COMPLIANCE STATUS REPORT AND COMPLIANCE STATUS CERTIFICATION

Former Dynamic Metals 690 DeKalb Avenue Parcel Atlanta, Fulton County, Georgia

Hazardous Site Inventory/Voluntary Remediation Program Site #10704

AEM Project No. 1133-1401-6

April 28, 2014

Prepared For:

Aramark Uniform & Career Apparel, LLC 115 North First Street Burbank, California 91502

Prepared By:

Environmental Consulting, Engineering, Hydrogeologic Services 2580 Northeast Expressway • Atlanta, Georgia 30345 Office (404) 329-9006 • Fax (404) 329-2057

COMPLIANCE STATUS CERTIFICATION

I certify under penalty of law that this report and all attachments were prepared under my direction in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Based on my review of the findings of this report with respect to the risk reduction standards of the Rules for Hazardous Site Response, Rule 391-3-19-.07, I have determined that soil at the Former Dynamic Metals Site, Parcel 14-0020-0000-202-4, 690 DeKalb Avenue, Fulton County, Georgia, is in compliance with the Type 1 Risk Reduction Standard for select volatile organic compounds (VOCs).

Although groundwater beneath the Former Dynamic Metals parcel is not in compliance with Type 1 RRSs for the VOCs cis-1,2-dichloroethene and vinyl chloride, the identified VOCs are degradation products from source material and VOC impacts in groundwater at the former Aratex site located at 670 DeKalb Avenue, also a part of Hazardous Sites Inventory (HSI)/ Voluntary Remediation Program Site No. 10704.

Reported releases to groundwater in January 2014 did not exceed HSRA Reportable Quantity per the Reportable Quantity Screening Method (RQSM). In accordance with §12-8-107(g)(2) of the VIRP, corrective action for groundwater is not required, nor is certification of compliance required for groundwater.

Doug Helmstetler

Senior Director, Environmental Compliance

and Sustainability

Aramark Uniform & Career Apparel, LLC

28/2014

PROFESSIONAL GEOLOGIST CERTIFICATION

I certify that I am a qualified groundwater scientist who has received a baccalaureate or postgraduate degree in the natural sciences or engineering and have sufficient training and experience in groundwater hydrology and related fields, as demonstrated by state registration and completion of accredited university courses, that enable me to make sound professional judgments regarding groundwater monitoring and contaminant fate and transport. I further certify that this report was prepared by me or by subordinates working under my direction.

Tony L Gordon, P.G. #1170

Senior Project Geologist

Atlanta Environmental Manage in entilino

April 28, 3014

TABLE OF CONTENTS

Com	nplian	ce Stati	us Certification	i	
Prof	essior	nal Geo	ologist Certification	ii	
Tabl	e of C	Content	S	iii	
Exe	cutive	Summ	ary	vi	
1.0	Introduction				
	1.1	Site History			
	1.2	Objective			
	1.3	Report Organization			
2.0	Site Geology and Groundwater Flow				
	2.1	Regional Geology			
		2.1.1	Site Bedrock Geology	2-1	
		2.1.2	Site Residuum Geology	2-1	
	2.2	Regional Hydrogeology			
	2.3	Site Hydrogeology			
		2.3.1	Groundwater Occurrence	2-2	
		2.3.2	Groundwater Flow Direction and Hydraulic Gradient	2-3	
		2.3.3	Hydraulic Conductivity	2-3	
		2.3.4	Groundwater Flow Rate	2-4	
3.0	Site Background and Source Area Description				
	3.1	Site D	escription	3-1	
	3.2	Responsible Parties			
	3.3	Land Use and Operations History			
	3.4	Site-Specific Chemicals of Interest			
	3.5	Potential Sources			
		3.5.1	Underground Storage Tanks	3-3	
		3.5.2	Dry-Cleaning Operations Area	3-3	
		3.5.3	Northwest Property Corner	3-3	
	3.6	Potential Release Mechanisms		3-4	
	3.7	Human and Environmental Receptors			
	3.8	Risk Reduction Standards			

TABLE OF CONTENTS (CONTINUED)

