7	<5.9	<6.8	<6.3	<6,800	<3,400	<310
Trichloroethene	μg/kg	500	<3,000	<320	<370	<5.7	<5.9	<6.8	20	15,000	<3,400	<310
1,1-Dichloroethene	μg/kg	700	<3,000	<320	<370	<5.7	<5.9	<6.8	<6.3	<6,800	<3,400	<310
1,2-Dichloroethane	μg/kg	500	<3,000	<320	<370	<5.7	<5.9	<6.8	<6.3	<6,800	<3,400	<310
1,1-Dichloroethane	μg/kg	400,000	<3,000	<320	<370	<5.7	<5.9	<6.8	<6.3	<6,800	<3,400	<310
Chloroethane	μg/kg	170	<3,000	<320	<370	<5.7	<5.9	<6.8	<6.3	<6,800	<3,400	<310
cis-1,2-Dichloroethene	μg/kg	19,000	<3,000	<320	<370	<5.7	<5.9	18	<6.3	<6,800	<3,400	<310
trans-1,2-Dichloroethene	μg/kg	52,000	<3,000	<320	<370	<5.7	<5.9	<6.8	<6.3	<6,800	<3,400	<310
Vinyl Chloride	μg/kg	200	<6,000	<640	<740	<11	<12	<14	<13	<14,000	<6,800	<630
Aromatic Hydrocarbons												
Benzene	μg/kg	500	<3,000	<320	<370	<5.7	<5.9	<6.8	<6.3	<6,800	<3,400	<310
Ethylbenzene	μg/kg	340,000	<3,000	<320	<370	<5.7	<5.9	<6.8	<6.3	<6,800	<3,400	<310
Toluene	μg/kg	400,000	<3,000	<320	<370	<5.7	<5.9	<6.8	<6.3	<6,800	<3,400	<310
Chlorobenzene	μg/kg	10,000	<6,000	<640	<740	<11	<12	<14	<13	<14,000	<6,800	<630
Cyclohexane	μg/kg	1,400,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	μg/kg	100,000	<6,000	<640	<740	<11	<12	<14	<13	<14,000	<6,800	<630
o-Xylene	μg/kg	1,100,000	<3,00	<320	<370	<5.7	<5.9	<6.8	<6.3	<6,800	<3,400	<310
m,p-Xylene	μg/kg	1,100,000	<3,000	<320	<370	<5.7	<5.9	<6.8	<6.3	<6,800	<3,400	<310
Xylenes, Total	μg/kg	1,100,000	<3,000	<320	<370	<5.7	<5.9	<6.8	<6.3	<6,800	<3,400	<310
Isopropylbenzene	μg/kg	94,000	<6,000	<640	<740	<11	<12	<14	<13	<14,000	<6,800	<630
Non-Chlorinated VOCs												
2-Butanone	μg/kg	200,000	<60,000	<6,400	<7,400	<110	<120	<140	<130	<140,000	<68,000	<6,300
Acetone	μg/kg	400,000	<60,000	<6,400	<7,400	<110	<120	<140	<130	<140,000	<68,000	<6,300
Carbon Disulfide	μg/kg	400,000	<6,000	<640	<740	<11	<12	<14	<13	<14,000	<6,800	<630
Methylene Chloride	μg/kg	500	<6,000	<640	<740	<11	<12	<14	<13	<14,000	<6,800	<630

Notes:

RRS-Risk Reduction Standard (see Table 1 of CSR)

VOCs-volatile organic compounds

*Duplicate sample collected from MW-101

μg/kg- micrograms per kilogram

NA-Not analyzed

Bold-analyte detected

Bold-analyte detected above Selected RRSs

Table D-5. Summary of VOCs Detected in Soil for Bock Samples, 2001. ARAMARK DeKalb Avenue VRP/HSI Site No. 10704 Atlanta, Georgia

				DP-101			DP-102			DP-103			DP-104	
				04/24/01			04/25/01			04/24/01			04/25/01	
			0-2'	4-6'	16-18'	0-2'	4-6'	14-16'	0-2'	4-6'	16-18'	0-2'	8-10'	14-16'
		Selected												
Chlorinated VOCs		RRS												
Tetrachloroethene	μg/kg	500	198,600	5,430	595	4,750	15,120	4,910	3,370	900	335	170	9,230	450
1,1,1-Trichloroethane	μg/kg	260,000	<6.0	<6.0	<8.0	<120	<305	<115	<130	<6.0	<8.0	<6.0	<320	<7.0
Trichloroethene	μg/kg	500	170	110	32	<120	<305	<115	<130	47	<8.0	19	1,640	46
1,1-Dichloroethene	μg/kg	700	<6.0	<6.0	<8.0	<120	<305	<115	<130	<6.0	<8.0	<6.0	<320	<7.0
1,2-Dichloroethane	μg/kg	500	<6.0	<6.0	<8.0	<120	<305	<115	<130	<6.0	<8.0	<6.0	<320	<7.0
1,1-Dichloroethane	μg/kg	400,000	<6.0	<6.0	<8.0	<120	<305	<115	<130	<6.0	<8.0	<6.0	<320	<7.0
Chloroethane	μg/kg	170	<6.0	<6.0	<8.0	<120	<305	<115	<130	<6.0	<8.0	<6.0	<320	<7.0
cis-1,2-Dichloroethene	μg/kg	19,000	<6.0	<6.0	<8.0	<120	<305	<115	<130	<6.0	<8.0	31	2,250	1,160
trans-1,2-Dichloroethene	μg/kg	52,000	<6.0	<6.0	<8.0	<120	<305	<115	<130	<6.0	<8.0	<6.0	<320	<7.0
Vinyl Chloride	μg/kg	200	<6.0	<6.0	<8.0	<120	<305	<115	<130	<6.0	<8.0	<6.0	<320	<7.0
Aromatic Hydrocarbons														
Benzene	μg/kg	500	<6.0	<6.0	<8.0	<120	<305	<115	<130	<6.0	<8.0	<6.0	<320	<7.0
Ethylbenzene	μg/kg	340,000	<6.0	<6.0	<8.0	<120	<305	<115	<130	<6.0	<8.0	<6.0	<320	<7.0
Toluene	μg/kg	400,000	7.0	<6.0	<8.0	<120	<305	<115	<130	<6.0	<8.0	<6.0	<320	<7.0
Chlorobenzene	μg/kg	10,000	<6.0	<6.0	<8.0	<120	<305	<115	<130	<6.0	<8.0	<6.0	<320	<7.0
Cyclohexane	μg/kg	1,400,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	μg/kg	100,000	9.0	<6.0	<8.0	<120	<305	<115	<130	<6.0	<8.0	<6.0	<320	13
o-Xylene	μg/kg	1,100,000	20	<6.0	<8.0	<120	<305	<115	<130	<6.0	<8.0	<6.0	<320	19
m,p-Xylene	μg/kg	1,100,000	8.0	<6.0	<8.0	<120	<305	<115	<130	<6.0	<8.0	<6.0	<320	8.0
Xylenes, Total	μg/kg	1,100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Isopropylbenzene	μg/kg	94,000	6.0	<6.0	<8.0	<120	<305	<115	<130	<6.0	<8.0	<6.0	<320	<7.0
Non-Chlorinated VOCs														
2-Butanone	μg/kg	200,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	μg/kg	400,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbon Disulfide	μg/kg	400,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methylene Chloride	μg/kg	500	<6.0	<6.0	<8.0	<120	<305	<115	<130	<6.0	<8.0	<6.0	<320	<7.0

Notes:

Soil Samples Collected are Split Samples with LAW

RRS-Risk Reduction Standard (see Table 1 of CSR)

VOCs-volatile organic compounds

*Duplicate sample collected from DP-104

μg/kg- micrograms per kilogram

NA-not analyzed

Bold-analyte detected

Bold-analyte detected above Selected RRSs

Table D-5. Summary of VOCs Detected in Soil for Bock Samples, 2001. ARAMARK DeKalb Avenue VRP/HSI Site No. 10704 Atlanta, Georgia

				DP-105		DP-	106	DP-107*
				04/25/01		04/2	4/01	04/24/01
			0-2'	10-12'	12-14'	4-6'	6-8'	8-10'
		Selected						
Chlorinated VOCs		RRS						
Tetrachloroethene	μg/kg	500	385	2,830,300	432,400	10,870	505	29,380
1,1,1-Trichloroethane	μg/kg	260,000	<125	<3,480	<135	<7.0	<6.0	<140
Trichloroethene	μg/kg	500	<125	<3,480	275	57	36	1,830
1,1-Dichloroethene	μg/kg	700	<125	<3,480	<135	<7.0	<6.0	<140
1,2-Dichloroethane	μg/kg	500	<125	<3,480	<135	<7.0	<6.0	<140
1,1-Dichloroethane	μg/kg	400,000	<125	<3,480	<135	<7.0	<6.0	<140
Chloroethane	μg/kg	170	<125	<3,480	<135	<7.0	<6.0	<140
cis-1,2-Dichloroethene	μg/kg	19,000	<125	<3,480	155	<7.0	<6.0	4,850
trans-1,2-Dichloroethene	μg/kg	52,000	<125	<3,480	<135	<7.0	<6.0	<140
Vinyl Chloride	μg/kg	200	<125	<3,480	<135	<7.0	<6.0	<140
Aromatic Hydrocarbons								
Benzene	μg/kg	500	<125	<3,480	<135	<7.0	<6.0	<140
Ethylbenzene	μg/kg	340,000	<125	<3,480	<135	<7.0	<6.0	220
Toluene	μg/kg	400,000	<125	<3,480	<135	<7.0	<6.0	<140
Chlorobenzene	μg/kg	10,000	<125	<3,480	<135	<7.0	<6.0	<140
Cyclohexane	μg/kg	1,400,000	NA	NA	NA	NA	NA	NA
Naphthalene	μg/kg	100,000	<125	<3,480	<135	<7.0	<6.0	680
o-Xylene	μg/kg	1,100,000	<125	<3,480	<135	<7.0	<6.0	<140
m,p-Xylene	μg/kg	1,100,000	<125	<3,480	<135	<7.0	<6.0	<140
Xylenes, Total	μg/kg	1,100,000	NA	NA	NA	NA	NA	NA
Isopropylbenzene	μg/kg	94,000	<125	<3,480	385	<7.0	<6.0	785
Non-Chlorinated VOCs								
2-Butanone	μg/kg	200,000	NA	NA	NA	NA	<6,300	NA
Acetone	μg/kg	400,000	NA	NA	NA	NA	<6,300	NA
Carbon Disulfide	μg/kg	400,000	NA	NA	NA	NA	<630	NA
Methylene Chloride	μg/kg	500	<125	<3,480	<135	<7.0	<630	<140

Notes:

Soil Samples Collected are Split Samples with LAW

RRS-Risk Reduction Standard (see Table 1 of CSR)

VOCs-volatile organic compounds

*Duplicate sample collected from DP-104

μg/kg- micrograms per kilogram

NA-not analyzed

Bold-analyte detected

Bold-analyte detected above Selected RRSs

Table D-6. Summary of VOCs Detected in Soil for Bock Samples from MW-101-MW-104, 2001. ARAMARK DeKalb Avenue VRP/HSI Site No. 10704 Atlanta, Georgia

				MW-101			MW-102			MW-103		MW-104*
				04/24/01			04/23/01			04/24/01		04/24/01
			0-2'	4-6'	14-16'	0-2'	4-6'	19-21'	0-2'	9-11'	14-16'	4-6'
		Selected										
Chlorinated VOCs		RRS										
Tetrachloroethene	μg/kg	500	4,580	4,540	1,020	<6.0	<7.0	9.0	44	770	10,070	32,460
1,1,1-Trichloroethane	μg/kg	260,000	<7.0	<7.0	<7.0	<6.0	<7.0	<7.0	<7.0	<6.0	<7.0	<7.0
Trichloroethene	μg/kg	500	21	24	36	<6.0	<7.0	<7.0	43	1,350	120	23
1,1-Dichloroethene	μg/kg	700	<7.0	<7.0	<7.0	<6.0	<7.0	<7.0	<7.0	<6.0	<7.0	<7.0
1,2-Dichloroethane	μg/kg	500	<7.0	<7.0	<7.0	<6.0	<7.0	<7.0	<7.0	<6.0	<7.0	<7.0
1,1-Dichloroethane	μg/kg	400,000	<7.0	<7.0	<7.0	<6.0	<7.0	<7.0	<7.0	<6.0	<7.0	<7.0
Chloroethane	μg/kg	170	<7.0	<7.0	<7.0	<6.0	<7.0	<7.0	<7.0	<6.0	<7.0	<7.0
cis-1,2-Dichloroethene	μg/kg	19,000	<7.0	<7.0	<7.0	<6.0	<7.0	10	11	460	595	<7.0
trans-1,2-Dichloroethene	μg/kg	52,000	<7.0	<7.0	<7.0	<6.0	<7.0	<7.0	<7.0	13	<7.0	<7.0
Vinyl Chloride	μg/kg	200	<7.0	<7.0	<7.0	<6.0	<7.0	<7.0	<7.0	<6.0	<7.0	<7.0
Aromatic Hydrocarbons												
Benzene	μg/kg	500	<7.0	<7.0	<7.0	<6.0	<7.0	<7.0	<7.0	<6.0	<7.0	<7.0
Ethylbenzene	μg/kg	340,000	<7.0	<7.0	<7.0	<6.0	<7.0	<7.0	<7.0	<6.0	<7.0	<7.0
Toluene	μg/kg	400,000	<7.0	<7.0	<7.0	<6.0	<7.0	<7.0	<7.0	<6.0	<7.0	<7.0
Chlorobenzene	μg/kg	10,000	<7.0	<7.0	<7.0	<6.0	<7.0	<7.0	<7.0	<6.0	<7.0	<7.0
Cyclohexane	μg/kg	1,400,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	μg/kg	100,000	<7.0	<7.0	<7.0	<6.0	<7.0	<7.0	<7.0	10	9.0	<7.0
o-Xylene	μg/kg	1,100,000	<7.0	<7.0	<7.0	<6.0	<7.0	<7.0	<7.0	<6.0	31	<7.0
m,p-Xylene	μg/kg	1,100,000	<7.0	<7.0	<7.0	<6.0	<7.0	<7.0	<7.0	11	22	<7.0
Xylenes, Total	μg/kg	1,100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Isopropylbenzene	μg/kg	94,000	<7.0	<7.0	<7.0	<6.0	<7.0	<7.0	<7.0	16	8.0	<7.0
Non-Chlorinated VOCs												
2-Butanone	μg/kg	200,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	μg/kg	400,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbon Disulfide	μg/kg	400,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methylene Chloride	μg/kg	500	<7.0	<7.0	<7.0	<6.0	<7.0	<7.0	<7.0	<6.0	<7.0	<7.0

Notes:

Soil Samples Collected are Split Samples with LAW RRS-Risk Reduction Standard (see Table 1 of CSR)

VOCs-volatile organic compounds

*Duplicate sample collected from MW-101 at 4-6'

μg/kg- micrograms per kilogram

NA-not analyzed

Sample collected in the water table

Bold-analyte detected

Bold-analyte detected above Selected RRSs

Table D-7. Summary of VOCs Detected in Soil Samples Collected by AEM, 2003 and 2004. ARAMARK DeKalb VRP/HSI Site No. 10704 Atlanta, Georgia

		Sample ID		GP-1			GP-2			GP-3		GF	P-4	GF)-5
		Depth	2-4'	6-8'	10-12'	2-4'	6-8'	10-12'	2-4'	6-8'	10-12'	2-4'	6-8'	2-4'	6-8'
		Date		4/8/2003		ļ	4/8/2003			4/8/2003		4/8/	2003	4/8/	2003
Chlorinated VOCs		Selected RRS													
Tetrachloroethene	μg/kg	500	80	<5	7.2	9.9	8.5	8.5	160	<5	<5	<5	<5	<5	<5
1,1,1-Trichloroethane	μg/kg	260,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Trichloroethene	μg/kg	500	<5	<5	<5	<5	<5	<5	5.3	<5	<5	<5	<5	<5	<5
1,1-Dichloroethene	μg/kg	700	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane	μg/kg	500	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane	μg/kg	400,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chloroethane	μg/kg	170	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
cis-1,2-Dichloroethene	μg/kg	19,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
trans-1,2-Dichloroethene	μg/kg	52,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl Chloride	μg/kg	200	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Aromatic Hydrocarbons															,
Benzene	μg/kg	500	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Ethylbenzene	μg/kg	340,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Toluene	μg/kg	400,000	<5	<5	8.5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene	μg/kg	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cyclohexane	μg/kg	1,400,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	μg/kg	100,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
o-Xylene	μg/kg	1,100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
m,p-Xylene	μg/kg	1,100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Xylenes, Total	μg/kg	1,100,000	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15
Isopropylbenzene	μg/kg	94,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Non-Chlorinated VOCs															
2-Butanone	μg/kg	200,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	μg/kg	400,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbon Disulfide	μg/kg	400,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methylene Chloride	μg/kg	500	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

RRS-Risk Reduction Standard (see Table 1 of CSR)

VOCs-volatile organic compounds

μg/kg- micrograms per kilogram

NA-not analyzed

Bold-analyte detected
Bold-analyte detected above Selected RRSs
Sample collected in the water table

Table D-7. Summary of VOCs Detected in Soil Samples Collected by AEM, 2003 and 2004. ARAMARK DeKalb VRP/HSI Site No. 10704 Atlanta, Georgia

		Sample ID		GP-	-6			MW-203			HA-1			HA-2	
		Depth	2-4'	2-4' DUP	6-8'	10-12'	0-2'	2-4'	8-10'	2-4'	6-8'	10-12'	2-4'	6-8'	10-12'
		Date		4/8/2	003			4/15/2003			5/6/2003			5/16/2003	
Chlorinated VOCs		Selected RRS													
Tetrachloroethene	μg/kg	500	<5	<5	<5	<5	120	<250	45,000	<5	<5	<5.6	<5	<5	<5
1,1,1-Trichloroethane	μg/kg	260,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Trichloroethene	μg/kg	500	<5	<5	<5	<5	8.6	<250	950	<5	<5	<5.6	<5	<5	<5
1,1-Dichloroethene	μg/kg	700	<5	<5	<5	<5	<5	<250	<5.6	<5	<5	<5.6	<5	<5	<5
1,2-Dichloroethane	μg/kg	500	<5	<5	<5	<5	<5	<250	<5.6	<5	<5	<5.6	<5	<5	<5
1,1-Dichloroethane	μg/kg	400,000	<5	<5	<5	<5	<5	<250	<5.6	<5	<5	<5.6	<5	<5	<5
Chloroethane	μg/kg	170	<5	<5	<5	<5	<5	<250	<5.6	<5	<5	<5.6	<5	<5	<5
cis-1,2-Dichloroethene	μg/kg	19,000	<5	<5	<5	<5	38	<250	520	<5	<5	<5.6	<5	<5	<5
trans-1,2-Dichloroethene	μg/kg	52,000	<5	<5	<5	<5	<5	<250	<5.6	<5	<5	<5.6	<5	<5	<5
Vinyl Chloride	μg/kg	200	<5	<5	<5	<5	<5	<250	<5.6	<5	<5	<5.6	<5	<5	<5
Aromatic Hydrocarbons															
Benzene	μg/kg	500	<5	<5	<5	<5	<5	<250	<5.6	<5	<5	<5.6	<5	<5	<5
Ethylbenzene	μg/kg	340,000	<5	<5	<5	<5	<5	3,100	<5.6	<5	<5	<5.6	<5	<5	<5
Toluene	μg/kg	400,000	<5	<5	<5	<5	<5	250	<5.6	<5	<5	<5.6	<5	<5	<5
Chlorobenzene	μg/kg	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cyclohexane	μg/kg	1,400,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	μg/kg	100,000	<5	<5	<5	<5	<5	9,400	<5.6	<5	<5	<5.6	<5	<5	<5
o-Xylene	μg/kg	1,100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
m,p-Xylene	μg/kg	1,100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Xylenes, Total	μg/kg	1,100,000	<15	<15	<15	<15	<15	9,600	<17	<15	<15	<17	<15	<15	<15
Isopropylbenzene	μg/kg	94,000	<5	<5	<5	<5	<5	1,100	<5.6	<5	<5	<5.6	<5	<5	<5
Non-Chlorinated VOCs															
2-Butanone	μg/kg	200,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	μg/kg	400,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbon Disulfide	μg/kg	400,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methylene Chloride	μg/kg	500	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

RRS-Risk Reduction Standard (see Table 1 of CSR)

VOCs-volatile organic compounds

μg/kg- micrograms per kilogram

NA-not analyzed

Bold-analyte detected
Bold-analyte detected above Selected RRSs
Sample collected in the water table

Table D-7. Summary of VOCs Detected in Soil Samples Collected by AEM, 2003 and 2004. ARAMARK DeKalb VRP/HSI Site No. 10704 Atlanta, Georgia

		Sample ID	HA-3		GP-7		GP-8	GP-9	GP-10
		Depth Date	2-4' 5/16/2003	2-4'	6-8' 5/16/2003	10-12'	2-4' 5/16/2003	2-4' 5/16/2003	2-4' 5/16/2003
Chlorinated VOCs		Selected RRS							
Tetrachloroethene	μg/kg	500	<5	<5	<5	<5	46	86	<5
1,1,1-Trichloroethane	μg/kg	260,000	NA	NA	NA	NA	NA	NA	NA
Trichloroethene	μg/kg	500	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethene	μg/kg	700	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane	μg/kg	500	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane	μg/kg	400,000	<5	<5	<5	<5	<5	<5	<5
Chloroethane	μg/kg	170	<5	<5	<5	<5	<5	<5	<5
cis-1,2-Dichloroethene	μg/kg	19,000	<5	<5	<5	<5	<5	<5	<5
trans-1,2-Dichloroethene	μg/kg	52,000	<5	<5	<5	<5	<5	<5	<5
Vinyl Chloride	μg/kg	200	<5	<5	<5	<5	<5	<5	<5
Aromatic Hydrocarbons									
Benzene	μg/kg	500	<5	<5	<5	<5	<5	<5	<5
Ethylbenzene	μg/kg	340,000	<5	<5	<5	<5	<5	<5	<5
Toluene	μg/kg	400,000	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene	μg/kg	10,000	NA	NA	NA	NA	NA	NA	NA
Cyclohexane	μg/kg	1,400,000	NA	NA	NA	NA	NA	NA	NA
Naphthalene	μg/kg	100,000	<5	<5	<5	<5	<5	<5	<5
o-Xylene	μg/kg	1,100,000	NA	NA	NA	NA	NA	NA	NA
m,p-Xylene	μg/kg	1,100,000	NA	NA	NA	NA	NA	NA	NA
Xylenes, Total	μg/kg	1,100,000	<15	<15	<15	<15	<15	<15	<15
Isopropylbenzene	μg/kg	94,000	<5	<5	<5	<5	<5	<5	<5
Non-Chlorinated VOCs									
2-Butanone	μg/kg	200,000	NA	NA	NA	NA	NA	NA	NA
Acetone	μg/kg	400,000	NA	NA	NA	NA	NA	NA	NA
Carbon Disulfide	μg/kg	400,000	NA	NA	NA	NA	NA	NA	NA
Methylene Chloride	μg/kg	500	NA	NA	NA	NA	NA	NA	NA

Notes:

RRS-Risk Reduction Standard (see Table 1 of CSR)

VOCs-volatile organic compounds

μg/kg- micrograms per kilogram

NA-not analyzed

Bold-analyte detected
Bold-analyte detected above Selected RRSs
Sample collected in the water table

Table D-8. Summary of VOCs Detected in Soil Samples Collected by AEM, 2004 and 2005. ARAMARK DeKalb VRP/HSI Site No. 10704 Atlanta, Georgia

		Sample ID	MW	/-205		MW	/-206			GP-21		GP	-22	GP-	-23
		Depth	6'	10'	4'	6'	8'	10'	4'	6'	8'	4'	6'	4'	6'
		Date	3/31	/2004		7/23	/2004			7/23/2004		7/23,	/2004	7/23/	/2004
Chlorinated VOCs		Selected RRS													
Tetrachloroethene	μg/kg	500	<5	<5	<3.6	<3.3	<3.2	7.5	5.9	4.9	11	<3.1	<3.2	510	950
1,1,1-Trichloroethane	μg/kg	260,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Trichloroethene	μg/kg	500	<5	<5	<3.6	<3.3	<3.2	4.9	<3.1	<4.1	<3.8	<3.1	<3.2	3.8	5.2
1,1-Dichloroethene	μg/kg	700	<5	<5	<3.6	<3.3	<3.2	<3.2	<3.1	<4.1	<3.8	<3.1	<3.2	<3.4	<3.3
1,2-Dichloroethane	μg/kg	500	<5	<5	<3.6	<3.3	<3.2	<3.2	<3.1	<4.1	<3.8	<3.1	<3.2	<3.4	<3.3
1,1-Dichloroethane	μg/kg	400,000	<5	<5	<3.6	<3.3	<3.2	<3.2	<3.1	<4.1	<3.8	<3.1	<3.2	<3.4	<3.3
Chloroethane	μg/kg	170	<5	<5	<3.6	<3.3	<3.2	<3.2	<3.1	<4.1	<3.8	<3.1	<3.2	<3.4	<3.3
cis-1,2-Dichloroethene	μg/kg	19,000	<5	<5	<3.6	<3.3	<3.2	<3.2	<3.1	<4.1	<3.8	<3.1	<3.2	<3.4	<3.3
trans-1,2-Dichloroethene	μg/kg	52,000	<5	<5	<3.6	<3.3	<3.2	<3.2	<3.1	<4.1	<3.8	<3.1	<3.2	<3.4	<3.3
Vinyl Chloride	μg/kg	200	<5	<5	<3.6	<3.3	<3.2	<3.2	<3.1	<4.1	<3.8	<3.1	<3.2	<3.4	<3.3
Aromatic Hydrocarbons															
Benzene	μg/kg	500	<5	<5	<3.6	<3.3	<3.2	<3.2	<3.1	<4.1	<3.8	<3.1	<3.2	<3.4	<3.3
Ethylbenzene	μg/kg	340,000	<5	<5	<3.6	<3.3	<3.2	<3.2	<3.1	<4.1	<3.8	<3.1	<3.2	<3.4	<3.3
Toluene	μg/kg	400,000	<5	<5	<3.6	<3.3	<3.2	<3.2	<3.1	<4.1	<3.8	<3.1	<3.2	<3.4	<3.3
Chlorobenzene	μg/kg	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cyclohexane	μg/kg	1,400,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	μg/kg	100,000	<5	<5	<3.6	<3.3	<3.2	<3.2	<3.1	<4.1	<3.8	<3.1	<3.2	<3.4	<3.3
o-Xylene	μg/kg	1,100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
m,p-Xylene	μg/kg	1,100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Xylenes, Total	μg/kg	1,100,000	<15	<15	<11	<9.9	<9.7	<9.7	<9.4	<12	<11	<9.3	<9.7	<10	<9.9
Isopropylbenzene	μg/kg	94,000	<5	<5	<3.6	<3.3	<3.2	<3.2	<3.1	<4.1	<3.8	<3.1	<3.2	<3.4	<3.3
Non-Chlorinated VOCs															
2-Butanone	μg/kg	200,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	μg/kg	400,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbon Disulfide	μg/kg	400,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methylene Chloride	μg/kg	500	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

RRS-Risk Reduction Standard (see Table 1 of CSR)

VOCs-volatile organic compounds

μg/kg- micrograms per kilogram

NA-not analyzed

Table D-8. Summary of VOCs Detected in Soil Samples Collected by AEM, 2004 and 2005. ARAMARK DeKalb VRP/HSI Site No. 10704 Atlanta, Georgia

		Sample ID	GP-	-24		GP-25			GP-26		GI	P-27		GP-28	
		Depth	2'	4'	4'	8'	14'	4'	8'	12'	8'	14'	4'	8'	14'
		Date	7/23/	/2004		12/17/2004			12/17/2004		12/1	7/2004		12/17/2004	
Chlorinated VOCs		Selected RRS													
Tetrachloroethene	μg/kg	500	130,000	3,500	26	5	<5	8,500	970	450	53	9,100	21,000	950	1,000
1,1,1-Trichloroethane	μg/kg	260,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Trichloroethene	μg/kg	500	7,500	98	<5	<5	<5	<320	33	8	<5	240	<270	<5	<5
1,1-Dichloroethene	μg/kg	700	<5.1	<3.1	<5	<5	<5	<320	<5	<5	<5	<230	<270	<5	<5
1,2-Dichloroethane	μg/kg	500	<5.1	<3.1	<5	<5	<5	<320	<5	<5	<5	<230	<270	<5	<5
1,1-Dichloroethane	μg/kg	400,000	<5.1	<3.1	<5	<5	<5	<320	<5	<5	<5	<230	<270	<5	<5
Chloroethane	μg/kg	170	<5.1	<3.1	<5	<5	<5	<320	<5	<5	<5	<230	<270	<5	<5
cis-1,2-Dichloroethene	μg/kg	19,000	<5.1	<3.1	<5	<5	<5	<320	38	8.0	<5	<230	<270	<5	<5
trans-1,2-Dichloroethene	μg/kg	52,000	<5.1	<3.1	<5	<5	<5	<320	<5	<5	<5	<230	<270	<2.4	<5
Vinyl Chloride	μg/kg	200	<5.1	<3.1	<5	<5	<5	<320	<5	<5	<5	<230	<270	<5	<5
Aromatic Hydrocarbons															
Benzene	μg/kg	500	<5.1	3.1	<5	<5	<5	<320	<5	<5	<5	<230	<270	<5	<5
Ethylbenzene	μg/kg	340,000	<5.1	<3.1	<5	<5	<5	<320	<5	<5	<5	270	<270	<5	<5
Toluene	μg/kg	400,000	<5.1	<3.1	<5	<5	<5	<320	<5	<5	<5	<230	<270	<5	<5
Chlorobenzene	μg/kg	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cyclohexane	μg/kg	1,400,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	μg/kg	100,000	<51	<3.1	<5	<5	<5	<320	<5	<5	<5	<230	<270	<5	<5
o-Xylene	μg/kg	1,100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
m,p-Xylene	μg/kg	1,100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Xylenes, Total	μg/kg	1,100,000	<15	<9.2	<15	<15	<15	<960	<15	<15	<15	4,400	<800	<15	<15
Isopropylbenzene	μg/kg	94,000	<5.1	4.4	<5	<5	<5	<320	<5	<5	<5	2,100	<270	<5	<5
Non-Chlorinated VOCs															
2-Butanone	μg/kg	200,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	μg/kg	400,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbon Disulfide	μg/kg	400,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methylene Chloride	μg/kg	500	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

RRS-Risk Reduction Standard (see Table 1 of CSR)

VOCs-volatile organic compounds

μg/kg- micrograms per kilogram

NA-not analyzed

Table D-8. Summary of VOCs Detected in Soil Samples Collected by AEM, 2004 and 2005. ARAMARK DeKalb VRP/HSI Site No. 10704 Atlanta, Georgia

		Sample ID		GP-29		GP	-30	GP	-31	GF	P-9D		GP-32	
		Depth	4'	8'	12'	4'	8'	4'	8'	5-6'	9-10'	0-2'	4-6'	8-10'
		Date		12/17/2004		12/17	//2004	12/17	7/2004	4/15	5/2005		4/15/2005	
Chlorinated VOCs		Selected RRS												
Tetrachloroethene	μg/kg	500	320,000	2,000	2,100	<5	<5	<5	<5	40	42,000	<9	<7.7	<5
1,1,1-Trichloroethane	μg/kg	260,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Trichloroethene	μg/kg	500	500	11	13	<5	<5	<5	<5	<4.6	4,700	<9	<7.7	<5
1,1-Dichloroethene	μg/kg	700	<260	<5	<5	<5	<5	<5	<5	<4.6	<160	<9	<7.7	<5
1,2-Dichloroethane	μg/kg	500	<260	<5	<5	<5	<5	<5	<5	<4.6	<160	<9	<7.7	<5
1,1-Dichloroethane	μg/kg	400,000	<260	<5	<5	<5	<5	<5	<5	<4.6	<160	<9	<7.7	<5
Chloroethane	μg/kg	170	<260	<5	<5	<5	<5	<5	<5	<4.6	<160	<9	<7.7	<5
cis-1,2-Dichloroethene	μg/kg	19,000	<260	<5	5.7	<5	<5	<5	<5	<4.6	2,200	<9	<7.7	<5
trans-1,2-Dichloroethene	μg/kg	52,000	<260	<5	<5	<5	<5	<5	<5	<4.6	<160	<9	<7.7	<5
Vinyl Chloride	μg/kg	200	<260	<5	<5	<5	<5	<5	<5	<4.6	<160	<9	<7.7	<5
Aromatic Hydrocarbons														
Benzene	μg/kg	500	<260	<5	<5	<5	<5	<5	<5	<4.6	<160	<9	<7.7	<5
Ethylbenzene	μg/kg	340,000	<260	<5	<5	<5	<5	<5	<5	<4.6	<160	420	<7.7	<5
Toluene	μg/kg	400,000	<260	<5	<5	<5	<5	<5	<5	<4.6	190	360	<7.7	<5
Chlorobenzene	μg/kg	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cyclohexane	μg/kg	1,400,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	μg/kg	100,000	<260	<5	<5	<5	<5	<5	<5	<4.6	<160	340	<7.7	<5
o-Xylene	μg/kg	1,100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
m,p-Xylene	μg/kg	1,100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Xylenes, Total	μg/kg	1,100,000	<770	<15	<15	<15	<15	<15	<15	<14	<470	3,600	<23	<15
Isopropylbenzene	μg/kg	94,000	<260	<5	<5	<5	<5	<5	<5	<4.6	<160	<9	<7.7	<5
Non-Chlorinated VOCs														
2-Butanone	μg/kg	200,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	μg/kg	400,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbon Disulfide	μg/kg	400,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methylene Chloride	μg/kg	500	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

RRS-Risk Reduction Standard (see Table 1 of CSR)

VOCs-volatile organic compounds

μg/kg- micrograms per kilogram

NA-not analyzed

Table D-9. Summary of VOCs Detected in Soil Samples Collected from MACTEC Temporary Wells TW-34 and TW-35, 2004.

ARAMARK DeKalb VRP/HSI Site No. 10704

Atlanta, Georgia

			TW-34	TW-35
			7-8'	7-8'
_			12/8/2004	12/8/2004
		Selected		
Chlorinated VOCs		RRS		
Tetrachloroethene	μg/kg	500	<4.6	<5.5
1,1,1-Trichloroethane	μg/kg	260,000	<4.6	<5.5
Trichloroethene	μg/kg	500	<4.6	<5.5
1,1-Dichloroethene	μg/kg	700	<4.6	<5.5
1,2-Dichloroethane	μg/kg	500	<4.6	<5.5
1,1-Dichloroethane	μg/kg	400,000	<4.6	<5.5
Chloroethane	μg/kg	170	<9.3	<11
cis-1,2-Dichloroethene	μg/kg	19,000	<4.6	<5.5
trans-1,2-Dichloroethene	μg/kg	52,000	<4.6	<5.5
Vinyl Chloride	μg/kg	200	<9.3	<11
Aromatic Hydrocarbons				
Benzene	μg/kg	500	<4.6	<5.5
Ethylbenzene	μg/kg	340,000	<4.6	<5.5
Toluene	μg/kg	400,000	<4.6	<5.5
Chlorobenzene	μg/kg	10,000	<4.6	<5.5
Cyclohexane	μg/kg	1,400,000	<4.6	<5.5
Naphthalene	μg/kg	100,000	<420	<5.5
o-Xylene	μg/kg	1,100,000	<4.6	<5.5
m,p-Xylene	μg/kg	1,100,000	<9.3	<11
Xylenes, Total	μg/kg	1,100,000	NA	NA
Isopropylbenzene	μg/kg	94,000	<4.6	<5.5
Non-Chlorinated VOCs				
2-Butanone	μg/kg	200,000	<9.3	<11
Acetone	μg/kg	400,000	<93	<110
Carbon Disulfide	μg/kg	400,000	<9.3	<11
Methylene Chloride	μg/kg	500	<4.6	<5.5

RRS-Risk Reduction Standard (see Table 1 of CSR)

VOCs-volatile organic compounds μg/kg- micrograms per kilogram

NA-not analyzed

Table D-10. Summary of VOCs Detected in Soil from MACTEC Samples from GP-31 to GP-61, 2005. ARAMARK DeKalb VRP/HSI Site (No. 10704) Atlanta, Georgia

			GP	-31	GP	-32		GP-33				GP-34		
			2-4' 8/29,	8-10' ⁄2005	2-4' 8/29	8-10' /2005	0-2'	4-6' 8/29/2005	8-10'	0-2'	2-4'	6-8' 8/29/2005	8-10'	10-12'
Chlorinated VOCs		Selected RRS												
Tetrachloroethene	μg/kg	500	6,400	<4.1	<3.6	<2.9	3.9	<3.6	<4.0	<4.0	<5.3	<5.0	<4.1	<4.9
1,1,1-Trichloroethane	μg/kg	260,000	8.8	<4.1	<3.6	<2.9	<3.0	<3.6	<4.0	<4.0	<5.3	<5.0	<4.1	<4.9
Trichloroethene	μg/kg	500	<4.3	<4.1	<3.6	<2.9	<3.0	<3.6	<4.0	<4.0	<5.3	<5.0	<4.1	<4.9
1,1-Dichloroethene	μg/kg	700	<4.3	<4.1	<3.6	<2.9	<3.0	<3.6	<4.0	<4.0	<5.3	<5.0	<4.1	<4.9
1,2-Dichloroethane	μg/kg	500	<4.3	<4.1	<3.6	<2.9	<3.0	<3.6	<4.0	<4.0	<5.3	<5.0	<4.1	<4.9
1,1-Dichloroethane	μg/kg	400,000	<4.3	<4.1	<3.6	<2.9	<3.0	<3.6	<4.0	<4.0	<5.3	<5.0	<4.1	<4.9
Chloroethane	μg/kg	170	<8.7	<8.2	<7.2	<5.7	<5.9	<7.3	<7.9	<7.9	<11	<10	<8.3	<9.8
cis-1,2-Dichloroethene	μg/kg	19,000	<4.3	<4.1	<3.6	<2.9	<3.0	<3.6	<4.0	<4.0	<5.3	<5.0	<4.1	<4.9
trans-1,2-Dichloroethene	μg/kg	52,000	<4.3	<4.1	<3.6	<2.9	<3.0	<3.6	<4.0	<4.0	<5.3	<5.0	<4.1	<4.9
Vinyl Chloride	μg/kg	200	<8.7	<8.2	<7.2	<5.7	<5.9	<7.3	<7.9	<7.9	<11	<10	<8.3	<9.8
Aromatic Hydrocarbons														
Benzene	μg/kg	500	<4.3	<4.1	<3.6	<2.9	<3.0	<3.6	<4.0	<4.0	<5.3	<5.0	<4.1	<4.9
Ethylbenzene	μg/kg	340,000	<4.3	<4.1	<3.6	<2.9	<3.0	<3.6	<4.0	<4.0	<5.3	<5.0	<4.1	<4.9
Toluene	μg/kg	400,000	<4.3	<4.1	<3.6	<2.9	<3.0	<3.6	<4.0	<4.0	<5.3	<5.0	<4.1	<4.9
Chlorobenzene	μg/kg	10,000	<4.3	<4.1	<3.6	<2.9	<3.0	<3.6	<4.0	<4.0	<5.3	<5.0	<4.1	<4.9
Cyclohexane	μg/kg	1,400,000	<4.3	<4.1	<3.6	<2.9	<3.0	<3.6	<4.0	<4.0	<5.3	<5.0	<4.1	<4.9
Naphthalene	μg/kg	100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
o-Xylene	μg/kg	1,100,000	<4.3	<4.1	<3.6	<2.9	<3.0	<3.6	<4.0	<4.0	<5.3	<5.0	<4.1	<4.4
m,p-Xylene	μg/kg	1,100,000	<8.7	<8.2	<7.2	<5.7	<5.9	<7.3	<7.9	<7.9	<11	<10	<8.3	<9.8
Xylenes, Total	μg/kg	1,100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Isopropylbenzene	μg/kg	94,000	<4.3	<4.1	<3.6	<2.9	<3.0	<3.6	<4.0	<4.0	<5.3	<5.0	<4.1	<4.9
Non-Chlorinated VOCs														
2-Butanone	μg/kg	200,000	<43	<41	<36	<29	<30	<36	<40	<40	<53	<50	<41	<49
Acetone	μg/kg	400,000	110	<82	<72	<57	<59	<73	<79	<79	<110	<100	<83	<98
Carbon Disulfide	μg/kg	400,000	<8.7	<8.2	<7.2	<5.7	<5.9	<7.3	<7.9	<7.9	<11	<10	<8.3	<9.8
Methylene Chloride	μg/kg	500	<4.3	<4.1	<3.6	<2.9	<3.0	<3.6	<4.0	<4.0	<5.3	<5.0	<4.1	<4.9

Notes:

RRS-Risk Reduction Standard (see Table 1 of CSR)

VOCs-volatile organic compounds

μg/kg- micrograms per kilogram

NA-not analyzed

Table D-10. Summary of VOCs Detected in Soil from MACTEC Samples from GP-31 to GP-61, 2005. ARAMARK DeKalb VRP/HSI Site (No. 10704) Atlanta, Georgia

				GP-35		GP	-36	GP-37	GP-	38	GP-	-39	GP	P-40
			0-2'	4-6'	8-10'	2-4'	8-10'	6-8'	2-4'	6-8'	2-4'	6-8'	6-8'	10-11'
				8/29/2005		8/29,	/2005	8/29/2005	8/29/	2005	8/29/	/2005	8/30	/2005
		Selected												
Chlorinated VOCs		RRS												
Tetrachloroethene	μg/kg	500	24	11,000	<4.2	25,000	<4.4	3.8	100,000	33	13,000	8.6	26	440
1,1,1-Trichloroethane	μg/kg	260,000	<3.9	<4.4	<4.2	<4.8	<4.4	<3.8	<6.1	<3.9	<5.2	<4.2	<3.7	<4.5
Trichloroethene	μg/kg	500	<3.9	<4.4	<4.2	61	<4.4	<3.8	42	<3.9	<5.2	<4.2	<3.7	13
1,1-Dichloroethene	μg/kg	700	<3.9	<4.4	<4.2	<4.8	<4.4	<3.8	<6.1	<3.9	<5.2	<4.2	<3.7	<4.5
1,2-Dichloroethane	μg/kg	500	<3.9	<4.4	<4.2	<4.8	<4.4	<3.8	<6.1	<3.9	<5.2	<4.2	<3.7	<4.5
1,1-Dichloroethane	μg/kg	400,000	<3.9	<4.4	<4.2	<4.8	<4.4	<3.8	<6.1	<3.9	<5.2	<4.2	<3.7	<4.5
Chloroethane	μg/kg	170	<7.8	<8.9	<8.4	<9.5	<8.7	<7.6	<12	<7.9	<10	<8.3	<7.3	<9.1
cis-1,2-Dichloroethene	μg/kg	19,000	<3.9	<4.4	<4.2	<4.8	<4.4	<3.8	<6.1	<3.9	<5.2	<4.2	<3.7	6.5
trans-1,2-Dichloroethene	μg/kg	52,000	<3.9	<4.4	<4.2	<4.8	<4.4	<3.8	<6.1	<3.9	<5.2	<4.2	<3.7	<4.5
Vinyl Chloride	μg/kg	200	<7.8	<8.9	<8.4	<9.5	<8.7	<7.6	<12	<7.9	<10	<8.3	<7.3	<9.1
Aromatic Hydrocarbons														
Benzene	μg/kg	500	<3.9	<4.4	<4.2	<4.8	<4.4	<3.8	<6.1	<3.9	<5.2	<4.2	<3.7	<4.5
Ethylbenzene	μg/kg	340,000	<3.9	<4.4	<4.2	<4.8	<4.4	<3.8	<6.1	<3.9	<5.2	<4.2	<3.7	<4.5
Toluene	μg/kg	400,000	<3.9	<4.4	<4.2	<4.8	<4.4	<3.8	<6.1	<3.9	<5.2	<4.2	<3.7	<4.5
Chlorobenzene	μg/kg	10,000	<3.9	<4.4	<4.2	<4.8	<4.4	<3.8	<6.1	<3.9	<5.2	<4.2	<3.7	<4.5
Cyclohexane	μg/kg	1,400,000	<3.9	<4.4	<4.2	<4.8	<4.4	<3.8	<6.1	<3.9	<5.2	<4.2	<3.7	<4.5
Naphthalene	μg/kg	100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
o-Xylene	μg/kg	1,100,000	<3.9	<4.4	<4.2	<4.8	<4.4	<3.8	<6.1	<3.9	<5.2	<4.2	<3.7	<4.5
m,p-Xylene	μg/kg	1,100,000	<7.8	<8.9	<8.4	<9.5	<8.7	<7.6	<12	<7.9	<10	<8.3	<7.3	<9.1
Xylenes, Total	μg/kg	1,100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Isopropylbenzene	μg/kg	94,000	<3.9	<4.4	<4.2	<4.8	<4.4	<3.8	<6.1	<3.9	<5.2	<4.2	<3.7	<4.5
Non-Chlorinated VOCs														
2-Butanone	μg/kg	200,000	<39	<44	<42	<48	<44	<38	<61	<39	<52	<42	<37	<45
Acetone	μg/kg	400,000	<78	<89	<84	<95	<87	<76	<120	<79	<100	<83	<73	<91
Carbon Disulfide	μg/kg	400,000	<7.8	<8.9	<8.4	<9.5	<8.7	<7.6	<12	<7.9	<10	<8.3	<7.3	10
Methylene Chloride	μg/kg	500	<3.9	<4.4	<4.2	<4.8	<4.4	<3.8	<6.1	<3.9	<5.2	<4.2	<3.7	<4.5

Notes:

RRS-Risk Reduction Standard (see Table 1 of CSR)

VOCs-volatile organic compounds

μg/kg- micrograms per kilogram

NA-not analyzed

Table D-10. Summary of VOCs Detected in Soil from MACTEC Samples from GP-31 to GP-61, 2005. ARAMARK DeKalb VRP/HSI Site (No. 10704) Atlanta, Georgia

				GP-41			GP-42		GP-43	GP-44	GP	-45	GP-46	GP-47	GP-48
			6-8'	8-10' 8/30/2005	10-11.5'	4-6'	10-12' 8/30/2005	10-12' DUP	4-6' 8/30/2005	4-6' 8/30/2005	4-6' 8/30,	8-10' /2005	4-6' 8/30/2005	4-6' 8/30/2005	0-4' 8/30/2005
Chlorinated VOCs		Selected RRS													
Tetrachloroethene	μg/kg	500	<3.9	91	<310	140	60.0	6.3	<3.9	22	41	<4.2	<4.2	9.2	<4.2
1,1,1-Trichloroethane	μg/kg	260,000	<3.9	<4.4	<310	<3.8	<4.8	<4.2	<3.9	<4.0	<4.2	<4.2	<4.2	<4.3	<4.2
Trichloroethene	μg/kg	500	<3.9	<4.4	<310	5.2	8.0	<4.2	<3.9	<4.0	<4.2	<4.2	<4.2	<4.3	<4.2
1,1-Dichloroethene	μg/kg	700	<3.9	<4.4	<310	<3.8	<4.8	<4.2	<3.9	<4.0	<4.2	<4.2	<4.2	<4.3	<4.2
1,2-Dichloroethane	μg/kg	500	<3.9	<4.4	<310	<3.8	<4.8	<4.2	<3.9	<4.0	<4.2	<4.2	<4.2	<4.3	<4.2
1,1-Dichloroethane	μg/kg	400,000	<3.9	<4.4	<310	<3.8	<4.8	<4.2	<3.9	<4.0	<4.2	<4.2	<4.2	<4.3	<4.2
Chloroethane	μg/kg	170	<7.8	<8.7	<620	<7.5	<9.6	<8.3	<7.8	<8.1	<8.3	<8.4	<8.4	<8.5	<8.3
cis-1,2-Dichloroethene	μg/kg	19,000	<3.9	6.7	440	5.8	18	<4.2	<3.9	<4.0	<4.2	<4.2	<4.2	<4.3	<4.2
trans-1,2-Dichloroethene	μg/kg	52,000	<3.9	<4.4	<310	<3.8	<4.8	<4.2	<3.9	<4.0	<4.2	<4.2	<4.2	<4.3	<4.2
Vinyl Chloride	μg/kg	200	<7.8	<8.7	<620	<7.5	<9.6	<8.3	<7.8	<8.1	<8.3	<8.4	<8.4	<8.5	<8.3
Aromatic Hydrocarbons															
Benzene	μg/kg	500	<3.9	<4.4	<310	<3.8	<4.8	<4.2	<3.9	<4.0	<4.2	<4.2	<4.2	<4.3	<4.2
Ethylbenzene	μg/kg	340,000	<3.9	<4.4	1,800	<3.8	<4.8	<4.2	<3.9	<4.0	<4.2	<4.2	<4.2	<4.3	<4.2
Toluene	μg/kg	400,000	<3.9	<4.4	<310	<3.8	<4.8	<4.2	<3.9	<4.0	<4.2	<4.2	<4.2	<4.3	<4.2
Chlorobenzene	μg/kg	10,000	<3.9	<4.4	<310	<3.8	<4.8	<4.2	<3.9	<4.0	<4.2	<4.2	<4.2	<4.3	<4.2
Cyclohexane	μg/kg	1,400,000	<3.9	18	<310	<3.8	<4.8	<4.2	<3.9	<4.0	<4.2	<4.2	<4.2	<4.3	<4.2
Naphthalene	μg/kg	100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
o-Xylene	μg/kg	1,100,000	<3.9	<4.4	<310	<3.8	<4.8	<4.2	<3.9	<4.0	<4.2	<4.2	<4.2	<4.3	<4.2
m,p-Xylene	μg/kg	1,100,000	<7.8	<8.7	1,700	<7.5	<9.6	<8.3	<7.8	<8.1	<8.3	<8.4	<8.4	<8.5	<8.3
Xylenes, Total	μg/kg	1,100,000	NA	NA	NA	<3.8	NA	NA	NA	NA	NA	NA	NA	NA	NA
Isopropylbenzene	μg/kg	94,000	<3.9	<4.4	7,800	<3.8	<4.8	<4.2	<3.9	<4.0	<4.2	<4.2	<4.2	<4.3	<4.2
Non-Chlorinated VOCs															
2-Butanone	μg/kg	200,000	<39	<44	<3,100	<38	<48	<42	<39	<40	<42	<42	<42	<43	<42
Acetone	μg/kg	400,000	<78	<87	<6,200	<75	<86	<83	<78	<81	<83	<84	<84	<85	<83
Carbon Disulfide	μg/kg	400,000	<7.8	14	<620	<7.5	<9.6	<8.3	<7.8	<8.1	29	<8.4	<8.4	<8.5	<8.3
Methylene Chloride	μg/kg	500	<3.9	<4.4	<310	<3.8	<4.8	<4.2	<3.9	<4.0	<4.2	<4.2	<4.2	<4.3	<4.2

RRS-Risk Reduction Standard (see Table 1 of CSR)

VOCs-volatile organic compounds

μg/kg- micrograms per kilogram

NA-not analyzed

Table D-10. Summary of VOCs Detected in Soil from MACTEC Samples from GP-31 to GP-61, 2005. ARAMARK DeKalb VRP/HSI Site (No. 10704) Atlanta, Georgia

			GP-49	GP-50	GP-51	GP-52	GP-53	GP	-54	GP-55	GP.	-56	GP-57	GP-58
			2-4'	0-4'	2-4'	2-4'	0-4'	0-4'	4-6'	0-4'	0-4'	4-6'	0-4'	0-4'
			8/30/2005	8/30/2005	8/30/2005	8/30/2005	8/30/2005		/2005	8/30/2005	8/30/		8/30/2005	8/30/2005
		Selected												
Chlorinated VOCs		RRS												
Tetrachloroethene	μg/kg	500	2,800	7,800	20	64	40	<4.0	<4.5	<4.5	<4.4	8.8	34	78
1,1,1-Trichloroethane	μg/kg	260,000	<4.5	<4.5	<3.8	<3.1	<4.2	<4.0	<4.5	<4.5	<4.4	<4.9	<4.2	<4.4
Trichloroethene	μg/kg	500	7.4	<4.5	<3.8	<3.1	<4.2	<4.0	<4.5	<4.5	<4.4	<4.9	<4.2	<4.4
1,1-Dichloroethene	μg/kg	700	<4.5	<4.5	<3.8	<3.1	<4.2	<4.0	<4.5	<4.5	<4.4	<4.9	<4.2	<4.4
1,2-Dichloroethane	μg/kg	500	<4.5	<4.5	<3.8	<3.1	<4.2	<4.0	<4.5	<4.5	<4.4	<4.9	<4.2	<4.4
1,1-Dichloroethane	μg/kg	400,000	<4.5	<4.5	<3.8	<3.1	<4.2	<4.0	<4.5	<4.5	<4.4	<4.9	<4.2	<4.4
Chloroethane	μg/kg	170	<8.9	<9.0	<7.7	<6.3	<8.4	<7.9	<8.9	<9.0	<8.8	<9.8	<8.4	<8.8
cis-1,2-Dichloroethene	μg/kg	19,000	<4.5	<4.5	<3.8	<3.1	<4.2	<4.0	<4.5	<4.5	<4.4	<4.9	<4.2	7.5
trans-1,2-Dichloroethene	μg/kg	52,000	<4.5	<4.5	<3.8	<3.1	<4.2	<4.0	<4.5	<4.5	<4.4	<4.9	<4.2	<4.4
Vinyl Chloride	μg/kg	200	<8.9	<9.0	<7.7	<6.3	<8.4	<7.9	<8.9	<9.0	<8.8	<9.8	<8.4	<8.8
Aromatic Hydrocarbons														
Benzene	μg/kg	500	<4.5	<4.5	<3.8	<3.1	<4.2	<4.0	<4.5	<4.5	<4.4	<4.9	<4.2	<4.4
Ethylbenzene	μg/kg	340,000	<4.5	<4.5	<3.8	<3.1	<4.2	<4.0	<4.5	<4.5	<4.4	<4.9	<4.2	<4.4
Toluene	μg/kg	400,000	<4.5	<4.5	<3.8	<3.1	<4.2	<4.0	<4.5	<4.5	<4.4	<4.9	<4.2	<4.4
Chlorobenzene	μg/kg	10,000	<4.5	<4.5	<3.8	<3.1	<4.2	<4.0	<4.5	<4.5	<4.4	<4.9	<4.2	<4.4
Cyclohexane	μg/kg	1,400,000	<4.5	<4.5	<3.8	<3.1	<4.2	<4.0	<4.5	<4.5	<4.4	<4.9	<4.2	<4.4
Naphthalene	μg/kg	100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
o-Xylene	μg/kg	1,100,000	<4.5	<4.5	<3.8	<3.8	<4.2	<4.0	<4.5	<4.5	<4.4	<4.4	<4.2	<4.4
m,p-Xylene	μg/kg	1,100,000	<8.9	<9.0	<7.7	<6.3	<8.4	<7.9	<8.9	<9.0	<8.8	<9.8	<8.4	<8.8
Xylenes, Total	μg/kg	1,100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Isopropylbenzene	μg/kg	94,000	<4.5	<4.5	<3.8	<3.1	<4.2	<4.0	<4.5	<4.5	<4.4	<4.9	<4.2	<4.4
Non-Chlorinated VOCs														
2-Butanone	μg/kg	200,000	<45	<45	<38	<31	<42	<40	<45	<45	<44	<49	<42	<44
Acetone	μg/kg	400,000	<89	<90	<77	<63	<84	<79	<89	<90	<88	<98	<84	<88
Carbon Disulfide	μg/kg	400,000	<8.9	<9.0	<7.7	<6.3	<8.4	<7.9	<8.9	<9.0	<8.8	<9.8	<8.4	<8.8
Methylene Chloride	μg/kg	500	<4.5	<4.5	<3.8	<3.1	<4.2	<4.0	<4.5	<4.5	<4.4	<4.9	<4.2	<4.4

Notes:

RRS-Risk Reduction Standard (see Table 1 of CSR)

VOCs-volatile organic compounds

μg/kg- micrograms per kilogram

NA-not analyzed

Table D-10. Summary of VOCs Detected in Soil from MACTEC Samples from GP-31 to GP-61, 2005. ARAMARK DeKalb VRP/HSI Site (No. 10704) Atlanta, Georgia

			GP	-59	GP	-60	GP	-61
			0.21	C 01	2.41	40.42	0.21	C 01
			0-2'	6-8' 2005	2-4'	10-12' 2005	0-2'	6-8' 2005
			3/2/	2005	3/2/	2003	3/2/	2003
		Selected						
Chlorinated VOCs		RRS						
Tetrachloroethene	μg/kg	500	<4.2	<4.4	7.4	<3.9	<3.9	<4.5
1,1,1-Trichloroethane	μg/kg	260,000	<4.2	<4.4	<4.1	<3.9	<3.9	<4.5
Trichloroethene	μg/kg	500	<4.2	<4.4	<4.1	<3.9	<3.9	<4.5
1,1-Dichloroethene	μg/kg	700	<4.2	<4.4	<4.1	<3.9	<3.9	<4.5
1,2-Dichloroethane	μg/kg	500	<4.2	<4.4	<4.1	<3.9	<3.9	<4.5
1,1-Dichloroethane	μg/kg	400,000	<4.2	<4.4	<4.1	<3.9	<3.9	<4.5
Chloroethane	μg/kg	170	<8.4	<8.9	<8.3	<7.8	<7.7	<8.9
cis-1,2-Dichloroethene	μg/kg	19,000	<4.2	<4.4	<4.1	<3.9	<3.9	<4.5
trans-1,2-Dichloroethene	μg/kg	52,000	<4.2	<4.4	<4.1	<3.9	<3.9	<4.5
Vinyl Chloride	μg/kg	200	<8.4	<8.9	<8.3	<7.8	<7.7	<8.9
Aromatic Hydrocarbons								
Benzene	μg/kg	500	<4.2	<4.4	<4.1	<3.9	<3.9	<4.5
Ethylbenzene	μg/kg	340,000	<4.2	<4.4	<4.1	<3.9	<3.9	<4.5
Toluene	μg/kg	400,000	<4.2	<4.4	<4.1	<3.9	<3.9	<4.5
Chlorobenzene	μg/kg	10,000	<4.2	<4.4	<4.1	<3.9	<3.9	<4.5
Cyclohexane	μg/kg	1,400,000	<4.2	<4.4	<4.1	<3.9	<3.9	<4.5
Naphthalene	μg/kg	100,000	NA	NA	NA	NA	NA	NA
o-Xylene	μg/kg	1,100,000	<4.2	<4.4	<4.1	<3.9	<3.9	<4.5
m,p-Xylene	μg/kg	1,100,000	<8.4	<8.9	<8.3	<7.8	<7.7	<8.9
Xylenes, Total	μg/kg	1,100,000	NA	NA	NA	NA	NA	NA
Isopropylbenzene	μg/kg	94,000	<4.2	<4.4	<4.1	<3.9	<3.9	<4.5
Non-Chlorinated VOCs								
2-Butanone	μg/kg	200,000	<42	<44	<41	<39	<39	<45
Acetone	μg/kg	400,000	<84	<89	<83	<78	<77	<89
Carbon Disulfide	μg/kg	400,000	<8.4	<8.9	<8.3	<7.8	<7.7	<8.9
Methylene Chloride	μg/kg	500	<4.2	<4.4	<4.1	<3.9	<3.9	<4.5

Notes:

RRS-Risk Reduction Standard (see Table 1 of CSR)

VOCs-volatile organic compounds

μg/kg- micrograms per kilogram

NA-not analyzed

Table D-11. Summary of VOCs Detected in Soil from MACTEC Excavation Confirmation Samples, 2006. ARAMARK DeKalb VRP/HSI Site (No. 10704) Atlanta, Georgia

			C-1	C	-2	C-3	C-4	C-5	C-6		C-7	
			10'	14'	10'	10'	10'	10'	2/16/2006	9'	9'	9'
			2/13/2006	2/13/2006	2/20/2006	2/16/2006	2/16/2006	2/16/2006	8/29/2005	2/16/2006	2/22/2006	3/8/2006
Chlorinated VOCs		Selected RRS										
Tetrachloroethene	μg/kg	500	11	53,000	53	98	71	<2.7	<2.7	7,100	790	<2.9
1,1,1-Trichloroethane	μg/kg	260,000	<2.8	<2.9	<2.8	<2.9	<2.8	<2.7	<2.7	<2.7	<2.6	<2.9
Trichloroethene	μg/kg	500	<2.8	20	7.7	<2.9	<2.8	<2.7	<2.7	1,800	340	<2.9
1.1-Dichloroethene	μg/kg	700	<2.8	<2.9	<2.8	<2.9	<2.8	<2.7	<2.7	<2.7	<2.6	<2.9
1,2-Dichloroethane	μg/kg	500	<2.8	<2.9	<2.8	<2.9	<2.8	<2.7	<2.7	<2.7	<2.6	<2.9
1,1-Dichloroethane	μg/kg	400,000	<2.8	<2.9	<2.8	<2.9	<2.8	<2.7	<2.7	<2.7	<2.6	<2.9
Chloroethane	μg/kg	170	<5.6	<5.7	<5.6	<5.9	<5.6	<5.4	<5.3	<5.3	<5.1	<5.8
cis-1,2-Dichloroethene	μg/kg	19,000	<2.8	12	6.4	<2.9	<2.8	<2.7	<2.7	1,300	980	<2.9
trans-1,2-Dichloroethene	μg/kg	52,000	<2.8	<2.9	<2.8	<2.9	<2.8	<2.7	<2.7	<2.7	<2.6	<2.9
Vinyl Chloride	μg/kg	200	<5.6	<5.7	<5.6	<5.9	<5.6	<5.4	<5.3	<5.3	<5.1	<5.8
Aromatic Hydrocarbons												
Benzene	μg/kg	500	<2.8	<2.9	<2.8	<2.9	<2.8	<2.7	<2.7	<2.7	<2.6	<2.9
Ethylbenzene	μg/kg	340,000	<2.8	<2.9	<2.8	<2.9	<2.8	<2.7	<2.7	3.2	<2.6	<2.9
Toluene	μg/kg	400,000	<2.8	<2.9	<2.8	<2.9	<2.8	<2.7	<2.7	<2.7	<2.6	<2.9
Chlorobenzene	μg/kg	10,000	<2.8	<2.9	<2.8	<2.9	<2.8	<2.7	<2.7	<2.7	<2.6	<2.9
Cyclohexane	μg/kg	1,400,000	<2.8	<2.9	<2.8	<2.9	<2.8	<2.7	<2.7	<2.7	<2.6	<2.9
Naphthalene	μg/kg	100,000	NA									
o-Xylene	μg/kg	1,100,000	<2.8	<2.9	<2.8	<2.9	<2.8	<2.7	<2.7	<2.7	<2.6	<2.9
m,p-Xylene	μg/kg	1,100,000	<5.6	<5.7	<5.6	<5.9	<5.6	<5.4	<5.3	<5.3	<5.1	<5.8
Xylenes, Total	μg/kg	1,100,000	NA									
Isopropylbenzene	μg/kg	94,000	<2.8	3.3	<2.8	<2.9	<2.8	<2.7	<2.7	13	12	<2.9
Non-Chlorinated VOCs												
2-Butanone	μg/kg	200,000	<28	<29	<28	<29	<28	<27	<27	<27	<26	<29
Acetone	μg/kg	400,000	<56	<57	<56	<59	<56	<54	<53	<53	<51	<58
Carbon Disulfide	μg/kg	400,000	<5.6	<5.7	<5.6	<5.9	<5.6	<5.4	<5.3	<5.3	<5.1	<5.8
Methylene Chloride	μg/kg	500	<2.8	<2.9	<2.8	<2.9	<2.8	<2.7	<2.7	<2.7	<2.6	<2.9

RRS-Risk Reduction Standard (see Table 1 of CSR)

VOCs-volatile organic compounds

μg/kg- micrograms per kilogram

NA-not analyzed

Table D-11. Summary of VOCs Detected in Soil from MACTEC Excavation Confirmation Samples, 2006. ARAMARK DeKalb VRP/HSI Site (No. 10704) Atlanta, Georgia

			C-8		C-9		C-10		C-11		C-12		C-13		
			3.5'	10.5'	3.5'	3.5'	10.5'	3.5'	10.5'	3.5'	10.5'	3.5'	10.5'	3.5'	10.5'
			2/21/2006	2/21/2006	2/24/2006	2/21/2006		2/21/2006		2/21/2006		2/21/2006		2/22/2006	
Chlorinated VOCs		Selected RRS													
Tetrachloroethene	μg/kg	500	2,600	5.8	18	110	<2.9	21	<3.2	26	4.7	<3.5	4.7	62	3.6
1,1,1-Trichloroethane	μg/kg	260,000	<3.5	<2.5	<3.0	<3.7	<2.9	<3.8	<3.2	<2.9	<3.0	<3.5	<3.4	<2.7	<3.1
Trichloroethene	μg/kg	500	16	<2.5	<3.0	4.2	<2.9	<3.8	<3.2	<2.9	<3.0	<3.5	<3.4	<2.7	<3.1
1,1-Dichloroethene	μg/kg	700	<3.5	<2.5	<3.0	<3.7	<2.9	<3.8	<3.2	<2.9	<3.0	<3.5	<3.4	<2.7	<3.1
1,2-Dichloroethane	μg/kg	500	<3.5	<2.5	<3.0	<3.7	<2.9	<3.8	<3.2	<2.9	<3.0	<3.5	<3.4	<2.7	<3.1
1,1-Dichloroethane	μg/kg	400,000	<3.5	<2.5	<3.0	<3.7	<2.9	<3.8	<3.2	<2.9	<3.0	<3.5	<3.4	<2.7	<3.1
Chloroethane	μg/kg	170	<7.0	<5.0	<6.0	<7.5	<5.9	<7.7	<6.4	<5.8	<6.0	<6.9	<6.8	<5.4	<6.1
cis-1,2-Dichloroethene	μg/kg	19,000	<3.5	<2.5	<3.0	<3.7	<2.9	<3.8	<3.2	<2.9	<3.0	<3.5	<3.4	<2.7	<3.1
trans-1,2-Dichloroethene	μg/kg	52,000	<3.5	<2.5	<3.0	<3.7	<2.9	<3.8	<3.2	<2.9	<3.0	<3.5	<3.4	<2.7	<3.1
Vinyl Chloride	μg/kg	200	<7.0	<5.0	<6.0	<7.5	<5.9	<7.7	<6.4	<5.8	<6.0	<6.9	<6.8	<5.4	<6.1
Aromatic Hydrocarbons															
Benzene	μg/kg	500	<3.5	<2.5	<3.0	<3.7	<2.9	<3.8	<3.2	<2.9	<3.0	<3.5	<3.4	<2.7	<3.1
Ethylbenzene	μg/kg	340,000	<3.5	<2.5	<3.0	<3.7	<2.9	<3.8	<3.2	<2.9	<3.0	<3.5	<3.4	<2.7	<3.1
Toluene	μg/kg	400,000	<3.5	<2.5	<3.0	<3.7	<2.9	<3.8	<3.2	<2.9	<3.0	<3.5	<3.4	<2.7	<3.1
Chlorobenzene	μg/kg	10,000	<3.5	<2.5	<3.0	<3.7	<2.9	<3.8	<3.2	<2.9	<3.0	<3.5	<3.4	<2.7	<3.1
Cyclohexane	μg/kg	1,400,000	<3.5	<2.5	<3.0	<3.7	<2.9	<3.8	<3.2	<2.9	<3.0	<3.5	<3.4	<2.7	<3.1
Naphthalene	μg/kg	100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
o-Xylene	μg/kg	1,100,000	<3.5	<2.5	<3.0	<3.7	<2.9	<3.8	<3.2	<2.9	<3.0	<3.5	<3.4	<2.7	<3.1
m,p-Xylene	μg/kg	1,100,000	<7.0	<5.0	<6.0	<7.5	<5.9	<7.7	<6.4	<5.8	<6.0	<6.9	<6.8	<5.4	<6.1
Xylenes, Total	μg/kg	1,100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Isopropylbenzene	μg/kg	94,000	<3.5	<2.5	<3.0	<3.7	<2.9	<3.8	<3.2	<2.9	<3.0	<3.5	<3.4	<2.7	<3.1
Non-Chlorinated VOCs															
2-Butanone	μg/kg	200,000	<35	<25	<30	<37	<29	<38	<32	<29	<30	<35	<34	<27	<31
Acetone	μg/kg	400,000	<70	<50	<60	<75	<59	<77	<64	<58	<60	<69	<68	<54	<61
Carbon Disulfide	μg/kg	400,000	<7.0	<5.0	<6.0	<7.5	<5.9	<7.7	<6.4	<5.8	<6.0	<6.9	<6.8	<5.4	<6.1
Methylene Chloride	μg/kg	500	<3.5	<2.5	<3.0	<3.7	<2.9	<3.8	<3.2	<2.9	<3.0	<3.5	<3.4	<2.7	<3.1

RRS-Risk Reduction Standard (see Table 1 of CSR)

VOCs-volatile organic compounds

μg/kg- micrograms per kilogram

NA-not analyzed

Table D-11. Summary of VOCs Detected in Soil from MACTEC Excavation Confirmation Samples, 2006. ARAMARK DeKalb VRP/HSI Site (No. 10704) Atlanta, Georgia

			C-14				C-15		C-16		C-17		C-18			
			3.5'	10.5'	3.5'	3.5'	9'	9'	9'	9'	3.5'	10.5'	3.5'	10.5'	3.5'	10.5'
			2/22/2006	2/22/2006	3/1/2006	3/3/2006	2/22/2006	2/28/2006	2/22/2006	2/28/2006	2/27	//2006	2/27/2006	2/27/2006	3/1/2006	8/30/2005
		Selected														
Chlorinated VOCs		RRS														
Tetrachloroethene	μg/kg	500	12,000	7.7	4,800	24	2,600,000	28	26	<2.9	87	44	1,100	7,200	230	400
1,1,1-Trichloroethane	μg/kg	260,000	<3.3	<2.8	<160	<3.1	<2.8	<3.0	<3.1	<2.9	<3.5	<3.8	<3.2	<2.8	<120	<150
Trichloroethene	μg/kg	500	17	<2.8	<160	<3.1	60,000	8.1	<3.1	<2.9	<3.5	<3.8	<3.2	9.1	<120	<150
1,1-Dichloroethene	μg/kg	700	<3.3	<2.8	<160	<3.1	<2.8	<3.0	<3.1	<2.9	<3.5	<3.8	<3.2	<2.8	<120	<150
1,2-Dichloroethane	μg/kg	500	<3.3	<2.8	<160	<3.1	<2.8	<3.0	<3.1	<2.9	<3.5	<3.8	<3.2	<2.8	<120	<150
1,1-Dichloroethane	μg/kg	400,000	<3.3	<2.8	<160	<3.1	<2.8	<3.0	<3.1	<2.9	<3.5	<3.8	<3.2	<2.8	<120	<150
Chloroethane	μg/kg	170	<6.6	<5.6	<330	<6.3	<5.7	<6.0	<6.2	<5.9	<7.1	<7.6	<6.3	<5.5	<250	<300
cis-1,2-Dichloroethene	μg/kg	19,000	<3.3	<2.8	<160	<3.1	9,500	6.9	<3.1	<2.9	<3.5	<3.8	<3.2	<2.8	<120	<150
trans-1,2-Dichloroethene	μg/kg	52,000	<3.3	<2.8	<160	<3.1	2.8	<3.0	<3.1	<2.9	<3.5	<3.8	<3.2	<2.8	<120	<150
Vinyl Chloride	μg/kg	200	<6.6	<5.6	<330	<6.3	<5.7	<6.0	<6.2	<5.9	<7.1	<7.6	<6.3	<5.5	<250	<300
Aromatic Hydrocarbons																
Benzene	μg/kg	500	<3.3	<2.8	<160	<3.1	<2.8	<3.0	<3.1	<2.9	<3.5	<3.8	<3.2	<2.8	<120	<150
Ethylbenzene	μg/kg	340,000	<3.3	<2.8	<160	<3.1	64	<3.0	<3.1	<2.9	<3.5	<3.8	<3.2	<2.8	<120	<150
Toluene	μg/kg	400,000	<3.3	<2.8	<160	<3.1	14	<3.0	<3.1	<2.9	<3.5	<3.8	<3.2	<2.8	<120	<150
Chlorobenzene	μg/kg	10,000	<3.3	<2.8	<160	<3.1	<2.8	<3.0	<3.1	<2.9	<3.5	<3.8	<3.2	<2.8	<120	<150
Cyclohexane	μg/kg	1,400,000	<3.3	<2.8	<160	<3.1	<2.8	<3.0	<3.1	<2.9	<3.5	<3.8	<3.2	<2.8	<120	<150
Naphthalene	μg/kg	100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
o-Xylene	μg/kg	1,100,000	<3.3	<2.8	<160	<3.1	<2.8	<3.0	<3.1	<2.9	<3.5	<3.8	<3.2	<2.8	<120	<150
m,p-Xylene	μg/kg	1,100,000	<6.6	<5.6	<330	<6.3	<5.7	<6.0	<6.2	<5.9	<7.1	<7.6	<6.3	<5.5	<250	<300
Xylenes, Total	μg/kg	1,100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Isopropylbenzene	μg/kg	94,000	<3.3	<2.8	<160	<3.1	51	<3.0	<3.1	<2.9	<3.5	<3.8	<3.2	<2.8	<120	<150
Non-Chlorinated VOCs																
2-Butanone	μg/kg	200,000	<33	<28	<1,600	<31	<28	<30	<31	<29	<35	<38	<32	<28	<1,200	<1,500
Acetone	μg/kg	400,000	<66	<56	<3,300	<63	<57	<60	<62	<59	<71	<76	<63	<55	<2,500	<3,000
Carbon Disulfide	μg/kg	400,000	<6.6	<5.6	<330	<6.3	9.9	<6.0	<6.2	<5.9	<7.1	<7.6	<6.3	<5.5	<250	<300
Methylene Chloride	μg/kg	500	<3.3	<2.8	<160	<3.1	<2.8	<3.0	<3.1	<2.9	<3.5	<3.8	<3.2	<2.8	<120	<150

RRS-Risk Reduction Standard (see Table 1 of CSR)

VOCs-volatile organic compounds

μg/kg- micrograms per kilogram

NA-not analyzed

Table D-11. Summary of VOCs Detected in Soil from MACTEC Excavation Confirmation Samples, 2006. ARAMARK DeKalb VRP/HSI Site (No. 10704) Atlanta, Georgia

			UST Pit	T-	1	T-	2	T-	3	T-	4	T-:	5	B-1	B-2	B-3	B-4
			5'	2'	3'	2'	3'	2'	3'	2'	3'	4'	6'	3.5'	3.5'	3.5'	3.5'
			2/28/2006	3/1/2006	3/3/2006	3/1/2006	3/3/2006	3/1/2006	3/3/2006	3/1/2006	3/3/2006	3/1/2006	3/3/2006	3/3/2006	3/3/2006	3/6/2006	3/6/2006
		Selected															
Chlorinated VOCs		RRS															1
Tetrachloroethene	μg/kg	500	8.4	36,000	<2.3	1,700	<2.9	1,400,000	14	1,900	7.2	22,000	7.7	<3.1	9.5	59	<2.7
1,1,1-Trichloroethane	μg/kg	260,000	<3.0	<3.1	<2.3	<3.3	<2.9	<3.0	<2.7	<2.8	<2.8	<1,900	<2.8	<3.1	<4.2	<3.0	<2.7
Trichloroethene	μg/kg	500	<3.0	230	<2.3	5.4	<2.9	1,100	<2.7	9.4	<2.8	<1,900	<2.8	<3.1	<4.2	<3.0	<2.7
1,1-Dichloroethene	μg/kg	700	<3.0	<3.1	<2.3	<3.3	<2.9	<3.0	<2.7	<2.8	<2.8	<1,900	<2.8	<3.1	<4.2	<3.0	<2.7
1,2-Dichloroethane	μg/kg	500	<3.0	<3.1	<2.3	<3.3	<2.9	<3.0	<2.7	<2.8	<2.8	<1,900	<2.8	<3.1	<4.2	<3.0	<2.7
1,1-Dichloroethane	μg/kg	400,000	<3.0	<3.1	<2.3	<3.3	<2.9	<3.0	<2.7	<2.8	<2.8	<1,900	<2.8	<3.1	<4.2	<3.0	<2.7
Chloroethane	μg/kg	170	<6.1	<6.2	<4.7	<6.5	<5.7	<6.0	<5.5	<5.5	<5.5	<3,900	<5.6	<6.2	<8.5	<5.9	<5.3
cis-1,2-Dichloroethene	μg/kg	19,000	<3.0	120	<2.3	<3.3	<2.9	340	<2.7	<2.8	<2.8	<1,900	<2.8	<3.1	<4.2	<3.0	<2.7
trans-1,2-Dichloroethene	μg/kg	52,000	<3.0	<3.1	<2.3	<3.3	<2.9	<3.0	<2.7	<2.8	<2.8	<1,900	<2.8	<3.1	<4.2	<3.0	<2.7
Vinyl Chloride	μg/kg	200	<6.1	<6.2	<4.7	<6.5	<5.7	<6.0	<5.5	<5.5	<5.5	<3,900	<5.6	<6.2	<8.5	<5.9	<5.3
Aromatic Hydrocarbons																	
Benzene	μg/kg	500	<3.0	<3.1	<2.3	<3.3	<2.9	<3.0	<2.7	<2.8	<2.8	<1,900	<2.8	<3.1	<4.2	<3.0	<2.7
Ethylbenzene	μg/kg	340,000	<3.0	<3.1	<2.3	<3.3	<2.9	57	<2.7	<2.8	<2.8	<1,900	<2.8	<3.1	<4.2	<3.0	<2.7
Toluene	μg/kg	400,000	<3.0	<3.1	<2.3	<3.3	<2.9	30	<2.7	<2.8	<2.8	<1,900	<2.8	<3.1	<4.2	<3.0	<2.7
Chlorobenzene	μg/kg	10,000	<3.0	<3.1	<2.3	<3.3	<2.9	<3.0	<2.7	<2.8	<2.8	<1,900	<2.8	<3.1	<4.2	<3.0	<2.7
Cyclohexane	μg/kg	1,400,000	<3.0	<3.1	<2.3	<3.3	<2.9	<3.0	<2.7	<2.8	<2.8	<1,900	<2.8	<3.1	<4.2	<3.0	<2.7
Naphthalene	μg/kg	100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
o-Xylene	μg/kg	1,100,000	<3.0	3.3	<2.3	<3.3	<2.9	270	<2.7	<2.8	<2.8	<1,900	<2.8	<3.1	<4.2	<3.0	<2.7
m,p-Xylene	μg/kg	1,100,000	<6.1	<6.2	<4.7	<6.5	<5.7	160	<5.5	<5.5	<5.5	<3,900	<5.6	<6.2	<8.5	<5.9	<5.3
Xylenes, Total	μg/kg	1,100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Isopropylbenzene	μg/kg	94,000	<3.0	3.6	<2.3	<3.3	<2.9	110	<2.7	<2.8	<2.8	<1,900	<2.8	<3.1	<4.2	<3.0	<2.7
Non-Chlorinated VOCs																	
2-Butanone	μg/kg	200,000	<30	<31	<23	<33	<29	<30	<27	<28	<28	<19,000	<28	<31	<42	<30	<27
Acetone	μg/kg	400,000	<61	<62	<47	<65	<57	<60	<55	<55	<55	<39,000	<56	<62	<85	<59	<53
Carbon Disulfide	μg/kg	400,000	<6.1	<6.2	<4.7	<6.5	<5.7	<6.0	<5.5	<5.5	<5.5	<3,900	<5.6	<6.2	<8.5	<5.9	<5.3
Methylene Chloride	μg/kg	500	<3.0	<3.1	<2.3	<3.3	<2.9	<3.0	<2.7	<2.8	<2.8	<1,900	<2.8	<3.1	<4.2	<3.0	<2.7

RRS-Risk Reduction Standard (see Table 1 of CSR)

VOCs-volatile organic compounds

μg/kg- micrograms per kilogram

NA-not analyzed

Table D-12. Summary of VOCs Detected in Soil Samples Collected by AEM, 2006. ARAMARK DeKalb VRP/HSI Site No. 10704 Atlanta, Georgia

		Sample ID	GF	P-33	GP	-34	GP	-35	GP	-36	GP-	-37	GP-	-38
		Depth	2-4'	4-6'	2-4'	4-6'	2-4'	4-6'	2-4'	4-6'	2-4'	4-6'	2-4'	4-6'
		Date	1/24	/2006	1/24,	/2006	1/24,	/2006	1/24/	′ 2006	1/24/	/2006	1/24/	/2006
Chlorinated VOCs		Selected RRS												
Tetrachloroethene	μg/kg	500	<3.1	<3.5	<3.5	<3.5	<3.5	<3.3	<3.1	<3.8	11	<5	<3.2	6.9
1,1,1-Trichloroethane	μg/kg	260,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Trichloroethene	μg/kg	500	<3.1	<3.5	<3.5	<3.5	<3.5	<3.3	<3.1	<3.8	<3.2	<5	<3.2	<4.6
1,1-Dichloroethene	μg/kg	700	<3.1	<3.5	<3.5	<3.5	<3.5	<3.3	<3.1	<3.8	<3.2	<5	<3.2	<4.6
1,2-Dichloroethane	μg/kg	500	<3.1	<3.5	<3.5	<3.5	<3.5	<3.3	<3.1	<3.8	<3.2	<5	<3.2	<4.6
1,1-Dichloroethane	μg/kg	400,000	<3.1	<3.5	<3.5	<3.5	<3.5	<3.3	<3.1	<3.8	<3.2	<5	<3.2	<4.6
Chloroethane	μg/kg	170	<3.1	<3.5	<3.5	<3.5	<3.5	<3.3	<3.1	<3.8	<3.2	<5	<3.2	<4.6
cis-1,2-Dichloroethene	μg/kg	19,000	<3.1	<3.5	<3.5	<3.5	<3.5	<3.3	<3.1	<3.8	<3.2	<5	<3.2	<4.6
trans-1,2-Dichloroethene	μg/kg	52,000	<3.1	<3.5	<3.5	<3.5	<3.5	<3.3	<3.1	<3.8	<3.2	<5	<3.2	<4.6
Vinyl Chloride	μg/kg	200	<3.1	<3.5	<3.5	<3.5	<3.5	<3.3	<3.1	<3.8	<3.2	<5	<3.2	<4.6
Aromatic Hydrocarbons														
Benzene	μg/kg	500	<3.1	<3.5	<3.5	<3.5	<3.5	<3.3	<3.1	<3.8	<3.2	<5	<3.2	<4.6
Ethylbenzene	μg/kg	340,000	<3.1	<3.5	<3.5	<3.5	<3.5	<3.3	<3.1	<3.8	<3.2	<5	<3.2	<4.6
Toluene	μg/kg	400,000	<3.1	<3.5	<3.5	<3.5	<3.5	<3.3	<3.1	<3.8	<3.2	<5	<3.2	<4.6
Chlorobenzene	μg/kg	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cyclohexane	μg/kg	1,400,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	μg/kg	100,000	4.1	<3.5	<3.5	<3.5	<3.5	<3.3	<3.1	<3.8	<3.2	<5	<3.2	<4.6
o-Xylene	μg/kg	1,100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
m,p-Xylene	μg/kg	1,100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Xylenes, Total	μg/kg	1,100,000	<9.2	<10	<10	<10	<11	<9.8	<9.2	<11	<9.6	<15	<9.6	<14
Isopropylbenzene	μg/kg	94,000	<3.1	<3.5	<3.5	<3.5	<3.5	<3.3	<3.1	<3.8	<3.2	<5	<3.2	<4.6
Non-Chlorinated VOCs														
2-Butanone	μg/kg	200,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	μg/kg	400,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbon Disulfide	μg/kg	400,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methylene Chloride	μg/kg	500	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

RRS-Risk Reduction Standard (see Table 1 of CSR)

VOCs-volatile organic compounds

μg/kg- micrograms per kilogram

NA-not analyzed **Bold-**analyte detected

Table D-13. Summary of VOCs Detected in Soil from AEM Samples GP-1 to AEM GP-17, 2008.

ARAMARK DeKalb VRP/HSI Site (No. 10704)

Atlanta, Georgia

			AEM	GP-1	AEM	I GP-2	AEV	I GP-3	AEM	1 GP-4	AEM	GP-5
			3.5-4' 8/5/	7.5-8' 2008	3.5-4' 8/5/	7.5-8' /2008	3.5-4' 8/5/	7.5-8' ⁄2008	3.5-4' 8/5,	7.5-8' /2008	3.5-4' 8/5/	7.5-8' 2008
Chlorinated VOCs		Selected RRS										
Tetrachloroethene	μg/kg	500	<2.7	<2.5	<2.8	<3.3	19	190	23	590	13	56
1,1,1-Trichloroethane	μg/kg	260,000	<2.7	<2.5	<2.8	<3.3	<3.3	<3.5	<3.0	<160	<3.1	<3.3
Trichloroethene	μg/kg	500	<2.7	<2.5	<2.8	<3.3	<3.3	53	14	<160	9.5	120
1,1-Dichloroethene	μg/kg	700	<2.7	<2.5	<2.8	<3.3	<3.3	<3.5	<3.0	<160	<3.1	<3.3
1,2-Dichloroethane	μg/kg	500	<2.7	<2.5	<2.8	<3.3	<3.3	<3.5	<3.0	<160	<3.1	<3.3
1,1-Dichloroethane	μg/kg	400,000	<2.7	<2.5	<2.8	<3.3	<3.3	<3.5	<3.0	<160	<3.1	<3.3
Chloroethane	μg/kg	170	<5.3	<4.9	<5.6	<6.5	<6.7	<7.0	<5.9	<320	<6.3	<6.6
cis-1,2-Dichloroethene	μg/kg	19,000	<2.7	<2.5	<2.8	<3.3	<3.3	540	5.8	2,100	12	1,600
trans-1,2-Dichloroethene	μg/kg	52,000	<2.7	<2.5	<2.8	<3.3	<3.3	<3.5	<3.0	<160	<3.1	<3.3
Vinyl Chloride	μg/kg	200	<5.3	<4.9	<5.6	<6.5	<6.7	<7.0	<5.9	<320	<6.3	<6.6
Aromatic Hydrocarbons												
Benzene	μg/kg	500	<2.7	<2.5	<2.8	<3.3	<3.3	<3.5	<3.0	<160	<3.1	<3.3
Ethylbenzene	μg/kg	340,000	<2.7	<2.5	<2.8	<3.3	<3.3	<3.5	<3.0	<160	<3.1	<3.3
Toluene	μg/kg	400,000	<2.7	<2.5	<2.8	<3.3	<3.3	<3.5	<3.0	<160	<3.1	<3.3
Chlorobenzene	μg/kg	10,000	<2.7	<2.5	<2.8	<3.3	<3.3	<3.5	<3.0	<160	<3.1	<3.3
Cyclohexane	μg/kg	1,400,000	<2.7	<2.5	<2.8	<3.3	<3.3	<3.5	<3.0	<160	<3.1	<3.3
Naphthalene	μg/kg	100,000	<2.7	<2.5	<2.8	<3.3	<3.3	<3.5	<3.0	<160	<3.1	3.7
o-Xylene	μg/kg	1,100,000	<2.7	<2.5	<2.8	<3.3	<3.3	<3.5	<3.0	<160	<3.1	<3.3
m,p-Xylene	μg/kg	1,100,000	<5.3	<4.9	<5.6	<6.5	<6.7	<7.0	<5.9	<320	<6.3	<6.6
Xylenes, Total	μg/kg	1,100,000	<2.7	<2.5	<2.8	<3.3	<3.3	<3.5	<3.0	320	<3.1	<3.3
Isopropylbenzene	μg/kg	94,000	<2.7	<2.5	<2.8	<3.3	<3.3	<3.5	<3.0	700	<3.1	8.0
Non-Chlorinated VOCs												
2-Butanone	μg/kg	200,000	<27	<25	<28	<33	<33	<35	<30	<1,600	<31	<33
Acetone	μg/kg	400,000	<53	<49	<56	<65	<67	<70	<59	<3,200	<63	<66
Carbon Disulfide	μg/kg	400,000	<5.3	<4.9	<5.6	<6.5	<6.7	<7.0	<5.9	<320	<6.3	<6.6
Methylene Chloride	μg/kg	500	<11	<9.9	<11	<13	<13	<14	<12	<650	<13	<13

RRS-Risk Reduction Standard (see Table 1 of CSR)

VOCs-volatile organic compounds

μg/kg- micrograms per kilogram

NA-not analyzed

Bold-analyte detected

Bold-analyte detected above Selected RRSs

Table D-13. Summary of VOCs Detected in Soil from AEM Samples GP-1 to AEM GP-17, 2008.

ARAMARK DeKalb VRP/HSI Site (No. 10704)

Atlanta, Georgia

			AEM	GP-6	AEM	GP-7	AEN	/I GP-8	AEM	1 GP-9	AEM	1 GP-10
			3.5-4' 8/5/	7.5-8' 2008	3.5-4' 8/5/	7.5-8' 2008	3.5-4' 8/5	7.5-8' /2008	3.5-4' 8/5,	7.5-8' /2008	3.5-4' 8/5	7.5-8' 5/2008
Chlorinated VOCs		Selected RRS										
Tetrachloroethene	μg/kg	500	80	120	24	57	66	150,000	53	23,000	60	480,000
1,1,1-Trichloroethane	μg/kg	260,000	<2.9	<3.8	<2.9	<3.2	<2.7	<1,600	<2.8	<3.0	<3.3	<1,500
Trichloroethene	μg/kg	500	61	9.5	<2.9	6.8	10	4,300	<2.8	1,000	<3.3	1,700
1,1-Dichloroethene	μg/kg	700	<2.9	<3.8	<2.9	<3.2	<2.7	<1,600	<2.8	<3.0	<3.3	<1,500
1,2-Dichloroethane	μg/kg	500	<2.9	<3.8	<2.9	<3.2	<2.5	<1,600	<2.8	<3.0	<3.3	<1,500
1,1-Dichloroethane	μg/kg	400,000	<2.9	<3.8	<2.9	<3.2	<2.7	<1,600	<2.8	<3.0	<3.3	<1,500
Chloroethane	μg/kg	170	<5.7	<7.6	<5.8	<6.5	<5.4	<3,300	<5.7	<6.0	<6.5	<2,900
cis-1,2-Dichloroethene	μg/kg	19,000	<2.9	93	<2.9	9.2	5.1	3,600	3.7	640	<3.3	<1,500
trans-1,2-Dichloroethene	μg/kg	52,000	<2.9	<3.8	<2.9	<3.2	<2.7	<1,600	<2.8	3.9	<3.3	<1,500
Vinyl Chloride	μg/kg	200	<5.7	<7.6	<5.8	<6.5	<5.4	<3,300	<5.7	<6.0	<6.5	<2,900
Aromatic Hydrocarbons												
Benzene	μg/kg	500	<2.9	<3.8	<2.9	<3.2	<2.7	<1,600	<2.8	<3.0	<3.3	<1,500
Ethylbenzene	μg/kg	340,000	<2.9	<3.8	<2.9	<3.2	<2.7	<1,600	<2.8	6.1	<3.3	<1,500
Toluene	μg/kg	400,000	<2.9	<3.8	<2.9	<3.2	<2.7	<1,600	<2.8	<3.0	<3.3	<1,500
Chlorobenzene	μg/kg	10,000	<2.9	<3.8	<2.9	<3.2	<2.7	<1,600	<2.8	<3.0	<3.3	<1,500
Cyclohexane	μg/kg	1,400,000	<2.9	<3.8	<2.9	<3.2	<2.7	<1,600	<2.8	<3.0	<3.3	<1,500
Naphthalene	μg/kg	100,000	<2.9	<3.8	<2.9	3.6	<2.7	<1,600	<2.8	7.1	<3.3	<1,500
o-Xylene	μg/kg	1,100,000	<2.9	<3.8	<2.9	<3.2	<2.7	<1,600	<2.8	<3.0	<3.3	<1,500
m,p-Xylene	μg/kg	1,100,000	<5.7	<7.6	<5.8	<6.5	<5.4	<3,300	<5.7	<6.0	<6.5	<2,900
Xylenes, Total	μg/kg	1,100,000	<2.9	<3.8	<2.9	<3.2	<2.7	<1,600	<2.8	6.1	<3.3	<1,500
Isopropylbenzene	μg/kg	94,000	<2.9	<3.8	<2.9	<3.2	<2.7	<1,600	<2.8	38	<3.3	<1,500
Non-Chlorinated VOCs												
2-Butanone	μg/kg	200,000	<29	<38	<29	<32	<27	<16,000	<28	34	<33	<15,000
Acetone	μg/kg	400,000	80	<76	<58	130	<54	<33,000	<57	410 E	100	<29,000
Carbon Disulfide	μg/kg	400,000	<5.7	<7.6	<5.8	<6.5	<5.4	<3,300	<5.7	<6.0	<6.5	<2,900
Methylene Chloride	μg/kg	500	<11	<15	<12	<13	<11	<6,600	<11	<12	<13	<5,800

RRS-Risk Reduction Standard (see Table 1 of CSR)

VOCs-volatile organic compounds

μg/kg- micrograms per kilogram

NA-not analyzed

Bold-analyte detected

Bold-analyte detected above Selected RRSs

Table D-13. Summary of VOCs Detected in Soil from AEM Samples GP-1 to AEM GP-17, 2008.

ARAMARK DeKalb VRP/HSI Site (No. 10704)

Atlanta, Georgia

			AEM	GP-11		AEM GP-12		AEM	GP-13	AEM	GP-14		AEM GP-15	
							7.5-8'							
			3.5-4'	7.5-8'	3.5-4'	7.5-8'	DUP	3.5-4'	7.5-8'	3.5-4'	7.5-8'	3.5-4'	3.5-4' DUP	7.5-8'
			8/5/	2008		8/5/2008		8/5/	2008	8/5/	/2008		8/5/2008	
		Selected												
Chlorinated VOCs		RRS												
Tetrachloroethene	μg/kg	500	12	13	900	67	94	<3.1	14	38	18	<2.9	<3.3	26
1,1,1-Trichloroethane	μg/kg	260,000	<2.8	<2.5	<2.9	<2.8	<3.0	<3.1	<3.5	<3.1	<3.4	<2.9	<3.3	<3.5
Trichloroethene	μg/kg	500	<2.8	34	66	10	25	<3.1	<3.5	<3.1	<3.4	<2.9	<3.3	<3.5
1,1-Dichloroethene	μg/kg	700	<2.8	<2.5	<2.9	<2.8	<3.0	<3.1	<3.5	<3.1	<3.4	<2.9	<3.3	<3.5
1,2-Dichloroethane	μg/kg	500	<2.8	<2.5	<2.9	<2.8	<3.0	<3.1	<3.5	<3.1	<3.4	<2.9	<3.3	<3.5
1,1-Dichloroethane	μg/kg	400,000	<2.8	<2.5	<2.9	<2.8	<3.0	<3.1	<3.5	<3.1	<3.4	<2.9	<3.3	<3.5
Chloroethane	μg/kg	170	<5.5	<5.1	<5.8	<5.5	<6.0	<6.2	<7.0	<6.3	<6.8	<5.8	<6.6	<7.0
cis-1,2-Dichloroethene	μg/kg	19,000	<2.8	2,000	53	23	46	<3.1	<3.5	<3.1	<3.4	<2.9	<3.3	<3.5
trans-1,2-Dichloroethene	μg/kg	52,000	<2.8	<2.5	<2.9	<2.8	<3.0	<3.1	<3.5	<3.1	<3.4	<2.9	<3.3	<3.5
Vinyl Chloride	μg/kg	200	<5.5	710	<5.8	<5.5	<6.0	<6.2	<7.0	<6.3	<6.8	<5.8	<6.6	<7.0
Aromatic Hydrocarbons														
Benzene	μg/kg	500	<2.8	<2.5	<2.9	<2.8	<3.0	<3.1	<3.5	<3.1	<3.4	<2.9	<3.3	<3.5
Ethylbenzene	μg/kg	340,000	<2.8	14	<2.9	<2.8	<3.0	<3.1	<3.5	<3.1	<3.4	<2.9	<3.3	<3.5
Toluene	μg/kg	400,000	<2.8	<2.5	<2.9	<2.8	<3.0	<3.1	<3.5	<3.1	<3.4	<2.9	<3.3	<3.5
Chlorobenzene	μg/kg	10,000	<2.8	<2.5	<2.9	<2.8	<3.0	<3.1	<3.5	<3.1	<3.4	<2.9	<3.3	<3.5
Cyclohexane	μg/kg	1,400,000	<2.8	<2.5	<2.9	<2.8	<3.0	<3.1	<3.5	<3.1	<3.4	<2.9	<3.3	<3.5
Naphthalene	μg/kg	100,000	3.6	8.8	3.6	<2.8	<3.0	<3.1	<3.5	<3.1	<3.4	<2.9	<3.3	<3.5
o-Xylene	μg/kg	1,100,000	<2.8	<2.5	<2.9	<2.8	<3.0	<3.1	<3.5	<3.1	<3.4	<2.9	<3.3	<3.5
m,p-Xylene	μg/kg	1,100,000	<5.5	<5.1	<5.8	<5.5	<6.0	<6.2	<7.0	<6.3	<6.8	<5.8	<6.6	<7.0
Xylenes, Total	μg/kg	1,100,000	<2.8	2.8	<2.9	<2.8	<3.0	<3.1	<3.5	<3.1	<3.4	<2.9	<3.3	<3.5
Isopropylbenzene	μg/kg	94,000	<2.8	21	<2.9	<2.8	<3.0	<3.1	<3.5	<3.1	<3.4	<2.9	<3.3	<3.5
Non-Chlorinated VOCs														
2-Butanone	μg/kg	200,000	<28	<25	<29	<28	<30	<31	<35	<31	<34	<29	<33	<35
Acetone	μg/kg	400,000	<55	<51	110	<55	<60	<62	<70	<63	<68	<58	<66	<70
Carbon Disulfide	μg/kg	400,000	<5.5	<5.1	<5.8	<5.5	<6.0	<6.2	<7.0	<6.3	<6.8	<5.8	<6.6	<7.0
Methylene Chloride	μg/kg	500	<11	<10	<12	<11	<12	<12	<14	<13	<14	<12	<13	<14

RRS-Risk Reduction Standard (see Table 1 of CSR)

VOCs-volatile organic compounds

μg/kg- micrograms per kilogram

NA-not analyzed

Bold-analyte detected

Bold-analyte detected above Selected RRSs

Table D-13. Summary of VOCs Detected in Soil from AEM Samples GP-1 to AEM GP-17, 2008.

ARAMARK DeKalb VRP/HSI Site (No. 10704)

Atlanta, Georgia

			AEM	GP-16	AEM	GP-17
			3.5-4' 8/5/	7.5-8' 2008	3.5-4' 8/5/	7.5-8' 2008
Chlorinated VOCs		Selected RRS				
Tetrachloroethene	μg/kg	500	<2.6	<3.4	<3.8	3.7
1,1,1-Trichloroethane	μg/kg	260,000	<2.6	<3.4	<3.8	<3.1
Trichloroethene	μg/kg	500	<2.6	<3.4	<3.8	<3.1
1,1-Dichloroethene	μg/kg	700	<2.6	<3.4	<3.8	<3.1
1,2-Dichloroethane	μg/kg	500	<2.6	<3.4	<3.8	<3.1
1,1-Dichloroethane	μg/kg	400,000	<2.6	<3.4	<3.9	<3.1
Chloroethane	μg/kg	170	<5.1	<6.8	<7.6	<6.2
cis-1,2-Dichloroethene	μg/kg	19,000	<2.6	<3.4	<3.8	<3.1
trans-1,2-Dichloroethene	μg/kg	52,000	<2.6	<3.4	<3.8	<3.1
Vinyl Chloride	μg/kg	200	<5.1	<6.8	<7.6	<6.2
Aromatic Hydrocarbons						
Benzene	μg/kg	500	<2.6	<3.4	<3.8	<3.1
Ethylbenzene	μg/kg	340,000	<2.6	<3.4	<3.8	<3.1
Toluene	μg/kg	400,000	<2.6	<3.4	<3.8	<3.1
Chlorobenzene	μg/kg	10,000	<2.6	<3.4	<3.8	<3.1
Cyclohexane	μg/kg	1,400,000	<2.6	<3.4	<3.8	<3.1
Naphthalene	μg/kg	100,000	<2.6	<3.4	<3.8	<3.1
o-Xylene	μg/kg	1,100,000	<2.6	<3.4	<3.8	<3.1
m,p-Xylene	μg/kg	1,100,000	<5.1	<6.8	<7.6	<6.2
Xylenes, Total	μg/kg	1,100,000	<2.6	<3.4	<3.8	<3.1
Isopropylbenzene	μg/kg	94,000	<2.6	<3.4	<3.8	<3.1
Non-Chlorinated VOCs						
2-Butanone	μg/kg	200,000	<26	<34	<38	<31
Acetone	μg/kg	400,000	<51	<68	<76	<62
Carbon Disulfide	μg/kg	400,000	<5.1	<6.8	<7.6	<6.2
Methylene Chloride	μg/kg	500	<10	<14	<15	<12

RRS-Risk Reduction Standard (see Table 1 of CSR)

VOCs-volatile organic compounds

μg/kg- micrograms per kilogram

NA-not analyzed

Bold-analyte detected

Bold-analyte detected above Selected RRSs

Table D-14. Summary of VOCs Detected in Soil from AEM Samples DS-01 to AEM DS-4, 2008.

ARAMARK DeKalb VRP/HSI Site (No. 10704)

Atlanta, Georgia

			DS	-01	DS	-02	DS	5-03	DS-	-04	DS	-05
			13.5'	15.5'	12'	15'	9.5'	12.5'	10.5'	13.5'	11.5'	14.5'
			11/24	/2008	11/24	/2008	11/24	1/2008	11/24	/2008	11/24	1/2008
Chlorinated VOCs		Selected RRS										
Tetrachloroethene	μg/kg	500	<5.0	<5.5	<4.5	<5.9	<5.9	<5.9	<6.2	<6.9	<6.2	<5.3
1,1,1-Trichloroethane	μg/kg	260,000	<5.0	<5.5	<4.5	<5.9	<5.9	<5.9	<6.2	<6.9	<6.2	<5.3
Trichloroethene	μg/kg	500	<5.0	<5.5	<4.5	<5.9	<5.9	<5.9	<6.2	<6.9	<6.2	<5.3
1,1-Dichloroethene	μg/kg	700	<5.0	<5.5	<4.5	<5.9	<5.9	<5.9	<6.2	<6.9	<6.2	<5.3
1,2-Dichloroethane	μg/kg	500	<5.0	<5.5	<4.5	<5.9	<5.9	<5.9	<6.2	<6.9	<6.2	<5.3
1,1-Dichloroethane	μg/kg	400,000	<5.0	<5.5	<4.5	<5.9	<5.9	<5.9	<6.2	<6.9	<6.2	<5.3
Chloroethane	μg/kg	170	<9.9	<11	<8.9	<12	<12	<12	<12	<14	<12	<11
cis-1,2-Dichloroethene	μg/kg	19,000	<5.0	<5.5	<4.5	<5.9	<5.9	<5.9	<6.2	<6.9	<6.2	<5.3
trans-1,2-Dichloroethene	μg/kg	52,000	<5.0	<5.5	<4.5	<5.9	<5.9	<5.9	<6.2	<6.9	<6.2	<5.3
Vinyl Chloride	μg/kg	200	<9.9	<11	<8.9	<12	<12	<12	<12	<14	<12	<11
Aromatic Hydrocarbons												
Benzene	μg/kg	500	<5.0	<5.5	<4.5	<5.9	<5.9	<5.9	<6.2	<6.9	<6.2	<5.3
Ethylbenzene	μg/kg	340,000	<5.0	<5.5	<4.5	<5.9	<5.9	<5.9	<6.2	<6.9	<6.2	<5.3
Toluene	μg/kg	400,000	<5.0	<5.5	<4.5	<5.9	<5.9	<5.9	<6.2	<6.9	<6.2	<5.3
Chlorobenzene	μg/kg	10,000	<5.0	<5.5	<4.5	<5.9	<5.9	<5.9	<6.2	<6.9	<6.2	<5.3
Cyclohexane	μg/kg	1,400,000	<5.0	<5.5	<4.5	<5.9	<5.9	<5.9	<6.2	<6.9	<6.2	<5.3
Naphthalene	μg/kg	100,000	<5.0	<5.5	<4.5	<5.9	<5.9	<5.9	<6.2	<6.9	<6.2	<5.3
o-Xylene	μg/kg	1,100,000	<5.0	<5.5	<4.5	<5.9	<5.9	<5.9	<6.2	<6.9	<6.2	<5.3
m,p-Xylene	μg/kg	1,100,000	<9.9	<11	<8.9	<12	<12	<12	<12	<14	<12	<11
Xylenes, Total	μg/kg	1,100,000	<5.0	<5.5	<4.5	<5.9	<5.9	<5.9	<6.2	<6.9	<6.2	<5.3
Isopropylbenzene	μg/kg	94,000	<5.0	<5.5	<4.5	<5.9	<5.9	<5.9	<6.2	<6.9	<6.2	<5.3
Non-Chlorinated VOCs												
2-Butanone	μg/kg	200,000	<50	<55	<45	<59	<59	<59	<62	<69	<62	<53
Acetone	μg/kg	400,000	<99	<110	<89	<120	<120	<120	<120	<140	<120	<110
Carbon Disulfide	μg/kg	400,000	<9.9	<11	<8.9	<12	<12	<12	<12	<14	<12	<11
Methylene Chloride	μg/kg	500	<20	<22	<18	<24	<23	<23	<25	<28	<25	<21

RRS-Risk Reduction Standard (see Table 1 of CSR)

VOCs-volatile organic compounds

μg/kg- micrograms per kilogram

NA-not analyzed

NR- Not Regulated

Bold-analyte detected

Bold-analyte detected above Selected RRSs

E-Concentration exceeded the established method calibration range but is within the working range of the instrument

Table D-14. Summary of VOCs Detected in Soil from AEM Samples DS-01 to AEM DS-4, 2008.

ARAMARK DeKalb VRP/HSI Site (No. 10704)

Atlanta, Georgia

			DS	-06	DS-	-07	DS-	-08	DS	-09		DS-10	
			11.5'	14.5'	14.5'	17.5'	14.5'	17.5'	11.5'	14.5'	8'	11.5'	14.5'
			11/24	/2008	11/24	/2008	11/24	/2008	11/24	/2008		11/24/2008	
		Selected											
Chlorinated VOCs		RRS											
Tetrachloroethene	μg/kg	500	<6.4	<6.0	16	<5.1	100	25	12	32	12	15	<6.3
1,1,1-Trichloroethane	μg/kg	260,000	<6.4	<6.0	<5.0	<5.1	<5.0	<4.6	<8.0	<6.1	<5.5	<5.1	<6.3
Trichloroethene	μg/kg	500	<6.4	<6.0	<5.0	<5.1	<5.0	<4.6	<8.0	<6.1	<5.5	<5.1	<6.3
1,1-Dichloroethene	μg/kg	700	<6.4	<6.0	<5.0	<5.1	<5.0	<4.6	<8.0	<6.1	<5.5	<5.1	<6.3
1,2-Dichloroethane	μg/kg	500	<6.4	<6.0	<5.0	<5.1	<5.0	<4.6	<8.0	<6.1	<5.5	<5.1	<6.3
1,1-Dichloroethane	μg/kg	400,000	<6.4	<6.0	<5.0	<5.1	<5.0	<4.6	<8.0	<6.1	<5.5	<5.1	<6.3
Chloroethane	μg/kg	170	<13	<12	<10	<10	<10	<9.1	<16	<12	<11	<10	<13
cis-1,2-Dichloroethene	μg/kg	19,000	<6.4	<6.0	<5.0	<5.1	<5.0	<4.6	<8.0	<6.1	<5.5	<5.1	<6.3
trans-1,2-Dichloroethene	μg/kg	52,000	<6.4	<6.0	<5.0	<5.1	<5.0	<4.6	<8.0	<6.1	<5.5	<5.1	<6.3
Vinyl Chloride	μg/kg	200	<13	<12	<10	<10	<10	<9.1	<16	<12	<11	<10	<13
Aromatic Hydrocarbons													
Benzene	μg/kg	500	<6.4	<6.0	<5.0	<5.1	<5.0	<4.6	<8.0	<6.1	<5.5	<5.1	<6.3
Ethylbenzene	μg/kg	340,000	<6.4	<6.0	<5.0	<5.1	<5.0	<4.6	<8.0	<6.1	<5.5	<5.1	<6.3
Toluene	μg/kg	400,000	<6.4	<6.0	<5.0	<5.1	<5.0	<4.6	<8.0	<6.1	<5.5	<5.1	<6.3
Chlorobenzene	μg/kg	10,000	<6.4	<6.0	<5.0	<5.1	<5.0	<4.6	<8.0	<6.1	<5.5	<5.1	<6.3
Cyclohexane	μg/kg	1,400,000	<6.4	<6.0	<5.0	<5.1	<5.0	<4.6	<8.0	<6.1	<5.5	<5.1	<6.3
Naphthalene	μg/kg	100,000	<6.4	<6.0	<5.0	<5.1	<5.0	<4.6	<8.0	<6.1	<5.5	<5.1	<6.3
o-Xylene	μg/kg	1,100,000	<6.4	<6.0	<5.0	<5.1	<5.0	<4.6	<8.0	<6.1	<5.5	<5.1	<6.3
m,p-Xylene	μg/kg	1,100,000	<13	<12	<10	<10	<10	<9.1	<16	<12	<11	<10	<13
Xylenes, Total	μg/kg	1,100,000	<6.4	<6.0	<5.0	<5.1	<5.0	<4.6	<8.0	<6.1	<5.5	<5.1	<6.3
Isopropylbenzene	μg/kg	94,000	<6.4	<6.0	<5.0	<5.1	<5.0	<4.6	<8.0	<6.1	<5.5	<5.1	<6.3
Non-Chlorinated VOCs													
2-Butanone	μg/kg	200,000	<64	<60	<50	<51	<50	<46	<80	<61	<55	<51	<63
Acetone	μg/kg	400,000	<130	<120	<100	<100	<100	<91	<160	<120	<110	<100	<130
Carbon Disulfide	μg/kg	400,000	<13	<12	<10	<10	<10	<9.1	<16	<12	<11	<10	<13
Methylene Chloride	μg/kg	500	<26	<24	<20	<20	<20	<18	<32	<24	<22	<21	<25

RRS-Risk Reduction Standard (see Table 1 of CSR)

VOCs-volatile organic compounds

μg/kg- micrograms per kilogram

NA-not analyzed

NR- Not Regulated

Bold-analyte detected

Bold-analyte detected above Selected RRSs

E-Concentration exceeded the established method calibration range but is within the working range of the instrument

Table D-14. Summary of VOCs Detected in Soil from AEM Samples DS-01 to AEM DS-4, 2008.

ARAMARK DeKalb VRP/HSI Site (No. 10704)

Atlanta, Georgia

				DS-11			DS-12		DS	-13	DS	5-14	DS	-15
			8'	11.5'	14.5'	8'	11.5'	14.5'	14.5'	17.5'	13.5'	16.5'	14.5'	16.5'
				11/24/2008			11/24/2008		11/24	1/2008	11/25	5/2008	11/25	5/2008
		Selected												
Chlorinated VOCs		RRS												
Tetrachloroethene	μg/kg	500	19	<7.9	<7.2	<8.2	<6.2	<5.5	11	<5.4	110	49	43	850
1,1,1-Trichloroethane	μg/kg	260,000	<5.1	<7.9	<7.2	<8.2	<6.2	<5.5	<5.9	<5.4	<4.6	<4.9	<5.4	<4.4
Trichloroethene	μg/kg	500	<5.1	<7.9	<7.2	<8.2	<6.2	<5.5	<5.9	<5.4	<4.6	<4.9	<5.4	16
1,1-Dichloroethene	μg/kg	700	<5.1	<7.9	<7.2	<8.2	<6.2	<5.5	<5.9	<5.4	<4.6	<4.9	<5.4	<4.4
1,2-Dichloroethane	μg/kg	500	<5.1	<7.9	<7.2	<8.2	<6.2	<5.5	<5.9	<5.4	<4.6	<4.9	<5.4	<4.4
1,1-Dichloroethane	μg/kg	400,000	<5.1	<7.9	<7.2	<8.2	<6.2	<5.5	<5.9	<5.4	<4.6	<4.9	<5.4	<4.4
Chloroethane	μg/kg	170	<10	<16	<14	<16	<12	<11	<12	<11	<9.3	<9.9	<11	<8.8
cis-1,2-Dichloroethene	μg/kg	19,000	<5.1	<7.9	<7.2	<8.2	<6.2	<5.5	<5.9	<5.4	<4.6	<4.9	<5.4	7.2
trans-1,2-Dichloroethene	μg/kg	52,000	<5.1	<7.9	<7.2	<8.2	<6.2	<5.5	<5.9	<5.4	<4.6	<4.9	<5.4	<4.4
Vinyl Chloride	μg/kg	200	<10	<16	<14	<16	<12	<11	<12	<11	<9.3	<9.9	<11	<8.8
Aromatic Hydrocarbons														
Benzene	μg/kg	500	<5.1	<7.9	<7.2	<8.2	<6.2	<5.5	<5.9	<5.4	<4.6	<4.9	<5.4	<4.4
Ethylbenzene	μg/kg	340,000	<5.1	<7.9	<7.2	<8.2	<6.2	<5.5	<5.9	<5.4	<4.6	<4.9	<5.4	<4.4
Toluene	μg/kg	400,000	<5.1	<7.9	<7.2	<8.2	<6.2	<5.5	<5.9	<5.4	<4.6	<4.9	<5.4	<4.4
Chlorobenzene	μg/kg	10,000	<5.1	<7.9	<7.2	<8.2	<6.2	<5.5	<5.9	<5.4	<4.6	<4.9	<5.4	<4.4
Cyclohexane	μg/kg	1,400,000	<5.1	<7.9	<7.2	<8.2	<6.2	<5.5	<5.9	<5.4	<4.6	<4.9	<5.4	<4.4
Naphthalene	μg/kg	100,000	<5.1	<7.9	<7.2	<8.2	<6.2	<5.5	<5.9	<5.4	<4.6	<4.9	<5.4	<4.4
o-Xylene	μg/kg	1,100,000	<5.1	<7.9	<7.2	<8.2	<6.2	<5.5	<5.9	<5.4	<4.6	<4.9	<5.4	<4.4
m,p-Xylene	μg/kg	1,100,000	<10	<16	<14	<16	<12	<11	<12	<11	<9.3	<9.9	<11	<8.8
Xylenes, Total	μg/kg	1,100,000	<5.1	<7.9	<7.2	<8.2	<6.2	<5.5	<5.9	<5.4	<4.6	<4.9	<5.4	<4.4
Isopropylbenzene	μg/kg	94,000	<5.1	<7.9	<7.2	<8.2	<6.2	<5.5	<5.9	<5.4	<4.6	<4.9	<5.4	<4.4
Non-Chlorinated VOCs														
2-Butanone	μg/kg	200,000	<51	<79	<72	<82	<62	<55	<59	<54	<46	<49	<54	<44
Acetone	μg/kg	400,000	<100	<160	<140	<160	<120	<110	<120	<110	<93	<99	<110	<88
Carbon Disulfide	μg/kg	400,000	<10	<16	<14	<16	<12	<11	<12	<11	<9.3	<9.9	<11	<8.8
Methylene Chloride	μg/kg	500	<21	<31	<29	<33	<25	<22	<24	<22	<19	<20	<22	<18

RRS-Risk Reduction Standard (see Table 1 of CSR)

 $VOCs\text{-}volatile\ organic\ compounds} \\ \mu\text{g/kg-}\ micrograms\ per\ kilogram$

NA-not analyzed NR- Not Regulated **Bold-**analyte detected

Bold-analyte detected
Bold-analyte detected above Selected RRSs

E-Concentration exceeded the established method calibration range but is within the working range of the instrument

Table D-14. Summary of VOCs Detected in Soil from AEM Samples DS-01 to AEM DS-4, 2008.

ARAMARK DeKalb VRP/HSI Site (No. 10704)

Atlanta, Georgia

				DS-16			DS-17			DS-18		DS	5-19		DS-20	
			8'	11.5'	14.5'	8'	11.5'	14.5'	8'	11.5'	14.5'	11.5'	14.5'	9.5'	12.5'	14.5'
				11/25/2008			11/25/2008			11/25/2008		11/2	5/2008		11/25/2008	
		Selected														
Chlorinated VOCs		RRS														
Tetrachloroethene	μg/kg	500	29	88	8.3	7.6	420	55	<4.0	9.5	9.8	870	<5.0	110,000	27,000	<5.1
1,1,1-Trichloroethane	μg/kg	260,000	<4.1	<4.5	<5.2	<5.5	<5.7	<5.1	<4.0	<5.1	<4.9	<3.9	<5.0	<240	<5.3	<5.1
Trichloroethene	μg/kg	500	<4.1	<4.5	<5.2	<5.5	36	<5.1	<4.0	<5.1	<4.9	8.4	<5.0	1,200	170	<5.1
1,1-Dichloroethene	μg/kg	700	<4.1	<4.5	<5.2	<5.5	<5.7	<5.1	<4.0	<5.1	<4.9	<3.9	<5.0	<240	<5.3	<5.1
1,2-Dichloroethane	μg/kg	500	<4.1	<4.5	<5.2	<5.5	<5.7	<5.1	<4.0	<5.1	<4.9	<3.9	<5.0	<240	<5.3	<5.1
1,1-Dichloroethane	μg/kg	400,000	<4.1	<4.5	<5.2	<5.5	<5.7	<5.1	<4.0	<5.1	<4.9	<3.9	<5.0	<240	<5.3	<5.1
Chloroethane	μg/kg	170	<8.1	<9.1	<10	<11	<11	<10	<7.9	<10	<9.8	<7.7	<10	<470	<11	<10
cis-1,2-Dichloroethene	μg/kg	19,000	69	170	<5.2	<5.5	29	<5.1	<4.0	<5.1	<4.9	32	<5.0	1,500	690	<5.1
trans-1,2-Dichloroethene	μg/kg	52,000	<4.1	<4.5	<5.2	<5.5	<5.7	<5.1	<4.0	<5.1	<4.9	<3.9	<5.0	<240	<5.3	<5.1
Vinyl Chloride	μg/kg	200	<8.1	<9.1	<10	<11	<11	<10	<7.9	<10	<9.8	<7.7	<10	<470	13	<10
Aromatic Hydrocarbons																
Benzene	μg/kg	500	<4.1	<4.5	<5.2	<5.5	<5.7	<5.1	<4.0	<5.1	<4.9	<3.9	<5.0	<240	<5.3	<5.1
Ethylbenzene	μg/kg	340,000	<4.1	<4.5	<5.2	<5.5	<5.7	<5.1	<4.0	<5.1	<4.9	<3.9	<5.0	<240	<5.3	<5.1
Toluene	μg/kg	400,000	<4.1	<4.5	<5.2	<5.5	<5.7	<5.1	<4.0	<5.1	<4.9	<3.9	<5.0	<240	<5.3	<5.1
Chlorobenzene	μg/kg	10,000	<4.1	<4.5	<5.2	<5.5	<5.7	<5.1	<4.0	<5.1	<4.9	<3.9	<5.0	<240	<5.3	<5.1
Cyclohexane	μg/kg	1,400,000	<4.1	<4.5	<5.2	<5.5	<5.7	<5.1	<4.0	<5.1	<4.9	<3.9	<5.0	<240	<5.3	<5.1
Naphthalene	μg/kg	100,000	<4.1	<4.5	<5.2	<5.5	<5.7	<5.1	<4.0	<5.1	<4.9	<3.9	<5.0	<240	35	<5.1
o-Xylene	μg/kg	1,100,000	<4.1	<4.5	<5.2	<5.5	<5.7	<5.1	<4.0	<5.1	<4.9	<3.9	<5.0	<240	260	<5.1
m,p-Xylene	μg/kg	1,100,000	<8.1	<9.1	<10	<11	<11	<10	<7.9	<10	<9.8	<7.7	<10	<470	260	<10
Xylenes, Total	μg/kg	1,100,000	<4.1	<4.5	<5.2	<5.5	<5.7	<5.1	<4.0	<5.1	<4.9	<3.9	<5.0	360	520	<5.1
Isopropylbenzene	μg/kg	94,000	<4.1	<4.5	<5.2	<5.5	<5.7	<5.1	<4.0	<5.1	<4.9	<3.9	<5.0	<240	310	<5.1
Non-Chlorinated VOCs					_			_			_		_	_		
2-Butanone	μg/kg	200,000	<41	<45	<52	<55	<57	<51	<40	<51	<49	<39	<50	<2,400	<53	<51
Acetone	μg/kg	400,000	<81	<91	<100	<110	<110	<100	<79	<100	<98	<77	<100	<4,700	<110	<100
Carbon Disulfide	μg/kg	400,000	<8.1	<9.1	<10	<11	<11	<10	<7.9	<10	<9.8	<7.7	<10	<470	<11	<10
Methylene Chloride	μg/kg	500	<16	<18	<21	<22	<23	<20	<16	<20	<20	<15	<20	<950	<21	<20

RRS-Risk Reduction Standard (see Table 1 of CSR)

VOCs-volatile organic compounds

μg/kg- micrograms per kilogram

NA-not analyzed

NR- Not Regulated

Bold-analyte detected

Bold-analyte detected above Selected RRSs

E-Concentration exceeded the established method calibration range but is within the working range of the instrument

Table D-14. Summary of VOCs Detected in Soil from AEM Samples DS-01 to AEM DS-4, 2008.

ARAMARK DeKalb VRP/HSI Site (No. 10704)

Atlanta, Georgia

				DS-22			DS-23			DS-24			DS-25			DS-26	1
			8'	11.5'	14.5'	8'	11.5'	14.5'	8'	11.5'	14.5'	8'	11.5'	14.5'	8'	9.5'	14.5'
				11/25/2008			11/25/2008			11/25/2008			11/25/2008			11/25/2008	
		Selected															
Chlorinated VOCs		RRS															
Tetrachloroethene	μg/kg	500	33	620	1,200	7,000	4,700	1,800	24,000	11,000	<5.1	6,900	1,900	430	8.7	2,400	910
1,1,1-Trichloroethane	μg/kg	260,000	<4.1	<4.8	<4.9	<3.8	<300	<4.4	<3.5	<4.9	<5.1	<3.8	<5.2	<4.3	<4.1	<4.0	<4.0
Trichloroethene	μg/kg	500	<4.1	25	21	150	<300	<4.4	890	2,300	<5.1	62	36	22	<4.1	34	14
1,1-Dichloroethene	μg/kg	700	<4.1	<4.8	<4.9	<3.8	<300	<4.4	<3.5	<4.9	<5.1	<3.8	<5.2	<4.3	<4.1	4.1	<4.0
1,2-Dichloroethane	μg/kg	500	<4.1	<4.8	<4.9	<3.8	<300	<4.4	<3.5	<4.9	<5.1	<3.8	<5.2	<4.3	<4.1	<4.0	<4.0
1,1-Dichloroethane	μg/kg	400,000	<4.1	<4.8	<4.9	<3.8	<300	<4.4	<3.5	<4.9	<5.1	<3.8	<5.2	<4.3	<4.1	<4.0	<4.0
Chloroethane	μg/kg	170	<8.2	<9.5	<9.8	<7.6	<600	<8.9	<6.9	<9.9	<10	<7.6	<10	<8.7	<8.2	<7.9	<8.0
cis-1,2-Dichloroethene	μg/kg	19,000	<4.1	6.2	9.1	280	<300	<4.4	550	2,500	<5.1	96	1,100	270	16	2,300	200
trans-1,2-Dichloroethene	μg/kg	52,000	<4.1	<4.8	<4.9	<3.8	<300	<4.4	3.9	<4.9	<5.1	<3.8	8.4	<4.3	<4.1	<4.0	<4.0
Vinyl Chloride	μg/kg	200	<8.2	<9.5	<9.8	<7.6	<600	<8.9	<6.9	11	<10	100	260	<8.7	<8.2	16	<8.0
Aromatic Hydrocarbons																	
Benzene	μg/kg	500	<4.1	<4.8	<4.9	<3.8	<300	<4.4	<3.5	<4.9	<5.1	<3.8	<5.2	<4.3	<4.1	4.4	<4.0
Ethylbenzene	μg/kg	340,000	<4.1	<4.8	<4.9	<3.8	<300	<4.4	<3.5	88	<5.1	<3.8	170	<4.3	<4.1	130	<4.0
Toluene	μg/kg	400,000	<4.1	<4.8	<4.9	<3.8	<300	<4.4	<3.5	<4.9	<5.1	<3.8	<5.2	<4.3	<4.1	<4.0	<4.0
Chlorobenzene	μg/kg	10,000	<4.1	<4.8	<4.9	<3.8	<300	<4.4	<3.5	<4.9	<5.1	<3.8	<5.2	<4.3	<4.1	<4.0	<4.0
Cyclohexane	μg/kg	1,400,000	<4.1	<4.8	<4.9	<3.8	<300	<4.4	<3.5	<4.9	<5.1	<3.8	<5.2	<4.3	<4.1	7.0	<4.0
Naphthalene	μg/kg	100,000	<4.1	<4.8	<4.9	6.1	<300	<4.4	<3.5	99	<5.1	<3.8	180	<4.3	<4.1	98	<4.0
o-Xylene	μg/kg	1,100,000	<4.1	<4.8	<4.9	<3.8	<300	<4.4	<3.5	<4.9	<5.1	<3.8	180	6.4	<4.1	36	<4.0
m,p-Xylene	μg/kg	1,100,000	<8.2	<9.5	<9.8	<7.6	<600	<8.9	<6.9	190	<10	<7.6	250	<8.7	<8.2	400	<8.0
Xylenes, Total	μg/kg	1,100,000	<4.1	<4.8	<4.9	<3.8	<300	<4.4	<3.5	190	<5.1	<3.8	420	6.4	<4.1	450	<4.0
Isopropylbenzene	μg/kg	94,000	<4.1	<4.8	<4.9	<3.8	390	<4.4	<3.5	2,900	<5.1	<3.8	420	<4.3	<4.1	840	<4.0
Non-Chlorinated VOCs																	
2-Butanone	μg/kg	200,000	<41	<48	<49	<38	<3,000	<44	<35	<49	<51	<38	<52	<43	<41	<40	<40
Acetone	μg/kg	400,000	<82	<95	<98	<76	<6,000	<89	<69	<99	<100	<76	<100	<87	<82	<79	<80
Carbon Disulfide	μg/kg	400,000	<8.2	<9.5	<9.8	<7.6	<600	<8.9	<6.9	<9.9	<10	<7.6	<10	<8.7	<8.2	<7.9	<8.0
Methylene Chloride	μg/kg	500	<16	<19	<20	<15	<1,200	<18	<14	<20	<20	<15	<21	<17	<16	<16	<16

RRS-Risk Reduction Standard (see Table 1 of CSR)

VOCs-volatile organic compounds

μg/kg- micrograms per kilogram

NA-not analyzed

NR- Not Regulated

Bold-analyte detected

Bold-analyte detected above Selected RRSs

E-Concentration exceeded the established method calibration range but is within the working range of the instrument

Table D-14. Summary of VOCs Detected in Soil from AEM Samples DS-01 to AEM DS-4, 2008.

ARAMARK DeKalb VRP/HSI Site (No. 10704)

Atlanta, Georgia

			DS	-27	DS	5-28		DS-29			DS-30		DS	-31	DS	5-32
			11.5'	17.5'	12.5'	17.5'	9.5'	13.5'	17.5'	9.5'	14.5'	19.5'	9.5'	14.5'	9.5'	14.5'
			11/25	5/2008	11/2	5/2008		11/26/2008			11/26/2008		11/26	/2008	11/2	6/2008
		Selected														
Chlorinated VOCs		RRS														
Tetrachloroethene	μg/kg	500	21	59	400	43	<3.8	<3.7	1,600	83	700	85	150	33	67	2,200
1,1,1-Trichloroethane	μg/kg	260,000	<3.8	<4.0	<3.6	<4.5	<3.8	<3.7	<3.9	<4.0	<4.9	<4.5	<4.1	<5.1	<5.1	<5.4
Trichloroethene	μg/kg	500	<3.8	<4.0	<3.6	<4.5	<3.8	5.1	34	<4.0	16	<4.5	670	120	93	940
1,1-Dichloroethene	μg/kg	700	<3.8	<4.0	<3.6	<4.5	<3.8	<3.7	<3.9	<4.0	<4.9	<4.5	<4.1	<5.1	<5.1	<5.4
1,2-Dichloroethane	μg/kg	500	<3.8	<4.0	<3.6	<4.5	<3.8	<3.7	<3.9	<4.0	<4.9	<4.5	<4.1	<5.1	<5.1	<5.4
1,1-Dichloroethane	μg/kg	400,000	<3.8	<4.0	<3.6	<4.5	<3.8	<3.7	<3.9	<4.0	<4.9	<4.5	<4.1	<5.1	<5.1	<5.4
Chloroethane	μg/kg	170	<7.6	<8.0	<7.1	<9.0	<7.6	<7.3	<7.7	<8.0	<9.7	<9.1	<8.1	<10	<10	<11
cis-1,2-Dichloroethene	μg/kg	19,000	<3.8	<4.0	<3.6	<4.5	1,400	1,300	160 E	6.6	45	<4.5	1,300	700	450	1,400
trans-1,2-Dichloroethene	μg/kg	52,000	<3.8	<4.0	<3.6	<4.5	<3.8	<3.7	<3.9	<4.0	<4.9	<4.5	9.6	<5.1	<5.1	<5.4
Vinyl Chloride	μg/kg	200	<7.6	<8.0	<7.1	<9.0	270	69	<7.7	<8.0	<9.7	<9.1	<8.1	21	<10	21
Aromatic Hydrocarbons																
Benzene	μg/kg	500	<3.8	<4.0	<3.6	<4.5	<3.8	<3.7	<3.9	<4.0	<4.9	<4.5	<4.1	<5.1	<5.1	<5.4
Ethylbenzene	μg/kg	340,000	<3.8	<4.0	<3.6	<4.5	540	<3.7	<3.9	<4.0	<4.9	<4.5	<4.1	<5.1	<5.1	<5.4
Toluene	μg/kg	400,000	<3.8	<4.0	<3.6	<4.5	<3.8	<3.7	<3.9	<4.0	<4.9	<4.5	<4.1	<5.1	<5.1	<5.4
Chlorobenzene	μg/kg	10,000	<3.8	<4.0	<3.6	<4.5	<3.8	<3.7	<3.9	<4.0	<4.9	<4.5	<4.1	<5.1	<5.1	<5.4
Cyclohexane	μg/kg	1,400,000	<3.8	<4.0	<3.6	<4.5	7.4	<3.7	<3.9	<4.0	<4.9	<4.5	<4.1	<5.1	<5.1	<5.4
Naphthalene	μg/kg	100,000	<3.8	<4.0	<3.6	<4.5	130	4.5	<3.9	65	<4.9	<4.5	<4.1	54	<5.1	24
o-Xylene	μg/kg	1,100,000	<3.8	<4.0	<3.6	<4.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
m,p-Xylene	μg/kg	1,100,000	<7.6	<8.0	<7.1	<9.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Xylenes, Total	μg/kg	1,100,000	<3.8	<4.0	<3.6	<4.5	330	<3.7	15	<4.0	<4.9	<4.5	<4.1	<5.1	<5.1	18
Isopropylbenzene	μg/kg	94,000	<3.8	<4.0	<3.6	<4.5	3,100	33	6.4	660	<4.9	<4.5	16	400	<5.1	7.0
Non-Chlorinated VOCs																
2-Butanone	μg/kg	200,000	<38	<40	<36	<45	<38	<37	<39	<40	<49	<45	<41	<51	<51	<54
Acetone	μg/kg	400,000	<76	<80	<71	<90	<76	<73	<77	<80	<97	<91	<81	<100	<100	<110
Carbon Disulfide	μg/kg	400,000	<7.6	<8.0	<7.1	<9.0	<7.6	<7.3	<7.7	<8.0	<9.7	<9.1	<8.1	<10	<10	<11
Methylene Chloride	μg/kg	500	<15	<16	<14	<18	<15	<15	<15	<16	<19	<18	<16	<21	<20	<21

RRS-Risk Reduction Standard (see Table 1 of CSR)

VOCs-volatile organic compounds

μg/kg- micrograms per kilogram

NA-not analyzed

NR- Not Regulated

Bold-analyte detected

Bold-analyte detected above Selected RRSs

E-Concentration exceeded the established method calibration range but is within the working range of the instrument

Table D-14. Summary of VOCs Detected in Soil from AEM Samples DS-01 to AEM DS-4, 2008.

ARAMARK DeKalb VRP/HSI Site (No. 10704)

Atlanta, Georgia

			DS	5-33		DS-34			DS-35			DS-36			DS-37	
			9.5'	14.5'	9.5'	14.5'	19.5'	9.5'	14.5'	19.5'	9.5'	14.5'	19.5'	9.5'	14.5'	19.5'
			11/2	6/2008		11/26/2008			11/26/2008			11/26/2008			11/26/2008	
		Selected														
Chlorinated VOCs		RRS														
Tetrachloroethene	μg/kg	500	9.0	1,600	18	<210	85	14	68	160	<5.9	13	<5.5	120	55	110
1,1,1-Trichloroethane	μg/kg	260,000	<3.9	<3.6	<5.2	<210	<4.4	<3.7	<4.1	<4.9	<5.9	<5.4	<5.5	<4.5	<3.7	<4.2
Trichloroethene	μg/kg	500	6.7	100	<5.2	<210	<4.4	<3.7	7.2	7.3	<5.9	<5.4	<5.5	<4.5	<3.7	<4.2
1,1-Dichloroethene	μg/kg	700	<3.9	<3.6	<5.2	<210	<4.4	<3.7	<4.1	<4.9	<5.9	<5.4	<5.5	<4.5	<3.7	<4.2
1,2-Dichloroethane	μg/kg	500	<3.9	<3.6	<5.2	<210	<4.4	<3.7	<4.1	<4.9	<5.9	<5.4	<5.5	<4.5	<3.7	<4.2
1,1-Dichloroethane	μg/kg	400,000	<3.9	<3.6	<5.2	<210	<4.4	<3.7	<4.1	<4.9	<5.9	<5.4	<5.5	<4.5	<3.7	<4.2
Chloroethane	μg/kg	170	<7.9	<7.3	<10	<420	<8.9	<7.4	<8.3	<9.8	<12	<11	<11	<9.0	<7.4	<8.4
cis-1,2-Dichloroethene	μg/kg	19,000	66	460	<5.2	<210	<4.4	4.8	4.5	13	<5.9	<5.4	<5.5	<4.5	<3.7	<4.2
trans-1,2-Dichloroethene	μg/kg	52,000	<3.9	<3.6	<5.2	<210	<4.4	<3.7	<4.1	<4.9	<5.9	<5.4	<5.5	<4.5	<3.7	<4.2
Vinyl Chloride	μg/kg	200	<7.9	16	<10	<420	<8.9	<7.4	<8.3	<9.8	<12	<11	<11	<9.0	<7.4	<8.4
Aromatic Hydrocarbons																
Benzene	μg/kg	500	<3.9	<3.6	<5.2	<210	<4.4	<3.7	<4.1	<4.9	<5.9	<5.4	<5.5	<4.5	<3.7	<4.2
Ethylbenzene	μg/kg	340,000	<3.9	<3.6	<5.2	<210	<4.4	<3.7	<4.1	<4.9	<5.9	<5.4	<5.5	<4.5	<3.7	<4.2
Toluene	μg/kg	400,000	<3.9	<3.6	<5.2	<210	<4.4	<3.7	<4.1	<4.9	<5.9	<5.4	<5.5	<4.5	<3.7	<4.2
Chlorobenzene	μg/kg	10,000	<3.9	<3.6	<5.2	<210	<4.4	<3.7	<4.1	<4.9	<5.9	<5.4	<5.5	<4.5	<3.7	<4.2
Cyclohexane	μg/kg	1,400,000	<3.9	<3.6	<5.2	<210	<4.4	<3.7	<4.1	<4.9	<5.9	<5.4	<5.5	<4.5	<3.7	<4.2
Naphthalene	μg/kg	100,000	<3.9	<3.6	<5.2	<210	<4.4	<3.7	<4.1	<4.9	<5.9	<5.4	<5.5	<4.5	<3.7	<4.2
o-Xylene	μg/kg	1,100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
m,p-Xylene	μg/kg	1,100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Xylenes, Total	μg/kg	1,100,000	<3.9	<3.6	<5.2	<210	<4.4	<3.7	<4.1	<4.9	<5.9	<5.4	<5.5	<4.5	<3.7	<4.2
Isopropylbenzene	μg/kg	94,000	<3.9	<3.6	<5.2	<210	<4.4	<3.7	<4.1	<4.9	<5.9	<5.4	<5.5	<4.5	<3.7	<4.2
Non-Chlorinated VOCs																
2-Butanone	μg/kg	200,000	<39	<36	<52	<2,100	<44	<37	<41	<49	<59	<54	<55	<45	<37	<42
Acetone	μg/kg	400,000	<7.9	<73	<100	<4,200	<89	<74	<83	<98	<120	<110	<110	<90	<74	<84
Carbon Disulfide	μg/kg	400,000	<7.9	<7.3	<10	<420	<8.9	<7.4	<8.3	<9.8	<12	<11	<11	<9.0	<7.4	<8.4
Methylene Chloride	μg/kg	500	<16	<15	<21	<850	<18	<15	<17	<20	<24	<22	<22	<18	<15	<17

RRS-Risk Reduction Standard (see Table 1 of CSR)

VOCs-volatile organic compounds

μg/kg- micrograms per kilogram

NA-not analyzed

NR- Not Regulated

Bold-analyte detected

Bold-analyte detected above Selected RRSs

E-Concentration exceeded the established method calibration range but is within the working range of the instrument

Table D-14. Summary of VOCs Detected in Soil from AEM Samples DS-01 to AEM DS-4, 2008.

ARAMARK DeKalb VRP/HSI Site (No. 10704)

Atlanta, Georgia

				DS-38			DS-39		DS	-40		DS-41			DS-42	
			9.5'	14.5'	19.5'	9.5'	14.5'	19.5'	14.5'	21.5'	14.5'	19.5'	24.5'	14.5'	19.5'	24.5'
				11/26/2008			11/26/2008		12/3/	/2008		12/3/2008			12/3/2008	
		Selected														
Chlorinated VOCs		RRS														
Tetrachloroethene	μg/kg	500	79	58	<3.6	68	<4.2	<5.0	<190	16	26	59	280	8.3	<6.6	<4.8
1,1,1-Trichloroethane	μg/kg	260,000	<4.1	<4.0	<3.6	<4.3	<4.2	<5.0	<190	<5.3	<4.7	<5.7	<5.4	<5.3	<6.6	<4.8
Trichloroethene	μg/kg	500	10	5.0	<3.6	53	6.6	<5.0	<190	<5.3	6.3	16	18	<5.3	<6.6	<4.8
1,1-Dichloroethene	μg/kg	700	<4.1	<4.0	<3.6	<4.3	<4.2	<5.0	<190	<5.3	<4.7	<5.7	<5.4	<5.3	<6.6	<4.8
1,2-Dichloroethane	μg/kg	500	<4.1	<4.0	<3.6	<4.3	<4.2	<5.0	<190	<5.3	<4.7	<5.7	<5.4	<5.3	<6.6	<4.8
1,1-Dichloroethane	μg/kg	400,000	<4.1	<4.0	<3.6	<4.3	<4.2	<5.0	<190	<5.3	<4.7	<5.7	<5.4	<5.3	<6.6	<4.8
Chloroethane	μg/kg	170	<8.1	<8.0	<7.2	<8.6	<8.4	<10	<380	<11	<9.4	<11	<11	<11	<13	<9.6
cis-1,2-Dichloroethene	μg/kg	19,000	17.0	9.6	<3.6	55	11	<5.0	<190	<5.3	<4.7	19	21	<5.3	<6.6	<4.8
trans-1,2-Dichloroethene	μg/kg	52,000	<4.1	<4.0	<3.6	<4.3	<4.2	<5.0	<190	<5.3	<4.7	<5.7	<5.4	<5.3	<6.6	<4.8
Vinyl Chloride	μg/kg	200	<8.1	<8.0	<7.2	<8.6	<8.4	<10	<380	<11	<9.4	<11	<11	<11	<13	<9.6
Aromatic Hydrocarbons																
Benzene	μg/kg	500	<4.1	<4.0	<3.6	<4.3	<4.2	<5.0	<190	<5.3	<4.7	<5.7	<5.4	<5.3	<6.6	<4.8
Ethylbenzene	μg/kg	340,000	<4.1	<4.0	<3.6	<4.3	<4.2	<5.0	<190	<5.3	<4.7	<5.7	<5.4	<5.3	<6.6	<4.8
Toluene	μg/kg	400,000	<4.1	<4.0	<3.6	<4.3	<4.2	<5.0	<190	<5.3	<4.7	<5.7	<5.4	<5.3	<6.6	<4.8
Chlorobenzene	μg/kg	10,000	<4.1	<4.0	<3.6	<4.3	<4.2	<5.0	<190	<5.3	<4.7	<5.7	<5.4	<5.3	<6.6	<4.8
Cyclohexane	μg/kg	1,400,000	<4.1	<4.0	<3.6	<4.3	<4.2	<5.0	<190	<5.3	<4.7	<5.7	<5.4	<5.3	<6.6	<4.8
Naphthalene	μg/kg	100,000	<4.1	<4.0	<3.6	<4.3	<4.2	<5.0	320	<5.3	<4.7	<5.7	<5.4	<5.3	<6.6	<4.8
o-Xylene	μg/kg	1,100,000	NA	NA	NA	NA	NA	NA	220	<5.3	<4.7	<5.7	<5.4	<5.3	<6.6	<4.8
m,p-Xylene	μg/kg	1,100,000	NA	NA	NA	NA	NA	NA	640	<11	<9.4	<11	<11	<11	<13	<9.6
Xylenes, Total	μg/kg	1,100,000	<4.1	<4.0	<3.6	<4.3	<4.2	<5.0	860	<5.3	<4.7	<5.7	<5.4	<5.3	<6.6	<4.8
Isopropylbenzene	μg/kg	94,000	<4.1	<4.0	<3.6	<4.3	<4.2	<5.0	220	<5.3	<4.7	<5.7	<5.4	<5.3	<6.6	<4.8
Non-Chlorinated VOCs																
2-Butanone	μg/kg	200,000	<41	<40	<36	<43	<42	<50	<1,900	<53	<47	<57	<54	<53	<66	<48
Acetone	μg/kg	400,000	<81	<80	<72	<86	<84	<100	<3,800	<110	<94	<110	<110	<110	<130	<96
Carbon Disulfide	μg/kg	400,000	<8.1	<8.0	<7.2	36	<8.4	<10	<380	<11	<9.4	<11	<11	<11	<13	<9.6
Methylene Chloride	μg/kg	500	<16	<16	<14	<17	<17	<20	<760	<21	<19	<23	<22	<21	<26	<19

RRS-Risk Reduction Standard (see Table 1 of CSR)

VOCs-volatile organic compounds

μg/kg- micrograms per kilogram

NA-not analyzed

NR- Not Regulated

Bold-analyte detected

Bold-analyte detected above Selected RRSs

E-Concentration exceeded the established method calibration range but is within the working range of the instrument

Table D-14. Summary of VOCs Detected in Soil from AEM Samples DS-01 to AEM DS-4, 2008.

ARAMARK DeKalb VRP/HSI Site (No. 10704)

Atlanta, Georgia

				DS-44			DS-45	
			8'	9.5'	14.5'	9.5'	14.5'	17.5'
				12/3/2008			12/3/2008	
		Selected						
Chlorinated VOCs		RRS						
Tetrachloroethene	μg/kg	500	230	<4.7	<4.4	940	100	69
1,1,1-Trichloroethane	μg/kg	260,000	<210	<4.7	<4.4	<5.4	<5.3	<5.7
Trichloroethene	μg/kg	500	<210	<4.7	<4.4	8.8	<5.3	<5.7
1,1-Dichloroethene	μg/kg	700	<210	<4.7	<4.4	<5.4	<5.3	<5.7
1,2-Dichloroethane	μg/kg	500	<210	<4.7	<4.4	<5.4	<5.3	<5.7
1,1-Dichloroethane	μg/kg	400,000	<210	<4.7	<4.4	<5.4	<5.3	<5.7
Chloroethane	μg/kg	170	<420	<9.4	<8.8	<11	<11	<11
cis-1,2-Dichloroethene	μg/kg	19,000	<210	8.0	12	26	<5.3	<5.7
trans-1,2-Dichloroethene	μg/kg	52,000	<210	<4.7	<4.4	<5.4	<5.3	<5.7
Vinyl Chloride	μg/kg	200	<420	<9.4	<8.8	<11	<11	<11
Aromatic Hydrocarbons								
Benzene	μg/kg	500	2,300	370	24	<5.4	<5.3	<5.7
Ethylbenzene	μg/kg	340,000	46,000	380	<4.4	<5.4	<5.3	<5.7
Toluene	μg/kg	400,000	6,900	11	<4.4	<5.4	<5.3	<5.7
Chlorobenzene	μg/kg	10,000	<210	<4.7	<4.4	<5.4	<5.3	<5.7
Cyclohexane	μg/kg	1,400,000	<210	37	<4.4	<5.4	<5.3	<5.7
Naphthalene	μg/kg	100,000	82,000	640	7.9	<5.4	<5.3	<5.7
o-Xylene	μg/kg	1,100,000	49,000	10	<4.4	<5.4	<5.3	<5.7
m,p-Xylene	μg/kg	1,100,000	200,000	40	<8.8	<11	<11	<11
Xylenes, Total	μg/kg	1,100,000	250,000	50	<4.4	<5.4	<5.3	<5.7
Isopropylbenzene	μg/kg	94,000	11,000	32	<4.4	<5.4	<5.3	<5.7
Non-Chlorinated VOCs								
2-Butanone	μg/kg	200,000	<2,100	<47	<44	<54	<53	<57
Acetone	μg/kg	400,000	<4,200	<94	<88	<110	<110	<110
Carbon Disulfide	μg/kg	400,000	<420	<9.4	<8.8	<11	<11	<11
Methylene Chloride	μg/kg	500	<840	<19	<18	<21	<21	<23

RRS-Risk Reduction Standard (see Table 1 of CSR)

VOCs-volatile organic compounds

μg/kg- micrograms per kilogram

NA-not analyzed

NR- Not Regulated

Bold-analyte detected

Bold-analyte detected above Selected RRSs

E-Concentration exceeded the established method calibration range but is within the working range of the instrument

Table D-15. Summary of VOCs Detected in Soil Samples Collected Prior to Soil Blending Treatment, 2010. ARAMARK DeKalb VRP/HSI Site No. 10704 Atlanta, Georgia

		Sample ID	G-090810-13	G-090810-14	G-090810-15	G-090810-16	G-090810-16	G-090810-17	BN-091310-19N	BN-091310-19S	Pit C 1/2 2 1/2	Pit D 3 1/2
		Alternate ID	13	14	15	16	16 (7')	17	19N	195	Pict-C1/2 2 1/2	Pit-D 3 1/2
		Depth	18'	18'	18'	18'	7'	18'	22'	23'	10'	10'
		Date	9/8/2010	9/8/2010	9/8/2010	9/8/2010	9/8/2010	9/8/2010	9/13/2010	9/13/2010	9/24/2010	9/24/2010
Chlorinated VOCs		Selected RRS										
Tetrachloroethene	μg/kg	500	2,800	77	40	280	86	640	<4.02	29.5	34.8	158
1,1,1-Trichloroethane	μg/kg	260,000	NA	NA	NA	NA	NA	NA	<4.02	<4.11	<5.20	<5.44
Trichloroethene	μg/kg	500	300	<3.6	<4.1	3.7	<4.0	940	<4.02	14	<5.20	<5.44
1,1-Dichloroethene	μg/kg	700	<3.0	<3.6	<4.1	<3.5	<4.0	<3.9	<4.02	<4.11	<5.20	<5.44
1,2-Dichloroethane	μg/kg	500	NA	NA	NA	NA	NA	NA	<4.02	<4.11	<5.20	<5.44
1,1-Dichloroethane	μg/kg	400,000	NA	NA	NA	NA	NA	NA	<4.02	<4.11	<5.20	<5.44
Chloroethane	μg/kg	170	NA	NA	NA	NA	NA	NA	<4.02	<4.11	<5.20	<5.44
cis-1,2-Dichloroethene	μg/kg	19,000	530	<3.6	<4.1	44	7.6	1,400	<4.02	35.6	<5.20	<5.44
trans-1,2-Dichloroethene	μg/kg	52,000	NA	NA	NA	NA	NA	NA	<4.02	<4.11	<5.20	<5.44
Vinyl Chloride	μg/kg	200	39	<7.3	<8.2	<7.1	<8.1	<7.7	<4.02	<8.22	<5.20	<5.44
Aromatic Hydrocarbons												
Benzene	μg/kg	500	<3.0	<3.6	<4.1	<3.5	<4.0	<3.9	<4.02	<4.11	<5.20	<5.44
Ethylbenzene	μg/kg	340,000	<3.0	<3.6	<4.1	<3.5	<4.0	<3.9	<4.02	<4.11	<5.20	<5.44
Toluene	μg/kg	400,000	<3.0	<3.6	<4.1	<3.5	<4.0	<3.9	<4.02	<4.11	<5.20	<5.44
Chlorobenzene	μg/kg	10,000	NA	NA	NA	NA	NA	NA	<8.04	<8.22	<10.4	<10.9
Cyclohexane	μg/kg	1,400,000	NA	NA	NA	NA	NA	NA	<4.02	<4.11	<5.20	<5.44
Naphthalene	μg/kg	100,000	<3.0	<3.6	<4.1	<3.5	<4.0	7.0	<4.02	<4.11	<5.20	<5.44
o-xylene	μg/kg	1,100,000	NA	NA	NA	NA	NA	NA	<4.02	<4.11	<5.20	<5.44
m,p-Xylene	μg/kg	1,100,000	NA	NA	NA	NA	NA	NA	<8.04	<8.22	<10.4	<10.9
Xylenes, total	μg/kg	1,100,000	<3.0	<3.6	<4.1	4.7	<4.0	11	NA	NA	NA	NA
Isopropylbenzene	μg/kg	94,000	<3.0	<3.6	<4.1	4.7	<4.0	<3.9	<4.02	<4.11	<5.20	<5.44
Non-Chlorinated VOCs												
2-Butanone	μg/kg	200,000	NA	NA	NA	NA	NA	NA	<40.2	<41.1	<52	<54.4
Acetone	μg/kg	400,000	NA	NA	NA	NA	NA	NA	<40.2	<41.1	<52	<54.4
Carbon Disulfide	μg/kg	400,000	NA	NA	NA	NA	NA	NA	<4.02	<4.11	<5.20	<5.44
Methylene Chloride	μg/kg	500	NA	NA	NA	NA	NA	NA	12.2	6.44	<5.20	<5.44

RRS-Risk Reduction Standard (see Table 1 of CSR)

VOCs-volatile organic compounds

μg/kg- micrograms per kilogram

NA-not analyzed

Bold-analyte detected
Bold-analyte detected above Selected RRSs

Table D-15. Summary of VOCs Detected in Soil Samples Collected Prior to Soil Blending Treatment, 2010. ARAMARK DeKalb VRP/HSI Site No. 10704 Atlanta, Georgia

		Sample ID	Pit C 4	101310-Bottom 1	101310-Bottom 2
		Alternate ID	Pit-C4	Bottom 1	Bottom 2
		Depth	10'	10'	10'
		Date	9/24/2010	10/13/2010	10/13/2010
Chlorinated VOCs		Selected RRS			
Tetrachloroethene	μg/kg	500	1,030	<4.58	10.5
1,1,1-Trichloroethane	μg/kg	260,000	<4.58	<4.58	<4.44
Trichloroethene	μg/kg	500	27.6	<4.58	<4.44
1,1-Dichloroethene	μg/kg	700	<4.58	<4.58	<4.44
1,2-Dichloroethane	μg/kg	500	<4.58	<4.58	<4.44
1,1-Dichloroethane	μg/kg	400,000	<4.58	<4.58	<4.44
Chloroethane	μg/kg	170	<4.58	<4.58	<4.44
cis-1,2-Dichloroethene	μg/kg	19,000	133	36.7	5.96
trans-1,2-Dichloroethene	μg/kg	52,000	<4.58	<4.58	<4.44
Vinyl Chloride	μg/kg	200	<4.58	5.2	<4.44
Aromatic Hydrocarbons					
Benzene	μg/kg	500	<4.58	<4.58	<4.44
Ethylbenzene	μg/kg	340,000	<4.58	<4.58	<4.44
Toluene	μg/kg	400,000	<4.58	<4.58	<4.44
Chlorobenzene	μg/kg	10,000	<9.17	<9.17	<8.88
Cyclohexane	μg/kg	1,400,000	<4.58	<4.58	<4.44
Naphthalene	μg/kg	100,000	<4.58	<4.58	<4.44
o-xylene	μg/kg	1,100,000	<4.58	<4.58	<4.44
m,p-Xylene	μg/kg	1,100,000	<9.17	<9.17	<8.88
Xylenes, total	μg/kg	1,100,000	NA	NA	NA
Isopropylbenzene	μg/kg	94,000	<4.58	<4.58	<4.44
Non-Chlorinated VOCs					
2-Butanone	μg/kg	200,000	<45.8	<45.8	<44.4
Acetone	μg/kg	400,000	<45.8	<45.8	<44.4
Carbon Disulfide	μg/kg	400,000	<4.58	<4.58	<4.44
Methylene Chloride	μg/kg	500	<4.58	<4.58	<4.44

RRS-Risk Reduction Standard (see Table 1 of CSR)

VOCs-volatile organic compounds

μg/kg- micrograms per kilogram

NA-not analyzed

Bold-analyte detected
Bold-analyte detected above Selected RRSs

Table D-16. Summary of VOCs Detected in Soil Blend Confirmation Samples, 2010. ARAMARK DeKalb VRP/HSI Site No. 10704 Atlanta, Georgia

		Sample ID	BLEND-091410-01	Cell1-100410	Cell 2-100410	Cell 3-100410
		Alternate ID	Blend	Cell 1	Cell 2	Cell 3
		Date	9/14/2010	10/4/2010	10/4/2010	10/4/2010
Chlorinated VOCs		Selected RRS				
Tetrachloroethene	μg/kg	500	<240	80	16.8	44.8
1,1,1-Trichloroethane	μg/kg	260,000	NA	<3.32	<3.16	<2.60
Trichloroethene	μg/kg	500	<240	<3.32	<3.16	<2.60
1,1-Dichloroethene	μg/kg	700	<240	<3.32	<3.16	<2.60
1,2-Dichloroethane	μg/kg	500	NA	<3.32	<3.16	<2.60
1,1-Dichloroethane	μg/kg	400,000	NA	<3.32	<3.16	<2.60
Chloroethane	μg/kg	170	NA	<3.32	<3.16	<2.60
cis-1,2-Dichloroethene	μg/kg	19,000	<240	<3.32	<3.16	<2.60
trans-1,2-Dichloroethene	μg/kg	52,000	NA	<3.32	<3.16	<2.60
Vinyl Chloride	μg/kg	200	<240	<3.32	<3.16	<2.60
Aromatic Hydrocarbons						
Benzene	μg/kg	500	<240	<3.32	<3.16	<2.60
Ethylbenzene	μg/kg	340,000	<240	<3.32	<3.16	<2.60
Toluene	μg/kg	400,000	<240	<3.32	<3.16	<2.60
Chlorobenzene	μg/kg	10,000	NA	<6.64	<6.33	<5.20
Cyclohexane	μg/kg	1,400,000	NA	<3.32	<3.16	<2.60
Naphthalene	μg/kg	100,000	<240	<3.32	<3.16	<2.60
o-xylene	μg/kg	1,100,000	NA	<3.32	<3.16	<2.60
m,p-Xylene	μg/kg	1,100,000	NA	<6.64	<6.33	<5.20
Xylenes, total	μg/kg	1,100,000	<240	NA	NA	NA
Isopropylbenzene	μg/kg	94,000	<240	<3.32	<3.16	<2.60
Non-Chlorinated VOCs						
2-Butanone	μg/kg	200,000	NA	78	141	118
Acetone	μg/kg	400,000	NA	2,410	1,890	1,120
Carbon Disulfide	μg/kg	400,000	NA	<3.32	<3.16	<2.60
Methylene Chloride	μg/kg	500	NA	<3.32	<3.16	<2.60

Notes:

RRS-Risk Reduction Standard (see Table 1 of CSR)

VOCs-volatile organic compounds

μg/kg- micrograms per kilogram

NA-not analyzed

Bold-analyte detected

"Blend"-AEM collected a sample of the blended material. This is not a composite sample

Table D-17. Summary of VOCs Detected in Sidewall Delineation Samples (Post Soil Blending), 2010. ARAMARK DeKalb VRP/HSI Site No. 10704 Atlanta, Georgia

		Sample ID	WS-090810-01	WE-090810-02	TE-090810-03	WE-090810-04	TE-090810-05	WE-090810-06	TE-090810-07	WE-090810-08	TE-090810-09	WE-090810-10
		Alternate ID	1	2	3	4	5	6	7	8	9	10
		Depth	12'	7'	12'	9'	12'	7'	14'	9'	14'	7'
		Date	9/8/2010	9/8/2010	9/8/2010	9/8/2010	9/8/2010	9/8/2010	9/8/2010	9/8/2010	9/8/2010	9/8/2010
Chlorinated VOCs		Selected RRS										
Tetrachloroethene	μg/kg	500	<4.1	<3.8	<4.0	<3.5	<3.7	<3.6	<3.7	<3.1	<3.8	<3.2
1,1,1-Trichloroethane	μg/kg	260,000	NA									
Trichloroethene	μg/kg	500	<4.1	<3.8	<4.0	<3.5	<3.7	<3.6	<3.7	<3.1	<3.8	<3.2
1,1-Dichloroethene	μg/kg	700	<4.1	<3.8	<4.0	<3.5	<3.7	<3.6	<3.7	<3.1	<3.8	<3.2
1,2-Dichloroethane	μg/kg	500	NA									
1,1-Dichloroethane	μg/kg	400,000	NA									
Chloroethane	μg/kg	170	NA									
cis-1,2-Dichloroethene	μg/kg	19,000	<4.1	<3.8	<4.0	<3.5	<3.7	<3.6	<3.7	<3.1	<3.8	<3.2
trans-1,2-Dichloroethene	μg/kg	52,000	NA									
Vinyl Chloride	μg/kg	200	<8.2	<7.7	<8.0	<7.0	<7.4	<7.2	<7.4	<6.2	<7.6	<6.3
Aromatic Hydrocarbons												
Benzene	μg/kg	500	<4.1	<3.8	<4.0	<3.5	<3.7	<3.6	<3.7	<3.1	<3.8	<3.2
Ethylbenzene	μg/kg	340,000	<4.1	<3.8	<4.0	<3.5	<3.7	<3.6	<3.7	<3.1	<3.8	<3.2
Toluene	μg/kg	400,000	<4.1	<3.8	<4.0	<3.5	<3.7	<3.6	<3.7	<3.1	<3.8	<3.2
Chlorobenzene	μg/kg	10,000	NA									
Cyclohexane	μg/kg	1,400,000	NA									
Naphthalene	μg/kg	100,000	<4.1	<3.8	<4.0	<3.5	<3.7	<3.6	<3.7	<3.1	<3.8	<3.2
o-xylene	μg/kg	1,100,000	NA									
m,p-Xylene	μg/kg	1,100,000	NA									
Xylenes, total	μg/kg	1,100,000	<4.1	<3.8	<4.0	<3.5	<3.7	<3.6	<3.7	<3.1	<3.8	<3.2
Isopropylbenzene	μg/kg	94,000	<4.1	<3.8	<4.0	<3.5	<3.7	<3.6	<3.7	<3.1	<3.8	<3.2
Non-Chlorinated VOCs												
2-Butanone	μg/kg	200,000	NA									
Acetone	μg/kg	400,000	NA									
Carbon Disulfide	μg/kg	400,000	NA									
Methylene Chloride	μg/kg	500	NA									

RRS-Risk Reduction Standard (see Table 1 of CSR)

VOCs-volatile organic compounds μg/kg- micrograms per kilogram

NA-not analyzed

Table D-17. Summary of VOCs Detected in Sidewall Delineation Samples (Post Soil Blending), 2010. ARAMARK DeKalb VRP/HSI Site No. 10704 Atlanta, Georgia

		Sample ID	TE-090810-11	WS-090810-12	TN-092410-20	WN-092410-21	101410-21C	TN-092410-22	101410-22C	WN-092410-23	101410-23C	TN-092410-24
		Alternate ID	11	12	20	21	21C	22	22C	23	23C	24
		Depth	7'	12'	8'	8'	8'	8'	8'	8'	8'	8'
		Date	9/8/2010	9/8/2010	9/24/2010	9/24/2010	10/14/2010	9/24/2010	10/14/2010	9/24/2010	10/14/2010	9/24/2010
Chlorinated VOCs		Selected RRS										
Tetrachloroethene	μg/kg	500	<2.7	38	627	144	<2.85	131	6.24	169	<3.0	65.1
1,1,1-Trichloroethane	μg/kg	260,000	NA	NA	<6.14	<5.41	<2.85	<5.33	<2.83	<4.60	<3.0	<4.55
Trichloroethene	μg/kg	500	<2.7	5.5	52.9	9.29	<2.85	28.2	<2.83	11.4	<3.0	63.3
1,1-Dichloroethene	μg/kg	700	<2.7	<3.2	<6.14	<5.41	<2.85	<5.33	<2.83	<4.60	<3.0	<4.55
1,2-Dichloroethane	μg/kg	500	NA	NA	<6.14	<5.41	<2.85	<5.33	<2.83	<4.60	<3.0	<4.55
1,1-Dichloroethane	μg/kg	400,000	NA	NA	<6.14	<5.41	<2.85	<5.33	<2.83	<4.60	<3.0	<4.55
Chloroethane	μg/kg	170	NA	NA	<6.14	<5.41	<2.85	<5.33	<2.83	<4.60	<3.0	<4.55
cis-1,2-Dichloroethene	μg/kg	19,000	5.2	<3.2	63.6	11.8	<2.85	40	<2.83	<4.60	<3.0	10.8
trans-1,2-Dichloroethene	μg/kg	52,000	NA	NA	<6.14	<5.41	<2.85	<5.33	<2.83	<4.60	<3.0	<4.55
Vinyl Chloride	μg/kg	200	<5.3	<6.3	<6.14	<5.41	<2.85	<5.33	<2.83	<4.60	<3.0	<4.55
Aromatic Hydrocarbons												
Benzene	μg/kg	500	<2.7	<3.2	<6.14	<5.41	<2.85	<5.33	<2.83	<4.60	<3.0	<4.55
Ethylbenzene	μg/kg	340,000	<2.7	<3.2	<6.14	<5.41	4.23	<5.33	<2.83	<4.60	<3.0	<4.55
Toluene	μg/kg	400,000	<2.7	<3.2	<6.14	<5.41	9.81	<5.33	<2.83	<4.60	5.03	<4.55
Chlorobenzene	μg/kg	10,000	NA	NA	<12.3	<10.8	<5.69	<10.7	<5.65	<9.21	<5.99	<9.31
Cyclohexane	μg/kg	1,400,000	NA	NA	<6.14	<5.41	<2.85	<5.33	<2.83	<4.60	<3.0	<4.55
Naphthalene	μg/kg	100,000	<2.7	<3.2	<6.14	<5.41	26.6	<5.33	5.41	<4.60	14.7	<4.55
o-xylene	μg/kg	1,100,000	NA	NA	<6.14	<5.41	7.73	<5.33	<2.83	<4.60	4.19	<4.55
m,p-Xylene	μg/kg	1,100,000	NA	NA	<12.3	<10.8	19.1	<10.7	<5.65	<9.21	9.06	<9.11
Xylenes, total	μg/kg	1,100,000	<2.7	<3.2	NA	NA	NA	NA	NA	NA	NA	NA
Isopropylbenzene	μg/kg	94,000	<2.7	<3.2	<6.14	<5.41	<2.85	<5.33	<2.83	<4.60	10.6	<4.55
Non-Chlorinated VOCs												
2-Butanone	μg/kg	200,000	NA	NA	<61.4	<54.1	<28.5	<53.3	<28.3	<46	<30	<45.5
Acetone	μg/kg	400,000	NA	NA	135	280	<28.5	<53.3	<28.3	<46	<30	<45.5
Carbon Disulfide	μg/kg	400,000	NA	NA	<6.14	<5.41	<2.85	<5.33	<2.83	<4.60	8.75	<4.55
Methylene Chloride	μg/kg	500	NA	NA	<6.14	<5.41	<2.85	<5.33	<2.83	<4.60	<3.0	<4.55

RRS-Risk Reduction Standard (see Table 1 of CSR)

VOCs-volatile organic compounds

μg/kg- micrograms per kilogram

NA-not analyzed

Table D-17. Summary of VOCs Detected in Sidewall Delineation Samples (Post Soil Blending), 2010. ARAMARK DeKalb VRP/HSI Site No. 10704 Atlanta, Georgia

		Sample ID	101410-24C	WW-092410-25	101410-25C	TW-092410-26	101410-26C	WW-092410-27	TW-092810-27A	TW-092410-28	TW-092810-28A	101210-28B
		Alternate ID	24C	25	25C	26	26C	27	27A	28	28A	28B
		Depth	8'	8'	8'	8'	8'	8'	8'	8'	8'	8'
		Date	10/14/2010	9/24/2010	10/14/2010	9/24/2010	10/14/2010	9/24/2010	9/28/2010	9/24/2010	9/28/2010	10/12/2010
Chlorinated VOCs		Selected RRS										
Tetrachloroethene	μg/kg	500	<2.79	<5.34	24.8	107	219	1,680	300	10,100	9,300	2,770
1,1,1-Trichloroethane	μg/kg	260,000	<2.79	<5.34	<3.48	<5.52	<6.25	<3.91	NA	<4.31	NA	<3.17
Trichloroethene	μg/kg	500	<2.79	<5.34	6.27	8.23	27.8	28.2	7.6	48.6	71	10.7
1,1-Dichloroethene	μg/kg	700	<2.79	<5.34	<3.48	<5.25	<6.25	<3.91	<4.4	<4.31	<4.1	<3.17
1,2-Dichloroethane	μg/kg	500	<2.79	<5.34	<3.48	<5.25	<6.25	<3.91	NA	<4.31	NA	<3.17
1,1-Dichloroethane	μg/kg	400,000	<2.79	<5.34	<3.48	<5.25	<6.25	<3.91	NA	<4.31	NA	<3.17
Chloroethane	μg/kg	170	<2.79	<5.34	<3.48	<5.25	<6.25	<3.91	NA	<4.31	NA	<3.17
cis-1,2-Dichloroethene	μg/kg	19,000	5.49	<5.34	7.55	29.5	13.3	15	6.2	41.8	60	6.34
trans-1,2-Dichloroethene	μg/kg	52,000	<2.79	<5.34	<3.48	<5.25	<6.25	<3.91	NA	<4.31	NA	<3.17
Vinyl Chloride	μg/kg	200	<2.79	<5.34	<3.48	<5.25	<6.25	<3.91	<8.8	<4.31	<8.2	<3.17
Aromatic Hydrocarbons												
Benzene	μg/kg	500	<2.79	<5.34	<3.48	<5.25	<6.25	<3.91	<4.4	<4.31	<4.1	<3.17
Ethylbenzene	μg/kg	340,000	<2.79	<5.34	<3.48	<5.25	<6.25	<3.91	<4.4	<4.31	<4.1	<3.17
Toluene	μg/kg	400,000	<2.79	<5.34	<3.48	<5.25	<6.25	<3.91	<4.4	<4.31	<4.1	<3.17
Chlorobenzene	μg/kg	10,000	<5.58	<10.7	<6.96	<10.5	<12.5	<7.82	NA	<8.63	NA	<6.35
Cyclohexane	μg/kg	1,400,000	<2.79	<5.34	<3.48	<5.25	<6.25	<3.91	NA	<4.31	NA	<3.17
Naphthalene	μg/kg	100,000	<2.79	<5.34	<3.48	<5.25	<6.25	<3.91	<4.4	<4.31	<4.1	<3.17
o-xylene	μg/kg	1,100,000	<2.79	<5.34	<3.48	<5.25	<6.25	<3.91	NA	<4.31	NA	<3.17
m,p-Xylene	μg/kg	1,100,000	<5.58	<10.7	<6.96	<10.5	<12.5	<7.82	NA	<8.63	NA	<6.35
Xylenes, total	μg/kg	1,100,000	NA	NA	NA	NA	NA	NA	<4.4	NA	<4.1	NA
Isopropylbenzene	μg/kg	94,000	<2.79	<5.34	<3.48	<5.25	<6.25	<3.91	<4.4	<4.3	<4.1	<3.17
Non-Chlorinated VOCs												
2-Butanone	μg/kg	200,000	<27.9	<53.4	<34.8	<52.5	<62.5	<39.1	NA	<43.1	NA	<31.7
Acetone	μg/kg	400,000	<27.9	94.4	<34.8	37.6	130	37.6	NA	140	NA	<31.7
Carbon Disulfide	μg/kg	400,000	<2.79	<5.34	<3.48	<5.25	21.1	<3.91	NA	<4.31	NA	<3.17
Methylene Chloride	μg/kg	500	<2.79	<5.34	<3.48	<5.25	<6.25	<3.91	NA	<4.31	NA	<3.17

RRS-Risk Reduction Standard (see Table 1 of CSR)

VOCs-volatile organic compounds

μg/kg- micrograms per kilogram

NA-not analyzed

Table D-17. Summary of VOCs Detected in Sidewall Delineation Samples (Post Soil Blending), 2010. ARAMARK DeKalb VRP/HSI Site No. 10704 Atlanta, Georgia

		Sample ID	102010-28D	102110-28E	WW-092410-29	TW-092810-29A	101210-29B	102010-29D	102110-29E	TW-092410-30	WS-092410-31
		Alternate ID	28D	28E	29	29A	29B	29D	29E	30	31
		Depth	8'	8'	8'	8'	8'	8'	8'	8'	8'
		Date	10/20/2010	10/21/2010	9/24/2010	9/28/2010	10/12/2010	10/20/2010	10/21/2010	9/24/2010	9/24/2010
Chlorinated VOCs		Selected RRS									
Tetrachloroethene	μg/kg	500	637	478	36.5	4,700	370	5,120	19.6	62.2	73.3
1,1,1-Trichloroethane	μg/kg	260,000	<4.85	<5.10	<4.90	NA	<3.70	<4.90	<6.53	<3.86	<4.10
Trichloroethene	μg/kg	500	<4.85	6.47	6.64	86	<3.70	47.3	<6.53	5.43	<4.10
1,1-Dichloroethene	μg/kg	700	<4.85	<5.10	<4.90	<3.8	<3.70	<4.90	<6.53	<3.86	<4.10
1,2-Dichloroethane	μg/kg	500	<4.85	<5.10	<4.90	NA	<3.70	<4.90	<6.53	<3.86	<4.10
1,1-Dichloroethane	μg/kg	400,000	<4.85	<5.10	<4.90	NA	<3.70	<4.90	<6.53	<3.86	<4.10
Chloroethane	μg/kg	170	<4.85	<5.10	<4.90	NA	<3.70	<4.90	<6.53	<3.86	<4.10
cis-1,2-Dichloroethene	μg/kg	19,000	<4.85	<5.10	16.6	75	<3.70	7.99	<6.53	74.6	<4.10
trans-1,2-Dichloroethene	μg/kg	52,000	<4.85	<5.10	<4.90	NA	<3.70	<4.90	<6.53	<3.86	<4.10
Vinyl Chloride	μg/kg	200	<4.85	<5.10	<4.90	<7.5	<3.70	<4.90	<6.53	<3.86	<4.10
Aromatic Hydrocarbons											
Benzene	μg/kg	500	<4.85	<5.10	<4.90	<3.8	<3.70	<4.90	<6.53	<3.86	<4.10
Ethylbenzene	μg/kg	340,000	<4.85	<5.10	<4.90	<3.8	<3.70	<4.90	<6.53	<3.86	<4.10
Toluene	μg/kg	400,000	<4.85	<5.10	<4.90	<3.8	<3.70	<4.90	<6.53	<3.86	<4.10
Chlorobenzene	μg/kg	10,000	<9.70	<10.2	<9.81	NA	<7.39	<9.81	<13.1	<7.73	<8.21
Cyclohexane	μg/kg	1,400,000	<4.85	<5.10	<4.90	NA	<3.70	<4.90	<6.53	<3.86	<4.10
Naphthalene	μg/kg	100,000	<4.85	<5.10	<4.90	<3.8	<3.70	<4.90	<6.53	<3.86	<4.10
o-xylene	μg/kg	1,100,000	<4.85	<5.10	<4.90	NA	<3.70	<4.90	<6.53	<3.86	<4.10
m,p-Xylene	μg/kg	1,100,000	<9.70	<10.2	<9.81	NA	<7.39	<9.81	<13.1	<7.73	<8.21
Xylenes, total	μg/kg	1,100,000	NA	NA	NA	<3.8	NA	NA	NA	NA	NA
Isopropylbenzene	μg/kg	94,000	<4.85	<5.10	<4.90	<3.8	<3.70	<4.90	<6.53	<3.86	<4.10
Non-Chlorinated VOCs											
2-Butanone	μg/kg	200,000	<48.5	<51	<49	NA	<37	<49	<65.3	<38.6	<41
Acetone	μg/kg	400,000	<48.5	<51	52.4	NA	<37	<49	<65.3	<38.6	<41
Carbon Disulfide	μg/kg	400,000	<4.85	<5.10	<4.90	NA	<3.70	<4.90	<6.53	<3.86	<4.10
Methylene Chloride	μg/kg	500	<4.85	<5.10	<4.90	NA	<3.70	<4.90	<6.53	<3.86	<4.10

RRS-Risk Reduction Standard (see Table 1 of CSR)

VOCs-volatile organic compounds

μg/kg- micrograms per kilogram

NA-not analyzed

Table D-18. Summary of VOCs of Soil Borings Collected by MACTEC along the Beltline.

ARAMARK VRP/HSI Site No. 10704

Atlanta, Georgia

		SB-89+96 10/7/2010	GP-89+47 11/8/2010	SB-91+36 11/29/2010	SB-93+14 10/6/2010	HA-8 2/17/	_	_	8+52 ′2011	HA-8 2/17/	_	HA-9 2/17	0+02 /2011	HA-90+89-2 8/4/2011	HA-90+89-2-DUP 8/4/2011	CB-9 8/25/	0+97 /2011	CB-91+24 8/25/2011
Chlorinated VOCs (μg/Kg)	Selected RRS (µg/kg)	1-2.5'	2.0-4.0'	2.0-4.0'	2.5-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	1.5-2'	1.5-2'	2.5-3'	3.5-4'	2.5-3'
Tetrachloroethene Trichloroethene	500 500	<4.86 <4.86	BDL BDL	BDL BDL	BDL BDL	<3.85 <3.85	<3.74 <3.74	<4.15 <4.15	<4.37 <4.37	<3.43 <3.43	<3.43 <3.43	<5.92 <5.92	<5.31 <5.31	BDL BDL	BDL BDL	3,890 BDL	297 BDL	12,500 1,150
Aromatic Hydrocarbons Toluene	400,000	<4.86	BDL	BDL	BDL	<3.85	<3.74	<4.15	<4.37	<3.43	<3.43	<5.92	<5.31	BDL	BDL	BDL	BDL	BDL
Other VOCs 2-Butanone Methylene Chloride	200,000 500	<48.6 <4.86	BDL BDL	BDL BDL	BDL BDL	<38.5 <3.85	<37.4 <3.74	160 <4.15	<43.7 <4.37	<34.3 <3.43	<34.3 <3.43	<59.2 <5.92	<53.1 <5.31	BDL 5.21	BDL 7.3	BDL BDL	BDL BDL	BDL 802

VOCs-Volatile Organic Compounds

µg/Kg- micrograms per kilogram

RRS-Risk Reduction Standard (see Table 1 of CSR)

0-2'-sample collected between 0 and 2 feet below

BDL-Below laboroatory detection limit. Data not
provided by Beltline

NA-Not analyzed

UNK-Unknown; laboratory data not supplied by Atlanta Beltline

Exceeds Type 3/4 RRS

Soil Sample Excavated by MACTEC as part of Atlant Beltline Redvelopment

Note: This is the only data that has been provided

by Atlanta Beltline

Table D-18. Summary of VOCs of Soil Borings Collected by MACTEC along the Beltline. ARAMARK VRP/HSI Site No. 10704 Atlanta, Georgia

		SB-89+96	GP-89+47	CB-91+24-DUP	HA-91+09			HA-91+30-R	HA-91+30-B	HA-91+34		CB-91+49		HA-9	1+59	HA-91+77-C
		10/7/2010	11/8/2010	8/25/2011	8/4/2011	8/4/2011	11/9/2010	11/9/2010	11/9/2010	8/4/2011		8/25/2011		8/4/2	2011	11/9/2010
	Selected RRS															
Chlorinated VOCs (μg/Kg)	(μg/kg)	1-2.5'	2.0-4.0'	2.5-3'	0.5-1'	0.5-2'	0-2'	0-2'	0-2'	0.5-1'	2.5-3'	3.5-4'	5.5-6'	0-1'	1.5-2'	0-2'
Tetrachloroethene	500	<4.86	BDL	13,800	9,410	BDL	1,744	4,721	10,739	43,800	908,000	1,100,000	303,000	9,060	6,900	9,319
Trichloroethene	500	<4.86	BDL	1,270	19.6	BDL	107.3	76.5	113	2,370	110,000	63,500	10,900	25.6	8.5	444
Aromatic Hydrocarbons																
Toluene	400,000	<4.86	BDL	BDL	BDL	BDL	NA	NA	NA	BDL	394	NA	NA	BDL	BDL	BDL
Other VOCs																
2-Butanone	200,000	<48.6	BDL	BDL	BDL	BDL	NA	NA	NA	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Methylene Chloride	500	<4.86	BDL	BDL	BDL	BDL	NA	NA	NA	6.87	1,160	BDL	BDL	BDL	BDL	BDL

Notes:

VOCs-Volatile Organic Compounds
μg/Kg- micrograms per kilogram
RRS-Risk Reduction Standard (see Table 1 of CSR)
0-2'-sample collected between 0 and 2 feet below
BDL-Below laboroatory detection limit. Data not
provided by Beltline
NA-Not analyzed

UNK-Unknown; laboratory data not supplied by Atlanta Beltline

Exceeds Type 3/4 RRS

Soil Sample Excavated by MACTEC as part of Atlant Beltline Redvelopment

Note: This is the only data that has been provided by Atlanta Beltline

Table D-18. Summary of VOCs of Soil Borings Collected by MACTEC along the Beltline. ARAMARK VRP/HSI Site No. 10704 Atlanta, Georgia

		SB-89+96 10/7/2010	GP-89+47 11/8/2010	HA-91+77-R 11/9/2010	HA-91+77-B 11/9/2010	HA-91+87 8/4/2011	HA-92+12 8/4/2011	HA-9 2 8/4/2		HA-93+21 8/4/2011
Chlorinated VOCs (μg/Kg)	Selected RRS (μg/kg)	1-2.5'	2.0-4.0'	0-2'	0-2'	1.5-2'	1.5-2'	0-2'	2-4'	2.5-3'
Tetrachloroethene Trichloroethene	500 500	<4.86 <4.86	BDL BDL	9,431 575	8,271 271	46,200 3,160	118 BDL	330 BDL	6.01 BDL	19.2 BDL
Aromatic Hydrocarbons Toluene	400,000	<4.86	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Other VOCs 2-Butanone Methylene Chloride	200,000 500	<48.6 <4.86	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL 9.05	BDL BDL	BDL BDL	BDL BDL

Notes:

VOCs-Volatile Organic Compounds
μg/Kg- micrograms per kilogram
RRS-Risk Reduction Standard (see Table 1 of CSR)
0-2'-sample collected between 0 and 2 feet below
BDL-Below laboroatory detection limit. Data not
provided by Beltline
NA-Not analyzed

UNK-Unknown; laboratory data not supplied by Atlanta Beltline

Exceeds Type 3/4 RRS

Soil Sample Excavated by MACTEC as part of Atlant Beltline Redvelopment

Note: This is the only data that has been provided

by Atlanta Beltline

Table D-18. Summary of VOCs of Soil Borings Collected by MACTEC along the Beltline.

ARAMARK VRP/HSI Site No. 10704

Atlanta, Georgia

		SB-89+96 10/7/2010	GP-89+47 11/8/2010	CB-93+36 8/25/2011	HA-93+43 8/4/2011		HA-93+54 2/17/2011		HA-93+64 8/4/2011	HA-93+78 8/29/2011	HA-91+73 A(2) 2/27/2013	HA-91+94 A(2) 2/27/2013	SB-91+72 4/13/2013	SB-91+89 4/13/2013		+89 E5 /2013
Chlorinated VOCs (μg/Kg)	Selected RRS (µg/kg)	1-2.5'	2.0-4.0'	4.5-5'	2.5-3'	0-2'	2-4'	5-5.5'	2.5-3'	1.5-2'	0-1'	5'	3-4'	3-4'	2-3'	6-7'
Tetrachloroethene Trichloroethene	500 500	<4.86 <4.86	BDL BDL	BDL BDL	49.4 BDL	77.8 <4.34	1,890 10.5	BDL BDL	102 BDL	8.99 BDL	40.3 BDL	98.1 BDL	48 BDL	7,830 45	1,010 BDL	144,000 170
Aromatic Hydrocarbons Toluene	400,000	<4.86	BDL	BDL	BDL	<4.34	<3.92	BDL	BDL	BDL	UNK	UNK	UNK	UNK	UNK	UNK
Other VOCs 2-Butanone Methylene Chloride	200,000 500	<48.6 <4.86	BDL BDL	BDL BDL	BDL BDL	<43.4 <4.34	<39.2 <3.92	BDL BDL	BDL BDL	BDL BDL	UNK UNK	UNK UNK	UNK UNK	UNK UNK	UNK UNK	UNK UNK

VOCs-Volatile Organic Compounds
μg/Kg- micrograms per kilogram
RRS-Risk Reduction Standard (see Table 1 of CSR)
0-2'-sample collected between 0 and 2 feet below
BDL-Below laboroatory detection limit. Data not
provided by Beltline
NA-Not analyzed
UNK-Unknown; laboratory data not supplied by Atlanta Beltline

Exceeds Type 3/4 RRS
Soil Sample Excavated by MACTEC as part of

Atlant Beltline Redvelopment

Note: This is the only data that has been provided

by Atlanta Beltline

Table D-18. Summary of VOCs of Soil Borings Collected by MACTEC along the Beltline.

ARAMARK VRP/HSI Site No. 10704

Atlanta, Georgia

		SB-89+96 10/7/2010	GP-89+47 11/8/2010		1 +89 E20 3/2013	SB-92+07 4/13/2013		+07 E5 /2013		AOC-2 /2013		AOC-2 /2013
Chlorinated VOCs (μg/Kg)	Selected RRS (μg/kg)	1-2.5'	2.0-4.0'	3-4'			2-3'	6-7'	2'	8'	2'	8'
Tetrachloroethene Trichloroethene	500 500	<4.86 <4.86	BDL BDL	56.6 BDL	169,000 6.2	1,840 BDL	207 BDL	100 BDL	135 BDL	821 BDL	BDL BDL	25.5 BDL
Aromatic Hydrocarbons Toluene	400,000	<4.86	BDL	UNK	UNK	UNK	UNK	UNK	UNK	UNK	UNK	UNK
Other VOCs 2-Butanone Methylene Chloride	200,000 500	<48.6 <4.86	BDL BDL	UNK UNK	UNK UNK	UNK UNK	UNK UNK	UNK UNK	UNK UNK	UNK UNK	UNK UNK	UNK UNK

VOCs-Volatile Organic Compounds

µg/Kg- micrograms per kilogram

RRS-Risk Reduction Standard (see Table 1 of CSR)

0-2'-sample collected between 0 and 2 feet below

BDL-Below laboroatory detection limit. Data not
provided by Beltline

NA-Not analyzed

UNK-Unknown; laboratory data not supplied by Atlanta Beltline

Exceeds Type 3/4 RRS
Soil Sample Excavated by MACTEC as part of
Atlant Beltline Redvelopment

Note: This is the only data that has been provided by Atlanta Beltline

Table D-19. Summary of VOCs Detected in Soil--NW Corner of 670 DeKalb Avenue, 2013.

ARAMARK DeKalb VRP/HSI No. 10704

Atlanta, Georgia

			SB	3-1			SE	3-2			SB	3-3	
		2-4'	6-8'	10-12'	14-16'	2-4'	6-8'	10-12'	14-16'	2-4'	6-8'	10-12'	14-16'
			1/31,	2013			1/31,	/2013			1/31/	/2013	
Chlorinated VOCs (µg/kg)	Selected RRS												
Tetrachloroethene	500	<5.29	9.96	<5.72	<5.14	<4.24	18.5	38.5	<5.49	<6.93	7.90	5.19	9.62
1,1,1-Trichloroethane	260,000	<5.29	<4.78	<5.72	<5.14	<4.24	<5.2	<4.61	<5.49	<6.93	<4.48	<4.22	<6.06
Trichloroethene	500	<5.29	<4.78	<5.72	<5.14	<4.24	<5.2	<4.61	<5.49	<6.93	<4.48	<4.22	<6.06
1,1-Dichloroethene	700	<5.29	<4.78	<5.72	<5.14	<4.24	<5.2	<4.61	<5.49	<6.93	<4.48	<4.22	<6.06
1,2-Dichloroethane	500	<5.29	<4.78	<5.72	<5.14	<4.24	<5.2	<4.61	<5.49	<6.93	<4.48	<4.22	<6.06
1,1-Dichloroethane	400,000	<5.29	<4.78	<5.72	<5.14	<4.24	<5.2	<4.61	<5.49	<6.93	<4.48	<4.22	<6.06
Chloroethane	170	<5.29	<4.78	<5.72	<5.14	<4.24	<5.2	<4.61	<5.49	<6.93	<4.48	<4.22	<6.06
cis-1,2-Dichloroethene	19,000	<5.29	<4.78	24.5	<5.14	<4.24	<5.2	<4.61	<5.49	<6.93	<4.48	<4.22	<6.06
trans-1,2-Dichloroethene	52,000	<5.29	<4.78	<5.72	<5.14	<4.24	<5.2	<4.61	<5.49	<6.93	<4.48	<4.22	<6.06
Vinyl Chloride	200	<5.29	<4.78	<5.72	<5.14	<4.24	<5.2	<4.61	<5.49	<6.93	<4.48	<4.22	<6.06
Aromatic Hydrocarbons													
Benzene	500	<5.29	<4.78	<5.72	<5.14	<4.24	<5.2	<4.61	<5.49	<6.93	<4.48	<4.22	<6.06
Ethylbenzene	340,000	<5.29	<4.78	<5.72	<5.14	<4.24	<5.2	<4.61	<5.49	<6.93	<4.48	<4.22	<6.06
Toluene	400,000	<5.29	<4.78	<5.72	<5.14	<4.24	<5.2	<4.61	<5.49	<6.93	<4.48	<4.22	<6.06
Chlorobenzene	10,000	<5.29	<4.78	<5.72	<5.14	<4.24	<5.2	<4.61	<5.49	<6.93	<4.48	<4.22	<6.06
Cyclohexane	1,400,000	<5.29	<4.78	<5.72	<5.14	<4.24	<5.2	<4.61	<5.49	<6.93	<4.48	<4.22	<6.06
Naphthalene	100,000	<5.29	<4.78	<5.72	<5.14	<4.24	<5.2	<4.61	<5.49	<6.93	<4.48	<4.22	<6.06
o-xylene	1,100,000	<5.29	<4.78	<5.72	<5.14	<4.24	<5.2	<4.61	<5.49	<6.93	<4.48	<4.22	<6.06
m,p-Xylene	1,100,000	<5.29	<4.78	<5.72	<5.14	<4.24	<5.2	<4.61	<5.49	<6.93	<4.48	<4.22	<6.06
Xylenes, total	1,100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Isopropylbenzene	94,000	<5.29	<4.78	<5.72	<5.14	<4.24	<5.2	<4.61	<5.49	<6.93	<4.48	<4.22	<6.06
Other VOCs													
2-Butanone	200,000	<52.9	<47.8	<57.2	<51.4	<42.4	<52	<46.1	<54.9	<69.3	<44.8	<42.2	<60.6
Acetone	400,000	<52.9	<47.8	133	<51.4	<42.4	<52	<46.1	<54.9	<69.3	<44.8	<42.2	<60.6
Carbon Disulfide	400,000	<42.3	<38.2	<45.8	<41.1	<34	<41.6	<36.9	<43.9	<55.4	<35.9	<33.8	<48.5
Methylene Chloride	500	<21.1	<19.1	<22.9	<20.6	<17	<20.8	<18.5	<22	<27.7	<17.9	<16.9	<24.2

Table D-19. Summary of VOCs Detected in Soil--NW Corner of 670 DeKalb Avenue, 2013.

ARAMARK DeKalb VRP/HSI No. 10704

Atlanta, Georgia

			SE	3-4			SE	3-5			SB	3-6	
		2-4'	6-8'	10-12'	14-16'	2-4'	6-8'	10-12'	14-16'	2-4'	6-8'	10-12'	14-16'
			1/31	/2013			1/31,	/2013			1/31/	/2013	
Chlorinated VOCs (μg/kg)	Selected RRS												
Tetrachloroethene	500	9,080	8.42	5.50	10.2	8,070	29.9	8.39	8.79	NSR	9,950	2,410	11.0
1,1,1-Trichloroethane	260,000	<9.53	<5.24	<5.32	<6.23	<298	<4.95	<6.03	<6.03	NSR	<313	<386	<5.37
Trichloroethene	500	99.2	<5.24	<5.32	<6.23	<298	<4.95	<6.03	<6.03	NSR	<313	<386	<5.37
1,1-Dichloroethene	700	<9.53	<5.24	<5.32	<6.23	<298	<4.95	<6.03	<6.03	NSR	<313	<386	<5.37
1,2-Dichloroethane	500	<9.53	<5.24	<5.32	<6.23	<298	<4.95	<6.03	<6.03	NSR	<313	<386	<5.37
1,1-Dichloroethane	400,000	<9.53	<5.24	<5.32	<6.23	<298	<4.95	<6.03	<6.03	NSR	<313	<386	<5.37
Chloroethane	170	<9.53	<5.24	<5.32	<6.23	<298	<4.95	<6.03	<6.03	NSR	<313	<386	<5.37
cis-1,2-Dichloroethene	19,000	<9.53	<5.24	<5.32	<6.23	<298	<4.95	<6.03	<6.03	NSR	<313	<386	<5.37
trans-1,2-Dichloroethene	52,000	<9.53	<5.24	<5.32	<6.23	<298	<4.95	<6.03	<6.03	NSR	<313	<386	<5.37
Vinyl Chloride	200	<9.53	<5.24	<5.32	<6.23	<298	<4.95	<6.03	<6.03	NSR	<313	<386	<5.37
Aromatic Hydrocarbons													
Benzene	500	<9.53	<5.24	<5.32	<6.23	<298	<4.95	<6.03	<6.03	NSR	<313	<386	<5.37
Ethylbenzene	340,000	<9.53	<5.24	<5.32	<6.23	<298	<4.95	<6.03	<6.03	NSR	<313	<386	<5.37
Toluene	400,000	<9.53	<5.24	<5.32	<6.23	<298	<4.95	<6.03	<6.03	NSR	<313	<386	<5.37
Chlorobenzene	10,000	<9.53	<5.24	<5.32	<6.23	<298	<4.95	<6.03	<6.03	NSR	<313	<386	<5.37
Cyclohexane	1,400,000	<9.53	<5.24	<5.32	<6.23	<298	<4.95	<6.03	<6.03	NSR	<313	<386	<5.37
Naphthalene	100,000	<9.53	<5.24	<5.32	<6.23	<298	<4.95	<6.03	<6.03	NSR	<313	<386	<5.37
o-xylene	1,100,000	<9.53	<5.24	<5.32	<6.23	<298	<4.95	<6.03	<6.03	NSR	<313	<386	<5.37
m,p-Xylene	1,100,000	<9.53	<5.24	<5.32	<6.2	<298	<4.95	<6.03	<6.03	NSR	<313	<386	<5.37
Xylenes, total	1,100,000	NA	NA	NA	NA	NA	NA	NA	NA	NSR	NA	NA	NA
Isopropylbenzene	94,000	<9.53	<5.24	<5.32	<6.23	<298	<4.95	<6.03	<6.03	NSR	<313	<386	<5.37
Other VOCs													
2-Butanone	200,000	<95.3	<52.4	<53.2	<62.3	<2,980	<49.5	<60.3	<60.3	NSR	<3,130	<3,860	<53.7
Acetone	400,000	<95.3	<52.4	<53.2	<62.3	<2,980	<49.5	<60.3	<60.3	NSR	<3,130	<3,860	<53.7
Carbon Disulfide	400,000	<76.3	<41.9	<42.6	<49.8	<2,380	<39.6	<48.2	<48.2	NSR	<2,500	<3,090	<42.9
Methylene Chloride	500	<38.1	<21	<21.3	<24.9	<1,190	<19.8	<24.1	<24.1	NSR	<1,250	<1,550	<21.5

Table D-19. Summary of VOCs Detected in Soil--NW Corner of 670 DeKalb Avenue, 2013.

ARAMARK DeKalb VRP/HSI No. 10704

Atlanta, Georgia

			SB-	7			SE	3-8			SE	3-9	
		2-4'	6-8'	10-12'	14-16'	0-2'	6-8'	10-12'	14-16'	2-4'	6-8'	10-12'	14-16'
			1/31/2	2013			1/31	/2013			1/31	/2013	
Chlorinated VOCs (μg/kg)	Selected RRS												
Tetrachloroethene	500	8,240	49,800	23.0	<5.44	10.1	<5.77	<5.60	<6.77	3,250	39.6	<5.96	<7.17
1,1,1-Trichloroethane	260,000	<224	<247	<4.59	<5.44	<6.27	<5.77	<5.60	<6.77	<378	<6.41	<5.96	<7.17
Trichloroethene	500	291	2,170	5.93	<5.44	<6.27	<5.77	<5.60	<6.77	<378	<6.41	<5.96	<7.17
1,1-Dichloroethene	700	<224	<247	<4.59	<5.44	<6.27	<5.77	<5.60	<6.77	<378	<6.41	<5.96	<7.17
1,2-Dichloroethane	500	<224	<247	<4.59	<5.44	<6.27	<5.77	<5.60	<6.77	<378	<6.41	<5.96	<7.17
1,1-Dichloroethane	400,000	<224	<247	<4.59	<5.44	<6.27	<5.77	<5.60	<6.77	<378	<6.41	<5.96	<7.17
Chloroethane	170	<224	<247	<4.59	<5.44	<6.27	<5.77	<5.60	<6.77	<378	<6.41	<5.96	<7.17
cis-1,2-Dichloroethene	19,000	<224	859	5.67	<5.44	<6.27	<5.77	<5.60	<6.77	<378	<6.41	<5.96	<7.17
trans-1,2-Dichloroethene	52,000	<224	<247	<4.59	<5.44	<6.27	<5.77	<5.60	<6.77	<378	<6.41	<5.96	<7.17
Vinyl Chloride	200	<224	<247	<4.59	<5.44	<6.27	<5.77	<5.60	<6.77	<378	<6.41	<5.96	<7.17
Aromatic Hydrocarbons													
Benzene	500	<224	<247	<4.59	<5.44	<6.27	<5.77	<5.60	<6.77	<378	<6.41	<5.96	<7.17
Ethylbenzene	340,000	<224	<247	<4.59	<5.44	<6.27	<5.77	<5.60	<6.77	<378	<6.41	<5.96	<7.17
Toluene	400,000	<224	<247	<4.59	<5.44	<6.27	<5.77	<5.60	<6.77	<378	<6.41	<5.96	<7.17
Chlorobenzene	10,000	<224	<247	<4.59	<5.44	<6.27	<5.77	<5.60	<6.77	<378	<6.41	<5.96	<7.17
Cyclohexane	1,400,000	<224	<247	<4.59	<5.44	<6.27	<5.77	<5.60	<6.77	<378	<6.41	<5.96	<7.17
Naphthalene	100,000	<224	<247	<4.59	<5.44	<6.27	<5.77	<5.60	<6.77	<378	<6.41	<5.96	<7.17
o-xylene	1,100,000	<224	<247	<4.59	<5.44	<6.27	<5.77	<5.60	<6.77	<378	<6.41	<5.96	<7.17
m,p-Xylene	1,100,000	<224	<247	<4.59	<5.44	<6.27	<5.77	<5.60	<6.77	<378	<6.41	<5.96	<7.17
Xylenes, total	1,100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Isopropylbenzene	94,000	<224	<247	<4.59	<5.44	<6.27	<5.77	<5.60	<6.77	<378	<6.41	<5.96	<7.17
Other VOCs													
2-Butanone	200,000	<2,240	<2,470	<45.9	<54.4	<62.7	<57.7	<56	<67.7	<3,780	<64.1	<59.6	<71.7
Acetone	400,000	<2,240	<2,470	47.1	<54.4	<62.7	<57.7	<56	<67.7	<3,780	<64.1	<59.6	<71.7
Carbon Disulfide	400,000	<1,790	<1,970	<36.7	<43.5	<50.1	<46.2	<44.8	<54.1	<3,030	<51.3	<47.7	<57.4
Methylene Chloride	500	<895	<987	<18.4	<21.8	<25.1	<23.1	<22.4	<27.1	<1,510	<25.7	<23.8	<28.7

Table D-19. Summary of VOCs Detected in Soil--NW Corner of 670 DeKalb Avenue, 2013.

ARAMARK DeKalb VRP/HSI No. 10704

Atlanta, Georgia

			SB-	10				SB-	11				SB-	-12	
		2-4'	6-8'	10-12'	14-16'	0-2'	5-6'	10-12'	14-15'	18-20'	24-25'	0-2'	6-8'	10-12'	14-16'
			1/31/	2013			1/31,	/2013		2/1/	2013		2/1/	2013	
Chlorinated VOCs (µg/kg)	Selected RRS														
Tetrachloroethene	500	903	20,900	9,900	<4.82	14,800	3,400	87,600	1,320	<6.19	NA	17.5	6,340	52,200	18.5
1,1,1-Trichloroethane	260,000	<258	<410	<310	<4.82	<294	<349	<395	<9.5	<6.19	NA	<6.40	<253	<323	<5.06
Trichloroethene	500	<258	540	2,900	9.64	<294	<349	7,820	10,400	<6.19	NA	<6.40	<253	4,920	10.8
1,1-Dichloroethene	700	<258	<410	<310	<4.82	<294	<349	<395	<9.5	<6.19	NA	<6.40	<253	<323	<5.06
1,2-Dichloroethane	500	<258	<410	<310	<4.82	<294	<349	<395	<9.5	<6.19	NA	<6.40	<253	<323	<5.06
1,1-Dichloroethane	400,000	<258	<410	<310	<4.82	<294	<349	<395	<9.5	<6.19	NA	<6.40	<253	<323	<5.06
Chloroethane	170	<258	<410	<310	<4.82	<294	<349	<395	<9.5	<6.19	NA	<6.40	<253	<323	<5.06
cis-1,2-Dichloroethene	19,000	<258	<410	3,070	<4.82	<294	<349	3,890	5,250	6.94	NA	<6.40	<253	941	6.73
trans-1,2-Dichloroethene	52,000	<258	<410	<310	<4.82	<294	<349	<395	13.6	<6.19	NA	<6.40	<253	<323	<5.06
Vinyl Chloride	200	<258	<410	<310	<4.82	<294	<349	<395	<9.5	<6.19	NA	<6.40	<253	<323	<5.06
Aromatic Hydrocarbons															
Benzene	500	<258	<410	<310	<4.82	<294	<349	<395	<9.5	<6.19	NA	<6.40	<253	<323	<5.06
Ethylbenzene	340,000	<258	<410	<310	<4.82	<294	<349	<395	<9.5	<6.19	NA	<6.40	<253	<323	<5.06
Toluene	400,000	<258	<410	<310	<4.82	<294	<349	<395	<9.5	<6.19	NA	<6.40	<253	<323	<5.06
Chlorobenzene	10,000	<258	<410	<310	<4.82	<294	<349	<395	<9.5	<6.19	NA	<6.40	<253	<323	<5.06
Cyclohexane	1,400,000	<258	<410	<310	<4.82	<294	<349	<395	<9.5	<6.19	NA	<6.40	<253	<323	<5.06
Naphthalene	100,000	<258	<410	<310	<4.82	<294	<349	<395	<9.5	<6.19	NA	<6.40	<253	<323	<5.06
o-xylene	1,100,000	<258	<410	<310	<4.82	<294	<349	<395	<9.5	<6.19	NA	<6.40	<253	<323	<5.06
m,p-Xylene	1,100,000	<258	<410	<310	<4.82	<294	<349	<395	<9.5	<6.19	NA	<6.40	<253	<323	<5.06
Xylenes, total	1,100,000	NA NA	NA	NA											
Isopropylbenzene	94,000	<258	<410	<310	<4.82	<294	<349	<395	<9.5	<6.19	NA	<6.40	<253	<323	<5.06
Other VOCs															
2-Butanone	200,000	<2,580	<4,100	<3,100	<48.2	<2,940	<3,490	<3,950	<95	<61.9	NA	<64.0	<2,530	<3,230	<50.6
Acetone	400,000	<2,580	<4,100	<3,100	52.8	<2,940	<3,490	<3,950	170	<61.9	NA	<64.0	<2,530	<3,230	<50.6
Carbon Disulfide	400,000	<2,060	<3,280	<2,480	<38.5	<2,350	<2,790	<3,160	<76	<49.5	NA	<51.2	<2,030	<2,590	<40.5
Methylene Chloride	500	<1,030	<1,640	<1,240	<19.3	<1,170	<1,400	<1,580	<38	<24.7	NA	<25.6	<1,010	<1,290	<20.3

Table D-19. Summary of VOCs Detected in Soil--NW Corner of 670 DeKalb Avenue, 2013.

ARAMARK DeKalb VRP/HSI No. 10704

Atlanta, Georgia

			SB-	-13			SB	-14			SB-	-15	
		2-4'	6-8'	10-12'	14-16'	2-4'	6-8'	10-12'	14-16'	1-2'	6-8'	10-12'	14-16'
			2/1/	2013			2/1/	2013			2/1/	2013	
Chlorinated VOCs (µg/kg)	Selected RRS												
Tetrachloroethene	500	<4.91	<4.13	NA	NA	4.70	7.56	NA	NA	33.8	<6.30	NA	NA
1,1,1-Trichloroethane	260,000	<4.91	<4.13	NA	NA	<4.15	<5.87	NA	NA	<8.24	<6.30	NA	NA
Trichloroethene	500	<4.91	<4.13	NA	NA	<4.15	<5.87	NA	NA	<8.24	<6.30	NA	NA
1,1-Dichloroethene	700	<4.91	<4.13	NA	NA	<4.15	<5.87	NA	NA	<8.24	<6.30	NA	NA
1,2-Dichloroethane	500	<4.91	<4.13	NA	NA	<4.15	<5.87	NA	NA	<8.24	<6.30	NA	NA
1,1-Dichloroethane	400,000	<4.91	<4.13	NA	NA	<4.15	<5.87	NA	NA	<8.24	<6.30	NA	NA
Chloroethane	170	<4.91	<4.13	NA	NA	<4.15	<5.87	NA	NA	<8.24	<6.30	NA	NA
cis-1,2-Dichloroethene	19,000	<4.91	<4.13	NA	NA	<4.15	<5.87	NA	NA	<8.24	<6.30	NA	NA
trans-1,2-Dichloroethene	52,000	<4.91	<4.13	NA	NA	<4.15	<5.87	NA	NA	<8.24	<6.30	NA	NA
Vinyl Chloride	200	<4.91	<4.13	NA	NA	<4.15	<5.87	NA	NA	<8.24	<6.30	NA	NA
Aromatic Hydrocarbons													
Benzene	500	<4.91	<4.13	NA	NA	<4.15	<5.87	NA	NA	<8.24	<6.30	NA	NA
Ethylbenzene	340,000	<4.91	<4.13	NA	NA	<4.15	<5.87	NA	NA	<8.24	<6.30	NA	NA
Toluene	400,000	<4.91	<4.13	NA	NA	<4.15	<5.87	NA	NA	<8.24	<6.30	NA	NA
Chlorobenzene	10,000	<4.91	<4.13	NA	NA	<4.15	<5.87	NA	NA	<8.24	<6.30	NA	NA
Cyclohexane	1,400,000	<4.91	<4.13	NA	NA	<4.15	<5.87	NA	NA	<8.24	<6.30	NA	NA
Naphthalene	100,000	<4.91	<4.13	NA	NA	<4.15	<5.87	NA	NA	<8.24	<6.30	NA	NA
o-xylene	1,100,000	<4.91	<4.13	NA	NA	<4.15	<5.87	NA	NA	<8.24	<6.30	NA	NA
m,p-Xylene	1,100,000	<4.91	<4.13	NA	NA	<4.15	<5.87	NA	NA	<8.24	<6.30	NA	NA
Xylenes, total	1,100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Isopropylbenzene	94,000	<4.91	<4.13	NA	NA	<4.15	<5.87	NA	NA	<8.24	<6.30	NA	NA
Other VOCs													
2-Butanone	200,000	<49.1	<41.3	NA	NA	<41.5	<58.7	NA	NA	<82.4	<63.0	NA	NA
Acetone	400,000	<49.1	<41.3	NA	NA	<41.5	<58.7	NA	NA	<82.4	<63.0	NA	NA
Carbon Disulfide	400,000	<39.3	<33	NA	NA	<33.2	<47	NA	NA	<65.9	<50.4	NA	NA
Methylene Chloride	500	<19.6	<16.5	NA	NA	<16.6	<23.5	NA	NA	<33	<25.2	NA	NA

Table D-19. Summary of VOCs Detected in Soil--NW Corner of 670 DeKalb Avenue, 2013.

ARAMARK DeKalb VRP/HSI No. 10704

Atlanta, Georgia

			SB-	16			SB	-30			SB-	31			SB-	32	
		2-4'	6-8'	10-12'	14-16'	0-2'	2-4'	6-8'	10-12'	0-2'	2-4'	6-8'	10-12'	0-2'	2-4'	6-8'	10-12'
			2/1/2	2013			5/3/	2013			5/3/2	2013			5/3/2	2013	
Chlorinated VOCs (µg/kg)	Selected RRS																
Tetrachloroethene	500	6,740	451	<7.49	NA	7.11	<5.0	3,870	6.59	10.5	<7.01	<5.26	<5.44	<6.66	545	21.1	<5.14
1,1,1-Trichloroethane	260,000	<262	<267	<7.49	NA	<5.79	<5.0	<7.15	<5.85	<5.39	<7.01	<5.26	<5.44	<6.66	<392	<8.15	<5.14
Trichloroethene	500	<262	<267	<7.49	NA	<5.79	<5.0	<7.15	<5.85	<5.39	<7.01	<5.26	<5.44	<6.66	<392	<8.15	<5.14
1,1-Dichloroethene	700	<262	<267	<7.49	NA	<5.79	<5.0	<7.15	<5.85	<5.39	<7.01	<5.26	<5.44	<6.66	<392	<8.15	<5.14
1,2-Dichloroethane	500	<262	<267	<7.49	NA	<5.79	<5.0	<7.15	<5.85	<5.39	<7.01	<5.26	<5.44	<6.66	<392	<8.15	<5.14
1,1-Dichloroethane	400,000	<262	<267	<7.49	NA	<5.79	<5.0	<7.15	<5.85	<5.39	<7.01	<5.26	<5.44	<6.66	<392	<8.15	<5.14
Chloroethane	170	<262	<267	<7.49	NA	<5.79	<5.0	<7.15	<5.85	<5.39	<7.01	<5.26	<5.44	<6.66	<392	<8.15	<5.14
cis-1,2-Dichloroethene	19,000	<262	<267	<7.49	NA	<5.79	<5.0	<7.15	<5.85	<5.39	<7.01	<5.26	<5.44	<6.66	<392	<8.15	<5.14
trans-1,2-Dichloroethene	52,000	<262	<267	<7.49	NA	<5.79	<5.0	<7.15	<5.85	<5.39	<7.01	<5.26	<5.44	<6.66	<392	<8.15	<5.14
Vinyl Chloride	200	<262	<267	<7.49	NA	<5.79	<5.0	<7.15	<5.85	<5.39	<7.01	<5.26	<5.44	<6.66	<392	<8.15	<5.14
Aromatic Hydrocarbons																	
Benzene	500	<262	<267	<7.49	NA	<5.79	<5.0	<7.15	<5.85	<5.39	<7.01	<5.26	<5.44	<6.66	<392	<8.15	<5.14
Ethylbenzene	340,000	<262	<267	<7.49	NA	<5.79	<5.0	<7.15	<5.85	<5.39	<7.01	<5.26	<5.44	<6.66	<392	<8.15	<5.14
Toluene	400,000	<262	<267	<7.49	NA	<5.79	<5.0	<7.15	<5.85	<5.39	<7.01	<5.26	<5.44	<6.66	<392	<8.15	<5.14
Chlorobenzene	10,000	<262	<267	<7.49	NA	<5.79	<5.0	<7.15	<5.85	<5.39	<7.01	<5.26	<5.44	<6.66	<392	<8.15	<5.14
Cyclohexane	1,400,000	<262	<267	<7.49	NA	<5.79	<5.0	<7.15	<5.85	<5.39	<7.01	<5.26	<5.44	<6.66	<392	<8.15	<5.14
Naphthalene	100,000	<262	<267	<7.49	NA	<5.79	<5.0	<7.15	<5.85	<5.39	<7.01	<5.26	<5.44	<6.66	<392	<8.15	<5.14
o-xylene	1,100,000	<262	<267	<7.49	NA	<5.79	<5.0	<7.15	<5.85	<5.39	<7.01	<5.26	<5.44	<6.66	<392	<8.15	<5.14
m,p-Xylene	1,100,000	<262	<267	<7.49	NA	<5.79	<5.0	<7.15	<5.85	<5.39	<7.01	<5.26	<5.44	<6.66	<392	<8.15	<5.14
Xylenes, total	1,100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Isopropylbenzene	94,000	<262	<267	<7.49	NA	<5.79	<5.0	<7.15	<5.85	<5.39	<7.01	<5.26	<5.44	<6.66	<392	<8.15	<5.14
Other VOCs																	
2-Butanone	200,000	<2,620	<2,670	<74.9	NA	<57.9	<50	<71.5	<58.5	<53.9	<70.1	<52.6	<54.4	<66.6	<3,920	<81.5	<51.4
Acetone	400,000	<2,620	<2,670	<74.9	NA	<57.9	<50	<71.5	<58.5	<53.9	<70.1	<52.6	<54.4	<66.6	<3,920	<81.5	<51.4
Carbon Disulfide	400,000	<2,100	<2,140	<60	NA	<46.3	<40	<57.2	<46.8	<43.1	<56	<42.1	<43.5	<53.3	<3,140	<65.2	<41.1
Methylene Chloride	500	<1,050	<1,070	<30	NA	<23.2	<20	<28.6	<23.4	<21.6	<28	<21	<21.7	<26.6	<1,570	<32.6	<20.6

Table D-19. Summary of VOCs Detected in Soil--NW Corner of 670 DeKalb Avenue, 2013.

ARAMARK DeKalb VRP/HSI No. 10704

Atlanta, Georgia

			SB-	-33			SB-	34		SB	-35	SB	-36
		0-2'	2-4'	6-8'	10-12'	0-2'	2-4'	6-8'	10-12'	0-2'	2-4'	0-2'	2-4'
			5/3/	2013			5/20/	2013		5/22/	/2013	5/22,	/2013
Chlorinated VOCs (µg/kg)	Selected RRS												
Tetrachloroethene	500	<5.19	2,800	<7.40	<4.73	<6.01	<5.83	NA	NA	<8.38	<5.86	<4.96	<6.14
1,1,1-Trichloroethane	260,000	<5.19	<5.45	<7.40	<4.73	<6.01	<5.83	NA	NA	<8.38	<5.86	<4.96	<6.14
Trichloroethene	500	<5.19	<5.45	<7.40	<4.73	<6.01	<5.83	NA	NA	<8.38	<5.86	<4.96	<6.14
1,1-Dichloroethene	700	<5.19	<5.45	<7.40	<4.73	<6.01	<5.83	NA	NA	<8.38	<5.86	<4.96	<6.14
1,2-Dichloroethane	500	<5.19	<5.45	<7.40	<4.73	<6.01	<5.83	NA	NA	<8.38	<5.86	<4.96	<6.14
1,1-Dichloroethane	400,000	<5.19	<5.45	<7.40	<4.73	<6.01	<5.83	NA	NA	<8.38	<5.86	<4.96	<6.14
Chloroethane	170	<5.19	<5.45	<7.40	<4.73	<6.01	<5.83	NA	NA	<8.38	<5.86	<4.96	<6.14
cis-1,2-Dichloroethene	19,000	<5.19	<5.45	<7.40	<4.73	<6.01	<5.83	NA	NA	<8.38	<5.86	<4.96	<6.14
trans-1,2-Dichloroethene	52,000	<5.19	<5.45	<7.40	<4.73	<6.01	<5.83	NA	NA	<8.38	<5.86	<4.96	<6.14
Vinyl Chloride	200	<5.19	<5.45	<7.40	<4.73	<6.01	<5.83	NA	NA	<8.38	<5.86	<4.96	<6.14
Aromatic Hydrocarbons													
Benzene	500	<5.19	<5.45	<7.40	<4.73	<6.01	<5.83	NA	NA	<8.38	<5.86	<4.96	<6.14
Ethylbenzene	340,000	<5.19	<5.45	<7.40	<4.73	<6.01	<5.83	NA	NA	<8.38	<5.86	<4.96	<6.14
Toluene	400,000	<5.19	<5.45	<7.40	<4.73	<6.01	<5.83	NA	NA	<8.38	<5.86	<4.96	<6.14
Chlorobenzene	10,000	<5.19	<5.45	<7.40	<4.73	<6.01	<5.83	NA	NA	<8.38	<5.86	<4.96	<6.14
Cyclohexane	1,400,000	<5.19	<5.45	<7.40	<4.73	<6.01	<5.83	NA	NA	<8.38	<5.86	<4.96	<6.14
Naphthalene	100,000	<5.19	<5.45	<7.40	<4.73	<6.01	<5.83	NA	NA	<8.38	<5.86	<4.96	<6.14
o-xylene	1,100,000	<5.19	<5.45	<7.40	<4.73	<6.01	<5.83	NA	NA	<8.38	<5.86	<4.96	<6.14
m,p-Xylene	1,100,000	<5.19	<5.45	<7.40	<4.73	<6.01	<5.83	NA	NA	<8.38	<5.86	<4.96	<6.14
Xylenes, total	1,100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Isopropylbenzene	94,000	<5.19	<5.45	<7.40	<4.73	<6.01	<5.83	NA	NA	<8.38	<5.86	<4.96	<6.14
Other VOCs													
2-Butanone	200,000	<51.9	<54.5	<74	<47.3	<60.1	<58.3	NA	NA	<83.8	<58.6	<49.6	<61.4
Acetone	400,000	<51.9	<54.5	<74	<47.3	<60.1	<58.3	NA	NA	<83.8	<58.6	<49.6	<61.4
Carbon Disulfide	400,000	<41.5	<43.6	<59.2	<37.8	<48.1	<46.6	NA	NA	<67	<46.9	<39.7	<49.1
Methylene Chloride	500	<20.7	<21.8	<29.6	<18.9	<24	<23.3	NA	NA	<33.5	<23.4	<19.9	<24.6

Table D-19. Summary of VOCs Detected in Soil--NW Corner of 670 DeKalb Avenue, 2013. ARAMARK DeKalb VRP/HSI No. 10704 Atlanta, Georgia

Notes:

VOCs-Volatile Organic Compounds

μg/kg- micrograms per kilogram

RRS-Risk Reduction Standard (see Table 1 of CSR)

2-4'- sample collected from 2 to 4 feet below land surface

NSR- No sample recovery in geoprobe sample tool due to saturated conditions

NR-Not Regulated

NA-Not analyzed

Soil sample collected beneath the water table

Exceeds Selected RRS

Table D-20. Summary of VOCs Detected in Soil--City of Atlanta Parcel, North of 670 DeKalb Avenue, 2013. ARAMARK VRP/HSI No. 10704 Atlanta, Georgia

		SB-	17*	SB-1	L8**	SB-	·19	SB-	-20	SB	-21	SB	-22
		2'	8'	2'	8'	2'	9'	2'	8'	2'	8'	2'	9'
		4/15/	2013	4/15/	2013	4/15/	2013	4/15/	2013	4/15,	/2013	4/15	/2013
Chlorinated VOCs	Type I RRS (μg/kg)												
Tetrachloroethene	500	NA	NA	NA	NA	<5.78	33	NA	NA	NA	NA	33.6	1,810
1,1,1-Trichloroethane	260,000	NA	NA	NA	NA	<5.78	<5.02	NA	NA	NA	NA	<5.79	<5.98
Trichloroethene	500	NA	NA	NA	NA	<5.78	<5.02	NA	NA	NA	NA	<5.79	32.9
1,1-Dichloroethene	700	NA	NA	NA	NA	<5.78	<5.02	NA	NA	NA	NA	<5.79	<5.98
1,2-Dichloroethane	500	NA	NA	NA	NA	<5.78	<5.02	NA	NA	NA	NA	<5.79	<5.98
1,1-Dichloroethane	400,000	NA	NA	NA	NA	<5.78	<5.02	NA	NA	NA	NA	<5.79	<5.98
Chloroethane	170	NA	NA	NA	NA	<5.78	<5.02	NA	NA	NA	NA	<5.79	<5.98
cis-1,2-Dichloroethene	19,000	NA	NA	NA	NA	<5.78	<5.02	NA	NA	NA	NA	<5.79	<5.98
trans-1,2-Dichloroethene	52,000	NA	NA	NA	NA	<5.78	<5.02	NA	NA	NA	NA	<5.79	<5.98
Vinyl Chloride	200	NA	NA	NA	NA	<5.78	<5.02	NA	NA	NA	NA	<5.79	<5.98
Petroleum Hydrocarbons													
Benzene	500	NA	NA	NA	NA	<5.78	<5.02	NA	NA	NA	NA	<5.79	<5.98
Ethylbenzene	340,000	NA	NA	NA	NA	<5.78	<5.02	NA	NA	NA	NA	<5.79	<5.98
Toluene	400,000	NA	NA	NA	NA	<5.78	<5.02	NA	NA	NA	NA	<5.79	<5.98
Chlorobenzene	10,000	NA	NA	NA	NA	<5.78	<5.02	NA	NA	NA	NA	<5.79	<5.98
Cyclohexane	1,400,000	NA	NA	NA	NA	<5.78	<5.02	NA	NA	NA	NA	<5.79	<5.98
Naphthalene	100,000	NA	NA	NA	NA	9.71	<5.02	NA	NA	NA	NA	<5.79	<5.98
m,p-xylenes	1,100,000	NA	NA	NA	NA	<5.78	<5.02	NA	NA	NA	NA	<5.79	<5.98
o-xylenes	1,100,000	NA	NA	NA	NA	<5.78	<5.02	NA	NA	NA	NA	<5.79	<5.98
Total xylenes	1,100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Isopropylbenzene	94,000	NA	NA	NA	NA	<5.78	<5.02	NA	NA	NA	NA	<5.79	<5.98
Other VOCs													
2-Butanone	200,000	NA	NA	NA	NA	<57.8	<50.2	NA	NA	NA	NA	<57.9	<59.8
Acetone	400,000	NA	NA	NA	NA	<57.8	<50.2	NA	NA	NA	NA	<57.9	<59.8
Carbon Disulfide	400,000	NA	NA	NA	NA	<46.2	<40.2	NA	NA	NA	NA	<46.4	<47.8
Methylene Chloride	500	NA	NA	NA	NA	<23.1	<20.1	NA	NA	NA	NA	<23.2	<23.9

Notes

VOCs-Volatile Organic Compounds

μg/kg- micrograms per kilogram

RRS-Risk Reduction Standard (see Table 1 of CSR)

2'- sample collected from 2 feet below land surface

NR-Not regulated

NA-not analyzed

Bold- Analyte was detected in the sample

Bold- Exceeds Selected RRS

Soil Sample Locations Excavated by AMEC (MACTEC)

on 4/24/13

Sample collected in the water table

All Samples collected by AEM on behalf of ARAMARK SB-17*--Same as AMEC (MACTEC) sample TP-2-AOC-2 SB-18**--Same as AMEC (MACTEC) sample TP-1-AOC-2

Table D-20. Summary of VOCs Detected in Soil--City of Atlanta Parcel, North of 670 DeKalb Avenue, 2013. ARAMARK VRP/HSI No. 10704 Atlanta, Georgia

		SB-23	SB-24	SB-25	SB-26	SB-27	SB-28	SB-29
		10'	6'	9'	10'	9'	8'	6'
		4/22/2013	4/22/2013	4/22/2013	4/24/2013	4/24/2013	4/24/2013	4/24/2013
Chlorinated VOCs	Type I RRS (μg/kg)							
Tetrachloroethene	500	272	14.6	60.8	192,000	117,000	281,000	496,000
1,1,1-Trichloroethane	260,000	<11.5	<5.27	<9.39	<577	<637	<469	<438
Trichloroethene	500	<11.5	<5.27	<9.39	1,350	5,560	9,300	21,600
1,1-Dichloroethene	700	<11.5	<5.27	<9.39	<577	<637	<469	<438
1,2-Dichloroethane	500	<11.5	<5.27	<9.39	<577	<637	<469	<438
1,1-Dichloroethane	400,000	<11.5	<5.27	<9.39	<577	<637	<469	<438
Chloroethane	170	<11.5	<5.27	<9.39	<577	<637	<469	<438
cis-1,2-Dichloroethene	19,000	<11.5	<5.27	<9.39	<577	639	2,180	3,270
trans-1,2-Dichloroethene	52,000	<11.5	<5.27	<9.39	<577	<637	<469	<438
Vinyl Chloride	200	<11.5	<5.27	<9.39	<577	<637	<469	<438
Petroleum Hydrocarbons								
Benzene	500	<11.5	<5.27	<9.39	<577	670	<469	<438
Ethylbenzene	340,000	<11.5	<5.27	<9.39	<577	<637	<469	<438
Toluene	400,000	<11.5	<5.27	<9.39	<577	2,210	<469	<438
Chlorobenzene	10,000	<11.5	<5.27	<9.39	<577	<637	<469	<438
Cyclohexane	1,400,000	<11.5	<5.27	<9.39	<577	1,200	<469	<438
Naphthalene	100,000	<11.5	<5.27	<9.39	<577	1,180	<469	<438
m,p-xylenes	1,100,000	<11.5	<5.27	<9.39	<577	1,560	<469	<438
o-xylenes	1,100,000	<11.5	<5.27	<9.39	<577	735	<469	<438
Total xylenes	1,100,000	NA						
Isopropylbenzene	94,000	<11.5	<5.27	<9.39	<577	735	<469	<438
Other VOCs								
2-Butanone	200,000	<115	<52.7	<93.9	<5,770	<6,370	<4,690	<4,380
Acetone	400,000	<115	<52.7	<93.9	<5,770	<6,370	<4,690	<4,380
Carbon Disulfide	400,000	<11.5	<5.27	<9.39	<4,620	<5,090	<3,760	<3,500
Methylene Chloride	500	<11.5	<5.27	<9.39	<2,310	<2,550	<1,880	<1,750

Notes

VOCs-Volatile Organic Compounds

μg/kg- micrograms per kilogram

RRS-Risk Reduction Standard (see Table 1 of CSR)

2'- sample collected from 2 feet below land surface

NR-Not regulated

NA-not analyzed

Bold- Analyte was detected in the sample

Bold- Exceeds Selected RRS

Soil Sample Locations Excavated by AMEC (MACTEC)

on 4/24/13

Sample collected in the water table

All Samples collected by AEM on behalf of ARAMARK SB-17*--Same as AMEC (MACTEC) sample TP-2-AOC-2 SB-18**--Same as AMEC (MACTEC) sample TP-1-AOC-:

ATTACHMENT E Georgia EPD Underground Storage Tank No Further Action

Georgia Department of Natural Resources

Environmental Protection Division

Underground Storage Tank Management Program
4244 International Parkway, Suite 104, Atlanta, Georgia 30354

Lonice C. Barrett, Commissioner

Harold F. Reheis, Director

(404)362-2687

September 3, 1996

Ms. Rebecca J. Whitsett Aratex Services, Inc. 1834 Walden Office Suite 450 Schaumburg, Illinois 60173-4299

SUBJECT:

Underground Storage Tank (UST) No Further Action Required: Aratex Services Inc./Servisco 670 DeKalb Avenue, N.E. Atlanta, GA; Fulton County Facility ID: 0600608

Dear Ms. Whitsett:

This is in reply to the reports, dated June 19, 1992, and August 12, 1993, prepared by your consultant for our review.

Based on current requirements of the Georgia Underground Storage Tank Act and the Georgia Rules for Underground Storage Tank Management (GUST Rules) and the data contained in your report, no further action is required for the UST release referenced in the subject reports, at this time.

However, corrective action for this release may be required in the future if mandated through more stringent State or Federal statutory or regulatory changes, or if drinking water systems are identified or installed within two miles of the site, or if surface water bodies are impacted by any dissolved contaminant plume originating from your site, or if any additional soil contamination and/or free product and/or dissolved contaminants in the groundwater are identified as originating from this site.

Furthermore, the release of chlorinated solvents is being referred to the Hazardous Waste Managment Branch, Corrective Action Program. You may contact them regarding your responsibilities for remediation under the Georgia Rules for Hazardous Waste Management at (404)656-7802.

If you have any questions, please contact Nancy Troup at (404)362-2687.

Sincerely,

Advanced Geologist Corrective Action Unit

LLL:bc\aratex.34

Randolph D. Williams, GA EPD

File (CA): Fulton; 0600608

* * * Upgrade Deadline - 1998* * *

ATTACHMENT F Historical Summary of VOCs Detected in Groundwater

Table F-1. Summary of Groundwater Analyses for DePaul Monitoring Well Samples (1990-1994).

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

					MW-1					MW-2					MW-3		
			8/2/90	7/22/91	8/7/91	5/21/92	12/29/94	8/2/90	7/22/91	8/7/91	5/21/92	12/29/94	8/2/90	7/22/91	8/7/91	5/21/92	12/29/94
		Selected															
Chlorinated VOCs		RRS															
Tetrachloroethene	μg/L	5	<5	<5	<5	<2	<1	<5	<5	<5	<2	<1	<5	15	318	<2	<1
1,1,1-Trichloroethane	μg/L	5,260	<5			21	<1	<5			<5	<1	<5			<5	<1
Trichloroethene	μg/L	5	<5	<5	70	<5	<1	<5	<5	<2	<5	<1	<5	<5	<2	<5	<1
1,1-Dichloroethene	μg/L	548	<5			<5	<1	<5			<5	<1	<5			<5	<1
1,2-Dichloroethane	μg/L	5	<5			<5	<1	<5			<5	<1	<5			<5	<1
1,1-Dichloroethane	μg/L	4,000	<5			<5	<1	<5			<5	<1	<5			<5	<1
Chloroethane	μg/L	987	<5			<10	<5	<5			<10	<5	<5			<10	<5
cis-1,2-Dichloroethene	μg/L	1,020	NA			NA	<1	NA			NA	<1	NA			NA	<1
trans-1,2-Dichloroethene	μg/L	2,040	<5	<5	<5	<5	<1	<5	<5	<5	<5	<1	<5	<5	<5	<5	<1
Vinyl Chloride	μg/L	2	<5	<10	<5	<10	<5	<5	<10	<5	<10	<5	<5	<10	<5	<10	<5
Aromatic Hydrocarbons																	
Benzene	μg/L	8.8	<5	6.0	<5	<2	<1	<5	<5	<5	<2	<1	<5	<5	<5	<2	<1
Ethylbenzene	μg/L	2,300	<5			<2	<1	<5			<2	<1	<5			<2	<1
Toluene	μg/L	5,200	<5			1,370	<1	<5			836	<1	<5			531	<1
Chlorobenzene	μg/L	100	<5			<5	<1	<5			<5	<1	<5			<5	<1
Cyclohexane	μg/L	17,400	NA			NA	NA	NA			NA	NA	NA			NA	NA
Naphthalene	μg/L	20	NA			NA	NA	NA			NA	NA	NA			NA	NA
o-xylene	μg/L	10,000	NA			NA	NA	NA			NA	NA	NA			NA	NA
m,p-Xylene	μg/L	10,000	NA			NA	NA	NA			NA	NA	NA			NA	NA
Xylenes, total	μg/L	10,000	NA			110	<2	NA			<2	<2	NA			<2	<2
Isopropylbenzene	μg/L	1,010	NA			NA	NA	NA			NA	NA	NA			NA	NA
Non-Chlorinated VOCs																	
Acetone	μg/L	92,000	NA			<100	NA	NA			<100	NA	NA			<100	NA
Bromomethane	μg/L	NR	<5			<10	<1	<5			<10	<1	<5			<10	<1
Carbon Disulfide	μg/L	4,000	NA			<5	NA	NA			<5	NA	NA			<5	NA

VOCs-volatile organic compounds

μg/L- micrograms per liter

NA-not analyzed

-- Laboratory data not available

RRS-Risk Reduction Standard (see Table 2 of CSR)

Exceeds Selected RRS

Table F-1. Summary of Groundwater Analyses for DePaul Monitoring Well Samples (1990-1994).

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

					MW-4			MW-5	MW-6	MV	N-7	MW-8	MW-9
			8/2/90	7/22/91	8/7/91	5/21/92	12/29/94	5/21/92	5/21/92	5/21/92	12/29/94	12/29/94	12/29/94
		Selected											
Chlorinated VOCs		RRS											
Tetrachloroethene	μg/L	5	<5	24,000	32,000	3,380	47,000 J	2,020	180	<2	<1	14	<1
1,1,1-Trichloroethane	μg/L	5,260	<5			<5	<1	<5	<5	<5	<1	<1	<1
Trichloroethene	μg/L	5	<5	130	282	<5	190	<5	<5	<5	<1	<1	<1
1,1-Dichloroethene	μg/L	548	<5			<5	<1	<5	<5	<5	<1	<1	<1
1,2-Dichloroethane	μg/L	5	<5			<5	<1	<5	<5	<5	<1	<1	<1
1,1-Dichloroethane	μg/L	4,000	<5			<5	<1	<5	<5	<5	<1	<1	<1
Chloroethane	μg/L	987	<5			<10	<5	<10	<10	<10	<5	<5	<5
cis-1,2-Dichloroethene	μg/L	1,020	NA			NA	<1	NA	NA	NA	<1	<1	<1
trans-1,2-Dichloroethene	μg/L	2,040	<5	220	102	56	56	229	<5	<5	<1	<1	<1
Vinyl Chloride	μg/L	2	<5	<100	<5	<10	<5	120	<10	<10	<5	<5	<5
Aromatic Hydrocarbons													
Benzene	μg/L	8.8	<5	<50	<5	<2	<1	<2	<2	<2	<1	<1	<1
Ethylbenzene	μg/L	2,300	<5			<2	2.9	<2	<2	<2	<1	<1	<1
Toluene	μg/L	5,200	<5			288	12	66	49	650	<1	<1	<1
Chlorobenzene	μg/L	100	<5			<5	<1	<5	<5	<5	<1	<1	<1
Cyclohexane	μg/L	17,400	NA			NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	μg/L	20	NA			NA	NA	NA	NA	NA	NA	NA	NA
o-xylene	μg/L	10,000	NA			NA	NA	NA	NA	NA	NA	NA	NA
m,p-Xylene	μg/L	10,000	NA			NA	NA	NA	NA	NA	NA	NA	NA
Xylenes, total	μg/L	10,000	NA			80	52	<2	<2	<2	<2	<2	<2
Isopropylbenzene	μg/L	1,010	NA			NA	NA	NA	NA	NA	NA	NA	NA
Non-Chlorinated VOCs													
Acetone	μg/L	92,000	NA			<100	NA	<100	<100	<100	NA	NA	NA
Bromomethane	μg/L	NR	<5			<10	<1	<10	<10	<10	<1	<1	<1
Carbon Disulfide	μg/L	4,000	NA			<5	NA	<5	<5	<5	NA	NA	NA

VOCs-volatile organic compounds $\mu g/L$ - micrograms per liter

NA-not analyzed

-- Laboratory data not available

RRS-Risk Reduction Standard (see Table 2 of CSR)

Exceeds Selected RRS

Table F-2. Summary of Groundwater Analyses for Law/Bock Samples DP-101, DP-102, DP-103, DP-104, DP-105 and DP-107 (2001).

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

			DP- 4/2 Law	101 4/01 Bock		-102 25/01 Bock		-103 4/01 Bock	DP- 4/25 Law			-105 5/01 Bock	DP-107 4/25/01 Law	DP-107** 4/25/01 Bock
Chlorinated VOCs		Selected RRS												
Tetrachloroethene	μg/L	5	25	28.5	75	52.5	130	180	8,500	5,100	3,000	3,060	31	54.7
1,1,1-Trichloroethane	μg/L	5,260	<2	<1	<2	<1	<2	<2	<2	<1	<2	<1	<2	<1
Trichloroethene	μg/L	5	<2	<1	<2	<1	3.0	<2	38	35.4	3.0	4.7	<2	<1
1,1-Dichloroethene	μg/L	548	<2	<1	<2	<1	<2	<2	<2	<1	<2	<1	<2	<1
1,2-Dichloroethane	μg/L	5	<2	<1	<2	<1	<2	<2	<2	<1	<2	<1	<2	<1
1,1-Dichloroethane	μg/L	4,000	<2	<1	<2	<1	<2	<2	<2	<1	<2	<1	<2	<1
Chloroethane	μg/L	987	<5	<1	<5	<1	<5	<2	<5	<1	<5	<1	<2	<1
cis-1,2-Dichloroethene	μg/L	1,020	<2	<1	<2	<1	<2	<2	15	20.3	<2	2.4	<2	<1
trans-1,2-Dichloroethene	μg/L	2,040	<2	<1	<2	<1	<2	<2	<2	<1	<2	<1	<2	<1
Vinyl Chloride	μg/L	2	<2	<1	<2	<1	<2	<2	<2	<1	<2	<1	<2	<1
Aromatic Hydrocarbons														
Benzene	μg/L	8.8	<2	<1	<2	<1	<2	<2	<2	<1	<2	<1	<2	<1
Ethylbenzene	μg/L	2,300	<2	<1	<2	<1	<2	<2	<2	<1	<2	<1	<2	<1
Toluene	μg/L	5,200	<2	<1	<2	<1	<2	<2	2.0	<1	<2	<1	<2	<1
Chlorobenzene	μg/L	100	<10	<1	<10	<1	<10	<2	<10	<1	<10	<1	<10	<1
Cyclohexane	μg/L	17,400	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	μg/L	20	<10	<5	<10	<5	<10	<10	<10	<5	<10	<5	<10	<5
o-xylene	μg/L	10,000	<5	<1	<5	<1	<5	<2	<5	<1	<5	<1	<5	<1
m,p-Xylene	μg/L	10,000	<5	<1	<5	<1	<5	<2	<5	<1	<5	<1	<5	<1
Xylenes, total	μg/L	10,000	<5	NA	<5	NA	<5	NA	<5	NA	<5	NA	<5	NA
Isopropylbenzene	μg/L	1,010	<10	<1	<10	<1	<10	<2	<10	<1	<10	<1	<10	<1
Non-Chlorinated VOCs									1					
Acetone	μg/L	92,000	<100	NA	<100	NA	<100	NA	<100	NA	<100	NA	<100	NA
Carbon Disulfide	μg/L	4,000	<10	NA	<10	NA	<10	NA	<10	NA	<10	NA	<10	NA

RRS-Risk Reduction Standard (see Table 2 of CSR)

VOCs-volatile organic compounds

μg/L- micrograms per liter

NA-not analyzed

**-Reportedly a duplicate sample of DP-104

Table F-3. Summary of Groundwater Analyses for PZ-1 (2003). ARAMARK DeKalb Avenue VRP/HSI Site No. 10704 Atlanta, Georgia

			PZ-1
			04/09/03
Chlorinated VOCs		Selected RRS	
Tetrachloroethene	μg/L	5	6.7
1,1,1-Trichloroethane	μg/L	5,260	NA
Trichloroethene	μg/L	5	<5
1,1-Dichloroethene	μg/L	548	<5
1,2-Dichloroethane	μg/L	5	<5
1,1-Dichloroethane	μg/L	4,000	<5
Chloroethane	μg/L	987	<5
cis-1,2-Dichloroethene	μg/L	1,020	<5
trans-1,2-Dichloroethene	μg/L	2,040	<5
Vinyl Chloride	μg/L	2	<2
Aromatic Hydrocarbons			
Benzene	μg/L	8.8	<5
Ethylbenzene	μg/L	2,300	<5
Toluene	μg/L	5,200	<5
Chlorobenzene	μg/L	100	NA
Cyclohexane	μg/L	17,400	NA
Naphthalene	μg/L	20	<5
o-xylene	μg/L	10,000	NA
m,p-Xylene	μg/L	10,000	NA
Xylenes, total	μg/L	10,000	<15
Isopropylbenzene	μg/L	1,010	<5
Non-Chlorinated VOCs			
Acetone	μg/L	92,000	NA
Carbon Disulfide	μg/L	4,000	NA

Notes:

RRS-Risk Reduction Standard (see Table 2 of CSR)

VOCs-volatile organic compounds

μg/L- micrograms per liter

NA-not analyzed

			04/26/01	4/26/01*	MW-101 04/22/03	04/07/04	07/12/05	04/27/01	4/27/01*	MW-102 03/04/03	04/07/04	07/13/05
Chlorinated VOCs		Selected RRS	04/20/01	4,20,01	04,22,03	04/07/04	07/12/03	04/27/01	4,27,01	03/04/03	0-1/07/04	07/13/03
Tetrachloroethene	μg/L	5	1,700	1,680	35,000	29,000	25,100	2,700	3,300	8,400	850	1,140
1,1,1-Trichloroethane	μg/L	5,260	<2	<1	<5	NA	NA	<2	<20	NA	NA	NA
Trichloroethene	μg/L	5	20	21.5	170	210	150	65	62	26	<5	14
1,1-Dichloroethene	μg/L	548	<2	<1	<5	<5	<5	<2	<20	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<2	<1	<5	<5	<5	<2	<20	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<2	<1	<5	<5	<5	<2	<20	<5	<5	<5
Chloroethane	μg/L	987	<5	<1	<5	<5	<10	<5	<20	<5	<5	<10
cis-1,2-Dichloroethene	μg/L	1,020	<2	2.2	5.2	5.2	6.2	47	56	9.3	<5	<5
trans-1,2-Dichloroethene	μg/L	2,040	<2	<1	<5	<5	<5	<2	<20	<5	<5	<5
Vinyl Chloride	μg/L	2	<2	<1	<2	<2	<2	<2	<20	<2	<2	<2
Aromatic Hydrocarbons												
Benzene	μg/L	8.8	<2	<1	<5	<5	<5	<2	<20	<5	<5	<5
Ethylbenzene	μg/L	2,300	<2	<1	<5	<5	<5	<2	<20	<5	<5	<5
Toluene	μg/L	5,200	<2	<1	<5	<5	<5	<2	<20	<5	<5	<5
Chlorobenzene	μg/L	100	<10	<1	NA	NA	NA	<10	<20	NA	NA	NA
Cyclohexane	μg/L	17,400	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	μg/L	20	<10	<5	<5	<5	<5	<10	<100	<5	<5	<5
o-xylene	μg/L	10,000	<5	<1	NA	NA	NA	<5	<20	NA	NA	NA
m,p-Xylene	μg/L	10,000	<5	<1	NA	NA	NA	<5	<20	NA	NA	NA
Xylenes, total	μg/L	10,000	<5	NA	<15	<15	<15	<5	NA	<15	<15	<15
Isopropylbenzene	μg/L	1,010	<10	<1	<5	<5	<5	<10	<20	<5	<5	<5
Non-Chlorinated VOCs								1				
Acetone	μg/L	92,000	<100	NA	NA	NA	NA	<100	NA	NA	NA	NA
Carbon Disulfide	μg/L	4,000	<10	NA	NA	NA	NA	<10	NA	NA	NA	NA

Notes:

RRS-Risk Reduction Standard (see Table 2 of CSR)

VOCs-volatile organic compounds

μg/L- micrograms per liter

NA-not analyzed

			04/26/01	4/26/01*	MW-103 03/04/03	04/07/04	06/09/05	04/22/03	MW-103D 04/06/04	10/11/05
Chlorinated VOCs		Selected RRS								
Tetrachloroethene	μg/L	5	14,000	16,200	6,700	9,100	6,900	<5	<5	<5
1,1,1-Trichloroethane	μg/L	5,260	<2	<1	NA	NA	<1	NA	NA	NA
Trichloroethene	μg/L	5	280	315	1,500	320	590	<5	<5	<5
1,1-Dichloroethene	μg/L	548	4.0	7.5	<5	<5	2.8	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<2	<1	<5	<5	<1	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	3.0	4.8	<5	<5	1.3	<5	<5	<5
Chloroethane	μg/L	987	<5	<1	<5	<5	<1	<5	<5	<5
cis-1,2-Dichloroethene	μg/L	1,020	3,400	3,220	1,700	3,200	3,000	<5	<5	<5
trans-1,2-Dichloroethene	μg/L	2,040	9.0	24.8	<5	6.8	6.6	<5	<5	<5
Vinyl Chloride	μg/L	2	3.0	5.9	15	25	33	<2	<2	<2
Aromatic Hydrocarbons										
Benzene	μg/L	8.8	<2	2.3	<5	<5	2.2	<5	<5	<5
Ethylbenzene	μg/L	2,300	19	25.2	24	12	15	<5	<5	<5
Toluene	μg/L	5,200	4.0	5.4	<5	<5	1.1	<5	<5	<5
Chlorobenzene	μg/L	100	<10	<1	NA	NA	<1	NA	NA	NA
Cyclohexane	μg/L	17,400	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	μg/L	20	19	14.9	22	12	10	<5	<5	<5
o-xylene	μg/L	10,000	100	125	NA	NA	NA	NA	NA	NA
m,p-Xylene	μg/L	10,000	69	85.5	NA	NA	NA	NA	NA	NA
Xylenes, total	μg/L	10,000	170	NA	260	180	160 E	<15	<15	<5
Isopropylbenzene	μg/L	1,010	41	46.5	50	39	39	<5	<5	<5
Non-Chlorinated VOCs										
Acetone	μg/L	92,000	<100	NA	NA	NA	NA	NA	NA	NA
Carbon Disulfide	μg/L	4,000	<10	NA	NA	NA	NA	NA	NA	NA

Notes:

RRS-Risk Reduction Standard (see Table 2 of CSR)

VOCs-volatile organic compounds

μg/L- micrograms per liter

NA-not analyzed

Table F-5. Summary of Groundwater Analyses for MW-201, MW-202, MW-203, MW-204, MW-205, MW-206, MW-207P, MW-208, and MW-208P.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

				MW	/-201					MW-	202			
			04/22/03	04/06/04	07/14/05	10/11/05	04/22/03	04/05/04	06/09/05	07/14/05	01/25/06	04/12/06	08/15/06	11/08/06
Chlorinated VOCs		Selected RRS												
Tetrachloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	2.2	<5	<5	<5	<5	<5
1,1,1-Trichloroethane	μg/L	5,260	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA
Trichloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	<1	<5	<5	<5	<5	<5
1,1-Dichloroethene	μg/L	548	<5	<5	<5	<5	<5	<5	<1	<5	<5	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5	<5	<5	<1	<5	<5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5	<5	<1	<5	<5	<5	<5	<5
Chloroethane	μg/L	987	<5	<5	<10	<10	<5	<5	<1	<10	<10	<10	<10	<10
cis-1,2-Dichloroethene	μg/L	1,020	<5	<5	<5	<5	<5	<5	<1	<5	<5	<5	<5	<5
trans-1,2-Dichloroethene	μg/L	2,040	<5	<5	<5	<5	<5	<5	<1	<5	<5	<5	<5	<5
Vinyl Chloride	μg/L	2	<2	<2	<2	<2	<2	<2	<1	<2	<2	<2	<2	<2
Aromatic Hydrocarbons														
Benzene	μg/L	8.8	<5	<5	<5	<5	<5	<5	<1	<5	<5	<5	<5	<5
Ethylbenzene	μg/L	2,300	<5	<5	<5	<5	<5	<5	<1	<5	<5	<5	<5	<5
Toluene	μg/L	5,200	<5	<5	<5	<5	<5	<5	<1	<5	<5	<5	<5	<5
Chlorobenzene	μg/L	100	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA
Cyclohexane	μg/L	17,400	NA											
Naphthalene	μg/L	20	<5	<5	<5	<5	<5	<5	NA	<5	<5	<5	<5	<5
o-xylene	μg/L	10,000	NA	<5	<5	<5	<5	<5						
m,p-Xylene	μg/L	10,000	NA	<5	<5	<5	<5	<5						
Xylenes, total	μg/L	10,000	<15	<5	<5	<5	<15	<5	NA	NA	NA	NA	NA	NA
Isopropylbenzene	μg/L	1,010	<5	<5	<5	<5	<5	<5	NA	<5	<5	<5	<5	<5
Non-Chlorinated VOCs														
Acetone	μg/L	92,000	NA											
Carbon Disulfide	μg/L	4,000	NA											

RRS-Risk Reduction Standard (see Table 2 of CSR)

VOCs-volatile organic compounds

μg/L- micrograms per liter

NA-not analyzed

*-Risk Reduction Standard based on Detection limit

Exceeds Selected RRS

Table F-5. Summary of Groundwater Analyses for MW-201, MW-202, MW-203, MW-204, MW-205, MW-206, MW-207P, MW-208, and MW-208P.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

								MW-202					
			02/08/07	05/30/07	09/18/07	03/06/08	06/05/08	9/9/08	12/01/09	06/02/11	07/17/13	01/10/14	07/10/14
Chlorinated VOCs		Selected RRS											
Tetrachloroethene	μg/L	5	<5	<5	<5	2.6 J	<5	2.9 J	<5	<5	<5	<5	<5
1,1,1-Trichloroethane	μg/L	5,260	NA	NA	NA	NA	NA	NA	<5	<5	<5	<5	<5
Trichloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethene	μg/L	548	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chloroethane	μg/L	987	<10	<10	<10	<10	<10	<10	<4	<4	<4	<4	<4
cis-1,2-Dichloroethene	μg/L	1,020	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
trans-1,2-Dichloroethene	μg/L	2,040	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl Chloride	μg/L	2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Aromatic Hydrocarbons													
Benzene	μg/L	8.8	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Ethylbenzene	μg/L	2,300	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Toluene	μg/L	5,200	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene	μg/L	100	NA	NA	NA	NA	NA	NA	NA	<5	<5	<5	<5
Cyclohexane	μg/L	17,400	NA	NA	NA	NA	NA	NA	NA	<5	<5	<5	<5
Naphthalene	μg/L	20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
o-xylene	μg/L	10,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
m,p-Xylene	μg/L	10,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Xylenes, total	μg/L	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Isopropylbenzene	μg/L	1,010	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Non-Chlorinated VOCs													
Acetone	μg/L	92,000	NA	NA	NA	NA	NA	NA	NA	<50	<50	<50	<50
Carbon Disulfide	μg/L	4,000	NA	NA	NA	NA	NA	NA	NA	<5	<5	<5	<5

RRS-Risk Reduction Standard (see Table 2 of CSR)

VOCs-volatile organic compounds

μg/L- micrograms per liter

NA-not analyzed

*-Risk Reduction Standard based on Detection limit

Exceeds Selected RRS

Table F-5. Summary of Groundwater Analyses for MW-201, MW-202, MW-203, MW-204, MW-205, MW-206, MW-207P, MW-208, and MW-208P.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

								MW	-203					
			04/22/03	04/06/04	01/25/06	04/12/06	04/20/06	09/21/06	11/08/06	02/08/07	05/30/07	09/18/07	12/05/07	03/07/08
Chlorinated VOCs		Selected RRS												
Tetrachloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	3.5 J	<5	<5	<5	<5	6.0
1,1,1-Trichloroethane	μg/L	5,260	NA	NA	NA	NA	<5	NA						
Trichloroethene	μg/L	5	<5	<5	<5	<5	<5	4.0 J	4.2 J	4.7 J	3.7 J	<5	<5	6.8
1,1-Dichloroethene	μg/L	548	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chloroethane	μg/L	987	<5	<5	<5	<10	<10	<10	<10	<10	<10	<10	<10	<10
cis-1,2-Dichloroethene	μg/L	1,020	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
trans-1,2-Dichloroethene	μg/L	2,040	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl Chloride	μg/L	2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Aromatic Hydrocarbons														
Benzene	μg/L	8.8	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Ethylbenzene	μg/L	2,300	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Toluene	μg/L	5,200	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene	μg/L	100	NA	NA	NA	NA	<5	NA						
Cyclohexane	μg/L	17,400	NA	NA	NA	NA	<5	NA						
Naphthalene	μg/L	20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
o-xylene	μg/L	10,000	NA	NA	NA	<5	<5	<5	<5	<5	<5	<5	<5	<5
m,p-Xylene	μg/L	10,000	NA	NA	NA	<5	<5	<5	<5	<5	<5	<5	<5	<5
Xylenes, total	μg/L	10,000	<15	<5	<5	NA								
Isopropylbenzene	μg/L	1,010	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Non-Chlorinated VOCs						_	_		_					
Acetone	μg/L	92,000	NA	NA	NA	NA	<50	NA						
Carbon Disulfide	μg/L	4,000	NA	NA	NA	NA	<5	NA						

RRS-Risk Reduction Standard (see Table 2 of CSR)

VOCs-volatile organic compounds

μg/L- micrograms per liter

NA-not analyzed

*-Risk Reduction Standard based on Detection limit

Exceeds Selected RRS

Table F-5. Summary of Groundwater Analyses for MW-201, MW-202, MW-203, MW-204, MW-205, MW-206, MW-207P, MW-208, and MW-208P.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

					MW-203						MW-204			
			06/05/08	09/10/08	12/1/09	06/02/11	07/11/14	05/07/03	04/06/04	07/14/05	10/11/05	01/25/06	04/13/06	08/15/06
Chlorinated VOCs		Selected RRS												
Tetrachloroethene	μg/L	5	<5	2.7 J	<5	<5	<5	<5	<5	<5	<5	<5	<5	2.7 J
1,1,1-Trichloroethane	μg/L	5,260	NA	NA	NA	<5	<5	NA						
Trichloroethene	μg/L	5	<5	3.8 J	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethene	μg/L	548	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chloroethane	μg/L	987	<10	<10	<4	<4	<4	<5	<5	<10	<10	<5	<10	<10
cis-1,2-Dichloroethene	μg/L	1,020	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
trans-1,2-Dichloroethene	μg/L	2,040	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl Chloride	μg/L	2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Aromatic Hydrocarbons														
Benzene	μg/L	8.8	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Ethylbenzene	μg/L	2,300	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Toluene	μg/L	5,200	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene	μg/L	100	NA	NA	NA	<5	<5	NA						
Cyclohexane	μg/L	17,400	NA	NA	NA	<5	<5	NA						
Naphthalene	μg/L	20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
o-xylene	μg/L	10,000	<5	<5	<5	<5	<5	NA	NA	NA	<5	<5	<5	<5
m,p-Xylene	μg/L	10,000	<5	<5	<5	<5	<5	NA	NA	NA	<5	<5	<5	<5
Xylenes, total	μg/L	10,000	NA	NA	NA	NA	NA	<15	<5	<5	NA	NA	NA	NA
Isopropylbenzene	μg/L	1,010	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Non-Chlorinated VOCs														
Acetone	μg/L	92,000	NA	NA	NA	<50	<50	NA						
Carbon Disulfide	μg/L	4,000	NA	NA	NA	<5	<5	NA						

RRS-Risk Reduction Standard (see Table 2 of CSR)

VOCs-volatile organic compounds

μg/L- micrograms per liter

NA-not analyzed

*-Risk Reduction Standard based on Detection limit

Exceeds Selected RRS

Table F-5. Summary of Groundwater Analyses for MW-201, MW-202, MW-203, MW-204, MW-205, MW-206, MW-207P, MW-208, and MW-208P.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

								М	W-204					
			11/08/06	02/08/07	04/23/07	05/31/07	09/18/07	12/05/07	3/7/08	6/6/08	9/10/08	8/7/09	12/3/09	06/02/11
Chlorinated VOCs		Selected RRS												
Tetrachloroethene	μg/L	5	2.0 J	4.0 J	5.6	5.3	6.4	5.1	8.7	8.5	7.9	10	12	7.9
1,1,1-Trichloroethane	μg/L	5,260	NA	NA	NA	NA	NA	NA	NA	NA	NA	<5	<5	<5
Trichloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethene	μg/L	548	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chloroethane	μg/L	987	<10	<10	<10	<10	<10	<10	<10	<10	<10	<4	<4	<4
cis-1,2-Dichloroethene	μg/L	1,020	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
trans-1,2-Dichloroethene	μg/L	2,040	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl Chloride	μg/L	2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Aromatic Hydrocarbons														
Benzene	μg/L	8.8	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Ethylbenzene	μg/L	2,300	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Toluene	μg/L	5,200	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene	μg/L	100	NA	NA	NA	NA	NA	NA	NA	NA	NA	<5	<5	<5
Cyclohexane	μg/L	17,400	NA	NA	NA	NA	NA	NA	NA	NA	NA	<5	<5	<5
Naphthalene	μg/L	20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
o-xylene	μg/L	10,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
m,p-Xylene	μg/L	10,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Xylenes, total	μg/L	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Isopropylbenzene	μg/L	1,010	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Non-Chlorinated VOCs									_	_				
Acetone	μg/L	92,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	<50	<50	<50
Carbon Disulfide	μg/L	4,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	<5	<5	<5

RRS-Risk Reduction Standard (see Table 2 of CSR)

VOCs-volatile organic compounds

μg/L- micrograms per liter

NA-not analyzed

*-Risk Reduction Standard based on Detection limit

Exceeds Selected RRS

Table F-5. Summary of Groundwater Analyses for MW-201, MW-202, MW-203, MW-204, MW-205, MW-206, MW-207P, MW-208, and MW-208P.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

				MW-204						MW-	205				
			07/18/13	01/10/14	07/11/14	04/07/04	07/14/05	01/25/06	04/13/06	04/20/06	08/15/06	11/09/06	02/08/07	05/31/07	09/19/07
Chlorinated VOCs		Selected RRS													
Tetrachloroethene	μg/L	5	8.5	7.9	7.6	5.7	7.6	6.8	18	23	19	20	22	25	22
1,1,1-Trichloroethane	μg/L	5,260	<5	<5	<5	NA	NA	NA	NA	<5	NA	NA	NA	NA	NA
Trichloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethene	μg/L	548	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chloroethane	μg/L	987	<4	<4	<4	<5	<10	<10	<10	<10	<10	<10	<10	<10	<10
cis-1,2-Dichloroethene	μg/L	1,020	<5	<5	<5	<5	<5	<5	<5	5.9	<5	<5	<5	<5	<5
trans-1,2-Dichloroethene	μg/L	2,040	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl Chloride	μg/L	2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Aromatic Hydrocarbons															
Benzene	μg/L	8.8	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Ethylbenzene	μg/L	2,300	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Toluene	μg/L	5,200	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene	μg/L	100	<5	<5	<5	NA	NA	NA	NA	<5	NA	NA	NA	NA	NA
Cyclohexane	μg/L	17,400	<5	<5	<5	NA	NA	NA	NA	<5	NA	NA	NA	NA	NA
Naphthalene	μg/L	20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
o-xylene	μg/L	10,000	<5	<5	<5	NA	NA	NA	<5	<5	<5	<5	<5	<5	<5
m,p-Xylene	μg/L	10,000	<5	<5	<5	NA	NA	NA	<5	<5	<5	<5	<5	<5	<5
Xylenes, total	μg/L	10,000	NA	NA	NA	<5	<5	<5	NA						
Isopropylbenzene	μg/L	1,010	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Non-Chlorinated VOCs															
Acetone	μg/L	92,000	<50	<50	<50	NA	NA	NA	NA	<50	NA	NA	NA	NA	NA
Carbon Disulfide	μg/L	4,000	<5	<5	<5	NA	NA	NA	NA	<5	NA	NA	NA	NA	NA

RRS-Risk Reduction Standard (see Table 2 of CSR)

VOCs-volatile organic compounds

μg/L- micrograms per liter

NA-not analyzed

*-Risk Reduction Standard based on Detection limit

Exceeds Selected RRS

Table F-5. Summary of Groundwater Analyses for MW-201, MW-202, MW-203, MW-204, MW-205, MW-206, MW-207P, MW-208, and MW-208P.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

						MW-	205						MW-206		
			12/05/07	3/6/08	6/9/08	9/9/08	8/7/09	12/3/09	06/01/11	10/08/12	08/06/04	01/25/06	04/12/06	08/16/06	11/09/06
Chlorinated VOCs		Selected RRS													
Tetrachloroethene	μg/L	5	15	25	22	23	26	22	21	23	<5	<5	<5	<5	<5
1,1,1-Trichloroethane	μg/L	5,260	NA	NA	NA	NA	<5	<5	<5	<5	NA	NA	NA	NA	NA
Trichloroethene	μg/L	5	1.4	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethene	μg/L	548	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chloroethane	μg/L	987	<5	<10	<10	<10	<4	<4	<4	<4	<5	<5	<10	<10	<10
cis-1,2-Dichloroethene	μg/L	1,020	<5	<5	<5	<5	<5	<5	<5	<5	<5	22	12	9.6	10
trans-1,2-Dichloroethene	μg/L	2,040	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl Chloride	μg/L	2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Aromatic Hydrocarbons															
Benzene	μg/L	8.8	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Ethylbenzene	μg/L	2,300	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Toluene	μg/L	5,200	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene	μg/L	100	NA	NA	NA	NA	<5	<5	<5	<5	NA	NA	NA	NA	NA
Cyclohexane	μg/L	17,400	NA	NA	NA	NA	<5	<5	<5	<5	NA	NA	NA	NA	NA
Naphthalene	μg/L	20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
o-xylene	μg/L	10,000	<5	<5	<5	<5	<5	<5	<5	<5	NA	NA	<5	<5	<5
m,p-Xylene	μg/L	10,000	<5	<5	<5	<5	<5	<5	<5	<5	NA	NA	<5	<5	<5
Xylenes, total	μg/L	10,000	NA	NA	NA	NA	NA	NA	NA	NA	<5	<5	NA	NA	NA
Isopropylbenzene	μg/L	1,010	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Non-Chlorinated VOCs			_												
Acetone	μg/L	92,000	NA	NA	NA	NA	<50	<50	<50	<50	NA	NA	NA	NA	NA
Carbon Disulfide	μg/L	4,000	NA	NA	NA	NA	<5	<5	<5	<5	NA	NA	NA	NA	NA

RRS-Risk Reduction Standard (see Table 2 of CSR)

VOCs-volatile organic compounds

μg/L- micrograms per liter

NA-not analyzed

*-Risk Reduction Standard based on Detection limit

Exceeds Selected RRS

Table F-5. Summary of Groundwater Analyses for MW-201, MW-202, MW-203, MW-204, MW-205, MW-206, MW-207P, MW-208, and MW-208P.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

								MW-20	6					
			02/08/07	05/31/07	09/18/07	3/6/08	6/9/08	9/9/08	12/1/09	06/02/11	10/08/12	07/18/13	01/27/14	07/11/14
Chlorinated VOCs		Selected RRS												
Tetrachloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1,1-Trichloroethane	μg/L	5,260	NA	NA	NA	NA	NA	NA	NA	<5	<5	<5	<5	<5
Trichloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethene	μg/L	548	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chloroethane	μg/L	987	<10	<10	<10	<10	<10	<10	<4	<4	<4	<4	<4	<4
cis-1,2-Dichloroethene	μg/L	1,020	8.2	6.5	7.0	5.6	6.7	6.2	13	10	<5	23	11	<5
trans-1,2-Dichloroethene	μg/L	2,040	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl Chloride	μg/L	2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Aromatic Hydrocarbons														,
Benzene	μg/L	8.8	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Ethylbenzene	μg/L	2,300	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Toluene	μg/L	5,200	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene	μg/L	100	NA	NA	NA	NA	NA	NA	NA	<5	<5	<5	<5	<5
Cyclohexane	μg/L	17,400	NA	NA	NA	NA	NA	NA	NA	<5	<5	<5	<5	<5
Naphthalene	μg/L	20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
o-xylene	μg/L	10,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
m,p-Xylene	μg/L	10,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Xylenes, total	μg/L	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Isopropylbenzene	μg/L	1,010	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Non-Chlorinated VOCs														
Acetone	μg/L	92,000	NA	NA	NA	NA	NA	NA	NA	<50	<50	<50	<50	<50
Carbon Disulfide	μg/L	4,000	NA	NA	NA	NA	NA	NA	NA	<5	<5	<5	<5	<5

RRS-Risk Reduction Standard (see Table 2 of CSR)

VOCs-volatile organic compounds

μg/L- micrograms per liter

NA-not analyzed

*-Risk Reduction Standard based on Detection limit

Exceeds Selected RRS

Table F-5. Summary of Groundwater Analyses for MW-201, MW-202, MW-203, MW-204, MW-205, MW-206, MW-207P, MW-208, and MW-208P.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

									MW-2	207P						
			05/15/06	09/21/06	11/09/06	02/08/07	05/30/07	09/19/07	03/06/08	6/5/08	9/10/08	12/3/09	06/02/11	07/18/13	01/16/14	07/11/14
Chlorinated VOCs		Selected RRS														
Tetrachloroethene	μg/L	5	10	13	10	9.5	18	18	8.7	13	19	11	9.8	12.0	5.9	15
1,1,1-Trichloroethane	μg/L	5,260	NA	NA	NA	<5	<5	<5	<5	<5						
Trichloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	3.4 J	<5	<5	<5	<5	<5
1,1-Dichloroethene	μg/L	548	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chloroethane	μg/L	987	<10	<10	<10	<10	<10	<10	<10	<10	<10	<4	<4	<4	<4	<4
cis-1,2-Dichloroethene	μg/L	1,020	<5	<5	<5	<5	<5	<5	<5	<5	2.6 J	<5	<5	<5	<5	<5
trans-1,2-Dichloroethene	μg/L	2,040	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl Chloride	μg/L	2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Aromatic Hydrocarbons																
Benzene	μg/L	8.8	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Ethylbenzene	μg/L	2,300	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Toluene	μg/L	5,200	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene	μg/L	100	NA	NA	NA	<5	<5	<5	<5	<5						
Cyclohexane	μg/L	17,400	NA	NA	NA	<5	<5	<5	<5	<5						
Naphthalene	μg/L	20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
o-xylene	μg/L	10,000	NA	NA	NA	<5	<5	<5	<5	<5						
m,p-Xylene	μg/L	10,000	NA	NA	NA	<5	<5	<5	<5	<5						
Xylenes, total	μg/L	10,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	NA	NA	NA	NA	NA
Isopropylbenzene	μg/L	1,010	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Non-Chlorinated VOCs																
Acetone	μg/L	92,000	NA	NA	NA	<50	<50	<50	<50	<50						
Carbon Disulfide	μg/L	4,000	NA	NA	NA	<5	<5	<5	<5	<5						

RRS-Risk Reduction Standard (see Table 2 of CSR)

VOCs-volatile organic compounds

μg/L- micrograms per liter

NA-not analyzed

Exceeds Selected RRS

^{*-}Risk Reduction Standard based on Detection limit

Table F-5. Summary of Groundwater Analyses for MW-201, MW-202, MW-203, MW-204, MW-205, MW-206, MW-207P, MW-208, and MW-208P.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

										MW-208						
			09/02/05	04/13/06	08/16/06	11/09/06	02/09/07	04/23/07	05/31/07	5/31/07 Dup	9/19/07	12/5/07	3/7/08	6/5/08	9/12/08	12/04/09
Chlorinated VOCs		Selected RRS														
Tetrachloroethene	μg/L	5	<5	14	14	16	23	34	43	37	87	100	127	155	248	330
1,1,1-Trichloroethane	μg/L	5,260	<5	NA	NA	NA	NA	NA	NA	<5						
Trichloroethene	μg/L	5	<5	3.4 J	4.2 J	2.5 J	4.8 J	6.0	4.7 J	3.6 J	2.5 J	<5	4.8 J	4.4 J	3.4 J	9.1
1,1-Dichloroethene	μg/L	548	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chloroethane	μg/L	987	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<4
cis-1,2-Dichloroethene	μg/L	1,020	<5	13	13	6.5	13	12	11	8.8	6.5	5.9	9.2	6.6	6.7	17
trans-1,2-Dichloroethene	μg/L	2,040	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl Chloride	μg/L	2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Aromatic Hydrocarbons																
Benzene	μg/L	8.8	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Ethylbenzene	μg/L	2,300	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Toluene	μg/L	5,200	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene	μg/L	100	<5	NA	NA	NA	NA	NA	NA	<5						
Cyclohexane	μg/L	17,400	<5	NA	NA	NA	NA	NA	NA	<5						
Naphthalene	μg/L	20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
o-xylene	μg/L	10,000	<5	NA	NA	NA	NA	NA	NA	<5						
m,p-Xylene	μg/L	10,000	<5	NA	NA	NA	NA	NA	NA	<5						
Xylenes, total	μg/L	10,000	NA	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	NA
Isopropylbenzene	μg/L	1,010	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Non-Chlorinated VOCs																
Acetone	μg/L	92,000	<50	NA	NA	NA	NA	NA	NA	<50						
Carbon Disulfide	μg/L	4,000	<5	NA	NA	NA	NA	NA	NA	<5						

RRS-Risk Reduction Standard (see Table 2 of CSR)

VOCs-volatile organic compounds

μg/L- micrograms per liter

NA-not analyzed

*-Risk Reduction Standard based on Detection limit

Exceeds Selected RRS

Table F-5. Summary of Groundwater Analyses for MW-201, MW-202, MW-203, MW-204, MW-205, MW-206, MW-207P, MW-208, and MW-208P.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

									M\	N-208P						
			04/20/06	05/15/06	08/15/06	11/08/06	02/08/07	05/30/07	09/18/07	12/5/07	3/6/08	6/6/08	9/9/08	12/3/09	06/01/11	07/18/13
Chlorinated VOCs		Selected RRS														
Tetrachloroethene	μg/L	5	<5	<5	<5	2.2 J	<5	<5	3.0 J	<5	5.2	8.8	5.3	8.8	<5	6.8
1,1,1-Trichloroethane	μg/L	5,260	<5	NA NA	NA	NA	NA	<5	<5							
Trichloroethene	μg/L	5	<5	<5	<5	2.5 J	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethene	μg/L	548	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chloroethane	μg/L	987	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<4	<4	<4
cis-1,2-Dichloroethene	μg/L	1,020	<5	<5	<5	6.5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
trans-1,2-Dichloroethene	μg/L	2,040	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl Chloride	μg/L	2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Aromatic Hydrocarbons																
Benzene	μg/L	8.8	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Ethylbenzene	μg/L	2,300	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Toluene	μg/L	5,200	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene	μg/L	100	<5	NA NA	NA	NA	<5	<5	<5							
Cyclohexane	μg/L	17,400	<5	NA NA	NA	NA	<5	<5	<5							
Naphthalene	μg/L	20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
o-xylene	μg/L	10,000	<5	NA NA	NA	NA	<5	<5	<5							
m,p-Xylene	μg/L	10,000	<5	NA NA	NA	NA	<5	<5	<5							
Xylenes, total	μg/L	10,000	NA	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	NA	NA	NA
Isopropylbenzene	μg/L	1,010	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Non-Chlorinated VOCs																
Acetone	μg/L	92,000	<50	NA NA	NA	NA	<50	<50	<50							
Carbon Disulfide	μg/L	4,000	<5	NA NA	NA	NA	<5	<5	<5							

RRS-Risk Reduction Standard (see Table 2 of CSR)

VOCs-volatile organic compounds

μg/L- micrograms per liter

NA-not analyzed

Exceeds Selected RRS

^{*-}Risk Reduction Standard based on Detection limit

Table F-5. Summary of Groundwater Analyses for MW-201, MW-202, MW-203, MW-204, MW-205, MW-206, MW-207P, MW-208, and MW-208P.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

			MW- 01/09/14	-208P 07/10/14
Chlorinated VOCs		Selected RRS	01/03/11	07/10/11
Tetrachloroethene	μg/L	5	9.3	<5
1,1,1-Trichloroethane	μg/L	5,260	<5	<5
Trichloroethene	μg/L	5	<5	<5
1,1-Dichloroethene	μg/L	548	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5
Chloroethane	μg/L	987	<4	<4
cis-1,2-Dichloroethene	μg/L	1,020	<5	<5
trans-1,2-Dichloroethene	μg/L	2,040	<5	<5
Vinyl Chloride	μg/L	2	<2	<2
Aromatic Hydrocarbons				
Benzene	μg/L	8.8	<5	<5
Ethylbenzene	μg/L	2,300	<5	<5
Toluene	μg/L	5,200	<5	<5
Chlorobenzene	μg/L	100	<5	<5
Cyclohexane	μg/L	17,400	<5	<5
Naphthalene	μg/L	20	<5	<5
o-xylene	μg/L	10,000	<5	<5
m,p-Xylene	μg/L	10,000	<5	<5
Xylenes, total	μg/L	10,000	NA	NA
Isopropylbenzene	μg/L	1,010	<5	<5
Non-Chlorinated VOCs				
Acetone	μg/L	92,000	<50	<50
Carbon Disulfide	μg/L	4,000	<5	<5

RRS-Risk Reduction Standard (see Table 2 of CSR)

VOCs-volatile organic compounds

μg/L- micrograms per liter

NA-not analyzed

*-Risk Reduction Standard based on Detection limit

Exceeds Selected RRS

Table F-6. Summary of Groundwater Analyses for MW-212 through MW-214

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

				MW	-212			MW	/-213			MW	-214	
			06/03/13	07/19/13	01/13/14	07/11/14	06/03/13	07/19/13	01/13/14	07/11/14	06/04/13	07/18/13	01/10/14	07/10/14
		Selected												
Chlorinated VOCs		RRS												
Tetrachloroethene	μg/L	5	160	150	110	88	720	130	100	86	<5	<5	<5	<5
1,1,1-Trichloroethane	μg/L	5,260	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Trichloroethene	μg/L	5	21	24	17	15	140	54	49	41	<5	<5	<5	<5
1,1-Dichloroethene	μg/L	548	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chloroethane	μg/L	987	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
cis-1,2-Dichloroethene	μg/L	1,020	77	58	61	180	330	160	1,000	800	<5	<5	<5	<5
trans-1,2-Dichloroethene	μg/L	2,040	<5	<5	<5	<5	<5	<5	7.0	11	<5	<5	<5	<5
Vinyl Chloride	μg/L	2	5.7	<2	4.8	15	<2	3.5	6.4	9.6	<2	<2	<2	<2
Aromatic Hydrocarbons														
Benzene	μg/L	8.8	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Ethylbenzene	μg/L	2,300	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Toluene	μg/L	5,200	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene	μg/L	100	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Cyclohexane	μg/L	17,400	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Naphthalene	μg/L	20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
o-xylene	μg/L	10,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
m,p-Xylene	μg/L	10,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Xylenes, total	μg/L	10,000	NA											
Isopropylbenzene	μg/L	1,010	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Non-Chlorinated VOCs														
2-Butanone (MEK)	μg/L	2,000	270	160	71	<50	<50	<50	<50	<50	<50	<50	<50	<50
Acetone	μg/L	92,000	620	620	280	64	<50	<50	<50	<50	<50	<50	<50	<50
Carbon Disulfide	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5

RRS-Risk Reduction Standard (see Table 2 of CSR)

VOCs-volatile organic compounds

μg/L- micrograms per liter

NA-not analyzed

									MW-	-301						
			04/14/06	08/17/06	09/21/06	11/08/06	12/15/06	02/07/07	04/24/07	06/01/07	09/20/07	12/06/07	03/10/08	06/09/08	9/11/08	12/01/09
		Selected														
Chlorinated VOCs		RRS														
Tetrachloroethene	μg/L	5	<5	31 E	<5	229	4,570	3,580	<5	<5	<5	<50	<5	<5	<5	120
1,1,1-Trichloroethane	μg/L	5,260	NA NA													
Trichloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<50	<5	<5	<5	<5
1,1-Dichloroethene	μg/L	548	<5	<5	<5	<5	<5	<5	<5	<5	<5	<50	<5	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<50	<5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<50	<5	<5	<5	<5
Chloroethane	μg/L	987	<10	<10	<10	<10	<10	<10	<10	<10	<10	<50	<10	<10	<10	<4
cis-1,2-Dichloroethene	μg/L	1,020	<5	<5	<5	<5	<5	<5	<5	<5	<5	<50	<5	<5	<5	<5
trans-1,2-Dichloroethene	μg/L	2,040	<5	<5	<5	<5	<5	<5	<5	<5	<5	<50	<5	<5	<5	<5
Vinyl Chloride	μg/L	2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<20	<2	<2	<2	<2
Aromatic Hydrocarbons																
Benzene	μg/L	8.8	<5	<5	<5	<5	<5	<5	<5	<5	<5	<50	<5	<5	<5	<5
Ethylbenzene	μg/L	2,300	<5	<5	<5	<5	<5	<5	<5	<5	<5	<50	<5	<5	<5	<5
Toluene	μg/L	5,200	<5	<5	<5	<5	<5	<5	<5	<5	<5	<50	<5	<5	<5	<5
Chlorobenzene	μg/L	100	NA NA													
Cyclohexane	μg/L	17,400	NA NA													
Naphthalene	μg/L	20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<50	<5	<5	<5	<5
o-xylene	μg/L	10,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	NA	<5	<5	<5	<5
m,p-Xylene	μg/L	10,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	NA	<5	<5	<5	<5
Xylenes, total	μg/L	10,000	NA NA													
Isopropylbenzene	μg/L	1,010	<5	<5	<5	<5	<5	<5	<5	<5	<5	<50	<5	<5	<5	<5
Non-Chlorinated VOCs																
2-Butanone	μg/L	2,000	NA NA													
Acetone	μg/L	92,000	NA NA													
Carbon Disulfide	μg/L	4,000	NA NA													

Notes:

RRS-Risk Reduction Standard (see Table 2 of CSR) VOCs-volatile organic compounds

μg/L- micrograms per liter

Exceeds Selected RRS

NA-not analyzed

but less than the reported detection limit

E-Concentration exceeded the established method calibration range but is within the working range of the instrument

J- Estimated value. Presence of the compound was confirmed

									MW-302						
			04/13/06	08/16/06	11/09/06	12/15/06	02/07/07	04/23/07	06/01/07	09/20/07	12/06/07	03/11/08	06/06/08	09/12/08	12/01/09
Chlorinated VOCs		Selected RRS													
Tetrachloroethene	μg/L	5	78	<5	<5	<5	<5	<5	9.3	16	8.75	27	<5	9.3	26
1,1,1-Trichloroethane	μg/L	5,260	NA												
Trichloroethene	μg/L	5	3.5 J	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethene	μg/L	548	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chloroethane	μg/L	987	<10	<10	<10	<10	<10	<10	<10	<10	<5	<10	<10	<10	<4
cis-1,2-Dichloroethene	μg/L	1,020	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
trans-1,2-Dichloroethene	μg/L	2,040	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl Chloride	μg/L	2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Aromatic Hydrocarbons															
Benzene	μg/L	8.8	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Ethylbenzene	μg/L	2,300	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Toluene	μg/L	5,200	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene	μg/L	100	NA												
Cyclohexane	μg/L	17,400	NA												
Naphthalene	μg/L	20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
o-xylene	μg/L	10,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
m,p-Xylene	μg/L	10,000	<5	NA	<5	<5	<5								
Xylenes, total	μg/L	10,000	NA	<5	<5	<5	<5	<5	<5	<5	<15	<5	NA	NA	NA
Isopropylbenzene	μg/L	1,010	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Non-Chlorinated VOCs			_												
2-Butanone	μg/L	2,000	NA												
Acetone	μg/L	92,000	NA												
Carbon Disulfide	μg/L	4,000	NA												

Notes:

RRS-Risk Reduction Standard (see Table 2 of CSR)
VOCs-volatile organic compounds

µg/L- micrograms per liter
NA-not analyzed

Exceeds Selected RRS

J- Estimated value. Presence of the compound was confirmed but less than the reported detection limit

E-Concentration exceeded the established method calibration range but is within the working range of the instrument

							MW-303						MW	-303	
			04/14/06	08/17/06	11/10/06	12/17/06	02/07/07	04/23/07	06/01/07	09/20/07	12/06/07	03/11/08	06/05/08	09/11/08	12/03/09
Chlorinated VOCs		Selected RRS													
Tetrachloroethene	μg/L	5	4,530	<5	<5	<5	<5	<5	<5	<5	<50	257	37	650	7,330
1,1,1-Trichloroethane	μg/L	5,260	NA	<5											
Trichloroethene	μg/L	5	104	<5	<5	<5	<5	<5	<5	<5	<50	<5	<5	<5	310
1,1-Dichloroethene	μg/L	548	<5	<5	<5	<5	<5	<5	<5	<5	<50	<5	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<50	<5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5	<5	<50	<5	<5	<5	<5
Chloroethane	μg/L	987	<10	<10	<10	<10	<10	<5	<10	<10	<50	<10	<10	<10	<4
cis-1,2-Dichloroethene	μg/L	1,020	659	<5	<5	<5	<5	<5	<5	<5	<50	<5	<5	<5	1,700
trans-1,2-Dichloroethene	μg/L	2,040	<5	<5	<5	<5	<5	<5	<5	<5	<50	<5	<5	<5	<5
Vinyl Chloride	μg/L	2	24	<2	<2	<2	<2	<2	<2	<2	<20	<2	<2	<2	20
Aromatic Hydrocarbons															
Benzene	μg/L	8.8	<5	<5	2.7 J	<5	<5	<5	<5	<5	<50	2.6 J	<5	2.2 J	<5
Ethylbenzene	μg/L	2,300	4.4 J	<5	<5	<5	<5	<5	<5	<5	<50	3.9 J	<5	4.9 J	<5
Toluene	μg/L	5,200	<5	<5	<5	<5	<5	<5	<5	<5	<50	<5	<5	<5	<5
Chlorobenzene	μg/L	100	NA	<5											
Cyclohexane	μg/L	17,400	NA	<5											
Naphthalene	μg/L	20	5.5	<5	<5	<5	<5	<5	<5	<5	<50	<5	<5	<5	<5
o-xylene	μg/L	10,000	76	<5	<5	<5	<5	<5	<5	<5	<50	56	25	63	<5
m,p-Xylene	μg/L	10,000	14	<5	<5	<5	<5	<5	<5	<5	<50	14	6.6	20	<5
Xylenes, total	μg/L	10,000	90	<15	<5	<5	<5	<5	<5	<5	<50	70	31.6	83	NA
Isopropylbenzene	μg/L	1,010	14	<5	<5	<5	<5	<5	<5	<5	<50	19	5.4	19	<5
Non-Chlorinated VOCs															
2-Butanone	μg/L	2,000	NA	<50											
Acetone	μg/L	92,000	NA	<50											
Carbon Disulfide	μg/L	4,000	NA	<5											

Notes:

RRS-Risk Reduction Standard (see Table 2 of CSR)
VOCs-volatile organic compounds
µg/L- micrograms per liter
NA-not analyzed
Exceeds Selected RRS

J- Estimated value. Presence of the compound was confirmed but less than the reported detection limit

E-Concentration exceeded the established method calibration range but is within the working range of the instrument

							M	W-306							MW-306		
			04/13/06	08/16/06	11/08/06	02/09/07	05/31/07	09/19/07	12/05/07	3/7/08	6/5/08	9/12/08	12/3/09	06/02/11	07/18/13	01/27/14	07/11/14
		Selected															
Chlorinated VOCs		RRS															
Tetrachloroethene	μg/L	5	<5	2.9 J	2.7 J	<5	4.0 J	2.7 J	<5	<5	<5	4.8 J	14	13	23	32	31
1,1,1-Trichloroethane	μg/L	5,260	NA	NA	NA	NA	<5	<5	<5	<5	<5						
Trichloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	1.4	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethene	μg/L	548	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	3.0 J	2.2 J	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chloroethane	μg/L	987	<10	<10	<10	<10	<10	<10	<5	<10	<10	<10	<4	<4	<4	<4	<4
cis-1,2-Dichloroethene	μg/L	1,020	<5	2.6 J	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
trans-1,2-Dichloroethene	μg/L	2,040	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl Chloride	μg/L	2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Aromatic Hydrocarbons																	
Benzene	μg/L	8.8	15	43	34	6.8	26	17	33	7.1	4.1 J	9.3	<5	<5	<5	<5	<5
Ethylbenzene	μg/L	2,300	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Toluene	μg/L	5,200	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene	μg/L	100	NA	NA	NA	NA	<5	<5	<5	<5	<5						
Cyclohexane	μg/L	17,400	NA	NA	NA	NA	<5	<5	<5	<5	<5						
Naphthalene	μg/L	20	11	35	22	6.1	23	13	28	6.5	<5	6.2	<5	<5	<5	<5	<5
o-xylene	μg/L	10,000	<5	7.5	4.8 J	<5	3.9 J	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
m,p-Xylene	μg/L	10,000	<5	2.1	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Xylenes, total	μg/L	10,000	<5	9.6	4.8	<5	3.9 J	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Isopropylbenzene	μg/L	1,010	<5	4.2 J	2.8 J	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Non-Chlorinated VOCs																	
2-Butanone	μg/L	2,000	NA	NA	NA	NA	<50	<50	<50	<50	<50						
Acetone	μg/L	92,000	NA	NA	NA	NA	<50	<50	<50	<50	<50						
Carbon Disulfide	μg/L	4,000	NA	NA	NA	NA	<5	<5	<5	<5	<5						

Notes:

RRS-Risk Reduction Standard (see Table 2 of CSR) VOCs-volatile organic compounds

μg/L- micrograms per liter

NA-not analyzed

Exceeds Selected RRS

J- Estimated value. Presence of the compound was confirmed but less than the reported detection limit

E-Concentration exceeded the established method calibration range but is within the working range of the instrument

Table F-8. Summary of Groundwater Analyses for MW-401, MW-403, MW-404, MW-405, MW-406, MW-407, MW-408, MW-409, and MW-409D.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

						MW-401			
			04/19/06	05/15/06	08/15/06	11/09/06	07/17/13	01/09/14	07/10/14
		Selected							
Chlorinated VOCs		RRS							
Tetrachloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	<5
1,1,1-Trichloroethane	μg/L	5,260	<5	NA	NA	NA	<5	<5	<5
Trichloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethene	μg/L	548	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5
Chloroethane	μg/L	987	<10	<10	<10	<10	<4	<4	<4
cis-1,2-Dichloroethene	μg/L	1,020	<5	<5	<5	<5	<5	<5	<5
trans-1,2-Dichloroethene	μg/L	2,040	<5	<5	<5	<5	<5	<5	<5
Vinyl Chloride	μg/L	2	<2	<2	<2	<2	<2	<2	<2
Aromatic Hydrocarbons									
Benzene	μg/L	8.8	<5	<5	<5	<5	<5	<5	<5
Ethylbenzene	μg/L	2,300	<5	<5	<5	<5	<5	<5	<5
Toluene	μg/L	5,200	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene	μg/L	100	<5	NA	NA	NA	<5	<5	<5
Cyclohexane	μg/L	17,400	<5	NA	NA	NA	<5	<5	<5
Naphthalene	μg/L	20	<5	<5	<5	<5	<5	<5	<5
o-xylene	μg/L	10,000	<5	<5	<5	<5	<5	<5	<5
m,p-Xylene	μg/L	10,000	<10	<5	<5	<5	<5	<5	<5
Xylenes, total	μg/L	10,000	NA	<5	<5	<5	NA	NA	NA
Isopropylbenzene	μg/L	1,010	<5	<5	<5	<5	<5	<5	<5
Non-Chlorinated VOCs									
2-Butanone	μg/L	2,000	<50	NA	NA	NA	<50	<50	<50
Acetone	μg/L	92,000	<50	NA	NA	NA	<50	<50	<50
Carbon Disulfide	μg/L	4,000	<5	NA	NA	NA	<5	<5	<5

RRS-Risk Reduction Standard (see Table 2 of CSR)

VOCs-volatile organic compounds

μg/L- micrograms per liter

NA-not analyzed

Exceeds Selected RRS

Table F-8. Summary of Groundwater Analyses for MW-401, MW-403, MW-404, MW-405, MW-406, MW-407, MW-408, MW-409, and MW-409D.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

								MW	/-403					
			04/20/06	05/16/06	08/18/06	11/10/06	12/17/06	02/09/07	06/01/07	09/19/07	12/06/07	03/11/08	06/09/08	09/11/08
		Selected												
Chlorinated VOCs		RRS												
Tetrachloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<25	<5	<5	<5
1,1,1-Trichloroethane	μg/L	5,260	<5	NA										
Trichloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<25	<5	<5	<5
1,1-Dichloroethene	μg/L	548	<5	<5	<5	<5	<5	<5	<5	<5	<25	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<25	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5	<5	<25	<5	<5	<5
Chloroethane	μg/L	987	67	14	11	35	29	<10	26	23	42	15	17	40
cis-1,2-Dichloroethene	μg/L	1,020	2,600	1,620	<5	<5	<5	304	<5	<5	<25	<5	<5	165
trans-1,2-Dichloroethene	μg/L	2,040	14	9.6	<5	<5	<5	<5	<5	<5	<25	<5	<5	<5
Vinyl Chloride	μg/L	2	1,500	1,660	<2	<2	<2	<2	<2	<2	<10	<2	<2	108
Aromatic Hydrocarbons														
Benzene	μg/L	8.8	<5	<5	<5	<5	<5	<5	<5	<5	<25	<5	<5	<5
Ethylbenzene	μg/L	2,300	<5	<5	<5	<5	<5	<5	<5	<5	<25	<5	<5	<5
Toluene	μg/L	5,200	<5	<5	<5	<5	<5	<5	<5	<5	<25	<5	<5	<5
Chlorobenzene	μg/L	100	<5	NA										
Cyclohexane	μg/L	17,400	<5	NA										
Naphthalene	μg/L	20	<5	16	3.9 J	<5	<5	<5	<5	<5	<25	<5	<5	<5
o-xylene	μg/L	10,000	<5	<5	<5	<5	<5	<5	<5	<5	NA	<5	<5	<5
m,p-Xylene	μg/L	10,000	<10	<5	4.8 J	<5	<5	<5	<5	<5	NA	<5	<5	<5
Xylenes, total	μg/L	10,000	NA	<5	<5	<5	<5	<5	<5	<5	<25	<5	<5	<5
Isopropylbenzene	μg/L	1,010	<5	<5	<5	<5	<5	<5	<5	<10	<25	<5	<5	<5
Non-Chlorinated VOCs														
2-Butanone	μg/L	2,000	NA											
Acetone	μg/L	92,000	NA											
Carbon Disulfide	μg/L	4,000	NA											

RRS-Risk Reduction Standard (see Table 2 of CSR)

VOCs-volatile organic compounds

μg/L- micrograms per liter

NA-not analyzed

Exceeds Selected RRS

Table F-8. Summary of Groundwater Analyses for MW-401, MW-403, MW-404, MW-405, MW-406, MW-407, MW-408, MW-409, and MW-409D.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

				•	•	MW-403							MW-404			
			08/07/09	12/01/09	06/02/11	10/08/12	07/19/13	01/13/14	07/11/14	04/20/06	05/16/06	08/17/06	11/08/06	02/08/07	06/01/07	09/18/07
		Selected														
Chlorinated VOCs		RRS														
Tetrachloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1,1-Trichloroethane	μg/L	5,260	<5	NA	<5	<5	<5	<5	<5	<5	NA	NA	NA	NA	NA	NA
Trichloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethene	μg/L	548	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chloroethane	μg/L	987	23	19	<4	<10	<4	<4	<4	<10	<10	<10	<10	<10	<10	<10
cis-1,2-Dichloroethene	μg/L	1,020	700	170	340	55	27	24	81	7.8	<5	<5	<5	<5	<5	<5
trans-1,2-Dichloroethene	μg/L	2,040	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl Chloride	μg/L	2	750	350	1,600	400	190	80	140	<2	<2	<2	<2	<2	<2	<2
Aromatic Hydrocarbons			1							1						
Benzene	μg/L	8.8	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Ethylbenzene	μg/L	2,300	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Toluene	μg/L	5,200	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene	μg/L	100	<5	NA	<5	<5	<5	<5	<5	NA						
Cyclohexane	μg/L	17,400	<5	NA	<5	<5	<5	<5	<5	NA						
Naphthalene	μg/L	20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
o-xylene	μg/L	10,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
m,p-Xylene	μg/L	10,000	<5	<5	<5	<5	<5	<5	<5	<10	<5	<5	<5	<5	<5	<5
Xylenes, total	μg/L	10,000	<5	<15	<5	<5	NA	NA	NA	<5	<5	<5	<5	<5	<5	<5
Isopropylbenzene	μg/L	1,010	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Non-Chlorinated VOCs			1							1						
2-Butanone	μg/L	2,000	<50	NA	<50	<50	<50	<50	<50	NA						
Acetone	μg/L	92,000	<50	NA	<50	<50	<50	<50	<50	NA						
Carbon Disulfide	μg/L	4,000	<5	NA	<5	<5	<5	<5	<5	NA						

RRS-Risk Reduction Standard (see Table 2 of CSR) VOCs-volatile organic compounds

μg/L- micrograms per liter

NA-not analyzed

Exceeds Selected RRS

Table F-8. Summary of Groundwater Analyses for MW-401, MW-403, MW-404, MW-405, MW-406, MW-407, MW-408, MW-409, and MW-409D.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

					MW-404							MW-405				
			12/05/07	03/06/08	06/05/08	09/12/08	12/01/09	04/20/06	05/16/06	09/21/06	11/08/06	2/9/07	5/30/07	9/18/07	3/7/08	06/05/08
		Selected														
Chlorinated VOCs		RRS														
Tetrachloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1,1-Trichloroethane	μg/L	5,260	NA	NA	NA	NA	NA	<5	NA	NA	NA	NA	NA	NA	NA	NA
Trichloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethene	μg/L	548	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chloroethane	μg/L	987	<10	<10	<10	<10	<4	<10	<10	<10	<10	<10	<10	<10	<10	<10
cis-1,2-Dichloroethene	μg/L	1,020	4.0 J	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
trans-1,2-Dichloroethene	μg/L	2,040	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl Chloride	μg/L	2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Aromatic Hydrocarbons																
Benzene	μg/L	8.8	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Ethylbenzene	μg/L	2,300	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Toluene	μg/L	5,200	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene	μg/L	100	NA	NA	NA	NA	NA	<5	NA	NA	NA	NA	NA	NA	NA	NA
Cyclohexane	μg/L	17,400	NA	NA	NA	NA	NA	<5	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	μg/L	20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
o-xylene	μg/L	10,000	NA	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
m,p-Xylene	μg/L	10,000	NA	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Xylenes, total	μg/L	10,000	<5	<5	<5	<5	<5	NA	<5	<5	<5	<5	<5	<5	<5	<5
Isopropylbenzene	μg/L	1,010	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Non-Chlorinated VOCs																
2-Butanone	μg/L	2,000	NA	<50	NA	NA	NA	<50	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	μg/L	92,000	NA	<50	NA	NA	NA	<50	NA	NA	NA	NA	NA	NA	NA	NA
Carbon Disulfide	μg/L	4,000	NA	<5	NA	NA	NA	<5	NA	NA	NA	NA	NA	NA	NA	NA

RRS-Risk Reduction Standard (see Table 2 of CSR) VOCs-volatile organic compounds µg/L- micrograms per liter NA-not analyzed

Exceeds Selected RRS

Table F-8. Summary of Groundwater Analyses for MW-401, MW-403, MW-404, MW-405, MW-406, MW-407, MW-408, MW-409, and MW-409D.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

					MW	-405					MW-406				MW-407	
			9/10/08	12/01/09	06/01/11	07/17/13	01/09/14	07/10/14	12/05/07	03/11/08	06/09/08	09/11/08	12/3/09	12/06/07	03/10/08	06/09/08
Chlorinated VOCs		Selected RRS														
Tetrachloroethene	μg/L	5	4.9 J	<5	<5	<5	<5	<5	72	88	73	80	37	<50	<5	<5
1,1,1-Trichloroethane	μg/L	5,260	<5	NA	<5	<5	<5	<5	NA	NA	NA	NA	<5	NA	NA	NA
Trichloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	3.3 J	<5	<5	<50	<5	<5
1,1-Dichloroethene	μg/L	548	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<50	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<50	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<50	<5	<5
Chloroethane	μg/L	987	<4	<4	<4	<4	<4	<4	<5	<10	<10	<10	<4	<50	<10	<10
cis-1,2-Dichloroethene	μg/L	1,020	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<50	<5	<5
trans-1,2-Dichloroethene	μg/L	2,040	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<50	<5	<5
Vinyl Chloride	μg/L	2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<20	<2	<2
Aromatic Hydrocarbons																
Benzene	μg/L	8.8	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<50	<5	<5
Ethylbenzene	μg/L	2,300	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<50	<5	<5
Toluene	μg/L	5,200	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<50	<5	<5
Chlorobenzene	μg/L	100	NA	NA	<5	<5	<5	<5	NA	NA	NA	NA	<5	NA	NA	NA
Cyclohexane	μg/L	17,400	NA	NA	<5	<5	<5	<5	NA	NA	NA	NA	<5	NA	NA	NA
Naphthalene	μg/L	20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<50	<5	<5
o-xylene	μg/L	10,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	NA	NA	<5
m,p-Xylene	μg/L	10,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	NA	NA	<5
Xylenes, total	μg/L	10,000	<5	<5	<5	NA	NA	NA	<5	<5	<5	<5	<5	<50	<5	<5
Isopropylbenzene	μg/L	1,010	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<50	<5	<5
Non-Chlorinated VOCs																
2-Butanone	μg/L	2,000	NA	NA	<50	<50	<50	<50	NA	NA	NA	NA	<50	NA	NA	NA
Acetone	μg/L	92,000	NA	NA	<50	<50	<50	<50	NA	NA	NA	NA	<50	NA	NA	NA
Carbon Disulfide	μg/L	4,000	NA	NA	<5	<5	<5	<5	NA	NA	NA	NA	<5	NA	NA	NA

RRS-Risk Reduction Standard (see Table 2 of CSR)

VOCs-volatile organic compounds

μg/L- micrograms per liter

NA-not analyzed

Exceeds Selected RRS

Table F-8. Summary of Groundwater Analyses for MW-401, MW-403, MW-404, MW-405, MW-406, MW-407, MW-408, MW-409, and MW-409D.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

			MW	-407			MW-408						MW-409			
			09/11/08	12/1/09	12/06/07	03/11/08	06/05/08	09/11/08	12/4/09	12/05/07	03/10/08	06/06/08	09/09/08	12/3/09	6/1/11	7/18/13
		Selected														
Chlorinated VOCs		RRS														
Tetrachloroethene	μg/L	5	54	130	660	7,240	9,360	7,760	1,200	<5	<5	<5	<5	5.8	5.2	9.7
1,1,1-Trichloroethane	μg/L	5,260	NA	NA	NA	NA	NA	NA	<5	NA	NA	NA	NA	<5	<5	<5
Trichloroethene	μg/L	5	<5	6.3	<50	102	285	340	120	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethene	μg/L	548	<5	<5	<50	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<50	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<50	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chloroethane	μg/L	987	<10	<4	<50	<10	<10	<10	<4	<5	<10	<10	<10	<4	<4	<4
cis-1,2-Dichloroethene	μg/L	1,020	<5	<5	<50	267	913	971	440	<5	<5	<5	<5	<5	<5	<5
trans-1,2-Dichloroethene	μg/L	2,040	<5	<5	<50	<5	3.2 J	3.0 J	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl Chloride	μg/L	2	<2	<2	<20	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Aromatic Hydrocarbons																
Benzene	μg/L	8.8	<5	<5	<50	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Ethylbenzene	μg/L	2,300	<5	<5	<50	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Toluene	μg/L	5,200	<5	<5	<50	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene	μg/L	100	NA	NA	NA	NA	NA	NA	<5	NA	NA	NA	NA	<5	<5	<5
Cyclohexane	μg/L	17,400	NA	NA	NA	NA	NA	NA	<5	NA	NA	NA	NA	<5	<5	<5
Naphthalene	μg/L	20	<5	<5	<50	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
o-xylene	μg/L	10,000	<5	<5	NA	NA	<5	<5	<5	NA	NA	<5	<5	<5	<5	<5
m,p-Xylene	μg/L	10,000	<5	<5	NA	NA	<5	<5	<5	NA	NA	<5	<5	<5	<5	<5
Xylenes, total	μg/L	10,000	<5	<5	<50	<5	<5	<5	<5	<5	NA	NA	NA	NA	<5	NA
Isopropylbenzene	μg/L	1,010	<5	<5	<50	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Non-Chlorinated VOCs																
2-Butanone	μg/L	2,000	NA	NA	NA	NA	NA	NA	<50	NA	NA	NA	NA	<50	<50	<50
Acetone	μg/L	92,000	NA	NA	NA	NA	NA	NA	<50	NA	NA	NA	NA	<50	<50	<50
Carbon Disulfide	μg/L	4,000	NA	NA	NA	NA	NA	NA	<5	NA	NA	NA	NA	<5	<5	<5

RRS-Risk Reduction Standard (see Table 2 of CSR)

VOCs-volatile organic compounds

 $\mu g/L$ - micrograms per liter

NA-not analyzed
Exceeds Selected RRS

Table F-8. Summary of Groundwater Analyses for MW-401, MW-403, MW-404, MW-405, MW-406, MW-407, MW-408, MW-409, and MW-409D.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

			MW	-409					MW-409D				
			1/10/14	7/11/14	12/05/07	03/10/08	06/06/08	09/09/08	12/3/09	6/1/11	7/18/13	1/10/14	7/10/14
Chlorinated VOCs		Selected RRS											
Tetrachloroethene	μg/L	5	5.1	12	<5	3.1 J	5.7	3.1 J	<5	<5	<5	<5	<5
1,1,1-Trichloroethane	μg/L	5,260	<5	<5	NA	NA	NA	NA	<5	<5	<5	<5	<5
Trichloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethene	μg/L	548	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chloroethane	μg/L	987	<4	<4	<5	<10	<10	<10	<4	<4	<4	<4	<4
cis-1,2-Dichloroethene	μg/L	1,020	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
trans-1,2-Dichloroethene	μg/L	2,040	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl Chloride	μg/L	2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Aromatic Hydrocarbons													
Benzene	μg/L	8.8	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Ethylbenzene	μg/L	2,300	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Toluene	μg/L	5,200	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene	μg/L	100	<5	<5	NA	NA	NA	NA	<5	<5	<5	<5	<5
Cyclohexane	μg/L	17,400	<5	<5	NA	NA	NA	NA	<5	<5	<5	<5	<5
Naphthalene	μg/L	20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
o-xylene	μg/L	10,000	<5	<5	NA	<5	<5	<5	<5	<5	<5	<5	<5
m,p-Xylene	μg/L	10,000	<5	<5	NA	<5	<5	<5	<5	<5	<5	<5	<5
Xylenes, total	μg/L	10,000	NA	NA	<5	NA	NA	NA	NA	<5	NA	NA	NA
Isopropylbenzene	μg/L	1,010	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Non-Chlorinated VOCs													
2-Butanone	μg/L	2,000	<50	<50	NA	NA	NA	NA	<50	<50	<50	<50	<50
Acetone	μg/L	92,000	<50	<50	NA	NA	NA	NA	<50	<50	<50	<50	<50
Carbon Disulfide	μg/L	4,000	<5	<5	NA	NA	NA	NA	<5	<5	<5	<5	<5

RRS-Risk Reduction Standard (see Table 2 of CSR)

VOCs-volatile organic compounds

μg/L- micrograms per liter

NA-not analyzed

Exceeds Selected RRS

Table F-9. Summary of Groundwater Analyses for Temporary Monitoring Wells TW-34, TW-35, and TW-36 on Atlanta Beltline (Adjacent Property).

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

			TW-34 12/15/04	TW-35 12/09/04	TW-36 12/10/04
Chlorinated VOCs		Selected RRS			
Tetrachloroethene	μg/L	5	<5	8.4	<5
1,1,1-Trichloroethane	μg/L	5,260	<5	<5	<5
Trichloroethene	μg/L	5	<5	<5	<5
1,1-Dichloroethene	μg/L	548	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5
Chloroethane	μg/L	987	<10	<10	<10
cis-1,2-Dichloroethene	μg/L	1,020	<5	<5	<5
trans-1,2-Dichloroethene	μg/L	2,040	<5	<5	<5
Vinyl Chloride	μg/L	2	<2	<2	<2
Aromatic Hydrocarbons					
Benzene	μg/L	8.8	<5	<5	<5
Ethylbenzene	μg/L	2,300	<5	<5	<5
Toluene	μg/L	5,200	<5	<5	<5
Chlorobenzene	μg/L	100	<5	<5	<5
Cyclohexane	μg/L	17,400	<5	<5	<5
Naphthalene	μg/L	20	NA	NA	NA
o-xylene	μg/L	10,000	<5	<5	<5
m,p-Xylene	μg/L	10,000	<10	<10	<10
Xylenes, total	μg/L	10,000	NA	NA	NA
Isopropylbenzene	μg/L	1,010	<5	<5	<5
Non-Chlorinated VOCs					
Acetone	μg/L	92,000	<20	<20	<20
Carbon Disulfide	μg/L	4,000	<5	<5	<5

RRS-Risk Reduction Standard (see Table 2 of CSR)

VOCs-volatile organic compounds

μg/L- micrograms per liter

NA-not analyzed

Table F-10. Summary of Groundwater Analyses for Temporary Monitoring Wells on 670 DeKalb Avenue.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

			TW-1	TW-2	TW-3		TMW-1			TMW-2			TMW-3	
			10/12/05	10/12/05	10/12/05	08/06/08	09/10/08	12/04/09	08/06/08	09/10/08	12/04/09	08/06/08	09/10/08	12/04/09
		Selected												•
Chlorinated VOCs		RRS												
Tetrachloroethene	μg/L	5	11,800	<5	<5	3,000	2,890	4,300	5,500	6,020	3,000	230	142	21
1,1,1-Trichloroethane	μg/L	5,260	NA	<5	<5	NA	NA	<5	NA	NA	<5	NA	NS	<5
Trichloroethene	μg/L	5	94	<5	<5	33	25	55	<5	2.7 J	<5	<5	<5	<5
1,1-Dichloroethene	μg/L	548	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chloroethane	μg/L	987	<10	<10	<10	<10	<10	<4	<10	<10	<4	<10	<10	<4
cis-1,2-Dichloroethene	μg/L	1,020	13	<5	<5	150	91	1,200	<5	<5	<5	<5	<5	<5
trans-1,2-Dichloroethene	μg/L	2,040	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl Chloride	μg/L	2	<2	<2	<2	13	7.5	93	<2	<2	<2	<2	<2	<2
Aromatic Hydrocarbons														
Benzene	μg/L	8.8	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Ethylbenzene	μg/L	2,300	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Toluene	μg/L	5,200	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene	μg/L	100	NA	NA	NA	NA	NA	<5	NA	NA	<5	NA	NA	<5
Cyclohexane	μg/L	17,400	NA	NA	NA	NA	NA	<5	NA	NA	<5	NA	NA	<5
Naphthalene	μg/L	20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
o-xylene	μg/L	10,000	NA	NA	NA	NA	6.6	21	NA	11	<5	<5	<5	<5
m,p-Xylene	μg/L	10,000	NA	NA	NA	NA	2.3 J	7	NA	6.3	<5	<5	<5	<10
Xylenes, total	μg/L	10,000	<5	<5	<5	17	8.9	28	<5	17.3	<5	<5	<5	<5
Isopropylbenzene	μg/L	1,010	<5	<5	<5	11	5.1	<5	<5	4.6 J	<5	<5	<5	<5
Non-Chlorinated VOCs														
2-Butanone	μg/L	2,000	NA	NA	NA	NA	NA	<50	NA	NA	59	NA	NA	<50
Acetone	μg/L	92,000	NA	NA	NA	NA	NA	<50	NA	NA	550	NA	NA	<50
Carbon Disulfide	μg/L	4,000	NA	NA	NA	NA	NA	<5	NA	NA	<5	NA	NA	<5

RRS-Risk Reduction Standard (see Table 2 of CSR)

VOCs-volatile organic compounds

μg/L- micrograms per liter

NA-not analyzed

ATTACHMENT G Georgia EPD HSRA and Brownfields Approval of Type 3 and Type 4 Risk Reduction Standards

Georgia Department of Natural Resources

2 Martin Luther King, Jr. Drive, S.E., Suite 1462 East, Atlanta, Georgia 30334-9000

Noel Holcomb, Commissioner Environmental Protection Division Carol A. Couch, PhD., Director 404/657-8600

February 14, 2005

Mr. Steven M. Jessee ARAMARK c/o The Wetlands Company 1040 East 86th Street, Suite 46C Indianapolis, IN 46240

Re:

CAP Schedule and

Notice of Deficiencies dated September 23, 2004

Aramark Uniform Services, Inc.

670 DeKalb Avenue, Atlanta, Fulton County

HSI Site Number: 10704

Dear Mr. Jessee:

The Georgia Environmental Protection Division (EPD) is in receipt of Atlanta Environmental Management, Inc. (AEM) Response to Comments dated January 7, 2005 and February 4, 2005 (Responses) submitted on behalf of Aramark Uniform and Career Apparel, Inc. (Aramark). Based on EPD's review of these documents, EPD has determined the following items:

- The additional information requested by EPD's Notice of Deficiencies dated September 23, 2004 has been submitted and have been adequately addressed.
- A review of the proposed risk reduction standards, noted a few inconsistencies between tables and in the
 calculations. As Aramark has indicted that Aramark will comply with the Type 3 risk reduction standards
 for a majority of the regulated substances detected at the site, EPD has determined the soil Type 3 risk
 reduction standards of §391-3-19-.07 of the Rules for Hazardous Site Response (Rules) (mg/kg) are as
 follows:

0	1,1 Dichloroethane	400
0	1,1 Dichloroethene	0.7
0	1,2 Dichloroethane	0.5
0	Benzene	0.5
0	Chloroethane	0.17
0	Cis-1,2 dichloroethene	0.53
0	Trans-1,2 dichloroethene	10
0	Ethylbenzene	70
0	Isopropylbenzene	22
0	Naphthalene	100
0	Tetrachloroethene	0.5
0	Trichloroethene	0.5
0	Toluene	100
0	Vinyl Chloride	0.2
0	Xylene	1,000

Please note these concentrations are also the soil Type 1 risk reduction standards of §391-3-19-.07 of the Rules.

• Likewise, the groundwater Type 3 risk reduction standards of §391-3-19-.07 of the Rules (μg/L) are as follows:

0	1,1 Dichloroethane	4000
0	1,1 Dichloroethene	7
0	1,2 Dichloroethane	5
0	Benzene	5

Chloroethane
 Cis-1,2 dichloroethene
 below detection limit below detection limit

o Trans-1,2 dichloroethene 100 o Ethylbenzene 700

o Isopropylbenzene below detection limit

Naphthalene
Tetrachloroethene
Trichloroethene
Toluene
Vinyl Chloride
Xylene

Please note these concentrations are also the groundwater Type 1 risk reduction standards of §391-3-19-.07 of the Rules.

 The groundwater Type 4 site-specific risk reduction standard of §391-3-19-.07 of the Rules (µg/L) are as follows:

0	1,1 Dichloroethene	523
0	Chloroethane	987
0	Cis-1,2 dichloroethene	1,020
0	Trans-1,2 dichloroethene	2,040

- Based on the above risk reduction standards, soil and recent groundwater contamination associated with non-chlorinated regulated substances do not exceed the Type 1 risk reduction standards of §391-3-19-.07 of the Rules.
- Based on the above risk reduction standards, soil and groundwater contamination associated with chlorinated regulated substances does not comply with the Type 1 through 4 risk reduction standards of §391-3-19-.07 of the Rules.
- Soil contamination has not been delineated to background concentrations as specified in §391-3-19-.06(3)(b)(2) of the Rules in the northern portion of the Former Aramark property.
- Groundwater contamination has not been delineated to background concentrations as specified in §391-3-19-.06(3)(b)(2) of the Rules north of monitoring well MW-205 and north of monitoring well MW-109.

ARAMARK Site, HSI 10704 February 14, 2005 Page 3

As soil and groundwater do not meet the risk reduction standards of §391-3-19-.06(3)(b)(2) of the Rules, EPD is approving the proposed schedule, which provides for the submittal of a corrective action plan by April 23, 2005.

EPD also conditionally approves the schedule for the additional sampling plan and after discussion with Mr. Loring Pitts of AEM, does not require the submittal of the additional sampling plan to EPD for review provided surface soil is also sampled. By eliminating this submittal for review and approval by EPD, EPD hopes this information can be included in the corrective action plan.

Please include the following items with the corrective action plan (CAP):

- 1) Laboratory certification for the March and April 2004 data. The laboratory certification provided with the report expired on June 30, 2003.
- 2) Analytical reports and laboratory certification for the July 2004 data as it was not provided with the October 28, 2004 response to comments.
- 3) Tables 9-1 and 9-2 should also include the sampling results obtained in 2001 for *all* regulated substances detected in groundwater and soil, respectively. Please note on these Tables that the analytical reports are located with the two supplemental notifications for the site or provide copies of the analytical reports with the CAP.
- 4) Reports submitted to the Underground Storage Tank Program report additional soil and groundwater analytical results along with the operation of a soil vapor extraction (SVE) system. Please revise Figure 7.1 to include the location of the former tetrachloroethylene aboveground storage tank and the location of the SVE system. Also, if possible, please indicate if the below ground equipment associated with the SVE system was removed.
- 5) If final soil and groundwater results are available for the period when the SVE system was decommissioned, please include those results in the CAP along with appropriately revised tables and figures.

If you have any questions regarding this matter, please contact me at (404) 657-8600.

Sincerely,

Alexandra Y. Cleary

Unit Coordinator

Hazardous Sites Response Program

c: Loring Pitts, AEM

Stephanie Walters, ARAMRAK

File: HSI 10704

S:\RDRIVE\ALEX\Sites\aramark\schedule approval 2-05.doc

Georgia Department of Natural Resources 2 Martin Luther King, Jr., Dr. SE, Suite 1462 East, Atlanta, Georgia 30334

Noel Holcomb, Commissioner Environmental Protection Division Carol A. Couch, Ph.D., Director Hazardous Waste Management Branch 404-657-8600

September 1, 2006

Mr. Colin Cavill Brisbane II, LLC c/o Mr. Gerald Pouncey, Esq. Morris, Manning and Martin, LLP 1600 Atlanta Financial Center 3343 Peachtree Road, NE Atlanta, GA 30326

Man Gory

Re: Limitation of Liability

Tax Parcel Nos. 14-0020-0002-024-5 and

14-0020-0001-008-9

670 and 690 DeKalb Avenue (HSI#10704) Prospective Purchaser Corrective Action

Dear Mr. Cavill:

The Georgia Environmental Protection Division (EPD) has completed its review of the June 22, 2006 Prospective Purchaser Compliance Status Report (PPCSR) and the August 7, 2006 PPCSR Addendum for the above referenced property. EPD has also received the analytical results for the additional soil sample that was collected at EPD's request on August 23, 2006 subsequent to our site meeting.

The PPCSR in combination with the additional soil sample complete Items 4, 5, 6 and 7 of EPD's limitation of liability letter dated October 17, 2005. EPD concurs with Brisbane II, LLC certification that soil at the property is in compliance with the Type 1 (residential) risk reduction standards specified in Section 391-3-19-.07 of the Rules for Hazardous Site Response (Rules). EPD has determined groundwater at the property does not comply with any risk reduction standard in Section 391-3-19-.07 of the Rules.

For the purpose of determining liability for continuing or future releases of regulated substances upon or from the property, the background or baseline concentrations for any and all releases will be based on the information provided in the PPCSR pursuant to Section 12-8-208(b) of the Hazardous Site Reuse and Redevelopment Act (Act),

If you have any questions regarding this limitation of liability or any of the conditions described above, please contact Bo Valli at 404-657-8600.

Sincerely,

Alexandra Y. Cleary

Unit Coordinator

Hazardous sites Response Program

Russ Fraze, Mactec C:

HSI File 10704 SARDRIVE/BOVALLI/SITES/BROWNFIELDS PROJECTS/Brisbane II Aramark LoL-FINAL.doc

6.3.1 Soil Criteria

Three HSRA-regulated constituents were detected in soil above HSRA notification concentrations during MACTEC's September 2005 assessment. Soil verification testing conducted following the remedial activities conducted in February and March 2006 indicated that these constituents were no longer above their respective notification concentrations. Type 1-4 RRS for all constituents detected in soil on Site are presented below in Table 2 along with the highest concentration of each constituent detected in the post remediation verification testing. Based on the data obtained, the Site satisfies Type 1 RRS calculated for potential exposure to soil.

Table 2 - Risk Reduction Standards for Soil

	Highest Concentration		Resid	lential	Non-Re	sidential
Regulated Substance	(Post Remediation) mg/kg	Location	Type I RRS Criteria, mg/kg	Type 2 RRS Criteria, mg/kg	Type 3 RRS Criteria, mg/kg	Type 4 RRS Criteria, mg/kg
Acetone	0.110	GP-31	400	60	400	390
Benzene	0.0031	GP-24	0.50	0.14	0.50	0.25
Carbon Disulfide	0.010	GP-40	400	98	400	98
Cyclohexanc	0.018	GP-41	20.0	290	20.0	1.400
Cis-1,2-dichloroethene	0.120	C-2	7.0	290	1000	19
Trans-1,2-dichloroethene	< 0.005	NA	10	8.0	10	52
Ethylbenzene	3.10	MW-3	70	100	70	340
Isopropylbenzene	2.10	GP-27	22	19	22	94
Methylcyclohexane	1.20	GP-41	0.50	1,600	0.50	8.000
Naphthalene	9.40	MW-3	100	16	100	16
Tetrachloroethene	0.40	C-18C	0.50	0.34	0.50	0.34
Toluene	0.360	GP-25	100	77	100	400
1,1.1-Trichloroethane	0.0088	GP-31	20	50	20	260
Trichloroethenc	0.020	C-2	0.50	0.36	0.50	0.36
Vinyl Chloride	0.109	B-2	0.20	0.027	0.20	0.027
Xylenes	9.60	MW-3	1.000	220	1.000	1,100

mg/kg - milligrams per kilogram (equivalent to parts per million)

All areas on Site which exhibited concentrations of VOCs above residential risk reduction standards were included within the excavation area described in Section 8.0. Based on the soil testing data collected to date, including the soil verification testing completed as part of the 2006 remediation effort, the subject Site is in compliance with Type I RRS for soil (see Figure 14).

6.3.2 Groundwater Criteria

Type 1-4 RRS for all constituents detected in groundwater on Site are presented below in Table 3. HSRA RRS criteria for groundwater for the detected constituents are shown compared to their highest concentrations detected on Site.

Table 3 - Risk Reduction Standards for Groundwater

			Resid	lential	Non-Residential			
Regulated Substance	Highest Concentration mg/L	Location	Type 1 RRS Criteria, mg/L	Type 2 RRS Criteria, mg/L	Type 3 RRS Criteria, mg/L	Type 4 RRS Criteria, mg/L		
Acetone	BDL	NA	4.0	14.1	4.0	92		
Benzene	0.010	B-2	0.005	0.00448	0.005	0.0088		
Carbon Disulfide	BDL	NA	4.0	0.329	4.0	1.70		
Chloroethane	0.067	B-2	0.005	0.294	0.005	0.987		
Cyclohexane	BDL	NA	0.005	3.55	0.005	17.4		
1,1-Dichloroethene	0.013	MW-109	0.007	0.108	0.007	0.548		
Cis-1,2-dichloroethene	13.3	B-2	0.005	0.156	0.005	1.02		
Trans-1,2-dichloroethene	0.22	MW-4	0.10	0.313	0.10	2.04		
Ethylbenzene	0.024	MW-103	0.70	0.436	0.70	2.3		
Isopropylbenzene	0.050	MW-103	0.005	0.20	0.005	1.01		
Methylcyclohexane	BDL	NA	0.005	1.79	0.005	8.79		
Naphthalene	0.022	MW-103	0.02	0.00178	0.02	0.00875		
Tetrachloroethene	35.0	MW-101	0.005	0.00132	0.005	0.00382		
Toluene	0.0013	B-2	1.0	0.876	1.0	5.2		
1,1,1-Trichloroethane	BDL	NA	0.20	1.01	0.20	5.26		
Trichloroethene	0.32	MW-103	0.005	0.000355	0.005	0.00065		
Vinyl Chloride	2.09	B-2	0.002	0.000515	0.002	0.00158		
Xylenes	0.18	MW-3	10.0	0.0593	10.0	0.292		

ug/l - micrograms per liter

Shaded values exceed all 4 types of Risk Reduction Standards

Based on the groundwater testing data available to MACTEC and presented herein, groundwater at the Site does not currently comply with groundwater RRS for VOCs benzene and naphthalene and for the chlorinated VOCs, cis-1,2-dichloroethene, tetrachloroethene, trichloroethene and vinyl chloride. We note that Aramark and their consultant, AEM, are currently involved in a groundwater remediation program which will be addressed under a separate HSRA CSR prepared on behalf of Aramark as the party responsible for groundwater conditions under the HSI listing.

ATTACHMENT H Environmental Cap Inspection and Maintenance Plan

INSPECTION AND MAINTENANCE PLAN

670 DeKalb Avenue Atlanta, Fulton County, Georgia

Hazardous Site Inventory/Voluntary Remediation Program Site #10704

AEM Project No. 1133-1401-2

May 1, 2014 Revised October 10, 2014

Prepared For:

Aramark Uniform & Career Apparel, LLC 115 North First Street Burbank, California 91502

Prepared By:

Environmental Consulting, Engineering, Hydrogeologic Services 2580 Northeast Expressway • Atlanta, Georgia 30345 Office (404) 329-9006 • Fax (404) 329-2057

Revised October 10, 2014

TABLE OF CONTENTS

1.0	Intro	oduction	1-1
	1.1	Cap Location	1-1
	1.2	Residual Contamination in Site Soil	1-1
2.0	Futu	ure Soil Management Procedures and Land Use Restrictions	2-1
3.0	Сар	Description	3-1
	3.1	3-1	
	3.2	Site Controls	3-2
		3.2.1 Fencing and Signage	3-2
		3.2.2 Inspections	3-2
4.0	Prot	ective Cap Monitoring and Maintenance	4-1
	4.1	Vegetation Maintenance	4-1
5.0	Noti	fication and Reporting	5-1

LIST OF FIGURES

FIGURE

- 1 Site Location
- 2 Two Foot Soil Cap Location and Coordinates
- 3 Soil Sample Locations and Analytical Results January 31, February 1, and May 22, 2013

LIST OF APPENDICES

APPENDIX

1 Cap Inspection and Maintenance Checklist

SECTION 1.0 INTRODUCTION

This plan prescribes the actions that will be taken to monitor and maintain the integrity of the vegetated protective soil cover (cap) located in the northern portion of 670 DeKalb Avenue, Atlanta, Georgia. This property is listed on the Georgia Hazardous Site Inventory as HSI # 10704, owned by Aramark Uniform & Career Apparel, LLC.

The cap is an engineering control providing a physical barrier and preventing environmental exposure, and it results in the site meeting Type 5 Risk Reduction Standards as defined in Rule 391-3-19-.07(10)(a) of the Hazardous Sites Response Act (HSRA). The cap is designed as a protective structure to prevent human and ecological exposure to chemicals that remain in soil below the cap. Therefore, this plan when implemented will ensure that the environmental cap is managed in a manner that preserves the cap structure and integrity and prevents exposure to contamination in underlying soil.

1.1 CAP LOCATION

The cap is located at the northwest property boundary of 670 DeKalb Avenue in Atlanta, Fulton County, Georgia (see Figure 1). The property is irregular in shape, and it is bounded to the north by Edgewood Avenue and by a multi-family residential building, on the east by commercial property, on the west by Airline Street, on the northwest by the former Norfolk-Southern railroad lines (now the Atlanta Beltline), and on the south by DeKalb Avenue. The location of the cap relative to the surrounding area and with coordinates (State Plan) for the corners of the structure is shown in Figure 2. MARTA and CSX Transportation railroad tracks, as well as CSX's Halsey Yard, are located on the opposite (south) side of DeKalb Avenue, and Edgewood Avenue is elevated to the north and above the cap (see Figure 1). The property is currently vacant and unused.

1.2 RESIDUAL CONTAMINATION IN SITE SOIL

Native soil underlying the cap contains regulated substances, primarily chlorinated compounds at levels exceeding 500 micrograms per kilogram (µg/kg) (see Figure 3). Refer to Second Semiannual Progress Report, ARAMARK Uniform & Career Apparel LLC, 670 & 690 DeKalb Avenue, Atlanta, Fulton County, Georgia HSI Site No. 10704 (Progress Report) for more information regarding subsurface conditions.

SECTION 2.0 FUTURE SOIL MANAGEMENT PROCEDURES AND LAND USE RESTRICTIONS

There are currently no planned actions that would result in changes to the environmental cap, nor are there any activities planned to disturb either the soil cover or vegetation. Signage placed at the cap indicates that either the site owner or the Georgia Environmental Protection Division (EPD) must be contacted prior to any work in the footprint of the environmental cap.

Additionally, a restrictive covenant will be placed to indicate that "with the exception of work necessary for the maintenance, repair, or replacement of engineering controls, activities that are prohibited in the capped areas include, but are not limited to the following: drilling, digging, placement of any objects or use of any equipment which deforms or stresses the surface beyond its load bearing capability, piercing the surface with a rod, spike or similar item, bulldozing or earthwork."

SECTION 3.0 CAP DESCRIPTION

The environmental cap was designed to meet the engineering control requirement of providing a two-foot self-sustaining protective barrier above site soil containing residual chlorinated compounds. As shown in Figure 3, the impacted soil extends directly up to the northwest, intersecting property lines; therefore, a two-foot concrete retaining wall was constructed directly on these property lines and then was completed to encircle all known subsoil believed to exceed 500 µg/kg.

The retaining wall was constructed by flattening the ground surface above the impacted soil and then placing pre-fabricated concrete blocks end-to-end to create a two-foot-high and two-foot-wide concrete interior soil containment structure to hold and support interior soil. The concrete blocks fit flush with each other with virtually no air gaps, and they provide for complete protective soil cover containment and protect the soil cover from erosion and other forms of damage. The interior of the concrete retaining structure was backfilled and lightly compacted, then vegetated with healthy Bermuda sod.

Based on the method of construction, it is unlikely that any natural weather event will cause damage or result in a decrease in the thickness of the protective soil cover. Each block weighs approximately 1,800 pounds and cannot be dislodged without the use of heavy construction equipment.

3.1 PROTECTIVE COVER SOIL

Soil for the construction of the cap was obtained from a stockpile located on the 690 DeKalb property. AEM researched historical files obtained from the former owner of the property (Brisbane II, LLC). According to Mr. Cavell, a representative of Brisbane II, LLC, the soil pile located on the 690 DeKalb Avenue property was from the Former Mead Converting Plant in Atlanta. Mr. Cavell provided a Phase I Environmental Site Assessment conducted for the Mead Converting Plant. Accordingly, based on a review of the Phase I ESA, it was found that the Mead Converting Plant was identified as a Non-HSI site. AEM subsequently performed a file review at EPD of the Non-HSI file for the Mead site. Soil samples were collected across the former Mead site. Low levels of metals (arsenic, barium, cadmium, chromium, and lead) were found in the soil, but not above HSRA Notification Concentrations. VOCs were not detected in any soil samples collected at the Mead site.

In April 2013 AEM collected seven soil samples from the stockpile and analyzed the samples for select metals. None of the metals detected exceeded notification concentrations or Type 1 risk reduction standards. Analytical results can be found in Attachment F of the First Semiannual Progress Report.

3.2 SITE CONTROLS

The property is unoccupied and without structures or utilities. No site controls are currently used to prevent unauthorized access to the property or the environmental cap. However, the cap is expected to be pedestrian-durable and virtually damage-proof from recreational pedestrians or bicyclists who use the property as a means to access DeKalb Avenue from northern pedestrian areas of the Belt Line.

3.2.1 Fencing and Signage

The property is unfenced and experiences limited pedestrian traffic from recreational users of the adjoining Belt Line property. Signs constructed of stainless steel have been placed on the concrete sides of the environmental cap with the following caption:

AREA SUBJECT TO ENVIRONMENTAL COVENANT & RESTRICTION HSI# 10704

PRIOR TO DIGGING OR COMMENCING ANY OTHER LAND DISTURBANCE ACTIVITY
CALL AEM AT (404) 329-9006 OR
GEORGIA ENVIRONMENTAL PROTECTION DIVISION (404) 657-8600

3.2.2 Inspections

In order to verify, document, and report the sustained integrity of the protective cover, a series of inspections, consisting initially of four quarterly, then two semiannual, followed in perpetuity by annual inspections, will be performed and reported in accordance with the restrictive covenant.

Under normal circumstances the recommended sequence of environmental cap inspections would initially include up to a year of monthly inspections, with repairs if needed, to ensure the viability of the cap vegetation, and to document absence of erosion. However, the use of Bermuda sod in lieu of seeding, and the robust design (concrete block wall containment), are robust enough so that initial quarterly inspections are adequate. Future inspections will be compared to baseline conditions, as presented in the photographs included on page 2 of the Inspection Record (see Appendix 1). Inspections will be standardized to ensure consistent observation and records. The standard inspection form that will be used is provided in Appendix 1.

Revised October 10, 2014

SECTION 4.0 PROTECTIVE CAP MONITORING AND MAINTENANCE

The soil contained within the concrete retaining wall, and the concrete blocks themselves, constitute the protective cap. Monitoring of the protective cap integrity will be performed as part of the scheduled inspections.

Maintenance is likely to include the removal of invasive vegetation so that root growth does not dislodge or separate the concrete blocks and potentially allow soil to wash through. Erosion of soil from within the concrete retaining wall appears to be virtually impossible because of the elevated and protected surface, and the area is not subject to typical water erosion. However, in the event that erosion occurs, or the thickness of the protective cover is believed to fall below two feet, then the soil thickness will be restored to the top of the two-foot retaining wall and the repair sodded.

4.1 VEGETATION MAINTENANCE

The initial vegetation cover consisting of Bermuda grass sod may in time revert to other plant materials that are equally capable of stabilizing soil within the root mass. However, unless required by City of Atlanta code or ordinance to control nuisance vegetation, no effort will be made to maintain the vegetation as Bermuda grass. However, as indicated in Section 4.0, vegetation management will consist primarily of volunteer tree control to prevent root damage to the retaining wall. In addition, plant material will be cut back as necessary during inspections (or more frequently if indicated by the inspections) to ensure that the cap integrity and signage remain visible and therefore easily verified as having full integrity, in accordance with the planned inspections.

SECTION 5.0 NOTIFICATION AND REPORTING

Reports of the inspected condition of the environmental cap, including repairs or maintenance as needed or performed, will be submitted to Georgia EPD on an annual basis no later than December 31 of each calendar year. The report will consist of a letter from the property owner and will include the completed and certified inspection form in Appendix 1.

In the event that the environmental cap has been found to be disturbed or damaged, notification will be sent to Georgia EPD along with documentation of the repair. In the event that the owner becomes aware of a planned disturbance of the integrity of the protective cover, then at least 90 days notice will be provided to Georgia EPD along with a description of the planned activity, the planned repairs at the conclusion of the activity, and a plan for disposition of any soil that is displaced from beneath the environmental cap. No work shall be conducted without prior consent and approval from Georgia EPD.

FIGURES

APPENDIX 1 Cap Inspection and Maintenance Checklist

Revised October 10, 2014

APPENDIX 1 SITE USE AND NON-RESIDENTIAL SOIL RRS MONITORING EVALUATION FORM

670 DeKalb Avenue, HSI Site No. 10704

TYPE	No.	CRITERIA RESPONSE	YES	NO
Land Use	1	Does this HSRA site meet the conditions under the approved closure?		
	1a	If no to 1, provide a written explanation (attached) to the EPD within 30 days.		
Exposure	2	Are site workers expected to be directly exposed to soils with chemical concentrations in excess of Type 2 RRS at this HSRA site in excess of 250 days per year?		
	2a	If yes to 2, are these same site workers expected to be exposed to soils at this HSRA site in excess of 25 years throughout their career?		
Erosion	3	Is there evidence of soil erosion in the cap area?		
	3a	If yes to 3, is there evidence of erosion of these soils to off-property areas?		
	3b	If yes to 3a, are corrective measures being taken?		
	3c	If yes to 2, 3, 3a, and/or 3b, provide written explanation (attached) to the EPD within 30 days.		
Integrity	4	Has the concrete containment changed, moved or become damaged compared to the initial configuration?		
	4a	If yes to 4, are corrective measures being taken?		
	4b	Is signage clearly visible and readable indicating a Type IV closure information?		
	4c	If no to 4b, are corrective measures being taken?		
	4d	Cap vegetation is adequate, properly controlled, and providing soil protection?		
	4e	If no to 4d, are corrective measures being taken?		
Inspection	5	Date of inspection:	_	
	5a	Name of inspector:		
	5b	Photographs and/or diagrams showing current land use (attached)		

Certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

NAME (Discost una survint)	
NAME (Please type or print)	TITLE
SIGNATURE	DATE

Baseline Soil CAP conditions:

View looking southwest of final soil-vegetative cap on the NW corner of 670 DeKalb Avenue.

View looking north of final soil-vegetative cap on the NW corner of 670 DeKalb Avenue.

Southerly view from Edgewood Avenue Bridge of the final soil-vegetative cap on the NW corner of 670 DeKalb Avenue.

ATTACHMENT I Off-Site Topsoil Laboratory Analytical Results

Department of Health, Bureau of Public Health Laboratories This is to certify that

E87582

ANALYTICAL ENVIRONMENTAL SERVICES, INC. 3080 PRESIDENTIAL DRIVE ATLANTA, GA 30340

has complied with Florida Administrative Code 64E-1, for the examination of environmental samples in the following categories

DRINKING WATER - MICROBIOLOGY, DRINKING WATER - PRIMARY INORGANIC CONTAMINANTS, DRINKING WATER - SECONDARY INORGANIC CONTAMINANTS, NON-POTABLE WATER - EXTRACTABLE ORGANICS, NON-POTABLE WATER - GENERAL CHEMISTRY, NON-POTABLE WATER - METALS, NON-POTABLE WATER - PESTICIDES-HERBICIDES-PCB'S, NON-POTABLE WATER - VOLATILE ORGANICS, SOLID AND CHEMICAL MATERIALS - GENERAL CHEMISTRY, SOLID AND CHEMICAL MATERIALS - METALS, SOLID AND CHEMICAL MATERIALS - PESTICIDES-HERBICIDES-PCB'S, SOLID AND CHEMICAL MATERIALS - VOLATILE ORGANICS

Continued certification is contingent upon successful on-going compliance with the NELAC Standards and FAC Rule 64E-1 regulations. Specific methods and analytes certified are cited on the Laboratory Scope of Accreditation for this laboratory and are on file at the Bureau of Public Health Laboratories, P. O. Box 210, Jacksonville, Florida 32231. Clients and customers are urged to verify with this agency the laboratory's certification status in Florida for particular methods and analytes.

Date Issued: July 01, 2014 Expiration Date: June 30, 2015

OF THE STATE OF TH

William H. Anderson, DHA, FACHE, Director
Division of Emergency Preparedness and Community Support
DH-Form 1697, 7/04

NON-TRANSFERABLE E87582-24-07/01/2014 Supersedes all previously issued certificates

ANALYTICAL ENVIRONMENTAL SERVICES, INC.

November 17, 2014

Victor Owens Atlanta Environmental Mgmt 2580 NE Expresswav Atlanta GA 30345

TEL: (404) 329-9006 FAX: (404) 329-2057

RE: Dekalb Ave. CAP Fill

Dear Victor Owens: Order No: 1411750

Analytical Environmental Services, Inc. received 1 samples on 11/10/2014 1:55:00 PM for the analyses presented in following report.

No problems were encountered during the analyses. Additionally, all results for the associated Quality Control samples were within EPA and/or AES established limits. Any discrepancies associated with the analyses contained herein will be noted and submitted in the form of a project Case Narrative.

AES' certifications are as follows:

- -NELAC/Florida Certification number E87582 for analysis of Environmental Water, soil/hazardous waste, and Drinking Water Microbiology, effective 07/01/14-06/30/15.
- -AIHA-LAP, LLC Laboratory ID: 100671 for Industrial Hygiene samples (Organics, Inorganics), Environmental Lead (Paint, Soil, Dust Wipes, Air), and Environmental Microbiology (Fungal) Direct Examination, effective until 09/01/15.

These results relate only to the items tested. This report may only be reproduced in full.

If you have any questions regarding these test results, please feel free to call.

Tara Esbeck

Project Manager

Tara Esback

ANALYTICAL ENVIRONMENTAL SERVICES, INC

TEL.: (770) 457-8177 / TOLL-FREE (800) 972-4889 / FAX: (770) 457-8188

3785 Presidential Parkway, Atlanta GA 30340-3704

CHAIN OF CUSTODY

Work Order: 141175

Date:

11/10/14 Page: 1 of 1

			ADDRESS: 2580 N.E. Expressway						_		ANA	LYSIS	Wisit our website							
	enta Environmental Management, Inc.	Atlanta, C	Atlanta, GA 30345 FAX: 404-329-2057																Visit our website www.aesatlanta.com to check on the status of your results, place bottle orders,	8
PHON	E: 404-329-9000	FAX: 404-3	329-2037					ø	Σ										etc.	tainer
SAMPLED BY: V Owens		SIGNATURE:		_			VOCs	SCOVs	RCRA Metals											No # of Containers
		SAME	PLED			5	Λ	Š	~											ž
#	SAMPLE ID			۾ ا	Composite	Matrix (See Below)					PRES	ERVAT	ATION (See Codes)			Codes)			REMARKS	
		DATE	TIME	Grab	රි							-	\dashv	\dashv	-	\dashv	\dashv	+		-
1_	Fill Soil 11-10-14	11/10/14	12:30	X		S	X	X	X			\vdash	_		_	_	_	\rightarrow		5
2								_				\sqcup	_			_	_	\rightarrow		
3												Ш		_		_	\perp			
4																	\perp			
5																				
6																				
7																				
8													╛							
9												\Box	ヿ		一	╛	\neg			
10													一	\neg		ヿ	ヿ	十		
11														\neg		一	寸	十		
12												П	\neg	\neg		\dashv	寸	一		
13																				
14															T					
	RELINQUISHED BY DATE/TIME	RECEIVI	ED BY		DATE/TI	ME	PROJECT INFORMATION								RECEIPT					
	Duna 140-14 13:55	Cartaga	Reeve	s ulu	aliu 1	:55p.	PROJECT NAME: DeKalb CAP Fill Total # of Containers								Total # of Containers					
26		2	,		<u> </u>	-	1133-1501-6										Turnaround Time Request			
3		3					SITE ADDRESS: Atlanta, GA									O Standard 5 Business Days O 2 Business Day Rush				
							SEN	DRE	PORT	то. `	Vict	or O	wer	1S		_			Next Business Day Rush	
SPECIAL INSTRUCTIONS/COMMENTS:		OUT / / IN /- \(\tau\)	IN FT. VIA:				INV	OICE	TO: A		Enviro	nmenta			ent, In	c			O Same Day Rush (auth req.) O Other STATE PROGRAM (if any):	
			FedEx UPS				0110	VTTC #					O#:						E-mail? Y/N; Fax? Y/N DATA PACKAGE: I II III IV	
SAM	PLES RECEIVED AFTER 3PM OR SATURDAY ARE CON	SIDEDED AS DI	ECEIVED ON	THE NI	YT RUS	INFSS D	-	TE#:		S MAI	SKED	_	O#: _	FS W	I I . PP	OCFF	ED AS	STAN		
	PLES ARE DISPOSED OF 30 DAYS AFTER COMPLETION								IAIL	O IVITI	CALD.	514 00	JC A	LO 11	LLIN	CLL	LD AU	JIMI	Dina III.	

Client: Atlanta Environmental Mgmt

Project: Dekalb Ave. CAP Fill Case Narrative

Date:

17-Nov-14

Lab ID: 1411750

Volatile Organic Compounds Analysis by Method 8260B:

Percent recovery for the internal standard compound 1,4-Dichlorobenzene-d4 on sample 1411750-001A was outside control limits biased low due to suspected matrix interference.

Metals Analysis by Method 6010C:

Due to sample matrix, sample 1411750-001D required dilution during analysis resulting in elevated reporting limits for selenium.

Client:Atlanta Environmental MgmtClient Sample ID:FILL SOIL 11-10-14Project Name:Dekalb Ave. CAP FillCollection Date:11/10/2014 12:30:00 PM

Date:

17-Nov-14

Lab ID: 1411750-001 **Matrix:** Soil

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
Volatile Organic Compounds by GC/MS	SW8260B		(SW5		(5035)			
Dichlorodifluoromethane	BRL	10		ug/Kg-dry	198979	1	11/10/2014 19:54	MD
Chloromethane	BRL	10		ug/Kg-dry	198979	1	11/10/2014 19:54	MD
Vinyl chloride	BRL	10		ug/Kg-dry	198979	1	11/10/2014 19:54	MD
Bromomethane	BRL	5.2		ug/Kg-dry	198979	1	11/10/2014 19:54	MD
Chloroethane	BRL	10		ug/Kg-dry	198979	1	11/10/2014 19:54	MD
Trichlorofluoromethane	BRL	5.2		ug/Kg-dry	198979	1	11/10/2014 19:54	MD
1,1-Dichloroethene	BRL	5.2		ug/Kg-dry	198979	1	11/10/2014 19:54	MD
Acetone	BRL	100		ug/Kg-dry	198979	1	11/10/2014 19:54	MD
Freon-113	BRL	10		ug/Kg-dry	198979	1	11/10/2014 19:54	MD
Carbon disulfide	BRL	10		ug/Kg-dry	198979	1	11/10/2014 19:54	MD
Methyl acetate	BRL	5.2		ug/Kg-dry	198979	1	11/10/2014 19:54	MD
Methylene chloride	BRL	21		ug/Kg-dry	198979	1	11/10/2014 19:54	MD
Methyl tert-butyl ether	BRL	5.2		ug/Kg-dry	198979	1	11/10/2014 19:54	MD
trans-1,2-Dichloroethene	BRL	5.2		ug/Kg-dry	198979	1	11/10/2014 19:54	MD
1,1-Dichloroethane	BRL	5.2		ug/Kg-dry	198979	1	11/10/2014 19:54	MD
cis-1,2-Dichloroethene	BRL	5.2		ug/Kg-dry	198979	1	11/10/2014 19:54	MD
2-Butanone	BRL	52		ug/Kg-dry	198979	1	11/10/2014 19:54	MD
Chloroform	BRL	5.2		ug/Kg-dry	198979	1	11/10/2014 19:54	MD
1,1,1-Trichloroethane	BRL	5.2		ug/Kg-dry	198979	1	11/10/2014 19:54	MD
Cyclohexane	BRL	5.2		ug/Kg-dry	198979	1	11/10/2014 19:54	MD
Carbon tetrachloride	BRL	5.2		ug/Kg-dry	198979	1	11/10/2014 19:54	MD
Benzene	BRL	5.2		ug/Kg-dry	198979	1	11/10/2014 19:54	MD
1,2-Dichloroethane	BRL	5.2		ug/Kg-dry	198979	1	11/10/2014 19:54	MD
Trichloroethene	BRL	5.2		ug/Kg-dry	198979	1	11/10/2014 19:54	MD
Methylcyclohexane	BRL	5.2		ug/Kg-dry	198979	1	11/10/2014 19:54	MD
1,2-Dichloropropane	BRL	5.2		ug/Kg-dry		1	11/10/2014 19:54	MD
Bromodichloromethane	BRL	5.2		ug/Kg-dry		1	11/10/2014 19:54	MD
cis-1,3-Dichloropropene	BRL	5.2		ug/Kg-dry		1	11/10/2014 19:54	MD
4-Methyl-2-pentanone	BRL	10		ug/Kg-dry		1	11/10/2014 19:54	MD
Toluene	BRL	5.2		ug/Kg-dry		1	11/10/2014 19:54	MD
trans-1,3-Dichloropropene	BRL	5.2		ug/Kg-dry		1	11/10/2014 19:54	MD
1,1,2-Trichloroethane	BRL	5.2		ug/Kg-dry		1	11/10/2014 19:54	MD
2-Hexanone	BRL	10		ug/Kg-dry		1	11/10/2014 19:54	MD
Tetrachloroethene	BRL	5.2		ug/Kg-dry		1	11/10/2014 19:54	MD
Dibromochloromethane	BRL	5.2		ug/Kg-dry		1	11/10/2014 19:54	MD
1,2-Dibromoethane	BRL	5.2		ug/Kg-dry		1	11/10/2014 19:54	MD
Chlorobenzene	BRL	5.2		ug/Kg-dry			11/10/2014 19:54	MD
Ethylbenzene	BRL	5.2		ug/Kg-dry		1	11/10/2014 19:54	MD
Styrene	BRL	5.2		ug/Kg-dry		1	11/10/2014 19:54	MD
Bromoform	BRL	5.2		ug/Kg-dry			11/10/2014 19:54	MD
1,1,2,2-Tetrachloroethane	BRL	5.2		ug/Kg-dry			11/10/2014 19:54	MD

Qualifiers:

BRL Below reporting limit

Narr See case narrative

^{*} Value exceeds maximum contaminant level

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

NC Not confirmed

< Less than Result value

J Estimated value detected below Reporting Limit

Client:Atlanta Environmental MgmtClient Sample ID:FILL SOIL 11-10-14Project Name:Dekalb Ave. CAP FillCollection Date:11/10/2014 12:30:00 PM

Lab ID: 1411750-001 **Matrix:** Soil

Date:

17-Nov-14

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analys
Volatile Organic Compounds by GC/MS	S SW8260B			(SW	(5035)			
Isopropylbenzene	BRL	5.2		ug/Kg-dry	198979	1	11/10/2014 19:54	MD
1,3-Dichlorobenzene	BRL	5.2		ug/Kg-dry	198979	1	11/10/2014 19:54	MD
1,4-Dichlorobenzene	BRL	5.2		ug/Kg-dry	198979	1	11/10/2014 19:54	MD
1,2-Dichlorobenzene	BRL	5.2		ug/Kg-dry	198979	1	11/10/2014 19:54	MD
1,2-Dibromo-3-chloropropane	BRL	5.2		ug/Kg-dry	198979	1	11/10/2014 19:54	MD
1,2,4-Trichlorobenzene	BRL	5.2		ug/Kg-dry	198979	1	11/10/2014 19:54	MD
Xylenes, Total	BRL	5.2		ug/Kg-dry	198979	1	11/10/2014 19:54	MD
Surr: 4-Bromofluorobenzene	77.6	70-128		%REC	198979	1	11/10/2014 19:54	MD
Surr: Dibromofluoromethane	96	78.2-128		%REC	198979	1	11/10/2014 19:54	MD
Surr: Toluene-d8	90	76.5-116		%REC	198979	1	11/10/2014 19:54	MD
TOTAL MERCURY SW7471B				(SW	7471B)			
Mercury	BRL	0.115		mg/Kg-dry	198943	1	11/11/2014 16:15	LB
TCL-SEMIVOLATILE ORGANICS	SW8270D			(SW	(3550C)			
1,1'-Biphenyl	BRL	380		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
2,4,5-Trichlorophenol	BRL	2000		ug/Kg-dry		1	11/11/2014 12:14	YH
2,4,6-Trichlorophenol	BRL	380		ug/Kg-dry		1	11/11/2014 12:14	YH
2,4-Dichlorophenol	BRL	380		ug/Kg-dry		1	11/11/2014 12:14	YH
2,4-Dimethylphenol	BRL	380		ug/Kg-dry		1	11/11/2014 12:14	YH
2,4-Dinitrophenol	BRL	2000		ug/Kg-dry		1	11/11/2014 12:14	YH
2,4-Dinitrotoluene	BRL	380		ug/Kg-dry		1	11/11/2014 12:14	YH
2,6-Dinitrotoluene	BRL	380		ug/Kg-dry		1	11/11/2014 12:14	YH
2-Chloronaphthalene	BRL	380		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
2-Chlorophenol	BRL	380		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
2-Methylnaphthalene	BRL	380		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
2-Methylphenol	BRL	380		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
2-Nitroaniline	BRL	2000		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
2-Nitrophenol	BRL	380		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
3,3'-Dichlorobenzidine	BRL	780		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
3-Nitroaniline	BRL	2000		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
4,6-Dinitro-2-methylphenol	BRL	2000		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
4-Bromophenyl phenyl ether	BRL	380		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
4-Chloro-3-methylphenol	BRL	380		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
4-Chloroaniline	BRL	380		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
4-Chlorophenyl phenyl ether	BRL	380		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
4-Methylphenol	BRL	380		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
4-Nitroaniline	BRL	2000		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
4-Nitrophenol	BRL	2000		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
Acenaphthene	BRL	380		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
Acenaphthylene	BRL	380		ug/Kg-dry	198970	1	11/11/2014 12:14	YH

Qualifiers:

BRL Below reporting limit

E Estimated (value above quantitation range)

Narr See case narrative
NC Not confirmed

^{*} Value exceeds maximum contaminant level

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

S Spike Recovery outside limits due to matrix

< Less than Result value

J Estimated value detected below Reporting Limit

Client:Atlanta Environmental MgmtClient Sample ID:FILL SOIL 11-10-14Project Name:Dekalb Ave. CAP FillCollection Date:11/10/2014 12:30:00 PM

Lab ID: 1411750-001 **Matrix:** Soil

Date:

17-Nov-14

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
TCL-SEMIVOLATILE ORGANICS	SW8270D			(SW	3550C)			
Acetophenone	BRL	380		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
Anthracene	BRL	380		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
Atrazine	BRL	380		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
Benz(a)anthracene	590	380		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
Benzaldehyde	BRL	380		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
Benzo(a)pyrene	760	380		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
Benzo(b)fluoranthene	1400	380		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
Benzo(g,h,i)perylene	610	380		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
Benzo(k)fluoranthene	510	380		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
Bis(2-chloroethoxy)methane	BRL	380		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
Bis(2-chloroethyl)ether	BRL	380		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
Bis(2-chloroisopropyl)ether	BRL	380		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
Bis(2-ethylhexyl)phthalate	BRL	380		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
Butyl benzyl phthalate	BRL	380		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
Caprolactam	BRL	380		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
Carbazole	BRL	380		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
Chrysene	1200	380		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
Di-n-butyl phthalate	BRL	380		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
Di-n-octyl phthalate	BRL	380		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
Dibenz(a,h)anthracene	BRL	380		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
Dibenzofuran	BRL	380		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
Diethyl phthalate	BRL	380		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
Dimethyl phthalate	BRL	380		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
Fluoranthene	2600	380		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
Fluorene	BRL	380		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
Hexachlorobenzene	BRL	380		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
Hexachlorobutadiene	BRL	380		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
Hexachlorocyclopentadiene	BRL	760		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
Hexachloroethane	BRL	380		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
Indeno(1,2,3-cd)pyrene	550	380		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
Isophorone	BRL	380		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
N-Nitrosodi-n-propylamine	BRL	380		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
N-Nitrosodiphenylamine	BRL	380		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
Naphthalene	BRL	380		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
Nitrobenzene	BRL	380		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
Pentachlorophenol	BRL	2000		ug/Kg-dry	198970	1	11/11/2014 12:14	YH
Phenanthrene	1000	380		ug/Kg-dry		1	11/11/2014 12:14	YH
Phenol	BRL	380		ug/Kg-dry		1	11/11/2014 12:14	YH
Pyrene	1700	380		ug/Kg-dry		1	11/11/2014 12:14	YH
Surr: 2,4,6-Tribromophenol	94.9	40.2-120		%REC	198970	1	11/11/2014 12:14	YH
Surr: 2-Fluorobiphenyl	90.3	45.6-120		%REC	198970	1	11/11/2014 12:14	YH

Qualifiers:

BRL Below reporting limit

Narr See case narrative
NC Not confirmed

^{*} Value exceeds maximum contaminant level

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

< Less than Result value

J Estimated value detected below Reporting Limit

Client:Atlanta Environmental MgmtClient Sample ID:FILL SOIL 11-10-14Project Name:Dekalb Ave. CAP FillCollection Date:11/10/2014 12:30:00 PM

Lab ID: 1411750-001 Matrix: Soil

Date:

17-Nov-14

11/11/2014 10:00

SG

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analys
TCL-SEMIVOLATILE ORGANICS	SW8270D			(SW	3550C)			
Surr: 2-Fluorophenol	85.1	35.2-120		%REC	198970	1	11/11/2014 12:14	YH
Surr: 4-Terphenyl-d14	83.6	51-121		%REC	198970	1	11/11/2014 12:14	YH
Surr: Nitrobenzene-d5	95.8	37.8-120		%REC	198970	1	11/11/2014 12:14	YH
Surr: Phenol-d5	92.6	39.9-120		%REC	198970	1	11/11/2014 12:14	YH
METALS, TOTAL SW6010C				(SW	(3050B)			
Arsenic	BRL	5.70		mg/Kg-dry	198982	1	11/11/2014 14:37	TA
Barium	98.3	5.70		mg/Kg-dry	198982	1	11/11/2014 14:37	TA
Cadmium	BRL	2.85		mg/Kg-dry	198982	1	11/11/2014 14:37	TA
Chromium	11.8	2.85		mg/Kg-dry	198982	1	11/11/2014 14:37	TA
Lead	7.08	5.70		mg/Kg-dry	198982	1	11/11/2014 14:37	TA
Selenium	BRL	6.27		mg/Kg-dry	198982	2	11/11/2014 14:49	TA
Silver	BRL	2.85		mg/Kg-dry	198982	1	11/11/2014 14:37	TA

13.6

Qualifiers: *

Percent Moisture

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative

wt%

R279744

NC Not confirmed

< Less than Result value

J Estimated value detected below Reporting Limit

Sample/Cooler Receipt Checklist

Client Atlanta Env Munagement		Work Order Number 1411750	
Client Hlanta Env Management Checklist completed by Aam B Signature Date	110 /14 e		
Carrier name: FedEx UPS Courier Client US	S Mail Other		
Shipping container/cooler in good condition?	Yes <u></u>	No Not Present	
Custody seals intact on shipping container/cooler?	Yes	No _ Not Present _	
Custody seals intact on sample bottles?	Yes	No Not Present _	
Container/Temp Blank temperature in compliance? (4°C±2)*	Yes 🖊	No	
Cooler #1 3.2 Cooler #2 Cooler #3	Cooler #4 _	Cooler#5 Cooler #6	
Chain of custody present?	Yes 🖊	No	
Chain of custody signed when relinquished and received?	Yes <u></u>	No	
Chain of custody agrees with sample labels?	Yes 🟒	No	
Samples in proper container/bottle?	Yes 🖊	No	
Sample containers intact?	Yes _	No	
Sufficient sample volume for indicated test?	Yes 🖊	No	
All samples received within holding time?	Yes /	No	
Was TAT marked on the COC?	Yes _	No	
Proceed with Standard TAT as per project history?	Yes	No Not Applicable	
Water - VOA vials have zero headspace? No VOA vials so	ubmitted <u></u>	Yes No	
Water - pH acceptable upon receipt?	Yes	No Not Applicable	
Adjusted?	Che	cked by	
Sample Condition: Good Other(Explain)			
(For diffusive samples or AIHA lead) Is a known blank inclu-	ded? Yes	No	

See Case Narrative for resolution of the Non-Conformance.

\L\Quality Assurance\Checklists Procedures Sign-Off Templates\Checklists\Sample Receipt Checklists\Sample_Cooler_Receipt_Checklist

^{*} Samples do not have to comply with the given range for certain parameters.

Client: Atlanta Environmental Mgmt

Project Name: Dekalb Ave. CAP Fill

Workorder: 1411750

ANALYTICAL QC SUMMARY REPORT

BatchID: 198943

Date:

17-Nov-14

Sample ID: MB-198943	Client ID:				Uni	ts: mg/Kg	Pre	p Date: 11/1	1/2014	Run No: 279767	
SampleType: MBLK	TestCode:	TOTAL MERCURY	SW7471B		Bate	chID: 198943	An	alysis Date: 11/1	1/2014	Seq No: 5914478	
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Q)ual
Mercury	BRL	0.100									
Sample ID: LCS-198943	Client ID:				Uni	ts: mg/Kg	Pre	p Date: 11/1	1/2014	Run No: 279767	
SampleType: LCS	TestCode:	TOTAL MERCURY	SW7471B		Bate	chID: 198943	An	alysis Date: 11/1	1/2014	Seq No: 5914481	
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Q)ual
Mercury	0.4011	0.100	0.4000		100	80	120				
Sample ID: 1411562-001DMS	Client ID:				Uni	ts: mg/Kg-	dry Pre	p Date: 11/1	1/2014	Run No: 279767	
SampleType: MS	TestCode:	TOTAL MERCURY	SW7471B		Bate	chID: 198943	An	alysis Date: 11/1	1/2014	Seq No: 5914484	
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Q)ual
Mercury	0.4487	0.115	0.4595	0.009735	95.5	70	130				
Sample ID: 1411562-001DMSD	Client ID:				Uni	ts: mg/Kg-	dry Pre	p Date: 11/1	1/2014	Run No: 279767	
SampleType: MSD	TestCode:	TOTAL MERCURY	SW7471B		Bate	chID: 198943	An	alysis Date: 11/1	1/2014	Seq No: 5914485	
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Q)ual
Mercury	0.4719	0.115	0.4595	0.009735	101	70	130	0.4487	5.04	30	

Qualifiers: > Greater than Result value

BRL Below reporting limit

J Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

< Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

R RPD outside limits due to matrix

Client: Atlanta Environmental Mgmt

Dekalb Ave. CAP Fill

Project Name: Workorder: 1411750

Rpt Lim Reporting Limit

ANALYTICAL QC SUMMARY REPORT

BatchID: 198970

Date:

17-Nov-14

Sample ID: MB-198970 SampleType: MBLK	Client ID: TestCode: TC	L-SEMIVOLATILE ORG	GANICS SV	W8270D	Uni Bat	its: ug/Kg chID: 198970		Date: lysis Date:	11/11/2014 11/11/2014	Run No: 279707 Seq No: 5913220
Analyte	Result	RPT Limit S	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref	Val %RPD	RPD Limit Qual
1,1'-Biphenyl	BRL	330								
2,4,5-Trichlorophenol	BRL	1700								
2,4,6-Trichlorophenol	BRL	330								
2,4-Dichlorophenol	BRL	330								
2,4-Dimethylphenol	BRL	330								
2,4-Dinitrophenol	BRL	1700								
2,4-Dinitrotoluene	BRL	330								
2,6-Dinitrotoluene	BRL	330								
2-Chloronaphthalene	BRL	330								
2-Chlorophenol	BRL	330								
2-Methylnaphthalene	BRL	330								
2-Methylphenol	BRL	330								
2-Nitroaniline	BRL	1700								
2-Nitrophenol	BRL	330								
3,3'-Dichlorobenzidine	BRL	670								
3-Nitroaniline	BRL	1700								
4,6-Dinitro-2-methylphenol	BRL	1700								
4-Bromophenyl phenyl ether	BRL	330								
4-Chloro-3-methylphenol	BRL	330								
4-Chloroaniline	BRL	330								
4-Chlorophenyl phenyl ether	BRL	330								
4-Methylphenol	BRL	330								
4-Nitroaniline	BRL	1700								
4-Nitrophenol	BRL	1700								
Acenaphthene	BRL	330								
Acenaphthylene	BRL	330								
Acetophenone	BRL	330								
Qualifiers: > Greater than Result	value		< Less	than Result value			В	Analyte detected in	n the associated method	blank
BRL Below reporting lim	nit			ated (value above quantita	ation range)				preparation or analysis	exceeded
J Estimated value de	etected below Reporting Lim	it	N Analy	te not NELAC certified			R	RPD outside limits	s due to matrix	

S Spike Recovery outside limits due to matrix

Client: Atlanta Environmental Mgm

Atlanta Environmental Mgmt
Name: Dekalb Ave. CAP Fill

Project Name: Dekalb Ave. CAP I Workorder: 1411750

Rpt Lim Reporting Limit

ANALYTICAL QC SUMMARY REPORT

Date:

17-Nov-14

BatchID: 198970

Sample ID: MB-198970	Client ID:			Uni	0 0				Run No: 27970	
SampleType: MBLK	TestCode: TO	CL-SEMIVOLATILE ORGANIC	S SW8270D	Bat	chID: 198970	Ana	alysis Date: 11/11	1/2014	Seq No: 59132	220
Analyte	Result	RPT Limit SPK va	lue SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit	Qual
Anthracene	BRL	330								
Atrazine	BRL	330								
Benz(a)anthracene	BRL	330								
Benzaldehyde	BRL	330								
Benzo(a)pyrene	BRL	330								
Benzo(b)fluoranthene	BRL	330								
Benzo(g,h,i)perylene	BRL	330								
Benzo(k)fluoranthene	BRL	330								
Bis(2-chloroethoxy)methane	BRL	330								
Bis(2-chloroethyl)ether	BRL	330								
Bis(2-chloroisopropyl)ether	BRL	330								
Bis(2-ethylhexyl)phthalate	BRL	330								
Butyl benzyl phthalate	BRL	330								
Caprolactam	BRL	330								
Carbazole	BRL	330								
Chrysene	BRL	330								
Di-n-butyl phthalate	BRL	330								
Di-n-octyl phthalate	BRL	330								
Dibenz(a,h)anthracene	BRL	330								
Dibenzofuran	BRL	330								
Diethyl phthalate	BRL	330								
Dimethyl phthalate	BRL	330								
Fluoranthene	BRL	330								
Fluorene	BRL	330								
Hexachlorobenzene	BRL	330								
Hexachlorobutadiene	BRL	330								
Hexachlorocyclopentadiene	BRL	660								
Qualifiers: > Greater than Result	t value	<	Less than Result value			В	Analyte detected in the ass	sociated method	blank	
BRL Below reporting lin	nit	Е	Estimated (value above quantit	tation range)		Н	Holding times for prepara	tion or analysis e	xceeded	
J Estimated value de	etected below Reporting Lim	nit N	Analyte not NELAC certified			R	RPD outside limits due to	matrix		

S Spike Recovery outside limits due to matrix

Client: Atlanta Environmental Mgmt

Project Name: Dekalb Ave. CAP Fill

Workorder: 1411750

ANALYTICAL QC SUMMARY REPORT

Date:

17-Nov-14

BatchID: 198970

Sample ID: MB-198970 SampleType: MBLK	Client ID: TestCode: TC	L-SEMIVOLATILE	ORGANICS S	W8270D	Un Bat	its: ug/Kg chID: 198970		p Date: alysis Date:	11/11/2014 11/11/2014	Run No: 279707 Seq No: 5913220
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref	Val %RPI	O RPD Limit Qual
Hexachloroethane	BRL	330								
Indeno(1,2,3-cd)pyrene	BRL	330								
Isophorone	BRL	330								
N-Nitrosodi-n-propylamine	BRL	330								
N-Nitrosodiphenylamine	BRL	330								
Naphthalene	BRL	330								
Nitrobenzene	BRL	330								
Pentachlorophenol	BRL	1700								
Phenanthrene	BRL	330								
Phenol	BRL	330								
Pyrene	BRL	330								
Surr: 2,4,6-Tribromophenol	2787	0	3333		83.6	40.2	120			
Surr: 2-Fluorobiphenyl	1361	0	1667		81.7	45.6	120			
Surr: 2-Fluorophenol	2681	0	3333		80.4	35.2	120			
Surr: 4-Terphenyl-d14	1330	0	1667		79.8	51	121			
Surr: Nitrobenzene-d5	1381	0	1667		82.8	37.8	120			
Surr: Phenol-d5	2765	0	3333		83.0	39.9	120			
Sample ID: LCS-198970	Client ID:				Un	0 0		p Date:	11/11/2014	Run No: 279707
SampleType: LCS	TestCode: TC	L-SEMIVOLATILE	ORGANICS S	W8270D	Bat	chID: 198970	An	alysis Date:	11/11/2014	Seq No: 5913221
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref	Val %RPl	O RPD Limit Qual
2,4-Dinitrotoluene	3376	330	3333		101	56.9	120			
2-Chlorophenol	3202	330	3333		96.1	51	120			
1-Chloro-3-methylphenol	3424	330	3333		103	54	120			
1-Nitrophenol	3296	1700	3333		98.9	40.7	120			
Acenaphthene	3271	330	3333		98.1	57.9	120			
N-Nitrosodi-n-propylamine	3702	330	3333		111	56.5	124			
Qualifiers: > Greater than Result	value		< Less	than Result value			В	Analyte detected	in the associated method	od blank
BRL Below reporting limit				ated (value above quantita	ation range)		Н		preparation or analysi	s exceeded
	tected below Reporting Limi	t		yte not NELAC certified			R	RPD outside lim	its due to matrix	
Rpt Lim Reporting Limit			S Spike	Recovery outside limits of	due to matrix					

Client: Atlanta Environmental Mgmt

Project Name: Dekalb Ave. CAP Fill

Rpt Lim Reporting Limit

Workorder: 1411750

ANALYTICAL QC SUMMARY REPORT

Date:

17-Nov-14

BatchID: 198970

Sample ID: LCS-198970 SampleType: LCS	Client ID: TestCode:	TCL-SEMIVOLATILE	ORGANICS S	W8270D	Uni Bat	its: ug/Kg chID: 198970	•	Date: 11/		Run No: 279707 Seq No: 5913221
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	l %RPD	RPD Limit Qual
Pentachlorophenol	3118	1700	3333		93.5	41.8	120			
Phenol	2941	330	3333		88.2	50.1	120			
Pyrene	3106	330	3333		93.2	59.4	120			
Surr: 2,4,6-Tribromophenol	3568	0	3333		107	40.2	120			
Surr: 2-Fluorobiphenyl	1705	0	1667		102	45.6	120			
Surr: 2-Fluorophenol	3227	0	3333		96.8	35.2	120			
Surr: 4-Terphenyl-d14	1632	0	1667		97.9	51	121			
Surr: Nitrobenzene-d5	1768	0	1667		106	37.8	120			
Surr: Phenol-d5	3421	0	3333		103	39.9	120			
Sample ID: 1411750-001CMS		FILL SOIL 11-10-14			Uni	its: ug/Kg-c	lry Prep	Date: 11/	/11/2014	Run No: 279861
SampleType: MS	TestCode:	TCL-SEMIVOLATILE (ORGANICS S	W8270D	Bat	chID: 198970	Ana	alysis Date: 11/	/12/2014	Seq No: 5917055
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	l %RPD	RPD Limit Qual
2,4-Dinitrotoluene	2569	380	3856		66.6	40.3	120			
2-Chlorophenol	2798	380	3856		72.6	44.2	120			
4-Chloro-3-methylphenol	3189	380	3856		82.7	42.1	120			
4-Nitrophenol	3580	2000	3856		92.8	30.8	120			
Acenaphthene	3250	380	3856		84.3	51.1	120			
N-Nitrosodi-n-propylamine	3464	380	3856		89.8	50.4	120			
Pentachlorophenol	2856	2000	3856		74.1	38.1	120			
Phenol	2823	380	3856		73.2	43.1	120			
Pyrene	5345	380	3856	1665	95.4	45.3	120			
Surr: 2,4,6-Tribromophenol	3799	0	3856		98.5	40.2	120			
Surr: 2-Fluorobiphenyl	1650	0	1928		85.6	45.6	120			
Surr: 2-Fluorophenol	2643	0	3856		68.6	35.2	120			
Surr: 4-Terphenyl-d14	1512	0	1928		78.4	51	121			
Surr: Nitrobenzene-d5	1669	0	1928		86.5	37.8	120			
Qualifiers: > Greater than Result val	lue		< Less	than Result value			В	Analyte detected in the	associated method	blank
BRL Below reporting limit			E Estim	ated (value above quantit	ation range)		Н	Holding times for prepare	aration or analysis e	xceeded
J Estimated value detec	ted below Reporting	Limit	N Analy	te not NELAC certified			R	RPD outside limits due	e to matrix	

S Spike Recovery outside limits due to matrix

Analytical Environmental Services, Inc

Client: Atlanta Environmental Mgmt

Dekalb Ave. CAP Fill

Workorder: 1411750

Project Name:

ANALYTICAL QC SUMMARY REPORT

BatchID: 198970

Date:

17-Nov-14

Sample ID: 1411750-001CMS SampleType: MS		FILL SOIL 11-10-14 CCL-SEMIVOLATILE (W8270D	Uni Bat	its: ug/Kg- cchID: 198970		Date: 11/11/2/19/19/29		Run No: 279861 Seq No: 5917055
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
Surr: Phenol-d5	2795	0	3856		72.5	39.9	120			
Sample ID: 1411750-001CMSD SampleType: MSD		FILL SOIL 11-10-14 CCL-SEMIVOLATILE (W8270D	Uni Bat	its: ug/Kg- cchID: 198970		Date: 11/11/2		Run No: 279861 Seq No: 5917056
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
2,4-Dinitrotoluene	2817	380	3856		73.0	40.3	120	2569	9.19	38.7
2-Chlorophenol	2811	380	3856		72.9	44.2	120	2798	0.468	32.9
4-Chloro-3-methylphenol	3332	380	3856		86.4	42.1	120	3189	4.36	33.2
4-Nitrophenol	4080	2000	3856		106	30.8	120	3580	13.1	34
Acenaphthene	3371	380	3856		87.4	51.1	120	3250	3.67	30.5
N-Nitrosodi-n-propylamine	3450	380	3856		89.5	50.4	120	3464	0.413	34.6
Pentachlorophenol	3177	2000	3856		82.4	38.1	120	2856	10.6	33
Phenol	2924	380	3856		75.8	43.1	120	2823	3.50	37.4
Pyrene	4886	380	3856	1665	83.5	45.3	120	5345	8.97	32.8
Surr: 2,4,6-Tribromophenol	4118	0	3856		107	40.2	120	3799	0	0
Surr: 2-Fluorobiphenyl	1713	0	1928		88.8	45.6	120	1650	0	0
Surr: 2-Fluorophenol	2769	0	3856		71.8	35.2	120	2643	0	0
Surr: 4-Terphenyl-d14	1612	0	1928		83.6	51	121	1512	0	0
Surr: Nitrobenzene-d5	1771	0	1928		91.9	37.8	120	1669	0	0
Surr: Phenol-d5	2911	0	3856		75.5	39.9	120	2795	0	0

Qualifiers: > Greater than Result value

BRL Below reporting limit

J Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

< Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

R RPD outside limits due to matrix

Atlanta Environmental Mgmt Dekalb Ave. CAP Fill

Workorder: 1411750

Rpt Lim Reporting Limit

Client:

Project Name:

ANALYTICAL QC SUMMARY REPORT

BatchID: 198979

Date:

17-Nov-14

Sample ID: MB-198979 SampleType: MBLK	Client ID: TestCode: Vo	olatile Organic Compoun	nds by GC/MS	SW8260B	Uni Bat	ts: ug/Kg chID: 198979		Date:	11/10/2014 11/10/2014	Run No: 279648 Seq No: 5912495
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref	`Val %RPD	RPD Limit Qual
1,1,1-Trichloroethane	BRL	5.0								
1,1,2,2-Tetrachloroethane	BRL	5.0								
1,1,2-Trichloroethane	BRL	5.0								
1,1-Dichloroethane	BRL	5.0								
1,1-Dichloroethene	BRL	5.0								
1,2,4-Trichlorobenzene	BRL	5.0								
1,2-Dibromo-3-chloropropane	BRL	5.0								
1,2-Dibromoethane	BRL	5.0								
1,2-Dichlorobenzene	BRL	5.0								
1,2-Dichloroethane	BRL	5.0								
1,2-Dichloropropane	BRL	5.0								
1,3-Dichlorobenzene	BRL	5.0								
1,4-Dichlorobenzene	BRL	5.0								
2-Butanone	BRL	50								
2-Hexanone	BRL	10								
4-Methyl-2-pentanone	BRL	10								
Acetone	BRL	100								
Benzene	BRL	5.0								
Bromodichloromethane	BRL	5.0								
Bromoform	BRL	5.0								
Bromomethane	BRL	5.0								
Carbon disulfide	BRL	10								
Carbon tetrachloride	BRL	5.0								
Chlorobenzene	BRL	5.0								
Chloroethane	BRL	10								
Chloroform	BRL	5.0								
Chloromethane	BRL	10								
Qualifiers: > Greater than Result	value		< Less	than Result value			В .	Analyte detected	in the associated method	blank
BRL Below reporting limit	it		E Estim	nated (value above quantit	ation range)		Н	Holding times for	preparation or analysis	exceeded
J Estimated value det	tected below Reporting Lir	mit	N Analy	yte not NELAC certified			R	RPD outside limi	its due to matrix	

S Spike Recovery outside limits due to matrix

Analytical Environmental Services, Inc

Client: Atlanta Environmental Mgmt

Project Name: Dekalb Ave. CAP Fill

Workorder: 1411750

ANALYTICAL QC SUMMARY REPORT

BatchID: 198979

Date:

17-Nov-14

Sample ID: MB-198979	Client ID:				Uni	ts: ug/Kg	Prep	Date:	11/10/2014	Run No: 279648	
SampleType: MBLK	TestCode:	Volatile Organic Compour	nds by GC/MS	SW8260B	Bat	chID: 198979	Ana	lysis Date:	11/10/2014	Seq No: 5912495	5
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref	Val %RPI	O RPD Limit (Qual
cis-1,2-Dichloroethene	BRL	5.0									
cis-1,3-Dichloropropene	BRL	5.0									
Cyclohexane	BRL	5.0									
Dibromochloromethane	BRL	5.0									
Dichlorodifluoromethane	BRL	10									
Ethylbenzene	BRL	5.0									
Freon-113	BRL	10									
Isopropylbenzene	BRL	5.0									
Methyl acetate	BRL	5.0									
Methyl tert-butyl ether	BRL	5.0									
Methylcyclohexane	BRL	5.0									
Methylene chloride	BRL	20									
Styrene	BRL	5.0									
Tetrachloroethene	BRL	5.0									
Toluene	BRL	5.0									
trans-1,2-Dichloroethene	BRL	5.0									
trans-1,3-Dichloropropene	BRL	5.0									
Trichloroethene	BRL	5.0									
Trichlorofluoromethane	BRL	5.0									
Vinyl chloride	BRL	10									
Xylenes, Total	BRL	5.0									
Surr: 4-Bromofluorobenzene	48.09	0	50.00		96.2	70	128				
Surr: Dibromofluoromethane	46.58	0	50.00		93.2	78.2	128				
Surr: Toluene-d8	47.98	0	50.00		96.0	76.5	116				

Qualifiers: Greater than Result value

> BRL Below reporting limit

Rpt Lim Reporting Limit

Estimated value detected below Reporting Limit

Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

R RPD outside limits due to matrix

Client: Atlanta Environmental Mgmt

Project Name: Dekalb Ave. CAP Fill

Workorder: 1411750

ANALYTICAL QC SUMMARY REPORT

Date:

17-Nov-14

BatchID: 198979

Sample ID: LCS-198979 SampleType: LCS	Client ID: TestCode:	Volatile Organic Compo	ands by GC/MS	SW8260B	Un Bat	its: ug/Kg cchID: 198979		ep Date: 1 alysis Date: 1		Run No: 279648 Seq No: 5912492
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref V	Val %RPD	RPD Limit Qual
1,1-Dichloroethene	40.75	5.0	50.00		81.5	69.9	145			
Benzene	49.00	5.0	50.00		98.0	72.3	130			
Chlorobenzene	48.32	5.0	50.00		96.6	69	130			
Toluene	50.32	5.0	50.00		101	71.1	130			
Trichloroethene	53.86	5.0	50.00		108	71.7	136			
Surr: 4-Bromofluorobenzene	46.87	0	50.00		93.7	70	128			
Surr: Dibromofluoromethane	46.59	0	50.00		93.2	78.2	128			
Surr: Toluene-d8	46.97	0	50.00		93.9	76.5	116			
Sample ID: 1411562-001AMS Sample Type: MS	Client ID: TestCode:	Volatile Organic Compo	unds by GC/MS	SW8260B	Un: Bat	its: ug/Kg-c cchID: 198979	-	ep Date:		Run No: 279648 Seq No: 5912493
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref V	Val %RPD	RPD Limit Qual
1,1-Dichloroethene	53.27	6.5	64.65		82.4	56.6	151			
Benzene	65.19	6.5	64.65		101	70.4	130			
Chlorobenzene	64.11	6.5	64.65		99.2	67.5	132			
Toluene	64.28	6.5	64.65		99.4	70.4	130			
Trichloroethene	69.73	6.5	64.65		108	70.1	137			
Surr: 4-Bromofluorobenzene	60.09	0	64.65		92.9	70	128			
Surr: Dibromofluoromethane	59.78	0	64.65		92.5	78.2	128			
Surr: Toluene-d8	61.32	0	64.65		94.8	76.5	116			
Sample ID: 1411562-001AMSD SampleType: MSD	Client ID: TestCode:	Volatile Organic Compo	ands by GC/MS	SW8260B	Un Bat	its: ug/Kg-c cchID: 198979	-	ep Date:		Run No: 279648 Seq No: 5912494
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref V	Val %RPD	RPD Limit Qual
1,1-Dichloroethene	53.39	6.5	64.65		82.6	56.6	151	53.27	0.218	20.4
Benzene	65.04	6.5	64.65		101	70.4	130	65.19	0.238	16.9
Qualifiers: > Greater than Result valu BRL Below reporting limit	ie			than Result value	otion rango)		В	•	the associated method by	
J Estimated value detecter Rpt Lim Reporting Limit	ed below Reporting	Limit	N Anal	yte not NELAC certified Recovery outside limits of			R	RPD outside limits	-	receutu

Analytical Environmental Services, Inc

Client: Atlanta Environmental Mgmt

Project Name: Dekalb Ave. CAP Fill

Workorder: 1411750

ANALYTICAL QC SUMMARY REPORT

BatchID: 198979

Date:

17-Nov-14

Sample ID: 1411562-001AMSD	Client ID:				Uni	0 0		Prep Date: 11/10/2014		Run No: 279648	
SampleType: MSD	TestCode: Vo	latile Organic Compo	SW8260B	Bat	chID: 198979	Ana	lysis Date: 11/10	/2014	Seq No: 5912494		
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual	
Chlorobenzene	62.94	6.5	64.65		97.4	67.5	132	64.11	1.83	14.6	
Toluene	65.21	6.5	64.65		101	70.4	130	64.28	1.44	16.6	
Trichloroethene	69.60	6.5	64.65		108	70.1	137	69.73	0.186	17	
Surr: 4-Bromofluorobenzene	60.32	0	64.65		93.3	70	128	60.09	0	0	
Surr: Dibromofluoromethane	61.50	0	64.65		95.1	78.2	128	59.78	0	0	
Surr: Toluene-d8	62.21	0	64.65		96.2	76.5	116	61.32	0	0	

Qualifiers: > Greater than Result value

BRL Below reporting limit

J Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

< Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

R RPD outside limits due to matrix

Date: 17-Nov-14

Client: Atlanta Environmental Mgmt **Project Name:**

Dekalb Ave. CAP Fill

Workorder: 1411750

ANALYTICAL QC SUMMARY REPORT

BatchID: 198982

Sample ID: MB-198982	Client ID:				Uni	its: mg/Kg	Pr	ep Date:	11/11/2014	Run No: 279734
SampleType: MBLK	TestCode:	METALS, TOTAL	SW6010C		Bat	chID: 198982	A	nalysis Date:	11/11/2014	Seq No: 5913726
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref	f Val %RPI	RPD Limit Qual
Arsenic	BRL	5.00								
Barium	BRL	5.00								
Cadmium	BRL	2.50								
Chromium	BRL	2.50								
Lead	BRL	5.00								
Selenium	BRL	5.00								
Silver	BRL	2.50								
Sample ID: LCS-198982 SampleType: LCS	Client ID: TestCode:	METALS, TOTAL	SW6010C		Uni Bat	its: mg/Kg chID: 198982		rep Date: nalysis Date:	11/11/2014 11/11/2014	Run No: 279734 Seq No: 5913727
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref	f Val %RPI	RPD Limit Qual
Arsenic	49.46	5.00	50.00		98.9	80	120			
Barium	49.45	5.00	50.00		98.9	80	120			
Cadmium	46.91	2.50	50.00		93.8	80	120			
Chromium	49.04	2.50	50.00		98.1	80	120			
Lead	47.74	5.00	50.00		95.5	80	120			
Selenium	46.30	5.00	50.00		92.6	80	120			
Silver	4.629	2.50	5.000		92.6	80	120			
Sample ID: 1411753-004BM					Uni	its: mg/Kg-	dry Pr	rep Date:	11/11/2014	Run No: 279734
SampleType: MS	TestCode:	METALS, TOTAL	SW6010C		Bat	chID: 198982	A	nalysis Date:	11/11/2014	Seq No: 5913729
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref	f Val %RPI	RPD Limit Qual
Arsenic	33.82	5.38	53.81		62.8	75	125			S
Barium	252.9	5.38	53.81	227.4	47.6	75	125			S
Cadmium	44.19	2.69	53.81	2.369	77.7	75	125			
Chromium	356.5	2.69	53.81	773.1	-774	75	125			S
Qualifiers: > Greater than Re	esult value		< Less	than Result value			В	Analyte detected	in the associated method	1 blank
BRL Below reporting				ated (value above quantita	ation range)		Н	•	r preparation or analysis	
J Estimated value	e detected below Reporting L	imit	N Analy	yte not NELAC certified			R	RPD outside lim	nits due to matrix	
Rpt Lim Reporting Limit	t		S Spike	Recovery outside limits of	lue to matrix					

Analytical Environmental Services, Inc

Client: Atlanta Environmental Mgmt

Project Name: Dekalb Ave. CAP Fill

Workorder: 1411750

ANALYTICAL QC SUMMARY REPORT

BatchID: 198982

Date:

17-Nov-14

Sample ID: 1411753-004BMS SampleType: MS	Client ID: TestCode:	METALS, TOTAL	SW6010C		Uni Bat	ts: mg/Kg - chID: 198982	-	p Date: 11/11 alysis Date: 11/11		Run No: 27973 Seq No: 59137	
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit	Qual
Lead	164.2	5.38	53.81	111.1	98.7	75	125				
Selenium	9.706	5.38	53.81		18.0	75	125				S
Silver	6.428	2.69	5.381	2.758	68.2	75	125				S
Sample ID: 1411753-004BMSD SampleType: MSD	Client ID: TestCode:	METALS, TOTAL	SW6010C		Uni Bat	ts: mg/Kg -chID: 198982	-	p Date: 11/11 alysis Date: 11/11		Run No: 27973 Seq No: 59137	
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit	Qual
Arsenic	38.24	5.38	53.81		71.1	75	125	33.82	12.3	20	S
Barium	251.3	5.38	53.81	227.4	44.5	75	125	252.9	0.658	20	S
Cadmium	45.30	2.69	53.81	2.369	79.8	75	125	44.19	2.46	20	
Chromium	537.3	2.69	53.81	773.1	-438	75	125	356.5	40.5	20	SR
Lead	203.7	5.38	53.81	111.1	172	75	125	164.2	21.5	20	SR
Selenium	11.83	5.38	53.81		22.0	75	125	9.706	19.7	20	S
Silver	6.054	2.69	5.381	2.758	61.2	75	125	6.428	6.00	20	S

Qualifiers: > Greater than Result value

BRL Below reporting limit

J Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

< Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

R RPD outside limits due to matrix

ATTACHMENT J July 2014 Groundwater Field Sampling Sheets

AEM Project:	ARAMARK D	eKalb	AEM Job No	1133-1401-	3 Well No	mw-7	20°Z
Sampling Personnel:	Tony C	iordon, Chad	Crumbley, Neil	Sargent	Date:	7-10-	. b. P
Comments:					Time In	: 1520 Time	e Out: 725
Well Information						0.04 gal/ft	in 1-inch-iD well
Well Diameter:	2 inches	R	eference Point	Marked: Yes	No No	0.16 gal/ft	in 2-inch-ID well
Depth to Water:	9.25 feet be	ow T.O.C. W	ell Depth: Z	S feet below	T.O.C.	0.65 gal/ft	in 4-inch-ID well
Purging Information	n Pu	ge hod Low Flow				Calibration In	
Water Column:	2.26 ft (che		purge B	ailer: 🗓 Teflon 🛚	Poly. Pump	: 🗌 Grundfos 🗗	Peri, ID# 7
1 Well Volume=	Z gal Pur	ge Start Time:		ump Tubing Typ			
3 Weil Volume≠	6 gal Purg	e End Time:	1726 N	leter(s) Used: 🛭	Hanna 991300	YSI 556 Lamot	te 2020 ID#s 3/Z
	<u> </u>	l Time: 8	3 min C	alibration Date/	Time: 67	-10-14	1246
Well Purge Dry (?): yes/no Purg	e Rate: 0,0	gpm C	omments:			· · · · · · · · · · · · · · · · · · ·
Groundwater Field	Parameters			Dissolved			
Gallons	Temp.	Cond.	pН	Oxygen	ORP	Turbidity	Water Level
Time Purged	Deg. Cel	μS/cm	SU	mg/L	mV	NTUs	ft. from TOC
1602 0.25	25,8	490	6.78			23.25	13,83
1618 110	22.3	497	6,42			7,65	14,85
1632 Zio	22.6	491	6147		*tone	5.78	15,50
1656 410	1.22	491	6.43		(-	3.82	15,60
1718 60	21.3	492	6.47	appendit .	-	4.31	15,91
			,				
Stabilization Info:	N/A	+/- 5%	+/- 0.1 SU			<10 NTUs	*****
Sample Collection Pa	arameters			-			
Sample Collection	Method (check a	ll): 🗌 Bailer	Straw Met	thod Pump	Tubing 🗌 V	acuum Jug	Other
Final Tubing/Pump	Depth: 15,94	feet below	T.O.C Fina	ıl Groundwater I	Depth(if applic) 1591 fee	t below T.O.C
Final Sample Turbi	dity: 4.31	NTUs	Ferr	ous Iron Concer	itration (if sa	impled):	→ mg/L
Comments:		·-		•			
I shoustons & ball	Linda marata da la						
Laboratory Analytica Sample ID			Contain	DT 04:	Dunnan	na Adin sa an Till	Cald
	VOCs (Method 8		Contain 40 mL VOA Via		Preserv HCL		ne Sampled
mw-202	VOCS (MECHOG B	2000)	TO THE YOR YE	2	HCL		720_
	*						
				-			
Sample Laboratory	(circle): ACL/Xe	nce/AES/Oth	er De	elivery Method	Hand Deliver	y/Fed-Ex/UPS	/Other
						·	
Field Personnel Signati	ure:		7 //	5=			

AEM Project:	ARAMARK D	eKalb	AEM Job I	No.: 1133-1401-3	Well No	mw	-20 <u>-</u> 3
Sampling Personnel:	Tony C	ordon, Chad	Crumbley Ne	eil Sargent	Date:	7-11-1	1
Comments:					Time In:	915 Tim	e Out: 1140
Well information						0.04 gal/ft	in 1-inch-ID well
Well Diameter:	2 inches	R	eference Poi	nt Marked Yes	No	0.16 gal/ft	in 2-inch-ID well
Depth to Water:	12,97 feet be	low T.O.C. W	ell Depth: 2	28 , 78 feet below	T.O.C.	0.65 gal/ft	in 4-inch-ID well
Purging Information		rge Low Flow	- Micro-	Purging Eq	uipment and	Calibration In	formation
Water Column: /	Met Met S / S / ft (che	hod Low Street		Bailer: Teflon	Poly. Pump:	Grundfos	Peri. ID# 7
1 Well Volume= "	2,5 gal Pur	ge Start Time:	975	Pump Tubing Typ	e: Teflon	Teflon-Lined Po	ly. Polyethylene
3 Weil Volume=	7,5 gal Pur	ge End Time:	1135	Meter(s) Used:	Hanna 991300	YSi 556 Lamot	te 2020 ID#\$ \Z
Total Purged:	7,5 gal Tota	al Time: 13	O min	Calibration Date/	Time:	7-11-14	0825
Well Purge Dry (?): yes/no Purg	ge Rate: 0,0	6 gpm	Comments:			
Groundwater Field	Parameters			Dissolved			
Gallons	Temp.	Cond.	pН	Oxygen	ORP	Turbidity	Water Level
Time Purged	Deg. Cel	μS/cm	SU	mg/L	mV	NTUs	ft. from TOC
927 0.13	25,7		6.00	_		6.21	14.95
943 10	23.1	342	5.95			5112	15,58
959 20	23.7	332	625		-	303	16,99
1020 3.5	23.1	330	6.03	-		3.72	17, 78
1045 5,0	23.3	336	6,08		_	1,54	18.29
1106 600	73.2	342	607	~	-	3,04	18.51
1134 7.5	72.1	335	6.17		-	2.15	18.61
	2.51		Will Co.				
	6						
Stabilization Info:	N/A	+/- 5%	+/- 0.1 SU			<10 NTUs	
Sample Collection Pa	rameters						_
Sample Collection	Method (check a	ll): 🗌 Bailer	Straw M	Nethod Pump	Tubing 🗌 V	acuum Jug	Other .
Final Tubing/Pump	Depth: 18.6	feet below	T.O.C Fi	nal Groundwater [Depth(if applic	.) 18,6/ fee	t below T.O.C
Final Sample Turbi	dity: 2.15	NTUs	Fe	errous Iron Concen	tration (if sa	mpled):	mg/L
Comments:							
						<u> </u>	
Laboratory Analytica	l Information						
Sample ID	Analy		Conta		Preserv		me Sampled
<u>505-wm</u>	VOCs (Method 8	260B)	40 mL VOA	Vials Z	HCL		1135
							
							<u></u>
Sample Laborate	(circle) restre	125 100		Dollars Mark - 1	Manuel Dalis	W/Ender /UPA	(Oth ==
Sample Laboratory	(circle): ACE/Xe	UCO/AES/Uth	er -	Delivery Method	nand beliver	y-red-Ex/UPS	otner
Field Personnel Signati	Jre:				7		

AEM Project:	ARAMARK De	Kalb	AEM Job No	.: 1133-1401-3	Well No.:	MW	-204
Sampling Personnel:	Tony G	ordon, Chad (rumbley, Neil	Sargent	Date:	7/11/14	
Comments: Clau	ty - ra:				Time In:	45°0 Time	e Out: /60%
Well Information						0.04 gal/ft	in 1-inch-iD well
Well Diameter: 7	inches	Re	eference Point	Marked: Yes	No	0.16 gal/ft	in 2-inch-ID well
Depth to Water:	feet beld	w T.O.C. W	ell Depth: Z Z	.41 feet below	T.O.C.	0.65 gal/ft	in 4-inch-ID well
Purging Information	Pur		Micro-	Purging Equ	ripment and Ca	libration In	formation
Water Column: 4.	85 ft (chec	DO Jour Street		ailer:□Teflon 🏻	Poly. Pump:	Grundfos 💢	Peri. ID# <i>D.</i> 6
1 Well Volume= \.	57 gal Purg	e Start Time:	1504 P	ump Tubing Type	e: 🗌 Teflon 🏿 Te	eflon-Lined Pol	y. Polyethylene
3 Well Volume= U	1) gal Purg	e End Time:	1544 N	leter(s) Used: 🖟	Hanna 991300 🗌 YS	1 556 Lamott	te 2020 ID#'s \$ 8,
Total Purged: U	gal Tota	l Time:	-{ o min C	alibration Date/	Time: $7/\sqrt{2}$	11//4	
Well Purge Dry (?):	yes/10 Purg	e Rate: , /	2 gpm C	omments:			
Groundwater Field P	arameters			Dissolved		* *= .	
Gallons	, Temp.	Cond.	рН	Oxygen	ORP	Turbidity	Water Level
Time Purged	Deg. Cel	μS/cm	SU	mg/L	mV	NTUs	ft. from TOC
1512 1.0	21.8	228	4.68		_	6.56	13.56
1520 2.0	21.3	240	4.60			2.90	13.56
1527 3.0	21.9	246	4.60			2.07	13.56
1536 4.0	21.7	249	4.59			1.8/	13.56
1544 4.75	21.4	250	4.59	- Carren		2.06	13.56
			-				
Stabilization Info:	N/A	+/- 5%	+/- 0.1 SU	*****	*****	<10 NTUs	
Sample Collection Par	ameters						
Sample Collection M	•		Straw Met	thod Pump 1	Tubing 🔲 Vac	uum Jug 🗌	Other Other
Final Tubing/Pump I		feet below		ıl Groundwater D		- /	t below T.O.C
Final Sample Turbid	ty: 2.06	NTUs	Feri	ous Iron Concen	tration (if samp	oled):	mg/L
Comments:					 		
Laboratory Analytical	nformation						
Sample ID	Analy	sis	Contain	er Qty.	Preservati	ve Ti	me Sampled
MW-704	VOCs (Method 8		40 mL VOA Via		HCL		1550
11111		<u>:</u>					1276
· · · · · · · · · · · · · · · · · · ·			_				
Sample Laboratory (d	rircle): ACI /V-	OCA / AES /Oth	ar D	elivery Method: /	Hand Dolivor	Fod Ev/LIBC	Other
Dample Laboratory (.ircle). ACL/Ke	// //	- De	7	nanu bewery/		/ Juliel
Field Personnel Signatur	e: 1	1/1-	6	2			

AEM Project:	ARAMARK D	eKalb	AEM Job No	.: 1133-1401	-3 Well No	o.: mw -	206
Sampling Personnel:	Tony	Gordon, Chad (rumbley, Neil	Sargent	Date:	7-11-14	1
Comments:					Time Ir	1: 1320 Time	e Out: 1500
Well information						0.04 gal/ft	în 1-inch-ID well
Well Diameter:	7 inches	Re	eference Point	Marked: (Yes)) _{No}	0.16 gal/ft	în 2-inch-ID well
Depth to Water:	491 feet be		ell Depth: 14		w T.O.C.	<u> </u>	in 4-inch-iD well
Purging Information					Guinment and	d Calibration In	formation
Water Column: 4		thod Low Stress	Micro-	Bailer: Teflon			
		<u> </u>					ly. Polyethylene
1 Well Volume=	11.00	ge Start Time:	<u> </u>				
3 Well Volume=		ge End Time:		Neter(s) Used: E			te 2020 D#s 3/Z
Total Purged: C		al Time: 70	144.	alibration Date	:/Time: 7~	1-14 08	<u>Z5</u>
Well Purge Dry (7): yes/no Pur	ge Rate: 00	gpm C	omments:			
Groundwater Field	Parameters			Dissolved			
Gallons	Temp.	Cond.	Нq	Oxygen	ORP	Turbidity	Water Level
Time Purged	Deg. Cel	μS/cm	SU	mg/L	mV	NTUs	ft. from TOC
1335 -	28,0	1168	6.69	teach.		12.94	5.07
1348 1,5	26.0	1247	6.73	*****		6376	37 US 89
1413 3,0	24.8	1435	6.80		-	3,99	7.79
1443 43	75.4	1697	6185	***	~===	11167	8.96
1447 45	24.0	1671	6186		·2	H.17	9.15
144 37	72.5	1669	6.78	7	- Interest	< 2G	0135
7 131 -111	2-31-0	100	<u> </u>			2/01	
-	-						
 	- 77						
	-0						
			·				
Stabilization Info:	N/A	+/- 5%	(0 4 611			40.1711	
	N/A	+/- 3%	+/- 0.1 SU			<10 NTUs	
Sample Collection P		. —				_	1
Sample Collection		<u> </u>	Straw Mel			/acuum Jug _	Other
Final Tubing/Pum				al Groundwater		100	t below T.O.C
Final Sample Turb	idity: 5,89	NTUs	Ferr	rous Iron Conce	entration (if s	ampled):	mg/L
Comments:							
Laboratory Analytica	al Information						
Sample ID	Anal		Contain		Presen	vative Ti	me Sampled
mu-206	VOCs (Method	3260B)	40 mL VOA Via	als Z	HCL	13	153_
		-					
Sample Laboratory	(circle): ACL/X	enco/AES/Othe	er De	elivery Method:	Hand Delive	ry Fed-Ex/UPS	Other
Ciald Danner 1 Ct		1/	1/				
Field Personnel Signat	ure:	111	//			m- 1	

AEM Project:	ARAMARK De	Kalb	AEM Job N	lo.: 1133-1401	-3 Well No	·· mw	-707P
Sampling Personnel:	Tony G	ordon, Chad	Crumbley, Ne	il Sargent	Date:	7-11-1	Ч
Comments:					Time In:	1150 Tim	e Out: ¡ZiS
Well Information						0.04 gal/ft	in 1-inch-ID well
Well Diameter:	1 inches	R	eference Poin	t Marked: (Yes) _{No}	0.16 gal/ft	in 2-inch-ID well
Depth to Water:	12.05 feet bel	ow T.O.C. W	/ell Depth:	3.19 feet belo	w T.O.C.	0.65 gal/ft	in 4-inch-ID well
Purging Information	Pur Meti	20W Flow		Purging E	quipment and	Calibration In	formation
Water Column: 1			ss Durge	Bailer: Teflon	Poly. Pump:	: 🗌 Grundfos 🗹	Peri, ID#
1 Well Volume= 0	OS gal Purg	e Start Time	: 1260	Pump Tubing Ty	pe: 🛮 Teflon 🗆	Teflon-Lined Po	ly. 🗌 Polyethylene
3 Well Volume≠ ()	, √ gal Purg	e End Time:	1210	Meter(s) Used: 🛭	Hanna 991300	YSI 556 Lamot	te 2020 ID#s3/2
Total Purged:	S gal Tota	l Time: 🏻 j 🖔	min min	Calibration Date	/Time: `] -	4-14	2580
Well Purge Dry (?)	: yes no Purg	e Rate: 🐧 🗍	gpm	Comments:		_	
Groundwater Field I	Parameters			Dissolved			
Gallons	Temp.	Cond.	pН	Oxygen	ORP	Turbidity	Water Level
Time Purged	Deg. Cel	μS/cm	SU	mg/L	mV	NTUs	ft. from TOC
1204 -	_7.05_	418	6.51		-	32.16	12.15
1207 0.05	23,4	405	6,51	43.		4.79	12.20
1210 0.15	22,6	409	(a.SS	48.78	-	1.85	12,20
			,				
			;				
). · · · · ·						
	-						
	-						
Stabilization Info:	N/A	+/- 5%	+/- 0.1 SU		*****	<10 NTUs	
Sample Collection Pa			-/			_	
Sample Collection I			Straw Me		Tubing V		_
Final Tubing/Pump	حدی د			nal Groundwater			
Final Sample Turbio Comments:	nty: 1.85	NTUs	- Fe	rrous Iron Conce	ntration (if sa	mpled): 👡	mg/L
Comments.							
Laboratory Analytical	Information				<u> </u>		
Sample ID	Analy	sis	Contai	iner Qty.	Preserva	ative Ti	me Sampled
mw-2078	VOCs (Method 82		40 mL VOA V		_ HCL		212
1.100 //-							
		<u> </u>					
Sample Laboratory (circle): ACLAXei	nco/AES/Oth	er [Delivery Method:	Hand Deliver	y/Ped-Ex/UPS	/Other
Field Personnel Signatu	ге:						

AEM Project:	ARAMARK DeKall	AEM Job	No.: 1133-1401-	3 Well No	:: mw-2	208 P
Sampling Personnel:	Tony Gordo	on, Chad Crumbley, N	eil Sargent	Date:	7-10-1	- V
Comments:				Time In:	ISZO Time	e Out: 174@
Well Information					0.04 gal/ft	in 1-inch-ID well
Well Diameter:) ^{//} inches	Reference Po	int Marked: Yes	No	0.16 gal/ft	in 2-inch-ID well
Depth to Water: 4	8.90 feet below T.	o.c. Well Depth:	3. I feet below	T.O.C.	0.65 gal/ft	in 4-inch-ID well
Purging Information	Purge	Low Flow- Micro-	Purging Eq	uipment and	Calibration In	formation
Water Column: 4	Method (check):	Low Stress Lipurge	Bailer: Teflon	Poly. Pump:	Grundfos	Peri. ID#
1 Well Volume= ()	gal Purge St	art Time: 15 30	Pump Tubing Typ	e: Teflon	Teflon-Lined Pol	y. Polyethylene
3 Well Volume= ()	S gal Purge Er		Meter(s) Used:	Наппа 991300	YSI 556 Lamott	e 2020 ID#s 3/7
Total Purged: ()	Z gal Total Tir	ne: 13 min	Calibration Date/	Time: 7	10-14	1246
Well Purge Dry (?);	ye)/no Purge Ra	te: 0,015 gpm	Comments:		,,,,	
Groundwater Field P	arameters		Dissolved			
Gallons	Temp.	Cond. pH	Oxygen	ORP	Turbidity	Water Level
Tîme Purged	Deg. Cel	μS/cm SU	mg/L	mV	NTUs	ft. from TOC
1535 -	21.6	534 6.52		-	44.51	10.78
1542 0.7	23.8	332 Coist			139	12.85
1548 -	WET	L DRY	4			
1723				-	Clear	8.85
			- ,	-		
		-	-6			
			-			
			- (
Stabilization Info:	N/A +	/- 5% +/- 0.1 SU		*****	<10 NTUs	
Sample Collection Par	ameters					
Sample Collection M		Bailer Straw A	Aethod D Pump	Tubing V	acuum lug 🗆	Other
Final Tubing/Pump I			inal Groundwater I	_	_	
Final Sample Turbid	100		errous Iron Concen			mg/L
Comments:						
Laboratory Analytical	Information					
Sample ID	Analysis	Cont		Preserva	ative Tir	ne Sampled
JROS-mm	VOCs (Method 8260B	40 mL VOA	Vials 2	HCL		130_
						
						
Sample Laboratory (d	ircle): ACL/Kence/	AES/Other	Delivery Method:	and Deliver	Fed-Ex/UPS	/Other
	7 -/	//		;		
Field Personnel Signatur	e:	-11	5	>	Market Market Market Market & .	

AEM Project:	ARAMARK DeKalb	ACM Job N	lo.: 1133-1401-	3 Well No.:	MW-	2/2
Sampling Personnel:	Tony Gordon, Chao	Crumbley, 10	il Sargent	Date:	7-11-	14
Comments: P.	Cloube - Wass	\ <u></u>		Time In: /	3/6 Time (Dut: 1446
Well Information					0.04 gal/ft in	1-inch-ID well
Well Diameter:	フ・u inches	Reference Poir	t Marked: (YES)	No	0.16 gal/ft in 2	2-inch-ID well
Depth to Water:	11.93 feet below T.O.C.	Well Depth: /	1.70 feet below	T.O.C.	0.65 gal/ft in	4-inch-ID well
Purging Information	A stathad M LOW!	ow- Micro-		uipment and Cal		
Water Column:	ft (check): Low Str	ress purge	Bailer: Toflen	Poly. Pump:	Grundfos Pe	eri. ID# <i>D-</i> 6
1 Well Volume= /	25 gal Purge Start Time	e: 334	Pump Tubing Typ			
3 Well Volume=	gal Purge End Time	1431	Meter(s) Used: 🛭	Hanna 991300 YSI	556 Lamotte 2	020 ID#'s 8
Total Purged: 3.	75 gal Total Time:	7 min	Calibration Date	Time: 7-//-	14	
Well Purge Dry (?)	: yes no Purge Rate:	67 gpm	Comments:			
Groundwater Field I	Parameters		Dissolved			
Gallons	Temp. Cond.	pН	Oxygen	ORP	Turbidity	Water Level
Time Purged	Deg. Cel µS/cm	SU SU	mg/L		NTUs	ft. from TOC
1344 1.25	Woo 1603				53.3	G.15.001
1405 218	20.9 (397	10-9			3/	16.22
1414 328	20.2 1391				18.10	16.57
14)(3,25	24 1390	10.90	2		7.91	1 +10(
		_				
						<u> </u>
		-	X			
				-		
		-				
Stabilization Info:	N/A +/- 5%	+/- 0.1 SU			10 NTUs	
Sample Collection Pa	rameters		<u> </u>			
	Method (check all): Bail	er 🗖 Straw M	ethod Pump	Tubing Vacu	um Jug 🗍 (Other
	Depth: ~17.55 feet belo		nal Groundwater	_		
Final Sample Turbi			errous Iron Concer			mg/L
Comments:						
Laboratory Analytica	Information					
Sample ID	Analysis	Conta	iner Qty.	Preservativ	e Time	e Sampled
MW-ZIZ	VOCs (Method 8260B)	40 mL VOA	Vials 2	HCL		4.65
					_	The control of the co
	· · · · · · · · · · · · · · · · · · ·		Ph. 14	(· /	<u> </u>
Sample Laboratory	(circle): ACL/Kengo/AES/O	ther	Delivery Method	Hand-Belivery/F	ed-Ex/UPS/C	ther
Field Personnel Signatu	ıre:	J. Sand	/	F		
	N.	//	1	γ		
			12/30/2013, 1	:44 pm, CURRENT-Sampl	IngFieldLog-Oct2011,	ARAMARK DeKalb (2), Page 1 of 1.

AEM Project:	ARAMARK De	eKalb	AEM Job No	o.: 1133-1401	-3 Well N	o.: Mu	-2/3
Sampling Personnel:	Tony G	iordon, Chad	Crumbley Nei	Sargen -		7/11/14	
Comments:				, C	Time Ir	:1600 Ti	me Out: 1800
Well Information						0.04 gal	ft in 1-inch-ID well
Well Diameter:	2 inches	Re	eference Point	: Marked: Yes	No	0.16 gal	ft in 2-inch-ID well
Depth to Water:	feet be	ow T.O.C. W	ell Depth: 17	44 feet belo	w T.O.C.	0.65 gal/	ft in 4-inch-ID well
Purging Information			- ☐ Micro-	Purging E	quipment and	d Calibration	Information
Water Column: 12	A ft (che	III my Street	s Durge	Bailer: Teflon	D Poly. Pump	: Grundfos	Peri. ID# C
1 Well Volume= 1	97 gal Purg	ge Start Time:	1615	Pump Tubing Ty	pe: Teflon	Teflon-Lined	Poly. Polyethylene
3 Well Volume=	92 gal Purg	ge End Time:	1737	Meter(s) Used: [Hanna 991300	YSI 556 Lan	notte 2020 ID#'s 1 5
Total Purged: 6	, gal Tota	l Time: 🖇	2 min (Calibration Date	/Time: 7/	71/14	
Well Purge Dry (?)	yes/no Purg	e Rate: O. O	7 gpm C	Comments:			
Groundwater Field !	arameters			Dissolved			
Gallons	Temp.	Cond.	pН	Oxygen	ORP	Turbidity	Water Level
Time Purged	Deg. Cel	µS/cm	SU	mg/L	mV	NTUs	ft. from TOC
1630 1.0	23.5	1351	10.72			96.0	9.85
1648 2.0	21.6	1384	10.64			8.59	\$10.91
1701 3.0	20.7	1392	10.61			25.8	11.78
1711 4.0	20.0	1401	10.31	Transp.		37.7	12.85
1721 5.0	20.1	1402	10.12			26.4	13.40
1.10. 6.0	200	11-1	(0,0)			3 15 1	(3.00
Chalding to the control of the contr		. For					
Stabilization Info:	N/A	+/- 5%	+/- 0.1 SU	****		<10 NTUs	
Sample Collection Par			— /-				
Sample Collection A			_	thod Pump	_		_
Final Tubing/Pump Final Sample Turbic		feet below		al Groundwater rous Iron Conce			mg/L
Comments:	<u> </u>	11103		rods iron conce	meracion (ii si	ampica).	71157 12
Laboratory Analytical	Information	<u> </u>					
Sample ID	Analy	sis	Contair	ner Qty.	Preserv	vative	Time Sampled
MW 213	VOCs (Method 8		40 mL VOA Vi	ials 2	HCL		1744
MW-213-dep	VOG		40 ml Va	A vials 2	HCL		1744
			=		-		
Sample Laboratory (circle): ACL/Ke	nco/AES/Othe	er Do	elivery Method:	Hand Delive	r /Fed-Ex/U	PS/Other
Field Personnel Signatu	re: ' //1	-	2/1				
	1,660	egur,	5000	20	_		

AEM Project:	ARAMARK De	Kalb	AEM Job No	.: 1133-1401-3	3 Well No.	: Mh	-214
Sampling Personnel:	Tony G	ordon, Chad	Crumbley Neil	Sargent	Date:	7-10-1	4
Comments: 5	unny - 1	101m			Time In:	/ 0 // Time	Out: 1450
Well Information						0.04 gal/ft i	n 1-inch-ID well
Well Diameter:	2.5 inches	Re	eference Point	Marked: Yes	No	0.16 galyft i	n 2-inch-ID well
Depth to Water: §	7. 49 feet bel	ow T.O.C. W	ell Depth: 🥱	feet below	T.O.C.	0.65 gal/ft ii	n 4-inch-ID well
Purging Information	Pui		- Micro-	Purging Eq	uipment and	Calibration Inf	ormation
Water Column: (6	6-5 (ft (che	ck): Low Stres	s L purge B	ailer: 🗌 Teflon 🛭	Poly. Pump:	Grundfos 🗌	Peri. 1D# D-4 /
1 Well Volume= /c	-64gal Purg	e Start Time:	/307 P	ump Tubing Typ	e: 🛘 Teflon 🗶	Teflon-Lined Poly	. Polyethylene
3 Well Volume= 3	. 92 gal Purg	e End Time:		eter(s) Used: 🛭	Hanna 991300	YSI 556 Lamotte	2020 ID#'s / 5
Total Purged: 3	Z gal Tota	l Time: 🤿	y min C	alibration Date/	Time: 7	-10-14	600
Well Purge Dry (?):	yes(n) Purg	e Rate:	13 gpm C	omments:			
Groundwater Field Pa	arameters			Dissolved			
Gallons	Temp.	Cond.	ρH	Oxygen	ORP	Turbidity	Water Level
Time Purged	Deg. Cel	μS/cm	SU	mg/L	m۷	NTUs	ft. from TOC
1329 10	23.5	662	5.37			4.99	13.20
1342 15	21.5	1093	5.34			2.89	12.25
1354 2=	22.2	(085	5.32			2.22	
1405 25	21.7	654	5.35			2.07	13.35
1415 29	23.1	651	5.23			1.68	12 15
1422 32	21.4	650	5.35			1.27	1275
		<u> </u>				1.2.7	
					-		
							
Stabilization Info:	N/A	+/- 5%	+/- 0.1 SU			<10 NTUs	
		17 3/0	17-0:130			10 N103	
Sample Collection Para		ll): 🗍 Bailer		hod Pump 1	Turkina D Va		0.1.
Final Tubing/Pump D			_	4.6			
Final Sample Turbidi		NTUs		d Groundwater I ous Iron Concen			
Comments:	9. 1. <u>C</u> 7	141.02	1611	ous iron concen	ici acioir (ii saii	iipieu).	mg/L
commence.							
Laboratory Analytical I	nformation						
Sample ID	Analy	sis	Contain	er Qty.	Preserva	tive Tim	ne Sampled
Mw-214	VOCs (Method 8		40 mL VOA Via		HCL		14295
Rinsafe Blan			14 6		11 4		142
14-01 2-01					<u> </u>		1000
							· · · · · · · · · · · · · · · · · · ·
		~					
Sample Laboratory (c	ircle): ACL/Xe	nco AES/Othe	er De	livery Method:	land Deliver	/Fed-Ex/UPS/	Other
	7						
Field Personnel Signature	e:	12/1		2			

AEM Project:	ARAMARK D	eKalb	AEM Job No	.: 1133-1401-	3 Well No.	- MW-S	306
Sampling Personnel:	Tony (ordon, Chad (rumbley, Keil	Sargent	Date:	7-11-1	
Comments:					Time In:	islo Ti	me Out: 115
Well Information					_	0.04 gal/	ft in 1-inch-ID well
Well Diameter:	2 inches	Re	ference Point	Marked: Yes	No	0.16 gal/	ft in 2-inch-ID well
Depth to Water:	5.05 feet be	low T.O.C. W	ell Depth: 30	79 feet below	/ T.O.C.	0.65 gal/	ft in 4-inch-ID well
Purging Informatio		trge Low Flow	Micro-	Purging Ec	juipment and	Calibration	Information
Water Column:	223 ft (ch	eck): Low Stress	purge B	ailer: 🗌 Teflon 🛭	Poly. Pump:	Grundfos	Peri. ID#
1 Well Volume≠	3 lo gal Pur	ge Start Time:	1513 P	ump Tubing Typ	ne: Teflon	Teflon-Lined	Poly. Polyethylene
3 Well Volume=	gal Pur	ge End Time:	רמכן א	eter(s) Used: 🗹	Hanna 991300	YSI 556 Laπ	iotte 2020 D#\$3/7
Total Purged:	gal Total	al Time:	min C	alibration Date/	Time:	11-14	0825
Well Purge Dry (?): yes no Pur	ge Rate: 0.0	gpm C	оттелts:			
Groundwater Field	Parameters			Dissolved			
Gallons	Temp.	Cond.	ρН	Oxygen	ORP	Turbidity	Water Level
Time Purged	Deg. Cel	μS/cm	SU	mg/L	mV	NTUs	ft. from TOC
1514	2511	309	4.88	Comme		70.15	8.05
1548 315	23,6	339	4.52	<u> </u>	~	5,68	8.76
1677 70	72.8	338	4,50	F	n=7	7.91	8.18
1705 1017	77.5	344	4,49	63mg/ ₁		7,47	9.82
							
							
Stabilization Info:	N/A	+/- 5%	+/- 0.1 SU			<10 NTUs	
Sample Collection Pa	rameters						
Sample Collection		ll): 🗍 Bailer	Straw Met	hod Pump	Tubing 🗍 Va	icuum Jug	Other
Final Tubing/Pump		T feet below T		l Groundwater l	_		
Final Sample Turbi	dity: [17]	NTUs		ous Iron Concer			mg/L
Comments:					·		
Laboratory Analytica	Information						
Sample ID	Analy		Contain		Preserva	tive	Time Sampled
MW-306	VOCs (Method 8	260B)	40 mL VOA Via	is Z	HCL		1707
·							
			•	_			
				-	and the same		
Sample Laboratory	(circle): ACL Xe	nco/XES/Othe	r De	livery Method:	Hand Delivery	/Fed-Ex/UF	S/Other
Field Personnel Signati	ıre:	The	10	2 0			

AEM Project:	ARAMARK D	eKalb	AEM Job N	o.: 1133-1401-	-3 Well No	.: mw-	401
Sampling Personnel:	Tony (ordon, Chad	Crumbley, Nei	Sargent	Date:	7-10-1	
Comments:					Time In		
Well Information						0.04 gal/ft	in 1-inch-ID well
Well Diameter:	7 inches	R	eference Point	t Marked: Yes	ン No	0.16 gal/ft	in 2-inch-ID well
Depth to Water:	8.23 feet be			feet below		0.65 gal/ft	in 4-inch-ID well
Purging Information		rge Low Floy	v- ☐ Micro-	Purging E	quipment and	Calibration In	formation
Water Column: 1	7.52 ft (chi	hod Low Stre	11 1 4	Bailer: Teflon (Poly. Pump	: Grundfos 🕓	Peri. ID# 7
1 Well Volume=	7.52 gal Pur	ge Start Time	1422	Pump Tubing Ty	pe: Teflon	Teflon-Lined Pol	ly. Polyethylene
3 Well Volume=		ge End Time:		Meter(s) Used:	Hanna 991300	YSI 556 Lamott	te 2020 ID#3/2
Total Purged:	gal Tota	al Time: S		Calibration Date	/Time: 0	7-10-14	1246
Well Purge Dry (?): yes no Pur	ge Rate: 0.0	gpm (Comments:		<u> </u>	
Groundwater Field	Parameters			Dissolved			
Gallons	Temp.	Cond.	ρН	Oxygen	ORP	Turbidity	Water Level
Time Purged	Deg. Cel	μS/cm	SU	mg/L	mV	NTUs	ft. from TOC
1425	25,0	456	6.38	-	~	9.87	1.33
14.39 1.2	23.2	449	6,58	«———	4	12,51	8,38
1441 -		_	~		-	9,19	
1457 2.4	23.0	427	6.67	a valorena.	Q	8,51	8.38
1511 3.6	23.9	427	6.67			6.41	8.39
							
					-		
Stabilization Info:	N/A	+/- 5%	+/- 0.1 SU			-40 NTU-	
		T/ - J/0	+7-0.130			<10 NTUs	
Sample Collection Pa		u). 🗆 p-21	N		-		l ou
Final Tubing/Pump		feet below	Straw Me	al Groundwater	_	/acuum Jug	Other
Final Sample Turbi		NTUs		rous Iron Conce			mg/L
Comments:	arcy. 6, 71	14103		Tods Itoli Conce	1101 401011 (11 36	inipieu).	IIIg/L
Laboratory Analytica	Information						
Sample ID	Analy	rsis	Contair	ner Qty.	Preserv	ative Tir	me Sampled
nw-401	VOCs (Method 8	260B)	40 mL VOA Vi		HCL		1513
Cample Laborate	(circle): ACL Del			-11	,	15.12	/OIL 1
Sample Laboratory	(CIFCLE): AUL/XE	nco/AES/Oth	er D	elivery Method:	Hand Deliver	y/Fed-Ex/UPS/	/Other
Field Personnel Signati	ıre:	//			7		
	4			-			

AEM Project:	ARAMARK De	Kalb	AEM Job N	o.: 1133-1401-	3 Well No	.: M4	403
Sampling Personnel:		ordon, Chad	Crumbley, Nei	l Sargent	Date:	7/11/4	7
Comments: P. C	lou by	harm			Time In:	16/8 Tim	e Out: /2/6
Well Information				4		0.04 gal/ft	in 1-inch-ID well
Well Diameter:	25 inches	Re	eference Point	Marked: Yes	No No	0.16 gal/ft	in 2-inch-ID well
Depth to Water:	feet bel	pw T.O.C. W	ell Depth: 🖰	feet below	v т.о.с. ZZ.	0.65 gal/ft	in 4-inch-ID well
Purging Information	Pur		- Micro-	Purging Ed		Calibration Ir	formation
7.41 Water Column: 7	it Met	I ∓-3 I ∩W Stros	s L purge	Bailer: 🗌 Teflon [Poly. Pump:	Grundfos A	Peri. ID# 0.6
1.20 1 Well Volume= 4	29 gal Purg	e Start Time:	1049	Pump Tubing Typ	oe: Teflon	Teflon-Lined Po	ly. Polyethylene
3 Well Volume= 3	gal Purg	e End Time:	11-19	Meter(s) Used:Æ	Hanna 991300	YSI 556 Tamot	te 2020 ID#s / _ \$
Total Purged:	75 gal Tota	l Time:		Calibration Date	Time: 7-	11-14	
Well Purge Dry (?):	yes/no Purg	e Rate: , C	 -	Comments:			
Groundwater Field P	arameters			Dissolved			
Gallons	Temp.	Cond.	рН	Oxygen	ORP	Turbidity	Water Level
Time Purged	Deg. Cel	μS/cm	SU	mg/L	mV	NTUs	ft. from TOC
1103 [10	22.3	846	6.81			4.34	16.60
1118 2.0	22.	851	6.85			19.5	17.00
1137 3.0	22.8	852	6.88			12.5	17.06
149 3.75	23.3	877	(0.04			8.06	1 7.15
				-			
							
Ca-hair-nai-n-hair	-	1 70					
Stabilization Info:	N/A	+/- 5%	+/- 0.1 SU			<10 NTUs	
Sample Collection Par			A			_	
Sample Collection N				_	Tubing V		Other
Final Tubing/Pump Final Sample Turbid	D	NTUs		al Groundwater rous Iron Concer			mg/L
Comments:	ity: 1.0 (0	14103	101	Tods Iron Concer	iti ation (ii sa	inpieu).	IIIR) L
Laboratory Analytical	Information				,		
Sample ID	Analy	sis	Contair	ner Qty.	Preserva	ative Ti	me Sampled
Mr-403	VOCs (Method 8	260B) ~	40 mL VOA Vi	als Z	HCL		1154
		a seeds					
							·
						_ -	
Sample Laboratory (circle): ACL/Ke	ngo/AES/Othe	er De	elivery Method	Hand Deliven	v/Fed-Ex/IIPS	/Other
	7	1/1				,	
Field Personnel Signatur	e: (/	2/1					

12/30/2013, 1:44 Mr. CURRENT-SamplingFieldLog-Oct2011, ARAMARK DeKalb (2), Page 1 of 1.

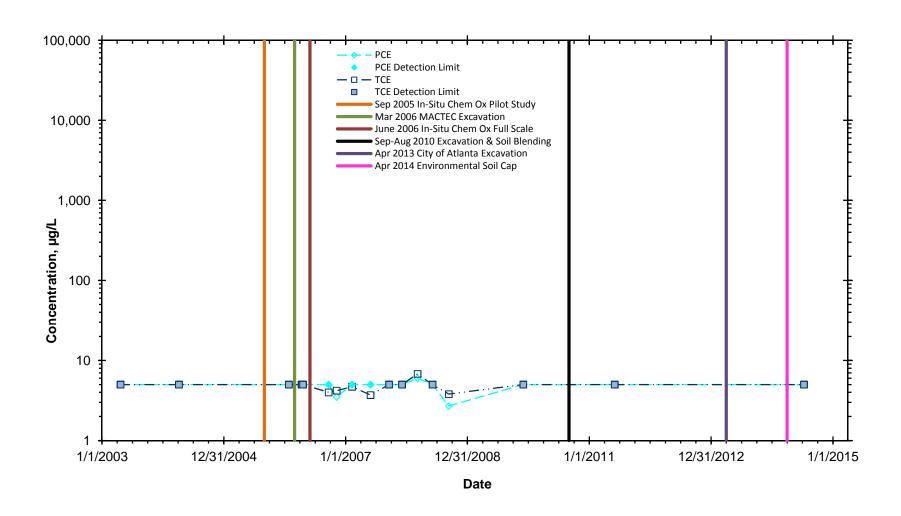
AEM Project:	ARAMARK D	eKalb	AEM Job I	No.: 1133-140	1-3 Well N	lo.: Mw	201
Sampling Personnel:	Tony C	iordon, Chad	Crumbley Ne	eil Sargent	Date:	7-10-1	
Comments:					Tîme l		me Out:
Well Information				·		0.04 gal/	ft in 1-inch-ID well
Well Diameter:	7 inches	R	eference Poir	nt Marked: Yes	No		ft in 2-inch-ID well
Depth to Water:	14.95 feet be	ow T.O.C. V	Vell Depth: 2	0.15 feet bel	ow T.O.C.	0.65 gal/	ft in 4-inch-ID well
Purging Information		ge Low Flow	v- Micro-	Purging	Equipment an	d Calibration	Information
Water Column:	5.7 ft (che	noa W Law Stra		Bailer: Teflon	Poly. Pum	D: Grundfos [Peri. ID# 1
1 Well Volume=	gal Pur	e Start Time	:1817				Poly. Polyethylene
3 Well Volume= 1		e End Time:	1357				otte 2020 ID#'s 3/2
		ıl Time: 🤟		Calibration Date			0. 1246
Well Purge Dry (?)	-	e Rate: 0.0		Comments:		10116	2 12 10
Groundwater Field		0.0		Dissolved			
Gallons	Temp.	Cond.	рН	Oxygen	ORP	Turbidity	Water Level
Time Purged	Deg. Cel	μS/cm	SU	mg/L	mV	NTUs	ft. from TOC
1350	25.9	400	4.24	_	-	5.26	14.52
1331 0.8	23.b	383	4.27	-		3.55	14.70
1344 1.6	22.9	384	4,31			2.70	14.75
				41			
				: ::			
				· ——			
-							
Stabilization Info:	N/A	+/- 5%	+/- 0.1 SU			<10 NTUs	
Sample Collection Pa	rameters						
Sample Collection /		l): 🗌 Bailer	Straw Me	ethod Pump	Tubing 🗍 \	Vacuum Jug	Other
Final Tubing/Pump	Depth: Jy 8 3	feet below	_	nal Groundwater			
Final Sample Turbio	lity: 2.70	NTUs		rrous Iron Conce		11.0	mg/L
Comments:							
I observe a serve serve	Indiana at I						·
Laboratory Analytical Sample ID		-:-	Cartai		_		
	VOCs (Method 8		Contai				Time Sampled
<u>MW-405</u>	TOCS (MECHOO B)		40 mL VOA V	nats 7	HCL		357
						-	
					•	-	
						-	
Sample Laboratory (circle): ACL/Xei	ncoAES/Othe	er C	Pelivery Method:	Hand Delive	y/Fed-Ex/UP	S/Other
iold Porcessel Siene	1//	?/_					
ield Personnel Signatu		A =	>/		- 1		

AEM Project:	ARAMARK De	Kalb	AEM Job N	o.: 1133-1401-	3 Well No	MW-	109
Sampling Personnel:	Tony G	ordon, Chad C	rumble) Nei	Sargent	Date:	7/11/14	
Comments: Sur	Muc Mill	/ bre12	V		Time In	0850 Tim	e Out: 16/
Well Information		7				0.04 gal/ft	in 1-inch-ID well
Well Diameter:	2 inches	Re	ference Point	Marked: Yes	No	1	in 2-inch-ID well
Depth to Water:	3.64 feet belo	ow T.O.C. We	ell Depth: 19	,98 feet below	v T.O.C.	0.65 gal/ft	in 4-inch-ID well
Purging Information	Pure Meth					Calibration In	
Water Column: 6	34 ft (chec		P=190	Bailer: Teflon [
		e Start Time:		ump Tubing Typ			
3 Well Volume= 3	.04 gal Purge	e End Time:	1007 1	Neter(s)Used: 🛭	Hanna 991300	YSI 556 Lamoti	te 2020 ID#'s
Total Purged: 7	5 gal Total	Time: 52	min (alibration Date	Time: 7	111/14	
Well Purge Dry (?):	yes/fo Purge	Rate:	gpm C	omments:			
Groundwater Field P	arameters			Dissolved	·		_ *
Gallons	Temp.	Cond.	pН	Oxygen	ORP	Turbidity	Water Level
Time Purged	Deg. Cel	μS/cm	SU	mg/L	mV	NTUs	ft. from TOC
0927 1.0	20.9	1147	6.01			2.83	14.58
0935 1.5	_20.0	<u>III </u>	6.09			2.34	14.80
0941 2.0	20.3	1105	6.10			2./4	14.91
0947 2.5	21.1	085	2.10			2.08	14.95
0955 3.0	20.9	1077	6.12	***************************************		2.47	15.00
07 1004 3.5	20.0	1075	6.10		-	2.57	5.03
Stabilization Info:	N/A	+/- 5%	+/- 0.1 SU			<10 NTUs	
Sample Collection Par	ameters						
Sample Collection A). Pailor	Ctrow Mai	thod Pump	Tukina 🖂 v		اميد
Final Tubing/Pump	· ·		_				Other
Final Sample Turbid		NTUs		al Groundwater rous Iron Concer			
Comments:	19. 677	141 Q3		Ous I/Oti Concei	ILI ALIUII (II SA	inplea):	mg/L
37111101101							
Laboratory Analytical	Information I						
Sample ID	Analys	iis	Contain	er Qty.	Preserva	ative Tir	ne Sampled
MW-409	VOCs (Method 82		40 mL VOA Via		HCL		1054
1-100 10		,			1166		103 4
						-	
			,				·
Sample Laboratory (ircle): ACL/Xen	cd/AES/Other	. De	elivery Method:	land Deliver	ed-Ex/UPS	Other
	7 7	1//		7			
Field Personnel Signatur	e: //	1/1-	1/6			P	

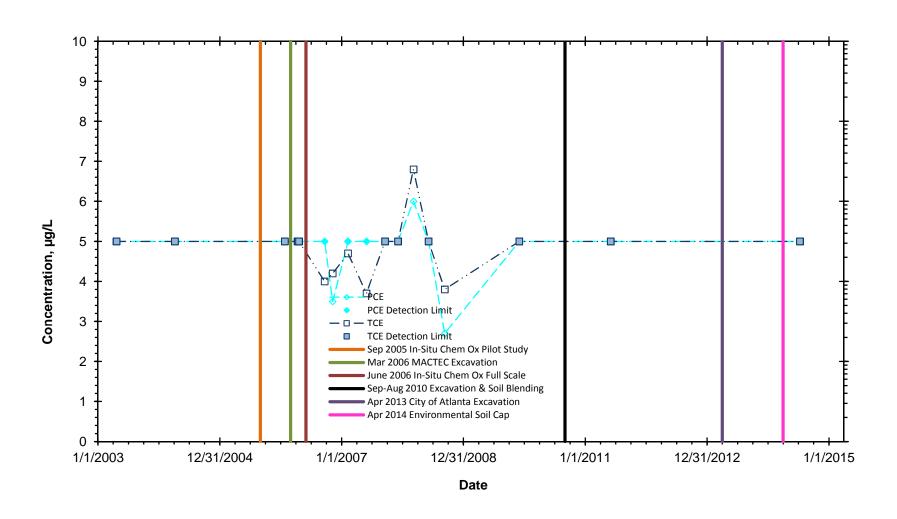
AEM Project:	ARAMARK DeKalb	AEM Job N	lo.: 1133-1401-3	Well No.: M	W-409D
Sampling Personnel:		had Crumbley) Ne	il Sargent	Date: 7/	10/14
Comments: Clo	udy - Light	rain		Time In:/456	Time Out: 172
Well information				0.04	gal/ft in 1-inch-ID well
Well Diameter: 7		Reference Poin		No 0.16	gal/ft in 2-inch-iD well
Depth to Water:	feet below T.O.C.	Well Depth: 2	9.77 feet below	T.O.C. 0.65	gal/ft in 4-inch-ID well
Purging Information		w Flow- Micro-	Purging Equ	ipment and Calibrati	ion Information
Water Column: /(ft (check):	w Stress purge	Bailer: 🗌 Teflon 🛮	Poly. Pump: 🗌 Grundi	fos Peri. ID# Pr 6
1 Well Volume= 2	gal Purge Start	Time: 1516	Pump Tubing Type	: Teflon 🛮 Teflon-Lir	ned Poly. Polyethylene
3 Well Volume=	gal Purge End Ti	me: 1705	Meter(s) Used: 🛭	Hanna 991300 🗌 Y5I 556 🔎	Larnotte 2020 D#'s /
Total Purged: 🖇	gal Total Time:	10 9 min	Calibration Date/1	Time: 7/10/14	1000
Well Purge Dry (?):	yes/10 Purge Rate:	of gpm	Comments:		
Groundwater Field P	arameters		Dissolved		
Gallons	Temp. Cond	i. pH	Oxygen	ORP Turbio	dity Water Level
Time Purged	Deg. Cel µS/c	m SU	mg/L	mV NTU	Js ft. from TOC
1542 2.0	23.4 41	8 4.4	/	- 7 .	05 17.13
1606 4.0	23.2 4.		<u> </u>		79 17.21
1639 6-0	75.00 41			<u> </u>	
1708 800	<u> 24.3 4</u>	<u>5) 4.56</u>			25 16.86
		-			
			·×		
	-				
			71		
			1		
Stabilization Info:	N/A +/- 5	% +/- 0.1 SU		<10 N1	ΓUs
Sample Collection Par	rameters				
		Bailer 🔀 Straw M	ethod Pump T	Tubing Vacuum J	ug Other
	Depth: 1-/1,55 feet			Depth(if applic.)	_
Final Sample Turbic				tration (if sampled):	
Comments:					
Laboratory Analytical	Information				
Sample ID	Analysis	Conta	iner Qty.	Preservative	Time Sampled
MW-4090	VOCs (Method 8260B)	40 mL VOA	Vials Z	HCL	13/6
				-	
Sample Laboratory	circle): ACL/Kepeo/AE	5/Other	Delivery Method:	Hand Delivery/Fed-E	x/UPS/Other
Field Personnel Signatu	re: M	11			

12/30/2013, 1:44 PM, CURRENT-SamplingFieldLog-Oct2011. ARAMARK DeKaib (2), Page 1 of 1.

ATTACHMENT K Time Trend Charts


Historical Data for Selected Chemicals in Groundwater Samples from Monitoring Well MW-203 Aramark Dekalb HSI/VRP Site #10704 Atlanta, Georgia

	MW-203	MW-203							
	04/22/03	04/06/04	01/25/06	04/12/06	04/20/06	09/21/06	11/08/06	2/8/07	5/30/07
Tetrachloroethene	<5	<5	<5	<5	<5	<5	3.5	<5	<5
Trichloroethene	<5	<5	<5	<5	<5	4	4.2	4.7	3.7


Historical Data for Selected Chemicals in Groundwater Samples from Monitoring Well MW-203 Aramark Dekalb HSI/VRP Site #10704 Atlanta, Georgia

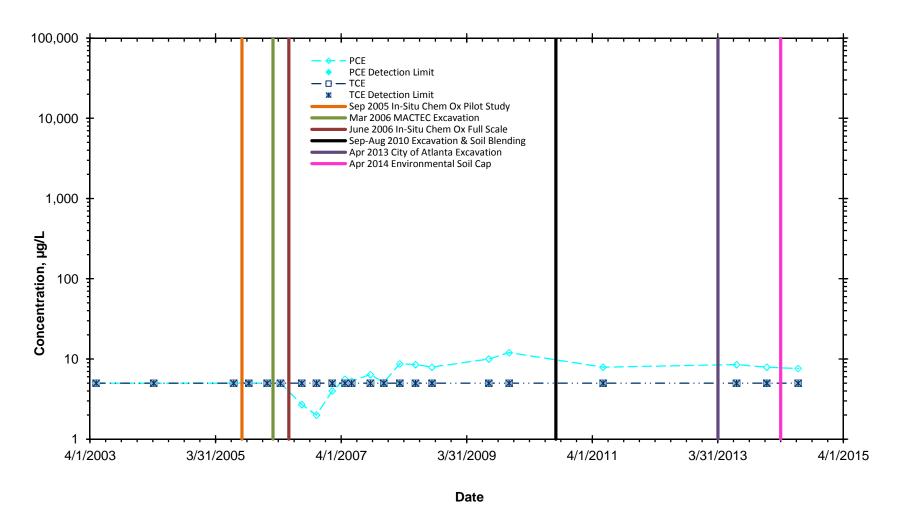
	MW-203	MW-203	MW-203	MW-203	MW-203	MW-203	MW-203	MW-203
	9/18/07	12/05/07	03/07/08	06/05/08	09/10/08	12/01/09	06/02/11	07/11/14
Tetrachloroethene	<5	<5	6	<5	2.7	<5	<5	<5
Trichloroethene	<5	<5	6.8	<5	3.8	<5	<5	<5

PCE and TCE Concentrations vs Time, MW-203

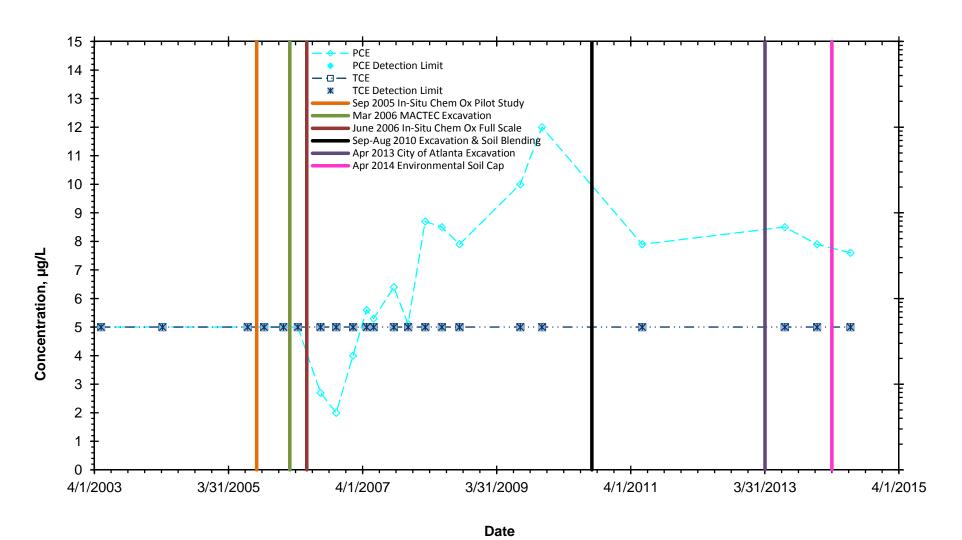
PCE and TCE Concentrations vs Time, MW-203

Historical Data for Selected Chemicals in Groundwater Samples from Monitoring Well MW-204 Aramark DeKalb HSI/VRP Site #10704 Atlanta, Georgia

	MW-204	MW-204	MW-204						
	05/07/03	04/06/04	07/14/05	10/11/05	01/25/06	04/13/06	08/15/06	11/8/06	2/8/07
Tetrachloroethene Trichloroethene	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	2.7 <5	2 <5	4 <5


Historical Data for Selected Chemicals in Groundwater Samples from Monitoring Well MW-204 Aramark DeKalb HSI/VRP Site #10704 Atlanta, Georgia

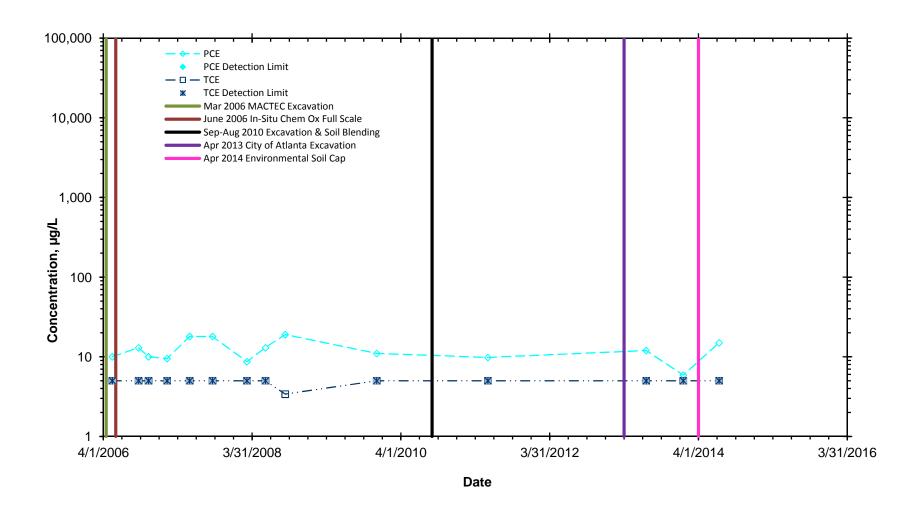
	MW-204 MW-204								
	4/23/07	05/31/07	09/18/07	12/05/07	03/07/08	06/06/08	09/10/08	08/07/09	12/03/09
Tetrachloroethene Trichloroethene	5.6 <5	5.3 <5	6.4 <5	5.1 <5	8.7 <5	8.5 <5	7.9 <5	10 <5	12 <5


Historical Data for Selected Chemicals in Groundwater Samples from Monitoring Well MW-204 Aramark DeKalb HSI/VRP Site #10704 Atlanta, Georgia

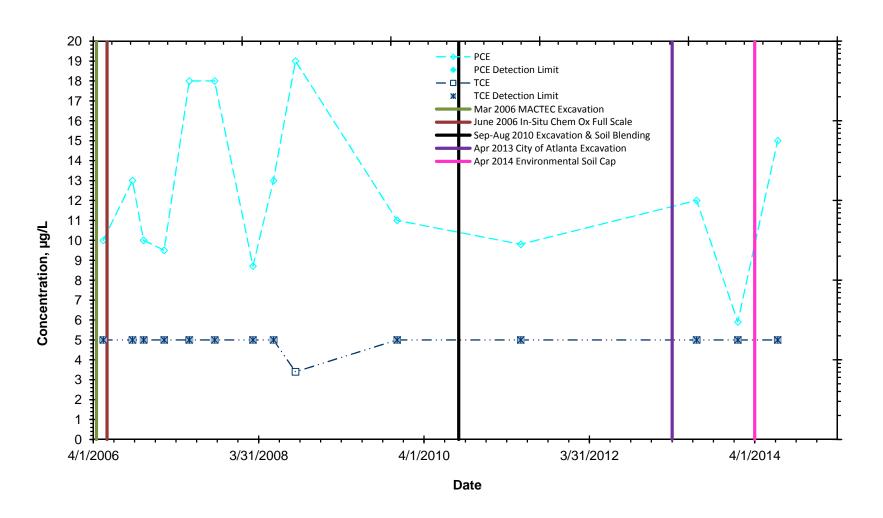
	MW-204	MW-204	MW-204	MW-204
	06/02/11	07/18/13	01/10/14	07/11/14
Tetrachloroethene Trichloroethene	7.9 <5	8.5 <5	7.9 <5	7.6 <5

PCE and TCE Concentrations vs Time, MW-204

PCE and TCE Concentrations vs Time, MW-204


Historical Data for Selected Chemicals in Groundwater Samples from Monitoring Well MW-207P Aramark DeKalb HSI/VRP Site #10704 Atlanta, Georgia

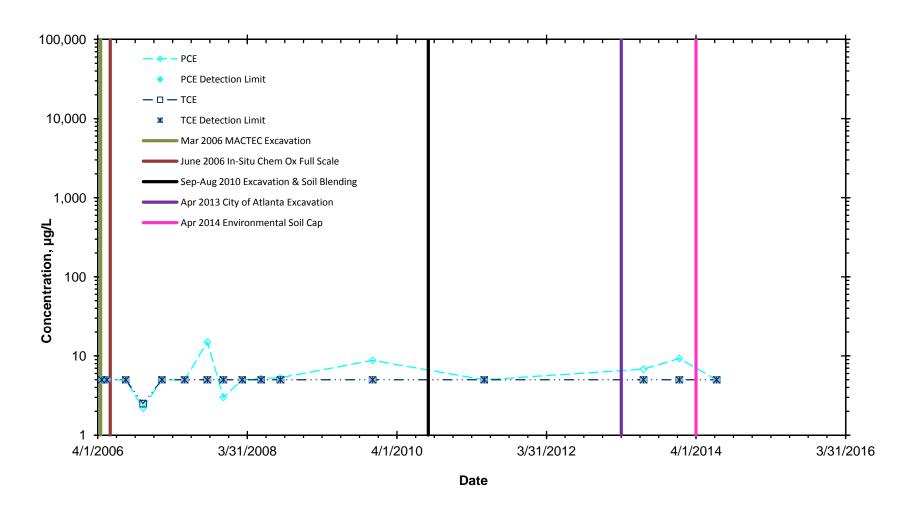
	MW-207P	MW-207P	MW-207P	MW-207P	MW-207P	MW-207P	MW-207P	MW-207P	MW-207P
	05/15/06	09/21/06	11/09/06	02/08/07	05/30/07	09/19/07	03/06/08	6/5/08	9/10/08
Tetrachloroethene Trichloroethene	10 <5	13 <5	10 <5	9.5 <5	18 <5	18 <5	8.7 <5	13 <5	19 3.4


Historical Data for Selected Chemicals in Groundwater Samples from Monitoring Well MW-207P Aramark DeKalb HSI/VRP Site #10704 Atlanta, Georgia

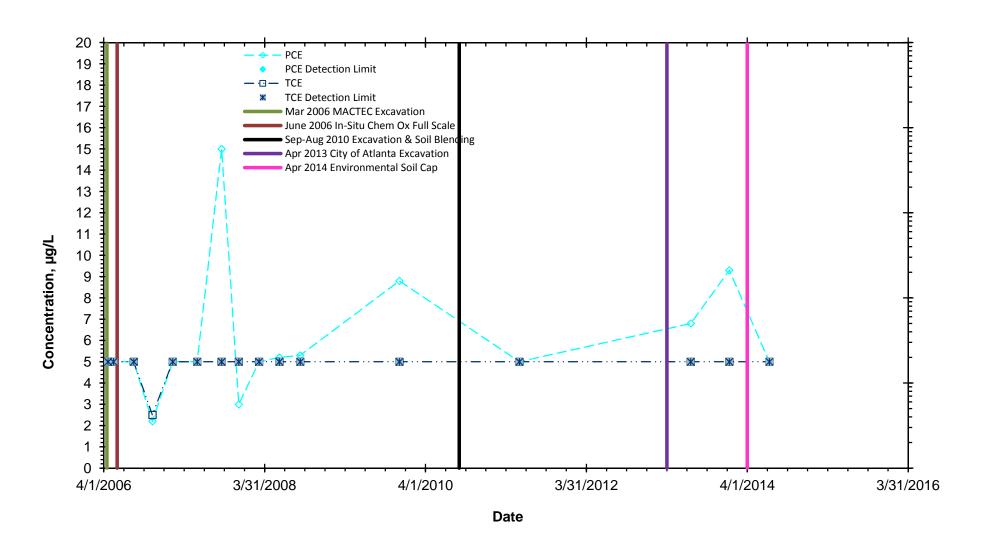
	MW-207P	MW-207P	MW-207P	MW-207P	MW-207P
	12/3/09	06/02/11	07/18/13	01/16/14	07/11/14
Tetrachloroethene Trichloroethene	11 <5	9.8 <5	12 <5	5.9 <5	15 <5

PCE and TCE Concentrations vs Time, MW-207P

PCE and TCE Concentrations vs Time, MW-207P

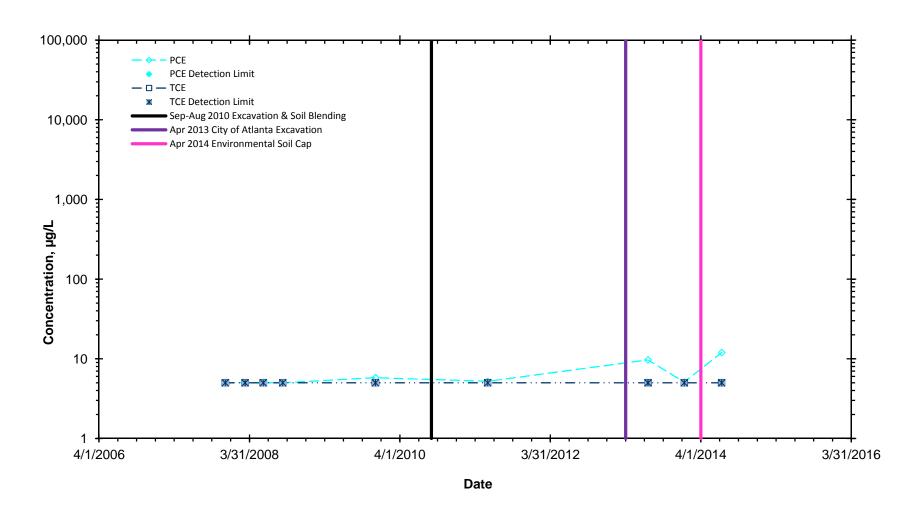

Historical Data for Selected Chemicals in Groundwater Samples from Monitoring Well MW-208P Aramark DeKalb HSI/VRP Site #10704 Atlanta, Georgia

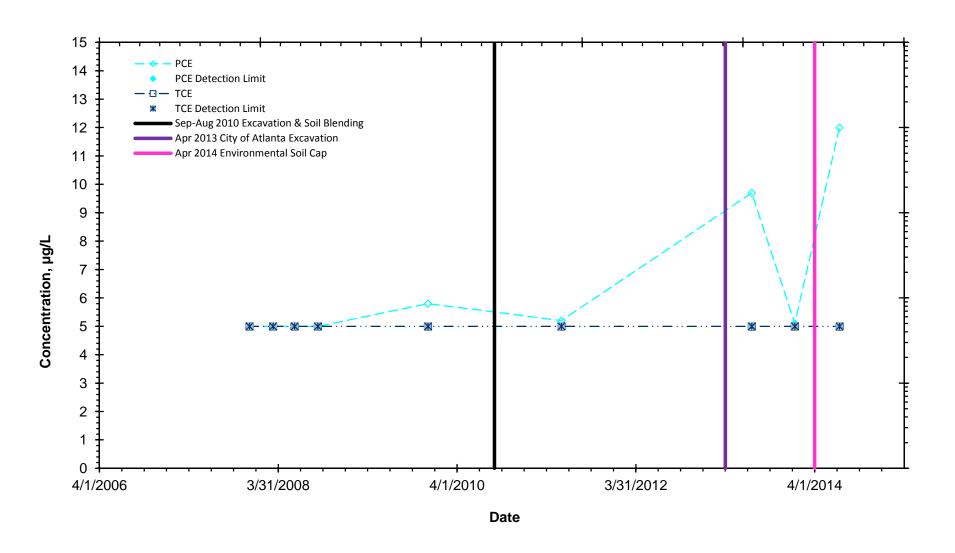
	MW-208P	MW-208P	MW-208P	MW-208P	MW-208P	MW-208P	MW-208P	MW-208P	MW-208P
	04/20/06	05/15/06	08/15/06	11/8/06	2/8/07	5/30/07	09/18/07	12/05/07	03/06/08
Tetrachloroethene	<5	<5	<5	2.2	<5	<5	15	3	<5
Trichloroethene	<5	<5	<5	2.5	<5	<5	<5	<5	<5


Historical Data for Selected Chemicals in Groundwater Samples from Monitoring Well MW-208P Aramark DeKalb HSI/VRP Site #10704 Atlanta, Georgia

	MW-208P	MW-208P	MW-208P	MW-208P	MW-208P	MW-208P	MW-208P
	06/06/08	09/09/08	12/03/09	06/01/11	07/18/13	01/09/14	07/10/14
Tetrachloroethene Trichloroethene	5.2 <5	5.3 <5	8.8 <5	<5 <5	6.8 <5	9.3 <5	<5 <5

PCE and TCE Concentrations vs Time, MW-208P


PCE and TCE Concentrations vs Time, MW-208P


Historical Data for Selected Chemicals in Groundwater Samples from Monitoring Well MW-409 Aramark DeKalb HSI/VRP Site #10704 Atlanta, Georgia

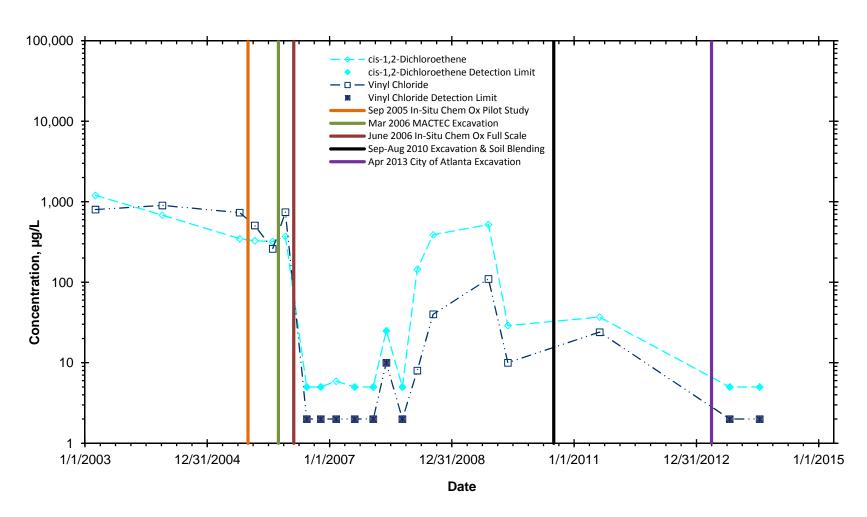
	MW-409	MW-409	MW-409	MW-409	MW-409	MW-409	MW-409	MW-409	MW-409
	12/05/07	03/10/08	06/06/08	9/9/08	12/3/09	6/1/11	07/18/13	01/10/14	07/11/14
Tetrachloroethene Trichloroethene	<5 <5	<5 <5	<5 <5	<5 <5	5.8 <5	5.2 <5	9.7 <5	5.1 <5	12 <5

PCE and TCE Concentrations vs Time, MW-409

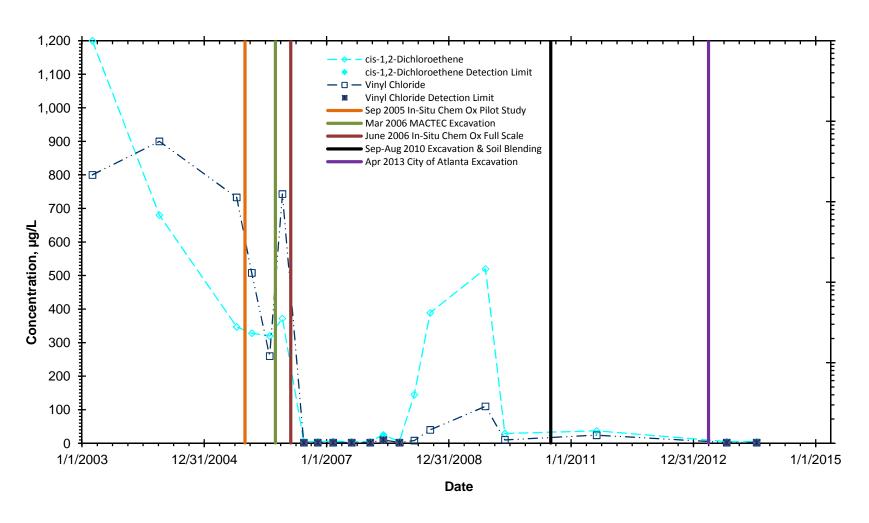
PCE and TCE Concentrations vs Time, MW-409

Historical Data for Selected Chemicals in Groundwater Samples from Monitoring Well MW-109 Aramark DeKalb HSI/VRP Site #10704 Atlanta, Georgia

	MW-109 MW-109								
	03/04/03	04/07/04	07/13/05	10/11/05	01/26/06	04/12/06	08/18/06	11/9/06	2/9/07
cis-1,2-Dichloroethen	1,200	680	347	328	320	372	<5	<5	5.9 <2
Vinyl Chloride	800	900	733	508	260	743	<2	<2	


Historical Data for Selected Chemicals in Groundwater Samples from Monitoring Well MW-109 Aramark DeKalb HSI/VRP Site #10704 Atlanta, Georgia

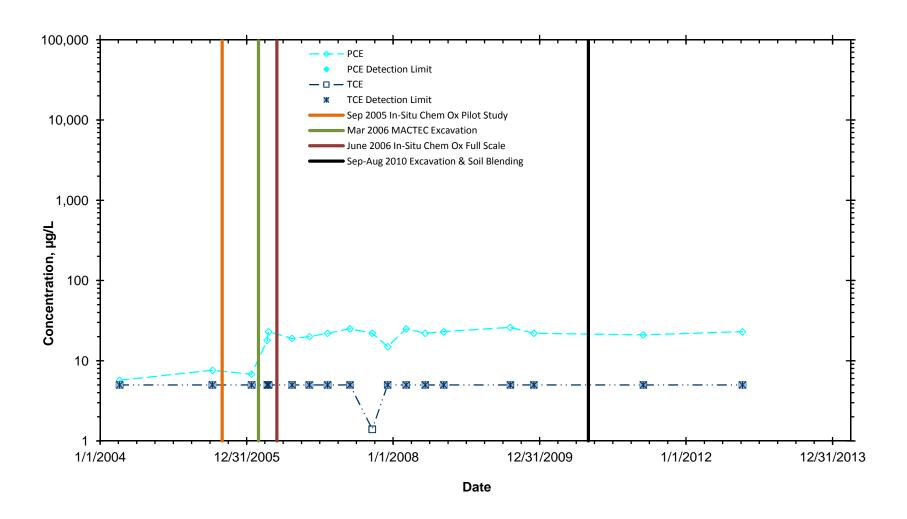
	MW-109	MW-109	MW-109	MW-109	MW-109	MW-109	MW-109	MW-109	MW-109
	5/31/07	09/19/07	12/06/07	03/11/08	06/08/08	09/11/08	08/07/09	12/01/09	06/02/11
cis-1,2-Dichloroethen	<5	<5	<25	<5	145	389	520	29	37
Vinyl Chloride	<2	<2	<10	<2	8	40	110	10	24


Historical Data for Selected Chemicals in Groundwater Samples from Monitoring Well MW-109 Aramark DeKalb HSI/VRP Site #10704 Atlanta, Georgia

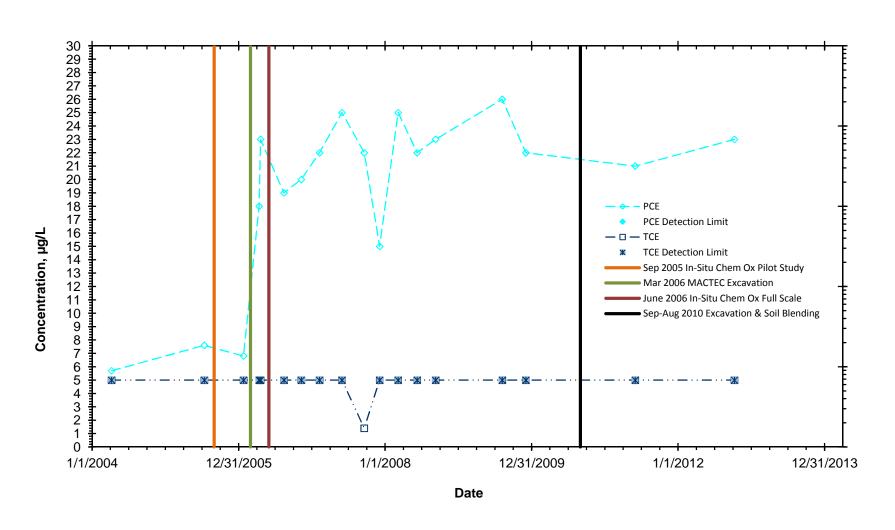
	MW-109 07/18/13	MW-109 01/13/14
cis-1,2-Dichloroethen	<5	<5
Vinyl Chloride	<2	<2

cis-1,2-DCE and Vinyl Chloride Concentrations vs Time, MW-109

cis-1,2-DCE and Vinyl Chloride Concentrations vs Time, MW-109


Historical Data for Selected Chemicals in Groundwater Samples from Monitoring Well MW-205 Aramark DeKalb HSI/VRP Site #10704 Atlanta, Georgia

	MW-205	MW-205	MW-205	MW-205	MW-205	MW-205	MW-205	MW-205	MW-205
	04/07/04	07/14/05	01/25/06	04/13/06	04/20/06	08/15/06	11/09/06	2/8/07	5/31/07
Tetrachloroethene Trichloroethene	5.7 <5	7.6 <5	6.8 <5	18 <5	23 <5	19 <5	20 <5	22 <5	25 <5


Historical Data for Selected Chemicals in Groundwater Samples from Monitoring Well MW-205 Aramark DeKalb HSI/VRP Site #10704 Atlanta, Georgia

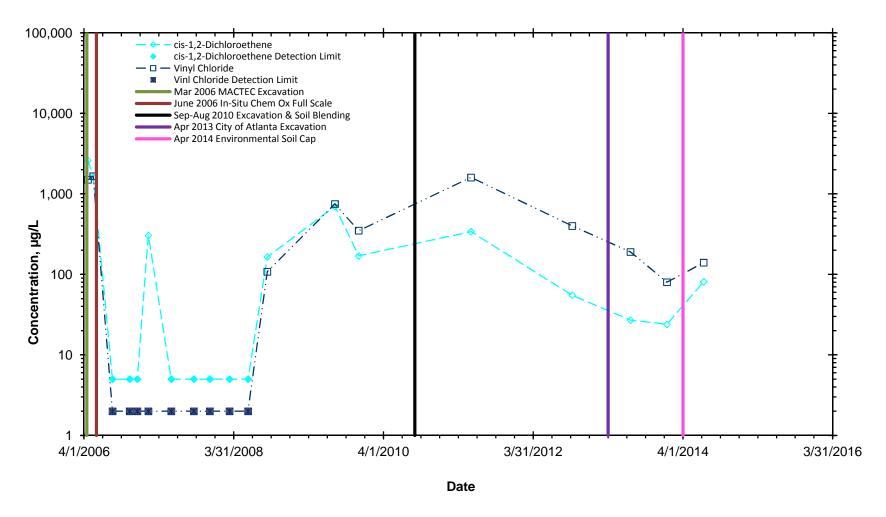
	MW-205	MW-205	MW-205	MW-205	MW-205	MW-205	MW-205	MW-205	MW-205
	9/19/07	12/05/07	03/06/08	06/09/08	09/09/08	08/07/09	12/03/09	06/01/11	10/08/12
Tetrachloroethene Trichloroethene	22 1.4	15 <5	25 <5	22 <5	23 <5	26 <5	22 <5	21 <5	23 <5

PCE and TCE Concentrations vs Time, MW-205

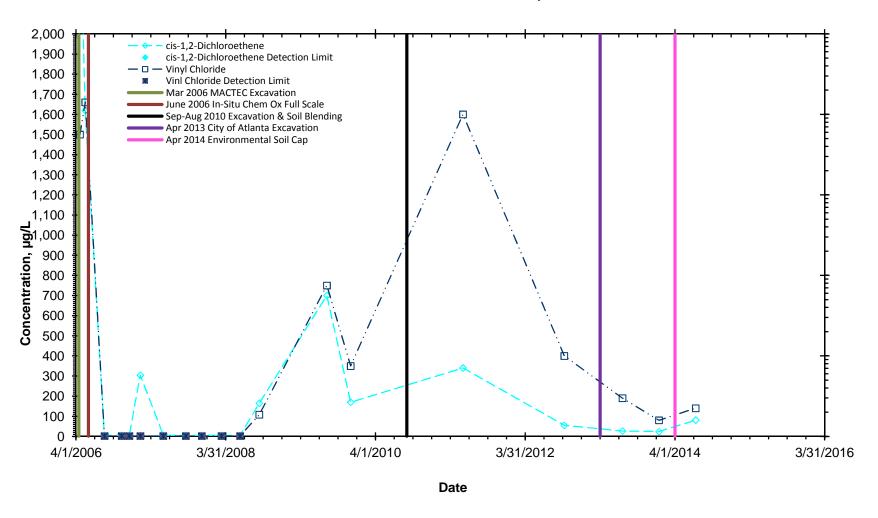
PCE and TCE Concentrations vs Time, MW-205

Historical Data for Selected Chemicals in Groundwater Samples from Monitoring Well MW-403 Aramark DeKalb HSI/VRP Site #10704 Atlanta, Georgia

	MW-403	MW-403	MW-403	MW-403	MW-403	MW-403	MW-403	MW-403	MW-403
	04/20/06	05/16/06	08/18/06	11/10/06	12/17/06	02/09/07	06/01/07	9/19/07	12/6/07
cis-1,2-Dichloroethen	2,600	1,620	<5	<5	<5	304 <2	<5	<5	<5
Vinyl Chloride	1,500	1,660	<2	<2	<2		<2	<2	<2


Historical Data for Selected Chemicals in Groundwater Samples from Monitoring Well MW-403 Aramark DeKalb HSI/VRP Site #10704 Atlanta, Georgia

	MW-403	MW-403	MW-403	MW-403	MW-403	MW-403	MW-403	MW-403	MW-403
	3/11/08	06/09/08	09/11/08	08/07/09	12/01/09	06/02/11	10/08/12	07/19/13	01/13/14
cis-1,2-Dichloroethen	<5	<5	165	700	170	340	55	27	24
Vinyl Chloride	<2	<2	108	750	350	1,600	400	190	80


Historical Data for Selected Chemicals in Groundwater Samples from Monitoring Well MW-403 Aramark DeKalb HSI/VRP Site #10704 Atlanta, Georgia

	MW-403 07/11/14
cis-1,2-Dichloroethen	81
Vinyl Chloride	140

cis-1,2-DCE and Vinyl Chloride Concentrations vs Time, MW-403

cis-1,2-DCE and Vinyl Chloride Concentrations vs Time, MW-403

ATTACHMENT L July 2014 Laboratory Analytical Reports

E87429

XENCO LABORATORIES - ATLANTA 6017 FINANCIAL DRIVE NORCROSS, GA 30071

has complied with Florida Administrative Code 64E-1, for the examination of environmental samples in the following categories

NON-POTABLE WATER - EXTRACTABLE ORGANICS, NON-POTABLE WATER - GENERAL CHEMISTRY, NON-POTABLE WATER - METALS, NON-POTABLE WATER - PESTICIDES-HERBICIDES-PCB'S, NON-POTABLE WATER - VOLATILE ORGANICS, SOLID AND CHEMICAL MATERIALS - EXTRACTABLE ORGANICS, SOLID AND CHEMICAL MATERIALS - METALS, SOLID AND CHEMICAL MATERIALS - PESTICIDES-HERBICIDES-PCB'S, SOLID AND CHEMICAL MATERIALS - VOLATILE ORGANICS

Continued certification is contingent upon successful on-going compliance with the NELAC Standards and FAC Rule 64E-1 regulations. Specific methods and analytes certified are cited on the Laboratory Scope of Accreditation for this laboratory and are on file at the Bureau of Public Health Laboratories, P. O. Box 210, Jacksonville, Florida 32231. Clients and customers are urged to verify with this agency the laboratory's certification status in Florida for particular methods and analytes.

Date Issued: July 01, 2014 Expiration Date: June 30, 2015

TA GOD WE TRUST

William H. Anderson, DHA, FACHE, Director Division of Emergency Preparedness and Community Support DH Form 1697, 7/04

> NON-TRANSFERABLE E87429-31-07/01/2014 Supersedes all previously issued certificates

Laboratory Scope of Accreditation

Page 1

Expiration Date: 6/30/2015

of 24

Attachment to Certificate #: E87429-31, expiration date June 30, 2015. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E87429 EPA Lab Code: GA00046 (770) 449-8800

Matrix: Non-Potable Water			G 4:C 4:	
Analyte	Method/Tech	Category	Certification Type	Effective Date
1,1,1,2-Tetrachloroethane	EPA 8260	Volatile Organics	NELAP	7/11/2008
1,1,1-Trichloroethane	EPA 624	Volatile Organics	NELAP	9/24/2010
1,1,1-Trichloroethane	EPA 8260	Volatile Organics	NELAP	6/19/2003
1,1,2,2-Tetrachloroethane	EPA 624	Volatile Organics	NELAP	9/24/2010
1,1,2,2-Tetrachloroethane	EPA 8260	Volatile Organics	NELAP	6/19/2003
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	EPA 8260	Volatile Organics	NELAP	7/11/2008
1,1,2-Trichloroethane	EPA 624	Volatile Organics	NELAP	9/24/2010
1,1,2-Trichloroethane	EPA 8260	Volatile Organics	NELAP	7/1/2003
1,1-Dichloroethane	EPA 624	Volatile Organics	NELAP	9/24/2010
1,1-Dichloroethane	EPA 8260	Volatile Organics	NELAP	7/1/2003
1,1-Dichloroethylene	EPA 624	Volatile Organics	NELAP	9/24/2010
1,1-Dichloroethylene	EPA 8260	Volatile Organics	NELAP	7/1/2003
1,1-Dichloropropene	EPA 8260	Volatile Organics	NELAP	7/1/2003
1,2,3-Trichlorobenzene	EPA 8260	Volatile Organics	NELAP	7/1/2003
1,2,3-Trichloropropane	EPA 8260	Volatile Organics	NELAP	7/1/2003
1,2,4,5-Tetrachlorobenzene	EPA 8270	Extractable Organics	NELAP	9/11/2013
1,2,4-Trichlorobenzene	EPA 625	Volatile Organics	NELAP	9/24/2010
1,2,4-Trichlorobenzene	EPA 8260	Volatile Organics	NELAP	7/1/2003
1,2,4-Trichlorobenzene	EPA 8270	Extractable Organics	NELAP	7/1/2003
1,2,4-Trimethylbenzene	EPA 8260	Volatile Organics	NELAP	7/1/2003
1,2-Dibromo-3-chloropropane (DBCP)	EPA 8011	Volatile Organics	NELAP	7/1/2003
1,2-Dibromo-3-chloropropane (DBCP)	EPA 8260	Volatile Organics	NELAP	7/1/2003
1,2-Dibromoethane (EDB, Ethylene dibromide)	EPA 8011	Volatile Organics	NELAP	7/1/2003
1,2-Dibromoethane (EDB, Ethylene dibromide)	EPA 8260	Volatile Organics	NELAP	7/1/2003
1,2-Dichlorobenzene	EPA 624	Volatile Organics	NELAP	9/24/2010
1,2-Dichlorobenzene	EPA 625	Volatile Organics	NELAP	9/24/2010
1,2-Dichlorobenzene	EPA 8260	Volatile Organics	NELAP	6/19/2003
1,2-Dichlorobenzene	EPA 8270	Extractable Organics	NELAP	6/19/2003
1,2-Dichloroethane	EPA 624	Volatile Organics	NELAP	9/24/2010
1,2-Dichloroethane	EPA 8260	Volatile Organics	NELAP	6/19/2003
1,2-Dichloropropane	EPA 624	Volatile Organics	NELAP	9/24/2010
1,2-Dichloropropane	EPA 8260	Volatile Organics	NELAP	7/1/2003
1,2-Diphenylhydrazine	EPA 8270	Extractable Organics	NELAP	7/1/2003
1,3,5-Trimethylbenzene	EPA 8260	Volatile Organics	NELAP	7/1/2003
1,3,5-Trinitrobenzene (1,3,5-TNB)	EPA 8270	Extractable Organics	NELAP	9/11/2013
1,3-Dichlorobenzene	EPA 624	Volatile Organics	NELAP	9/24/2010

Laboratory Scope of Accreditation

Page 2

Expiration Date: 6/30/2015

of 24

Attachment to Certificate #: E87429-31, expiration date June 30, 2015. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E87429 EPA Lab Code: GA00046 (770) 449-8800

Matrix: Non-Potable Water			G 4:5 4:	
Analyte	Method/Tech	Category	Certification Type	Effective Date
1,3-Dichlorobenzene	EPA 625	Volatile Organics	NELAP	9/24/2010
1,3-Dichlorobenzene	EPA 8260	Volatile Organics	NELAP	6/19/2003
1,3-Dichlorobenzene	EPA 8270	Extractable Organics	NELAP	6/19/2003
1,3-Dichloropropane	EPA 8260	Volatile Organics	NELAP	7/1/2003
1,3-Dinitrobenzene (1,3-DNB)	EPA 8270	Extractable Organics	NELAP	9/11/2013
1,4-Dichlorobenzene	EPA 624	Volatile Organics	NELAP	9/24/2010
1,4-Dichlorobenzene	EPA 625	Volatile Organics	NELAP	9/24/2010
1,4-Dichlorobenzene	EPA 8260	Volatile Organics	NELAP	6/19/2003
1,4-Dichlorobenzene	EPA 8270	Extractable Organics	NELAP	6/19/2003
1,4-Dioxane (1,4-Diethyleneoxide)	EPA 8260	Volatile Organics	NELAP	10/27/2004
1,4-Naphthoquinone	EPA 8270	Extractable Organics	NELAP	9/11/2013
1,4-Phenylenediamine	EPA 8270	Extractable Organics	NELAP	9/11/2013
1-Methylnaphthalene	EPA 8270	Extractable Organics	NELAP	7/11/2008
1-Naphthylamine	EPA 8270	Extractable Organics	NELAP	9/11/2013
2,2-Dichloropropane	EPA 8260	Volatile Organics	NELAP	7/1/2003
2,3,4,6-Tetrachlorophenol	EPA 8270	Extractable Organics	NELAP	7/1/2003
2,4,5-T	EPA 615	Pesticides-Herbicides-PCB's	NELAP	9/24/2010
2,4,5-T	EPA 8151	Pesticides-Herbicides-PCB's	NELAP	6/19/2003
2,4,5-Trichlorophenol	EPA 8270	Extractable Organics	NELAP	7/1/2003
2,4,6-Trichlorophenol	EPA 8270	Extractable Organics	NELAP	7/1/2003
2,4-D	EPA 615	Pesticides-Herbicides-PCB's	NELAP	9/24/2010
2,4-D	EPA 8151	Pesticides-Herbicides-PCB's	NELAP	6/19/2003
2,4-DB	EPA 615	Pesticides-Herbicides-PCB's	NELAP	9/24/2010
2,4-DB	EPA 8151	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
2,4-Dichlorophenol	EPA 8270	Extractable Organics	NELAP	7/1/2003
2,4-Dimethylphenol	EPA 8270	Extractable Organics	NELAP	7/1/2003
2,4-Dinitrophenol	EPA 8270	Extractable Organics	NELAP	7/1/2003
2,4-Dinitrotoluene (2,4-DNT)	EPA 625	Volatile Organics	NELAP	9/24/2010
2,4-Dinitrotoluene (2,4-DNT)	EPA 8270	Extractable Organics	NELAP	7/1/2003
2,6-Dichlorophenol	EPA 8270	Extractable Organics	NELAP	7/1/2003
2,6-Dinitrotoluene (2,6-DNT)	EPA 625	Volatile Organics	NELAP	9/24/2010
2,6-Dinitrotoluene (2,6-DNT)	EPA 8270	Extractable Organics	NELAP	7/1/2003
2-Acetylaminofluorene	EPA 8270	Extractable Organics	NELAP	9/11/2013
2-Butanone (Methyl ethyl ketone, MEK)	EPA 8260	Volatile Organics	NELAP	7/1/2003
2-Chloroethyl vinyl ether	EPA 624	Volatile Organics	NELAP	9/24/2010
2-Chloroethyl vinyl ether	EPA 8260	Volatile Organics	NELAP	7/1/2003

Laboratory Scope of Accreditation

Page 3

Expiration Date: 6/30/2015

Attachment to Certificate #: E87429-31, expiration date June 30, 2015. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E87429 EPA Lab Code: GA00046 (770) 449-8800

Matrix: Non-Potable Water			Certification	
Analyte	Method/Tech	Category	Туре	Effective Date
2-Chloronaphthalene	EPA 625	Volatile Organics	NELAP	9/24/2010
2-Chloronaphthalene	EPA 8270	Extractable Organics	NELAP	7/1/2003
2-Chlorophenol	EPA 8270	Extractable Organics	NELAP	7/1/2003
2-Chlorotoluene	EPA 8260	Volatile Organics	NELAP	7/1/2003
2-Hexanone	EPA 8260	Volatile Organics	NELAP	7/1/2003
2-Methyl-2-pentanol	EPA 8260	Volatile Organics	NELAP	9/11/2013
2-Methyl-4,6-dinitrophenol	EPA 8270	Extractable Organics	NELAP	7/1/2003
2-Methylnaphthalene	EPA 8270	Extractable Organics	NELAP	7/1/2003
2-Methylphenol (o-Cresol)	EPA 8270	Extractable Organics	NELAP	7/1/2003
2-Naphthylamine	EPA 8270	Extractable Organics	NELAP	9/11/2013
2-Nitroaniline	EPA 8270	Extractable Organics	NELAP	7/1/2003
2-Nitrophenol	EPA 8270	Extractable Organics	NELAP	7/1/2003
3,3'-Dichlorobenzidine	EPA 625	Volatile Organics	NELAP	9/24/2010
3,3'-Dichlorobenzidine	EPA 8270	Extractable Organics	NELAP	7/1/2003
3,3-Dimethyl-1-butanol	EPA 8260	Volatile Organics	NELAP	9/11/2013
3,3'-Dimethylbenzidine	EPA 8270	Extractable Organics	NELAP	9/24/2010
3/4-Methylphenols (m/p-Cresols)	EPA 8270	Extractable Organics	NELAP	9/11/2013
3-Methylcholanthrene	EPA 8270	Extractable Organics	NELAP	9/11/2013
3-Nitroaniline	EPA 8270	Extractable Organics	NELAP	7/1/2003
4,4'-DDD	EPA 608	Extractable Organics	NELAP	9/24/2010
4,4'-DDD	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
4,4'-DDE	EPA 608	Extractable Organics	NELAP	9/24/2010
4,4'-DDE	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
4,4'-DDT	EPA 608	Extractable Organics	NELAP	9/24/2010
4,4'-DDT	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
4-Aminobiphenyl	EPA 8270	Extractable Organics	NELAP	9/11/2013
4-Bromophenyl phenyl ether	EPA 625	Extractable Organics	NELAP	9/24/2010
4-Bromophenyl phenyl ether	EPA 8270	Extractable Organics	NELAP	7/1/2003
4-Chloro-3-methylphenol	EPA 8270	Extractable Organics	NELAP	7/1/2003
4-Chloroaniline	EPA 8270	Extractable Organics	NELAP	7/1/2003
4-Chlorophenyl phenylether	EPA 625	Extractable Organics	NELAP	9/24/2010
4-Chlorophenyl phenylether	EPA 8270	Extractable Organics	NELAP	7/1/2003
4-Chlorotoluene	EPA 8260	Volatile Organics	NELAP	7/1/2003
4-Methyl-2-pentanone (MIBK)	EPA 8260	Volatile Organics	NELAP	7/11/2008
4-Nitroaniline	EPA 8270	Extractable Organics	NELAP	7/1/2003
4-Nitrophenol	EPA 8270	Extractable Organics	NELAP	7/1/2003

Laboratory Scope of Accreditation

Page 4

Expiration Date: 6/30/2015

of 24

Attachment to Certificate #: E87429-31, expiration date June 30, 2015. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E87429 EPA Lab Code: GA00046 (770) 449-8800

Matrix: Non-Potable Water			Contification	
Analyte	Method/Tech	Category	Certification Type	Effective Date
5-Nitro-o-toluidine	EPA 8270	Extractable Organics	NELAP	9/11/2013
7,12-Dimethylbenz(a) anthracene	EPA 8270	Extractable Organics	NELAP	9/11/2013
Acenaphthene	EPA 625	Extractable Organics	NELAP	9/24/2010
Acenaphthene	EPA 8270	Extractable Organics	NELAP	7/1/2003
Acenaphthylene	EPA 625	Extractable Organics	NELAP	9/24/2010
Acenaphthylene	EPA 8270	Extractable Organics	NELAP	7/1/2003
Acetone	EPA 8260	Volatile Organics	NELAP	7/1/2003
Acetonitrile	EPA 8260	Volatile Organics	NELAP	7/1/2003
Acetophenone	EPA 8270	Extractable Organics	NELAP	7/11/2008
Acrolein (Propenal)	EPA 8260	Volatile Organics	NELAP	7/1/2003
Acrylonitrile	EPA 8260	Volatile Organics	NELAP	7/1/2003
Aldrin	EPA 608	Extractable Organics	NELAP	9/24/2010
Aldrin	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
Alkalinity as CaCO3	SM 2320 B	General Chemistry	NELAP	1/24/2008
Allyl chloride (3-Chloropropene)	EPA 8260	Volatile Organics	NELAP	7/1/2003
alpha-BHC (alpha-Hexachlorocyclohexane)	EPA 608	Extractable Organics	NELAP	9/24/2010
alpha-BHC (alpha-Hexachlorocyclohexane)	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
alpha-Chlordane	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	9/24/2010
Aluminum	EPA 200.7	Metals	NELAP	9/24/2010
Aluminum	EPA 200.8	Metals	NELAP	9/24/2010
Aluminum	EPA 6010	Metals	NELAP	7/1/2003
Aluminum	EPA 6020	Metals	NELAP	10/27/2004
Amenable cyanide	EPA 9010/9014	General Chemistry	NELAP	10/27/2004
Ammonia as N	SM 4500-NH3 C	General Chemistry	NELAP	1/24/2008
Aniline	EPA 8270	Extractable Organics	NELAP	7/1/2003
Anthracene	EPA 625	Extractable Organics	NELAP	9/24/2010
Anthracene	EPA 8270	Extractable Organics	NELAP	7/1/2003
Antimony	EPA 200.7	Metals	NELAP	9/24/2010
Antimony	EPA 200.8	Metals	NELAP	9/24/2010
Antimony	EPA 6010	Metals	NELAP	7/1/2003
Antimony	EPA 6020	Metals	NELAP	10/27/2004
Aroclor-1016 (PCB-1016)	EPA 8082	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
Aroclor-1221 (PCB-1221)	EPA 8082	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
Aroclor-1232 (PCB-1232)	EPA 8082	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
Aroclor-1242 (PCB-1242)	EPA 8082	Pesticides-Herbicides-PCB's	NELAP	6/19/2003
Aroclor-1248 (PCB-1248)	EPA 8082	Pesticides-Herbicides-PCB's	NELAP	6/19/2003

Laboratory Scope of Accreditation

Page 5

Expiration Date: 6/30/2015

of 24

Attachment to Certificate #: E87429-31, expiration date June 30, 2015. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E87429 EPA Lab Code: GA00046 (770) 449-8800

Matrix: Non-Potable Water			C .:c .:	
Analyte	Method/Tech	Category	Certification Type	Effective Date
Aroclor-1254 (PCB-1254)	EPA 8082	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
Aroclor-1260 (PCB-1260)	EPA 8082	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
Arsenic	EPA 200.7	Metals	NELAP	9/24/2010
Arsenic	EPA 200.8	Metals	NELAP	9/24/2010
Arsenic	EPA 6010	Metals	NELAP	10/9/2001
Arsenic	EPA 6020	Metals	NELAP	9/24/2010
Atrazine	EPA 8270	Extractable Organics	NELAP	9/11/2013
Barium	EPA 200.7	Metals	NELAP	9/24/2010
Barium	EPA 200.8	Metals	NELAP	9/24/2010
Barium	EPA 6010	Metals	NELAP	7/1/2003
Barium	EPA 6020	Metals	NELAP	10/27/2004
Benzaldehyde	EPA 8270	Extractable Organics	NELAP	9/11/2013
Benzene	EPA 624	Volatile Organics	NELAP	9/24/2010
Benzene	EPA 8260	Volatile Organics	NELAP	6/19/2003
Benzo(a)anthracene	EPA 625	Extractable Organics	NELAP	9/24/2010
Benzo(a)anthracene	EPA 8270	Extractable Organics	NELAP	7/1/2003
Benzo(a)pyrene	EPA 625	Extractable Organics	NELAP	9/24/2010
Benzo(a)pyrene	EPA 8270	Extractable Organics	NELAP	7/1/2003
Benzo(b)fluoranthene	EPA 625	Extractable Organics	NELAP	9/24/2010
Benzo(b)fluoranthene	EPA 8270	Extractable Organics	NELAP	7/1/2003
Benzo(g,h,i)perylene	EPA 625	Extractable Organics	NELAP	9/24/2010
Benzo(g,h,i)perylene	EPA 8270	Extractable Organics	NELAP	7/1/2003
Benzo(k)fluoranthene	EPA 625	Extractable Organics	NELAP	9/24/2010
Benzo(k)fluoranthene	EPA 8270	Extractable Organics	NELAP	7/1/2003
Benzoic acid	EPA 8270	Extractable Organics	NELAP	7/1/2003
Benzyl alcohol	EPA 8270	Extractable Organics	NELAP	7/1/2003
Beryllium	EPA 200.7	Metals	NELAP	9/24/2010
Beryllium	EPA 200.8	Metals	NELAP	9/24/2010
Beryllium	EPA 6010	Metals	NELAP	7/1/2003
Beryllium	EPA 6020	Metals	NELAP	10/27/2004
beta-BHC (beta-Hexachlorocyclohexane)	EPA 608	Extractable Organics	NELAP	9/24/2010
beta-BHC (beta-Hexachlorocyclohexane)	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
Biochemical oxygen demand	SM 5210 B	General Chemistry	NELAP	6/6/2006
Biphenyl	EPA 8270	Extractable Organics	NELAP	9/11/2013
bis(2-Chloroethoxy)methane	EPA 625	Extractable Organics	NELAP	9/24/2010
bis(2-Chloroethoxy)methane	EPA 8270	Extractable Organics	NELAP	7/1/2003

Laboratory Scope of Accreditation

Page 6

Expiration Date: 6/30/2015

of 24

Attachment to Certificate #: E87429-31, expiration date June 30, 2015. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E87429 EPA Lab Code: GA00046 (770) 449-8800

Matrix: Non-Potable Water				
Analyte	Method/Tech	Category	Certification Type	Effective Date
bis(2-Chloroethyl) ether	EPA 625	Extractable Organics	NELAP	9/24/2010
bis(2-Chloroethyl) ether	EPA 8270	Extractable Organics	NELAP	7/1/2003
bis(2-Chloroisopropyl) ether (2,2'-Oxybis(1-chloropropane))	EPA 625	Extractable Organics	NELAP	9/24/2010
bis(2-Chloroisopropyl) ether (2,2'-Oxybis(1-chloropropane))	EPA 8270	Extractable Organics	NELAP	7/1/2003
bis(2-Ethylhexyl) phthalate (DEHP)	EPA 625	Volatile Organics	NELAP	9/24/2010
bis(2-Ethylhexyl) phthalate (DEHP)	EPA 8270	Extractable Organics	NELAP	7/1/2003
Boron	EPA 200.7	Metals	NELAP	9/24/2010
Boron	EPA 6010	Metals	NELAP	9/24/2010
Boron	EPA 6020	Metals	NELAP	9/24/2010
Bromide	EPA 300.0	General Chemistry	NELAP	9/24/2010
Bromide	EPA 9056	General Chemistry	NELAP	7/11/2008
Bromobenzene	EPA 8260	Volatile Organics	NELAP	10/27/2004
Bromochloromethane	EPA 8260	Volatile Organics	NELAP	7/1/2003
Bromodichloromethane	EPA 624	Volatile Organics	NELAP	9/24/2010
Bromodichloromethane	EPA 8260	Volatile Organics	NELAP	6/19/2003
Bromoform	EPA 624	Volatile Organics	NELAP	9/24/2010
Bromoform	EPA 8260	Volatile Organics	NELAP	7/1/2003
Butyl benzyl phthalate	EPA 625	Volatile Organics	NELAP	9/24/2010
Butyl benzyl phthalate	EPA 8270	Extractable Organics	NELAP	7/1/2003
Cadmium	EPA 200.7	Metals	NELAP	9/24/2010
Cadmium	EPA 200.8	Metals	NELAP	9/24/2010
Cadmium	EPA 6010	Metals	NELAP	10/9/2001
Cadmium	EPA 6020	Metals	NELAP	10/27/2004
Calcium	EPA 200.7	Metals	NELAP	9/24/2010
Calcium	EPA 6010	Metals	NELAP	7/1/2003
Calcium	EPA 6020	Metals	NELAP	4/30/2004
Caprolactam	EPA 8270	Extractable Organics	NELAP	9/11/2013
Carbazole	EPA 8270	Extractable Organics	NELAP	7/1/2003
Carbon disulfide	EPA 8260	Volatile Organics	NELAP	7/1/2003
Carbon tetrachloride	EPA 624	Volatile Organics	NELAP	9/24/2010
Carbon tetrachloride	EPA 8260	Volatile Organics	NELAP	7/1/2003
Carbonaceous BOD (CBOD)	SM 5210 B	General Chemistry	NELAP	10/9/2001
Chemical oxygen demand	SM 5220 D	General Chemistry	NELAP	10/9/2001
Chlordane (tech.)	EPA 608	Extractable Organics	NELAP	9/24/2010
Chlordane (tech.)	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	6/19/2003

Laboratory Scope of Accreditation

Page 7

Expiration Date: 6/30/2015

Attachment to Certificate #: E87429-31, expiration date June 30, 2015. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: **E87429** EPA Lab Code: GA00046 (770) 449-8800

Matrix: Non-Potable Water			C4:6:4:	
Analyte	Method/Tech	Category	Certification Type	Effective Date
Chloride	EPA 300.0	General Chemistry	NELAP	9/24/2010
Chloride	EPA 9056	General Chemistry	NELAP	9/24/2010
Chlorobenzene	EPA 624	Volatile Organics	NELAP	9/24/2010
Chlorobenzene	EPA 8260	Volatile Organics	NELAP	6/19/2003
Chlorobenzilate	EPA 8270	Extractable Organics	NELAP	9/11/2013
Chloroethane	EPA 624	Volatile Organics	NELAP	9/24/2010
Chloroethane	EPA 8260	Volatile Organics	NELAP	10/27/2004
Chloroform	EPA 624	Volatile Organics	NELAP	9/24/2010
Chloroform	EPA 8260	Volatile Organics	NELAP	6/19/2003
Chloroprene	EPA 8260	Volatile Organics	NELAP	10/27/2004
Chromium	EPA 200.7	Metals	NELAP	9/24/2010
Chromium	EPA 200.8	Metals	NELAP	9/24/2010
Chromium	EPA 6010	Metals	NELAP	10/9/2001
Chromium	EPA 6020	Metals	NELAP	10/27/2004
Chromium VI	EPA 7196	General Chemistry	NELAP	6/6/2006
Chrysene	EPA 625	Extractable Organics	NELAP	9/24/2010
Chrysene	EPA 8270	Extractable Organics	NELAP	7/1/2003
cis-1,2-Dichloroethylene	EPA 8260	Volatile Organics	NELAP	7/1/2003
cis-1,3-Dichloropropene	EPA 624	Volatile Organics	NELAP	9/24/2010
cis-1,3-Dichloropropene	EPA 8260	Volatile Organics	NELAP	7/1/2003
cis-1,4-Dichloro-2-butene	EPA 8260	Volatile Organics	NELAP	10/27/2004
Cobalt	EPA 200.7	Metals	NELAP	9/24/2010
Cobalt	EPA 200.8	Metals	NELAP	9/24/2010
Cobalt	EPA 6010	Metals	NELAP	7/1/2003
Cobalt	EPA 6020	Metals	NELAP	10/27/2004
Conductivity	EPA 9050	General Chemistry	NELAP	4/30/2004
Copper	EPA 200.7	Metals	NELAP	9/24/2010
Copper	EPA 200.8	Metals	NELAP	9/24/2010
Copper	EPA 6010	Metals	NELAP	10/9/2001
Copper	EPA 6020	Metals	NELAP	11/18/2004
Cyclohexane	EPA 8260	Volatile Organics	NELAP	9/11/2013
Dalapon	EPA 615	Pesticides-Herbicides-PCB's	NELAP	9/24/2010
Dalapon	EPA 8151	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
delta-BHC	EPA 608	Extractable Organics	NELAP	9/24/2010
delta-BHC	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
Diallate	EPA 8270	Pesticides-Herbicides-PCB's	NELAP	9/11/2013

Laboratory Scope of Accreditation

Page 8

Expiration Date: 6/30/2015

of 24

Attachment to Certificate #: E87429-31, expiration date June 30, 2015. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E87429 EPA Lab Code: GA00046 (770) 449-8800

Matrix: Non-Potable Water			C4:6:4:	
Analyte	Method/Tech	Category	Certification Type	Effective Date
Dibenz(a,h)anthracene	EPA 625	Extractable Organics	NELAP	9/24/2010
Dibenz(a,h)anthracene	EPA 8270	Extractable Organics	NELAP	7/1/2003
Dibenzofuran	EPA 8270	Extractable Organics	NELAP	7/1/2003
Dibromochloromethane	EPA 624	Volatile Organics	NELAP	9/24/2010
Dibromochloromethane	EPA 8260	Volatile Organics	NELAP	6/19/2003
Dibromomethane	EPA 8260	Volatile Organics	NELAP	7/1/2003
Dicamba	EPA 615	Pesticides-Herbicides-PCB's	NELAP	9/24/2010
Dicamba	EPA 8151	Pesticides-Herbicides-PCB's	NELAP	4/30/2004
Dichlorodifluoromethane	EPA 8260	Volatile Organics	NELAP	10/27/2004
Dichloroprop (Dichlorprop)	EPA 615	Pesticides-Herbicides-PCB's	NELAP	9/24/2010
Dichloroprop (Dichlorprop)	EPA 8151	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
Dieldrin	EPA 608	Extractable Organics	NELAP	9/24/2010
Dieldrin	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
Diesel range organics (DRO)	EPA 8015	Extractable Organics	NELAP	7/1/2003
Diesel range organics (DRO)	MADEP-EPH (MA-EPH)	Extractable Organics	NELAP	7/1/2003
Diethyl ether	EPA 8260	Volatile Organics	NELAP	9/11/2013
Diethyl phthalate	EPA 625	Volatile Organics	NELAP	9/24/2010
Diethyl phthalate	EPA 8270	Extractable Organics	NELAP	7/1/2003
Di-isopropylether (DIPE)	EPA 8260	Volatile Organics	NELAP	7/11/2008
Dimethoate	EPA 8270	Pesticides-Herbicides-PCB's	NELAP	9/11/2013
Dimethyl phthalate	EPA 625	Volatile Organics	NELAP	9/24/2010
Dimethyl phthalate	EPA 8270	Extractable Organics	NELAP	7/1/2003
Di-n-butyl phthalate	EPA 625	Volatile Organics	NELAP	9/24/2010
Di-n-butyl phthalate	EPA 8270	Extractable Organics	NELAP	7/1/2003
Di-n-octyl phthalate	EPA 625	Volatile Organics	NELAP	9/24/2010
Di-n-octyl phthalate	EPA 8270	Extractable Organics	NELAP	7/1/2003
Dinoseb (2-sec-butyl-4,6-dinitrophenol, DNBP)	EPA 615	Pesticides-Herbicides-PCB's	NELAP	9/24/2010
Dinoseb (2-sec-butyl-4,6-dinitrophenol, DNBP)	EPA 8151	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
Disulfoton	EPA 8270	Pesticides-Herbicides-PCB's	NELAP	9/11/2013
Endosulfan I	EPA 608	Extractable Organics	NELAP	9/24/2010
Endosulfan I	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
Endosulfan II	EPA 608	Extractable Organics	NELAP	9/24/2010
Endosulfan II	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
Endosulfan sulfate	EPA 608	Extractable Organics	NELAP	9/24/2010
Endosulfan sulfate	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
Endrin	EPA 608	Extractable Organics	NELAP	9/24/2010

Laboratory Scope of Accreditation

Page 9

Expiration Date: 6/30/2015

of 24

Attachment to Certificate #: E87429-31, expiration date June 30, 2015. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E87429 EPA Lab Code: GA00046 (770) 449-8800

Matrix: Non-Potable Water			G .:c .:	
Analyte	Method/Tech	Category	Certification Type	Effective Date
Endrin	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
Endrin aldehyde	EPA 608	Extractable Organics	NELAP	9/24/2010
Endrin aldehyde	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
Endrin ketone	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
Ethanol	EPA 8260	Volatile Organics	NELAP	7/11/2008
Ethyl methacrylate	EPA 8260	Volatile Organics	NELAP	7/1/2003
Ethyl methanesulfonate	EPA 8270	Extractable Organics	NELAP	7/1/2003
Ethylbenzene	EPA 624	Volatile Organics	NELAP	9/24/2010
Ethylbenzene	EPA 8260	Volatile Organics	NELAP	6/19/2003
Ethyl-t-butylether (ETBE)	EPA 8260	Volatile Organics	NELAP	7/11/2008
Extractable Total Petroleum Hydrocarbons	TN-EPH	Extractable Organics	NELAP	9/11/2013
Fluoranthene	EPA 625	Extractable Organics	NELAP	9/24/2010
Fluoranthene	EPA 8270	Extractable Organics	NELAP	7/1/2003
Fluorene	EPA 625	Extractable Organics	NELAP	9/24/2010
Fluorene	EPA 8270	Extractable Organics	NELAP	7/1/2003
Fluoride	EPA 300.0	General Chemistry	NELAP	9/24/2010
Fluoride	EPA 9056	General Chemistry	NELAP	9/24/2010
gamma-BHC (Lindane, gamma-Hexachlorocyclohexane)	EPA 608	Extractable Organics	NELAP	9/24/2010
gamma-BHC (Lindane, gamma-Hexachlorocyclohexane)	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
gamma-Chlordane	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	9/11/2013
Gasoline range organics (GRO)	EPA 8015	Volatile Organics	NELAP	7/1/2003
Gasoline range organics (GRO)	MADEP-VPH (MA-VPH)	Extractable Organics	NELAP	7/1/2003
Hardness	SM 2340 B	General Chemistry	NELAP	9/24/2010
Heptachlor	EPA 608	Extractable Organics	NELAP	9/24/2010
Heptachlor	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
Heptachlor epoxide	EPA 608	Extractable Organics	NELAP	9/24/2010
Heptachlor epoxide	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
Hexachlorobenzene	EPA 8270	Extractable Organics	NELAP	7/1/2003
Hexachlorobutadiene	EPA 8260	Volatile Organics	NELAP	7/1/2003
Hexachlorobutadiene	EPA 8270	Extractable Organics	NELAP	7/1/2003
Hexachlorocyclopentadiene	EPA 8270	Extractable Organics	NELAP	7/1/2003
Hexachloroethane	EPA 8270	Extractable Organics	NELAP	7/1/2003
Hexachloropropene	EPA 8270	Extractable Organics	NELAP	9/11/2013
Ignitability	EPA 1010	General Chemistry	NELAP	7/1/2003
Indeno(1,2,3-cd)pyrene	EPA 625	Extractable Organics	NELAP	9/24/2010

Expiration Date: 6/30/2015

Laboratory Scope of Accreditation

Page 10 of 24

Attachment to Certificate #: E87429-31, expiration date June 30, 2015. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E87429 EPA Lab Code: GA00046 (770) 449-8800

Matrix: Non-Potable Water			G (:C)	
Analyte	Method/Tech	Category	Certification Type	Effective Date
Indeno(1,2,3-cd)pyrene	EPA 8270	Extractable Organics	NELAP	7/1/2003
Iodomethane (Methyl iodide)	EPA 8260	Volatile Organics	NELAP	7/1/2003
Iron	EPA 200.7	Metals	NELAP	9/24/2010
Iron	EPA 6010	Metals	NELAP	9/8/2008
Iron	EPA 6020	Metals	NELAP	9/24/2010
Isobutyl alcohol (2-Methyl-1-propanol)	EPA 8260	Volatile Organics	NELAP	10/27/2004
Isodrin	EPA 8270	Pesticides-Herbicides-PCB's	NELAP	9/11/2013
Isophorone	EPA 625	Volatile Organics	NELAP	9/24/2010
Isophorone	EPA 8270	Extractable Organics	NELAP	7/1/2003
Isopropylbenzene	EPA 8260	Volatile Organics	NELAP	7/1/2003
Isosafrole	EPA 8270	Extractable Organics	NELAP	9/11/2013
Kepone	EPA 8270	Pesticides-Herbicides-PCB's	NELAP	9/11/2013
Kjeldahl nitrogen - total	SM 4500-NH3 C	General Chemistry	NELAP	1/24/2008
Lead	EPA 200.7	Metals	NELAP	9/24/2010
Lead	EPA 200.8	Metals	NELAP	9/24/2010
Lead	EPA 6010	Metals	NELAP	10/9/2001
Lead	EPA 6020	Metals	NELAP	10/27/2004
m+p-Xylenes	EPA 8260	Volatile Organics	NELAP	7/11/2008
Magnesium	EPA 200.7	Metals	NELAP	9/24/2010
Magnesium	EPA 6010	Metals	NELAP	7/1/2003
Magnesium	EPA 6020	Metals	NELAP	4/30/2004
Manganese	EPA 200.7	Metals	NELAP	9/24/2010
Manganese	EPA 200.8	Metals	NELAP	9/24/2010
Manganese	EPA 6010	Metals	NELAP	7/1/2003
Manganese	EPA 6020	Metals	NELAP	10/27/2004
MCPA	EPA 615	Pesticides-Herbicides-PCB's	NELAP	9/24/2010
MCPA	EPA 8151	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
MCPP	EPA 615	Pesticides-Herbicides-PCB's	NELAP	9/24/2010
MCPP	EPA 8151	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
Mercury	EPA 245.1	Metals	NELAP	9/24/2010
Mercury	EPA 7470	Metals	NELAP	10/9/2001
Methacrylonitrile	EPA 8260	Volatile Organics	NELAP	10/27/2004
Methapyrilene	EPA 8270	Extractable Organics	NELAP	9/11/2013
Methoxychlor	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	7/1/2003
Methyl acetate	EPA 8260	Volatile Organics	NELAP	9/11/2013
Methyl bromide (Bromomethane)	EPA 624	Volatile Organics	NELAP	9/24/2010

Expiration Date: 6/30/2015

Laboratory Scope of Accreditation

Page 11 of 24

Attachment to Certificate #: E87429-31, expiration date June 30, 2015. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E87429 EPA Lab Code: GA00046 (770) 449-8800

Analyte Methyd bromide (Bromomethane) FPA 8260 Volatile Organics NELAP 71/2003 Methyl bromide (Bromomethane) EPA 8260 Volatile Organics NELAP 71/2003 Methyl chloride (Chloromethane) EPA 8260 Volatile Organics NELAP 71/2003 Methyl chloride (Chloromethane) EPA 8260 Volatile Organics NELAP 10/27/2004 Methyl methacryslate EPA 8270 Pesticides-Horbicides-PCB's NELAP 71/12003 Methyl parthaine (Mrantilon, methyl) EPA 8270 Pesticides-Horbicides-PCB's NELAP 71/12003 Methyly tenter-buryl ether (MTBE) EPA 8260 Volatile Organics NELAP 71/12003 Methylycelothexane EPA 8260 Volatile Organics NELAP 91/12013 Methylene chloride EPA 8260 Volatile Organics NELAP 91/12010 Methylene chloride EPA 8260 Volatile Organics NELAP 92/42010 Methylene chloride EPA 8260 Volatile Organics NELAP 92/42010 Molybdenum EPA 200.8 Metals NE	Matrix: Non-Potable Water			Certification	
Methyl bromide (Bromomethane) EPA 8260 Volatile Organics NELAP 71/12003 Methyl chloride (Chloromethane) EPA 624 Volatile Organics NELAP 924/2010 Methyl chloride (Chloromethane) EPA 8260 Volatile Organics NELAP 71/12003 Methyl methanesulfonate EPA 8270 Extractable Organics NELAP 71/12003 Methyl terr-bauly ether (MTBD) EPA 8270 Pesticides-PCB's NELAP 91/12013 Methyl gerr-bauly ether (MTBD) EPA 8260 Volatile Organics NELAP 91/12013 Methyles choloride EPA 8260 Volatile Organics NELAP 91/12013 Methylene chloride EPA 8260 Volatile Organics NELAP 91/12013 Methylene chloride EPA 8260 Volatile Organics NELAP 91/12013 Methylene chloride EPA 8260 Volatile Organics NELAP 92/12010 Methylene chloride EPA 8260 Volatile Organics NELAP 92/12010 Molybdenum EPA 8200 Metals NELAP 92/12010	Analyte	Method/Tech	Category		Effective Date
Methyl chloride (Chloromethane) EPA 8260 Volatile Organics NELAP 71/2003 Methyl methacrylate EPA 8260 Volatile Organics NELAP 1027/2004 Methyl methaceylate EPA 8270 Extractable Organics NELAP 971/2003 Methyl petrathor (Parathion, methyl) EPA 8270 Pesticides-Herbicides-PCB's NELAP 971/2003 Methyle (Parathion (Parathion, methyl) EPA 8260 Volatile Organics NELAP 971/2003 Methylecyclobexane EPA 8260 Volatile Organics NELAP 971/2003 Methylene chloride EPA 8260 Volatile Organics NELAP 9724/2010 Methylene chloride EPA 8260 Volatile Organics NELAP 9724/2010 Molybdenum EPA 200.7 Metals NELAP 924/2010 Molybdenum EPA 6010 Metals NELAP 924/2010 Molybdenum EPA 6020 Metals NELAP 971/2003 Napthhalene EPA 6020 Metals NELAP 71/2003 Napthralene EPA 8260	Methyl bromide (Bromomethane)	EPA 8260	Volatile Organics		7/1/2003
Methyl methacrylate EPA 8260 Volatile Organics NELAP 1027/2004 Methyl methanesulfonate EPA 8270 Extractable Organics NELAP 71/2003 Methyl parathion (Parathion, methyl) EPA 8270 Pesticides-Herbicides-PCB's NELAP 9/11/2013 Methyl terr buyl ether (MTBE) EPA 8260 Volatile Organics NELAP 9/11/2013 Methylene chloride EPA 8260 Volatile Organics NELAP 9/21/2010 Methylene chloride EPA 8260 Volatile Organics NELAP 9/21/2010 Molybdenum EPA 200.7 Metals NELAP 9/24/2010 Molybdenum EPA 6010 Metals NELAP 9/24/2010 Molybdenum EPA 6020 Metals NELAP 9/24/2010 Naphthalene EPA 6020 Metals NELAP 9/24/2010 Naphthalene EPA 8260 Volatile Organics NELAP 71/2003 Nickel EPA 8270 Extractable Organics NELAP 71/2003 Nickel EPA 8260 Volatile Organics	Methyl chloride (Chloromethane)	EPA 624	Volatile Organics	NELAP	9/24/2010
Methyl methanesulfonate EPA 8270 Extractable Organics NELAP 71/2003 Methyl parathion (Parathion, methyl) EPA 8270 Pesticides-Herbicides-PCB's NELAP 971/2003 Methyl petr-buyl ether (MTBE) EPA 8260 Volatile Organics NELAP 71/2003 Methylychockane EPA 8260 Volatile Organics NELAP 9714/2013 Methylene chloride EPA 8260 Volatile Organics NELAP 9724/2010 Methylene chloride EPA 8260 Volatile Organics NELAP 9724/2010 Molybdenum EPA 8200 Metals NELAP 9724/2010 Molybdenum EPA 6010 Metals NELAP 9724/2010 Molybdenum EPA 6020 Metals NELAP 1902/72004 Molybdenum EPA 625 Extractable Organics NELAP 191/2003 Naphthalene EPA 8260 Volatile Organics NELAP 71/2003 Naphthalene EPA 8270 Extractable Organics NELAP 71/2003 Nickel EPA 8270 Metals	Methyl chloride (Chloromethane)	EPA 8260	Volatile Organics	NELAP	7/1/2003
Methyl parathion (Parathion, methyl) EPA 8270 Pesticides-Herbicides-PCB's NELAP 9/11/2013 Methyl terr-butyl ether (MTBE) EPA 8260 Volatile Organics NELAP 9/11/2013 Methylycyclohexane EPA 8260 Volatile Organics NELAP 9/11/2013 Methylene chloride EPA 8260 Volatile Organics NELAP 9/24/2010 Methylene chloride EPA 8260 Volatile Organics NELAP 9/24/2010 Methylene chloride EPA 8200 Metals NELAP 9/24/2010 Molybdenum EPA 200.7 Metals NELAP 9/24/2010 Molybdenum EPA 6010 Metals NELAP 9/24/2010 Molybdenum EPA 6020 Metals NELAP 9/24/2010 Molybdenum EPA 826 Volatile Organics NELAP 9/24/2010 Maphthalene EPA 8260 Volatile Organics NELAP 9/24/2010 Naphthalene EPA 8260 Volatile Organics NELAP 7/1/2003 n-Butylbenzene EPA 8260 Volatile Organics	Methyl methacrylate	EPA 8260	Volatile Organics	NELAP	10/27/2004
Methyl tert-buyl ether (MTBE) EPA 8260 Volatile Organics NELAP 9/11/2013 Methylcyclochexane EPA 8260 Volatile Organics NELAP 9/11/2013 Methylene chloride EPA 624 Volatile Organics NELAP 9/24/2010 Methylene chloride EPA 2600 Volatile Organics NELAP 9/24/2010 Molybdenum EPA 200.7 Metals NELAP 9/24/2010 Molybdenum EPA 6010 Metals NELAP 9/24/2010 Molybdenum EPA 6020 Metals NELAP 9/24/2010 Molybdenum EPA 6025 Extractable Organics NELAP 9/24/2010 Molybdenum EPA 8260 Volatile Organics NELAP 9/24/2010 Naphthalene EPA 8260 Volatile Organics NELAP 7/1/2003 Nickel EPA 8270 Extractable Organics NELAP 7/1/2003 Nickel EPA 200.7 Metals NELAP 9/24/2010 Nickel EPA 8260 Volatile Organics NELAP 9/24/2010 <td>Methyl methanesulfonate</td> <td>EPA 8270</td> <td>Extractable Organics</td> <td>NELAP</td> <td>7/1/2003</td>	Methyl methanesulfonate	EPA 8270	Extractable Organics	NELAP	7/1/2003
Methylcyclohexane EPA 8260 Volatile Organics NELAP 9/11/2013 Methylene chloride EPA 8260 Volatile Organics NELAP 9/24/2010 Methylene chloride EPA 8260 Volatile Organics NELAP 7/1/2003 Molybdenum EPA 200.7 Metals NELAP 9/24/2010 Molybdenum EPA 6010 Metals NELAP 9/24/2010 Molybdenum EPA 6020 Metals NELAP 9/24/2010 Naphthalene EPA 8260 Volatile Organics NELAP 9/1/2003 Naphthalene EPA 8270 Extractable Organics NELAP 7/1/2003 Nickel EPA 8270 Metals NELAP 9/24/2010 Nickel EPA 200.7 Metals NELAP 9/24/2010 Nickel EPA 6010	Methyl parathion (Parathion, methyl)	EPA 8270	Pesticides-Herbicides-PCB's	NELAP	9/11/2013
Methylene chloride EPA 624 Volatile Organics NELAP 9/24/2010 Methylene chloride EPA 8260 Volatile Organics NELAP 7/1/2003 Molybdenum EPA 200.7 Metals NELAP 9/24/2010 Molybdenum EPA 200.8 Metals NELAP 9/24/2010 Molybdenum EPA 6010 Metals NELAP 9/24/2010 Molybdenum EPA 6020 Metals NELAP 9/24/2010 Naphthalene EPA 8260 Volatile Organics NELAP 7/1/2003 Naphthalene EPA 8270 Extractable Organics NELAP 7/1/2003 Nickel EPA 8270 Metals NELAP 7/1/2003 Nickel EPA 6010 Metals NELAP 9/24/2010 Nitrate as N EPA 6020 Me	Methyl tert-butyl ether (MTBE)	EPA 8260	Volatile Organics	NELAP	7/1/2003
Methylene chloride EPA 8260 Volatile Organics NELAP 7/1/2003 Molybdenum EPA 200.7 Metals NELAP 9/24/2010 Molybdenum EPA 200.8 Metals NELAP 9/24/2010 Molybdenum EPA 6010 Metals NELAP 9/24/2010 Molybdenum EPA 6020 Metals NELAP 10/27/2004 Naphthalene EPA 625 Extractable Organics NELAP 9/24/2010 Naphthalene EPA 8260 Volatile Organics NELAP 7/1/2003 Naphthalene EPA 8270 Extractable Organics NELAP 7/1/2003 Nickel EPA 8200 Volatile Organics NELAP 7/1/2003 Nickel EPA 8200 Volatile Organics NELAP 7/1/2003 Nickel EPA 8200 Wetals NELAP 9/24/2010 Nickel EPA 6010 Metals NELAP 10/9/2001 Nickel EPA 6020 Metals NELAP 4/15/2004 Nitrate as N EPA 9056	Methylcyclohexane	EPA 8260	Volatile Organics	NELAP	9/11/2013
Molybdenum EPA 200.7 Metals NELAP 9/24/2010 Molybdenum EPA 200.8 Metals NELAP 9/24/2010 Molybdenum EPA 6010 Metals NELAP 9/24/2010 Molybdenum EPA 6020 Metals NELAP 9/24/2010 Maphthalene EPA 625 Extractable Organics NELAP 9/24/2010 Naphthalene EPA 8260 Volatile Organics NELAP 7/1/2003 Naphthalene EPA 8270 Extractable Organics NELAP 7/1/2003 Nickel EPA 200.7 Metals NELAP 7/1/2003 Nickel EPA 6010 Metals NELAP 9/24/2010 Nickel EPA 6010 Metals NELAP 11/18/2004 Nitrate EPA 6020 Metals NELAP 11/18/2004 Nitrate EPA 6030 General Chemistry NELAP 9/24/2010 Nitrate as N EPA 5056 General Chemistry NELAP 9/24/2010 Nitrite as N EPA 625 Volatile	Methylene chloride	EPA 624	Volatile Organics	NELAP	9/24/2010
Molybdenum EPA 200.8 Metals NELAP 9/24/2010 Molybdenum EPA 6010 Metals NELAP 9/24/2010 Molybdenum EPA 6020 Metals NELAP 10/27/2004 Naphthalene EPA 625 Extractable Organics NELAP 9/24/2010 Naphthalene EPA 8260 Volatile Organics NELAP 7/1/2003 Naphthalene EPA 8260 Volatile Organics NELAP 7/1/2003 Nickel EPA 8260 Volatile Organics NELAP 7/1/2003 Nickel EPA 8260 Volatile Organics NELAP 7/1/2003 Nickel EPA 200.7 Metals NELAP 7/1/2003 Nickel EPA 200.8 Metals NELAP 9/24/2010 Nickel EPA 6010 Metals NELAP 1/18/2004 Nitrate EPA 6020 Metals NELAP 4/15/2004 Nitrate as N EPA 9056 General Chemistry NELAP 4/30/2004 Nitrite as N EPA 9056 General	Methylene chloride	EPA 8260	Volatile Organics	NELAP	7/1/2003
Molybdenum EPA 6010 Metals NELAP 9/24/2010 Molybdenum EPA 6020 Metals NELAP 10/27/2004 Naphthalene EPA 625 Extractable Organics NELAP 9/24/2010 Naphthalene EPA 8260 Volatile Organics NELAP 7/1/2003 Naphthalene EPA 8270 Extractable Organics NELAP 7/1/2003 Nichal EPA 260 Volatile Organics NELAP 7/1/2003 Nickel EPA 2007 Metals NELAP 9/24/2010 Nickel EPA 200.8 Metals NELAP 9/24/2010 Nickel EPA 6010 Metals NELAP 10/9/2001 Nickel EPA 6020 Metals NELAP 11/18/2004 Nitrate EPA 9056 General Chemistry NELAP 4/15/2004 Nitrate as N EPA 9056 General Chemistry NELAP 9/24/2010 Nitritie as N EPA 9056 General Chemistry NELAP 9/24/2010 Nitrobenzene EPA 625	Molybdenum	EPA 200.7	Metals	NELAP	9/24/2010
Molybdenum EPA 6020 Metals NELAP 10/27/2004 Naphthalene EPA 625 Extractable Organics NELAP 9/24/2010 Naphthalene EPA 8260 Volatile Organics NELAP 7/1/2003 Naphthalene EPA 8270 Extractable Organics NELAP 7/1/2003 n-Butylbenzene EPA 8260 Volatile Organics NELAP 7/1/2003 Nickel EPA 200.7 Metals NELAP 9/24/2010 Nickel EPA 200.8 Metals NELAP 9/24/2010 Nickel EPA 6010 Metals NELAP 10/9/2001 Nickel EPA 6020 Metals NELAP 11/18/2004 Nitrate EPA 6020 Metals NELAP 11/18/2004 Nitrate EPA 6020 Metals NELAP 11/18/2004 Nitrate as N EPA 9056 General Chemistry NELAP 4/15/2004 Nitritite as N EPA 8270 Extractable Organics NELAP 9/24/2010 Nitrobenzene EPA 625	Molybdenum	EPA 200.8	Metals	NELAP	9/24/2010
Naphthalene EPA 625 Extractable Organics NELAP 9/24/2010 Naphthalene EPA 8260 Volatile Organics NELAP 7/1/2003 Naphthalene EPA 8270 Extractable Organics NELAP 7/1/2003 n-Butylbenzene EPA 8260 Volatile Organics NELAP 7/1/2003 Nickel EPA 200.7 Metals NELAP 9/24/2010 Nickel EPA 200.8 Metals NELAP 9/24/2010 Nickel EPA 6010 Metals NELAP 10/9/2001 Nickel EPA 6020 Metals NELAP 11/18/2004 Nitrate EPA 6020 Metals NELAP 4/15/2004 Nitrate EPA 9056 General Chemistry NELAP 4/15/2004 Nitrite EPA 300.0 General Chemistry NELAP 9/24/2010 Nitrobenzene EPA 625 Volatile Organics NELAP 9/24/2010 Nitrobenzene EPA 8270 Extractable Organics NELAP 9/11/2013 n-Nitrosodi-n-butylamine	Molybdenum	EPA 6010	Metals	NELAP	9/24/2010
Naphthalene EPA 8260 Volatile Organics NELAP 71/2003 Naphthalene EPA 8270 Extractable Organics NELAP 71/2003 n-Butylbenzene EPA 8260 Volatile Organics NELAP 71/2003 Nickel EPA 200.7 Metals NELAP 9/24/2010 Nickel EPA 200.8 Metals NELAP 9/24/2010 Nickel EPA 6010 Metals NELAP 10/9/2001 Nickel EPA 6020 Metals NELAP 11/18/2004 Nitrate EPA 9056 General Chemistry NELAP 4/15/2004 Nitrate as N EPA 300.0 General Chemistry NELAP 9/24/2010 Nitrite as N EPA 9056 General Chemistry NELAP 9/24/2010 Nitrobenzene EPA 625 Volatile Organics NELAP 9/24/2010 Nitrobenzene EPA 625 Volatile Organics NELAP 9/11/2013 n-Nitrosodiethylamine EPA 8270 Extractable Organics NELAP 9/11/2013 n-Nit	Molybdenum	EPA 6020	Metals	NELAP	10/27/2004
Naphthalene EPA 8270 Extractable Organics NELAP 7/1/2003 n-Butylbenzene EPA 8260 Volatile Organics NELAP 7/1/2003 Nickel EPA 200.7 Metals NELAP 9/24/2010 Nickel EPA 200.8 Metals NELAP 9/24/2010 Nickel EPA 6010 Metals NELAP 10/9/2001 Nickel EPA 6020 Metals NELAP 11/18/2004 Nitrate EPA 9056 General Chemistry NELAP 4/15/2004 Nitrate as N EPA 300.0 General Chemistry NELAP 9/24/2010 Nitrite as N EPA 9056 General Chemistry NELAP 9/24/2010 Nitrite as N EPA 9056 General Chemistry NELAP 9/24/2010 Nitrite as N EPA 9056 General Chemistry NELAP 9/24/2010 Nitrobenzene EPA 8270 Extractable Organics NELAP 9/1/2003 n-Nitrosodiethylamine EPA 8270 Extractable Organics NELAP 9/11/2013	Naphthalene	EPA 625	Extractable Organics	NELAP	9/24/2010
n-Butylbenzene EPA 8260 Volatile Organics NELAP 7/1/2003 Nickel EPA 200.7 Metals NELAP 9/24/2010 Nickel EPA 200.8 Metals NELAP 9/24/2010 Nickel EPA 6010 Metals NELAP 10/9/2001 Nickel EPA 6020 Metals NELAP 11/18/2004 Nitrate EPA 9056 General Chemistry NELAP 4/15/2004 Nitrate as N EPA 300.0 General Chemistry NELAP 9/24/2010 Nitrite as N EPA 9056 General Chemistry NELAP 9/24/2010 Nitrite as N EPA 9056 General Chemistry NELAP 9/24/2010 Nitrite as N EPA 9056 General Chemistry NELAP 9/24/2010 Nitrobenzene EPA 9056 General Chemistry NELAP 9/24/2010 Nitrobenzene EPA 8270 Extractable Organics NELAP 9/11/2003 n-Nitrosodiethylamine EPA 8270 Extractable Organics NELAP 9/11/2003	Naphthalene	EPA 8260	Volatile Organics	NELAP	7/1/2003
Nickel EPA 200.7 Metals NELAP 9/24/2010 Nickel EPA 200.8 Metals NELAP 9/24/2010 Nickel EPA 6010 Metals NELAP 10/9/2001 Nickel EPA 6020 Metals NELAP 11/18/2004 Nitrate EPA 9056 General Chemistry NELAP 4/15/2004 Nitrate as N EPA 300.0 General Chemistry NELAP 9/24/2010 Nitrite EPA 9056 General Chemistry NELAP 4/30/2004 Nitrite as N EPA 300.0 General Chemistry NELAP 9/24/2010 Nitrobenzene EPA 8270 Extractable Organics NELAP 9/24/2010 Nitrobenzene EPA 8270 Extractable Organics NELAP 9/11/2003 n-Nitrosodiethylamine EPA 8270 Extractable Organics NELAP 9/11/2003 n-Nitrosodi-n-propylamine EPA 8270 Extractable Organics NELAP 9/24/2010 n-Nitrosodi-n-propylamine EPA 8270 Extractable Organics NELAP 7/1/2003 <td>Naphthalene</td> <td>EPA 8270</td> <td>Extractable Organics</td> <td>NELAP</td> <td>7/1/2003</td>	Naphthalene	EPA 8270	Extractable Organics	NELAP	7/1/2003
Nickel EPA 200.8 Metals NELAP 9/24/2010 Nickel EPA 6010 Metals NELAP 10/9/2001 Nickel EPA 6020 Metals NELAP 11/18/2004 Nitrate EPA 9056 General Chemistry NELAP 4/15/2004 Nitrate as N EPA 300.0 General Chemistry NELAP 4/30/2004 Nitrite as N EPA 300.0 General Chemistry NELAP 9/24/2010 Nitrobenzene EPA 625 Volatile Organics NELAP 9/24/2010 Nitrobenzene EPA 8270 Extractable Organics NELAP 9/11/2003 n-Nitrosodiethylamine EPA 8270 Extractable Organics NELAP 9/11/2013 n-Nitrosodi-n-butylamine EPA 8270 Extractable Organics NELAP 9/11/2013 n-Nitrosodi-n-propylamine EPA 8270 Extractable Organics NELAP 9/24/2010 n-Nitrosodi-n-propylamine EPA 8270 Extractable Organics NELAP 7/1/2003 n-Nitrosodi-n-propylamine EPA 8270 Extractable Organics	n-Butylbenzene	EPA 8260	Volatile Organics	NELAP	7/1/2003
Nickel EPA 6010 Metals NELAP 10/9/2001 Nickel EPA 6020 Metals NELAP 11/18/2004 Nitrate EPA 9056 General Chemistry NELAP 4/15/2004 Nitrate as N EPA 9056 General Chemistry NELAP 9/24/2010 Nitrite EPA 9056 General Chemistry NELAP 4/30/2004 Nitrite as N EPA 300.0 General Chemistry NELAP 9/24/2010 Nitrobenzene EPA 625 Volatile Organics NELAP 9/24/2010 Nitrobenzene EPA 8270 Extractable Organics NELAP 9/11/2013 n-Nitrosodiiethylamine EPA 8270 Extractable Organics NELAP 9/11/2013 n-Nitrosodi-n-propylamine EPA 8270 Extractable Organics NELAP 9/11/2013 n-Nitrosodi-n-propylamine EPA 8270 Extractable Organics NELAP 9/11/2003 n-Nitrosodi-n-propylamine EPA 8270 Extractable Organics NELAP 7/1/2003 n-Nitrosodi-n-propylamine EPA 8270 Extractable Or	Nickel	EPA 200.7	Metals	NELAP	9/24/2010
NickelEPA 6020MetalsNELAP11/18/2004NitrateEPA 9056General ChemistryNELAP4/15/2004Nitrate as NEPA 300.0General ChemistryNELAP9/24/2010NitriteEPA 9056General ChemistryNELAP4/30/2004Nitrite as NEPA 300.0General ChemistryNELAP9/24/2010NitrobenzeneEPA 625Volatile OrganicsNELAP9/24/2010NitrobenzeneEPA 8270Extractable OrganicsNELAP7/1/2003n-NitrosodiethylamineEPA 8270Extractable OrganicsNELAP9/11/2013n-Nitrosodi-n-butylamineEPA 8270Extractable OrganicsNELAP9/11/2013n-Nitrosodi-n-propylamineEPA 625Volatile OrganicsNELAP9/11/2013n-Nitrosodi-n-propylamineEPA 625Volatile OrganicsNELAP9/24/2010n-Nitrosodi-n-propylamineEPA 8270Extractable OrganicsNELAP7/1/2003n-Nitrosodi-n-propylamineEPA 8270Extractable OrganicsNELAP7/1/2003n-Nitrosodi-n-propylamineEPA 8270Extractable OrganicsNELAP7/1/2003n-NitrosomethylethylamineEPA 8270Extractable OrganicsNELAP7/1/2003	Nickel	EPA 200.8	Metals	NELAP	9/24/2010
NitrateEPA 9056General ChemistryNELAP4/15/2004Nitrate as NEPA 300.0General ChemistryNELAP9/24/2010NitriteEPA 9056General ChemistryNELAP4/30/2004Nitrite as NEPA 300.0General ChemistryNELAP9/24/2010NitrobenzeneEPA 625Volatile OrganicsNELAP9/24/2010NitrobenzeneEPA 8270Extractable OrganicsNELAP7/1/2003n-NitrosodiethylamineEPA 8270Extractable OrganicsNELAP9/11/2013n-Nitroso-di-n-butylamineEPA 8270Extractable OrganicsNELAP9/11/2013n-Nitrosodi-n-propylamineEPA 8270Extractable OrganicsNELAP9/11/2013n-Nitrosodi-n-propylamineEPA 625Volatile OrganicsNELAP9/24/2010n-Nitrosodi-n-propylamineEPA 8270Extractable OrganicsNELAP7/1/2003n-Nitrosodi-n-propylamineEPA 8270Extractable OrganicsNELAP7/1/2003n-Nitrosodi-n-propylamineEPA 8270Extractable OrganicsNELAP7/1/2003n-NitrosomethylethylamineEPA 8270Extractable OrganicsNELAP7/1/2003	Nickel	EPA 6010	Metals	NELAP	10/9/2001
Nitrate as N EPA 300.0 General Chemistry NELAP 9/24/2010 Nitrite EPA 9056 General Chemistry NELAP 4/30/2004 Nitrite as N EPA 300.0 General Chemistry NELAP 9/24/2010 Nitrobenzene EPA 625 Volatile Organics NELAP 9/24/2010 Nitrobenzene EPA 8270 Extractable Organics NELAP 7/1/2003 n-Nitrosodiethylamine EPA 8270 Extractable Organics NELAP 9/11/2013 n-Nitrosodimethylamine EPA 8270 Extractable Organics NELAP 7/1/2003 n-Nitroso-di-n-butylamine EPA 8270 Extractable Organics NELAP 9/11/2013 n-Nitrosodi-n-propylamine EPA 8270 Extractable Organics NELAP 9/11/2013 n-Nitrosodi-n-propylamine EPA 625 Volatile Organics NELAP 9/24/2010 n-Nitrosodi-n-propylamine EPA 8270 Extractable Organics NELAP 9/24/2010 n-Nitrosodi-n-propylamine EPA 8270 Extractable Organics NELAP 7/1/2003 n-Nitrosodi-n-propylamine EPA 8270 Extractable Organics NELAP 7/1/2003 n-Nitrosodi-n-propylamine EPA 8270 Extractable Organics NELAP 7/1/2003 n-Nitrosodi-n-propylamine EPA 8270 Extractable Organics NELAP 9/11/2013	Nickel	EPA 6020	Metals	NELAP	11/18/2004
Nitrite EPA 9056 General Chemistry NELAP 4/30/2004 Nitrite as N EPA 300.0 General Chemistry NELAP 9/24/2010 Nitrobenzene EPA 625 Volatile Organics NELAP 9/24/2010 Nitrobenzene EPA 8270 Extractable Organics NELAP 7/1/2003 n-Nitrosodiethylamine EPA 8270 Extractable Organics NELAP 9/11/2013 n-Nitrosodimethylamine EPA 8270 Extractable Organics NELAP 9/11/2013 n-Nitrosodi-n-butylamine EPA 8270 Extractable Organics NELAP 9/11/2013 n-Nitrosodi-n-propylamine EPA 8270 Extractable Organics NELAP 9/11/2013 n-Nitrosodi-n-propylamine EPA 625 Volatile Organics NELAP 9/24/2010 n-Nitrosodi-n-propylamine EPA 8270 Extractable Organics NELAP 7/1/2003 n-Nitrosodi-n-propylamine EPA 8270 Extractable Organics NELAP 7/1/2003 n-Nitrosodi-n-propylamine EPA 8270 Extractable Organics NELAP 7/1/2003 n-Nitrosomethylethylamine EPA 8270 Extractable Organics NELAP 9/11/2013	Nitrate	EPA 9056	General Chemistry	NELAP	4/15/2004
Nitrite as N EPA 300.0 General Chemistry NELAP 9/24/2010 Nitrobenzene EPA 625 Volatile Organics NELAP 9/24/2010 Nitrobenzene EPA 8270 Extractable Organics NELAP 7/1/2003 n-Nitrosodiethylamine EPA 8270 Extractable Organics NELAP 9/11/2013 n-Nitrosodimethylamine EPA 8270 Extractable Organics NELAP 9/11/2013 n-Nitrosodi-n-butylamine EPA 8270 Extractable Organics NELAP 9/11/2013 n-Nitrosodi-n-butylamine EPA 8270 Extractable Organics NELAP 9/11/2013 n-Nitrosodi-n-propylamine EPA 625 Volatile Organics NELAP 9/24/2010 n-Nitrosodi-n-propylamine EPA 8270 Extractable Organics NELAP 7/1/2003 n-Nitrosodi-n-propylamine EPA 8270 Extractable Organics NELAP 7/1/2003 n-Nitrosodi-n-propylamine EPA 8270 Extractable Organics NELAP 7/1/2003 n-Nitrosomethylethylamine EPA 8270 Extractable Organics NELAP 9/11/2013	Nitrate as N	EPA 300.0	General Chemistry	NELAP	9/24/2010
Nitrobenzene EPA 625 Volatile Organics NELAP 9/24/2010 Nitrobenzene EPA 8270 Extractable Organics NELAP 7/1/2003 n-Nitrosodiethylamine EPA 8270 Extractable Organics NELAP 9/11/2013 n-Nitrosodimethylamine EPA 8270 Extractable Organics NELAP 7/1/2003 n-Nitrosodi-n-butylamine EPA 8270 Extractable Organics NELAP 9/11/2013 n-Nitrosodi-n-propylamine EPA 625 Volatile Organics NELAP 9/11/2013 n-Nitrosodi-n-propylamine EPA 8270 Extractable Organics NELAP 9/24/2010 n-Nitrosodi-n-propylamine EPA 8270 Extractable Organics NELAP 7/1/2003 n-Nitrosodi-n-propylamine EPA 8270 Extractable Organics NELAP 7/1/2003 n-Nitrosodi-n-propylamine EPA 8270 Extractable Organics NELAP 9/11/2013 n-Nitrosodi-n-propylamine EPA 8270 Extractable Organics NELAP 9/11/2013	Nitrite	EPA 9056	General Chemistry	NELAP	4/30/2004
Nitrobenzene EPA 8270 Extractable Organics NELAP 7/1/2003 n-Nitrosodiethylamine EPA 8270 Extractable Organics NELAP 9/11/2013 n-Nitrosodimethylamine EPA 8270 Extractable Organics NELAP 7/1/2003 n-Nitroso-di-n-butylamine EPA 8270 Extractable Organics NELAP 9/11/2013 n-Nitrosodi-n-propylamine EPA 625 Volatile Organics NELAP 9/24/2010 n-Nitrosodi-n-propylamine EPA 8270 Extractable Organics NELAP 7/1/2003 n-Nitrosodi-n-propylamine EPA 8270 Extractable Organics NELAP 7/1/2003 n-Nitrosodi-n-propylamine EPA 8270 Extractable Organics NELAP 7/1/2003 n-Nitrosodi-n-propylamine EPA 8270 Extractable Organics NELAP 9/11/2013	Nitrite as N	EPA 300.0	General Chemistry	NELAP	9/24/2010
n-Nitrosodiethylamine EPA 8270 Extractable Organics NELAP 9/11/2013 n-Nitrosodimethylamine EPA 8270 Extractable Organics NELAP 7/1/2003 n-Nitroso-di-n-butylamine EPA 8270 Extractable Organics NELAP 9/11/2013 n-Nitrosodi-n-propylamine EPA 625 Volatile Organics NELAP 9/24/2010 n-Nitrosodi-n-propylamine EPA 8270 Extractable Organics NELAP 7/1/2003 n-Nitrosodiphenylamine EPA 8270 Extractable Organics NELAP 7/1/2003 n-Nitrosodiphenylamine EPA 8270 Extractable Organics NELAP 9/11/2013 n-Nitrosomethylethylamine EPA 8270 Extractable Organics NELAP 9/11/2013	Nitrobenzene	EPA 625	Volatile Organics	NELAP	9/24/2010
n-Nitrosodimethylamine EPA 8270 Extractable Organics NELAP 7/1/2003 n-Nitrosodi-n-butylamine EPA 8270 Extractable Organics NELAP 9/11/2013 n-Nitrosodi-n-propylamine EPA 625 Volatile Organics NELAP 9/24/2010 n-Nitrosodi-n-propylamine EPA 8270 Extractable Organics NELAP 7/1/2003 n-Nitrosodiphenylamine EPA 8270 Extractable Organics NELAP 7/1/2003 n-Nitrosomethylethylamine EPA 8270 Extractable Organics NELAP 9/11/2013	Nitrobenzene	EPA 8270	Extractable Organics	NELAP	7/1/2003
n-Nitroso-di-n-butylamine EPA 8270 Extractable Organics NELAP 9/11/2013 n-Nitrosodi-n-propylamine EPA 625 Volatile Organics NELAP 9/24/2010 n-Nitrosodi-n-propylamine EPA 8270 Extractable Organics NELAP 7/1/2003 n-Nitrosodiphenylamine EPA 8270 Extractable Organics NELAP 7/1/2003 n-Nitrosomethylethylamine EPA 8270 Extractable Organics NELAP 9/11/2013	n-Nitrosodiethylamine	EPA 8270	Extractable Organics	NELAP	9/11/2013
n-Nitrosodi-n-propylamine EPA 625 Volatile Organics NELAP 9/24/2010 n-Nitrosodi-n-propylamine EPA 8270 Extractable Organics NELAP 7/1/2003 n-Nitrosodiphenylamine EPA 8270 Extractable Organics NELAP 7/1/2003 n-Nitrosomethylethylamine EPA 8270 Extractable Organics NELAP 9/11/2013	n-Nitrosodimethylamine	EPA 8270	Extractable Organics	NELAP	7/1/2003
n-Nitrosodi-n-propylamine EPA 8270 Extractable Organics NELAP 7/1/2003 n-Nitrosodiphenylamine EPA 8270 Extractable Organics NELAP 7/1/2003 n-Nitrosomethylethylamine EPA 8270 Extractable Organics NELAP 9/11/2013	n-Nitroso-di-n-butylamine	EPA 8270	Extractable Organics	NELAP	9/11/2013
n-Nitrosodiphenylamine EPA 8270 Extractable Organics NELAP 7/1/2003 n-Nitrosomethylethylamine EPA 8270 Extractable Organics NELAP 9/11/2013	n-Nitrosodi-n-propylamine	EPA 625	Volatile Organics	NELAP	9/24/2010
n-Nitrosomethylethylamine EPA 8270 Extractable Organics NELAP 9/11/2013	n-Nitrosodi-n-propylamine	EPA 8270	Extractable Organics	NELAP	7/1/2003
	n-Nitrosodiphenylamine	EPA 8270	Extractable Organics	NELAP	7/1/2003
n-Nitrosopiperidine EPA 8270 Extractable Organics NELAP 9/11/2013	n-Nitrosomethylethylamine	EPA 8270	Extractable Organics	NELAP	9/11/2013
	n-Nitrosopiperidine	EPA 8270	Extractable Organics	NELAP	9/11/2013

Expiration Date: 6/30/2015

Laboratory Scope of Accreditation

Page 12 of 24

Attachment to Certificate #: E87429-31, expiration date June 30, 2015. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E87429 EPA Lab Code: GA00046 (770) 449-8800

Matrix: Non-Potable Water			Contification	
Analyte	Method/Tech	Category	Certification Type	Effective Date
n-Nitrosopyrrolidine	EPA 8270	Extractable Organics	NELAP	9/11/2013
n-Propylbenzene	EPA 8260	Volatile Organics	NELAP	7/1/2003
o,o,o-Triethyl phosphorothioate	EPA 8270	Pesticides-Herbicides-PCB's	NELAP	9/11/2013
Oil & Grease	EPA 1664A	General Chemistry	NELAP	4/15/2004
Organic nitrogen	TKN minus AMMONIA	General Chemistry	NELAP	9/24/2010
Orthophosphate as P	SM 4500-P E	General Chemistry	NELAP	7/11/2008
o-Toluidine	EPA 8270	Extractable Organics	NELAP	9/11/2013
o-Xylene	EPA 8260	Volatile Organics	NELAP	7/11/2008
Parathion, ethyl	EPA 8270	Pesticides-Herbicides-PCB's	NELAP	9/11/2013
Pentachlorobenzene	EPA 8270	Extractable Organics	NELAP	9/11/2013
Pentachloroethane	EPA 8260	Volatile Organics	NELAP	10/27/2004
Pentachloronitrobenzene (Quintozene)	EPA 8270	Extractable Organics	NELAP	9/11/2013
Pentachlorophenol	EPA 8270	Extractable Organics	NELAP	7/1/2003
pН	EPA 9040	General Chemistry	NELAP	7/1/2003
pН	SM 4500-H+-B	General Chemistry	NELAP	1/24/2008
Phenacetin	EPA 8270	Extractable Organics	NELAP	9/11/2013
Phenanthrene	EPA 625	Extractable Organics	NELAP	9/24/2010
Phenanthrene	EPA 8270	Extractable Organics	NELAP	7/1/2003
Phenol	EPA 8270	Extractable Organics	NELAP	7/1/2003
Phorate	EPA 8270	Pesticides-Herbicides-PCB's	NELAP	9/11/2013
Phosphorus, total	EPA 365.2	General Chemistry	NELAP	10/9/2001
Phosphorus, total	SM 4500-P E	General Chemistry	NELAP	1/24/2008
p-Isopropyltoluene	EPA 8260	Volatile Organics	NELAP	10/27/2004
Potassium	EPA 200.7	Metals	NELAP	9/24/2010
Potassium	EPA 6010	Metals	NELAP	7/1/2003
Potassium	EPA 6020	Metals	NELAP	4/30/2004
Pronamide (Kerb)	EPA 8270	Extractable Organics	NELAP	9/11/2013
Propionitrile (Ethyl cyanide)	EPA 8260	Volatile Organics	NELAP	10/27/2004
Pyrene	EPA 625	Extractable Organics	NELAP	9/24/2010
Pyrene	EPA 8270	Extractable Organics	NELAP	7/1/2003
Pyridine	EPA 8270	Extractable Organics	NELAP	7/1/2003
Residue-filterable (TDS)	SM 2540 C	General Chemistry	NELAP	1/24/2008
Residue-nonfilterable (TSS)	SM 2540 D	General Chemistry	NELAP	1/24/2008
Residue-total	SM 2540 B	General Chemistry	NELAP	9/11/2013
Residue-volatile	EPA 160.4	General Chemistry	NELAP	10/9/2001
Safrole	EPA 8270	Extractable Organics	NELAP	9/11/2013

Expiration Date: 6/30/2015

Laboratory Scope of Accreditation

Page 13 of 24

Attachment to Certificate #: E87429-31, expiration date June 30, 2015. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E87429 EPA Lab Code: GA00046 (770) 449-8800

Matrix: Non-Potable Water			Comtiff	
Analyte	Method/Tech	Category	Certification Type	Effective Date
Salinity	SM 2520 B	General Chemistry	NELAP	9/24/2010
sec-Butylbenzene	EPA 8260	Volatile Organics	NELAP	7/1/2003
Selenium	EPA 200.7	Metals	NELAP	9/24/2010
Selenium	EPA 200.8	Metals	NELAP	9/24/2010
Selenium	EPA 6010	Metals	NELAP	10/9/2001
Selenium	EPA 6020	Metals	NELAP	9/24/2010
Silica as SiO2	EPA 200.7	Metals	NELAP	9/24/2010
Silicon	EPA 6010	Metals	NELAP	9/24/2010
Silver	EPA 200.7	Metals	NELAP	9/24/2010
Silver	EPA 200.8	Metals	NELAP	9/24/2010
Silver	EPA 6010	Metals	NELAP	7/1/2003
Silver	EPA 6020	Metals	NELAP	9/24/2010
Silvex (2,4,5-TP)	EPA 615	Pesticides-Herbicides-PCB's	NELAP	9/24/2010
Silvex (2,4,5-TP)	EPA 8151	Pesticides-Herbicides-PCB's	NELAP	6/19/2003
Sodium	EPA 200.7	Metals	NELAP	9/24/2010
Sodium	EPA 6010	Metals	NELAP	7/1/2003
Sodium	EPA 6020	Metals	NELAP	4/30/2004
Strontium	EPA 200.7	Metals	NELAP	9/24/2010
Strontium	EPA 6010	Metals	NELAP	9/24/2010
Strontium	EPA 6020	Metals	NELAP	12/10/2010
Styrene	EPA 8260	Volatile Organics	NELAP	7/1/2003
Sulfate	EPA 300.0	General Chemistry	NELAP	9/24/2010
Sulfate	EPA 9056	General Chemistry	NELAP	4/30/2004
Sulfide	SM 4500-S F	General Chemistry	NELAP	12/8/2010
T-amylmethylether (TAME)	EPA 8260	Volatile Organics	NELAP	7/11/2008
tert-Amyl alcohol (2-methyl-2-butanol)	EPA 8260	Volatile Organics	NELAP	9/11/2013
tert-Butyl alcohol	EPA 8260	Volatile Organics	NELAP	7/11/2008
tert-Butyl formate	EPA 8260	Volatile Organics	NELAP	9/11/2013
tert-Butylbenzene	EPA 8260	Volatile Organics	NELAP	7/1/2003
Tetrachloroethylene (Perchloroethylene)	EPA 624	Volatile Organics	NELAP	9/24/2010
Tetrachloroethylene (Perchloroethylene)	EPA 8260	Volatile Organics	NELAP	6/19/2003
Tetrahydrofuran (THF)	EPA 8260	Volatile Organics	NELAP	9/11/2013
Thallium	EPA 200.7	Metals	NELAP	9/24/2010
Thallium	EPA 200.8	Metals	NELAP	9/24/2010
Thallium	EPA 6010	Metals	NELAP	7/1/2003
Thallium	EPA 6020	Metals	NELAP	10/27/2004

Expiration Date: 6/30/2015

Laboratory Scope of Accreditation

Page 14 of 24

Attachment to Certificate #: E87429-31, expiration date June 30, 2015. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E87429 EPA Lab Code: GA00046 (770) 449-8800

Matrix: Non-Potable Water			G (if i	
Analyte	Method/Tech	Category	Certification Type	Effective Date
Thionazin (Zinophos)	EPA 8270	Pesticides-Herbicides-PCB's	NELAP	9/11/2013
Tin	EPA 200.7	Metals	NELAP	9/24/2010
Tin	EPA 6010	Metals	NELAP	9/24/2010
Tin	EPA 6020	Metals	NELAP	7/1/2005
Titanium	EPA 200.7	Metals	NELAP	9/24/2010
Titanium	EPA 6010	Metals	NELAP	9/24/2010
Titanium	EPA 6020	Metals	NELAP	7/1/2005
Toluene	EPA 624	Volatile Organics	NELAP	9/24/2010
Toluene	EPA 8260	Volatile Organics	NELAP	6/19/2003
Total cyanide	EPA 9010/9014	General Chemistry	NELAP	7/1/2003
Total nitrate-nitrite	EPA 300.0	General Chemistry	NELAP	9/24/2010
Total nitrate-nitrite	EPA 9056	General Chemistry	NELAP	9/24/2010
Total nitrogen	TKN + Total nitrate-nitrite	General Chemistry	NELAP	9/24/2010
Total Petroleum Hydrocarbons (TPH)	EPA 1664A	General Chemistry	NELAP	4/15/2004
Total Petroleum Hydrocarbons (TPH)	FL-PRO	Extractable Organics	NELAP	7/1/2003
Total residual chlorine	SM 4500-C1 G	General Chemistry	NELAP	9/24/2010
Toxaphene (Chlorinated camphene)	EPA 608	Extractable Organics	NELAP	9/24/2010
Toxaphene (Chlorinated camphene)	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	6/19/2003
trans-1,2-Dichloroethylene	EPA 624	Volatile Organics	NELAP	9/24/2010
trans-1,2-Dichloroethylene	EPA 8260	Volatile Organics	NELAP	7/1/2003
trans-1,3-Dichloropropene	EPA 624	Volatile Organics	NELAP	9/24/2010
trans-1,3-Dichloropropene	EPA 8260	Volatile Organics	NELAP	7/1/2003
trans-1,4-Dichloro-2-butene	EPA 8260	Volatile Organics	NELAP	7/1/2003
Trichloroethene (Trichloroethylene)	EPA 624	Volatile Organics	NELAP	9/24/2010
Trichloroethene (Trichloroethylene)	EPA 8260	Volatile Organics	NELAP	6/19/2003
Trichlorofluoromethane	EPA 624	Volatile Organics	NELAP	9/24/2010
Trichlorofluoromethane	EPA 8260	Volatile Organics	NELAP	7/1/2003
Un-ionized Ammonia	DEP SOP 10/03/83	General Chemistry	NELAP	9/24/2010
Vanadium	EPA 200.7	Metals	NELAP	9/24/2010
Vanadium	EPA 200.8	Metals	NELAP	9/24/2010
Vanadium	EPA 6010	Metals	NELAP	7/1/2003
Vanadium	EPA 6020	Metals	NELAP	9/24/2010
Vinyl acetate	EPA 8260	Volatile Organics	NELAP	7/1/2003
Vinyl chloride	EPA 624	Volatile Organics	NELAP	9/24/2010
Vinyl chloride	EPA 8260	Volatile Organics	NELAP	7/1/2003
Xylene (total)	EPA 8260	Volatile Organics	NELAP	6/19/2003

Expiration Date: 6/30/2015

Laboratory Scope of Accreditation

Page 15 of 24

Attachment to Certificate #: E87429-31, expiration date June 30, 2015. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: **E87429** EPA Lab Code: **GA00046** (770) 449-8800

Matrix:	Non-Potable Water				
Analyte	Non-1 dtable water	Method/Tech	Category	Certification Type	Effective Date
Zinc		EPA 200.7	Metals	NELAP	9/24/2010
Zinc		EPA 200.8	Metals	NELAP	9/24/2010
Zinc		EPA 6010	Metals	NELAP	10/9/2001
Zinc		EPA 6020	Metals	NELAP	10/27/2004

Expiration Date: 6/30/2015

Laboratory Scope of Accreditation

Page 16 of 24

Attachment to Certificate #: E87429-31, expiration date June 30, 2015. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E87429 EPA Lab Code: GA00046 (770) 449-8800

Matrix: Solid and Chemical Materi	als		Certification	
Analyte	Method/Tech	Category	Туре	Effective Date
1,1,1,2-Tetrachloroethane	EPA 8260	Volatile Organics	NELAP	7/11/2008
1,1,1-Trichloroethane	EPA 8260	Volatile Organics	NELAP	3/14/2002
1,1,2,2-Tetrachloroethane	EPA 8260	Volatile Organics	NELAP	3/14/2002
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	EPA 8260	Volatile Organics	NELAP	7/11/2008
1,1,2-Trichloroethane	EPA 8260	Volatile Organics	NELAP	10/9/2001
1,1-Dichloroethane	EPA 8260	Volatile Organics	NELAP	3/14/2002
1,1-Dichloroethylene	EPA 8260	Volatile Organics	NELAP	10/9/2001
1,1-Dichloropropene	EPA 8260	Volatile Organics	NELAP	10/9/2001
1,2,3-Trichlorobenzene	EPA 8260	Volatile Organics	NELAP	10/9/2001
1,2,3-Trichloropropane	EPA 8260	Volatile Organics	NELAP	8/1/2008
1,2,4,5-Tetrachlorobenzene	EPA 8270	Extractable Organics	NELAP	9/11/2013
1,2,4-Trichlorobenzene	EPA 8260	Volatile Organics	NELAP	10/9/2001
1,2,4-Trichlorobenzene	EPA 8270	Extractable Organics	NELAP	10/9/2001
1,2,4-Trimethylbenzene	EPA 8260	Volatile Organics	NELAP	10/9/2001
1,2-Dibromo-3-chloropropane (DBCP)	EPA 8260	Volatile Organics	NELAP	10/9/2001
1,2-Dibromoethane (EDB, Ethylene dibromide)	EPA 8260	Volatile Organics	NELAP	10/9/2001
1,2-Dichlorobenzene	EPA 8260	Volatile Organics	NELAP	3/14/2002
1,2-Dichlorobenzene	EPA 8270	Extractable Organics	NELAP	11/29/2001
1,2-Dichloroethane	EPA 8260	Volatile Organics	NELAP	3/14/2002
1,2-Dichloropropane	EPA 8260	Volatile Organics	NELAP	10/9/2001
1,2-Diphenylhydrazine	EPA 8270	Extractable Organics	NELAP	9/24/2010
1,3,5-Trimethylbenzene	EPA 8260	Volatile Organics	NELAP	10/9/2001
1,3,5-Trinitrobenzene (1,3,5-TNB)	EPA 8270	Extractable Organics	NELAP	9/11/2013
1,3-Dichlorobenzene	EPA 8260	Volatile Organics	NELAP	3/14/2002
1,3-Dichlorobenzene	EPA 8270	Extractable Organics	NELAP	11/29/2001
1,3-Dichloropropane	EPA 8260	Volatile Organics	NELAP	10/9/2001
1,3-Dinitrobenzene (1,3-DNB)	EPA 8270	Extractable Organics	NELAP	9/11/2013
1,4-Dichlorobenzene	EPA 8260	Volatile Organics	NELAP	3/14/2002
1,4-Dichlorobenzene	EPA 8270	Extractable Organics	NELAP	11/29/2001
1,4-Dioxane (1,4-Diethyleneoxide)	EPA 8260	Volatile Organics	NELAP	10/27/2004
1,4-Naphthoquinone	EPA 8270	Extractable Organics	NELAP	9/11/2013
1,4-Phenylenediamine	EPA 8270	Extractable Organics	NELAP	9/11/2013
1-Methylnaphthalene	EPA 8270	Extractable Organics	NELAP	7/11/2008
1-Naphthylamine	EPA 8270	Extractable Organics	NELAP	9/11/2013
2,2-Dichloropropane	EPA 8260	Volatile Organics	NELAP	10/9/2001
2,3,4,6-Tetrachlorophenol	EPA 8270	Extractable Organics	NELAP	10/9/2001

Expiration Date: 6/30/2015

Laboratory Scope of Accreditation

Page 17 of 24

Attachment to Certificate #: E87429-31, expiration date June 30, 2015. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E87429 EPA Lab Code: GA00046 (770) 449-8800

Matrix: Solid and Chemical Mate					
Analyte	Method/Tech	Category	Certification Type	Effective Date	
2,4,5-T	EPA 8151	Pesticides-Herbicides-PCB's	NELAP	6/12/2003	
2,4,5-Trichlorophenol	EPA 8270	Extractable Organics	NELAP	10/9/2001	
2,4,6-Trichlorophenol	EPA 8270	Extractable Organics	NELAP	10/9/2001	
2,4-D	EPA 8151	Pesticides-Herbicides-PCB's	NELAP	6/12/2003	
2,4-DB	EPA 8151	Pesticides-Herbicides-PCB's	NELAP	10/9/2001	
2,4-Dichlorophenol	EPA 8270	Extractable Organics	NELAP	10/9/2001	
2,4-Dimethylphenol	EPA 8270	Extractable Organics	NELAP	10/9/2001	
2,4-Dinitrophenol	EPA 8270	Extractable Organics	NELAP	10/9/2001	
2,4-Dinitrotoluene (2,4-DNT)	EPA 8270	Extractable Organics	NELAP	10/9/2001	
2,6-Dichlorophenol	EPA 8270	Extractable Organics	NELAP	10/9/2001	
2,6-Dinitrotoluene (2,6-DNT)	EPA 8270	Extractable Organics	NELAP	10/9/2001	
2-Acetylaminofluorene	EPA 8270	Extractable Organics	NELAP	9/11/2013	
2-Butanone (Methyl ethyl ketone, MEK)	EPA 8260	Volatile Organics	NELAP	10/9/2001	
2-Chloroethyl vinyl ether	EPA 8260	Volatile Organics	NELAP	10/9/2001	
2-Chloronaphthalene	EPA 8270	Extractable Organics	NELAP	10/9/2001	
2-Chlorophenol	EPA 8270	Extractable Organics	NELAP	10/9/2001	
2-Chlorotoluene	EPA 8260	Volatile Organics	NELAP	10/9/2001	
2-Hexanone	EPA 8260	Volatile Organics	NELAP	10/9/2001	
2-Methyl-2-pentanol	EPA 8260	Volatile Organics	NELAP	9/11/2013	
2-Methyl-4,6-dinitrophenol	EPA 8270	Extractable Organics	NELAP	10/9/2001	
2-Methylnaphthalene	EPA 8270	Extractable Organics	NELAP	10/9/2001	
2-Methylphenol (o-Cresol)	EPA 8270	Extractable Organics	NELAP	10/9/2001	
2-Naphthylamine	EPA 8270	Extractable Organics	NELAP	9/11/2013	
2-Nitroaniline	EPA 8270	Extractable Organics	NELAP	10/9/2001	
2-Nitrophenol	EPA 8270	Extractable Organics	NELAP	10/9/2001	
3,3'-Dichlorobenzidine	EPA 8270	Extractable Organics	NELAP	10/9/2001	
3,3-Dimethyl-1-butanol	EPA 8260	Volatile Organics	NELAP	9/11/2013	
3,3'-Dimethylbenzidine	EPA 8270	Extractable Organics	NELAP	9/11/2013	
3/4-Methylphenols (m/p-Cresols)	EPA 8270	Extractable Organics	NELAP	9/11/2013	
3-Methylcholanthrene	EPA 8270	Extractable Organics	NELAP	9/11/2013	
3-Nitroaniline	EPA 8270	Extractable Organics	NELAP	10/9/2001	
4,4'-DDD	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	10/9/2001	
4,4'-DDE	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	10/9/2001	
4,4'-DDT	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	10/9/2001	
4-Aminobiphenyl	EPA 8270	Extractable Organics	NELAP	9/11/2013	
4-Bromophenyl phenyl ether	EPA 8270	Extractable Organics	NELAP	10/9/2001	

Expiration Date: 6/30/2015

Page 18 of 24

Laboratory Scope of Accreditation

Attachment to Certificate #: E87429-31, expiration date June 30, 2015. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E87429 EPA Lab Code: GA00046 (770) 449-8800

Matrix: Solid and Chemical Materials				
Analyte	Method/Tech	Category	Certification Type	Effective Date
4-Chloro-3-methylphenol	EPA 8270	Extractable Organics	NELAP	10/9/2001
4-Chloroaniline	EPA 8270	Extractable Organics	NELAP	10/9/2001
4-Chlorophenyl phenylether	EPA 8270	Extractable Organics	NELAP	10/9/2001
4-Chlorotoluene	EPA 8260	Volatile Organics	NELAP	10/9/2001
4-Methyl-2-pentanone (MIBK)	EPA 8260	Volatile Organics	NELAP	7/11/2008
4-Nitroaniline	EPA 8270	Extractable Organics	NELAP	10/9/2001
4-Nitrophenol	EPA 8270	Extractable Organics	NELAP	10/9/2001
5-Nitro-o-toluidine	EPA 8270	Extractable Organics	NELAP	9/11/2013
7,12-Dimethylbenz(a) anthracene	EPA 8270	Extractable Organics	NELAP	9/11/2013
Acenaphthene	EPA 8270	Extractable Organics	NELAP	10/9/2001
Acenaphthylene	EPA 8270	Extractable Organics	NELAP	10/9/2001
Acetone	EPA 8260	Volatile Organics	NELAP	10/9/2001
Acetonitrile	EPA 8260	Volatile Organics	NELAP	10/9/2001
Acetophenone	EPA 8270	Extractable Organics	NELAP	9/11/2013
Acrolein (Propenal)	EPA 8260	Volatile Organics	NELAP	10/9/2001
Acrylonitrile	EPA 8260	Volatile Organics	NELAP	10/9/2001
Aldrin	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	10/9/2001
Allyl chloride (3-Chloropropene)	EPA 8260	Volatile Organics	NELAP	10/9/2001
alpha-BHC (alpha-Hexachlorocyclohexane)	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	10/9/2001
alpha-Chlordane	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	9/24/2010
Aluminum	EPA 6010	Metals	NELAP	10/9/2001
Aniline	EPA 8270	Extractable Organics	NELAP	10/9/2001
Anthracene	EPA 8270	Extractable Organics	NELAP	10/9/2001
Antimony	EPA 6010	Metals	NELAP	10/9/2001
Aroclor-1016 (PCB-1016)	EPA 8082	Pesticides-Herbicides-PCB's	NELAP	10/9/2001
Aroclor-1221 (PCB-1221)	EPA 8082	Pesticides-Herbicides-PCB's	NELAP	10/9/2001
Aroclor-1232 (PCB-1232)	EPA 8082	Pesticides-Herbicides-PCB's	NELAP	10/9/2001
Aroclor-1242 (PCB-1242)	EPA 8082	Pesticides-Herbicides-PCB's	NELAP	6/12/2003
Aroclor-1248 (PCB-1248)	EPA 8082	Pesticides-Herbicides-PCB's	NELAP	6/12/2003
Aroclor-1254 (PCB-1254)	EPA 8082	Pesticides-Herbicides-PCB's	NELAP	10/9/2001
Aroclor-1260 (PCB-1260)	EPA 8082	Pesticides-Herbicides-PCB's	NELAP	10/9/2001
Arsenic	EPA 6010	Metals	NELAP	10/9/2001
Atrazine	EPA 8270	Extractable Organics	NELAP	9/11/2013
Barium	EPA 6010	Metals	NELAP	10/9/2001
Benzaldehyde	EPA 8270	Extractable Organics	NELAP	9/11/2013
Benzene	EPA 8260	Volatile Organics	NELAP	3/14/2002

Expiration Date: 6/30/2015

Laboratory Scope of Accreditation

Page 19 of 24

Attachment to Certificate #: E87429-31, expiration date June 30, 2015. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E87429 EPA Lab Code: GA00046 (770) 449-8800

E87429 XENCO Laboratories - Atlanta 6017 Financial Drive Norcross, GA 30071

Matrix: Solid and Chemical Mat	erials		Certification	
Analyte	Method/Tech	Category	Туре	Effective Date
Benzo(a)anthracene	EPA 8270	Extractable Organics	NELAP	10/9/2001
Benzo(a)pyrene	EPA 8270	Extractable Organics	NELAP	10/9/2001
Benzo(b)fluoranthene	EPA 8270	Extractable Organics	NELAP	10/9/2001
Benzo(g,h,i)perylene	EPA 8270	Extractable Organics	NELAP	10/9/2001
Benzo(k)fluoranthene	EPA 8270	Extractable Organics	NELAP	10/9/2001
Benzoic acid	EPA 8270	Extractable Organics	NELAP	10/9/2001
Benzyl alcohol	EPA 8270	Extractable Organics	NELAP	10/9/2001
Beryllium	EPA 6010	Metals	NELAP	10/9/2001
beta-BHC (beta-Hexachlorocyclohexane)	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	10/9/2001
Biphenyl	EPA 8270	Extractable Organics	NELAP	9/11/2013
bis(2-Chloroethoxy)methane	EPA 8270	Extractable Organics	NELAP	10/9/2001
bis(2-Chloroethyl) ether	EPA 8270	Extractable Organics	NELAP	10/9/2001
bis(2-Chloroisopropyl) ether (2,2'-Oxybis(1-chloropropane))	EPA 8270	Extractable Organics	NELAP	10/9/2001
bis(2-Ethylhexyl) phthalate (DEHP)	EPA 8270	Extractable Organics	NELAP	10/9/2001
Boron	EPA 6010	Metals	NELAP	9/24/2010
Bromide	EPA 9056	General Chemistry	NELAP	9/24/2010
Bromobenzene	EPA 8260	Volatile Organics	NELAP	10/27/2004
Bromochloromethane	EPA 8260	Volatile Organics	NELAP	10/9/2001
Bromodichloromethane	EPA 8260	Volatile Organics	NELAP	3/14/2002
Bromoform	EPA 8260	Volatile Organics	NELAP	3/14/2002
Butyl benzyl phthalate	EPA 8270	Extractable Organics	NELAP	10/9/2001
Cadmium	EPA 6010	Metals	NELAP	10/9/2001
Calcium	EPA 6010	Metals	NELAP	10/9/2001
Caprolactam	EPA 8270	Extractable Organics	NELAP	9/11/2013
Carbazole	EPA 8270	Extractable Organics	NELAP	10/9/2001
Carbon disulfide	EPA 8260	Volatile Organics	NELAP	10/9/2001
Carbon tetrachloride	EPA 8260	Volatile Organics	NELAP	3/14/2002
Chlordane (tech.)	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	6/10/2004
Chloride	EPA 9056	General Chemistry	NELAP	9/24/2010
Chlorobenzene	EPA 8260	Volatile Organics	NELAP	9/12/2002
Chlorobenzilate	EPA 8270	Pesticides-Herbicides-PCB's	NELAP	9/11/2013
Chloroethane	EPA 8260	Volatile Organics	NELAP	10/27/2004
Chloroform	EPA 8260	Volatile Organics	NELAP	3/14/2002
Chloroprene	EPA 8260	Volatile Organics	NELAP	10/27/2004
Chromium	EPA 6010	Metals	NELAP	10/9/2001
Chromium VI	EPA 7196	General Chemistry	NELAP	6/6/2006

Clients and Customers are urged to verify the laboratory's current certification status with the Environmental Laboratory Certification Program.

Issue Date: 7/1/2014

Expiration Date: 6/30/2015

Laboratory Scope of Accreditation

Page 20 of 24

Attachment to Certificate #: E87429-31, expiration date June 30, 2015. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E87429 EPA Lab Code: GA00046 (770) 449-8800

Matrix: Solid and Chemical Materi	als		G .:C	
Analyte	Method/Tech	Category	Certification Type	Effective Date
Chrysene	EPA 8270	Extractable Organics	NELAP	10/9/2001
cis-1,2-Dichloroethylene	EPA 8260	Volatile Organics	NELAP	10/9/2001
cis-1,3-Dichloropropene	EPA 8260	Volatile Organics	NELAP	10/9/2001
cis-1,4-Dichloro-2-butene	EPA 8260	Volatile Organics	NELAP	10/27/2004
Cobalt	EPA 6010	Metals	NELAP	10/9/2001
Copper	EPA 6010	Metals	NELAP	10/9/2001
Cyanide	EPA 9014	General Chemistry	NELAP	9/24/2010
Cyclohexane	EPA 8260	Volatile Organics	NELAP	9/11/2013
Dalapon	EPA 8151	Pesticides-Herbicides-PCB's	NELAP	10/9/2001
delta-BHC	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	10/9/2001
Diallate	EPA 8270	Pesticides-Herbicides-PCB's	NELAP	9/11/2013
Dibenz(a,h)anthracene	EPA 8270	Extractable Organics	NELAP	10/9/2001
Dibenzofuran	EPA 8270	Extractable Organics	NELAP	10/9/2001
Dibromochloromethane	EPA 8260	Volatile Organics	NELAP	9/12/2002
Dibromomethane	EPA 8260	Volatile Organics	NELAP	10/9/2001
Dicamba	EPA 8151	Volatile Organics	NELAP	10/27/2004
Dichlorodifluoromethane	EPA 8260	Volatile Organics	NELAP	10/27/2004
Dichloroprop (Dichlorprop)	EPA 8151	Pesticides-Herbicides-PCB's	NELAP	10/9/2001
Dieldrin	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	10/9/2001
Diesel range organics (DRO)	EPA 8015	Extractable Organics	NELAP	10/9/2001
Diesel range organics (DRO)	MADEP-EPH (MA-EPH)	Extractable Organics	NELAP	10/9/2001
Diethyl ether	EPA 8260	Volatile Organics	NELAP	9/11/2013
Diethyl phthalate	EPA 8270	Extractable Organics	NELAP	10/9/2001
Di-isopropylether (DIPE)	EPA 8260	Volatile Organics	NELAP	7/11/2008
Dimethoate	EPA 8270	Pesticides-Herbicides-PCB's	NELAP	9/11/2013
Dimethyl phthalate	EPA 8270	Extractable Organics	NELAP	10/9/2001
Di-n-butyl phthalate	EPA 8270	Extractable Organics	NELAP	10/9/2001
Di-n-octyl phthalate	EPA 8270	Extractable Organics	NELAP	10/9/2001
Dinoseb (2-sec-butyl-4,6-dinitrophenol, DNBP)	EPA 8151	Pesticides-Herbicides-PCB's	NELAP	10/9/2001
Disulfoton	EPA 8270	Pesticides-Herbicides-PCB's	NELAP	9/11/2013
Endosulfan I	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	10/9/2001
Endosulfan II	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	10/9/2001
Endosulfan sulfate	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	10/9/2001
Endrin	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	10/9/2001
Endrin aldehyde	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	10/9/2001
Endrin ketone	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	10/9/2001

Expiration Date: 6/30/2015

Laboratory Scope of Accreditation

Page 21 of

Attachment to Certificate #: E87429-31, expiration date June 30, 2015. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E87429 EPA Lab Code: GA00046 (770) 449-8800

E87429 XENCO Laboratories - Atlanta 6017 Financial Drive Norcross, GA 30071

Matrix: Solid and Chemical Mate		Certification		
Analyte	Method/Tech	Category	Туре	Effective Date
Ethanol	EPA 8260	Volatile Organics	NELAP	9/24/2010
Ethyl methacrylate	EPA 8260	Volatile Organics	NELAP	10/9/2001
Ethyl methanesulfonate	EPA 8270	Extractable Organics	NELAP	10/9/2001
Ethylbenzene	EPA 8260	Volatile Organics	NELAP	3/14/2002
Ethyl-t-butylether (ETBE)	EPA 8260	Volatile Organics	NELAP	7/11/2008
Extractable Total Petroleum Hydrocarbons	TN-EPH	Extractable Organics	NELAP	9/11/2013
Iuoranthene	EPA 8270	Extractable Organics	NELAP	10/9/2001
luorene	EPA 8270	Extractable Organics	NELAP	10/9/2001
fluoride	EPA 9056	General Chemistry	NELAP	9/24/2010
gamma-BHC (Lindane, gamma-Hexachlorocyclohexane)	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	10/9/2001
amma-Chlordane	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	9/24/2010
Gasoline range organics (GRO)	EPA 8015	Volatile Organics	NELAP	10/9/2001
Gasoline range organics (GRO)	MADEP-VPH (MA-VPH)	Extractable Organics	NELAP	10/9/2001
Ieptachlor	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	10/9/2001
Ieptachlor epoxide	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	10/9/2001
Iexachlorobenzene	EPA 8270	Extractable Organics	NELAP	10/9/2001
Iexachlorobutadiene	EPA 8260	Volatile Organics	NELAP	10/9/2001
Iexachlorobutadiene	EPA 8270	Extractable Organics	NELAP	10/9/2001
Iexachlorocyclopentadiene	EPA 8270	Extractable Organics	NELAP	10/9/2001
Iexachloroethane	EPA 8270	Extractable Organics	NELAP	10/9/2001
Iexachloropropene	EPA 8270	Extractable Organics	NELAP	9/11/2013
gnitability	EPA 1010	General Chemistry	NELAP	10/9/2001
ndeno(1,2,3-cd)pyrene	EPA 8270	Extractable Organics	NELAP	10/9/2001
odomethane (Methyl iodide)	EPA 8260	Volatile Organics	NELAP	10/9/2001
ron	EPA 6010	Metals	NELAP	10/9/2001
sobutyl alcohol (2-Methyl-1-propanol)	EPA 8260	Volatile Organics	NELAP	10/27/2004
sodrin	EPA 8270	Pesticides-Herbicides-PCB's	NELAP	9/11/2013
sophorone	EPA 8270	Extractable Organics	NELAP	8/1/2008
sopropylbenzene	EPA 8260	Volatile Organics	NELAP	10/9/2001
sosafrole	EPA 8270	Extractable Organics	NELAP	9/11/2013
Lepone	EPA 8270	Pesticides-Herbicides-PCB's	NELAP	9/11/2013
ead	EPA 6010	Metals	NELAP	10/9/2001
n+p-Xylenes	EPA 8260	Volatile Organics	NELAP	7/11/2008
Magnesium	EPA 6010	Metals	NELAP	10/9/2001
Manganese	EPA 6010	Metals	NELAP	10/9/2001
MCPA	EPA 8151	Pesticides-Herbicides-PCB's	NELAP	10/9/2001

Clients and Customers are urged to verify the laboratory's current certification status with the Environmental Laboratory Certification Program.

Issue Date: 7/1/2014

Expiration Date: 6/30/2015

Laboratory Scope of Accreditation

Page 22 of 24

Attachment to Certificate #: E87429-31, expiration date June 30, 2015. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E87429 EPA Lab Code: GA00046 (770) 449-8800

Matrix: Solid and Chemical Ma	nterials		C4:6:4:	
Analyte	Method/Tech	Category	Certification Type	Effective Date
MCPP	EPA 8151	Pesticides-Herbicides-PCB's	NELAP	10/9/2001
Mercury	EPA 7471	Metals	NELAP	9/11/2003
Methacrylonitrile	EPA 8260	Volatile Organics	NELAP	10/27/2004
Methapyrilene	EPA 8270	Extractable Organics	NELAP	9/11/2013
Methoxychlor	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	10/9/2001
Methyl acetate	EPA 8260	Volatile Organics	NELAP	9/11/2013
Methyl bromide (Bromomethane)	EPA 8260	Volatile Organics	NELAP	10/9/2001
Methyl chloride (Chloromethane)	EPA 8260	Volatile Organics	NELAP	10/9/2001
Methyl methacrylate	EPA 8260	Volatile Organics	NELAP	10/27/2004
Methyl methanesulfonate	EPA 8270	Extractable Organics	NELAP	10/9/2001
Methyl parathion (Parathion, methyl)	EPA 8270	Pesticides-Herbicides-PCB's	NELAP	9/11/2013
Methyl tert-butyl ether (MTBE)	EPA 8260	Volatile Organics	NELAP	10/9/2001
Methylcyclohexane	EPA 8260	Volatile Organics	NELAP	9/11/2013
Methylene chloride	EPA 8260	Volatile Organics	NELAP	3/14/2002
Molybdenum	EPA 6010	Metals	NELAP	9/24/2010
Naphthalene	EPA 8260	Volatile Organics	NELAP	10/9/2001
Naphthalene	EPA 8270	Extractable Organics	NELAP	10/9/2001
n-Butylbenzene	EPA 8260	Volatile Organics	NELAP	10/9/2001
Nickel	EPA 6010	Metals	NELAP	10/9/2001
Nitrate	EPA 9056	General Chemistry	NELAP	9/24/2010
Nitrite	EPA 9056	General Chemistry	NELAP	9/24/2010
Nitrobenzene	EPA 8270	Extractable Organics	NELAP	10/9/2001
n-Nitrosodiethylamine	EPA 8270	Extractable Organics	NELAP	9/11/2013
n-Nitrosodimethylamine	EPA 8270	Extractable Organics	NELAP	10/9/2001
n-Nitroso-di-n-butylamine	EPA 8270	Extractable Organics	NELAP	9/11/2013
n-Nitrosodi-n-propylamine	EPA 8270	Extractable Organics	NELAP	10/9/2001
n-Nitrosodiphenylamine	EPA 8270	Extractable Organics	NELAP	10/9/2001
n-Nitrosomethylethylamine	EPA 8270	Extractable Organics	NELAP	9/11/2013
n-Nitrosopiperidine	EPA 8270	Extractable Organics	NELAP	9/11/2013
n-Nitrosopyrrolidine	EPA 8270	Extractable Organics	NELAP	9/11/2013
n-Propylbenzene	EPA 8260	Volatile Organics	NELAP	10/9/2001
o,o,o-Triethyl phosphorothioate	EPA 8270	Pesticides-Herbicides-PCB's	NELAP	9/11/2013
Oil & Grease	EPA 9071	General Chemistry	NELAP	1/6/2009
o-Toluidine	EPA 8270	Extractable Organics	NELAP	9/11/2013
o-Xylene	EPA 8260	Volatile Organics	NELAP	7/11/2008
Parathion, ethyl	EPA 8270	Pesticides-Herbicides-PCB's	NELAP	9/11/2013

Expiration Date: 6/30/2015

Laboratory Scope of Accreditation

Page 23 of 24

Attachment to Certificate #: E87429-31, expiration date June 30, 2015. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E87429 EPA Lab Code: GA00046 (770) 449-8800

Matrix: Solid and Chemical Mate	erials		C4:6:4:	
Analyte	Method/Tech	Category	Certification Type	Effective Date
Pentachlorobenzene	EPA 8270	Extractable Organics	NELAP	9/11/2013
Pentachloroethane	EPA 8260	Volatile Organics	NELAP	10/27/2004
Pentachloronitrobenzene (Quintozene)	EPA 8270	Extractable Organics	NELAP	9/11/2013
Pentachlorophenol	EPA 8270	Extractable Organics	NELAP	10/9/2001
pH	EPA 9045	General Chemistry	NELAP	10/9/2001
Phenacetin	EPA 8270	Extractable Organics	NELAP	9/11/2013
Phenanthrene	EPA 8270	Extractable Organics	NELAP	10/9/2001
Phenol	EPA 8270	Extractable Organics	NELAP	10/9/2001
Phorate	EPA 8270	Pesticides-Herbicides-PCB's	NELAP	9/11/2013
p-Isopropyltoluene	EPA 8260	Volatile Organics	NELAP	10/27/2004
Potassium	EPA 6010	Metals	NELAP	10/9/2001
Pronamide (Kerb)	EPA 8270	Extractable Organics	NELAP	9/11/2013
Propionitrile (Ethyl cyanide)	EPA 8260	Volatile Organics	NELAP	10/27/2004
Pyrene	EPA 8270	Extractable Organics	NELAP	10/9/2001
Pyridine	EPA 8270	Extractable Organics	NELAP	10/9/2001
Reactive cyanide	Sec. 7.3 SW-846	General Chemistry	NELAP	10/9/2001
Reactive sulfide	Sec. 7.3 SW-846	General Chemistry	NELAP	10/9/2001
afrole	EPA 8270	Extractable Organics NELAP	9/11/2013	
ec-Butylbenzene	EPA 8260	Volatile Organics	NELAP	10/9/2001
Selenium	EPA 6010	Metals	NELAP	10/9/2001
Silver	EPA 6010	Metals	NELAP	10/9/2001
Silvex (2,4,5-TP)	EPA 8151	Pesticides-Herbicides-PCB's	NELAP	6/12/2003
Sodium	EPA 6010	Metals	NELAP	10/9/2001
Strontium	EPA 6010	Metals	NELAP	9/24/2010
Styrene	EPA 8260	Volatile Organics	NELAP	10/9/2001
Sulfate	EPA 9056	General Chemistry	NELAP	9/24/2010
Synthetic Precipitation Leaching Procedure	EPA 1312	General Chemistry	NELAP	10/27/2004
Γ-amylmethylether (TAME)	EPA 8260	Volatile Organics	NELAP	7/11/2008
ert-Amyl alcohol (2-methyl-2-butanol)	EPA 8260	Volatile Organics	NELAP	9/11/2013
ert-Butyl alcohol	EPA 8260	Volatile Organics	NELAP	7/11/2008
ert-Butyl formate	EPA 8260	Volatile Organics	NELAP	9/11/2013
ert-Butylbenzene	EPA 8260	Volatile Organics	NELAP	10/9/2001
Tetrachloroethylene (Perchloroethylene)	EPA 8260	Volatile Organics	NELAP	3/14/2002
Tetrahydrofuran (THF)	EPA 8260	Volatile Organics	NELAP	9/11/2013
Гhallium	EPA 6010	Metals	NELAP	10/9/2001
Thionazin (Zinophos)	EPA 8270	Pesticides-Herbicides-PCB's	NELAP	9/11/2013

Expiration Date: 6/30/2015

Laboratory Scope of Accreditation

Page 24 of 24

Attachment to Certificate #: E87429-31, expiration date June 30, 2015. This listing of accredited analytes should be used only when associated with a valid certificate.

State Laboratory ID: E87429 EPA Lab Code: GA00046 (770) 449-8800

Matrix: Solid and Chemical Materials Certification								
Analyte	Method/Tech	Method/Tech Category		Effective Date				
Tin	EPA 6010	Metals	NELAP	9/24/2010				
Titanium	EPA 6010	Metals	NELAP	9/24/2010				
Toluene	EPA 8260	Volatile Organics	NELAP	3/14/2002				
Total nitrate-nitrite	EPA 9056	General Chemistry	NELAP	9/24/2010				
Total Petroleum Hydrocarbons (TPH)	FL-PRO	Extractable Organics	NELAP	10/9/2001				
Toxaphene (Chlorinated camphene)	EPA 8081	Pesticides-Herbicides-PCB's	NELAP	6/10/2004				
Toxicity Characteristic Leaching Procedure	EPA 1311	General Chemistry	NELAP	10/9/2001				
rans-1,2-Dichloroethylene	EPA 8260	Volatile Organics	NELAP	8/1/2008				
rans-1,3-Dichloropropene	EPA 8260	Volatile Organics	NELAP	10/9/2001				
rans-1,4-Dichloro-2-butene	EPA 8260	Volatile Organics	NELAP	10/9/2001				
Trichloroethene (Trichloroethylene)	EPA 8260	Volatile Organics	NELAP	3/14/2002				
Trichlorofluoromethane	EPA 8260	Volatile Organics	NELAP	10/9/2001				
Vanadium	EPA 6010	Metals	NELAP	10/9/2001				
Vinyl acetate	EPA 8260	Volatile Organics	NELAP	10/9/2001				
Vinyl chloride	EPA 8260	Volatile Organics	NELAP	10/9/2001				
Xylene (total)	EPA 8260	Volatile Organics	NELAP	3/14/2002				
Zinc	EPA 6010	Metals	NELAP	10/9/2001				

Analytical Report 489203

for

Atlanta Environmental Management

Project Manager: Leona Miles

Aramark Dekalb

1133-1401-3

17-JUL-14

Collected By: Client

6017 Financial Dr., Norcross, GA 30071 Ph:(770) 449-8800 Fax:(770) 449-5477

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-14-16-TX), Arizona (AZ0765), Florida (E871002), Louisiana (03054) New Jersey (TX007), North Carolina(681), Oklahoma (9218), Pennsylvania (68-03610)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135) Texas (T104704477), Louisiana (04176), USDA (P330-07-00105)

Xenco-Lakeland: Florida (E84098)

Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX)

Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757)

Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

17-JUL-14

Project Manager: **Leona Miles Atlanta Environmental Management**2580 Northeast Expressway
Atlanta, GA 30345

Reference: XENCO Report No(s): 489203

Aramark DekalbProject Address: GA

Leona Miles:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 489203. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 489203 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Eben Buchanan

ben D. Buchancon

Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Sample Cross Reference 489203

Atlanta Environmental Management, Atlanta, GA

Aramark Dekalb

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
Rinsate Blank	W	07-10-14 10:20		489203-001
MW-405	W	07-10-14 13:57	- 14.83	489203-002
MW-401	W	07-10-14 15:13	- 8.42	489203-003
MW-214	W	07-10-14 14:25	- 15.0	489203-004
MW-409D	W	07-10-14 17:10	- 17.0	489203-005
MW-202	W	07-10-14 17:20	- 15.94	489203-006
MW-208P	W	07-10-14 17:30	- 8.61	489203-007
MW-409	W	07-11-14 10:04	- 15.5	489203-008
MW-203	W	07-11-14 11:35	- 18.64	489203-009
MW-207P	W	07-11-14 12:12	- 12.23	489203-010
MW-403	W	07-11-14 11:34	- 17.5	489203-011
MW-206	W	07-11-14 14:53	- 9.38	489203-012
MW-306	W	07-11-14 17:07	- 8.85	489203-013
MW-212	W	07-11-14 14:35	- 17.5	489203-014
MW-204	W	07-11-14 15:50	- 14.0	489203-015
MW-213	W	07-11-14 17:44	- 14.10	489203-016
MW-213 DUP	W	07-11-14 17:44	- 14.10	489203-017
Trip Blank	W	07-10-14 07:30		489203-018

CASE NARRATIVE

Client Name: Atlanta Environmental Management

Project Name: Aramark Dekalb

 Project ID:
 1133-1401-3
 Report Date:
 17-JUL-14

 Work Order Number(s):
 489203
 Date Received:
 07/12/2014

Sample receipt non conformances and comments:
Sample receipt non conformances and comments per sample:
None

Atlanta Environmental Management, Atlanta, GA

Aramark Dekalb

Sample Id: Rinsate Blank Matrix: Water Date Received:07.12.14 10.50

Lab Sample Id: 489203-001 Date Collected: 07.10.14 10.20

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

Analyst: MLA Date Prep: 07.14.14 14.45

1,1,1-Trichlorocthane	Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1.1.2-Trichloro-1.2-4rifluonethane 76-13-1 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.1.2-Trichloroethane 79-00-5 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.1-Drichloroethane 75-35-4 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2.3-Trichloroethane 75-35-4 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2.3-Trichloroethane 87-61-6 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2.3-Trichlorobenzene 120-82-1 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2.4-Trichlorobenzene 120-82-1 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2.4-Trichlorobenzene 106-93-4 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2.4-Drichloroethane (EDB) 106-93-4 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2.4-Drichloroethane 107-06-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2.4-Drichloroethane 107-06-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2.4-Drichloroethane 107-06-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2.4-Drichloroethane 106-46-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2.4-Drichloroethane 106-46-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2.4-Drichloroethane 106-46-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2.4-Drichloroethane 106-46-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2.4-Drichloroethane 106-46-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2.4-Drichloroethane 106-46-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2.4-Drichloroethane 106-46-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2.4-Drichloroethane 106-46-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2.4-Drichloroethane 106-46-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2.4-Drichloroethane 106-46-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2.4-Drichloroethane 106-46-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2.4-Drichloroethane 106-46-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2.4-Drichloroethane 106-46-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2.	1,1,1-Trichloroethane	71-55-6	BRL	5.0	ug/L	07.14.14 18.21	U	1
1,12-Trichloroethane	1,1,2,2-Tetrachloroethane	79-34-5	BRL	5.0	ug/L	07.14.14 18.21	U	1
1,1-Dichloroethane 75-34-3 BRL 5.0 ug/L 07.14,14 18.21 U 1 1,1-Dichloroethene 75-35-4 BRL 5.0 ug/L 07.14,14 18.21 U 1 1,2-Brichloroethene 75-35-4 BRL 5.0 ug/L 07.14,14 18.21 U 1 1,2-Brichloroethene 120-82-1 BRL 5.0 ug/L 07.14,14 18.21 U 1 1,2-Dichloroethane 106-93-4 BRL 5.0 ug/L 07.14,14 18.21 U 1 1,2-Dichloroethane (EDB) 106-93-4 BRL 5.0 ug/L 07.14,14 18.21 U 1 1,2-Dichloroethane (EDB) 106-93-4 BRL 5.0 ug/L 07.14,14 18.21 U 1 1,2-Dichloroethane 107-06-2 BRL 5.0 ug/L 07.14,14 18.21 U 1 1,2-Dichloroethane 107-06-2 BRL 5.0 ug/L 07.14,14 18.21 U 1 1,2-Dichloroethane 107-06-2 BRL 5.0 ug/L 07.14,14 18.21 U 1 1,2-Dichloroethane 108-6-7 BRL 5.0 ug/L 07.14,14 18.21 U 1 1,2-Dichloroethane 106-6-7 BRL 5.0 ug/L 07.14,14 18.21 U 1 1,2-Dichloroethane 106-46-7 BRL 5.0 ug/L 07.14,14 18.21 U 1 1,2-Dichloroethane 106-46-7 BRL 5.0 ug/L 07.14,14 18.21 U 1 1,2-Dichloroethane 108-46-7 BRL 5.0 ug/L 07.14,14 18.21 U 1 1,2-Dichloroethane 108-46-7 BRL 5.0 ug/L 07.14,14 18.21 U 1 1,2-Dichloroethane 108-46-7 BRL 5.0 ug/L 07.14,14 18.21 U 1 1,2-Dichloroethane 108-46-7 BRL 5.0 ug/L 07.14,14 18.21 U 1 1,2-Dichloroethane 108-40-7 BRL 5.0 ug/L 07.14,14 18.21 U 1 1,2-Dichloroethane 108-40-7 BRL 5.0 ug/L 07.14,14 18.21 U 1 1,2-Dichloroethane 108-40-7 BRL 5.0 ug/L 07.14,14 18.21 U 1 1,2-Dichloroethane 108-40-7 BRL 5.0 ug/L 07.14,14 18.21 U 1 1,2-Dichloroethane 108-40-7 BRL 5.0 ug/L 07.14,14 18.21 U 1 1,2-Dichloroethane 108-40-7 BRL 5.0 ug/L 07.14,14 18.21 U 1 1,2-Dichloroethane 108-60-2 BRL 5.0 ug/L 07.14,14 18.21 U 1 1,2-Dichloroethane 108-60-2 BRL 5.0 ug/L 07.14,14 18.21 U 1 1,2-Dic	1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	BRL	5.0	ug/L	07.14.14 18.21	U	1
1.1-Dichlorochene	1,1,2-Trichloroethane	79-00-5	BRL	5.0	ug/L	07.14.14 18.21	U	1
1,2,3-Trichlorobenzene 87-61-6 BRL 5.0 ug/L 07.14.14 18.21 U 1 1,2,4-Trichlorobenzene 120-82-1 BRL 5.0 ug/L 07.14.14 18.21 U 1 1,2-Dibronogrophe (DBCP) 96-12-8 BRL 5.0 ug/L 07.14.14 18.21 U 1 1,2-Dichlorogrophae (EDB) 106-93-4 BRL 5.0 ug/L 07.14.14 18.21 U 1 1,2-Dichlorogrophae 95-50-1 BRL 5.0 ug/L 07.14.14 18.21 U 1 1,2-Dichlorophae 78-87-5 BRL 5.0 ug/L 07.14.14 18.21 U 1 1,3-Dichlorobenzene 541-73-1 BRL 5.0 ug/L 07.14.14 18.21 U 1 1,4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 1,4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 1,4-Dichlorobenzene 101-4-2-2 BRL </td <td>1,1-Dichloroethane</td> <td>75-34-3</td> <td>BRL</td> <td>5.0</td> <td>ug/L</td> <td>07.14.14 18.21</td> <td>U</td> <td>1</td>	1,1-Dichloroethane	75-34-3	BRL	5.0	ug/L	07.14.14 18.21	U	1
1,2,4-Trichlorobenzene 120-82-1 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2-Dibromo-3-chloropropane (DBCP) 96-12-8 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2-Dibromo-4-chloropropane (DBCP) 106-93-4 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2-Dibriopentzene 95-50-1 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2-Dibriopentzene 107-06-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2-Dibriopentzene 78-87-5 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2-Dibriopentzene 78-87-5 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2-Dibriopentzene 541-73-1 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2-Dibriopentzene 106-46-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2-Dibriopentzene 106-46-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2-Dibriopentzene 591-78-6 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2-Dibriopentzene 591-78-6 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2-Dibriopentzene 591-78-6 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2-Dibriopentzene 67-64-1 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2-Dibriopentzene 67-64-1 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2-Dibriopentzene 71-43-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2-Dibriopentzene 71-43-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2-Dibriopentzene 71-43-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2-Dibriopentzene 71-43-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2-Dibriopentzene 71-43-8 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2-Dibriopentzene 71-43-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2-Dibriopentzene 71-43-3 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2-Dibriopentzene 71-43-3 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2-Dibriopentzene 71-43-3 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2-Dibriopentzene 71-43-3 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2-Dibriopentzene 71-43-3 BRL 5.0 ug/L 07.14.14 18.21 U 1	1,1-Dichloroethene	75-35-4	BRL	5.0	ug/L	07.14.14 18.21	U	1
1.2-Dibromo-3-chloropropane (DBCP) 96-12-8 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2-Dibromochtane (EDB) 106-93-4 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2-Dibromochtane (EDB) 95-50-1 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2-Dibromochtane 107-06-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2-Dibromochtane 107-06-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2-Dibromochtane 107-06-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.3-Dibromochtane 141-31 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.3-Dibromochtane 106-46-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.3-Dibromochtane 106-46-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.3-Dibromochtane 106-46-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.3-Dibromochtane 108-04-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.3-Dibromochtane 108-04-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.3-Dibromochtane 108-04-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.3-Dibromochtane 108-04-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.3-Dibromochtane 108-04-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.3-Dibromochtane 108-04-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.3-Dibromochtane 108-04-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.3-Dibromochtane 108-04-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.3-Dibromochtane 108-04-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.3-Dibromochtane 108-04-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.3-Dibromochtane 108-04-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.3-Dibromochtane 108-04-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.3-Dibromochtane 108-04-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.3-Dibromochtane 108-04-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.3-Dibromochtane 106-10-5 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.3-Dibromochtane 106-10-5 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.3-Dibromochtane 106-10-5 BRL 5.0 ug/L 07.14.14 18.21 U	1,2,3-Trichlorobenzene	87-61-6	BRL	5.0	ug/L	07.14.14 18.21	U	1
1.2-Dibromoethane (EDB) 106-93-4 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2-Dibromoethane 95.50-1 BRL 5.0 ug/L 07.14.14 18.21 U 1 1 1.2-Dibromoethane 107-06-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 1 1.2-Dibromoethane 170-06-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2-Dibromoethane 18.87-5 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.3-Dibromoethane 106-46-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.4-Dibromoethane 106-46-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2-Dibromoethane 591-78-6 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2-Dibromoethane 591-78-6 BRL 50 ug/L 07.14.14 18.21 U 1 1.2-Dibromoethane 67-64-1 BRL 50 ug/L 07.14.14 18.21 U 1 1.2-Dibromoethane 67-64-1 BRL 50 ug/L 07.14.14 18.21 U 1 1.2-Dibromoethane 67-64-1 BRL 50 ug/L 07.14.14 18.21 U 1 1.2-Dibromoethane 67-64-1 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2-Dibromoethane 74-97-5 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2-Dibromoethane 75-27-4 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2-Dibromoethane 75-27-4 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2-Dibromoethane 75-15-0 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2-Dibromoethane 75-15-0 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2-Dibromoethane 75-15-0 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2-Dibromoethane 75-03-3 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2-Dibromoethane 75-03-3 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2-Dibromoethane 74-87-3 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2-Dibromoethane 74-87-3 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2-Dibromoethane 74-87-3 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2-Dibromoethane 74-87-3 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2-Dibromoethane 74-87-3 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2-Dibromoethane 74-87-3 BRL 5.0 ug/L 07	1,2,4-Trichlorobenzene	120-82-1	BRL	5.0	ug/L	07.14.14 18.21	U	1
1.2-Dichlorobenzene 95-50-1 BRL 5.0 ug/L 07.14.14 18.21 U 1 1.2-Dichlorochtane 107-06-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 1 1.2-Dichlorochtane 78-87-5 BRL 5.0 ug/L 07.14.14 18.21 U 1 1 1.2-Dichlorochtane 541-73-1 BRL 5.0 ug/L 07.14.14 18.21 U 1 1 1.3-Dichlorochenzene 106-46-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 1 1.4-Dichlorochenzene 106-46-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 1 1.2-Dichlorochenzene 106-46-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 1 1.2-Dichlorochenzene 591-78-6 BRL 50 ug/L 07.14.14 18.21 U 1 1 1.2-Dichlorochenzene 67-64-1 BRL 50 ug/L 07.14.14 18.21 U 1 1 1.2-Dichlorochenzene 67-64-1 BRL 50 ug/L 07.14.14 18.21 U 1 1 1 1 1 1 1 1	1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	BRL	5.0	ug/L	07.14.14 18.21	U	1
1,2-Dichloroethane 107-06-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 1,2-Dichloropropane 78-87-5 BRL 5.0 ug/L 07.14.14 18.21 U 1 1,3-Dichlorobenzene 541-73-1 BRL 5.0 ug/L 07.14.14 18.21 U 1 2-Butanone (MEK) 78-93-3 BRL 50 ug/L 07.14.14 18.21 U 1 2-Butanone (MEK) 78-93-3 BRL 50 ug/L 07.14.14 18.21 U 1 2-Butanone (MEK) 108-10-1 BRL 50 ug/L 07.14.14 18.21 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14.14 18.21 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14.14 18.21 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14.14 18.21 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL	1,2-Dibromoethane (EDB)	106-93-4	BRL	5.0	ug/L	07.14.14 18.21	U	1
1,2-Dichloropropane 78-87-5 BRL 5.0 ug/L 07.14.14 18.21 U 1 1,3-Dichlorobenzene 541-73-1 BRL 5.0 ug/L 07.14.14 18.21 U 1 1,4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 2-Butanone (MEK) 78-93-3 BRL 50 ug/L 07.14.14 18.21 U 1 2-Hexanone 591-78-6 BRL 50 ug/L 07.14.14 18.21 U 1 4-Wethyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14.14 18.21 U 1 Acetone 67-64-1 BRL 50 ug/L 07.14.14 18.21 U 1 Benzene 71-43-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 Bromochloomethane 75-27-4 BRL 5.0 ug/L 07.14.14 18.21 U 1 Bromochloomethane 75-25-2 BRL 5.0 ug/L	1,2-Dichlorobenzene	95-50-1	BRL	5.0	ug/L	07.14.14 18.21	U	1
1,3-Dichlorobenzene 541-73-1 BRL 5.0 ug/L 07.14.14 18.21 U 1 1,4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 2-Butanone (MEK) 78-93-3 BRL 50 ug/L 07.14.14 18.21 U 1 2-Hexanone 591-78-6 BRL 50 ug/L 07.14.14 18.21 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14.14 18.21 U 1 Acetone 67-64-1 BRL 50 ug/L 07.14.14 18.21 U 1 Benzene 71-43-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 Bromodichloromethane 75-27-4 BRL 5.0 ug/L 07.14.14 18.21 U 1 Bromodichloromethane 75-25-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 Bromodichloromethane 75-15-0 BRL 5.0 ug/L	1,2-Dichloroethane	107-06-2	BRL	5.0	ug/L	07.14.14 18.21	U	1
1,4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 2-Butanone (MEK) 78-93-3 BRL 50 ug/L 07.14.14 18.21 U 1 2-Butanone (MEK) 591-78-6 BRL 50 ug/L 07.14.14 18.21 U 1 1 2-Butanone (MIBK) 108-10-1 BRL 50 ug/L 07.14.14 18.21 U 1 1 2-Butanone (MIBK) 108-10-1 BRL 50 ug/L 07.14.14 18.21 U 1 1 2-Butanone (MIBK) 108-10-1 BRL 50 ug/L 07.14.14 18.21 U 1 1 2-Butanone (MIBK) 108-10-1 BRL 50 ug/L 07.14.14 18.21 U 1 1 2-Butanone (MIBK) 1-2-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 1 2-Butanone (MIBK) 1-2-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 1 2-Butanone (MIBK) 1-2-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 1 2-Butanone (MIBK) 1-2-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 1 2-Butanone (MIBK) 1-2-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 1 2-Butanone (MIBK) 1-2-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 1 2-Butanone (MIBK) 1-2-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 1 2-Butanone (MIBK) 1-2-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 1 2-Butanone (MIBK) 1-2-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 1 2-Butanone (MIBK) 1-2-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 1 2-Butanone (MIBK) 1-2-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 1 2-Butanone (MIBK) 1-2-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 1 2-Butanone (MIBK) 1-2-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 1 2-Butanone (MIBK) 1-2-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 1 2-Butanone (MIBK) 1-2-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 1 2-Butanone (MIBK) 1-2-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 1 2-Butanone (MIBK) 1-2-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 1 2-Butanone (MIBK) 1-2-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 1 2-Butanone (MIBK) 1-2-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 1 2-Butanone (MIBK) 1-2-2 BRL 5.0 ug/L 07.14.14 18.21	1,2-Dichloropropane	78-87-5	BRL	5.0	ug/L	07.14.14 18.21	U	1
2-Butanone (MEK) 78-93-3 BRL 50 ug/L 07.14.14 18.21 U 1 2-Hexanone 591-78-6 BRL 50 ug/L 07.14.14 18.21 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14.14 18.21 U 1 Acetone 67-64-1 BRL 50 ug/L 07.14.14 18.21 U 1 Benzene 71-43-2 BRL 50 ug/L 07.14.14 18.21 U 1 Benzonehloromethane 74-97-5 BRL 5.0 ug/L 07.14.14 18.21 U 1 Bromochloromethane 75-27-4 BRL 5.0 ug/L 07.14.14 18.21 U 1 Bromochloromethane 75-25-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 Bromochidnenthane 75-25-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 Bromochidnenthane 75-25-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 Bromochidnenthane 74-83-9 BRL 5.0 ug/L 07.14.14 18.21 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 07.14.14 18.21 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 07.14.14 18.21 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 07.14.14 18.21 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 Chlorothane 75-00-3 BRL 5.0 ug/L 07.14.14 18.21 U 1 Chlorothane 75-00-3 BRL 5.0 ug/L 07.14.14 18.21 U 1 Chlorothane 75-00-3 BRL 5.0 ug/L 07.14.14 18.21 U 1 Chlorothane 74-87-3 BRL 5.0 ug/L 07.14.14 18.21 U 1 Chlorothane 74-87-3 BRL 5.0 ug/L 07.14.14 18.21 U 1 Cis-1,2-Dichlorothene 156-59-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 Cis-1,3-Dichlorothene 10061-01-5 BRL 5.0 ug/L 07.14.14 18.21 U 1 Cis-1,3-Dichlorothene 104-4 BRL 5.0 ug/L 07.14.14 18.21 U 1 Cis-1,3-Dichlorothene 124-48-1 BRL 5.0 ug/L 07.14.14 18.21 U 1 Cis-1,3-Dichlorothene 124-48-1 BRL 5.0 ug/L 07.14.14 18.21 U 1 Dibromochloromethane 75-71-8 BRL 5.0 ug/L 07.14.14 18.21 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 07.14.14 18.21 U 1 Dibromochloromethane 104-14 BRL 5.0 ug/L 07.14.14 18.21 U 1 Bropopylbenzene 10061-03-1 BRL 5.0 ug/L 07.14.14 18.21 U 1 Bropopylbenzene 10061-03-1 BRL 5.0 ug/L 07.14.14 18.21 U 1 Bropopylbenzene 10061-03-1 BRL 5.0 ug/L 07.14.14 18.21 U 1 Bropopylbenzene 10061-03-1 BRL 5.0 ug/L 07.14.14 18.21 U 1 Bropopylbenzene 10061-03-1 BRL 5.0 ug/L 07.14.14 18.21 U 1 Bropopylbenzene 10061-03-1 BRL 5.0 ug/L 07.14.14 18.21 U 1 Bropopylbenzene 10061-03-1 BRL 5.0 ug/L 07.14.14 18.21 U 1 Bropopylbenzene 10061-03-	1,3-Dichlorobenzene	541-73-1	BRL	5.0	ug/L	07.14.14 18.21	U	1
2-Hexanone 591-78-6 BRL 50 ug/L 07.14.14 18.21 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14.14 18.21 U 1 Acetone 67-64-1 BRL 50 ug/L 07.14.14 18.21 U 1 Benzene 71-43-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 Bromochloromethane 74-97-5 BRL 5.0 ug/L 07.14.14 18.21 U 1 Bromodichloromethane 75-27-4 BRL 5.0 ug/L 07.14.14 18.21 U 1 Bromofform 75-25-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 07.14.14 18.21 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 07.14.14 18.21 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 07.1	1,4-Dichlorobenzene	106-46-7	BRL	5.0	ug/L	07.14.14 18.21	U	1
4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14.14 18.21 U 1 Acetone 67-64-1 BRL 50 ug/L 07.14.14 18.21 U 1 Benzene 71-43-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 Bromochloromethane 74-97-5 BRL 5.0 ug/L 07.14.14 18.21 U 1 Bromodichloromethane 75-27-4 BRL 5.0 ug/L 07.14.14 18.21 U 1 Bromoform 75-25-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 Bromoformethane 74-83-9 BRL 5.0 ug/L 07.14.14 18.21 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 07.14.14 18.21 U 1 Carbon disulfide 75-02-3 BRL 5.0 ug/L 07.14.14 18.21 U 1 Chlorotene 108-90-7 BRL 5.0 ug/L 07.14.1	2-Butanone (MEK)	78-93-3	BRL	50	ug/L	07.14.14 18.21	U	1
Acetone 67-64-1 BRL 50 ug/L 07.14.14 18.21 U 1 Benzene 71-43-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 Bromochloromethane 74-97-5 BRL 5.0 ug/L 07.14.14 18.21 U 1 Bromodichloromethane 75-27-4 BRL 5.0 ug/L 07.14.14 18.21 U 1 Bromoform 75-27-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 Bromomethane 74-83-9 BRL 5.0 ug/L 07.14.14 18.21 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 07.14.14 18.21 U 1 Chlorodenzene 108-90-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 Chloroform 75-00-3 BRL 5.0 ug/L 07.14.14 18.21 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 07.14.14 18.21 <t< td=""><td>2-Hexanone</td><td>591-78-6</td><td>BRL</td><td>50</td><td>ug/L</td><td>07.14.14 18.21</td><td>U</td><td>1</td></t<>	2-Hexanone	591-78-6	BRL	50	ug/L	07.14.14 18.21	U	1
Benzene 71-43-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 Bromochloromethane 74-97-5 BRL 5.0 ug/L 07.14.14 18.21 U 1 Bromodichloromethane 75-27-4 BRL 5.0 ug/L 07.14.14 18.21 U 1 Bromoform 75-25-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 Bromomethane 74-83-9 BRL 5.0 ug/L 07.14.14 18.21 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 07.14.14 18.21 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 07.14.14 18.21 U 1 Chlorotethane 75-00-3 BRL 5.0 ug/L 07.14.14 18.21 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 07.14.14 18.21 U 1 Chloroformethane 156-59-2 BRL 5.0 ug/L 07.14.14 1	4-Methyl-2-pentanone (MIBK)	108-10-1	BRL	50	ug/L	07.14.14 18.21	U	1
Bromochloromethane 74-97-5 BRL 5.0 ug/L 07.14.14 18.21 U 1 Bromodichloromethane 75-27-4 BRL 5.0 ug/L 07.14.14 18.21 U 1 Bromoform 75-25-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 Bromomethane 74-83-9 BRL 5.0 ug/L 07.14.14 18.21 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 07.14.14 18.21 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 07.14.14 18.21 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 07.14.14 18.21 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 07.14.14 18.21 U 1 cis-1,2-Dichloroptopene 10661-01-5 BRL 5.0 ug/L	Acetone	67-64-1	BRL	50	ug/L	07.14.14 18.21	U	1
Bromodichloromethane 75-27-4 BRL 5.0 ug/L 07.14.14 18.21 U 1 Bromoform 75-25-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 Bromomethane 74-83-9 BRL 5.0 ug/L 07.14.14 18.21 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 07.14.14 18.21 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 07.14.14 18.21 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 Chloroform 75-00-3 BRL 4.0 ug/L 07.14.14 18.21 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 07.14.14 18.21 U 1 cis-1,2-Dichlorothene 156-59-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 cyclohexane 110-82-7 BRL 5.0 ug/L 07.14.1	Benzene	71-43-2	BRL	5.0	ug/L	07.14.14 18.21	U	1
Bromoform 75-25-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 Bromomethane 74-83-9 BRL 5.0 ug/L 07.14.14 18.21 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 07.14.14 18.21 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 07.14.14 18.21 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 Chloroform 75-00-3 BRL 5.0 ug/L 07.14.14 18.21 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 07.14.14 18.21 U 1 Cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 Dibromochloromethane 75-71-8 BRL 5.0 ug/L 07.14.	Bromochloromethane	74-97-5	BRL	5.0	ug/L	07.14.14 18.21	U	1
Bromomethane 74-83-9 BRL 5.0 ug/L 07.14.14 18.21 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 07.14.14 18.21 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 07.14.14 18.21 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 Chlorothane 75-00-3 BRL 4.0 ug/L 07.14.14 18.21 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 07.14.14 18.21 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 07.14.14 18.21 U 1 Cis-1,2-Dichlorochene 156-59-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 0	Bromodichloromethane	75-27-4	BRL	5.0	ug/L	07.14.14 18.21	U	1
Carbon disulfide 75-15-0 BRL 5.0 ug/L 07.14.14 18.21 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 07.14.14 18.21 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 Chloroethane 75-00-3 BRL 4.0 ug/L 07.14.14 18.21 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 07.14.14 18.21 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 07.14.14 18.21 U 1 cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 07.14.14 18.21 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L<	Bromoform	75-25-2	BRL	5.0	ug/L	07.14.14 18.21	U	1
Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 07.14.14 18.21 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 Chloroethane 75-00-3 BRL 4.0 ug/L 07.14.14 18.21 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 07.14.14 18.21 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 07.14.14 18.21 U 1 cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 07.14.14 18.21 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 Dichlorodifluoromethane 124-48-1 BRL 5.0 ug/L 07.14.14 18.21 U 1 Ethylbenzene 98-82-8 BRL 5.0 ug/L <td>Bromomethane</td> <td>74-83-9</td> <td>BRL</td> <td>5.0</td> <td>ug/L</td> <td>07.14.14 18.21</td> <td>U</td> <td>1</td>	Bromomethane	74-83-9	BRL	5.0	ug/L	07.14.14 18.21	U	1
Chlorobenzene 108-90-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 Chloroethane 75-00-3 BRL 4.0 ug/L 07.14.14 18.21 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 07.14.14 18.21 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 07.14.14 18.21 U 1 cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 07.14.14 18.21 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 07.14.14 18.21 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 07.14.14 18.21 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 07.14.14 18.21 U 1 m,p-Xylenes 179601-23-1 B	Carbon disulfide	75-15-0	BRL	5.0	ug/L	07.14.14 18.21	U	1
Chloroethane 75-00-3 BRL 4.0 ug/L 07.14.14 18.21 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 07.14.14 18.21 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 07.14.14 18.21 U 1 cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 07.14.14 18.21 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 07.14.14 18.21 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 07.14.14 18.21 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 07.14.14 18.21 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L	Carbon tetrachloride	56-23-5	BRL	5.0	ug/L	07.14.14 18.21	U	1
Chloroform 67-66-3 BRL 5.0 ug/L 07.14.14 18.21 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 07.14.14 18.21 U 1 cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 07.14.14 18.21 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 07.14.14 18.21 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 07.14.14 18.21 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 07.14.14 18.21 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 07.14.14 18.21 U 1	Chlorobenzene	108-90-7	BRL	5.0	ug/L	07.14.14 18.21	U	1
Chloromethane 74-87-3 BRL 5.0 ug/L 07.14.14 18.21 U 1 cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 07.14.14 18.21 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 07.14.14 18.21 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 07.14.14 18.21 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 07.14.14 18.21 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 07.14.14 18.21 U 1	Chloroethane	75-00-3	BRL	4.0	ug/L	07.14.14 18.21	U	1
cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 07.14.14 18.21 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 07.14.14 18.21 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 07.14.14 18.21 U 1 Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L 07.14.14 18.21 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 07.14.14 18.21 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 07.14.14 18.21 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 07.14.14 18.21 U 1	Chloroform	67-66-3	BRL	5.0	ug/L	07.14.14 18.21	U	1
cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 07.14.14 18.21 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 07.14.14 18.21 U 1 Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L 07.14.14 18.21 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 07.14.14 18.21 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 07.14.14 18.21 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 07.14.14 18.21 U 1	Chloromethane	74-87-3	BRL	5.0	ug/L	07.14.14 18.21	U	1
Cyclohexane 110-82-7 BRL 5.0 ug/L 07.14.14 18.21 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 07.14.14 18.21 U 1 Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L 07.14.14 18.21 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 07.14.14 18.21 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 07.14.14 18.21 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 07.14.14 18.21 U 1	cis-1,2-Dichloroethene	156-59-2	BRL	5.0	ug/L	07.14.14 18.21	U	1
Dibromochloromethane 124-48-1 BRL 5.0 ug/L 07.14.14 18.21 U 1 Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L 07.14.14 18.21 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 07.14.14 18.21 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 07.14.14 18.21 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 07.14.14 18.21 U 1	cis-1,3-Dichloropropene	10061-01-5	BRL	5.0	ug/L	07.14.14 18.21	U	1
Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L 07.14.14 18.21 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 07.14.14 18.21 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 07.14.14 18.21 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 07.14.14 18.21 U 1	Cyclohexane	110-82-7	BRL	5.0	ug/L	07.14.14 18.21	U	1
Ethylbenzene 100-41-4 BRL 5.0 ug/L 07.14.14 18.21 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 07.14.14 18.21 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 07.14.14 18.21 U 1	Dibromochloromethane	124-48-1	BRL	5.0	ug/L	07.14.14 18.21	U	1
Isopropylbenzene 98-82-8 BRL 5.0 ug/L 07.14.14 18.21 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 07.14.14 18.21 U 1	Dichlorodifluoromethane	75-71-8	BRL	5.0	ug/L	07.14.14 18.21	U	1
m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 07.14.14 18.21 U 1	Ethylbenzene	100-41-4	BRL	5.0	ug/L	07.14.14 18.21	U	1
7 7	Isopropylbenzene	98-82-8	BRL	5.0	ug/L	07.14.14 18.21	U	1
Methyl acetate 79-20-9 BRL 5.0 ug/L 07.14.14 18.21 U 1	m,p-Xylenes	179601-23-1	BRL	5.0	ug/L	07.14.14 18.21	U	1
	Methyl acetate	79-20-9	BRL	5.0	ug/L	07.14.14 18.21	U	1

Atlanta Environmental Management, Atlanta, GA

Aramark Dekalb

Sample Id: Rinsate Blank Matrix: Water Date Received:07.12.14 10.50

Lab Sample Id: 489203-001 Date Collected: 07.10.14 10.20

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

Analyst: MLA Date Prep: 07.14.14 14.45

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Methyl tert-butyl ether	1634-04-4	BRL	5.0		ug/L	07.14.14 18.21	U	1
Methylcyclohexane	108-87-2	BRL	5.0		ug/L	07.14.14 18.21	U	1
Methylene chloride	75-09-2	BRL	5.0		ug/L	07.14.14 18.21	U	1
Naphthalene	91-20-3	BRL	5.0		ug/L	07.14.14 18.21	U	1
o-Xylene	95-47-6	BRL	5.0		ug/L	07.14.14 18.21	U	1
Styrene	100-42-5	BRL	5.0		ug/L	07.14.14 18.21	U	1
Tetrachloroethene	127-18-4	BRL	5.0		ug/L	07.14.14 18.21	U	1
Toluene	108-88-3	BRL	5.0		ug/L	07.14.14 18.21	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	5.0		ug/L	07.14.14 18.21	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	5.0		ug/L	07.14.14 18.21	U	1
Trichloroethene	79-01-6	BRL	5.0		ug/L	07.14.14 18.21	U	1
Trichlorofluoromethane	75-69-4	BRL	5.0		ug/L	07.14.14 18.21	U	1
Vinyl chloride	75-01-4	BRL	2.0		ug/L	07.14.14 18.21	U	1
			%					
Surrogate		Cas Number	Recovery	Units	Limits	Analysis Date	Flag	
1,2-Dichloroethane-D4		17060-07-0	96	%	53-159	07.14.14 18.21		
4-Bromofluorobenzene		460-00-4	100	%	30-186	07.14.14 18.21		
Toluene-D8		2037-26-5	102	%	70-130	07.14.14 18.21		

Atlanta Environmental Management, Atlanta, GA

Aramark Dekalb

Sample Id: MW-405 Matrix: Ground Water Date Received:07.12.14 10.50

Lab Sample Id: 489203-002 Date Collected: 07.10.14 13.57 Sample Depth: 14.83

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

% Moisture:

Analyst: MLA Date Prep: 07.14.14 14.45

Seq Number: 945588

Tech:

MWE

Isopropylbenzene 98-82-8 BRL 5.0 ug/L 07.14.14 19.44 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 07.14.14 19.44 U 1	Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1.1.2-Trichloro-thane 76-13-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 1.1.2-Trichloro-thane 79-00-5 BR1 5.0 ug/L 07.14.14 19.44 U 1 1.1-Dichloro-thane 75-34-3 BRL 5.0 ug/L 07.14.14 19.44 U 1 1.1-Dichloro-thane 75-35-4 BRL 5.0 ug/L 07.14.14 19.44 U 1 1.2.3-Trichloro-thane 75-35-4 BRL 5.0 ug/L 07.14.14 19.44 U 1 1.2.3-Trichloro-thane 120-82-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 1.2.4-Trichloro-thane 120-82-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 1.2.4-Trichloro-thane (BDR) 96-12-8 BRL 5.0 ug/L 07.14.14 19.44 U 1 1.2.4-Trichloro-thane (EDB) 106-93-4 BRL 5.0 ug/L 07.14.14 19.44 U 1 1.2.4-Dichloro-thane (EDB) 106-93-4 BRL 5.0 ug/L 07.14.14 19.44 U 1 1.2.4-Dichloro-thane 107-06-2 BRL 5.0 ug/L 07.14.14 19.44 U 1 1.2.4-Dichloro-thane 107-06-2 BRL 5.0 ug/L 07.14.14 19.44 U 1 1.2.4-Dichloro-thane 107-06-2 BRL 5.0 ug/L 07.14.14 19.44 U 1 1.2.4-Dichloro-thane 106-6-7 BRL 5.0 ug/L 07.14.14 19.44 U 1 1.2.4-Dichloro-thane 106-6-7 BRL 5.0 ug/L 07.14.14 19.44 U 1 1.2.4-Dichloro-thane 106-6-7 BRL 5.0 ug/L 07.14.14 19.44 U 1 1.2.4-Dichloro-thane 106-6-7 BRL 5.0 ug/L 07.14.14 19.44 U 1 1.2.4-Dichloro-thane 106-6-7 BRL 5.0 ug/L 07.14.14 19.44 U 1 1.2.4-Dichloro-thane 106-6-7 BRL 5.0 ug/L 07.14.14 19.44 U 1 1.2.4-Dichloro-thane 106-6-7 BRL 5.0 ug/L 07.14.14 19.44 U 1 1.2.4-Dichloro-thane 106-6-7 BRL 5.0 ug/L 07.14.14 19.44 U 1 1.2.4-Dichloro-thane 106-6-7 BRL 5.0 ug/L 07.14.14 19.44 U 1 1.2.4-Dichloro-thane 106-6-7 BRL 5.0 ug/L 07.14.14 19.44 U 1 1.2.4-Dichloro-thane 106-6-7 BRL 5.0 ug/L 07.14.14 19.44 U 1 1.2.4-Dichloro-thane 106-6-7 BRL 5.0 ug/L 07.14.14 19.44 U 1 1.2.4-Dichloro-thane 108-90-7 BRL 5	1,1,1-Trichloroethane	71-55-6	BRL	5.0	ug/L	07.14.14 19.44	U	1
1,1,2-Trichloroethane	1,1,2,2-Tetrachloroethane	79-34-5	BRL	5.0	ug/L	07.14.14 19.44	U	1
1.1-Dichloroethane	1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	BRL	5.0	ug/L	07.14.14 19.44	U	1
1,1-Dichloroethene	1,1,2-Trichloroethane	79-00-5	BRL	5.0	ug/L	07.14.14 19.44	U	1
1,2,3-Trichlorobenzene 87-61-6 BRL 5.0 ug/L 07.14,14 19.44 U 1 1,2,4-Trichlorobenzene 120-82-1 BRL 5.0 ug/L 07.14,14 19.44 U 1 1,2-Dibromochane (DBCP) 96-12-8 BRL 5.0 ug/L 07.14,14 19.44 U 1 1,12-Dibromochane (EDB) 106-93-4 BRL 5.0 ug/L 07.14,14 19.44 U 1 1,12-Dibromochane (EDB) 106-93-4 BRL 5.0 ug/L 07.14,14 19.44 U 1 1,12-Dichlorobenzene 95-50-1 BRL 5.0 ug/L 07.14,14 19.44 U 1 1,12-Dichloropopane 78-87-5 BRL 5.0 ug/L 07.14,14 19.44 U 1 1,12-Dichloropopane 78-87-5 BRL 5.0 ug/L 07.14,14 19.44 U 1 1,13-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.14,14 19.44 U 1 1,14-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.14,14 19.44 U 1 1,14-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.14,14 19.44 U 1 1,14-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.14,14 19.44 U 1 1,14-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.14,14 19.44 U 1 1,14-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.14,14 19.44 U 1 1,14-Dichlorobenzene 108-10-1 BRL 5.0 ug/L 07.14,14 19.44 U 1 1,14-Dichlorobenzene 108-10-1 BRL 5.0 ug/L 07.14,14 19.44 U 1 1,14-Dichlorobenzene 108-10-1 BRL 5.0 ug/L 07.14,14 19.44 U 1 1,14-Dichlorobenzene 108-90-7 BRL 5.0 ug/L 07.14,14 19.44 U 1 1,14-Dichlorobenzene 108-90-7 BRL 5.0 ug/L 07.14,14 19.44 U 1 1,14-Dichlorobenzene 108-90-7 BRL 5.0 ug/L 07.14,14 19.44 U 1 1 1,14-Dichlorobenzene 108-90-7 BRL 5.0 ug/L 07.14,14 19.44 U 1 1 1 1 1 1 1 1 1	1,1-Dichloroethane	75-34-3	BRL	5.0	ug/L	07.14.14 19.44	U	1
1,2,4-Trichlorobenzene 120-82-1 BRL 5.0 ug/L 07.14,14 19.44 U 1 1,2-Dibromoe-3-chloropropane (DBCP) 96-12-8 BRL 5.0 ug/L 07.14,14 19.44 U 1 1,2-Dibromoethane (EDB) 106-93-4 BRL 5.0 ug/L 07.14,14 19.44 U 1 1,2-Dichlorobenzene 95-50-1 BRL 5.0 ug/L 07.14,14 19.44 U 1 1,2-Dichloropenzane 107-06-2 BRL 5.0 ug/L 07.14,14 19.44 U 1 1,2-Dichloropopane 78-87-5 BRL 5.0 ug/L 07.14,14 19.44 U 1 1,2-Dichlorobenzene 541-73-1 BRL 5.0 ug/L 07.14,14 19.44 U 1 1,3-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.14,14 19.44 U 1 1,4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.14,14 19.44 U 1 1,4-Dichlorobenzene 591-78-6 BRL 5.0 ug/L 07.14,14 19.44 U 1 1,4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14,14 19.44 U 1 1,4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14,14 19.44 U 1 1,4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14,14 19.44 U 1 1,4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14,14 19.44 U 1 1,4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14,14 19.44 U 1 1,4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14,14 19.44 U 1 1,4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14,14 19.44 U 1 1,4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14,14 19.44 U 1 1,4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14,14 19.44 U 1 1,4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14,14 19.44 U 1 1,4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 5.0 ug/L 07.14,14 19.44 U 1 1,4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 5.0 ug/L 07.14,14 19.44 U 1 1,4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 5.0 ug/L 07.14,14 19.44 U 1 1,4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 5.0 ug/L 07.14,14 19.44 U 1 1,4-Methyl-2-pentanone (MIBK) 108-10-1 BRL	1,1-Dichloroethene	75-35-4	BRL	5.0	ug/L	07.14.14 19.44	U	1
1.2.Dibromos-Achoropropane (DBCP) 96-12-8 BRL 5.0 ug/L 07.14.14 19.44 U 1 1.2.Dibromoethane (EDB) 106-93-4 BRL 5.0 ug/L 07.14.14 19.44 U 1 1.2.Dibromoethane 95-50-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 1.2.Dibromoethane 107-06-2 BRL 5.0 ug/L 07.14.14 19.44 U 1 1.2.Dibropethane 107-06-2 BRL 5.0 ug/L 07.14.14 19.44 U 1 1.3.Dibropethane 107-06-2 BRL 5.0 ug/L 07.14.14 19.44 U 1 1.3.Dibropethane 106-46-7 BRL 5.0 ug/L 07.14.14 19.44 U 1 1.3.Dibropethane 106-46-7 BRL 5.0 ug/L 07.14.14 19.44 U 1 1.4.Dibropethane 106-46-7 BRL 5.0 ug/L 07.14.14 19.44 U 1 1.4.Dibropethane 108-93-3 BRL 5.0 ug/L 07.14.14 19.44 U 1 1.4.Dibropethane 108-10-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 1.4.Dibropethane 108-10-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 1.4.Dibropethane 108-10-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 1.4.Dibropethane 108-10-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 1.4.Dibropethane 108-10-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 1.4.Dibropethane 108-10-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 1.4.Dibropethane 108-10-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 1.4.Dibropethane 108-10-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 1.4.Dibropethane 108-10-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 1.4.Dibropethane 108-10-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 1.4.Dibropethane 108-10-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 1.4.Dibropethane 108-10-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 1.4.Dibropethane 108-10-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 1.4.Dibropethane 108-10-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 1.4.Dibropethane 108-10-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 1.4.Dibropethane 108-10-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 1.4.Dibropethane 108-10-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 1.4.Dibropethane 108	1,2,3-Trichlorobenzene	87-61-6	BRL	5.0	ug/L	07.14.14 19.44	U	1
1,2-Dibromoethane (EDB) 106-93-4 BRL 5.0 ug/L 07.14.14 19.44 U 1 1,2-Dichlorobenzene 95-50-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 1,2-Dichloroethane 107-06-2 BRL 5.0 ug/L 07.14.14 19.44 U 1 1,2-Dichloroethane 107-06-2 BRL 5.0 ug/L 07.14.14 19.44 U 1 1,2-Dichloroptopane 78-87-5 BRL 5.0 ug/L 07.14.14 19.44 U 1 1,3-Dichlorobenzene 541-73-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 1,4-Dichloroethane 106-46-7 BRL 5.0 ug/L 07.14.14 19.44 U 1 1,4-Dichloroethane 106-46-7 BRL 5.0 ug/L 07.14.14 19.44 U 1 1,4-Dichloroethane 591-78-6 BRL 5.0 ug/L 07.14.14 19.44 U 1 1,4-Dichloroethane 591-78-6 BRL 5.0 ug/L 07.14.14 19.44 U 1 1,4-Dichloroethane 67-64-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 1,4-Dichloroethane 67-64-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 1,4-Dichloroethane 74-97-5 BRL 5.0 ug/L 07.14.14 19.44 U 1 1,4-Dichloroethane 74-97-5 BRL 5.0 ug/L 07.14.14 19.44 U 1 1,4-Dichloroethane 75-27-4 BRL 5.0 ug/L 07.14.14 19.44 U 1 1,4-Dichloroethane 75-27-4 BRL 5.0 ug/L 07.14.14 19.44 U 1 1,4-Dichloroethane 75-27-4 BRL 5.0 ug/L 07.14.14 19.44 U 1 1,4-Dichloroethane 75-15-0 BRL 5.0 ug/L 07.14.14 19.44 U 1 1,4-Dichloroethane 75-15-0 BRL 5.0 ug/L 07.14.14 19.44 U 1 1,4-Dichloroethane 75-03 BRL 5.0 ug/L 07.14.14 19.44 U 1 1,4-Dichloroethane 75-03 BRL 5.0 ug/L 07.14.14 19.44 U 1 1,4-Dichloroethane 75-03 BRL 5.0 ug/L 07.14.14 19.44 U 1 1,4-Dichloroethane 75-03 BRL 5.0 ug/L 07.14.14 19.44 U 1 1,4-Dichloroethane 75-03 BRL 5.0 ug/L 07.14.14 19.44 U 1 1,4-Dichloroethane 74-87 BRL 5.0 ug/L 07.14.14 19.44 U 1 1,4-Dichloroethane 75-03 BRL 5.0 ug/L 07.14.14 19.44 U 1 1,4-Dichloroethane 74-87 BRL 5.0 ug/L 07.14.14 19.44 U 1 1,4-Dichloroethane	1,2,4-Trichlorobenzene	120-82-1	BRL	5.0	ug/L	07.14.14 19.44	U	1
1,2-Dichlorobenzene 95-50-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 1,2-Dichloroethane 107-06-2 BRL 5.0 ug/L 07.14.14 19.44 U 1 1,2-Dichloropenae 78-87-5 BRL 5.0 ug/L 07.14.14 19.44 U 1 1,2-Dichloropenae 541-73-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 1,3-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.14.14 19.44 U 1 1,4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.14.14 19.44 U 1 1,4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.14.14 19.44 U 1 1,4-Dichlorobenzene 591-78-6 BRL 5.0 ug/L 07.14.14 19.44 U 1 1,4-Dichlorobenzene 108-10-1 BRL 50 ug/L 07.14.14 19.44 U 1 1,4-Dichlorobenzene 67-64-1 BRL 50 ug/L 07.14.14 19.44 U 1 1,4-Dichlorobenzene 17-43-2 BRL 5.0 ug/L 07.14.14 19.44 U 1 1,4-Dichlorobenzene 17-43-2 BRL 5.0 ug/L 07.14.14 19.44 U 1 1,4-Dichlorobenzene 17-43-2 BRL 5.0 ug/L 07.14.14 19.44 U 1 1,4-Dichlorobenzene 17-43-2 BRL 5.0 ug/L 07.14.14 19.44 U 1 1,4-Dichlorobenzene 17-43-2 BRL 5.0 ug/L 07.14.14 19.44 U 1 1,4-Dichlorobenzene 18-Dichlorobenzene	1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	BRL	5.0	ug/L	07.14.14 19.44	U	1
1,2-Dichloroethane 107-06-2 BRL 5.0 ug/L 07.14.14 19.44 U 1 1,2-Dichloropropane 78-87-5 BRL 5.0 ug/L 07.14.14 19.44 U 1 1,3-Dichloropenzene 514-73-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 2-Butanone (MEK) 78-93-3 BRL 5.0 ug/L 07.14.14 19.44 U 1 2-Hexanone 591-78-6 BRL 5.0 ug/L 07.14.14 19.44 U 1 2-Hexanone 591-78-6 BRL 5.0 ug/L 07.14.14 19.44 U 1 2-Hexanone 67-64-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 Benzene 71-43-2 BRL 5.0 ug/L 07.14.14 19.44 U 1 Bromodichloromethane 75-25-2 <td>1,2-Dibromoethane (EDB)</td> <td>106-93-4</td> <td>BRL</td> <td>5.0</td> <td>ug/L</td> <td>07.14.14 19.44</td> <td>U</td> <td>1</td>	1,2-Dibromoethane (EDB)	106-93-4	BRL	5.0	ug/L	07.14.14 19.44	U	1
1,2-Dichloropropane 78-87-5 BRL 5.0 ug/L 07.14.14 19.44 U 1 1,3-Dichlorobenzene 541-73-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 1,4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.14.14 19.44 U 1 2-Butanone (MEK) 78-93-3 BRL 50 ug/L 07.14.14 19.44 U 1 2-Butanone (MEK) 78-93-3 BRL 50 ug/L 07.14.14 19.44 U 1 2-Hexanone 591-78-6 BRL 50 ug/L 07.14.14 19.44 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14.14 19.44 U 1 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14.14 19.44 U 1 1 1 1 1 1 1 1 1	1,2-Dichlorobenzene	95-50-1	BRL	5.0	ug/L	07.14.14 19.44	U	1
1,3-Dichlorobenzene 541-73-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 1,4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.14.14 19.44 U 1 2-Butanone (MEK) 78-93-3 BRL 50 ug/L 07.14.14 19.44 U 1 2-Hexanone 591-78-6 BRL 50 ug/L 07.14.14 19.44 U 1 2-Hexanone (MIBK) 108-10-1 BRL 50 ug/L 07.14.14 19.44 U 1 Acetone 67-64-1 BRL 50 ug/L 07.14.14 19.44 U 1 Benzene 67-64-1 BRL 50 ug/L 07.14.14 19.44 U 1 Benzene 71-43-2 BRL 5.0 ug/L 07.14.14 19.44 U 1 Bromochloromethane 74-97-5 BRL 5.0 ug/L 07.14.14 19.44 U 1 Bromochloromethane 75-27-4 BRL 5.0 ug/L 07.14.14 19.44 U 1 Bromochlane 75-27-4 BRL 5.0 ug/L 07.14.14 19.44 U 1 Bromomethane 74-83-9 BRL 5.0 ug/L 07.14.14 19.44 U 1 Bromochlane 75-15-0 BRL 5.0 ug/L 07.14.14 19.44 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 07.14.14 19.44 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 07.14.14 19.44 U 1 Carbon tetrachloride 56-63-5 BRL 5.0 ug/L 07.14.14 19.44 U 1 Chlorochane 75-00-3 BRL 5.0 ug/L 07.14.14 19.44 U 1 Chlorochane 74-87-3 BRL 5.0 ug/L 07.14.14 19.44 U 1 Chlorochane 74-87-3 BRL 5.0 ug/L 07.14.14 19.44 U 1 Chlorochane 156-59-2 BRL 5.0 ug/L 07.14.14 19.44 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 07.14.14 19.44 U 1 cis-1,3-Dichloromethane 124-48-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 cis-1,3-Dichloromethane 124-48-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 cis-1,3-Dichloromethane 124-48-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 Cyclobexane 100-41-4 BRL 5.0 ug/L 07.14.14 19.44 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 07.14.14 19.44 U 1 Enchloromethane 124-48-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 Enchloromethane 124-48-1 BRL 5.0	1,2-Dichloroethane	107-06-2	BRL	5.0	ug/L	07.14.14 19.44	U	1
1,4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.14.14 19.44 U 1	1,2-Dichloropropane	78-87-5	BRL	5.0	ug/L	07.14.14 19.44	U	1
2-Butanone (MEK) 78-93-3 BRL 50 ug/L 07.14.14 19.44 U 1 2-Hexanone 591-78-6 BRL 50 ug/L 07.14.14 19.44 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14.14 19.44 U 1 Acetone 67-64-1 BRL 50 ug/L 07.14.14 19.44 U 1 Benzene 71-43-2 BRL 50 ug/L 07.14.14 19.44 U 1 Benzene 74-97-5 BRL 5.0 ug/L 07.14.14 19.44 U 1 Bromochloromethane 74-97-5 BRL 5.0 ug/L 07.14.14 19.44 U 1 Bromochloromethane 75-27-4 BRL 5.0 ug/L 07.14.14 19.44 U 1 Bromochloromethane 75-25-2 BRL 5.0 ug/L 07.14.14 19.44 U 1 Bromochane 74-83-9 BRL 5.0 ug/L 07.14.14 19.44 U 1 Bromothane 74-83-9 BRL 5.0 ug/L 07.14.14 19.44 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 07.14.14 19.44 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 07.14.14 19.44 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 07.14.14 19.44 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 07.14.14 19.44 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 07.14.14 19.44 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 07.14.14 19.44 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 07.14.14 19.44 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 07.14.14 19.44 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 07.14.14 19.44 U 1 Cis-1,2-Dichlorothene 156-59-2 BRL 5.0 ug/L 07.14.14 19.44 U 1 Cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 07.14.14 19.44 U 1 Cycloexane 110-82-7 BRL 5.0 ug/L 07.14.14 19.44 U 1 Cycloexane 110-82-7 BRL 5.0 ug/L 07.14.14 19.44 U 1 Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L 07.14.14 19.44 U 1 Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L 07.14.14 19.44 U 1 Dichlorodifluoromethane 124-48-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 Dichlorodifluoromethane 18-82-8 BRL 5.0 ug/L 07.14.14 19.44 U 1 Elthylbenzene 100-41-4 BRL 5.0 ug/L 07.14.14 19.44 U 1 Elthylbenzene 100-41-4 BRL 5.0 ug/L 07.14.14 19.44 U 1 I spopropylenzene 98-82-8 BRL 5.0 ug/L 07.14.14 19.44 U 1 I spopropylenzene 198-82-8 BRL 5.0 ug/L 07.14.14 19.44 U 1 I spopropylenzene 198-82-8 BRL 5.0 ug/L 07.14.14 19.44 U 1 I spopropylenzene 198-82-8 BRL 5.0 ug/L 07.14.14 19.44 U 1 I spopropylenzene 198-82-8 BRL 5.0 ug/L 07.14.14 19.44 U 1	1,3-Dichlorobenzene	541-73-1	BRL	5.0	ug/L	07.14.14 19.44	U	1
2-Hexanone 591-78-6 BRL 50 ug/L 07.14.14 19.44 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14.14 19.44 U 1 Acetone 67-64-1 BRL 50 ug/L 07.14.14 19.44 U 1 Benzene 71-43-2 BRL 5.0 ug/L 07.14.14 19.44 U 1 Bromochloromethane 74-97-5 BRL 5.0 ug/L 07.14.14 19.44 U 1 Bromochloromethane 75-27-4 BRL 5.0 ug/L 07.14.14 19.44 U 1 Bromochloromethane 75-25-2 BRL 5.0 ug/L 07.14.14 19.44 U 1 Bromochloromethane 75-25-2 BRL 5.0 ug/L 07.14.14 19.44 U 1 Bromochloromethane 75-25-2 BRL 5.0 ug/L 07.14.14 19.44 U 1 Bromochloromethane 75-25-2 BRL 5.0 ug/L 07.14.14 19.44 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 07.14.14 19.44 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 07.14.14 19.44 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 07.14.14 19.44 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 07.14.14 19.44 U 1 Chlorothane 75-00-3 BRL 5.0 ug/L 07.14.14 19.44 U 1 Chlorothane 75-00-3 BRL 5.0 ug/L 07.14.14 19.44 U 1 Chlorothane 74-87-3 BRL 5.0 ug/L 07.14.14 19.44 U 1 Chlorothane 74-87-3 BRL 5.0 ug/L 07.14.14 19.44 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 07.14.14 19.44 U 1 Cis-1,2-Dichlorothene 156-59-2 BRL 5.0 ug/L 07.14.14 19.44 U 1 Cis-1,3-Dichlorothene 10061-01-5 BRL 5.0 ug/L 07.14.14 19.44 U 1 Cyclobexane 110-82-7 BRL 5.0 ug/L 07.14.14 19.44 U 1 Cyclobexane 110-82-7 BRL 5.0 ug/L 07.14.14 19.44 U 1 Dibromochloromethane 75-71-8 BRL 5.0 ug/L 07.14.14 19.44 U 1 Dibromochloromethane 75-71-8 BRL 5.0 ug/L 07.14.14 19.44 U 1 Elhylbenzene 100-41-4 BRL 5.0 ug/L 07.14.14 19.44 U 1 Elhylbenzene 100-41-4 BRL 5.0 ug/L 07.14.14 19.44 U 1 Elhylbenzene 100-41-4 BRL 5.0 ug/L 07.14.14 19.44 U 1 Elhylbenzene 100-41-4 BRL 5.0 ug/L 07.14.14 19.44 U 1 Elhylbenzene 100-41-4 BRL 5.0 ug/L 07.14.14 19.44 U 1 Elhylbenzene 100-41-4 BRL 5.0 ug/L 07.14.14 19.44 U 1 Elhylbenzene 100-41-4 BRL 5.0 ug/L 07.14.14 19.44 U 1 Elhylbenzene 100-41-4 BRL 5.0 ug/L 07.14.14 19.44 U 1 Elhylbenzene 100-41-4 BRL 5.0 ug/L 07.14.14 19.44 U 1 Elhylbenzene 100-41-4 BRL 5.0 ug/L 07.14.14 19.44 U 1 Elhylbenzene 100-41-4 BRL 5.0 ug/L 07.14.14 19.44 U 1	1,4-Dichlorobenzene	106-46-7	BRL	5.0	ug/L	07.14.14 19.44	U	1
4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14.14 19.44 U 1 Acetone 67-64-1 BRL 50 ug/L 07.14.14 19.44 U 1 Benzene 71-43-2 BRL 5.0 ug/L 07.14.14 19.44 U 1 Bromochloromethane 74-97-5 BRL 5.0 ug/L 07.14.14 19.44 U 1 Bromofichloromethane 75-27-4 BRL 5.0 ug/L 07.14.14 19.44 U 1 Bromoform 75-25-2 BRL 5.0 ug/L 07.14.14 19.44 U 1 Bromoform 74-83-9 BRL 5.0 ug/L 07.14.14 19.44 U 1 Bromofichloredide 75-15-0 BRL 5.0 ug/L 07.14.14 19.44 U 1 Carbon tistrachloride 75-03-3 BRL 5.0 ug/L 07.14.14 19.44 U 1 Chlorotenane 108-90-7 BRL 5.0 ug/L 07.14	2-Butanone (MEK)	78-93-3	BRL	50	ug/L	07.14.14 19.44	U	1
Acetone 67-64-1 BRL 50 ug/L 07.14.14 19.44 U 1 Benzene 71-43-2 BRL 5.0 ug/L 07.14.14 19.44 U 1 Bromochloromethane 74-97-5 BRL 5.0 ug/L 07.14.14 19.44 U 1 Bromodichloromethane 75-27-4 BRL 5.0 ug/L 07.14.14 19.44 U 1 Bromoform 75-25-2 BRL 5.0 ug/L 07.14.14 19.44 U 1 Bromomethane 74-83-9 BRL 5.0 ug/L 07.14.14 19.44 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 07.14.14 19.44 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 07.14.14 19.44 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 07.14.14 19.44 U 1 Chlorochane 75-00-3 BRL 5.0 ug/L 07.14.14 19.44	2-Hexanone	591-78-6	BRL	50	ug/L	07.14.14 19.44	U	1
Benzene 71-43-2 BRL 5.0 ug/L 07.14.14 19.44 U 1 Bromochloromethane 74-97-5 BRL 5.0 ug/L 07.14.14 19.44 U 1 Bromodichloromethane 75-27-4 BRL 5.0 ug/L 07.14.14 19.44 U 1 Bromoform 75-25-2 BRL 5.0 ug/L 07.14.14 19.44 U 1 Bromomethane 74-83-9 BRL 5.0 ug/L 07.14.14 19.44 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 07.14.14 19.44 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 07.14.14 19.44 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 07.14.14 19.44 U 1 Chlorochtane 75-00-3 BRL 5.0 ug/L 07.14.14 19.44 U 1 Chlorochtane 74-87-3 BRL 5.0 ug/L 07.14.14 19.	4-Methyl-2-pentanone (MIBK)	108-10-1	BRL	50	ug/L	07.14.14 19.44	U	1
Bromochloromethane 74-97-5 BRL 5.0 ug/L 07.14.14 19.44 U 1 Bromodichloromethane 75-27-4 BRL 5.0 ug/L 07.14.14 19.44 U 1 Bromoform 75-25-2 BRL 5.0 ug/L 07.14.14 19.44 U 1 Bromomethane 74-83-9 BRL 5.0 ug/L 07.14.14 19.44 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 07.14.14 19.44 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 07.14.14 19.44 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 07.14.14 19.44 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 07.14.14 19.44 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 07.14.14 19.44 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L	Acetone	67-64-1	BRL	50	ug/L	07.14.14 19.44	U	1
Bromodichloromethane 75-27-4 BRL 5.0 ug/L 07.14.14 19.44 U 1 Bromoform 75-25-2 BRL 5.0 ug/L 07.14.14 19.44 U 1 Bromomethane 74-83-9 BRL 5.0 ug/L 07.14.14 19.44 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 07.14.14 19.44 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 07.14.14 19.44 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 07.14.14 19.44 U 1 Chloroform 75-00-3 BRL 4.0 ug/L 07.14.14 19.44 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 07.14.14 19.44 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 07.14.14 19.44 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 07	Benzene	71-43-2	BRL	5.0	ug/L	07.14.14 19.44	U	1
Bromoform 75-25-2 BRL 5.0 ug/L 07.14.14 19.44 U 1 Bromomethane 74-83-9 BRL 5.0 ug/L 07.14.14 19.44 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 07.14.14 19.44 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 07.14.14 19.44 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 07.14.14 19.44 U 1 Chloroform 67-66-3 BRL 4.0 ug/L 07.14.14 19.44 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 07.14.14 19.44 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 07.14.14 19.44 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 07.14.14 19.44 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 07.14.1	Bromochloromethane	74-97-5	BRL	5.0	ug/L	07.14.14 19.44	U	1
Bromomethane 74-83-9 BRL 5.0 ug/L 07.14.14 19.44 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 07.14.14 19.44 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 07.14.14 19.44 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 07.14.14 19.44 U 1 Chlorothane 75-00-3 BRL 5.0 ug/L 07.14.14 19.44 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 07.14.14 19.44 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 07.14.14 19.44 U 1 Chlorothane 74-87-3 BRL 5.0 ug/L 07.14.14 19.44 U 1 Cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 07.14.14 19.44 U 1 Cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 07.14.14 19.44 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 07.14.14 19.44 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L 07.14.14 19.44 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 07.14.14 19.44 U 1 Sopropylbenzene 98-82-8 BRL 5.0 ug/L 07.14.14 19.44 U 1 InpXylenes 179601-23-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 InpXylenes 179601-23-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 InpXylenes 179601-23-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 InpXylenes 179601-23-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 InpXylenes 179601-23-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 InpXylenes 179601-23-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 InpXylenes 179601-23-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 InpXylenes 179601-23-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 InpXylenes 179601-23-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 InpXylenes 179601-23-1	Bromodichloromethane	75-27-4	BRL	5.0	ug/L	07.14.14 19.44	U	1
Carbon disulfide 75-15-0 BRL 5.0 ug/L 07.14.14 19.44 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 07.14.14 19.44 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 07.14.14 19.44 U 1 Chloroethane 75-00-3 BRL 4.0 ug/L 07.14.14 19.44 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 07.14.14 19.44 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 07.14.14 19.44 U 1 cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 07.14.14 19.44 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 07.14.14 19.44 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 07.14.14 19.44 U 1 Dibloromochloromethane 124-48-1 BRL 5.0 ug/L<	Bromoform	75-25-2	BRL	5.0	ug/L	07.14.14 19.44	U	1
Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 07.14.14 19.44 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 07.14.14 19.44 U 1 Chloroethane 75-00-3 BRL 4.0 ug/L 07.14.14 19.44 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 07.14.14 19.44 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 07.14.14 19.44 U 1 cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 07.14.14 19.44 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 07.14.14 19.44 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 07.14.14 19.44 U 1 Dichlorodifluoromethane 124-48-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 07.14.14 19.44 U 1 Isopropylbenzene 98-82-8	Bromomethane	74-83-9	BRL	5.0	ug/L	07.14.14 19.44	U	1
Chlorobenzene 108-90-7 BRL 5.0 ug/L 07.14.14 19.44 U 1 Chloroethane 75-00-3 BRL 4.0 ug/L 07.14.14 19.44 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 07.14.14 19.44 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 07.14.14 19.44 U 1 cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 07.14.14 19.44 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 07.14.14 19.44 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 07.14.14 19.44 U 1 Dibloromochloromethane 124-48-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 07.14.14 19.44 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 07.14.14 19.44 U 1 m,p-Xylenes 179601-23-1 <th< td=""><td>Carbon disulfide</td><td>75-15-0</td><td>BRL</td><td>5.0</td><td>ug/L</td><td>07.14.14 19.44</td><td>U</td><td>1</td></th<>	Carbon disulfide	75-15-0	BRL	5.0	ug/L	07.14.14 19.44	U	1
Chloroethane 75-00-3 BRL 4.0 ug/L 07.14.14 19.44 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 07.14.14 19.44 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 07.14.14 19.44 U 1 cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 07.14.14 19.44 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 07.14.14 19.44 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 07.14.14 19.44 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L 07.14.14 19.44 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 07.14.14 19.44 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 07.14.14 19.44 U 1 Im,p-Xylenes 179601-23-1 BRL 5.0 ug/L 07.14.14 19.44 U 1	Carbon tetrachloride	56-23-5	BRL	5.0	ug/L	07.14.14 19.44	U	1
Chloroform 67-66-3 BRL 5.0 ug/L 07.14.14 19.44 U 1 cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 07.14.14 19.44 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 07.14.14 19.44 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 07.14.14 19.44 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L 07.14.14 19.44 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 07.14.14 19.44 U 1 Sopropylbenzene 98-82-8 BRL 5.0 ug/L 07.14.14 19.44 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 07.14.14 19.44 U 1	Chlorobenzene	108-90-7	BRL	5.0	ug/L	07.14.14 19.44	U	1
Chloromethane 74-87-3 BRL 5.0 ug/L 07.14.14 19.44 U 1 cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 07.14.14 19.44 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 07.14.14 19.44 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 07.14.14 19.44 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L 07.14.14 19.44 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 07.14.14 19.44 U 1 Sopropylbenzene 98-82-8 BRL 5.0 ug/L 07.14.14 19.44 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 07.14.14 19.44 U 1	Chloroethane	75-00-3	BRL	4.0	ug/L	07.14.14 19.44	U	1
cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 07.14.14 19.44 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 07.14.14 19.44 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 07.14.14 19.44 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L 07.14.14 19.44 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 07.14.14 19.44 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 07.14.14 19.44 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 07.14.14 19.44 U 1	Chloroform	67-66-3	BRL	5.0	ug/L	07.14.14 19.44	U	1
cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 07.14.14 19.44 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 07.14.14 19.44 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L 07.14.14 19.44 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 07.14.14 19.44 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 07.14.14 19.44 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 07.14.14 19.44 U 1	Chloromethane	74-87-3	BRL	5.0	ug/L	07.14.14 19.44	U	1
Cyclohexane 110-82-7 BRL 5.0 ug/L 07.14.14 19.44 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L 07.14.14 19.44 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 07.14.14 19.44 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 07.14.14 19.44 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 07.14.14 19.44 U 1	cis-1,2-Dichloroethene	156-59-2	BRL	5.0	ug/L	07.14.14 19.44	U	1
Dibromochloromethane 124-48-1 BRL 5.0 ug/L 07.14.14 19.44 U 1 Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L 07.14.14 19.44 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 07.14.14 19.44 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 07.14.14 19.44 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 07.14.14 19.44 U 1	cis-1,3-Dichloropropene	10061-01-5	BRL	5.0	ug/L	07.14.14 19.44	U	1
Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L 07.14.14 19.44 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 07.14.14 19.44 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 07.14.14 19.44 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 07.14.14 19.44 U 1	Cyclohexane	110-82-7	BRL	5.0	ug/L	07.14.14 19.44	U	1
Ethylbenzene 100-41-4 BRL 5.0 ug/L 07.14.14 19.44 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 07.14.14 19.44 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 07.14.14 19.44 U 1	Dibromochloromethane	124-48-1	BRL	5.0	ug/L	07.14.14 19.44	U	1
Isopropylbenzene 98-82-8 BRL 5.0 ug/L 07.14.14 19.44 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 07.14.14 19.44 U 1	Dichlorodifluoromethane	75-71-8	BRL	5.0	ug/L	07.14.14 19.44	U	1
m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 07.14.14 19.44 U 1	Ethylbenzene	100-41-4	BRL	5.0	ug/L	07.14.14 19.44	U	1
	Isopropylbenzene	98-82-8	BRL	5.0	ug/L	07.14.14 19.44	U	1
Methyl acetate 79-20-9 BRL 5.0 ug/L 07.14.14 19.44 U 1	m,p-Xylenes	179601-23-1	BRL	5.0	ug/L	07.14.14 19.44	U	1
	Methyl acetate	79-20-9	BRL	5.0	ug/L	07.14.14 19.44	U	1

Atlanta Environmental Management, Atlanta, GA

Aramark Dekalb

Sample Id: MW-405 Matrix: Ground Water Date Received:07.12.14 10.50

Lab Sample Id: 489203-002 Date Collected: 07.10.14 13.57 Sample Depth: 14.83

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

Analyst: MLA Date Prep: 07.14.14 14.45

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Methyl tert-butyl ether	1634-04-4	BRL	5.0		ug/L	07.14.14 19.44	U	1
Methylcyclohexane	108-87-2	BRL	5.0		ug/L	07.14.14 19.44	U	1
Methylene chloride	75-09-2	BRL	5.0		ug/L	07.14.14 19.44	U	1
Naphthalene	91-20-3	BRL	5.0		ug/L	07.14.14 19.44	U	1
o-Xylene	95-47-6	BRL	5.0		ug/L	07.14.14 19.44	U	1
Styrene	100-42-5	BRL	5.0		ug/L	07.14.14 19.44	U	1
Tetrachloroethene	127-18-4	BRL	5.0		ug/L	07.14.14 19.44	U	1
Toluene	108-88-3	BRL	5.0		ug/L	07.14.14 19.44	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	5.0		ug/L	07.14.14 19.44	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	5.0		ug/L	07.14.14 19.44	U	1
Trichloroethene	79-01-6	BRL	5.0		ug/L	07.14.14 19.44	U	1
Trichlorofluoromethane	75-69-4	BRL	5.0		ug/L	07.14.14 19.44	U	1
Vinyl chloride	75-01-4	BRL	2.0		ug/L	07.14.14 19.44	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,2-Dichloroethane-D4		17060-07-0	96	%	53-159	07.14.14 19.44		
4-Bromofluorobenzene		460-00-4	102	%	30-186	07.14.14 19.44		
Toluene-D8		2037-26-5	96	%	70-130	07.14.14 19.44		

Atlanta Environmental Management, Atlanta, GA

Aramark Dekalb

Sample Id: MW-401 Matrix: Ground Water Date Received:07.12.14 10.50

Lab Sample Id: 489203-003 Date Collected: 07.10.14 15.13 Sample Depth: 8.42

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

Analyst: MLA Date Prep: 07.14.14 14.45

1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane	71-55-6 79-34-5 76-13-1 79-00-5 75-34-3	BRL BRL BRL	5.0 5.0	ug/L ug/L	07.14.14 18.49	U	1
	76-13-1 79-00-5	BRL		ug/L	07 14 14 19 40		
1,1,2-Trichloro-1,2,2-trifluoroethane	79-00-5		5 0		07.14.14 18.49	U	1
		זממ	5.0	ug/L	07.14.14 18.49	U	1
1,1,2-Trichloroethane	75-34-3	BRL	5.0	ug/L	07.14.14 18.49	U	1
1,1-Dichloroethane		BRL	5.0	ug/L	07.14.14 18.49	U	1
1,1-Dichloroethene	75-35-4	BRL	5.0	ug/L	07.14.14 18.49	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	5.0	ug/L	07.14.14 18.49	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	5.0	ug/L	07.14.14 18.49	U	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	BRL	5.0	ug/L	07.14.14 18.49	U	1
1,2-Dibromoethane (EDB)	106-93-4	BRL	5.0	ug/L	07.14.14 18.49	U	1
1,2-Dichlorobenzene	95-50-1	BRL	5.0	ug/L	07.14.14 18.49	U	1
1,2-Dichloroethane	107-06-2	BRL	5.0	ug/L	07.14.14 18.49	U	1
1,2-Dichloropropane	78-87-5	BRL	5.0	ug/L	07.14.14 18.49	U	1
1,3-Dichlorobenzene	541-73-1	BRL	5.0	ug/L	07.14.14 18.49	U	1
1,4-Dichlorobenzene	106-46-7	BRL	5.0	ug/L	07.14.14 18.49	U	1
2-Butanone (MEK)	78-93-3	BRL	50	ug/L	07.14.14 18.49	U	1
2-Hexanone	591-78-6	BRL	50	ug/L	07.14.14 18.49	U	1
4-Methyl-2-pentanone (MIBK)	108-10-1	BRL	50	ug/L	07.14.14 18.49	U	1
Acetone	67-64-1	BRL	50	ug/L	07.14.14 18.49	U	1
Benzene	71-43-2	BRL	5.0	ug/L	07.14.14 18.49	U	1
Bromochloromethane	74-97-5	BRL	5.0	ug/L	07.14.14 18.49	U	1
Bromodichloromethane	75-27-4	BRL	5.0	ug/L	07.14.14 18.49	U	1
Bromoform	75-25-2	BRL	5.0	ug/L	07.14.14 18.49	U	1
Bromomethane	74-83-9	BRL	5.0	ug/L	07.14.14 18.49	U	1
Carbon disulfide	75-15-0	BRL	5.0	ug/L	07.14.14 18.49	U	1
Carbon tetrachloride	56-23-5	BRL	5.0	ug/L	07.14.14 18.49	U	1
Chlorobenzene	108-90-7	BRL	5.0	ug/L	07.14.14 18.49	U	1
Chloroethane	75-00-3	BRL	4.0	ug/L	07.14.14 18.49	U	1
Chloroform	67-66-3	BRL	5.0	ug/L	07.14.14 18.49	U	1
Chloromethane	74-87-3	BRL	5.0	ug/L	07.14.14 18.49	U	1
cis-1,2-Dichloroethene	156-59-2	BRL	5.0	ug/L	07.14.14 18.49	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	5.0	ug/L	07.14.14 18.49	U	1
Cyclohexane	110-82-7	BRL	5.0	ug/L	07.14.14 18.49	U	1
Dibromochloromethane	124-48-1	BRL	5.0	ug/L	07.14.14 18.49	U	1
Dichlorodifluoromethane	75-71-8	BRL	5.0	ug/L	07.14.14 18.49	U	1
Ethylbenzene	100-41-4	BRL	5.0	ug/L	07.14.14 18.49	U	1
Isopropylbenzene	98-82-8	BRL	5.0	ug/L	07.14.14 18.49	U	1
m,p-Xylenes	179601-23-1	BRL	5.0	ug/L	07.14.14 18.49	U	1
Methyl acetate	79-20-9	BRL	5.0	ug/L	07.14.14 18.49	U	1

Atlanta Environmental Management, Atlanta, GA

Aramark Dekalb

Sample Id: MW-401 Matrix: Ground Water Date Received:07.12.14 10.50

Lab Sample Id: 489203-003 Date Collected: 07.10.14 15.13 Sample Depth: 8.42

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

2037-26-5

Analyst: MLA Date Prep: 07.14.14 14.45

Seq Number: 945588

Toluene-D8

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Methyl tert-butyl ether	1634-04-4	BRL	5.0		ug/L	07.14.14 18.49	U	1
Methylcyclohexane	108-87-2	BRL	5.0		ug/L	07.14.14 18.49	U	1
Methylene chloride	75-09-2	BRL	5.0		ug/L	07.14.14 18.49	U	1
Naphthalene	91-20-3	BRL	5.0		ug/L	07.14.14 18.49	U	1
o-Xylene	95-47-6	BRL	5.0		ug/L	07.14.14 18.49	U	1
Styrene	100-42-5	BRL	5.0		ug/L	07.14.14 18.49	U	1
Tetrachloroethene	127-18-4	BRL	5.0		ug/L	07.14.14 18.49	U	1
Toluene	108-88-3	BRL	5.0		ug/L	07.14.14 18.49	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	5.0		ug/L	07.14.14 18.49	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	5.0		ug/L	07.14.14 18.49	U	1
Trichloroethene	79-01-6	BRL	5.0		ug/L	07.14.14 18.49	U	1
Trichlorofluoromethane	75-69-4	BRL	5.0		ug/L	07.14.14 18.49	U	1
Vinyl chloride	75-01-4	BRL	2.0		ug/L	07.14.14 18.49	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,2-Dichloroethane-D4		17060-07-0	96	%	53-159	07.14.14 18.49		
4-Bromofluorobenzene		460-00-4	102	%	30-186	07.14.14 18.49		

70-130

07.14.14 18.49

Atlanta Environmental Management, Atlanta, GA

Aramark Dekalb

Sample Id: MW-214 Matrix: Ground Water Date Received:07.12.14 10.50

Lab Sample Id: 489203-004 Date Collected: 07.10.14 14.25 Sample Depth: 15.0

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

Analyst: MLA Date Prep: 07.14.14 14.45

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1-Trichloroethane	71-55-6	BRL	5.0	ug/L	07.14.14 19.17	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	5.0	ug/L	07.14.14 19.17	U	1
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	BRL	5.0	ug/L	07.14.14 19.17	U	1
1,1,2-Trichloroethane	79-00-5	BRL	5.0	ug/L	07.14.14 19.17	U	1
1,1-Dichloroethane	75-34-3	BRL	5.0	ug/L	07.14.14 19.17	U	1
1,1-Dichloroethene	75-35-4	BRL	5.0	ug/L	07.14.14 19.17	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	5.0	ug/L	07.14.14 19.17	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	5.0	ug/L	07.14.14 19.17	U	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	BRL	5.0	ug/L	07.14.14 19.17	U	1
1,2-Dibromoethane (EDB)	106-93-4	BRL	5.0	ug/L	07.14.14 19.17	U	1
1,2-Dichlorobenzene	95-50-1	BRL	5.0	ug/L	07.14.14 19.17	U	1
1,2-Dichloroethane	107-06-2	BRL	5.0	ug/L	07.14.14 19.17	U	1
1,2-Dichloropropane	78-87-5	BRL	5.0	ug/L	07.14.14 19.17	U	1
1,3-Dichlorobenzene	541-73-1	BRL	5.0	ug/L	07.14.14 19.17	U	1
1,4-Dichlorobenzene	106-46-7	BRL	5.0	ug/L	07.14.14 19.17	U	1
2-Butanone (MEK)	78-93-3	BRL	50	ug/L	07.14.14 19.17	U	1
2-Hexanone	591-78-6	BRL	50	ug/L	07.14.14 19.17	U	1
4-Methyl-2-pentanone (MIBK)	108-10-1	BRL	50	ug/L	07.14.14 19.17	U	1
Acetone	67-64-1	BRL	50	ug/L	07.14.14 19.17	U	1
Benzene	71-43-2	BRL	5.0	ug/L	07.14.14 19.17	U	1
Bromochloromethane	74-97-5	BRL	5.0	ug/L	07.14.14 19.17	U	1
Bromodichloromethane	75-27-4	BRL	5.0	ug/L	07.14.14 19.17	U	1
Bromoform	75-25-2	BRL	5.0	ug/L	07.14.14 19.17	U	1
Bromomethane	74-83-9	BRL	5.0	ug/L	07.14.14 19.17	U	1
Carbon disulfide	75-15-0	BRL	5.0	ug/L	07.14.14 19.17	U	1
Carbon tetrachloride	56-23-5	BRL	5.0	ug/L	07.14.14 19.17	U	1
Chlorobenzene	108-90-7	BRL	5.0	ug/L	07.14.14 19.17	U	1
Chloroethane	75-00-3	BRL	4.0	ug/L	07.14.14 19.17	U	1
Chloroform	67-66-3	BRL	5.0	ug/L	07.14.14 19.17	U	1
Chloromethane	74-87-3	BRL	5.0	ug/L	07.14.14 19.17	U	1
cis-1,2-Dichloroethene	156-59-2	BRL	5.0	ug/L	07.14.14 19.17	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	5.0	ug/L	07.14.14 19.17	U	1
Cyclohexane	110-82-7	BRL	5.0	ug/L	07.14.14 19.17	U	1
Dibromochloromethane	124-48-1	BRL	5.0	ug/L	07.14.14 19.17	U	1
Dichlorodifluoromethane	75-71-8	BRL	5.0	ug/L	07.14.14 19.17	U	1
Ethylbenzene	100-41-4	BRL	5.0	ug/L	07.14.14 19.17	U	1
Isopropylbenzene	98-82-8	BRL	5.0	ug/L	07.14.14 19.17	U	1
m,p-Xylenes	179601-23-1	BRL	5.0	ug/L	07.14.14 19.17	U	1
Methyl acetate	79-20-9	BRL	5.0	ug/L	07.14.14 19.17	U	1

Atlanta Environmental Management, Atlanta, GA

Aramark Dekalb

Sample Id: MW-214 Matrix: Ground Water Date Received:07.12.14 10.50

Lab Sample Id: 489203-004 Date Collected: 07.10.14 14.25 Sample Depth: 15.0

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

MWE % Moisture:

Analyst: MLA Date Prep: 07.14.14 14.45

Seq Number: 945588

Tech:

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Methyl tert-butyl ether	1634-04-4	BRL	5.0		ug/L	07.14.14 19.17	U	1
Methylcyclohexane	108-87-2	BRL	5.0		ug/L	07.14.14 19.17	U	1
Methylene chloride	75-09-2	BRL	5.0		ug/L	07.14.14 19.17	U	1
Naphthalene	91-20-3	BRL	5.0		ug/L	07.14.14 19.17	U	1
o-Xylene	95-47-6	BRL	5.0		ug/L	07.14.14 19.17	U	1
Styrene	100-42-5	BRL	5.0		ug/L	07.14.14 19.17	U	1
Tetrachloroethene	127-18-4	BRL	5.0		ug/L	07.14.14 19.17	U	1
Toluene	108-88-3	BRL	5.0		ug/L	07.14.14 19.17	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	5.0		ug/L	07.14.14 19.17	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	5.0		ug/L	07.14.14 19.17	U	1
Trichloroethene	79-01-6	BRL	5.0		ug/L	07.14.14 19.17	U	1
Trichlorofluoromethane	75-69-4	BRL	5.0		ug/L	07.14.14 19.17	U	1
Vinyl chloride	75-01-4	BRL	2.0		ug/L	07.14.14 19.17	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,2-Dichloroethane-D4		17060-07-0	96	%	53-159	07.14.14 19.17		
4-Bromofluorobenzene		460-00-4	102	%	30-186	07.14.14 19.17		
Toluene-D8		2037-26-5	98	%	70-130	07.14.14 19.17		

Atlanta Environmental Management, Atlanta, GA

Aramark Dekalb

Sample Id: MW-409D Matrix: Ground Water Date Received:07.12.14 10.50

Lab Sample Id: 489203-005 Date Collected: 07.10.14 17.10 Sample Depth: 17.0

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

Analyst: MLA Date Prep: 07.15.14 06.48

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1-Trichloroethane	71-55-6	BRL	5.0	ug/L	07.15.14 09.57	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	5.0	ug/L	07.15.14 09.57	U	1
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	BRL	5.0	ug/L	07.15.14 09.57	U	1
1,1,2-Trichloroethane	79-00-5	BRL	5.0	ug/L	07.15.14 09.57	U	1
1,1-Dichloroethane	75-34-3	BRL	5.0	ug/L	07.15.14 09.57	U	1
1,1-Dichloroethene	75-35-4	BRL	5.0	ug/L	07.15.14 09.57	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	5.0	ug/L	07.15.14 09.57	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	5.0	ug/L	07.15.14 09.57	U	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	BRL	5.0	ug/L	07.15.14 09.57	U	1
1,2-Dibromoethane (EDB)	106-93-4	BRL	5.0	ug/L	07.15.14 09.57	U	1
1,2-Dichlorobenzene	95-50-1	BRL	5.0	ug/L	07.15.14 09.57	U	1
1,2-Dichloroethane	107-06-2	BRL	5.0	ug/L	07.15.14 09.57	U	1
1,2-Dichloropropane	78-87-5	BRL	5.0	ug/L	07.15.14 09.57	U	1
1,3-Dichlorobenzene	541-73-1	BRL	5.0	ug/L	07.15.14 09.57	U	1
1,4-Dichlorobenzene	106-46-7	BRL	5.0	ug/L	07.15.14 09.57	U	1
2-Butanone (MEK)	78-93-3	BRL	50	ug/L	07.15.14 09.57	U	1
2-Hexanone	591-78-6	BRL	50	ug/L	07.15.14 09.57	U	1
4-Methyl-2-pentanone (MIBK)	108-10-1	BRL	50	ug/L	07.15.14 09.57	U	1
Acetone	67-64-1	BRL	50	ug/L	07.15.14 09.57	U	1
Benzene	71-43-2	BRL	5.0	ug/L	07.15.14 09.57	U	1
Bromochloromethane	74-97-5	BRL	5.0	ug/L	07.15.14 09.57	U	1
Bromodichloromethane	75-27-4	BRL	5.0	ug/L	07.15.14 09.57	U	1
Bromoform	75-25-2	BRL	5.0	ug/L	07.15.14 09.57	U	1
Bromomethane	74-83-9	BRL	5.0	ug/L	07.15.14 09.57	U	1
Carbon disulfide	75-15-0	BRL	5.0	ug/L	07.15.14 09.57	U	1
Carbon tetrachloride	56-23-5	BRL	5.0	ug/L	07.15.14 09.57	U	1
Chlorobenzene	108-90-7	BRL	5.0	ug/L	07.15.14 09.57	U	1
Chloroethane	75-00-3	BRL	4.0	ug/L	07.15.14 09.57	U	1
Chloroform	67-66-3	BRL	5.0	ug/L	07.15.14 09.57	U	1
Chloromethane	74-87-3	BRL	5.0	ug/L	07.15.14 09.57	U	1
cis-1,2-Dichloroethene	156-59-2	BRL	5.0	ug/L	07.15.14 09.57	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	5.0	ug/L	07.15.14 09.57	U	1
Cyclohexane	110-82-7	BRL	5.0	ug/L	07.15.14 09.57	U	1
Dibromochloromethane	124-48-1	BRL	5.0	ug/L	07.15.14 09.57	U	1
Dichlorodifluoromethane	75-71-8	BRL	5.0	ug/L	07.15.14 09.57	U	1
Ethylbenzene	100-41-4	BRL	5.0	ug/L	07.15.14 09.57	U	1
Isopropylbenzene	98-82-8	BRL	5.0	ug/L	07.15.14 09.57	U	1
m,p-Xylenes	179601-23-1	BRL	5.0	ug/L	07.15.14 09.57	U	1
Methyl acetate	79-20-9	BRL	5.0	ug/L	07.15.14 09.57	U	1

Atlanta Environmental Management, Atlanta, GA

Aramark Dekalb

07.15.14 06.48

Sample Id: MW-409D Matrix: Ground Water Date Received:07.12.14 10.50

Lab Sample Id: 489203-005 Date Collected: 07.10.14 17.10 Sample Depth: 17.0

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

Analyst: MLA Date Prep: Seq Number: 945672

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Methyl tert-butyl ether	1634-04-4	BRL	5.0		ug/L	07.15.14 09.57	U	1
Methylcyclohexane	108-87-2	BRL	5.0		ug/L	07.15.14 09.57	U	1
Methylene chloride	75-09-2	BRL	5.0		ug/L	07.15.14 09.57	U	1
Naphthalene	91-20-3	BRL	5.0		ug/L	07.15.14 09.57	U	1
o-Xylene	95-47-6	BRL	5.0		ug/L	07.15.14 09.57	U	1
Styrene	100-42-5	BRL	5.0		ug/L	07.15.14 09.57	U	1
Tetrachloroethene	127-18-4	BRL	5.0		ug/L	07.15.14 09.57	U	1
Toluene	108-88-3	BRL	5.0		ug/L	07.15.14 09.57	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	5.0		ug/L	07.15.14 09.57	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	5.0		ug/L	07.15.14 09.57	U	1
Trichloroethene	79-01-6	BRL	5.0		ug/L	07.15.14 09.57	U	1
Trichlorofluoromethane	75-69-4	BRL	5.0		ug/L	07.15.14 09.57	U	1
Vinyl chloride	75-01-4	BRL	2.0		ug/L	07.15.14 09.57	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,2-Dichloroethane-D4		17060-07-0	94	%	53-159	07.15.14 09.57		
4-Bromofluorobenzene		460-00-4	100	%	30-186	07.15.14 09.57		
Toluene-D8		2037-26-5	96	%	70-130	07.15.14 09.57		

Atlanta Environmental Management, Atlanta, GA

Aramark Dekalb

07.15.14 06.48

Sample Id: MW-202 Matrix: Ground Water Date Received:07.12.14 10.50

Lab Sample Id: 489203-006 Date Collected: 07.10.14 17.20 Sample Depth: 15.94

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Date Prep:

Tech: MWE % Moisture:

Seq Number: 945672

Analyst:

MLA

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1-Trichloroethane	71-55-6	BRL	5.0	ug/L	07.15.14 10.25	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	5.0	ug/L	07.15.14 10.25	U	1
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	BRL	5.0	ug/L	07.15.14 10.25	U	1
1,1,2-Trichloroethane	79-00-5	BRL	5.0	ug/L	07.15.14 10.25	U	1
1,1-Dichloroethane	75-34-3	BRL	5.0	ug/L	07.15.14 10.25	U	1
1,1-Dichloroethene	75-35-4	BRL	5.0	ug/L	07.15.14 10.25	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	5.0	ug/L	07.15.14 10.25	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	5.0	ug/L	07.15.14 10.25	U	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	BRL	5.0	ug/L	07.15.14 10.25	U	1
1,2-Dibromoethane (EDB)	106-93-4	BRL	5.0	ug/L	07.15.14 10.25	U	1
1,2-Dichlorobenzene	95-50-1	BRL	5.0	ug/L	07.15.14 10.25	U	1
1,2-Dichloroethane	107-06-2	BRL	5.0	ug/L	07.15.14 10.25	U	1
1,2-Dichloropropane	78-87-5	BRL	5.0	ug/L	07.15.14 10.25	U	1
1,3-Dichlorobenzene	541-73-1	BRL	5.0	ug/L	07.15.14 10.25	U	1
1,4-Dichlorobenzene	106-46-7	BRL	5.0	ug/L	07.15.14 10.25	U	1
2-Butanone (MEK)	78-93-3	BRL	50	ug/L	07.15.14 10.25	U	1
2-Hexanone	591-78-6	BRL	50	ug/L	07.15.14 10.25	U	1
4-Methyl-2-pentanone (MIBK)	108-10-1	BRL	50	ug/L	07.15.14 10.25	U	1
Acetone	67-64-1	BRL	50	ug/L	07.15.14 10.25	U	1
Benzene	71-43-2	BRL	5.0	ug/L	07.15.14 10.25	U	1
Bromochloromethane	74-97-5	BRL	5.0	ug/L	07.15.14 10.25	U	1
Bromodichloromethane	75-27-4	BRL	5.0	ug/L	07.15.14 10.25	U	1
Bromoform	75-25-2	BRL	5.0	ug/L	07.15.14 10.25	U	1
Bromomethane	74-83-9	BRL	5.0	ug/L	07.15.14 10.25	U	1
Carbon disulfide	75-15-0	BRL	5.0	ug/L	07.15.14 10.25	U	1
Carbon tetrachloride	56-23-5	BRL	5.0	ug/L	07.15.14 10.25	U	1
Chlorobenzene	108-90-7	BRL	5.0	ug/L	07.15.14 10.25	U	1
Chloroethane	75-00-3	BRL	4.0	ug/L	07.15.14 10.25	U	1
Chloroform	67-66-3	BRL	5.0	ug/L	07.15.14 10.25	U	1
Chloromethane	74-87-3	BRL	5.0	ug/L	07.15.14 10.25	U	1
cis-1,2-Dichloroethene	156-59-2	BRL	5.0	ug/L	07.15.14 10.25	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	5.0	ug/L	07.15.14 10.25	U	1
Cyclohexane	110-82-7	BRL	5.0	ug/L	07.15.14 10.25	U	1
Dibromochloromethane	124-48-1	BRL	5.0	ug/L	07.15.14 10.25	U	1
Dichlorodifluoromethane	75-71-8	BRL	5.0	ug/L	07.15.14 10.25	U	1
Ethylbenzene	100-41-4	BRL	5.0	ug/L	07.15.14 10.25	U	1
Isopropylbenzene	98-82-8	BRL	5.0	ug/L	07.15.14 10.25	U	1
m,p-Xylenes	179601-23-1	BRL	5.0	ug/L	07.15.14 10.25	U	1
Methyl acetate	79-20-9	BRL	5.0	ug/L	07.15.14 10.25	U	1

Atlanta Environmental Management, Atlanta, GA

Aramark Dekalb

07.15.14 06.48

Sample Id: Matrix: Ground Water Date Received:07.12.14 10.50 MW-202

Lab Sample Id: 489203-006 Date Collected: 07.10.14 17.20 Sample Depth: 15.94

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Date Prep:

MWE Tech: % Moisture:

Seq Number: 945672

Analyst:

MLA

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Methyl tert-butyl ether	1634-04-4	BRL	5.0		ug/L	07.15.14 10.25	U	1
Methylcyclohexane	108-87-2	BRL	5.0		ug/L	07.15.14 10.25	U	1
Methylene chloride	75-09-2	BRL	5.0		ug/L	07.15.14 10.25	U	1
Naphthalene	91-20-3	BRL	5.0		ug/L	07.15.14 10.25	U	1
o-Xylene	95-47-6	BRL	5.0		ug/L	07.15.14 10.25	U	1
Styrene	100-42-5	BRL	5.0		ug/L	07.15.14 10.25	U	1
Tetrachloroethene	127-18-4	BRL	5.0		ug/L	07.15.14 10.25	U	1
Toluene	108-88-3	BRL	5.0		ug/L	07.15.14 10.25	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	5.0		ug/L	07.15.14 10.25	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	5.0		ug/L	07.15.14 10.25	U	1
Trichloroethene	79-01-6	BRL	5.0		ug/L	07.15.14 10.25	U	1
Trichlorofluoromethane	75-69-4	BRL	5.0		ug/L	07.15.14 10.25	U	1
Vinyl chloride	75-01-4	BRL	2.0		ug/L	07.15.14 10.25	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,2-Dichloroethane-D4		17060-07-0	96	%	53-159	07.15.14 10.25		
4-Bromofluorobenzene		460-00-4	102	%	30-186	07.15.14 10.25		
Toluene-D8		2037-26-5	96	%	70-130	07.15.14 10.25		

Atlanta Environmental Management, Atlanta, GA

Aramark Dekalb

Sample Id: MW-208P Matrix: Ground Water Date Received:07.12.14 10.50

Lab Sample Id: 489203-007 Date Collected: 07.10.14 17.30 Sample Depth: 8.61

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

% Moisture:

Tech: MWE

Analyst: MLA Date Prep: 07.14.14 14.45

1,1,1-Trichloroethane 71-55-6 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,1,2,2-Tetrachloroethane 79-34-5 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,1,2-Trichloro-1,2,2-trifluoroethane 76-13-1 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,1,2-Trichloroethane 79-00-5 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,1-Dichloroethane 75-34-3 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,1-Dichloroethane 75-35-4 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2,3-Trichlorobenzene 87-61-6 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2,4-Trichlorobenzene 120-82-1 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2-Dirbomo-3-chloropropane (DBCP) 96-12-8 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2-Dichlorobenzene 95-
1,1,2-Trichloro-1,2,2-trifluoroethane 76-13-1 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,1,2-Trichloroethane 79-00-5 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,1-Dichloroethane 75-34-3 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,1-Dichloroethane 75-35-4 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2,3-Trichlorobenzene 87-61-6 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2,4-Trichlorobenzene 120-82-1 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2-Dibromoethane (EDB) 106-93-4 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2-Dichlorobenzene 95-50-1 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2-Dichloroethane 107-06-2 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2-Dichloropopane 78-87-5 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,3-Dichlorobenzene 541-73-1 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,4-Dichlorobenzene 591-78-6 BRL 5.0 ug/L 07.14.14 20.12 U 1 2-Butanone (MEK) 78-93-3 BRL 50 ug/L 07.14.14 20.12 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14.14 20.12 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14.14 20.12 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14.14 20.12 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14.14 20.12 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14.14 20.12 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14.14 20.12 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14.14 20.12 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14.14 20.12 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 108-10-1 108-10-1 108-10-1 108-10-1 108-10-1 108-10-1 108-10-1 108-10-1 108-10-1 108
1,1,2-Trichloroethane 79-00-5 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,1-Dichloroethane 75-34-3 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,1-Dichloroethane 75-35-4 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2,3-Trichlorobenzene 87-61-6 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2,4-Trichlorobenzene 120-82-1 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2-Dibromoethane (EDB) 106-93-4 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2-Dichlorobenzene 95-50-1 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2-Dichloroptopane 78-87-5 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,3-Dichlorobenzene 541-73-1 <t< td=""></t<>
1,1-Dichloroethane 75-34-3 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,1-Dichloroethene 75-35-4 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2,3-Trichlorobenzene 87-61-6 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2,4-Trichlorobenzene 120-82-1 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2-Dibromoethane (EDB) 106-93-4 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2-Dichlorobenzene 95-50-1 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2-Dichloroethane 107-06-2 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2-Dichloropropane 78-87-5 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,3-Dichlorobenzene 541-73-1 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,4-Dichlorobenzene 591-78-6 BRL 5.0 ug/L 07.14.14 20.12 U 1 2-Butanone (MEK) 78-93-3 BRL 50 ug/L 07.14.14 20.12 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14.14 20.12 U 1
1,1-Dichloroethene 75-35-4 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2,3-Trichlorobenzene 87-61-6 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2,4-Trichlorobenzene 120-82-1 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2-Dibromoethane (EDB) 106-93-4 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2-Dichlorobenzene 95-50-1 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2-Dichloropthane 107-06-2 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2-Dichloroptopane 78-87-5 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,3-Dichlorobenzene 541-73-1 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.14.14 20.12 U 1 <
1,2,3-Trichlorobenzene 87-61-6 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2,4-Trichlorobenzene 120-82-1 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2-Dibromoethane (EDB) 106-93-4 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2-Dichlorobenzene 95-50-1 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2-Dichloroethane 107-06-2 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2-Dichloropropane 78-87-5 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,3-Dichlorobenzene 541-73-1 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.14.14 20.12 U 1 2-Butanone MEK) 78-93-3 BRL 50 ug/L 07.14.14 20.12 U 1 <
1,2,4-Trichlorobenzene 120-82-1 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2-Dibromoethane (EDB) 106-93-4 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2-Dichlorobenzene 95-50-1 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2-Dichloroethane 107-06-2 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2-Dichloropropane 78-87-5 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,3-Dichlorobenzene 541-73-1 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.14.14 20.12 U 1 2-Butanone (MEK) 78-93-3 BRL 50 ug/L 07.14.14 20.12 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14.14 20.12 U 1
1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2-Dibromoethane (EDB) 106-93-4 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2-Dichlorobenzene 95-50-1 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2-Dichloroethane 107-06-2 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2-Dichloropropane 78-87-5 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,3-Dichlorobenzene 541-73-1 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.14.14 20.12 U 1 2-Butanone (MEK) 78-93-3 BRL 50 ug/L 07.14.14 20.12 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14.14 20.12 U 1
1,2-Dibromoethane (EDB) 106-93-4 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2-Dichlorobenzene 95-50-1 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2-Dichloroethane 107-06-2 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2-Dichloropropane 78-87-5 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,3-Dichlorobenzene 541-73-1 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.14.14 20.12 U 1 2-Butanone (MEK) 78-93-3 BRL 50 ug/L 07.14.14 20.12 U 1 2-Hexanone 591-78-6 BRL 50 ug/L 07.14.14 20.12 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14.14 20.12 U 1
1,2-Dichlorobenzene 95-50-1 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2-Dichloroethane 107-06-2 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2-Dichloropropane 78-87-5 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,3-Dichlorobenzene 541-73-1 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.14.14 20.12 U 1 2-Butanone (MEK) 78-93-3 BRL 50 ug/L 07.14.14 20.12 U 1 2-Hexanone 591-78-6 BRL 50 ug/L 07.14.14 20.12 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14.14 20.12 U 1
1,2-Dichloroethane 107-06-2 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,2-Dichloropropane 78-87-5 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,3-Dichlorobenzene 541-73-1 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.14.14 20.12 U 1 2-Butanone (MEK) 78-93-3 BRL 50 ug/L 07.14.14 20.12 U 1 2-Hexanone 591-78-6 BRL 50 ug/L 07.14.14 20.12 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14.14 20.12 U 1
1,2-Dichloropropane 78-87-5 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,3-Dichlorobenzene 541-73-1 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.14.14 20.12 U 1 2-Butanone (MEK) 78-93-3 BRL 50 ug/L 07.14.14 20.12 U 1 2-Hexanone 591-78-6 BRL 50 ug/L 07.14.14 20.12 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14.14 20.12 U 1
1,3-Dichlorobenzene 541-73-1 BRL 5.0 ug/L 07.14.14 20.12 U 1 1,4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.14.14 20.12 U 1 2-Butanone (MEK) 78-93-3 BRL 50 ug/L 07.14.14 20.12 U 1 2-Hexanone 591-78-6 BRL 50 ug/L 07.14.14 20.12 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14.14 20.12 U 1
1,4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.14.14 20.12 U 1 2-Butanone (MEK) 78-93-3 BRL 50 ug/L 07.14.14 20.12 U 1 2-Hexanone 591-78-6 BRL 50 ug/L 07.14.14 20.12 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14.14 20.12 U 1
2-Butanone (MEK) 78-93-3 BRL 50 ug/L 07.14.14 20.12 U 1 2-Hexanone 591-78-6 BRL 50 ug/L 07.14.14 20.12 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14.14 20.12 U 1
2-Hexanone 591-78-6 BRL 50 ug/L 07.14.14 20.12 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14.14 20.12 U 1
4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14.14 20.12 U 1
Acetone 67-64-1 BRL 50 ug/L 07 14 14 20 12 II 1
0, 0, 1
Benzene 71-43-2 BRL 5.0 ug/L 07.14.14 20.12 U 1
Bromochloromethane 74-97-5 BRL 5.0 ug/L 07.14.14 20.12 U 1
Bromodichloromethane 75-27-4 BRL 5.0 ug/L 07.14.14 20.12 U 1
Bromoform 75-25-2 BRL 5.0 ug/L 07.14.14 20.12 U 1
Bromomethane 74-83-9 BRL 5.0 ug/L 07.14.14 20.12 U 1
Carbon disulfide 75-15-0 BRL 5.0 ug/L 07.14.14 20.12 U 1
Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 07.14.14 20.12 U 1
Chlorobenzene 108-90-7 BRL 5.0 ug/L 07.14.14 20.12 U 1
Chloroethane 75-00-3 BRL 4.0 ug/L 07.14.14 20.12 U 1
Chloroform 67-66-3 BRL 5.0 ug/L 07.14.14 20.12 U 1
Chloromethane 74-87-3 BRL 5.0 ug/L 07.14.14 20.12 U 1
cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 07.14.14 20.12 U 1
cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 07.14.14 20.12 U 1
Cyclohexane 110-82-7 BRL 5.0 ug/L 07.14.14 20.12 U 1
Dibromochloromethane 124-48-1 BRL 5.0 ug/L 07.14.14 20.12 U 1
Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L 07.14.14 20.12 U 1
Ethylbenzene 100-41-4 BRL 5.0 ug/L 07.14.14 20.12 U 1
Isopropylbenzene 98-82-8 BRL 5.0 ug/L 07.14.14 20.12 U 1
m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 07.14.14 20.12 U 1
Methyl acetate 79-20-9 BRL 5.0 ug/L 07.14.14 20.12 U 1

Atlanta Environmental Management, Atlanta, GA

Aramark Dekalb

Sample Id: MW-208P Matrix: Ground Water Date Received:07.12.14 10.50

Lab Sample Id: 489203-007 Date Collected: 07.10.14 17.30 Sample Depth: 8.61

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

Analyst: MLA Date Prep: 07.14.14 14.45

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Methyl tert-butyl ether	1634-04-4	BRL	5.0		ug/L	07.14.14 20.12	U	1
Methylcyclohexane	108-87-2	BRL	5.0		ug/L	07.14.14 20.12	U	1
Methylene chloride	75-09-2	BRL	5.0		ug/L	07.14.14 20.12	U	1
Naphthalene	91-20-3	BRL	5.0		ug/L	07.14.14 20.12	U	1
o-Xylene	95-47-6	BRL	5.0		ug/L	07.14.14 20.12	U	1
Styrene	100-42-5	BRL	5.0		ug/L	07.14.14 20.12	U	1
Tetrachloroethene	127-18-4	BRL	5.0		ug/L	07.14.14 20.12	U	1
Toluene	108-88-3	BRL	5.0		ug/L	07.14.14 20.12	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	5.0		ug/L	07.14.14 20.12	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	5.0		ug/L	07.14.14 20.12	U	1
Trichloroethene	79-01-6	BRL	5.0		ug/L	07.14.14 20.12	U	1
Trichlorofluoromethane	75-69-4	BRL	5.0		ug/L	07.14.14 20.12	U	1
Vinyl chloride	75-01-4	BRL	2.0		ug/L	07.14.14 20.12	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,2-Dichloroethane-D4		17060-07-0	90	%	53-159	07.14.14 20.12		
4-Bromofluorobenzene		460-00-4	102	%	30-186	07.14.14 20.12		
Toluene-D8		2037-26-5	96	%	70-130	07.14.14 20.12		

Atlanta Environmental Management, Atlanta, GA

Aramark Dekalb

Sample Id: MW-409 Matrix: Ground Water Date Received:07.12.14 10.50

Lab Sample Id: 489203-008 Date Collected: 07.11.14 10.04 Sample Depth: 15.5

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

Analyst: MLA Date Prep: 07.14.14 14.45 Seq Number: 945588

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1-Trichloroethane	71-55-6	BRL	5.0	ug/L	07.14.14 20.40	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	5.0	ug/L	07.14.14 20.40	U	1
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	BRL	5.0	ug/L	07.14.14 20.40	U	1
1,1,2-Trichloroethane	79-00-5	BRL	5.0	ug/L	07.14.14 20.40	U	1
1,1-Dichloroethane	75-34-3	BRL	5.0	ug/L	07.14.14 20.40	U	1
1,1-Dichloroethene	75-35-4	BRL	5.0	ug/L	07.14.14 20.40	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	5.0	ug/L	07.14.14 20.40	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	5.0	ug/L	07.14.14 20.40	U	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	BRL	5.0	ug/L	07.14.14 20.40	U	1
1,2-Dibromoethane (EDB)	106-93-4	BRL	5.0	ug/L	07.14.14 20.40	U	1
1,2-Dichlorobenzene	95-50-1	BRL	5.0	ug/L	07.14.14 20.40	U	1
1,2-Dichloroethane	107-06-2	BRL	5.0	ug/L	07.14.14 20.40	U	1
1,2-Dichloropropane	78-87-5	BRL	5.0	ug/L	07.14.14 20.40	U	1
1,3-Dichlorobenzene	541-73-1	BRL	5.0	ug/L	07.14.14 20.40	U	1
1,4-Dichlorobenzene	106-46-7	BRL	5.0	ug/L	07.14.14 20.40	U	1
2-Butanone (MEK)	78-93-3	BRL	50	ug/L	07.14.14 20.40	U	1
2-Hexanone	591-78-6	BRL	50	ug/L	07.14.14 20.40	U	1
4-Methyl-2-pentanone (MIBK)	108-10-1	BRL	50	ug/L	07.14.14 20.40	U	1
Acetone	67-64-1	BRL	50	ug/L	07.14.14 20.40	U	1
Benzene	71-43-2	BRL	5.0	ug/L	07.14.14 20.40	U	1
Bromochloromethane	74-97-5	BRL	5.0	ug/L	07.14.14 20.40	U	1
Bromodichloromethane	75-27-4	BRL	5.0	ug/L	07.14.14 20.40	U	1
Bromoform	75-25-2	BRL	5.0	ug/L	07.14.14 20.40	U	1
Bromomethane	74-83-9	BRL	5.0	ug/L	07.14.14 20.40	U	1
Carbon disulfide	75-15-0	BRL	5.0	ug/L	07.14.14 20.40	U	1
Carbon tetrachloride	56-23-5	BRL	5.0	ug/L	07.14.14 20.40	U	1
Chlorobenzene	108-90-7	BRL	5.0	ug/L	07.14.14 20.40	U	1
Chloroethane	75-00-3	BRL	4.0	ug/L	07.14.14 20.40	U	1
Chloroform	67-66-3	BRL	5.0	ug/L	07.14.14 20.40	U	1
Chloromethane	74-87-3	BRL	5.0	ug/L	07.14.14 20.40	U	1
cis-1,2-Dichloroethene	156-59-2	BRL	5.0	ug/L	07.14.14 20.40	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	5.0	ug/L	07.14.14 20.40	U	1
Cyclohexane	110-82-7	BRL	5.0	ug/L	07.14.14 20.40	U	1
Dibromochloromethane	124-48-1	BRL	5.0	ug/L	07.14.14 20.40	U	1
Dichlorodifluoromethane	75-71-8	BRL	5.0	ug/L	07.14.14 20.40	U	1
Ethylbenzene	100-41-4	BRL	5.0	ug/L	07.14.14 20.40	U	1
Isopropylbenzene	98-82-8	BRL	5.0	ug/L	07.14.14 20.40	U	1
m,p-Xylenes	179601-23-1	BRL	5.0	ug/L	07.14.14 20.40	U	1
Methyl acetate	79-20-9	BRL	5.0	ug/L	07.14.14 20.40	U	1

Atlanta Environmental Management, Atlanta, GA

Aramark Dekalb

07.14.14 14.45

Sample Id: MW-409 Matrix: Ground Water Date Received:07.12.14 10.50

Lab Sample Id: 489203-008 Date Collected: 07.11.14 10.04 Sample Depth: 15.5

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Date Prep:

Tech: MWE % Moisture:

Seq Number: 945588

Analyst:

MLA

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Methyl tert-butyl ether	1634-04-4	BRL	5.0		ug/L	07.14.14 20.40	U	1
Methylcyclohexane	108-87-2	BRL	5.0		ug/L	07.14.14 20.40	U	1
Methylene chloride	75-09-2	BRL	5.0		ug/L	07.14.14 20.40	U	1
Naphthalene	91-20-3	BRL	5.0		ug/L	07.14.14 20.40	U	1
o-Xylene	95-47-6	BRL	5.0		ug/L	07.14.14 20.40	U	1
Styrene	100-42-5	BRL	5.0		ug/L	07.14.14 20.40	U	1
Tetrachloroethene	127-18-4	12	5.0		ug/L	07.14.14 20.40		1
Toluene	108-88-3	BRL	5.0		ug/L	07.14.14 20.40	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	5.0		ug/L	07.14.14 20.40	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	5.0		ug/L	07.14.14 20.40	U	1
Trichloroethene	79-01-6	BRL	5.0		ug/L	07.14.14 20.40	U	1
Trichlorofluoromethane	75-69-4	BRL	5.0		ug/L	07.14.14 20.40	U	1
Vinyl chloride	75-01-4	BRL	2.0		ug/L	07.14.14 20.40	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,2-Dichloroethane-D4		17060-07-0	96	%	53-159	07.14.14 20.40		
4-Bromofluorobenzene		460-00-4	102	%	30-186	07.14.14 20.40		
Toluene-D8		2037-26-5	98	%	70-130	07.14.14 20.40		

Atlanta Environmental Management, Atlanta, GA

Aramark Dekalb

Sample Id: MW-203 Matrix: Ground Water Date Received:07.12.14 10.50

Lab Sample Id: 489203-009 Date Collected: 07.11.14 11.35 Sample Depth: 18.64

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

Analyst: MLA Date Prep: 07.14.14 14.45

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1-Trichloroethane	71-55-6	BRL	5.0	ug/L	07.14.14 21.08	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	5.0	ug/L	07.14.14 21.08	U	1
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	BRL	5.0	ug/L	07.14.14 21.08	U	1
1,1,2-Trichloroethane	79-00-5	BRL	5.0	ug/L	07.14.14 21.08	U	1
1,1-Dichloroethane	75-34-3	BRL	5.0	ug/L	07.14.14 21.08	U	1
1,1-Dichloroethene	75-35-4	BRL	5.0	ug/L	07.14.14 21.08	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	5.0	ug/L	07.14.14 21.08	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	5.0	ug/L	07.14.14 21.08	U	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	BRL	5.0	ug/L	07.14.14 21.08	U	1
1,2-Dibromoethane (EDB)	106-93-4	BRL	5.0	ug/L	07.14.14 21.08	U	1
1,2-Dichlorobenzene	95-50-1	BRL	5.0	ug/L	07.14.14 21.08	U	1
1,2-Dichloroethane	107-06-2	BRL	5.0	ug/L	07.14.14 21.08	U	1
1,2-Dichloropropane	78-87-5	BRL	5.0	ug/L	07.14.14 21.08	U	1
1,3-Dichlorobenzene	541-73-1	BRL	5.0	ug/L	07.14.14 21.08	U	1
1,4-Dichlorobenzene	106-46-7	BRL	5.0	ug/L	07.14.14 21.08	U	1
2-Butanone (MEK)	78-93-3	BRL	50	ug/L	07.14.14 21.08	U	1
2-Hexanone	591-78-6	BRL	50	ug/L	07.14.14 21.08	U	1
4-Methyl-2-pentanone (MIBK)	108-10-1	BRL	50	ug/L	07.14.14 21.08	U	1
Acetone	67-64-1	BRL	50	ug/L	07.14.14 21.08	U	1
Benzene	71-43-2	BRL	5.0	ug/L	07.14.14 21.08	U	1
Bromochloromethane	74-97-5	BRL	5.0	ug/L	07.14.14 21.08	U	1
Bromodichloromethane	75-27-4	BRL	5.0	ug/L	07.14.14 21.08	U	1
Bromoform	75-25-2	BRL	5.0	ug/L	07.14.14 21.08	U	1
Bromomethane	74-83-9	BRL	5.0	ug/L	07.14.14 21.08	U	1
Carbon disulfide	75-15-0	BRL	5.0	ug/L	07.14.14 21.08	U	1
Carbon tetrachloride	56-23-5	BRL	5.0	ug/L	07.14.14 21.08	U	1
Chlorobenzene	108-90-7	BRL	5.0	ug/L	07.14.14 21.08	U	1
Chloroethane	75-00-3	BRL	4.0	ug/L	07.14.14 21.08	U	1
Chloroform	67-66-3	BRL	5.0	ug/L	07.14.14 21.08	U	1
Chloromethane	74-87-3	BRL	5.0	ug/L	07.14.14 21.08	U	1
cis-1,2-Dichloroethene	156-59-2	BRL	5.0	ug/L	07.14.14 21.08	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	5.0	ug/L	07.14.14 21.08	U	1
Cyclohexane	110-82-7	BRL	5.0	ug/L	07.14.14 21.08	U	1
Dibromochloromethane	124-48-1	BRL	5.0	ug/L	07.14.14 21.08	U	1
Dichlorodifluoromethane	75-71-8	BRL	5.0	ug/L	07.14.14 21.08	U	1
Ethylbenzene	100-41-4	BRL	5.0	ug/L	07.14.14 21.08	U	1
Isopropylbenzene	98-82-8	BRL	5.0	ug/L	07.14.14 21.08	U	1
m,p-Xylenes	179601-23-1	BRL	5.0	ug/L	07.14.14 21.08	U	1
Methyl acetate	79-20-9	BRL	5.0	ug/L	07.14.14 21.08	U	1

Atlanta Environmental Management, Atlanta, GA

Aramark Dekalb

Sample Id: MW-203 Matrix: Ground Water Date Received:07.12.14 10.50

Lab Sample Id: 489203-009 Date Collected: 07.11.14 11.35 Sample Depth: 18.64

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

Analyst: MLA Date Prep: 07.14.14 14.45

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Methyl tert-butyl ether	1634-04-4	BRL	5.0		ug/L	07.14.14 21.08	U	1
Methylcyclohexane	108-87-2	BRL	5.0		ug/L	07.14.14 21.08	U	1
Methylene chloride	75-09-2	BRL	5.0		ug/L	07.14.14 21.08	U	1
Naphthalene	91-20-3	BRL	5.0		ug/L	07.14.14 21.08	U	1
o-Xylene	95-47-6	BRL	5.0		ug/L	07.14.14 21.08	U	1
Styrene	100-42-5	BRL	5.0		ug/L	07.14.14 21.08	U	1
Tetrachloroethene	127-18-4	BRL	5.0		ug/L	07.14.14 21.08	U	1
Toluene	108-88-3	BRL	5.0		ug/L	07.14.14 21.08	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	5.0		ug/L	07.14.14 21.08	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	5.0		ug/L	07.14.14 21.08	U	1
Trichloroethene	79-01-6	BRL	5.0		ug/L	07.14.14 21.08	U	1
Trichlorofluoromethane	75-69-4	BRL	5.0		ug/L	07.14.14 21.08	U	1
Vinyl chloride	75-01-4	BRL	2.0		ug/L	07.14.14 21.08	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,2-Dichloroethane-D4		17060-07-0	96	%	53-159	07.14.14 21.08		
4-Bromofluorobenzene		460-00-4	102	%	30-186	07.14.14 21.08		
Toluene-D8		2037-26-5	98	%	70-130	07.14.14 21.08		

Atlanta Environmental Management, Atlanta, GA

Aramark Dekalb

Sample Id: MW-207P Matrix: Ground Water Date Received:07.12.14 10.50

Lab Sample Id: 489203-010 Date Collected: 07.11.14 12.12 Sample Depth: 12.23

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

% Moisture:

Tech: MWE

Analyst: MLA Date Prep: 07.14.14 14.45

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1-Trichloroethane	71-55-6	BRL	5.0	ug/L	07.14.14 21.36	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	5.0	ug/L	07.14.14 21.36	U	1
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	BRL	5.0	ug/L	07.14.14 21.36	U	1
1,1,2-Trichloroethane	79-00-5	BRL	5.0	ug/L	07.14.14 21.36	U	1
1,1-Dichloroethane	75-34-3	BRL	5.0	ug/L	07.14.14 21.36	U	1
1,1-Dichloroethene	75-35-4	BRL	5.0	ug/L	07.14.14 21.36	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	5.0	ug/L	07.14.14 21.36	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	5.0	ug/L	07.14.14 21.36	U	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	BRL	5.0	ug/L	07.14.14 21.36	U	1
1,2-Dibromoethane (EDB)	106-93-4	BRL	5.0	ug/L	07.14.14 21.36	U	1
1,2-Dichlorobenzene	95-50-1	BRL	5.0	ug/L	07.14.14 21.36	U	1
1,2-Dichloroethane	107-06-2	BRL	5.0	ug/L	07.14.14 21.36	U	1
1,2-Dichloropropane	78-87-5	BRL	5.0	ug/L	07.14.14 21.36	U	1
1,3-Dichlorobenzene	541-73-1	BRL	5.0	ug/L	07.14.14 21.36	U	1
1,4-Dichlorobenzene	106-46-7	BRL	5.0	ug/L	07.14.14 21.36	U	1
2-Butanone (MEK)	78-93-3	BRL	50	ug/L	07.14.14 21.36	U	1
2-Hexanone	591-78-6	BRL	50	ug/L	07.14.14 21.36	U	1
4-Methyl-2-pentanone (MIBK)	108-10-1	BRL	50	ug/L	07.14.14 21.36	U	1
Acetone	67-64-1	BRL	50	ug/L	07.14.14 21.36	U	1
Benzene	71-43-2	BRL	5.0	ug/L	07.14.14 21.36	U	1
Bromochloromethane	74-97-5	BRL	5.0	ug/L	07.14.14 21.36	U	1
Bromodichloromethane	75-27-4	BRL	5.0	ug/L	07.14.14 21.36	U	1
Bromoform	75-25-2	BRL	5.0	ug/L	07.14.14 21.36	U	1
Bromomethane	74-83-9	BRL	5.0	ug/L	07.14.14 21.36	U	1
Carbon disulfide	75-15-0	BRL	5.0	ug/L	07.14.14 21.36	U	1
Carbon tetrachloride	56-23-5	BRL	5.0	ug/L	07.14.14 21.36	U	1
Chlorobenzene	108-90-7	BRL	5.0	ug/L	07.14.14 21.36	U	1
Chloroethane	75-00-3	BRL	4.0	ug/L	07.14.14 21.36	U	1
Chloroform	67-66-3	BRL	5.0	ug/L	07.14.14 21.36	U	1
Chloromethane	74-87-3	BRL	5.0	ug/L	07.14.14 21.36	U	1
cis-1,2-Dichloroethene	156-59-2	BRL	5.0	ug/L	07.14.14 21.36	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	5.0	ug/L	07.14.14 21.36	U	1
Cyclohexane	110-82-7	BRL	5.0	ug/L	07.14.14 21.36	U	1
Dibromochloromethane	124-48-1	BRL	5.0	ug/L	07.14.14 21.36	U	1
Dichlorodifluoromethane	75-71-8	BRL	5.0	ug/L	07.14.14 21.36	U	1
Ethylbenzene	100-41-4	BRL	5.0	ug/L	07.14.14 21.36	U	1
Isopropylbenzene	98-82-8	BRL	5.0	ug/L	07.14.14 21.36	U	1
m,p-Xylenes	179601-23-1	BRL	5.0	ug/L	07.14.14 21.36	U	1
Methyl acetate	79-20-9	BRL	5.0	ug/L	07.14.14 21.36	U	1

Atlanta Environmental Management, Atlanta, GA

Aramark Dekalb

Sample Id: MW-207P Matrix: Ground Water Date Received:07.12.14 10.50

Lab Sample Id: 489203-010 Date Collected: 07.11.14 12.12 Sample Depth: 12.23

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

Analyst: MLA Date Prep: 07.14.14 14.45

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Methyl tert-butyl ether	1634-04-4	BRL	5.0		ug/L	07.14.14 21.36	U	1
Methylcyclohexane	108-87-2	BRL	5.0		ug/L	07.14.14 21.36	U	1
Methylene chloride	75-09-2	BRL	5.0		ug/L	07.14.14 21.36	U	1
Naphthalene	91-20-3	BRL	5.0		ug/L	07.14.14 21.36	U	1
o-Xylene	95-47-6	BRL	5.0		ug/L	07.14.14 21.36	U	1
Styrene	100-42-5	BRL	5.0		ug/L	07.14.14 21.36	U	1
Tetrachloroethene	127-18-4	15	5.0		ug/L	07.14.14 21.36		1
Toluene	108-88-3	BRL	5.0		ug/L	07.14.14 21.36	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	5.0		ug/L	07.14.14 21.36	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	5.0		ug/L	07.14.14 21.36	U	1
Trichloroethene	79-01-6	BRL	5.0		ug/L	07.14.14 21.36	U	1
Trichlorofluoromethane	75-69-4	BRL	5.0		ug/L	07.14.14 21.36	U	1
Vinyl chloride	75-01-4	BRL	2.0		ug/L	07.14.14 21.36	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,2-Dichloroethane-D4		17060-07-0	98	%	53-159	07.14.14 21.36		
4-Bromofluorobenzene		460-00-4	102	%	30-186	07.14.14 21.36		
Toluene-D8		2037-26-5	96	%	70-130	07.14.14 21.36		

Atlanta Environmental Management, Atlanta, GA

Aramark Dekalb

Sample Id: Matrix: Ground Water Date Received:07.12.14 10.50 MW-403

Lab Sample Id: 489203-011 Date Collected: 07.11.14 11.34 Sample Depth: 17.5

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

% Moisture:

MWE

MLA Analyst: 07.15.14 06.48 Date Prep:

Seq Number: 945672

Tech:

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1-Trichloroethane	71-55-6	BRL	5.0	ug/L	07.15.14 17.38	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	5.0	ug/L	07.15.14 17.38	U	1
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	BRL	5.0	ug/L	07.15.14 17.38	U	1
1,1,2-Trichloroethane	79-00-5	BRL	5.0	ug/L	07.15.14 17.38	U	1
1,1-Dichloroethane	75-34-3	BRL	5.0	ug/L	07.15.14 17.38	U	1
1,1-Dichloroethene	75-35-4	BRL	5.0	ug/L	07.15.14 17.38	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	5.0	ug/L	07.15.14 17.38	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	5.0	ug/L	07.15.14 17.38	U	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	BRL	5.0	ug/L	07.15.14 17.38	U	1
1,2-Dibromoethane (EDB)	106-93-4	BRL	5.0	ug/L	07.15.14 17.38	U	1
1,2-Dichlorobenzene	95-50-1	BRL	5.0	ug/L	07.15.14 17.38	U	1
1,2-Dichloroethane	107-06-2	BRL	5.0	ug/L	07.15.14 17.38	U	1
1,2-Dichloropropane	78-87-5	BRL	5.0	ug/L	07.15.14 17.38	U	1
1,3-Dichlorobenzene	541-73-1	BRL	5.0	ug/L	07.15.14 17.38	U	1
1,4-Dichlorobenzene	106-46-7	BRL	5.0	ug/L	07.15.14 17.38	U	1
2-Butanone (MEK)	78-93-3	BRL	50	ug/L	07.15.14 17.38	U	1
2-Hexanone	591-78-6	BRL	50	ug/L	07.15.14 17.38	U	1
4-Methyl-2-pentanone (MIBK)	108-10-1	BRL	50	ug/L	07.15.14 17.38	U	1
Acetone	67-64-1	BRL	50	ug/L	07.15.14 17.38	U	1
Benzene	71-43-2	BRL	5.0	ug/L	07.15.14 17.38	U	1
Bromochloromethane	74-97-5	BRL	5.0	ug/L	07.15.14 17.38	U	1
Bromodichloromethane	75-27-4	BRL	5.0	ug/L	07.15.14 17.38	U	1
Bromoform	75-25-2	BRL	5.0	ug/L	07.15.14 17.38	U	1
Bromomethane	74-83-9	BRL	5.0	ug/L	07.15.14 17.38	U	1
Carbon disulfide	75-15-0	BRL	5.0	ug/L	07.15.14 17.38	U	1
Carbon tetrachloride	56-23-5	BRL	5.0	ug/L	07.15.14 17.38	U	1
Chlorobenzene	108-90-7	BRL	5.0	ug/L	07.15.14 17.38	U	1
Chloroethane	75-00-3	BRL	4.0	ug/L	07.15.14 17.38	U	1
Chloroform	67-66-3	BRL	5.0	ug/L	07.15.14 17.38	U	1
Chloromethane	74-87-3	BRL	5.0	ug/L	07.15.14 17.38	U	1
cis-1,2-Dichloroethene	156-59-2	81	5.0	ug/L	07.15.14 17.38		1
cis-1,3-Dichloropropene	10061-01-5	BRL	5.0	ug/L	07.15.14 17.38	U	1
Cyclohexane	110-82-7	BRL	5.0	ug/L	07.15.14 17.38	U	1
Dibromochloromethane	124-48-1	BRL	5.0	ug/L	07.15.14 17.38	U	1
Dichlorodifluoromethane	75-71-8	BRL	5.0	ug/L	07.15.14 17.38	U	1
Ethylbenzene	100-41-4	BRL	5.0	ug/L	07.15.14 17.38	U	1
Isopropylbenzene	98-82-8	BRL	5.0	ug/L	07.15.14 17.38	U	1
m,p-Xylenes	179601-23-1	BRL	5.0	ug/L	07.15.14 17.38	U	1
Methyl acetate	79-20-9	BRL	5.0	ug/L	07.15.14 17.38	U	1

Atlanta Environmental Management, Atlanta, GA

Aramark Dekalb

Sample Id: MW-403 Matrix: Ground Water Date Received:07.12.14 10.50

Lab Sample Id: 489203-011 Date Collected: 07.11.14 11.34 Sample Depth: 17.5

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

Analyst: MLA Date Prep: 07.15.14 06.48

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Methyl tert-butyl ether	1634-04-4	BRL	5.0		ug/L	07.15.14 17.38	U	1
Methylcyclohexane	108-87-2	BRL	5.0		ug/L	07.15.14 17.38	U	1
Methylene chloride	75-09-2	BRL	5.0		ug/L	07.15.14 17.38	U	1
Naphthalene	91-20-3	BRL	5.0		ug/L	07.15.14 17.38	U	1
o-Xylene	95-47-6	BRL	5.0		ug/L	07.15.14 17.38	U	1
Styrene	100-42-5	BRL	5.0		ug/L	07.15.14 17.38	U	1
Tetrachloroethene	127-18-4	BRL	5.0		ug/L	07.15.14 17.38	U	1
Toluene	108-88-3	BRL	5.0		ug/L	07.15.14 17.38	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	5.0		ug/L	07.15.14 17.38	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	5.0		ug/L	07.15.14 17.38	U	1
Trichloroethene	79-01-6	BRL	5.0		ug/L	07.15.14 17.38	U	1
Trichlorofluoromethane	75-69-4	BRL	5.0		ug/L	07.15.14 17.38	U	1
Vinyl chloride	75-01-4	140	2.0		ug/L	07.15.14 17.38		1
			%					
Surrogate		Cas Number	Recovery	Units	Limits	Analysis Date	Flag	
1,2-Dichloroethane-D4		17060-07-0	94	%	53-159	07.15.14 17.38		
4-Bromofluorobenzene		460-00-4	100	%	30-186	07.15.14 17.38		
Toluene-D8		2037-26-5	94	%	70-130	07.15.14 17.38		

Atlanta Environmental Management, Atlanta, GA

Aramark Dekalb

Sample Id: MW-206 Matrix: Ground Water Date Received:07.12.14 10.50

Lab Sample Id: 489203-012 Date Collected: 07.11.14 14.53 Sample Depth: 9.38

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

Analyst: MLA Date Prep: 07.15.14 06.48

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1-Trichloroethane	71-55-6	BRL	5.0	ug/L	07.15.14 13.48	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	5.0	ug/L	07.15.14 13.48	U	1
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	BRL	5.0	ug/L	07.15.14 13.48	U	1
1,1,2-Trichloroethane	79-00-5	BRL	5.0	ug/L	07.15.14 13.48	U	1
1,1-Dichloroethane	75-34-3	BRL	5.0	ug/L	07.15.14 13.48	U	1
1,1-Dichloroethene	75-35-4	BRL	5.0	ug/L	07.15.14 13.48	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	5.0	ug/L	07.15.14 13.48	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	5.0	ug/L	07.15.14 13.48	U	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	BRL	5.0	ug/L	07.15.14 13.48	U	1
1,2-Dibromoethane (EDB)	106-93-4	BRL	5.0	ug/L	07.15.14 13.48	U	1
1,2-Dichlorobenzene	95-50-1	BRL	5.0	ug/L	07.15.14 13.48	U	1
1,2-Dichloroethane	107-06-2	BRL	5.0	ug/L	07.15.14 13.48	U	1
1,2-Dichloropropane	78-87-5	BRL	5.0	ug/L	07.15.14 13.48	U	1
1,3-Dichlorobenzene	541-73-1	BRL	5.0	ug/L	07.15.14 13.48	U	1
1,4-Dichlorobenzene	106-46-7	BRL	5.0	ug/L	07.15.14 13.48	U	1
2-Butanone (MEK)	78-93-3	BRL	50	ug/L	07.15.14 13.48	U	1
2-Hexanone	591-78-6	BRL	50	ug/L	07.15.14 13.48	U	1
4-Methyl-2-pentanone (MIBK)	108-10-1	BRL	50	ug/L	07.15.14 13.48	U	1
Acetone	67-64-1	BRL	50	ug/L	07.15.14 13.48	U	1
Benzene	71-43-2	BRL	5.0	ug/L	07.15.14 13.48	U	1
Bromochloromethane	74-97-5	BRL	5.0	ug/L	07.15.14 13.48	U	1
Bromodichloromethane	75-27-4	BRL	5.0	ug/L	07.15.14 13.48	U	1
Bromoform	75-25-2	BRL	5.0	ug/L	07.15.14 13.48	U	1
Bromomethane	74-83-9	BRL	5.0	ug/L	07.15.14 13.48	U	1
Carbon disulfide	75-15-0	BRL	5.0	ug/L	07.15.14 13.48	U	1
Carbon tetrachloride	56-23-5	BRL	5.0	ug/L	07.15.14 13.48	U	1
Chlorobenzene	108-90-7	BRL	5.0	ug/L	07.15.14 13.48	U	1
Chloroethane	75-00-3	BRL	4.0	ug/L	07.15.14 13.48	U	1
Chloroform	67-66-3	BRL	5.0	ug/L	07.15.14 13.48	U	1
Chloromethane	74-87-3	BRL	5.0	ug/L	07.15.14 13.48	U	1
cis-1,2-Dichloroethene	156-59-2	BRL	5.0	ug/L	07.15.14 13.48	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	5.0	ug/L	07.15.14 13.48	U	1
Cyclohexane	110-82-7	BRL	5.0	ug/L	07.15.14 13.48	U	1
Dibromochloromethane	124-48-1	BRL	5.0	ug/L	07.15.14 13.48	U	1
Dichlorodifluoromethane	75-71-8	BRL	5.0	ug/L	07.15.14 13.48	U	1
Ethylbenzene	100-41-4	BRL	5.0	ug/L	07.15.14 13.48	U	1
Isopropylbenzene	98-82-8	BRL	5.0	ug/L	07.15.14 13.48	U	1
m,p-Xylenes	179601-23-1	BRL	5.0	ug/L	07.15.14 13.48	U	1
Methyl acetate	79-20-9	BRL	5.0	ug/L	07.15.14 13.48	U	1

Atlanta Environmental Management, Atlanta, GA

Aramark Dekalb

Sample Id: MW-206 Matrix: Ground Water Date Received:07.12.14 10.50

Lab Sample Id: 489203-012 Date Collected: 07.11.14 14.53 Sample Depth: 9.38

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

Analyst: MLA Date Prep: 07.15.14 06.48

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Methyl tert-butyl ether	1634-04-4	76	5.0		ug/L	07.15.14 13.48		1
Methylcyclohexane	108-87-2	BRL	5.0		ug/L	07.15.14 13.48	U	1
Methylene chloride	75-09-2	BRL	5.0		ug/L	07.15.14 13.48	U	1
Naphthalene	91-20-3	BRL	5.0		ug/L	07.15.14 13.48	U	1
o-Xylene	95-47-6	BRL	5.0		ug/L	07.15.14 13.48	U	1
Styrene	100-42-5	BRL	5.0		ug/L	07.15.14 13.48	U	1
Tetrachloroethene	127-18-4	BRL	5.0		ug/L	07.15.14 13.48	U	1
Toluene	108-88-3	BRL	5.0		ug/L	07.15.14 13.48	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	5.0		ug/L	07.15.14 13.48	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	5.0		ug/L	07.15.14 13.48	U	1
Trichloroethene	79-01-6	BRL	5.0		ug/L	07.15.14 13.48	U	1
Trichlorofluoromethane	75-69-4	BRL	5.0		ug/L	07.15.14 13.48	U	1
Vinyl chloride	75-01-4	BRL	2.0		ug/L	07.15.14 13.48	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,2-Dichloroethane-D4		17060-07-0	94	%	53-159	07.15.14 13.48		
4-Bromofluorobenzene		460-00-4	100	%	30-186	07.15.14 13.48		
Toluene-D8		2037-26-5	96	%	70-130	07.15.14 13.48		

Atlanta Environmental Management, Atlanta, GA

Aramark Dekalb

Sample Id: MW-306 Matrix: Ground Water Date Received:07.12.14 10.50

Lab Sample Id: 489203-013 Date Collected: 07.11.14 17.07 Sample Depth: 8.85

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

Analyst: MLA Date Prep: 07.15.14 06.48

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1-Trichloroethane	71-55-6	BRL	5.0	ug/L	07.15.14 15.45	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	5.0	ug/L	07.15.14 15.45	U	1
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	BRL	5.0	ug/L	07.15.14 15.45	U	1
1,1,2-Trichloroethane	79-00-5	BRL	5.0	ug/L	07.15.14 15.45	U	1
1,1-Dichloroethane	75-34-3	BRL	5.0	ug/L	07.15.14 15.45	U	1
1,1-Dichloroethene	75-35-4	BRL	5.0	ug/L	07.15.14 15.45	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	5.0	ug/L	07.15.14 15.45	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	5.0	ug/L	07.15.14 15.45	U	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	BRL	5.0	ug/L	07.15.14 15.45	U	1
1,2-Dibromoethane (EDB)	106-93-4	BRL	5.0	ug/L	07.15.14 15.45	U	1
1,2-Dichlorobenzene	95-50-1	BRL	5.0	ug/L	07.15.14 15.45	U	1
1,2-Dichloroethane	107-06-2	BRL	5.0	ug/L	07.15.14 15.45	U	1
1,2-Dichloropropane	78-87-5	BRL	5.0	ug/L	07.15.14 15.45	U	1
1,3-Dichlorobenzene	541-73-1	BRL	5.0	ug/L	07.15.14 15.45	U	1
1,4-Dichlorobenzene	106-46-7	BRL	5.0	ug/L	07.15.14 15.45	U	1
2-Butanone (MEK)	78-93-3	BRL	50	ug/L	07.15.14 15.45	U	1
2-Hexanone	591-78-6	BRL	50	ug/L	07.15.14 15.45	U	1
4-Methyl-2-pentanone (MIBK)	108-10-1	BRL	50	ug/L	07.15.14 15.45	U	1
Acetone	67-64-1	BRL	50	ug/L	07.15.14 15.45	U	1
Benzene	71-43-2	BRL	5.0	ug/L	07.15.14 15.45	U	1
Bromochloromethane	74-97-5	BRL	5.0	ug/L	07.15.14 15.45	U	1
Bromodichloromethane	75-27-4	BRL	5.0	ug/L	07.15.14 15.45	U	1
Bromoform	75-25-2	BRL	5.0	ug/L	07.15.14 15.45	U	1
Bromomethane	74-83-9	BRL	5.0	ug/L	07.15.14 15.45	U	1
Carbon disulfide	75-15-0	BRL	5.0	ug/L	07.15.14 15.45	U	1
Carbon tetrachloride	56-23-5	BRL	5.0	ug/L	07.15.14 15.45	U	1
Chlorobenzene	108-90-7	BRL	5.0	ug/L	07.15.14 15.45	U	1
Chloroethane	75-00-3	BRL	4.0	ug/L	07.15.14 15.45	U	1
Chloroform	67-66-3	BRL	5.0	ug/L	07.15.14 15.45	U	1
Chloromethane	74-87-3	BRL	5.0	ug/L	07.15.14 15.45	U	1
cis-1,2-Dichloroethene	156-59-2	BRL	5.0	ug/L	07.15.14 15.45	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	5.0	ug/L	07.15.14 15.45	U	1
Cyclohexane	110-82-7	BRL	5.0	ug/L	07.15.14 15.45	U	1
Dibromochloromethane	124-48-1	BRL	5.0	ug/L	07.15.14 15.45	U	1
Dichlorodifluoromethane	75-71-8	BRL	5.0	ug/L	07.15.14 15.45	U	1
Ethylbenzene	100-41-4	BRL	5.0	ug/L	07.15.14 15.45	U	1
Isopropylbenzene	98-82-8	BRL	5.0	ug/L	07.15.14 15.45	U	1
m,p-Xylenes	179601-23-1	BRL	5.0	ug/L	07.15.14 15.45	U	1
Methyl acetate	79-20-9	BRL	5.0	ug/L	07.15.14 15.45	U	1

Atlanta Environmental Management, Atlanta, GA

Aramark Dekalb

Sample Id: MW-306 Matrix: Ground Water Date Received:07.12.14 10.50

Lab Sample Id: 489203-013 Date Collected: 07.11.14 17.07 Sample Depth: 8.85

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

Analyst: MLA Date Prep: 07.15.14 06.48

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Methyl tert-butyl ether	1634-04-4	BRL	5.0		ug/L	07.15.14 15.45	U	1
Methylcyclohexane	108-87-2	BRL	5.0		ug/L	07.15.14 15.45	U	1
Methylene chloride	75-09-2	BRL	5.0		ug/L	07.15.14 15.45	U	1
Naphthalene	91-20-3	BRL	5.0		ug/L	07.15.14 15.45	U	1
o-Xylene	95-47-6	BRL	5.0		ug/L	07.15.14 15.45	U	1
Styrene	100-42-5	BRL	5.0		ug/L	07.15.14 15.45	U	1
Tetrachloroethene	127-18-4	31	5.0		ug/L	07.15.14 15.45		1
Toluene	108-88-3	BRL	5.0		ug/L	07.15.14 15.45	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	5.0		ug/L	07.15.14 15.45	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	5.0		ug/L	07.15.14 15.45	U	1
Trichloroethene	79-01-6	BRL	5.0		ug/L	07.15.14 15.45	U	1
Trichlorofluoromethane	75-69-4	BRL	5.0		ug/L	07.15.14 15.45	U	1
Vinyl chloride	75-01-4	BRL	2.0		ug/L	07.15.14 15.45	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,2-Dichloroethane-D4		17060-07-0	94	%	53-159	07.15.14 15.45		
4-Bromofluorobenzene		460-00-4	100	%	30-186	07.15.14 15.45		
Toluene-D8		2037-26-5	96	%	70-130	07.15.14 15.45		

Atlanta Environmental Management, Atlanta, GA

Aramark Dekalb

07.15.14 06.48

Sample Id: MW-212 Matrix: Ground Water Date Received:07.12.14 10.50

Lab Sample Id: 489203-014 Date Collected: 07.11.14 14.35 Sample Depth: 17.5

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Date Prep:

Tech: MWE % Moisture:

Seq Number: 945672

Analyst:

MLA

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1-Trichloroethane	71-55-6	BRL	5.0	ug/L	07.15.14 10.53	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	5.0	ug/L	07.15.14 10.53	U	1
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	BRL	5.0	ug/L	07.15.14 10.53	U	1
1,1,2-Trichloroethane	79-00-5	BRL	5.0	ug/L	07.15.14 10.53	U	1
1,1-Dichloroethane	75-34-3	BRL	5.0	ug/L	07.15.14 10.53	U	1
1,1-Dichloroethene	75-35-4	BRL	5.0	ug/L	07.15.14 10.53	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	5.0	ug/L	07.15.14 10.53	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	5.0	ug/L	07.15.14 10.53	U	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	BRL	5.0	ug/L	07.15.14 10.53	U	1
1,2-Dibromoethane (EDB)	106-93-4	BRL	5.0	ug/L	07.15.14 10.53	U	1
1,2-Dichlorobenzene	95-50-1	BRL	5.0	ug/L	07.15.14 10.53	U	1
1,2-Dichloroethane	107-06-2	BRL	5.0	ug/L	07.15.14 10.53	U	1
1,2-Dichloropropane	78-87-5	BRL	5.0	ug/L	07.15.14 10.53	U	1
1,3-Dichlorobenzene	541-73-1	BRL	5.0	ug/L	07.15.14 10.53	U	1
1,4-Dichlorobenzene	106-46-7	BRL	5.0	ug/L	07.15.14 10.53	U	1
2-Butanone (MEK)	78-93-3	BRL	50	ug/L	07.15.14 10.53	U	1
2-Hexanone	591-78-6	BRL	50	ug/L	07.15.14 10.53	U	1
4-Methyl-2-pentanone (MIBK)	108-10-1	BRL	50	ug/L	07.15.14 10.53	U	1
Acetone	67-64-1	64	50	ug/L	07.15.14 10.53		1
Benzene	71-43-2	BRL	5.0	ug/L	07.15.14 10.53	U	1
Bromochloromethane	74-97-5	BRL	5.0	ug/L	07.15.14 10.53	U	1
Bromodichloromethane	75-27-4	BRL	5.0	ug/L	07.15.14 10.53	U	1
Bromoform	75-25-2	BRL	5.0	ug/L	07.15.14 10.53	U	1
Bromomethane	74-83-9	BRL	5.0	ug/L	07.15.14 10.53	U	1
Carbon disulfide	75-15-0	BRL	5.0	ug/L	07.15.14 10.53	U	1
Carbon tetrachloride	56-23-5	BRL	5.0	ug/L	07.15.14 10.53	U	1
Chlorobenzene	108-90-7	BRL	5.0	ug/L	07.15.14 10.53	U	1
Chloroethane	75-00-3	BRL	4.0	ug/L	07.15.14 10.53	U	1
Chloroform	67-66-3	BRL	5.0	ug/L	07.15.14 10.53	U	1
Chloromethane	74-87-3	BRL	5.0	ug/L	07.15.14 10.53	U	1
cis-1,2-Dichloroethene	156-59-2	180	5.0	ug/L	07.15.14 10.53		1
cis-1,3-Dichloropropene	10061-01-5	BRL	5.0	ug/L	07.15.14 10.53	U	1
Cyclohexane	110-82-7	BRL	5.0	ug/L	07.15.14 10.53	U	1
Dibromochloromethane	124-48-1	BRL	5.0	ug/L	07.15.14 10.53	U	1
Dichlorodifluoromethane	75-71-8	BRL	5.0	ug/L	07.15.14 10.53	U	1
Ethylbenzene	100-41-4	BRL	5.0	ug/L	07.15.14 10.53	U	1
Isopropylbenzene	98-82-8	BRL	5.0	ug/L	07.15.14 10.53	U	1
m,p-Xylenes	179601-23-1	BRL	5.0	ug/L	07.15.14 10.53	U	1
Methyl acetate	79-20-9	BRL	5.0	ug/L	07.15.14 10.53	U	1

Atlanta Environmental Management, Atlanta, GA

Aramark Dekalb

Sample Id: MW-212 Matrix: Ground Water Date Received:07.12.14 10.50

Lab Sample Id: 489203-014 Date Collected: 07.11.14 14.35 Sample Depth: 17.5

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

Analyst: MLA Date Prep: 07.15.14 06.48

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Methyl tert-butyl ether	1634-04-4	BRL	5.0		ug/L	07.15.14 10.53	U	1
Methylcyclohexane	108-87-2	BRL	5.0		ug/L	07.15.14 10.53	U	1
Methylene chloride	75-09-2	BRL	5.0		ug/L	07.15.14 10.53	U	1
Naphthalene	91-20-3	BRL	5.0		ug/L	07.15.14 10.53	U	1
o-Xylene	95-47-6	BRL	5.0		ug/L	07.15.14 10.53	U	1
Styrene	100-42-5	BRL	5.0		ug/L	07.15.14 10.53	U	1
Tetrachloroethene	127-18-4	88	5.0		ug/L	07.15.14 10.53		1
Toluene	108-88-3	BRL	5.0		ug/L	07.15.14 10.53	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	5.0		ug/L	07.15.14 10.53	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	5.0		ug/L	07.15.14 10.53	U	1
Trichloroethene	79-01-6	15	5.0		ug/L	07.15.14 10.53		1
Trichlorofluoromethane	75-69-4	BRL	5.0		ug/L	07.15.14 10.53	U	1
Vinyl chloride	75-01-4	15	2.0		ug/L	07.15.14 10.53		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,2-Dichloroethane-D4		17060-07-0	94	%	53-159	07.15.14 10.53		
4-Bromofluorobenzene		460-00-4	102	%	30-186	07.15.14 10.53		
Toluene-D8		2037-26-5	94	%	70-130	07.15.14 10.53		

Atlanta Environmental Management, Atlanta, GA

Aramark Dekalb

Sample Id: MW-204 Matrix: Ground Water Date Received:07.12.14 10.50

Lab Sample Id: 489203-015 Date Collected: 07.11.14 15.50 Sample Depth: 14.0

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

Analyst: MLA Date Prep: 07.15.14 06.48

Parameter	Cas Number	Result	Result RL		Analysis Date	Flag	Dil
1,1,1-Trichloroethane	71-55-6	BRL	5.0	ug/L	07.15.14 16.14	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	5.0	ug/L	07.15.14 16.14	U	1
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	BRL	5.0	ug/L	07.15.14 16.14	U	1
1,1,2-Trichloroethane	79-00-5	BRL	5.0	ug/L	07.15.14 16.14	U	1
1,1-Dichloroethane	75-34-3	BRL	5.0	ug/L	07.15.14 16.14	U	1
1,1-Dichloroethene	75-35-4	BRL	5.0	ug/L	07.15.14 16.14	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	5.0	ug/L	07.15.14 16.14	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	5.0	ug/L	07.15.14 16.14	U	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	BRL	5.0	ug/L	07.15.14 16.14	U	1
1,2-Dibromoethane (EDB)	106-93-4	BRL	5.0	ug/L	07.15.14 16.14	U	1
1,2-Dichlorobenzene	95-50-1	BRL	5.0	ug/L	07.15.14 16.14	U	1
1,2-Dichloroethane	107-06-2	BRL	5.0	ug/L	07.15.14 16.14	U	1
1,2-Dichloropropane	78-87-5	BRL	5.0	ug/L	07.15.14 16.14	U	1
1,3-Dichlorobenzene	541-73-1	BRL	5.0	ug/L	07.15.14 16.14	U	1
1,4-Dichlorobenzene	106-46-7	BRL	5.0	ug/L	07.15.14 16.14	U	1
2-Butanone (MEK)	78-93-3	BRL	50	ug/L	07.15.14 16.14	U	1
2-Hexanone	591-78-6	BRL	50	ug/L	07.15.14 16.14	U	1
4-Methyl-2-pentanone (MIBK)	108-10-1	BRL	50	ug/L	07.15.14 16.14	U	1
Acetone	67-64-1	BRL	50	ug/L	07.15.14 16.14	U	1
Benzene	71-43-2	BRL	5.0	ug/L	07.15.14 16.14	U	1
Bromochloromethane	74-97-5	BRL	5.0	ug/L	07.15.14 16.14	U	1
Bromodichloromethane	75-27-4	BRL	5.0	ug/L	07.15.14 16.14	U	1
Bromoform	75-25-2	BRL	5.0	ug/L	07.15.14 16.14	U	1
Bromomethane	74-83-9	BRL	5.0	ug/L	07.15.14 16.14	U	1
Carbon disulfide	75-15-0	BRL	5.0	ug/L	07.15.14 16.14	U	1
Carbon tetrachloride	56-23-5	BRL	5.0	ug/L	07.15.14 16.14	U	1
Chlorobenzene	108-90-7	BRL	5.0	ug/L	07.15.14 16.14	U	1
Chloroethane	75-00-3	BRL	4.0	ug/L	07.15.14 16.14	U	1
Chloroform	67-66-3	BRL	5.0	ug/L	07.15.14 16.14	U	1
Chloromethane	74-87-3	BRL	5.0	ug/L	07.15.14 16.14	U	1
cis-1,2-Dichloroethene	156-59-2	BRL	5.0	ug/L	07.15.14 16.14	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	5.0	ug/L	07.15.14 16.14	U	1
Cyclohexane	110-82-7	BRL	5.0	ug/L	07.15.14 16.14	U	1
Dibromochloromethane	124-48-1	BRL	5.0	ug/L	07.15.14 16.14	U	1
Dichlorodifluoromethane	75-71-8	BRL	5.0	ug/L	07.15.14 16.14	U	1
Ethylbenzene	100-41-4	BRL	5.0	ug/L	07.15.14 16.14	U	1
Isopropylbenzene	98-82-8	BRL	5.0	ug/L	07.15.14 16.14	U	1
m,p-Xylenes	179601-23-1	BRL	5.0	ug/L	07.15.14 16.14	U	1
Methyl acetate	79-20-9	BRL	5.0	ug/L	07.15.14 16.14	U	1

Atlanta Environmental Management, Atlanta, GA

Aramark Dekalb

Sample Id: MW-204 Matrix: Ground Water Date Received:07.12.14 10.50

Lab Sample Id: 489203-015 Date Collected: 07.11.14 15.50 Sample Depth: 14.0

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

Analyst: MLA Date Prep: 07.15.14 06.48

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Methyl tert-butyl ether	1634-04-4	BRL	5.0		ug/L	07.15.14 16.14	U	1
Methylcyclohexane	108-87-2	BRL	5.0		ug/L	07.15.14 16.14	U	1
Methylene chloride	75-09-2	BRL	5.0		ug/L	07.15.14 16.14	U	1
Naphthalene	91-20-3	BRL	5.0		ug/L	07.15.14 16.14	U	1
o-Xylene	95-47-6	BRL	5.0		ug/L	07.15.14 16.14	U	1
Styrene	100-42-5	BRL	5.0		ug/L	07.15.14 16.14	U	1
Tetrachloroethene	127-18-4	7.6	5.0		ug/L	07.15.14 16.14		1
Toluene	108-88-3	BRL	5.0		ug/L	07.15.14 16.14	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	5.0		ug/L	07.15.14 16.14	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	5.0		ug/L	07.15.14 16.14	U	1
Trichloroethene	79-01-6	BRL	5.0		ug/L	07.15.14 16.14	U	1
Trichlorofluoromethane	75-69-4	BRL	5.0		ug/L	07.15.14 16.14	U	1
Vinyl chloride	75-01-4	BRL	2.0		ug/L	07.15.14 16.14	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,2-Dichloroethane-D4		17060-07-0	94	%	53-159	07.15.14 16.14		
4-Bromofluorobenzene		460-00-4	102	%	30-186	07.15.14 16.14		
Toluene-D8		2037-26-5	96	%	70-130	07.15.14 16.14		

Atlanta Environmental Management, Atlanta, GA

Aramark Dekalb

Sample Id: MW-213 Matrix: Ground Water Date Received:07.12.14 10.50

Lab Sample Id: 489203-016 Date Collected: 07.11.14 17.44 Sample Depth: 14.10

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

Analyst: MLA Date Prep: 07.15.14 06.48

1,1,1-Trichlorochane	Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1.1.2-Trichlorochane	1,1,1-Trichloroethane	71-55-6	BRL	5.0	ug/L	07.15.14 16.42	U	1
1,1,2-Trichloroethane	1,1,2,2-Tetrachloroethane	79-34-5	BRL	5.0	ug/L	07.15.14 16.42	U	1
1.1-Dichloroethane	1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	BRL	5.0	ug/L	07.15.14 16.42	U	1
1.1-Dichloroethene	1,1,2-Trichloroethane	79-00-5	BRL	5.0	ug/L	07.15.14 16.42	U	1
1,2,3-Trichlorobenzene 87-61-6 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,2,4-Trichlorobenzene 120-82-1 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,2-Dibrono-3-chilopropane (DBCP) 96-12-8 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,2-Dibrono-3-chilopropane (DBCP) 96-12-8 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,2-Dibronochane (EDB) 106-93-4 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,2-Dibriorobenzene 95-50-1 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,2-Dichloropropane 177-06-2 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,2-Dichloropropane 78-87-5 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,3-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,3-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,3-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,3-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,3-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,4-Dichlorobenzene 591-78-6 BRL 50 ug/L 07.15.14 16.42 U 1 1,4-Dichlorobenzene 67-64-1 BRL 50 ug/L 07.15.14 16.42 U 1 1,4-Dichlorobenzene 67-64-1 BRL 50 ug/L 07.15.14 16.42 U 1 1,4-Dichlorobenzene 74-97-5 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,4-Dichlorobenzene 74-97-5 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,4-Dichlorobenzene 74-97-5 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,4-Dichlorobenzene 75-25-2 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,4-Dichlorobenzene 75-25-2 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,4-Dichlorobenzene 75-03 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,4-Dichlorobenzene 75-03 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,4-Dichlorobenzene 75-03 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,4-Dichlorobenzene 108-90-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,4-Dichlorobenzene 106-10-15 BRL 5.0 ug/L 07.	1,1-Dichloroethane	75-34-3	BRL	5.0	ug/L	07.15.14 16.42	U	1
1,2,4-Trichlorobenzene 120-82-1 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,2-Dichomo-3-chloropopane (DBCP) 96-12-8 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,2-Dichlorobenzene 95-50-1 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,2-Dichlorobenzene 95-50-1 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,2-Dichlorobenzene 107-06-2 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,2-Dichloropropane 78-87-5 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,2-Dichlorobenzene 541-73-1 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,3-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,3-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,3-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,3-Dichlorobenzene 591-78-6 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,3-Dichlorobenzene 591-78-6 BRL 50 ug/L 07.15.14 16.42 U 1 1,3-Dichlorobenzene 67-64-1 BRL 50 ug/L 07.15.14 16.42 U 1 1,3-Dichlorobenzene 71-43-2 BRL 50 ug/L 07.15.14 16.42 U 1 1,3-Dichlorobenzene 71-43-2 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,3-Dichlorobenzene 71-43-2 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,3-Dichlorobenzene 75-27-4 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,3-Dichlorobenzene 75-27-4 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,3-Dichlorobenzene 75-25-2 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,3-Dichlorobenzene 75-15-0 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,3-Dichlorobenzene 108-90-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,3-Dichlorobenzene 108-90-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,3-Dichlorobenzene 108-90-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,3-Dichlorobenzene 108-90-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 1 1,3-Dichlorobenzene 108-90-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,3-Dichlorobenzene 108-90-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,3-Dichlorobenzene 108-90-7 BRL	1,1-Dichloroethene	75-35-4	BRL	5.0	ug/L	07.15.14 16.42	U	1
1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,2-Dibromochtane (EDB) 106-93-4 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,2-Dichloroberhane 95-50-1 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,2-Dichloroberhane 107-06-2 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,2-Dichloroberhane 107-06-2 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,2-Dichloroberhane 541-73-1 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,3-Dichloroberhane 106-46-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,2-Dichloroberhane 106-46-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,2-Dichloroberhane 106-46-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,2-Dichloroberhane 108-40-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,2-Dichloroberhane 591-78-6 BRL 50 ug/L 07.15.14 16.42 U 1 1,2-Dichloroberhane 67-64-1 BRL 50 ug/L 07.15.14 16.42 U 1 1,2-Dichloroberhane 67-64-1 BRL 50 ug/L 07.15.14 16.42 U 1 1,2-Dichloroberhane 71-43-2 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,2-Dichloroberhane 74-97-5 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,2-Dichloroberhane 75-27-4 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,2-Dichloroberhane 75-25-2 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,2-Dichloroberhane 75-15-0 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,2-Dichloroberhane 75-15-0 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,2-Dichloroberhane 75-03 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,2-Dichloroberhane 74-87-3 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,2-Dichloroberhane 74-87-3 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,2-Dichloroberhane 74-87-3 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,2-Dichloroberhane 108-90-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,2-Dichloroberhane 108-90-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,2-Dichloroberhane 108-90-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,2-Dichloroberhane 106-10-15 BRL 5.	1,2,3-Trichlorobenzene	87-61-6	BRL	5.0	ug/L	07.15.14 16.42	U	1
1,2-Dibromoethane (EDB) 106-93-4 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,2-Dichlorobenzene 95-50-1 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,2-Dichloropenzene 107-06-2 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,2-Dichloropenzene 78-87-5 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,2-Dichloropenzene 541-73-1 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,3-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,3-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,3-Dichlorobenzene 591-78-6 BRL 50 ug/L 07.15.14 16.42 U 1 1,3-Dichlorobenzene 591-78-6 BRL 50 ug/L 07.15.14 16.42 U 1 1,3-Dichlorobenzene 67-64-1 BRL 50 ug/L 07.15.14 16.42 U 1 1,3-Dichlorobenzene 67-64-1 BRL 50 ug/L 07.15.14 16.42 U 1 1,3-Dichlorobenzene 67-64-1 BRL 50 ug/L 07.15.14 16.42 U 1 1,3-Dichlorobenzene 74-97-5 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,3-Dichlorobenzene 74-97-5 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,3-Dichlorobenzene 75-27-4 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,3-Dichlorobenzene 75-27-4 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,3-Dichlorobenzene 75-25-2 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,3-Dichlorobenzene 108-90-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,3-Dichlorobenzene 108-90-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 1 1,3-Dichlorobenzene 108-90-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 1 1,3-Dichlorobenzene 108-90-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 1 1,3-Dichlorobenzene 108-90-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 1 1,3-Dichlorobenzene 108-90-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 1 1,3-Dichlorobenzene 108-90-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 1 1,3-Dichlorobenzene 108-90-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 1 1,3-Dichlorobenzene 10061-01-5 BRL 5.0 ug/L 07.15.14 16.42 U 1 1 1,3-Dichlorobenzene	1,2,4-Trichlorobenzene	120-82-1	BRL	5.0	ug/L	07.15.14 16.42	U	1
1,2-Dichlorobenzene 95-50-1 BRL 5.0 ug/L 07.15.14 16.42 U 1 1.2-Dichloroethane 107-06-2 BRL 5.0 ug/L 07.15.14 16.42 U 1 1.2-Dichloropropane 78-87-5 BRL 5.0 ug/L 07.15.14 16.42 U 1 1.3-Dichloropropane 541-73-1 BRL 5.0 ug/L 07.15.14 16.42 U 1 1.3-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 1.4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 1.4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 1.4-Dichlorobenzene 591-78-6 BRL 50 ug/L 07.15.14 16.42 U 1 1.4-Dichloropenzene 67-64-1 BRL 50 ug/L 07.15.14 16.42 U 1 1.4-Dichloropenzene 67-64-1 BRL 50 ug/L 07.15.14 16.42 U 1 1.4-Dichloropenzene 71-43-2 BRL 5.0 ug/L 07.15.14 16.42 U 1 1.4-Dichloropenzene 71-43-2 BRL 5.0 ug/L 07.15.14 16.42 U 1 1.4-Dichloropenzene 71-43-2 BRL 5.0 ug/L 07.15.14 16.42 U 1 1.4-Dichloropenzene 71-43-2 BRL 5.0 ug/L 07.15.14 16.42 U 1 1.4-Dichloropenzene 75-27-4 BRL 5.0 ug/L 07.15.14 16.42 U 1 1.4-Dichloropenzene 75-25-2 BRL 5.0 ug/L 07.15.14 16.42 U 1 1.4-Dichloropenzene 108-90-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 1.4-Dichloropenzene 108-90-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 1.4-Dichloropenzene 108-90-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 1.4-Dichloropenzene 106-6-3 BRL 5.0 ug/L 07.15.14 16.42 U 1 1.4-Dichloropenzene 106-6-3 BRL 5.0 ug/L 07.15.14 16.42 U 1 1.4-Dichloropenzene 1006-10-15 BRL 5.0 ug/L 07.15.14 16.42 U 1 1.4-Dichloropenzene 1006-10-15 BRL 5.0 ug/L 07.15.14 16.42 U 1 1.4-Dichloropenzene 1006-10-15 BRL 5.0 ug/L 07.15.14 16.42 U 1 1.4-Dichloropenzene 1006-10-15 BRL 5.0 ug/L 07.15.14 16.42 U 1 1.4-Dichloropenzene 1006-10-15 BRL 5.0 ug/L 07.15.14 16.42 U 1 1.4-Dichloropenzene 1006-10-15 BRL 5.0 u	1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	BRL	5.0	ug/L	07.15.14 16.42	U	1
1,2-Dichloroethane 107-06-2 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,2-Dichloropropane 78-87-5 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,3-Dichlorobenzene 541-73-1 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,4-Dichlorobenzene 591-78-6 BRL 5.0 ug/L 07.15.14 16.42 U 1 1 1,4-Dichlorobenzene 591-78-6 BRL 5.0 ug/L 07.15.14 16.42 U 1 1 1,4-Dichlorobenzene 591-78-6 BRL 5.0 ug/L 07.15.14 16.42 U 1 1 1,4-Dichlorobenzene 67-64-1 BRL 5.0 ug/L 07.15.14 16.42 U 1 1 1,4-Dichlorobenzene 67-64-1 BRL 5.0 ug/L 07.15.14 16.42 U 1 1 1,4-Dichlorobenzene 71-43-2 BRL 5.0 ug/L 07.15.14 16.42 U 1 1 1,4-Dichlorobenzene 74-97-5 BRL 5.0 ug/L 07.15.14 16.42 U 1 1 1 1 1 1 1 1 1	1,2-Dibromoethane (EDB)	106-93-4	BRL	5.0	ug/L	07.15.14 16.42	U	1
1,2-Dichloropropane 78-87-5 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,3-Dichlorobenzene 541-73-1 BRL 5.0 ug/L 07.15.14 16.42 U 1 1,4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 1 1,4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 1 1 1 1 1 1 1 1	1,2-Dichlorobenzene	95-50-1	BRL	5.0	ug/L	07.15.14 16.42	U	1
1,3-Dichlorobenzene 541-73-1 BRL 5.0 ug/L 07.15.14 16.42 U 1	1,2-Dichloroethane	107-06-2	BRL	5.0	ug/L	07.15.14 16.42	U	1
1,4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.15.14 16.42 U 1	1,2-Dichloropropane	78-87-5	BRL	5.0	ug/L	07.15.14 16.42	U	1
2-Butanone (MEK) 78-93-3 BRL 50 ug/L 07.15.14 16.42 U 1	1,3-Dichlorobenzene	541-73-1	BRL	5.0	ug/L	07.15.14 16.42	U	1
2-Hexanone 591-78-6 BRL 50 ug/L 07.15.14 16.42 U 1	1,4-Dichlorobenzene	106-46-7	BRL	5.0	ug/L	07.15.14 16.42	U	1
A-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.15.14 16.42 U 1	2-Butanone (MEK)	78-93-3	BRL	50	ug/L	07.15.14 16.42	U	1
Acetone 67-64-1 BRL 50 ug/L 07.15.14 16.42 U 1 Benzene 71-43-2 BRL 5.0 ug/L 07.15.14 16.42 U 1 Bromochloromethane 74-97-5 BRL 5.0 ug/L 07.15.14 16.42 U 1 Bromodichloromethane 75-27-4 BRL 5.0 ug/L 07.15.14 16.42 U 1 Bromoform 75-25-2 BRL 5.0 ug/L 07.15.14 16.42 U 1 Bromomethane 74-83-9 BRL 5.0 ug/L 07.15.14 16.42 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 07.15.14 16.42 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 07.15.14 16.42 U 1 Carbon disulfide 56-23-5 BRL 5.0 ug/L 07.15.14 16.42 U 1 Chloromethace 108-90-7 BRL 5.0 ug/L 07.15.14 16.42 <td>2-Hexanone</td> <td>591-78-6</td> <td>BRL</td> <td>50</td> <td>ug/L</td> <td>07.15.14 16.42</td> <td>U</td> <td>1</td>	2-Hexanone	591-78-6	BRL	50	ug/L	07.15.14 16.42	U	1
Benzene 71-43-2 BRL 5.0 ug/L 07.15.14 16.42 U 1 Bromochloromethane 74-97-5 BRL 5.0 ug/L 07.15.14 16.42 U 1 Bromodichloromethane 75-27-4 BRL 5.0 ug/L 07.15.14 16.42 U 1 Bromoform 75-25-2 BRL 5.0 ug/L 07.15.14 16.42 U 1 Bromomethane 74-83-9 BRL 5.0 ug/L 07.15.14 16.42 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 07.15.14 16.42 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 07.15.14 16.42 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 07.15.14 16.42 U 1 Cisi-1,3-Dichlorotethene 156-59-2 800 5.00 ug/L	4-Methyl-2-pentanone (MIBK)	108-10-1	BRL	50	ug/L	07.15.14 16.42	U	1
Bromochloromethane 74-97-5 BRL 5.0 ug/L 07.15.14 16.42 U 1 Bromodichloromethane 75-27-4 BRL 5.0 ug/L 07.15.14 16.42 U 1 Bromoform 75-25-2 BRL 5.0 ug/L 07.15.14 16.42 U 1 Bromomethane 74-83-9 BRL 5.0 ug/L 07.15.14 16.42 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 07.15.14 16.42 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 07.15.14 16.42 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 Chloroform 67-66-3 BRL 4.0 ug/L 07.15.14 16.42 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 07.15.14 16.42 U 1 Cis-1,2-Dichloroethene 156-59-2 800 5.00 ug/L	Acetone	67-64-1	BRL	50	ug/L	07.15.14 16.42	U	1
Bromodichloromethane 75-27-4 BRL 5.0 ug/L 07.15.14 16.42 U 1 Bromoform 75-25-2 BRL 5.0 ug/L 07.15.14 16.42 U 1 Bromomethane 74-83-9 BRL 5.0 ug/L 07.15.14 16.42 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 07.15.14 16.42 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 07.15.14 16.42 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 Chloroethane 75-00-3 BRL 4.0 ug/L 07.15.14 16.42 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 07.15.14 16.42 U 1 cis-1,2-Dichloroethene 156-59-2 800 5.00 ug/L 07.15.14 16.42 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L	Benzene	71-43-2	BRL	5.0	ug/L	07.15.14 16.42	U	1
Bromoform 75-25-2 BRL 5.0 ug/L 07.15.14 16.42 U 1 Bromomethane 74-83-9 BRL 5.0 ug/L 07.15.14 16.42 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 07.15.14 16.42 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 07.15.14 16.42 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 Chloroethane 75-00-3 BRL 4.0 ug/L 07.15.14 16.42 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 07.15.14 16.42 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 07.15.14 16.42 U 1 cis-1,2-Dichloroethene 156-59-2 800 5.00 ug/L 07.15.14 16.42 U 1 Cyclohexane 10061-01-5 BRL 5.0 ug/L 07.15.14	Bromochloromethane	74-97-5	BRL	5.0	ug/L	07.15.14 16.42	U	1
Bromomethane 74-83-9 BRL 5.0 ug/L 07.15.14 16.42 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 07.15.14 16.42 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 07.15.14 16.42 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 Chloroethane 75-00-3 BRL 4.0 ug/L 07.15.14 16.42 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 07.15.14 16.42 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 07.15.14 16.42 U 1 cis-1,2-Dichloroethene 156-59-2 800 5.00 ug/L 07.15.14 16.42 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 07.15.14 16.42 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L	Bromodichloromethane	75-27-4	BRL	5.0	ug/L	07.15.14 16.42	U	1
Carbon disulfide 75-15-0 BRL 5.0 ug/L 07.15.14 16.42 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 07.15.14 16.42 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 Chloroethane 75-00-3 BRL 4.0 ug/L 07.15.14 16.42 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 07.15.14 16.42 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 07.15.14 16.42 U 1 cis-1,2-Dichloroethene 156-59-2 800 5.00 ug/L 07.15.14 16.42 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 07.15.14 16.42 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 Dibromochloromethane 75-71-8 BRL 5.0 ug/L <td>Bromoform</td> <td>75-25-2</td> <td>BRL</td> <td>5.0</td> <td>ug/L</td> <td>07.15.14 16.42</td> <td>U</td> <td>1</td>	Bromoform	75-25-2	BRL	5.0	ug/L	07.15.14 16.42	U	1
Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 07.15.14 16.42 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 Chloroethane 75-00-3 BRL 4.0 ug/L 07.15.14 16.42 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 07.15.14 16.42 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 07.15.14 16.42 U 1 cis-1,2-Dichloroethene 156-59-2 800 5.00 ug/L 07.15.14 16.42 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 07.15.14 16.42 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 Dichlorodifluoromethane 124-48-1 BRL 5.0 ug/L 07.15.14 16.42 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L </td <td>Bromomethane</td> <td>74-83-9</td> <td>BRL</td> <td>5.0</td> <td>ug/L</td> <td>07.15.14 16.42</td> <td>U</td> <td>1</td>	Bromomethane	74-83-9	BRL	5.0	ug/L	07.15.14 16.42	U	1
Chlorobenzene 108-90-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 Chloroethane 75-00-3 BRL 4.0 ug/L 07.15.14 16.42 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 07.15.14 16.42 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 07.15.14 16.42 U 1 cis-1,2-Dichloroethene 156-59-2 800 5.00 ug/L 07.15.14 16.42 E 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 07.15.14 16.42 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 07.15.14 16.42 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 07.15.14 16.42 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L	Carbon disulfide	75-15-0	BRL	5.0	ug/L	07.15.14 16.42	U	1
Chloroethane 75-00-3 BRL 4.0 ug/L 07.15.14 16.42 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 07.15.14 16.42 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 07.15.14 16.42 U 1 cis-1,2-Dichloroethene 156-59-2 800 5.00 ug/L 07.15.14 16.42 E 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 07.15.14 16.42 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 07.15.14 16.42 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 07.15.14 16.42 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 07.15.14 16.42 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L	Carbon tetrachloride	56-23-5	BRL	5.0	ug/L	07.15.14 16.42	U	1
Chloroform 67-66-3 BRL 5.0 ug/L 07.15.14 16.42 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 07.15.14 16.42 U 1 cis-1,2-Dichloroethene 156-59-2 800 5.00 ug/L 07.15.14 16.42 E 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 07.15.14 16.42 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 07.15.14 16.42 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 07.15.14 16.42 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 07.15.14 16.42 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 07.15.14 16.42 U 1	Chlorobenzene	108-90-7	BRL	5.0	ug/L	07.15.14 16.42	U	1
Chloromethane 74-87-3 BRL 5.0 ug/L 07.15.14 16.42 U 1 cis-1,2-Dichloroethene 156-59-2 800 5.00 ug/L 07.15.14 16.42 E 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 07.15.14 16.42 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 07.15.14 16.42 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 07.15.14 16.42 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 07.15.14 16.42 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 07.15.14 16.42 U 1	Chloroethane	75-00-3	BRL	4.0	ug/L	07.15.14 16.42	U	1
cis-1,2-Dichloroethene 156-59-2 800 5.00 ug/L 07.15.14 16.42 E 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 07.15.14 16.42 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 07.15.14 16.42 U 1 Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L 07.15.14 16.42 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 07.15.14 16.42 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 07.15.14 16.42 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 07.15.14 16.42 U 1	Chloroform	67-66-3	BRL	5.0	ug/L	07.15.14 16.42	U	1
cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 07.15.14 16.42 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 07.15.14 16.42 U 1 Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L 07.15.14 16.42 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 07.15.14 16.42 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 07.15.14 16.42 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 07.15.14 16.42 U 1	Chloromethane	74-87-3	BRL	5.0	ug/L	07.15.14 16.42	U	1
Cyclohexane 110-82-7 BRL 5.0 ug/L 07.15.14 16.42 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 07.15.14 16.42 U 1 Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L 07.15.14 16.42 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 07.15.14 16.42 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 07.15.14 16.42 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 07.15.14 16.42 U 1	cis-1,2-Dichloroethene	156-59-2	800	5.00	ug/L	07.15.14 16.42	E	1
Dibromochloromethane 124-48-1 BRL 5.0 ug/L 07.15.14 16.42 U 1 Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L 07.15.14 16.42 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 07.15.14 16.42 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 07.15.14 16.42 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 07.15.14 16.42 U 1	cis-1,3-Dichloropropene	10061-01-5	BRL	5.0	ug/L	07.15.14 16.42	U	1
Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L 07.15.14 16.42 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 07.15.14 16.42 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 07.15.14 16.42 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 07.15.14 16.42 U 1	Cyclohexane	110-82-7	BRL	5.0	ug/L	07.15.14 16.42	U	1
Ethylbenzene 100-41-4 BRL 5.0 ug/L 07.15.14 16.42 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 07.15.14 16.42 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 07.15.14 16.42 U 1	Dibromochloromethane	124-48-1	BRL	5.0	ug/L	07.15.14 16.42	U	1
Isopropylbenzene 98-82-8 BRL 5.0 ug/L 07.15.14 16.42 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 07.15.14 16.42 U 1	Dichlorodifluoromethane	75-71-8	BRL	5.0	ug/L	07.15.14 16.42	U	1
m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 07.15.14 16.42 U 1	Ethylbenzene	100-41-4	BRL	5.0	ug/L	07.15.14 16.42	U	1
	Isopropylbenzene	98-82-8	BRL	5.0	ug/L	07.15.14 16.42	U	1
	m,p-Xylenes	179601-23-1	BRL	5.0	ug/L	07.15.14 16.42	U	1
	Methyl acetate	79-20-9	BRL	5.0		07.15.14 16.42	U	1

Atlanta Environmental Management, Atlanta, GA

Aramark Dekalb

Sample Id: MW-213 Matrix: Ground Water Date Received:07.12.14 10.50

Lab Sample Id: 489203-016 Date Collected: 07.11.14 17.44 Sample Depth: 14.10

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

Analyst: MLA Date Prep: 07.15.14 06.48

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Methyl tert-butyl ether	1634-04-4	BRL	5.0		ug/L	07.15.14 16.42	U	1
Methylcyclohexane	108-87-2	BRL	5.0		ug/L	07.15.14 16.42	U	1
Methylene chloride	75-09-2	BRL	5.0		ug/L	07.15.14 16.42	U	1
Naphthalene	91-20-3	BRL	5.0		ug/L	07.15.14 16.42	U	1
o-Xylene	95-47-6	BRL	5.0		ug/L	07.15.14 16.42	U	1
Styrene	100-42-5	BRL	5.0		ug/L	07.15.14 16.42	U	1
Tetrachloroethene	127-18-4	86	5.0		ug/L	07.15.14 16.42		1
Toluene	108-88-3	BRL	5.0		ug/L	07.15.14 16.42	U	1
trans-1,2-Dichloroethene	156-60-5	11	5.0		ug/L	07.15.14 16.42		1
trans-1,3-Dichloropropene	10061-02-6	BRL	5.0		ug/L	07.15.14 16.42	U	1
Trichloroethene	79-01-6	41	5.0		ug/L	07.15.14 16.42		1
Trichlorofluoromethane	75-69-4	BRL	5.0		ug/L	07.15.14 16.42	U	1
Vinyl chloride	75-01-4	9.6	2.0		ug/L	07.15.14 16.42		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,2-Dichloroethane-D4		17060-07-0	94	%	53-159	07.15.14 16.42		
4-Bromofluorobenzene		460-00-4	100	%	30-186	07.15.14 16.42		
Toluene-D8		2037-26-5	96	%	70-130	07.15.14 16.42		

Atlanta Environmental Management, Atlanta, GA

Aramark Dekalb

Sample Id: MW-213 DUP Matrix: Ground Water Date Received:07.12.14 10.50

Lab Sample Id: 489203-017 Date Collected: 07.11.14 17.44 Sample Depth: 14.10

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

% Moisture:

Analyst: MLA Date Prep: 07.15.14 06.48

Seq Number: 945672

Tech:

MWE

Parameter	Cas Number Result RL		Units	Analysis Date	Flag	Dil	
1,1,1-Trichloroethane	71-55-6	BRL	5.0	ug/L	07.15.14 17.10	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	5.0	ug/L	07.15.14 17.10	U	1
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	BRL	5.0	ug/L	07.15.14 17.10	U	1
1,1,2-Trichloroethane	79-00-5	BRL	5.0	ug/L	07.15.14 17.10	U	1
1,1-Dichloroethane	75-34-3	BRL	5.0	ug/L	07.15.14 17.10	U	1
1,1-Dichloroethene	75-35-4	BRL	5.0	ug/L	07.15.14 17.10	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	5.0	ug/L	07.15.14 17.10	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	5.0	ug/L	07.15.14 17.10	U	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	BRL	5.0	ug/L	07.15.14 17.10	U	1
1,2-Dibromoethane (EDB)	106-93-4	BRL	5.0	ug/L	07.15.14 17.10	U	1
1,2-Dichlorobenzene	95-50-1	BRL	5.0	ug/L	07.15.14 17.10	U	1
1,2-Dichloroethane	107-06-2	BRL	5.0	ug/L	07.15.14 17.10	U	1
1,2-Dichloropropane	78-87-5	BRL	5.0	ug/L	07.15.14 17.10	U	1
1,3-Dichlorobenzene	541-73-1	BRL	5.0	ug/L	07.15.14 17.10	U	1
1,4-Dichlorobenzene	106-46-7	BRL	5.0	ug/L	07.15.14 17.10	U	1
2-Butanone (MEK)	78-93-3	BRL	50	ug/L	07.15.14 17.10	U	1
2-Hexanone	591-78-6	BRL	50	ug/L	07.15.14 17.10	U	1
4-Methyl-2-pentanone (MIBK)	108-10-1	BRL	50	ug/L	07.15.14 17.10	U	1
Acetone	67-64-1	BRL	50	ug/L	07.15.14 17.10	U	1
Benzene	71-43-2	BRL	5.0	ug/L	07.15.14 17.10	U	1
Bromochloromethane	74-97-5	BRL	5.0	ug/L	07.15.14 17.10	U	1
Bromodichloromethane	75-27-4	BRL	5.0	ug/L	07.15.14 17.10	U	1
Bromoform	75-25-2	BRL	5.0	ug/L	07.15.14 17.10	U	1
Bromomethane	74-83-9	BRL	5.0	ug/L	07.15.14 17.10	U	1
Carbon disulfide	75-15-0	BRL	5.0	ug/L	07.15.14 17.10	U	1
Carbon tetrachloride	56-23-5	BRL	5.0	ug/L	07.15.14 17.10	U	1
Chlorobenzene	108-90-7	BRL	5.0	ug/L	07.15.14 17.10	U	1
Chloroethane	75-00-3	BRL	4.0	ug/L	07.15.14 17.10	U	1
Chloroform	67-66-3	BRL	5.0	ug/L	07.15.14 17.10	U	1
Chloromethane	74-87-3	BRL	5.0	ug/L	07.15.14 17.10	U	1
cis-1,2-Dichloroethene	156-59-2	770	50.0	ug/L	07.16.14 12.30	D	10
cis-1,3-Dichloropropene	10061-01-5	BRL	5.0	ug/L	07.15.14 17.10	U	1
Cyclohexane	110-82-7	BRL	5.0	ug/L	07.15.14 17.10	U	1
Dibromochloromethane	124-48-1	BRL	5.0	ug/L	07.15.14 17.10	U	1
Dichlorodifluoromethane	75-71-8	BRL	5.0	ug/L	07.15.14 17.10	U	1
Ethylbenzene	100-41-4	BRL	5.0	ug/L	07.15.14 17.10	U	1
Isopropylbenzene	98-82-8	BRL	5.0	ug/L	07.15.14 17.10	U	1
m,p-Xylenes	179601-23-1	BRL	5.0	ug/L	07.15.14 17.10	U	1
Methyl acetate	79-20-9	BRL	5.0	ug/L	07.15.14 17.10	U	1

Atlanta Environmental Management, Atlanta, GA

Aramark Dekalb

07.15.14 06.48

Sample Id: MW-213 DUP Matrix: Ground Water Date Received:07.12.14 10.50

Lab Sample Id: 489203-017 Date Collected: 07.11.14 17.44 Sample Depth: 14.10

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

% Moisture:

Tech: MWE

Analyst: MLA Date Prep:

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Methyl tert-butyl ether	1634-04-4	BRL	5.0		ug/L	07.15.14 17.10	U	1
Methylcyclohexane	108-87-2	BRL	5.0		ug/L	07.15.14 17.10	U	1
Methylene chloride	75-09-2	BRL	5.0		ug/L	07.15.14 17.10	U	1
Naphthalene	91-20-3	BRL	5.0		ug/L	07.15.14 17.10	U	1
o-Xylene	95-47-6	BRL	5.0		ug/L	07.15.14 17.10	U	1
Styrene	100-42-5	BRL	5.0		ug/L	07.15.14 17.10	U	1
Tetrachloroethene	127-18-4	79	5.0		ug/L	07.15.14 17.10		1
Toluene	108-88-3	BRL	5.0		ug/L	07.15.14 17.10	U	1
trans-1,2-Dichloroethene	156-60-5	10	5.0		ug/L	07.15.14 17.10		1
trans-1,3-Dichloropropene	10061-02-6	BRL	5.0		ug/L	07.15.14 17.10	U	1
Trichloroethene	79-01-6	41	5.0		ug/L	07.15.14 17.10		1
Trichlorofluoromethane	75-69-4	BRL	5.0		ug/L	07.15.14 17.10	U	1
Vinyl chloride	75-01-4	7.9	2.0		ug/L	07.15.14 17.10		1
Surrogate		Cas Number	% Pocovory	Units	Limits	Analysis Date	Flag	

Surrogate	Cas Number	Recovery	Units	Limits	Analysis Date	Flag
1,2-Dichloroethane-D4	17060-07-0	94	%	53-159	07.15.14 17.10	
4-Bromofluorobenzene	460-00-4	102	%	30-186	07.15.14 17.10	
Toluene-D8	2037-26-5	96	%	70-130	07.15.14 17.10	

Atlanta Environmental Management, Atlanta, GA

Aramark Dekalb

Sample Id: Trip Blank Matrix: Water Date Received:07.12.14 10.50

Lab Sample Id: 489203-018 Date Collected: 07.10.14 07.30

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

Analyst: MLA Date Prep: 07.14.14 14.45

1,1,1-Trichloroethane	Parameter	neter Cas Number Result RL		Units	Analysis Date	Flag	Dil	
1.1.2-Trichloro-1.2-4rifluonethane 76-13-1 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.1.2-Trichlorocthane 79-00-5 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.1-Drichlorocthane 75-35-4 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.1.2-Trichlorocthane 75-35-4 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2.3-Trichlorobenzene 87-61-6 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2.3-Trichlorobenzene 120-82-1 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2.4-Trichlorobenzene 120-82-1 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2.4-Trichlorobenzene 106-93-4 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2.4-Drichlorocthane (EDB) 106-93-4 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2.4-Drichlorocthane (EDB) 106-93-4 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2.4-Drichlorocthane 107-06-2 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2.4-Drichlorocthane 107-06-2 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2.4-Drichlorocthane 108-04-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2.4-Drichlorocthane 106-46-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2.4-Drichlorocthane 106-46-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2.4-Drichlorocthane 106-46-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2.4-Drichlorocthane 106-46-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2.4-Drichlorocthane 106-46-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2.4-Drichlorocthane 106-46-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2.4-Drichlorocthane 106-46-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2.4-Drichlorocthane 106-46-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2.4-Drichlorocthane 106-46-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2.4-Drichlorocthane 106-46-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2.4-Drichlorocthane 106-46-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2.4-Drichlorocthane 106-46-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2.4-Drichlorocthane 106-46-7 BRL 5.0	1,1,1-Trichloroethane	71-55-6	BRL	5.0	ug/L	07.14.14 17.53	U	1
1,12-Trichloroethane	1,1,2,2-Tetrachloroethane	79-34-5	BRL	5.0	ug/L	07.14.14 17.53	U	1
1.1-Dichloroethane	1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	BRL	5.0	ug/L	07.14.14 17.53	U	1
1.1-Dichlorochene	1,1,2-Trichloroethane	79-00-5	BRL	5.0	ug/L	07.14.14 17.53	U	1
1,2,3-Trichlorobenzene 87-61-6 BRL 5.0 ug/L 07.14.14 17.53 U 1 1,2,4-Trichlorobenzene 120-82-1 BRL 5.0 ug/L 07.14.14 17.53 U 1 1,2-Dibronogrophe (DBCP) 96-12-8 BRL 5.0 ug/L 07.14.14 17.53 U 1 1,2-Dichlorogene 95-50-1 BRL 5.0 ug/L 07.14.14 17.53 U 1 1,2-Dichlorogene 107-06-2 BRL 5.0 ug/L 07.14.14 17.53 U 1 1,2-Dichloropropane 78-87-5 BRL 5.0 ug/L 07.14.14 17.53 U 1 1,3-Dichlorobenzene 541-73-1 BRL 5.0 ug/L 07.14.14 17.53 U 1 1,4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 1,4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 1,4-Dichlorobenzene 101-4-2-2 BRL	1,1-Dichloroethane	75-34-3	BRL	5.0	ug/L	07.14.14 17.53	U	1
1,2,4-Trichlorobenzene 120-82-1 BRL 5.0 ug/L 07.14.14 17.53 U 1 1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 BRL 5.0 ug/L 07.14.14 17.53 U 1 1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 BRL 5.0 ug/L 07.14.14 17.53 U 1 1,2-Dibriomo-3-chloropropane 95-50-1 BRL 5.0 ug/L 07.14.14 17.53 U 1 1,2-Dibriofrobenzene 95-50-1 BRL 5.0 ug/L 07.14.14 17.53 U 1 1,2-Dibriofrobenzene 107-06-2 BRL 5.0 ug/L 07.14.14 17.53 U 1 1,2-Dibriofropropane 78-87-5 BRL 5.0 ug/L 07.14.14 17.53 U 1 1,2-Dibriofrobenzene 541-73-1 BRL 5.0 ug/L 07.14.14 17.53 U 1 1,3-Dibriofrobenzene 106-46-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 1,4-Dibriofrobenzene 106-46-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 1,4-Dibriofrobenzene 591-78-6 BRL 5.0 ug/L 07.14.14 17.53 U 1 1,4-Dibriofrobenzene 591-78-6 BRL 5.0 ug/L 07.14.14 17.53 U 1 1,4-Dibriofrobenzene 591-78-6 BRL 5.0 ug/L 07.14.14 17.53 U 1 1,4-Dibriofrobenzene 67-64-1 BRL 5.0 ug/L 07.14.14 17.53 U 1 1,4-Dibriofrobenzene 67-64-1 BRL 5.0 ug/L 07.14.14 17.53 U 1 1,4-Dibriofrobenzene 67-64-1 BRL 5.0 ug/L 07.14.14 17.53 U 1 1,4-Dibriofrobenzene 74-97-5 BRL 5.0 ug/L 07.14.14 17.53 U 1 1,4-Dibriofromethane 75-27-4 BRL 5.0 ug/L 07.14.14 17.53 U 1 1,4-Dibriofromethane 75-27-4 BRL 5.0 ug/L 07.14.14 17.53 U 1 1,4-Dibriofromethane 75-15-0 BRL 5.0 ug/L 07.14.14 17.53 U 1 1,4-Dibriofromethane 75-15-0 BRL 5.0 ug/L 07.14.14 17.53 U 1 1,4-Dibriofromethane 75-15-0 BRL 5.0 ug/L 07.14.14 17.53 U 1 1,4-Dibriofromethane 75-15-0 BRL 5.0 ug/L 07.14.14 17.53 U 1 1,4-Dibriofromethane 75-15-0 BRL 5.0 ug/L 07.14.14 17.53 U 1 1,4-Dibriofromethane 75-03 BRL 5.0 ug/L 07.14.14 17.53 U 1 1,4-Dibriofromethane 156-59-2 BRL 5.0 ug/L 07.14.14 17.53 U 1	1,1-Dichloroethene	75-35-4	BRL	5.0	ug/L	07.14.14 17.53	U	1
1.2-Dibromo-3-chloropropane (DBCP) 96-12-8 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2-Dibromochtane (EDB) 106-93-4 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2-Dibromochtane (EDB) 95-50-1 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2-Dibromochtane 107-06-2 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2-Dibromochtane 107-06-2 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2-Dibromochtane 107-06-2 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.3-Dibromochtane 541-73-1 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.3-Dibromochtane 106-46-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.3-Dibromochtane 106-46-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.3-Dibromochtane 106-46-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 1 1.3-Dibromochtane 108-10-1 BRL 5.0 ug/L 07.14.14 17.53 U 1 1 1.3-Dibromochtane 108-10-1 BRL 5.0 ug/L 07.14.14 17.53 U 1 1 1 1 1 1 1 1 1	1,2,3-Trichlorobenzene	87-61-6	BRL	5.0	ug/L	07.14.14 17.53	U	1
1.2-Dibromoethane (EDB) 106-93-4 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2-Dibromoethane 95.50-1 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2-Dibromoethane 107-06-2 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2-Dibromoethane 107-06-2 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2-Dibromoethane 18-87-5 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.3-Dibromoethane 106-46-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.4-Dibromoethane 106-46-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.4-Dibromoethane 591-78-6 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.4-Dibromoethane 591-78-6 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.4-Dibromoethane 591-78-6 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.4-Dibromoethane 67-64-1 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.4-Dibromoethane 67-64-1 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.4-Dibromoethane 67-64-1 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.4-Dibromoethane 74-97-5 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.4-Dibromoethane 74-97-5 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.4-Dibromoethane 75-27-4 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.4-Dibromoethane 75-27-4 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.4-Dibromoethane 75-15-0 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.4-Dibromoethane 75-15-0 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.4-Dibromoethane 75-15-0 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.4-Dibromoethane 75-00-3 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.4-Dibromoethane 75-00-3 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.4-Dibromoethane 75-00-3 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.4-Dibromoethane 74-87-3 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.4-Dibromoethane 74-87-3 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.4-Dibromoethane 74-87-3 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.4-Dibromoethane 74-87-3 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.4-Dibromoethane 74-87-3 BR	1,2,4-Trichlorobenzene	120-82-1	BRL	5.0	ug/L	07.14.14 17.53	U	1
1.2-Dichlorobenzene 95-50-1 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2-Dichlorochtane 107-06-2 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2-Dichlorochtane 78-87-5 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2-Dichlorochtane 541-73-1 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.3-Dichlorochenzene 106-46-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.4-Dichlorochenzene 106-46-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2-Dichlorochenzene 106-46-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2-Dichlorochenzene 106-46-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2-Dichlorochenzene 591-78-6 BRL 50 ug/L 07.14.14 17.53 U 1 1.2-Dichlorochenzene 67-64-1 BRL 50 ug/L 07.14.14 17.53 U 1 1.2-Dichlorochenzene 67-64-1 BRL 50 ug/L 07.14.14 17.53 U 1 1.2-Dichlorochenzene 71-43-2 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2-Dichlorochenzene 74-87-5 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2-Dichlorochenzene 75-27-4 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2-Dichlorochenzene 75-25-2 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2-Dichlorochenzene 108-90-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2-Dichlorochenzene 108-90-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2-Dichlorochenzene 108-90-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2-Dichlorochene 75-00-3 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2-Dichlorochene 75-00-3 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2-Dichlorochene 74-87-3 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2-Dichlorochene 74-87-3 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2-Dichlorochene 75-00-3 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2-Dichlorochene 75-00-3 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2-Dichlorochene 75-00-3 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2-Dichlorochene 74-87-3 BRL 5.0 ug/L 07.14.14 17.53 U 1 1.2-Dichlorochene 100-61-15 BRL 5.0 ug/L 07.14.14 17.53	1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	BRL	5.0	ug/L	07.14.14 17.53	U	1
1,2-Dichloroethane 107-06-2 BRL 5.0 ug/L 07.14.14 17.53 U 1 1,2-Dichloropropane 78-87-5 BRL 5.0 ug/L 07.14.14 17.53 U 1 1,3-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 2-Butanone (MEK) 78-93-3 BRL 50 ug/L 07.14.14 17.53 U 1 2-Butanone (MEK) 78-93-3 BRL 50 ug/L 07.14.14 17.53 U 1 2-Hexanone 591-78-6 BRL 50 ug/L 07.14.14 17.53 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14.14 17.53 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14.14 17.53 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14.14 17.53 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL	1,2-Dibromoethane (EDB)	106-93-4	BRL	5.0	ug/L	07.14.14 17.53	U	1
1,2-Dichloropropane 78-87-5 BRL 5.0 ug/L 07.14.14 17.53 U 1 1,3-Dichlorobenzene 541-73-1 BRL 5.0 ug/L 07.14.14 17.53 U 1 1,4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 2-Butanone (MEK) 78-93-3 BRL 50 ug/L 07.14.14 17.53 U 1 2-Hexanone 591-78-6 BRL 50 ug/L 07.14.14 17.53 U 1 4-Wethyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14.14 17.53 U 1 Acetone 67-64-1 BRL 50 ug/L 07.14.14 17.53 U 1 Benzene 71-43-2 BRL 5.0 ug/L 07.14.14 17.53 U 1 Bromochloromethane 75-27-4 BRL 5.0 ug/L 07.14.14 17.53 U 1 Bromochloromethane 75-25-2 BRL 5.0 ug/L	1,2-Dichlorobenzene	95-50-1	BRL	5.0	ug/L	07.14.14 17.53	U	1
1,3-Dichlorobenzene 541-73-1 BRL 5.0 ug/L 07.14.14 17.53 U 1 1,4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 2-Butanone (MEK) 78-93-3 BRL 50 ug/L 07.14.14 17.53 U 1 2-Hexanone 591-78-6 BRL 50 ug/L 07.14.14 17.53 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14.14 17.53 U 1 Acetone 67-64-1 BRL 50 ug/L 07.14.14 17.53 U 1 Benzene 71-43-2 BRL 5.0 ug/L 07.14.14 17.53 U 1 Bromodichloromethane 74-97-5 BRL 5.0 ug/L 07.14.14 17.53 U 1 Bromodichloromethane 75-27-4 BRL 5.0 ug/L 07.14.14 17.53 U 1 Bromodichloromethane 75-52-2 BRL 5.0 ug/L	1,2-Dichloroethane	107-06-2	BRL	5.0	ug/L	07.14.14 17.53	U	1
1,4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 2-Butanone (MEK) 78-93-3 BRL 50 ug/L 07.14.14 17.53 U 1 2-Hexanone 591-78-6 BRL 50 ug/L 07.14.14 17.53 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14.14 17.53 U 1 A-cetone 67-64-1 BRL 50 ug/L 07.14.14 17.53 U 1 Benzene 71-43-2 BRL 5.0 ug/L 07.14.14 17.53 U 1 Bromochloromethane 74-97-5 BRL 5.0 ug/L 07.14.14 17.53 U 1 Bromofem 75-27-4 BRL 5.0 ug/L 07.14.14 17.53 U 1 Bromomethane 75-25-2 BRL 5.0 ug/L 07.14.14 17.53 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 07.14.14 17.	1,2-Dichloropropane	78-87-5	BRL	5.0	ug/L	07.14.14 17.53	U	1
2-Butanone (MEK) 78-93-3 BRL 50 ug/L 07.14.14 17.53 U 1 2-Hexanone 591-78-6 BRL 50 ug/L 07.14.14 17.53 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14.14 17.53 U 1 Acetone 67-64-1 BRL 50 ug/L 07.14.14 17.53 U 1 Benzene 71-43-2 BRL 50 ug/L 07.14.14 17.53 U 1 Benzene 74-97-5 BRL 5.0 ug/L 07.14.14 17.53 U 1 Bromochloromethane 74-97-5 BRL 5.0 ug/L 07.14.14 17.53 U 1 Bromochloromethane 75-27-4 BRL 5.0 ug/L 07.14.14 17.53 U 1 Bromochloromethane 75-25-2 BRL 5.0 ug/L 07.14.14 17.53 U 1 Bromochdine 75-25-2 BRL 5.0 ug/L 07.14.14 17.53 U 1 Bromochdine 75-25-2 BRL 5.0 ug/L 07.14.14 17.53 U 1 Bromochdane 74-83-9 BRL 5.0 ug/L 07.14.14 17.53 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 07.14.14 17.53 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 07.14.14 17.53 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 Chlorothane 75-00-3 BRL 5.0 ug/L 07.14.14 17.53 U 1 Chlorothane 75-00-3 BRL 5.0 ug/L 07.14.14 17.53 U 1 Chlorothane 75-00-3 BRL 5.0 ug/L 07.14.14 17.53 U 1 Chlorothane 74-87-3 BRL 5.0 ug/L 07.14.14 17.53 U 1 Chlorothane 74-87-3 BRL 5.0 ug/L 07.14.14 17.53 U 1 Chlorothane 74-87-3 BRL 5.0 ug/L 07.14.14 17.53 U 1 Cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 07.14.14 17.53 U 1 Cis-1,3-Dichlorofiluoromethane 124-48-1 BRL 5.0 ug/L 07.14.14 17.53 U 1 Cyclobexane 110-82-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 Cis-1,3-Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L 07.14.14 17.53 U 1 Dibromochloromethane 75-71-8 BRL 5.0 ug/L 07.14.14 17.53 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 07.14.14 17.53 U 1 Bropopylbenzene 98-82-8 BRL 5.0 ug/L 07.14.14 17.53 U 1 Bropopylbenzene 98-82-8 BRL 5.0 ug/L 07.14.14 17.53 U 1 Bropopylbenzene 179601-23-1 BRL 5.0 ug/L 07.14.14 17.53 U 1 Bropopylbenzene 179601-23-1 BRL 5.0 ug/L 07.14.14 17.53 U 1 Bropopylbenzene 179601-23-1 BRL 5.0 ug/L 07.14.14 17.53 U 1 Bropopylbenzene 179601-23-1 BRL 5.0 ug/L 07.14.14 17.53 U 1 Bropopylbenzene 179601-23-1 BRL 5.0 ug/L 07.14.14 17.53 U 1 Bropopylbenzene 179601-23-1 BRL 5.0 ug/L 07.14.14 17.53 U 1 Bropopylbenzene 179601-23-1 BRL 5.0 ug/L 07.14.14 17.53	1,3-Dichlorobenzene	541-73-1	BRL	5.0	ug/L	07.14.14 17.53	U	1
2-Hexanone 591-78-6 BRL 50 ug/L 07.14.14 17.53 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14.14 17.53 U 1 Acetone 67-64-1 BRL 50 ug/L 07.14.14 17.53 U 1 Benzene 71-43-2 BRL 5.0 ug/L 07.14.14 17.53 U 1 Bromochloromethane 74-97-5 BRL 5.0 ug/L 07.14.14 17.53 U 1 Bromodichloromethane 75-27-4 BRL 5.0 ug/L 07.14.14 17.53 U 1 Bromofform 75-25-2 BRL 5.0 ug/L 07.14.14 17.53 U 1 Bromofform 75-25-2 BRL 5.0 ug/L 07.14.14 17.53 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 07.14.14 17.53 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 07.14.14 17.53	1,4-Dichlorobenzene	106-46-7	BRL	5.0	ug/L	07.14.14 17.53	U	1
4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 07.14.14 17.53 U 1 Acetone 67-64-1 BRL 50 ug/L 07.14.14 17.53 U 1 Benzene 71-43-2 BRL 5.0 ug/L 07.14.14 17.53 U 1 Bromochloromethane 74-97-5 BRL 5.0 ug/L 07.14.14 17.53 U 1 Bromodichloromethane 75-27-4 BRL 5.0 ug/L 07.14.14 17.53 U 1 Bromoform 75-25-2 BRL 5.0 ug/L 07.14.14 17.53 U 1 Bromoform 75-25-2 BRL 5.0 ug/L 07.14.14 17.53 U 1 Bromoform 75-25-2 BRL 5.0 ug/L 07.14.14 17.53 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 07.14.14 17.53 U 1 Chlorotentane 108-90-7 BRL 5.0 ug/L 07.14.14 17.53 <td>2-Butanone (MEK)</td> <td>78-93-3</td> <td>BRL</td> <td>50</td> <td>ug/L</td> <td>07.14.14 17.53</td> <td>U</td> <td>1</td>	2-Butanone (MEK)	78-93-3	BRL	50	ug/L	07.14.14 17.53	U	1
Acetone 67-64-1 BRL 50 ug/L 07.14.14 17.53 U 1 Benzene 71-43-2 BRL 5.0 ug/L 07.14.14 17.53 U 1 Bromochloromethane 74-97-5 BRL 5.0 ug/L 07.14.14 17.53 U 1 Bromodichloromethane 75-27-4 BRL 5.0 ug/L 07.14.14 17.53 U 1 Bromoform 75-27-2 BRL 5.0 ug/L 07.14.14 17.53 U 1 Bromomethane 74-83-9 BRL 5.0 ug/L 07.14.14 17.53 U 1 Bromomethane 74-83-9 BRL 5.0 ug/L 07.14.14 17.53 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 07.14.14 17.53 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 07.14.14 17.53	2-Hexanone	591-78-6	BRL	50	ug/L	07.14.14 17.53	U	1
Benzene 71-43-2 BRL 5.0 ug/L 07.14.14 17.53 U 1 Bromochloromethane 74-97-5 BRL 5.0 ug/L 07.14.14 17.53 U 1 Bromodichloromethane 75-27-4 BRL 5.0 ug/L 07.14.14 17.53 U 1 Bromoform 75-25-2 BRL 5.0 ug/L 07.14.14 17.53 U 1 Bromomethane 74-83-9 BRL 5.0 ug/L 07.14.14 17.53 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 07.14.14 17.53 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 07.14.14 17.53 U 1 Chlorotethane 75-00-3 BRL 5.0 ug/L 07.14.14 17.53 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 07.14.14 17.53 U 1 Chloroformethane 156-59-2 BRL 5.0 ug/L 07.14.14 1	4-Methyl-2-pentanone (MIBK)	108-10-1	BRL	50	ug/L	07.14.14 17.53	U	1
Bromochloromethane 74-97-5 BRL 5.0 ug/L 07.14.14 17.53 U 1 Bromodichloromethane 75-27-4 BRL 5.0 ug/L 07.14.14 17.53 U 1 Bromoform 75-25-2 BRL 5.0 ug/L 07.14.14 17.53 U 1 Bromomethane 74-83-9 BRL 5.0 ug/L 07.14.14 17.53 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 07.14.14 17.53 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 07.14.14 17.53 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 Chloroform 75-0-3 BRL 4.0 ug/L 07.14.14 17.53 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 07.14.14 17.53 U 1 Cis-1,2-Dichlorothene 156-59-2 BRL 5.0 ug/L 07	Acetone	67-64-1	BRL	50	ug/L	07.14.14 17.53	U	1
Bromodichloromethane 75-27-4 BRL 5.0 ug/L 07.14.14 17.53 U 1 Bromoform 75-25-2 BRL 5.0 ug/L 07.14.14 17.53 U 1 Bromomethane 74-83-9 BRL 5.0 ug/L 07.14.14 17.53 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 07.14.14 17.53 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 07.14.14 17.53 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 Chloroform 75-00-3 BRL 4.0 ug/L 07.14.14 17.53 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 07.14.14 17.53 U 1 cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 07.14.14 17.53 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L	Benzene	71-43-2	BRL	5.0	ug/L	07.14.14 17.53	U	1
Bromoform 75-25-2 BRL 5.0 ug/L 07.14.14 17.53 U 1 Bromomethane 74-83-9 BRL 5.0 ug/L 07.14.14 17.53 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 07.14.14 17.53 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 07.14.14 17.53 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 Chloroethane 75-00-3 BRL 5.0 ug/L 07.14.14 17.53 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 07.14.14 17.53 U 1 Cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 07.14.14 17.53 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 Dibromochloromethane 75-71-8 BRL 5.0 ug/L 07.1	Bromochloromethane	74-97-5	BRL	5.0	ug/L	07.14.14 17.53	U	1
Bromomethane 74-83-9 BRL 5.0 ug/L 07.14.14 17.53 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 07.14.14 17.53 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 07.14.14 17.53 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 Chlorothane 75-00-3 BRL 4.0 ug/L 07.14.14 17.53 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 07.14.14 17.53 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 07.14.14 17.53 U 1 Cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 07.14.14 17.53 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L	Bromodichloromethane	75-27-4	BRL	5.0	ug/L	07.14.14 17.53	U	1
Carbon disulfide 75-15-0 BRL 5.0 ug/L 07.14.14 17.53 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 07.14.14 17.53 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 Chloroethane 75-00-3 BRL 4.0 ug/L 07.14.14 17.53 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 07.14.14 17.53 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 07.14.14 17.53 U 1 cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 07.14.14 17.53 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 07.14.14 17.53 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L<	Bromoform	75-25-2	BRL	5.0	ug/L	07.14.14 17.53	U	1
Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 07.14.14 17.53 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 Chloroethane 75-00-3 BRL 4.0 ug/L 07.14.14 17.53 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 07.14.14 17.53 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 07.14.14 17.53 U 1 cis-1,2-Dichloroptopene 156-59-2 BRL 5.0 ug/L 07.14.14 17.53 U 1 cyclohexane 110-82-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 07.14.14 17.53 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 07.14.14 17.53 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L <	Bromomethane	74-83-9	BRL	5.0	ug/L	07.14.14 17.53	U	1
Chlorobenzene 108-90-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 Chloroethane 75-00-3 BRL 4.0 ug/L 07.14.14 17.53 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 07.14.14 17.53 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 07.14.14 17.53 U 1 cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 07.14.14 17.53 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 07.14.14 17.53 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 07.14.14 17.53 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 07.14.14 17.53 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 07.14.14 17.53 U 1 m,p-Xylenes 179601-23-1 B	Carbon disulfide	75-15-0	BRL	5.0	ug/L	07.14.14 17.53	U	1
Chloroethane 75-00-3 BRL 4.0 ug/L 07.14.14 17.53 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 07.14.14 17.53 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 07.14.14 17.53 U 1 cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 07.14.14 17.53 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 07.14.14 17.53 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 Dichlorodifluoromethane 124-48-1 BRL 5.0 ug/L 07.14.14 17.53 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 07.14.14 17.53 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 07.14.14 17.53 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L	Carbon tetrachloride	56-23-5	BRL	5.0	ug/L	07.14.14 17.53	U	1
Chloroform 67-66-3 BRL 5.0 ug/L 07.14.14 17.53 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 07.14.14 17.53 U 1 cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 07.14.14 17.53 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 07.14.14 17.53 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 07.14.14 17.53 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 07.14.14 17.53 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 07.14.14 17.53 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 07.14.14 17.53 U 1	Chlorobenzene	108-90-7	BRL	5.0	ug/L	07.14.14 17.53	U	1
Chloromethane 74-87-3 BRL 5.0 ug/L 07.14.14 17.53 U 1 cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 07.14.14 17.53 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 07.14.14 17.53 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 07.14.14 17.53 U 1 Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L 07.14.14 17.53 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 07.14.14 17.53 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 07.14.14 17.53 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 07.14.14 17.53 U 1	Chloroethane	75-00-3	BRL	4.0	ug/L	07.14.14 17.53	U	1
cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 07.14.14 17.53 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 07.14.14 17.53 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 07.14.14 17.53 U 1 Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L 07.14.14 17.53 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 07.14.14 17.53 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 07.14.14 17.53 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 07.14.14 17.53 U 1	Chloroform	67-66-3	BRL	5.0	ug/L	07.14.14 17.53	U	1
cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 07.14.14 17.53 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 07.14.14 17.53 U 1 Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L 07.14.14 17.53 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 07.14.14 17.53 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 07.14.14 17.53 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 07.14.14 17.53 U 1	Chloromethane	74-87-3	BRL	5.0	ug/L	07.14.14 17.53	U	1
Cyclohexane 110-82-7 BRL 5.0 ug/L 07.14.14 17.53 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 07.14.14 17.53 U 1 Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L 07.14.14 17.53 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 07.14.14 17.53 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 07.14.14 17.53 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 07.14.14 17.53 U 1	cis-1,2-Dichloroethene	156-59-2	BRL	5.0	ug/L	07.14.14 17.53	U	1
Dibromochloromethane 124-48-1 BRL 5.0 ug/L 07.14.14 17.53 U 1 Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L 07.14.14 17.53 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 07.14.14 17.53 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 07.14.14 17.53 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 07.14.14 17.53 U 1	cis-1,3-Dichloropropene	10061-01-5	BRL	5.0	ug/L	07.14.14 17.53	U	1
Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L 07.14.14 17.53 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 07.14.14 17.53 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 07.14.14 17.53 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 07.14.14 17.53 U 1	Cyclohexane	110-82-7	BRL	5.0	ug/L	07.14.14 17.53	U	1
Ethylbenzene 100-41-4 BRL 5.0 ug/L 07.14.14 17.53 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 07.14.14 17.53 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 07.14.14 17.53 U 1	Dibromochloromethane	124-48-1	BRL	5.0	ug/L	07.14.14 17.53	U	1
Isopropylbenzene 98-82-8 BRL 5.0 ug/L 07.14.14 17.53 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 07.14.14 17.53 U 1	Dichlorodifluoromethane	75-71-8	BRL	5.0	ug/L	07.14.14 17.53	U	1
m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 07.14.14 17.53 U 1	Ethylbenzene	100-41-4	BRL	5.0	ug/L	07.14.14 17.53	U	1
7 7	Isopropylbenzene	98-82-8	BRL	5.0	ug/L	07.14.14 17.53	U	1
Methyl acetate 79-20-9 BRL 5.0 ug/L 07.14.14 17.53 U 1	m,p-Xylenes	179601-23-1	BRL	5.0	ug/L	07.14.14 17.53	U	1
	Methyl acetate	79-20-9	BRL	5.0	ug/L	07.14.14 17.53	U	1

Atlanta Environmental Management, Atlanta, GA

Aramark Dekalb

Sample Id: Trip Blank Matrix: Water Date Received:07.12.14 10.50

Lab Sample Id: 489203-018 Date Collected: 07.10.14 07.30

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

2037-26-5

Analyst: MLA Date Prep: 07.14.14 14.45

Seq Number: 945588

Toluene-D8

Parameter	Cas Numbe	r Result	RL		Units	nits Analysis Date		Dil
Methyl tert-butyl ether	1634-04-4	BRL	5.0		ug/L	07.14.14 17.53	U	1
Methylcyclohexane	108-87-2	BRL	5.0		ug/L	07.14.14 17.53	U	1
Methylene chloride	75-09-2	BRL	5.0		ug/L	07.14.14 17.53	U	1
Naphthalene	91-20-3	BRL	5.0		ug/L	07.14.14 17.53	U	1
o-Xylene	95-47-6	BRL	5.0		ug/L	07.14.14 17.53	U	1
Styrene	100-42-5	BRL	5.0		ug/L	07.14.14 17.53	U	1
Tetrachloroethene	127-18-4	BRL	5.0		ug/L	07.14.14 17.53	U	1
Toluene	108-88-3	BRL	5.0		ug/L	07.14.14 17.53	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	5.0		ug/L	07.14.14 17.53	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	5.0		ug/L	07.14.14 17.53	U	1
Trichloroethene	79-01-6	BRL	5.0		ug/L	07.14.14 17.53	U	1
Trichlorofluoromethane	75-69-4	BRL	5.0		ug/L	07.14.14 17.53	U	1
Vinyl chloride	75-01-4	BRL	2.0		ug/L	07.14.14 17.53	U	1
Surrogate		Cas Number	%	Units	Limits	Analysis Date	Flag	
1,2-Dichloroethane-D4		17060-07-0	Recovery 96	%	53-159	07.14.14 17.53	- ····g	
4-Bromofluorobenzene		460-00-4	102	%	30-186	07.14.14 17.53		

70-130

07.14.14 17.53

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.

BRL Below Reporting Limit.

RL Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	Fax
4143 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
2505 North Falkenburg Rd, Tampa, FL 33619	(813) 620-2000	(813) 620-2033
12600 West I-20 East, Odessa, TX 79765	(432) 563-1800	(432) 563-1713
6017 Financial Drive, Norcross, GA 30071	(770) 449-8800	(770) 449-5477
3725 E. Atlanta Ave, Phoenix, AZ 85040	(602) 437-0330	

Atlanta Environmental Management

Aramark Dekalb

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Seq Number:945588Matrix:WaterDate Prep:07.14.14MB Sample Id:658343-1-BLKLCS Sample Id:658343-1-BKSLCSD Sample Id:658343-1-BSD

MB Sample Id: 658343-1-	ple ld: 658343-1-BLK				038343-1-	BK2		LCSD Sample Id: 658343-1-BSD				
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,1,1-Trichloroethane	< 0.34	50	51	102	52	104	56-141	2	20	ug/L	07.14.14 15:34	
1,1,2,2-Tetrachloroethane	< 2.0	50	51	102	49	98	64-135	4	20	ug/L	07.14.14 15:34	
1,1,2-Trichloro-1,2,2-trifluoroethane	< 0.97	50	54	108	54	108	54-134	0	20	ug/L	07.14.14 15:34	
1,1,2-Trichloroethane	< 0.88	50	51	102	51	102	73-123	0	20	ug/L	07.14.14 15:34	
1,1-Dichloroethane	< 0.74	50	52	104	52	104	66-126	0	20	ug/L	07.14.14 15:34	
1,1-Dichloroethene	< 0.98	50	52	104	53	106	65-129	2	20	ug/L	07.14.14 15:34	
1,2,3-Trichlorobenzene	< 2.6	50	49	98	50	100	56-146	2	20	ug/L	07.14.14 15:34	
1,2,4-Trichlorobenzene	<1.3	50	50	100	50	100	62-141	0	20	ug/L	07.14.14 15:34	
1,2-Dibromo-3-chloropropane (DBCP)	< 2.8	50	49	98	50	100	48-144	2	20	ug/L	07.14.14 15:34	
1,2-Dibromoethane (EDB)	< 0.79	50	51	102	52	104	70-130	2	20	ug/L	07.14.14 15:34	
1,2-Dichlorobenzene	< 0.73	50	49	98	49	98	77-123	0	20	ug/L	07.14.14 15:34	
1,2-Dichloroethane	< 0.82	50	52	104	52	104	57-137	0	20	ug/L	07.14.14 15:34	
1,2-Dichloropropane	< 0.81	50	52	104	53	106	74-121	2	20	ug/L	07.14.14 15:34	
1,3-Dichlorobenzene	< 0.74	50	50	100	49	98	79-120	2	20	ug/L	07.14.14 15:34	
1,4-Dichlorobenzene	< 0.59	50	49	98	49	98	77-119	0	20	ug/L	07.14.14 15:34	
2-Butanone (MEK)	<1.3	100	110	110	110	110	42-165	0	20	ug/L	07.14.14 15:34	
2-Hexanone	<2.5	100	110	110	110	110	46-157	0	20	ug/L	07.14.14 15:34	
4-Methyl-2-pentanone (MIBK)	<2.2	100	100	100	100	100	54-145	0	20	ug/L	07.14.14 15:34	
Acetone	<1.4	100	96	96	100	100	42-178	4	20	ug/L	07.14.14 15:34	
Benzene	< 0.67	50	52	104	53	106	76-119	2	20	ug/L	07.14.14 15:34	
Bromochloromethane	< 0.47	50	54	108	55	110	75-123	2	20	ug/L	07.14.14 15:34	
Bromodichloromethane	< 0.96	50	53	106	53	106	69-131	0	20	ug/L	07.14.14 15:34	
Bromoform	<1.4	50	47	94	46	92	66-130	2	20	ug/L ug/L	07.14.14 15:34	
Bromomethane	<2.7	50	45	90	45	90	59-141	0	20	ug/L	07.14.14 15:34	
Carbon disulfide	< 0.73	50	52	104	55	110	47-144	6	20	ug/L	07.14.14 15:34	
Carbon tetrachloride	< 0.89	50	52	104	52	104	46-155	0	20	ug/L ug/L	07.14.14 15:34	
Chlorobenzene	< 0.59	50	50	100	51	102	81-114	2	20	ug/L ug/L	07.14.14 15:34	
Chloroethane	< 0.23	50	50	100	48	96	63-133	4	20	ug/L ug/L	07.14.14 15:34	
Chloroform	<1.4	50	52	104	53	106	68-127	2	20	ug/L ug/L	07.14.14 15:34	
Chloromethane	<1.4	50	47	94	48	96	43-141	2	20	ug/L ug/L	07.14.14 15:34	
cis-1,2-Dichloroethene	< 0.80	50	53	106	53	106	73-124	0	20	ug/L ug/L	07.14.14 15:34	
cis-1,3-Dichloropropene	< 0.76	50	55	110	56	112	72-132	2	20	ug/L ug/L	07.14.14 15:34	
Cyclohexane	<0.79	50	53	106	53	106	58-125	0	20	ug/L ug/L	07.14.14 15:34	
Dibromochloromethane	<0.79	50	53	106	53	106	69-128	0	20	ug/L ug/L	07.14.14 15:34	
Dichlorodifluoromethane	< 0.73	50	48	96	50	100	24-153	4	20	ug/L ug/L	07.14.14 15:34	
Ethylbenzene	< 0.66	50	51	102	51	102	78-122	0	20	ug/L ug/L	07.14.14 15:34	
Isopropylbenzene	<1.0	50	49	98	48	96	71-131	2	20	ug/L ug/L	07.14.14 15:34	
m,p-Xylenes	<1.2	100	100	100	100	100	76-124	0	20	ug/L ug/L	07.14.14 15:34	
Methyl acetate	<0.15	50	54	108	54	108	65-135	0	20	ug/L ug/L	07.14.14 15:34	
Methyl tert-butyl ether	< 0.62	100	100	100	110	110	59-135	10	20	ug/L ug/L	07.14.14 15:34	
Methylcyclohexane	< 0.76	50	55	110	54	108	61-125	2	20	ug/L ug/L	07.14.14 15:34	
Methylene chloride	<0.70	50	52	104	52	104	64-135	0	20	ug/L ug/L	07.14.14 15:34	
Naphthalene	<4.0	50	49	98	50	100	46-159	2	20	ug/L ug/L	07.14.14 15:34	
o-Xylene	< 0.57	50	51	102	52	104	78-124	2	20	_	07.14.14 15:34	
Styrene	< 0.56	50	52	102	53	104	79-123	2	20	ug/L	07.14.14 15:34	
Tetrachloroethene	<1.8	50	52	104	52	104	71-125	0	20	ug/L	07.14.14 15:34	
										ug/L	07.14.14 15:34	
Toluene trans-1,2-Dichloroethene	<0.68 <0.73	50	51 52	102 104	51 53	102	78-118 71-126	0	20	ug/L	07.14.14 15:34	
		50 50	52 54	104	53 54	106 108	68-131	2	20 20	ug/L	07.14.14 15:34	
trans-1,3-Dichloropropene Trichloroethene	< 0.84		54 52	108	53		76-118	0	20	ug/L	07.14.14 15:34	
	<0.72	50 50				106		2		ug/L		
Trichlorofluoromethane	< 0.85	50	54	108	51	102	35-153	6	20	ug/L	07.14.14 15:34	
Vinyl chloride	< 0.15	50	48	96	49	98	59-129	2	20	ug/L	07.14.14 15:34	

Seq Number:

QC Summary 489203

Prep Method: SW5030B

Atlanta Environmental Management

Aramark Dekalb

Analytical Method: VOCs by SW-846 8260B 945588

Date Prep: 07.14.14 Matrix: Water

MB Sample Id: 658343-1-BLK LCS Sample Id: 658343-1-BKS LCSD Sample Id: 658343-1-BSD

Surrogate	MB %Rec	MB Flag	LCS %Rec	LCS Flag	LCSD %Rec	LCSD Flag	Limits	Units	Analysis Date
1,2-Dichloroethane-D4	94		96		96		53-159	%	07.14.14 15:34
4-Bromofluorobenzene	98		98		98		30-186	%	07.14.14 15:34
Toluene-D8	96		98		98		70-130	%	07.14.14 15:34

Prep Method: SW5030B

Atlanta Environmental Management

Aramark Dekalb

Analytical Method: VOCs by SW-846 8260B

Seq Number:945672Matrix:WaterDate Prep:07.15.14MB Sample Id:658377-1-BLKLCS Sample Id:658377-1-BKSLCSD Sample Id:658377-1-BSD

WID Sample Id. 030377-1-	DLK		Leb bui	npie ia.	050577 1	DIL		LCD.	o bumpic	14. 050.	377 I BBB	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,1,1-Trichloroethane	< 0.34	50	50	100	51	102	56-141	2	20	ug/L	07.15.14 07:38	
1,1,2,2-Tetrachloroethane	< 2.0	50	48	96	48	96	64-135	0	20	ug/L	07.15.14 07:38	
1,1,2-Trichloro-1,2,2-trifluoroethane	< 0.97	50	54	108	54	108	54-134	0	20	ug/L	07.15.14 07:38	
1,1,2-Trichloroethane	< 0.88	50	49	98	49	98	73-123	0	20	ug/L	07.15.14 07:38	
1,1-Dichloroethane	< 0.74	50	49	98	51	102	66-126	4	20	ug/L	07.15.14 07:38	
1,1-Dichloroethene	< 0.98	50	51	102	52	104	65-129	2	20	ug/L	07.15.14 07:38	
1,2,3-Trichlorobenzene	< 2.6	50	47	94	49	98	56-146	4	20	ug/L	07.15.14 07:38	
1,2,4-Trichlorobenzene	<1.3	50	48	96	49	98	62-141	2	20	ug/L	07.15.14 07:38	
1,2-Dibromo-3-chloropropane (DBCP)	< 2.8	50	47	94	47	94	48-144	0	20	ug/L	07.15.14 07:38	
1,2-Dibromoethane (EDB)	< 0.79	50	50	100	50	100	70-130	0	20	ug/L	07.15.14 07:38	
1,2-Dichlorobenzene	< 0.73	50	48	96	48	96	77-123	0	20	ug/L	07.15.14 07:38	
1,2-Dichloroethane	< 0.82	50	51	102	51	102	57-137	0	20	ug/L	07.15.14 07:38	
1,2-Dichloropropane	< 0.81	50	51	102	51	102	74-121	0	20	ug/L	07.15.14 07:38	
1,3-Dichlorobenzene	< 0.74	50	48	96	49	98	79-120	2	20	ug/L	07.15.14 07:38	
1,4-Dichlorobenzene	< 0.59	50	48	96	48	96	77-119	0	20	ug/L	07.15.14 07:38	
2-Butanone (MEK)	<1.3	100	120	120	120	120	42-165	0	20	ug/L	07.15.14 07:38	
2-Hexanone	< 2.5	100	110	110	110	110	46-157	0	20	ug/L	07.15.14 07:38	
4-Methyl-2-pentanone (MIBK)	<2.2	100	100	100	100	100	54-145	0	20	ug/L	07.15.14 07:38	
Acetone	<1.4	100	120	120	130	130	42-178	8	20	ug/L	07.15.14 07:38	
Benzene	< 0.67	50	51	102	52	104	76-119	2	20	ug/L	07.15.14 07:38	
Bromochloromethane	< 0.47	50	53	106	54	108	75-123	2	20	ug/L	07.15.14 07:38	
Bromodichloromethane	< 0.96	50	51	102	53	106	69-131	4	20	ug/L	07.15.14 07:38	
Bromoform	<1.4	50	46	92	45	90	66-130	2	20	ug/L	07.15.14 07:38	
Bromomethane	< 2.7	50	43	86	43	86	59-141	0	20	ug/L	07.15.14 07:38	
Carbon disulfide	< 0.73	50	49	98	52	104	47-144	6	20	ug/L	07.15.14 07:38	
Carbon tetrachloride	< 0.89	50	50	100	52	104	46-155	4	20	ug/L	07.15.14 07:38	
Chlorobenzene	< 0.59	50	48	96	49	98	81-114	2	20	ug/L	07.15.14 07:38	
Chloroethane	< 0.23	50	44	88	45	90	63-133	2	20	ug/L	07.15.14 07:38	
Chloroform	<1.4	50	51	102	52	104	68-127	2	20	ug/L	07.15.14 07:38	
Chloromethane	<1.2	50	47	94	47	94	43-141	0	20	ug/L	07.15.14 07:38	
cis-1,2-Dichloroethene	< 0.80	50	53	106	53	106	73-124	0	20	ug/L	07.15.14 07:38	
cis-1,3-Dichloropropene	< 0.76	50	54	108	55	110	72-132	2	20	ug/L	07.15.14 07:38	
Cyclohexane	< 0.99	50	52	104	54	108	58-125	4	20	ug/L	07.15.14 07:38	
Dibromochloromethane	< 0.79	50	51	102	51	102	69-128	0	20	ug/L	07.15.14 07:38	
Dichlorodifluoromethane	< 0.73	50	47	94	47	94	24-153	0	20	ug/L	07.15.14 07:38	
Ethylbenzene	< 0.66	50	49	98	49	98	78-122	0	20	ug/L	07.15.14 07:38	
Isopropylbenzene	<1.0	50	48	96	47	94	71-131	2	20	ug/L	07.15.14 07:38	
m,p-Xylenes	<1.2	100	98	98	99	99	76-124	1	20	ug/L	07.15.14 07:38	
Methyl acetate	< 0.15	50	50	100	52	104	65-135	4	20	ug/L	07.15.14 07:38	
Methyl tert-butyl ether	< 0.62	100	100	100	100	100	59-135	0	20	ug/L	07.15.14 07:38	
Methylcyclohexane	< 0.76	50	53	106	54	108	61-125	2	20	ug/L	07.15.14 07:38	
Methylene chloride	< 0.92	50	48	96	50	100	64-135	4	20	ug/L	07.15.14 07:38	
Naphthalene	<4.0	50	48	96	49	98	46-159	2	20	ug/L	07.15.14 07:38	
o-Xylene	< 0.57	50	49	98	51	102	78-124	4	20	ug/L	07.15.14 07:38	
Styrene	< 0.56	50	51	102	52	104	79-123	2	20	ug/L	07.15.14 07:38	
Tetrachloroethene	<1.8	50	50	100	50	100	71-125	0	20	ug/L	07.15.14 07:38	
Toluene	< 0.68	50	49	98	50	100	78-118	2	20	ug/L	07.15.14 07:38	
trans-1,2-Dichloroethene	< 0.73	50	52	104	52	104	71-126	0	20	ug/L	07.15.14 07:38	
trans-1,3-Dichloropropene	< 0.84	50	52	104	52	104	68-131	0	20	ug/L	07.15.14 07:38	
Trichloroethene	< 0.72	50	51	102	52	104	76-118	2	20	ug/L	07.15.14 07:38	
Trichlorofluoromethane	< 0.85	50	50	100	50	100	35-153	0	20	ug/L	07.15.14 07:38	
Vinyl chloride	< 0.15	50	48	96	47	94	59-129	2	20	ug/L	07.15.14 07:38	

Flag

Atlanta Environmental Management

Aramark Dekalb

Analytical Method:VOCs by SW-846 8260BPrep Method:SW 5030BSeq Number:945672Matrix:WaterDate Prep:07.15.14

MB Sample Id: 658377-1-BLK LCS Sample Id: 658377-1-BKS LCSD Sample Id: 658377-1-BSD

MB LCS MB LCS LCSD LCSD Limits Units Analysis **Surrogate** %Rec Flag %Rec Flag Flag Date %Rec 53-159 07.15.14 07:38 1,2-Dichloroethane-D4 95 94 94 % 07.15.14 07:38 100 99 4-Bromofluorobenzene 102 30-186 % 07.15.14 07:38 Toluene-D8 96 96 96 70-130 %

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Seq Number: 945710 Matrix: Water Date Prep: 07.16.14

MB Sample Id: 658420-1-BLK LCS Sample Id: 658420-1-BSD

MB LCS LCS %RPD RPD Units Analysis Spike Limits LCSD LCSD **Parameter** Amount Result %Rec Limit Date Result Result %Rec 07.16.14 08:00 cis-1,2-Dichloroethene < 0.80 50 53 106 55 110 73-124 4 20 ug/L

MB LCS LCS LCSD MB Limits Units Analysis LCSD **Surrogate** Flag %Rec Flag Flag Date %Rec %Rec 07.16.14 08:00 1,2-Dichloroethane-D4 98 76 75 53-159 % 07.16.14 08:00 4-Bromofluorobenzene 100 106 106 30-186 % 07.16.14 08:00 Toluene-D8 98 97 70-130 % 107

Prep Method: SW5030B

Atlanta Environmental Management

Aramark Dekalb

Analytical Method: VOCs by SW-846 8260B

Matrix: Ground Water

945588 Seq Number: Date Prep: 07.14.14 MSD Sample Id: 489203-003 SD Parent Sample Id: MS Sample Id: 489203-003 S 489203-003

1 archi Sampie Id. 467203-00)3		IVID Dui	npie ia.	10,205 00	35 5		11101	Bumpie	10.	203 003 52	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,1,1-Trichloroethane	< 0.34	50	52	104	52	104	63-149	0	20	ug/L	07.15.14 02:14	
1,1,2,2-Tetrachloroethane	< 2.0	50	49	98	50	100	58-140	2	20	ug/L	07.15.14 02:14	
1,1,2-Trichloro-1,2,2-trifluoroethane	< 0.97	50	53	106	54	108	42-156	2	20	ug/L	07.15.14 02:14	
1,1,2-Trichloroethane	< 0.88	50	49	98	51	102	49-140	4	20	ug/L	07.15.14 02:14	
1,1-Dichloroethane	< 0.74	50	52	104	52	104	67-136	0	20	ug/L	07.15.14 02:14	
1,1-Dichloroethene	< 0.98	50	52	104	52	104	52-141	0	20	ug/L	07.15.14 02:14	
1,2,3-Trichlorobenzene	< 2.6	50	49	98	49	98	50-131	0	20	ug/L	07.15.14 02:14	
1,2,4-Trichlorobenzene	<1.3	50	48	96	49	98	51-125	2	20	ug/L	07.15.14 02:14	
1,2-Dibromo-3-chloropropane (DBCP)	< 2.8	50	48	96	50	100	43-155	4	20	ug/L	07.15.14 02:14	
1,2-Dibromoethane (EDB)	< 0.79	50	50	100	52	104	66-136	4	20	ug/L	07.15.14 02:14	
1,2-Dichlorobenzene	< 0.73	50	48	96	49	98	70-124	2	20	ug/L	07.15.14 02:14	
1,2-Dichloroethane	< 0.82	50	51	102	53	106	71-143	4	20	ug/L	07.15.14 02:14	
1,2-Dichloropropane	< 0.81	50	51	102	53	106	74-125	4	20	ug/L	07.15.14 02:14	
1,3-Dichlorobenzene	< 0.74	50	49	98	48	96	73-123	2	20	ug/L	07.15.14 02:14	
1,4-Dichlorobenzene	< 0.59	50	48	96	48	96	74-116	0	20	ug/L	07.15.14 02:14	
2-Butanone (MEK)	<1.3	100	110	110	110	110	43-155	0	20	ug/L	07.15.14 02:14	
2-Hexanone	<2.5	100	100	100	110	110	52-148	10	20	ug/L	07.15.14 02:14	
4-Methyl-2-pentanone (MIBK)	<2.2	100	100	100	110	110	61-141	10	20	ug/L	07.15.14 02:14	
Acetone	<1.4	100	100	100	99	99	40-140	1	20	ug/L	07.15.14 02:14	
Benzene	< 0.67	50	52	104	53	106	78-117	2	20	ug/L	07.15.14 02:14	
Bromochloromethane	< 0.47	50	54	108	55	110	65-127	2	20	ug/L	07.15.14 02:14	
Bromodichloromethane	< 0.96	50	52	104	53	106	71-133	2	20	ug/L	07.15.14 02:14	
Bromoform	<1.4	50	45	90	46	92	55-129	2	20	ug/L	07.15.14 02:14	
Bromomethane	<2.7	50	43	86	40	80	49-157	7	20	ug/L	07.15.14 02:14	
Carbon disulfide	< 0.73	50	53	106	52	104	31-142	2	20	ug/L	07.15.14 02:14	
Carbon tetrachloride	< 0.89	50	52	104	52	104	63-152	0	20	ug/L	07.15.14 02:14	
Chlorobenzene	< 0.59	50	49	98	50	100	75-117	2	20	ug/L	07.15.14 02:14	
Chloroethane	< 0.23	50	41	82	42	84	49-147	2	20	ug/L	07.15.14 02:14	
Chloroform	<1.4	50	52	104	53	106	67-136	2	20	ug/L	07.15.14 02:14	
Chloromethane	<1.2	50	47	94	45	90	35-162	4	20	ug/L	07.15.14 02:14	
cis-1,2-Dichloroethene	< 0.80	50	52	104	52	104	64-132	0	20	ug/L	07.15.14 02:14	
cis-1,3-Dichloropropene	< 0.76	50	53	106	54	108	69-116	2	20	ug/L	07.15.14 02:14	
Cyclohexane	< 0.99	50	55	110	55	110	59-141	0	20	ug/L	07.15.14 02:14	
Dibromochloromethane	< 0.79	50	51	102	52	104	54-144	2	20	ug/L	07.15.14 02:14	
Dichlorodifluoromethane	< 0.73	50	48	96	48	96	26-171	0	20	ug/L	07.15.14 02:14	
Ethylbenzene	< 0.66	50	49	98	50	100	74-131	2	20	ug/L	07.15.14 02:14	
Isopropylbenzene	<1.0	50	49	98	48	96	63-133	2	20	ug/L	07.15.14 02:14	
m,p-Xylenes	<1.2	100	98	98	100	100	67-134	2	20	ug/L	07.15.14 02:14	
Methyl acetate	< 0.15	50	50	100	51	102	65-135	2	20	ug/L	07.15.14 02:14	
Methyl tert-butyl ether	< 0.62	100	100	100	110	110	51-156	10	20	ug/L	07.15.14 02:14	
Methylcyclohexane	< 0.76	50	54	108	54	108	62-123	0	20	ug/L	07.15.14 02:14	
Methylene chloride	< 0.92	50	51	102	51	102	52-165	0	20	ug/L	07.15.14 02:14	
Naphthalene	<4.0	50	50	100	51	102	31-151	2	20	ug/L	07.15.14 02:14	
o-Xylene	< 0.57	50	49	98	51	102	70-125	4	20	ug/L	07.15.14 02:14	
Styrene	< 0.56	50	50	100	52	104	42-145	4	20	ug/L	07.15.14 02:14	
Tetrachloroethene	<1.8	50	50	100	50	100	57-132	0	20	ug/L	07.15.14 02:14	
Toluene	< 0.68	50	50	100	51	102	76-119	2	20	ug/L	07.15.14 02:14	
trans-1,2-Dichloroethene	< 0.73	50	53	106	53	106	46-152	0	20	ug/L	07.15.14 02:14	
trans-1,3-Dichloropropene	< 0.84	50	50	100	52	104	60-132	4	20	ug/L	07.15.14 02:14	
Trichloroethene	< 0.72	50	52	104	53	106	77-120	2	20	ug/L	07.15.14 02:14	
Trichlorofluoromethane	< 0.85	50	48	96	47	94	47-165	2	20	ug/L ug/L	07.15.14 02:14	
Vinyl chloride	< 0.15	50	48	96	46	92	43-148	4	20	ug/L	07.15.14 02:14	
•			. 3					•	-	· -		

Atlanta Environmental Management

Aramark Dekalb

Analytical Method: VOCs by SW-846 8260B

Prep Method: SW5030B 945588 Seq Number: Matrix: Ground Water Date Prep: 07.14.14 Parent Sample Id: 489203-003 MS Sample Id: 489203-003 S MSD Sample Id: 489203-003 SD

Surrogate	MS %Rec	MS Flag	MSD %Rec	MSD Flag	Limits	Units	Analysis Date
1,2-Dichloroethane-D4	94		96		53-159	%	07.15.14 02:14
4-Bromofluorobenzene	100		96		30-186	%	07.15.14 02:14
Toluene-D8	96		96		70-130	%	07.15.14 02:14

Seq Number:

Parent Sample Id:

QC Summary 489203

Atlanta Environmental Management

Aramark Dekalb

Analytical Method: VOCs by SW-846 8260B

Prep Method: SW5030B 945672 Matrix: Ground Water Date Prep: 07.15.14 489203-006 MS Sample Id: 489203-006 S MSD Sample Id: 489203-006 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,1,1-Trichloroethane	< 0.34	50	40	80	39	78	63-149	3	20	ug/L	07.15.14 18:34	
1,1,2,2-Tetrachloroethane	< 2.0	50	40	80	41	82	58-140	2	20	ug/L	07.15.14 18:34	
1,1,2-Trichloro-1,2,2-trifluoroethane	< 0.97	50	43	86	41	82	42-156	5	20	ug/L	07.15.14 18:34	
1,1,2-Trichloroethane	< 0.88	50	40	80	41	82	49-140	2	20	ug/L	07.15.14 18:34	
1,1-Dichloroethane	< 0.74	50	40	80	39	78	67-136	3	20	ug/L	07.15.14 18:34	
1,1-Dichloroethene	< 0.98	50	41	82	41	82	52-141	0	20	ug/L	07.15.14 18:34	
1,2,3-Trichlorobenzene	< 2.6	50	39	78	38	76	50-131	3	20	ug/L	07.15.14 18:34	
1,2,4-Trichlorobenzene	<1.3	50	39	78	38	76	51-125	3	20	ug/L	07.15.14 18:34	
1,2-Dibromo-3-chloropropane (DBCP)	< 2.8	50	39	78	39	78	43-155	0	20	ug/L	07.15.14 18:34	
1,2-Dibromoethane (EDB)	< 0.79	50	41	82	43	86	66-136	5	20	ug/L	07.15.14 18:34	
1,2-Dichlorobenzene	< 0.73	50	39	78	40	80	70-124	3	20	ug/L	07.15.14 18:34	
1,2-Dichloroethane	< 0.82	50	41	82	38	76	71-143	8	20	ug/L	07.15.14 18:34	
1,2-Dichloropropane	< 0.81	50	42	84	43	86	74-125	2	20	ug/L	07.15.14 18:34	
1,3-Dichlorobenzene	< 0.74	50	39	78	41	82	73-123	5	20	ug/L	07.15.14 18:34	
1,4-Dichlorobenzene	< 0.59	50	39	78	40	80	74-116	3	20	ug/L	07.15.14 18:34	
2-Butanone (MEK)	<1.3	100	91	91	84	84	43-155	8	20	ug/L	07.15.14 18:34	
2-Hexanone	<2.5	100	86	86	85	85	52-148	1	20	ug/L	07.15.14 18:34	
4-Methyl-2-pentanone (MIBK)	<2.2	100	87	87	83	83	61-141	5	20	ug/L	07.15.14 18:34	
Acetone	<1.4	100	72	72	75	75	40-140	4	20	ug/L	07.15.14 18:34	
Benzene	< 0.67	50	42	84	43	86	78-117	2	20	ug/L	07.15.14 18:34	
Bromochloromethane	< 0.47	50	43	86	45	90	65-127	5	20	ug/L	07.15.14 18:34	
Bromodichloromethane	< 0.96	50	42	84	43	86	71-133	2	20	ug/L ug/L	07.15.14 18:34	
Bromoform	<1.4	50	37	74	38	76	55-129	3	20	ug/L ug/L	07.15.14 18:34	
Bromomethane	<2.7	50	28	56	28	56	49-157	0	20	ug/L ug/L	07.15.14 18:34	
Carbon disulfide	< 0.73	50	40	80	40	80	31-142	0	20	ug/L ug/L	07.15.14 18:34	
Carbon tetrachloride	< 0.89	50	41	82	41	82	63-152	0	20	ug/L ug/L	07.15.14 18:34	
Chlorobenzene	< 0.59	50	40	80	41	82	75-117	2	20	ug/L ug/L	07.15.14 18:34	
Chloroethane	< 0.23	50	28	56	28	56	49-147	0	20	ug/L ug/L	07.15.14 18:34	X
Chloroform	<1.4	50	41	82	41	82	67-136	0	20	ug/L ug/L	07.15.14 18:34	71
Chloromethane	<1.4	50	30	60	28	56	35-162	7	20	ug/L ug/L	07.15.14 18:34	
cis-1,2-Dichloroethene	< 0.80	50	43	86	43	86	64-132	0	20	ug/L ug/L	07.15.14 18:34	
cis-1,3-Dichloropropene	< 0.76	50	43	86	44	88	69-116	2	20	ug/L ug/L	07.15.14 18:34	
Cyclohexane	<0.70	50	45	90	43	86	59-141	5	20	ug/L ug/L	07.15.14 18:34	
Dibromochloromethane	<0.79	50	41	82	42	84	54-144	2	20	ug/L ug/L	07.15.14 18:34	
Dichlorodifluoromethane	<0.73	50	28	56	27	54	26-171	4	20	ug/L ug/L	07.15.14 18:34	
Ethylbenzene	< 0.66	50	40	80	40	80	74-131	0	20	_	07.15.14 18:34	
Isopropylbenzene	<1.0	50	39	78	40	80	63-133	3	20	ug/L ug/L	07.15.14 18:34	
	<1.0	100	79	78 79	77	77	67-134	3	20	-	07.15.14 18:34	
m,p-Xylenes		50								ug/L	07.15.14 18:34	
Methyl acetate	< 0.15	100	40 79	80 79	39 79	78 70	65-135	3	20	ug/L	07.15.14 18:34	
Methyl tert-butyl ether	< 0.62		45			79	51-156 62-123	0	20	ug/L	07.15.14 18:34	
Methylcyclohexane	<0.76	50 50	39	90	46	92 76		2 3	20	ug/L	07.15.14 18:34	
Methylene chloride	< 0.92			78 78	38	76	52-165		20	ug/L		
Naphthalene	<4.0	50	39	78	39	78	31-151	0	20	ug/L	07.15.14 18:34	v
o-Xylene	< 0.57	50	40	80	39	78	70-125	3	20	ug/L	07.15.14 18:34	X
Styrene	< 0.56	50	41	82	39	78	42-145	5	20	ug/L	07.15.14 18:34	
Tetrachloroethene	2.0	50	42	80	45	86	57-132	7	20	ug/L	07.15.14 18:34	
Toluene	< 0.68	50	40	80	41	82	76-119	2	20	ug/L	07.15.14 18:34	
trans-1,2-Dichloroethene	< 0.73	50	42	84	42	84	46-152	0	20	ug/L	07.15.14 18:34	
trans-1,3-Dichloropropene	< 0.84	50	41	82	41	82	60-132	0	20	ug/L	07.15.14 18:34	
Trichloroethene	< 0.72	50	42	84	43	86	77-120	2	20	ug/L	07.15.14 18:34	37
Trichlorofluoromethane	< 0.85	50	27	54	29	58	47-165	7	20	ug/L	07.15.14 18:34	X
Vinyl chloride	< 0.15	50	29	58	28	56	43-148	4	20	ug/L	07.15.14 18:34	

Flag

Atlanta Environmental Management

Aramark Dekalb

Analytical Method: VOCs by SW-846 8260B

Prep Method: SW5030B 945672 Seq Number: Matrix: Ground Water Date Prep: 07.15.14 MS Sample Id: 489203-006 S MSD Sample Id: 489203-006 SD Parent Sample Id: 489203-006

Surrogate	MS %Rec	MS Flag	MSD %Rec	MSD Flag	Limits	Units	Analysis Date
1,2-Dichloroethane-D4	94		84		53-159	%	07.15.14 18:34
4-Bromofluorobenzene	100		100		30-186	%	07.15.14 18:34
Toluene-D8	96		94		70-130	%	07.15.14 18:34

Prep Method: SW5030B Analytical Method: VOCs by SW-846 8260B

Seq Number: 07.16.14 945710 Matrix: Ground Water Date Prep: MS Sample Id: 489170-004 S MSD Sample Id: 489170-004 SD Parent Sample Id: 489170-004

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date]
cis-1,2-Dichloroethene	< 0.80	50	57	114	53	106	64-132	7	20	ug/L	07.16.14 18:14	

Surrogate	MS %Rec	MS Flag	MSD %Rec	MSD Flag	Limits	Units	Analysis Date
1,2-Dichloroethane-D4	81		92		53-159	%	07.16.14 18:14
4-Bromofluorobenzene	103		102		30-186	%	07.16.14 18:14
Toluene-D8	92		94		70-130	%	07.16.14 18:14

XENCO LABORATORIES CHAIN OF CUSTODY

Page ______ of _____ 6017 Financial Drive, Norcross, GA 30071 Phone # (770) 449-8800 Fax # (770) 449-5477

LABURATURIES										***												$\overline{}$
Company Name: ATTANTA Environmental Managrest								Receiver's Initials/Temp:// Custody Seal(s): Y N Lab Work Order # 48920								p ~	,					
Address: ZS80 North					JA.	٥٤	1345	Custo	ody S	Seal(s):	Y	N	Lab \	Vork	Orde	r#	<u> </u>	5 7	12	<u> </u>	싀
Results Sent to: HARA COPU										*****	ired):											
Email address: EDO to					om	<u> </u>		Field	l Con	nmen	its / Lal) Pre	cautio	ns:								
	29-9006																					
Project Name (Site): Aran	rack De	elcalb											An	alysis	Req	ueste	d		<u> </u>		7	
Project Number (ID): 1133						Co	ntainer Type:	<u> </u>													1	
Regulatory Program:							rvation Code:										_					
Sampler(s): (signature)				ler(s): (j																		
The St			Med	Sa	nge	2/H		Voc				-										
ó								- 1				and the second s										
o N	Sample Collection Watrix No Composite Date / Time Sample Date / Time Sample Con							8260B														
Sample ID #	Sample Collection Sample Collection Sample Collection Sample Sample Collection Sample Sample Collection Sample Sample Collection Sample Sample Sample Collection Sample Sample Sample Collection Sample Sample																			-		
1 rinsale Blank	1 10 11 11 11 11 11 11 11 11 11 11 11 11							괴					-		_				+	 		·
2 mw-405	14,83	7-10-14	1357	6-W		V	2	2						<u> </u>	_		_		_		-	
3 mw-401	8,42	7.10.14	1513			1	<u> </u>	2										_				
4 mw-214	~15.0	7.10.14	1425			V	2	2											_			
5 MW-409D	~17.0	7.16.14	1710			\checkmark	2	2														
6 mw-20Z	15.94	7.10.14	1720			V	Z	2														
7 MW-208P	8:61	7/014	1730			V	7	2													<u> </u>	<u> </u>
8 MW-409	15.5	7.11.14	1004			V	7	2														
9 mw-203	18.64	7.1114	1135	V		\checkmark	7	Z														
10 MW-ZOTP							2	2	PARTY S INDIG												<u> </u>	
1) Relinquished By:	Date / Time 2) Received By:					у. / /)	7	/Ti		Deliv	ered	by: (Circle	e One) [12 10	ÌE.	م کست	
The State of the s	- 7-12-14/ Jule +						Date / Time Turnaround Time (busine				/ Hand / Other											
3) Relinquished By:	nquished By: Date / Time 4) Received By:					y:	No. of Street, or other Persons	· Europe		Date	e/Ti	me	1					•		uays <i>)</i> by 2P		
5) Relinquished By:	5) Relinquished By: Date / Time 6) Received By:				v:			The Real Property lies, San Lies, Spinster, Sp	Date	/Ti	me	1 **				-			3 Day			
) Refinquished By: Date / Time of Received By:					. J •									•	-	~	-		ne Da			

Page 50 of 52

Matrix Guide: (W=Water) (DW = Drinking Water) (GW = Groundwater) (SW = Surface Water) (L = Liquid) (O = Oil) (S = Soil) (SD = Solid) (SL = Sludge) (A = Air) (C = Air Cartridge) Chemical Preservation Codes: 1 = HCL / 2 = HNO₃ / 3 = H₂SO₄ / 4 = NaOH + NaAsO₂ / 5 = NaOH + ZnAc / 6 = Na₂S₂O₃ / 7 = NaHSO₄ & MeOH / 8 = DI Water & MeOH Container Type: VC=Vial (Clear); VA = Vial (Amber); GC=Glass (Clear); GA=Glass (Amber); P=Plastic (HDPE); TB=Tedlar Bag; ES=EnCore Sampler; ZB=Ziploc Bag; O=Other

XENCO LABORATORIES CHAIN OF CUSTODY

Page 2 of 2 6017 Financial Drive, Norcross, GA 30071 Phone # (770) 449-8800 Fax # (770) 449-5477

	EAUGRATURE																							
	ompany Name: Atlanta Environmental Management ddress: 2580 North East Expressuraly Atlanta GA 3								Rece	eiver'	s Init	ials/	Гетр):		/				. 47	~B -	,		
Add	ress: 2580 North	L East 1	Explessu	y Ju	94/101	ba	GA	- 30345	Cust	tody :	Seal(s):		Y N	Lab	Wor	k Or	der#	7	<u>'8</u>	7/	<u> </u>	<u>3 </u>	_
Resu	ilts Sent to: HARD COP	x maded	l'ho	Leana	Mile	3		-	<u>P.O.</u>	# (if	requ	ired)	:											
Ema		Leonati					1		Field	d Cor	nmei	nts / I	Lab I	Precaut	ions:									
	tact Phone #: 404-329	-9006	Cell#:				•																	╛
	ect Name (Site): Aram											,		A	nalys	is Re	ques	ted					<u>-</u>	_
Proje	ect Number (ID): 1133						C	ontainer Type:	GC		\downarrow													╛
Regi	ılatory Program:							ervation Code:	1			1				,								
	Sampler(s): (signaturé)				er(s): (]				3			and the second s	1	1										
1	West			Ned	Sarg	70/1			*>				-		_				***************************************			-		
lo.									60B										West Annual Property of the Party of the Par					
Line No.	de,	Sample Collection Watrix Date / Time Watrix Sample Contain No. Contain No.						No. of	12											•				1
7	` Sample ID #	Depth (Ft)	Date	/ Time	· Š	Ü	Grab	Containers	80		-	-								\rightarrow	4			4
1	MW-403	~ 17.5	7.11.14	1134	GW		✓	Z	2						ļ									_
2	mw-206	9.38	7-11-14	1453				7	Z															_
3	mw-306	8.85	7-11-14	1707			/	7	Z.															
4	MW-212	8-85 M	7-11-14	1435			V	7	Z															
	mw-204	~14.0	7-11-14	1550			V	7	て															
6	mw-Z13	14,10	7.11.14	1744			V	Z	2															
7	mw-ZI3 Dup	14:10	7-11-14	1744	GW		1	7	7															
8	trip Blank	NA	7.10.14	0730	W		/	て	7															
9					-																			
10								\		_				4										
1) R	elinquished By:			te / Time	2) Re	egive	ed B				_			Time								è E	3.	4
	16129	SG 7:12:14/ Met								4			1977	Fed									4	
3) R	elinquished By:	inquished By: Date / Time 4) Received By:					By:			,	Da	ite / '	Time	, ,							ss day d by 2	-		
5) Relinquished By: Date / Time 6) Received By:					kv:		***************************************	***************************************	Dء	ite / '	Time	┪ ′				_			-					
) K	Relinquished By: Date / Time 6 Received By:						Date / Time10 Days ;5-7 Days ;3 Days						l											

Matrix Guide: (W=Water) (DW = Drinking Water) (GW = Groundwater) (SW = Surface Water) (L = Liquid) (O = Oil) (S = Soil) (SD = Solid) (SL = Sludge) (A = Air) (C = Air Cartridge) Chemical Preservation Codes: 1 = HCL / 2 = HNO₃ / 3 = H₂SO₄ / 4 = NaOH + NaAsO₂ / 5 = NaOH + ZnAc / 6 = Na₂S₂O₃ / 7 = NaHSO₄ & MeOH / 8 = DI Water & MeOH Container Type: VC=Vial (Clear); VA = Vial (Amber); GC=Glass (Clear); GA=Glass (Amber); P=Plastic (HDPE); TB=Tedlar Bag; ES=EnCore Sampler; ZB=Ziploc Bag; O=Other

Final 1.000

Page 51 of 52

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: Atlanta Environmental Management

Date/ Time Received: 07/12/2014 10:50:00 AM

Work Order #: 489203

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Temperature Measuring device used: #01

Sample Receipt C	Checklist	Comments
#1 *Temperature of cooler(s)?	3.1	
#2 *Shipping container in good condition?	Yes	
#3 *Samples received on ice?	Yes	
#4 *Custody Seals intact on shipping container/ cooler?	N/A	
#5 Custody Seals intact on sample bottles?	N/A	
#6 *Custody Seals Signed and dated?	N/A	
#7 *Chain of Custody present?	Yes	
#8 Sample instructions complete on Chain of Custody?	Yes	
#9 Any missing/extra samples?	No	
#10 Chain of Custody signed when relinquished/ received?	Yes	
#11 Chain of Custody agrees with sample label(s)?	Yes	
#12 Container label(s) legible and intact?	Yes	
#13 Sample matrix/ properties agree with Chain of Custody?	Yes	
#14 Samples in proper container/ bottle?	Yes	
#15 Samples properly preserved?	Yes	
#16 Sample container(s) intact?	Yes	
#17 Sufficient sample amount for indicated test(s)?	Yes	
#18 All samples received within hold time?	Yes	
#19 Subcontract of sample(s)?	No	
#20 VOC samples have zero headspace (less than 1/4 inch bubb	ole)? Yes	
#21 <2 for all samples preserved with HNO3,HCL, H2SO4?	Yes	
#22 >10 for all samples preserved with NaAsO2+NaOH, ZnAc+N	laOH? N/A	

* Must be completed for after-hours delivery	of samples prior to placing in the refrigerator
Analyst: HA	PH Device/Lot#:

Checklist completed by:	Dario Lagunas	Date: 07/12/2014
Checklist reviewed by:	Mike Kimmel	Date: 07/12/2014

ATTACHMENT M Groundwater Plume Statistical Evaluation

ATTACHMENT M GROUNDWATER PLUME STATISTICAL EVALUATION

Overview

A statistical analysis of contaminant concentration trends in Monitoring Well MW-403 was performed to determine the trends of groundwater contaminants and to determine whether the plume is stable. A stable plume is defined as exhibiting either stationary (mean concentration not changing) or declining concentrations determined by using unbiased means (statistics).

Data History

Groundwater test results of volatile compounds and sample dates from MW-403 are summarized in Table 1. The constituents exceeding threshold levels (Type 3/4 RRS) are cis-1,2-dichlorethene (cis-1,2-DCE) and vinyl chloride (VC). Nineteen unique sample points spanning April 2006 to July 2014 are available for stability analysis. However, the recent history of the site includes multiple intrusive remediation efforts including shallow soil removal, deep oxidant blending into soil/source material, and prior oxidant injection into the groundwater. These remediation events are likely to have caused discontinuity in contaminant concentration trends and to "restart" any trend based on what is effectively a new environment from which the constituents travel and transform. Figure M-1 presents a graphical overview of the groundwater concentrations for the chemicals of concern (COCs) from the date of installation of MW-403. The remediation events are marked on the figure. It can be observed that cis-1,2-DCE and VC have similar trends. Because the purpose of this analysis is to examine the trend after the last remediation effort, the five sampling events after source remediation (June 2, 2011, to July 11, 2014) were used for the trend analysis.

Mann-Kendall Method Overview

The presence of any trend (up or down) in single-well groundwater data is presumed to be statistically significant when it departs from a stationary and stable background concentration and the data variability is less than the departure from background at a prescribed threshold of significance. To determine whether a trend (up or down) was present for constituents present above detection limit, a statistical analysis was performed following the guidance in *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance, March 2009.*

In accordance with the Guidance (Chapter 8, Summary of Recommended Methods, page 8-32), it is appropriate to use the Mann-Kendall Test For Trend as a method to identify the presence of a significant (upward or downward) trend at a compliance point or any trend in background data. The method is based on the null hypothesis that no discernible linear trend exists in the concentration data over time. An underlying assumption is that the data do not

Compliance Status Report and Compliance Status Certification Former Aratex Services, Inc.—670 DeKalb Avenue, Atlanta, Georgia Aramark Uniform & Career Apparel, LLC November 20, 2014

need to be normal or to follow any distribution, as is the presumed case for this facility. Additionally, per the Guidance:

When to use: Use a test for trend when (1) interwell tests are inappropriate so that intrawell tests are called for and (2) a control chart or intrawell prediction limit cannot be used because of possible trends in intrawell background. A trend test can be particularly helpful at sites with recent or historical contamination where it is uncertain whether intrawell background is already contaminated. An upward trend in these cases documents changing concentration levels more accurately than either a control chart or intrawell prediction limit, both of which assume a stationary background mean concentration.

Steps involved: (1) Sort the data values by time of sampling/collection; (2) consider all possible pairs of measurements from different sampling events; (3) score each pair depending on whether the later data point is higher or lower in concentration than the earlier one, and sum the scores to get Mann-Kendall statistic; (4) compare this statistic against an a-level critical point; and (5) if the statistic exceeds the critical point, conclude that a significant upward or downward trend exists. If not, conclude that there is insufficient evidence for identifying a significant, non-zero trend.

Advantages/Disadvantages: The Mann-Kendall test does not require any special treatment for non-detects, only that all non-detects can be set to a common value lower than any constituent detects. The test is easy to compute and reasonably efficient for detecting trends. Exact critical points are provided in the Unified Guidance for number of samples n, from 4 to 10. A normal approximation can be used for n > 10; however, experience shows no practical analytical difference applying the normal approximation for data sets for n > 5.

Implementation of Mann-Kendall Trend Analysis

Calculation of the Mann-Kendall Z-Statistic, with correction for duplicates, was implemented in a simple Microsoft Excel[©] spreadsheet with all outputs (including pair scores, data ranking, etc.) from all steps clearly shown for quality control checking. After verification that all formulas and steps match the guide, the spreadsheet was then confirmed to produce correct results by entering the EPA Guidance data and obtaining identical results shown in the guidance, including intermediate steps. A probability of 0.05 that the observed trend could be occurring by chance alone is often used as sufficient, although other thresholds can be acceptable. This correlates to a Z-Statistic of 0.95.

This spreadsheet implementation was then used to process the site data. Raw output from the Mann-Kendall analysis are attached in Appendix 1. The analysis shows the pair-scores and the associated pair sum that define the central theory of this statistical method. In accordance with the EPA Guidance, the resulting Z-Statistic (normalized and corrected for duplicate values) was used to determine the confidence associated with the result, essentially to reveal strong trends versus weak or no trends, by comparing the result to the Normal Distribution (and therefore the probability that the observed trend is correct for the data used).

Compliance Status Report and Compliance Status Certification Former Aratex Services, Inc.—670 DeKalb Avenue, Atlanta, Georgia Aramark Uniform & Career Apparel, LLC November 20, 2014

This confidence is presented as "Probability" in the analysis, along with a non-linear least square plot of the data and R² (goodness of fit to model) to allow an intuitive view of the data. A summary of the respective analyses (pre-remediation and post-remediation for cis-1,2-DCE and VC) is discussed in the following:

Constituent Trend Analysis—cis-1,2-DCE Pre-Remediation

The pair sum score for pre-remediation of cis-1,2-DCE is mathematically zero and therefore meets the assumption of the null hypothesis (i.e., no trend). The plot of the data does not include a regression curve for this reason, because forcing a least-square (linear or non-linear) model through these data would be inappropriate and potentially misleading. This result tends to confirm the presumption that pre-remediation data are fundamentally different from post-remediation data.

Constituent Trend Analysis—cis-1,2-DCE Post-Remediation

The trend analysis for the five data points available for analysis since soil remediation was completed show a decreasing trend, although the Z-Statistic of 0.73 (probability of 0.769) appears to not quite rise to the level of "strong trend." There is a probability of 0.231 that this trend could occur by chance alone. There is, however, sound reason to suspect a down trend rather than no trend, particularly based on the expectation that biological generation of cis-1,2-DCE will follow a first order decay (i.e., exponential) of the parent compound concentration-versus-time curve. Note that R^2 for the exponential model used to project future values is 0.5 (p = 0.175), indicating that more than 50% of the data variability is explained by this model. This tends to corroborate the use of the first order decay model and therefore a declining biological decay process.

Constituent Trend Analysis—VC Pre-Remediation

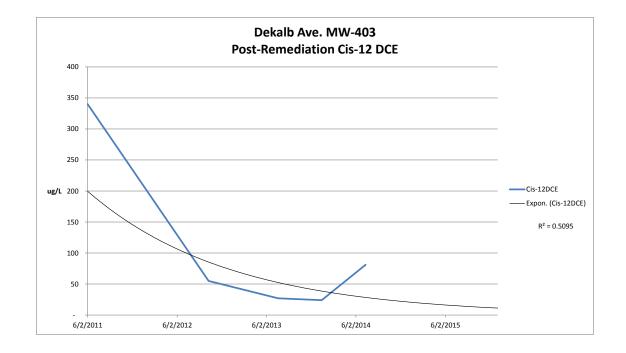
As with the cis-1,2-DCE pre-remediation trend analysis, VC concentrations from April 2006 to July 2014 show no discernible trend, although the pair sum is slightly positive (indicating an increasing trend, if any at all). However, the Z-Statistic (corrected for duplicates) is 0.49 and actually cannot be used to determine either an increasing for decreasing trend. Also, and as with cis-1,2-DCE, the VC plot does not include a least-square curve because of the inappropriateness of forcing an exponential decay model through data having no statistical up or down trend.

Constituent Trend Analysis—VC Post-Remediation

Post-remediation VC is clearly declining, based on the Mann-Kendall Z-Statistic, corroborated by an excellent agreement with the exponential decline model. The Z-Statistic was 1.71 (probability of 0.957) and is clearly a strong declining trend. There is a probability of 0.043 that this trend could occur by chance alone. No correction is required because all data are unique and without duplicates and the R^2 for the first order decay is 0.90 (p = 0.013), validating the model used to project future groundwater concentrations of VC.

Compliance Status Report and Compliance Status Certification Former Aratex Services, Inc.—670 DeKalb Avenue, Atlanta, Georgia Aramark Uniform & Career Apparel, LLC November 20, 2014

Conclusion and Discussion


The statistical analysis of post-remediation data appears to be appropriate based on the results of the Mann-Kendall analysis, and also on the knowledge of how these data are expected to progress assuming first-order biological decay as the primary model. VC concentrations after remediation appear to closely follow expectations and prior experience with these systems, and the resulting post-remediation declining trend is highly probable based on both Mann-Kendall trend analysis and also on the rather high goodness of fit (R²) for the assumed decay model. cis-1,2-DCE also follows this post-remediation declining trend; however, the probability that this downward trend is valid is in the range of 77% rather than the higher >95% probability seen with VC. Under no circumstances do these data show a post-remediation increasing trend. As with VC, the cis-1,2-DCE first order biological decay model shows data that fit an exponential decline (i.e., asymptotically approaching zero over time), although projection of a future compliance date cannot be accurate with this small data set.

										MA	NN-KENDALL STATISTIC CONSTRUCTION: PAIR SCORING
	Sample Date	Location I D	Parameter Name	Con.	Detection Limit	Units	Non Detect	2	. 3	4	5
1	6/2/2011	MW-403	cis-1,2-Dichloroethene	340	0	ug/L	FALSE				
2	10/8/2012	MW-403	cis-1,2-Dichloroethene	55	0	ug/L	FALSE	-:	l		
3	7/19/2013	MW-403	cis-1,2-Dichloroethene	27	0	ug/L	FALSE	-:	l -1		
4	1/13/2014	MW-403	cis-1,2-Dichloroethene	24	0	ug/L	FALSE	-:	l -1	-1	
5	7/11/2014	MW-403	cis-1,2-Dichloroethene	81	0	ug/L	FALSE	-3	1 1	1	1

SD (S) corrected =	= 0.73 Normalized for Comparision to Table 10-1, Appendix D of Unified Guide, Mark than 76.9% Trend= Decreasing	
Z Statistic =	0.73	Normalized for Comparision to Table 10-1, Appendix D of Unified Guide, March 2009
Probability Greater than	76.9%	Trend= Decreasing
Projection	> 2016	Current Projected Compliance Value

MANN-KENDALI	STASTIC COMPLITATION

IVIANN-RENDALL STASTIC COMPUTATION									
sort ctlf	Rank	Bin	t(Freq)	g	SD(S)				
24	1	1	1						
27	2	2	1						
55	3	3	1						
81	4	4	1						
340	5	5	1						
			S) corrected		4.08				
Pair Sum =	-4	Z Sta	itistic	=	0.73				

MANN-KENDALL STATISTIC CONSTRUCTION: PAIR SCORING

	Sample Date	Location I D	Parameter Name	Con.	Detection Limit	Units	Non Detect	2	3	4	5
1	6/2/2011	MW-403	Vinyl Chloride	1,600	0	ug/L	FALSE				
2	10/8/2012	MW-403	Vinyl Chloride	400	0	ug/L	FALSE	-1			
3	7/19/2013	MW-403	Vinyl Chloride	190	0	ug/L	FALSE	-1	-1		
4	1/13/2014	MW-403	Vinyl Chloride	80	0	ug/L	FALSE	-1	-1	-1	
5	7/11/2014	MW-403	Vinyl Chloride	140	0	ug/L	FALSE	-1	-1	-1	1

SD (S) corrected	=	4.08	SD (S) correct	ted for ties Per Unified Guidand	ce, March 2009	
Z Statistic	=	1.71	Normalized 1	for Comparision to Table 10-1, A	Appendix D of Unific	ed Guide, March 2009
Probability Greate	r than	95.7%	Trend=	Decreasing		
Projection	> 2	2016	Current Proj	ected Compliance Value		

MANN-KENDALE STASTIC COMPUTATION									
sort ctlf	Rank	Bin	t(Freq)	g	SD(S)				
80	1	1	1						
140	2	2	1						
190	3	3	1						
400	4	4	1						
1,600	5	5	1						
			ļ						
		SD (S) corrected	I =	4.08				
Pair Sum =	-8		atistic	=	1.71				
. 3 04	- U	_ 500			1.71				
1									

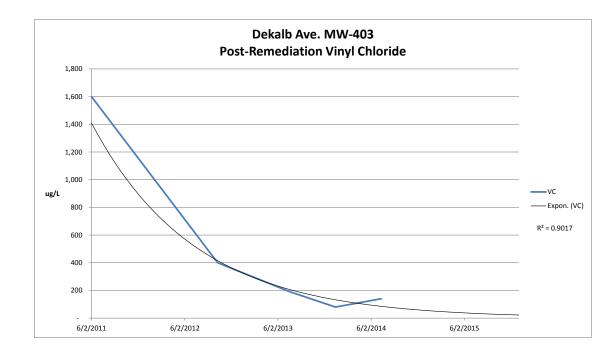


Table 1
VOC Groundwater Concentrations in MW-403
ARAMARK DeKalb Avenue

			04/20/06	05/16/06	08/18/06	11/10/06	12/17/06	02/09/07	06/01/07	09/19/07	12/06/07	03/11/08
Chlorinated VOCs		Type 1 RRS										
Tetrachloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<25	<5
1,1,1-Trichloroethane	μg/L	200	<5	NA								
Trichloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<25	<5
1,1-Dichloroethene	μg/L	7	<5	<5	<5	<5	<5	<5	<5	<5	<25	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<25	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5	<5	<25	<5
Chloroethane	μg/L	10*	67	14	11	35	29	<10	26	23	42	15
cis-1,2-Dichloroethene	μg/L	70	2,600	1,620	<5	<5	<5	304	<5	<5	<25	<5
trans-1,2-Dichloroethene	μg/L	100	14	9.6	<5	<5	<5	<5	<5	<5	<25	<5
Vinyl Chloride	μg/L	2	1,500	1,660	<2	<2	<2	<2	<2	<2	<10	<2
Aromatic Hydrocarbons												
Benzene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<25	<5
Ethylbenzene	μg/L	700	<5	<5	<5	<5	<5	<5	<5	<5	<25	<5
Toluene	μg/L	1,000	<5	<5	<5	<5	<5	<5	<5	<5	<25	<5
Chlorobenzene	μg/L	100	<5	NA								
Cyclohexane	μg/L	5*	<5	NA								
Naphthalene	μg/L	20	<5	16	3.9 J	<5	<5	<5	<5	<5	<25	<5
o-xylene	μg/L	10,000	<5	<5	<5	<5	<5	<5	<5	<5	NA	<5
m,p-Xylene	μg/L	10,000	<10	<5	4.8 J	<5	<5	<5	<5	<5	NA	<5
Xylenes, total	μg/L	10,000	NA	<5	<5	<5	<5	<5	<5	<5	<25	<5
Isopropylbenzene	μg/L	5*	<5	<5	<5	<5	<5	<5	<5	<10	<25	<5
Non-Chlorinated VOCs												
2-Butanone	μg/L	2,000	NA									
Acetone	μg/L	4,000	NA									
Bromomethane	μg/L	5*	NA									
Carbon Disulfide	μg/L	4,000	NA									

Notes:

RRS-Risk Reduction Standard

VOCs-volatile organic compounds

μg/L- micrograms per liter

mg/L-milligrams per liter

NA-not analyzed

*-Risk Reduction Standard based on Detection limit

NR-Not regulated

Exceeds Type 1 RRS

J- Estimated value. Presence of the compound was confirmed

Table 1

VOC Groundwater Concentrations in MW-403

ARAMARK DeKalb Avenue

			06/09/08	09/11/08	08/07/09	12/01/09	06/02/11	10/08/12	07/19/13	01/13/14	07/11/14
Chlorinated VOCs		Type 1 RRS									
Tetrachloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1,1-Trichloroethane	μg/L	200	NA	NA	<5	NA	<5	<5	<5	<5	<5
Trichloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethene	μg/L	7	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chloroethane	μg/L	10*	17	40	23	19	<4	<10	<4	<4	<4
cis-1,2-Dichloroethene	μg/L	70	<5	165	700	170	340	55	27	24	81
trans-1,2-Dichloroethene	μg/L	100	<5	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl Chloride	μg/L	2	<2	108	750	350	1,600	400	190	80	140
Aromatic Hydrocarbons											
Benzene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Ethylbenzene	μg/L	700	<5	<5	<5	<5	<5	<5	<5	<5	<5
Toluene	μg/L	1,000	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene	μg/L	100	NA	NA	<5	NA	<5	<5	<5	<5	<5
Cyclohexane	μg/L	5*	NA	NA	<5	NA	<5	<5	<5	<5	<5
Naphthalene	μg/L	20	<5	<5	<5	<5	<5	<5	<5	<5	<5
o-xylene	μg/L	10,000	<5	<5	<5	<5	<5	<5	<5	<5	<5
m,p-Xylene	μg/L	10,000	<5	<5	<5	<5	<5	<5	<5	<5	<5
Xylenes, total	μg/L	10,000	<5	<5	<5	<15	<5	<5	NA	NA	NA
Isopropylbenzene	μg/L	5*	<5	<5	<5	<5	<5	<5	<5	<5	<5
Non-Chlorinated VOCs											
2-Butanone	μg/L	2,000	NA	NA	<50	NA	<50	<50	<50	<50	<50
Acetone	μg/L	4,000	NA	NA	<50	NA	<50	<50	<50	<50	<50
Bromomethane	μg/L	5*	NA	NA	<5	NA	<5	<5	<5	<5	<5
Carbon Disulfide	μg/L	4,000	NA	NA	<5	NA	<5	<5	<5	<5	<5

Notes:

RRS-Risk Reduction Standard

VOCs-volatile organic compounds

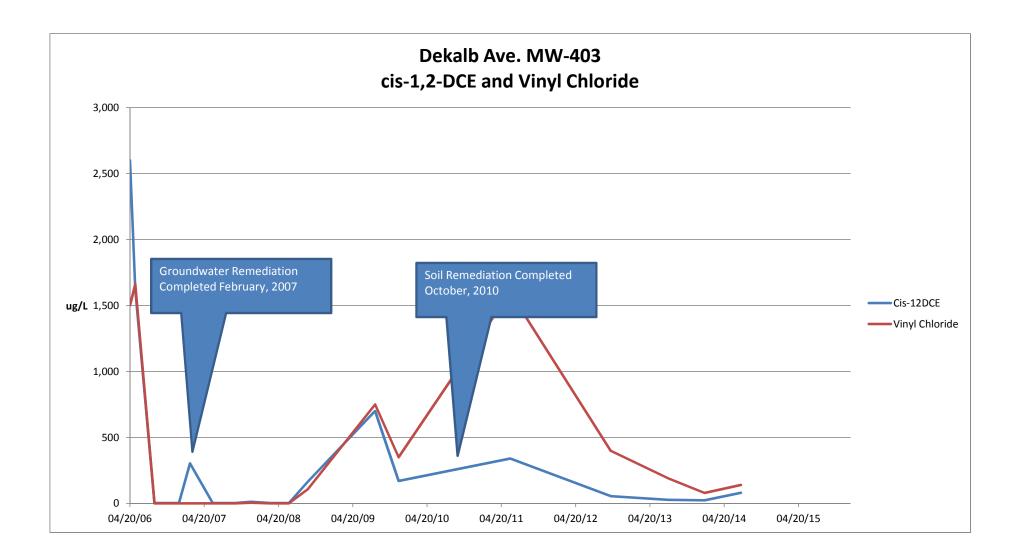
μg/L- micrograms per liter

mg/L-milligrams per liter

NA-not analyzed

*-Risk Reduction Standard based on Detection limit

NR-Not regulated


Exceeds Type 1 RRS

J- Estimated value. Presence of the compound was confirmed

Figure M-1. Cis-1,2-Dichloroethene and Vinyl Chloride Trend Analysis.

Aramark DeKalb HSI/VRP Site No. 10704

Atlanta, Georgia