4.0	Soil Analytical Results					
	4.1	1992 I	DePaul Investigation	4-1		
	4.2	2 1999 QORE Phase I/Phase II Environmental Site Assessment				
	4.3	.3 2000 Pickering Phase II Environmental Site Assessment				
	4.4	4 2001 Bock Environmental Site Assessment				
5.0	Corrective Action					
	5.1	In Situ Chemical Oxidant Injections				
	5.2	Soil Blending With Chemical Oxidant				
6.0	Groundwater Monitoring			6-1		
	6.1	Historical Groundwater Monitoring		6-1		
		6.1.1	Pre-Corrective Action Monitoring	6-1		
		6.1.2	Post–Corrective Action Monitoring	6-4		
	6.2	2014	Groundwater Monitoring Event	6-7		
		6.2.1	Depth-to-Groundwater Measurements	6-7		
		6.2.2	Groundwater Sampling Event	6-8		
7.0	Monitoring Well Abandonment7-			7-1		
8.0	Summary and Conclusions8-1					
9.0	References9-					

LIST OF TABLES

TABLE

- 1 Summary of Historical Soil Sample Analytical Results
- 2 Type 1 Soil and Groundwater Risk Reduction Standards
- 3 Summary of Constituents of Concern Detected in Groundwater, January 2014
- 4 Monitoring Well Construction Details

LIST OF FIGURES

FIGURE

1	Facility Location
2	670 and 690 DeKalb Avenue Site Layout
3	Historical VOCs and Metals for Soil Detected Above Laboratory Reporting Limits
4	Water Table Elevations, Shallow Residuum Aquifer Zone, January 6, 2014
5	2005 Sodium Permanganate Pilot Test Injection Locations
6	2006 Full Scale In Situ Chemical Oxidation Corrective Action
7	Limits of Soil Excavation and Soil Blending, 2010
8	Historical Groundwater Sample Locations
9	Tetrachloroethene in Groundwater, January 2014
10	Trichloroethene in Groundwater, January 2014
11	cis-1,2-Dichloroethene in Groundwater, January 2014
12	Vinyl chloride in Groundwater, January 2014
13	Total VOCs in Groundwater Pre and Post Soil Blending

LIST OF ATTACHMENTS

ATTACHMENT

Ą	Groundwater Elevation Data, 2001–2014
В	Legal Description of the 690 DeKalb Avenue Parcel
2	Available Historical Soil Boring Logs/Monitoring Well Construction Logs
)	Historical Groundwater Analytical Data
Ε	January 2014 Laboratory Analytical Reports
F	Time Trend Charts
G	January 2014 Field Sampling Logs

EXECUTIVE SUMMARY

The former Dynamic Metals site (the Site) is listed as one of two parcels known as the Aramark Uniform and Career Apparel, LLC (Aramark) DeKalb Avenue site on the Hazardous Site Inventory (HSI). Along with a second parcel (former Aratex site located at 670 DeKalb Avenue), the Aramark DeKalb HSI Site has been issued HSI Number 10704. A facility location map is provided as Figure 1.

The former Dynamic Metals Site is located at 690 DeKalb Avenue, which occupies an area of approximately 1.245 acres. A large pile of clean soil (fill material) is currently situated on the southeast portion of the parcel. A detailed Site map is provided as Figure 2.

Sanborn Maps indicate that the Dynamic Metals property was developed as individual residential properties from as early as 1911 until as late as 1981. After 1981, AEM understands that the Dynamic Metals Site was used to park truck trailers and to store scrap metal in recycling bins. Aramark purchased the Site in 2002; however, the Site use remained idle and no operations have been conducted on the Site.

Between 1992 and 2001, sixteen soil borings were completed on the Site (see Figure 3). Eight of those soil borings were converted to monitoring wells (MW-104 through MW-111). A total of thirty-two soil samples were collected from the sixteen soil borings. Vinyl chloride was the only volatile organic compound (VOC) detected in soil above Type I Risk Reduction Standards (RRSs) at soil boring BH-2 (see Table 1). However, based on further evaluation it was determined that this soil sample was actually collected well below the water table and thus is not considered a true soil sample. Type I RRSs for soil and groundwater are presented in Table 2.

The Type I RRS for soils were calculated in accordance with HSRA Rule 391-3-19.07(6)(c) and are presented in the revised Voluntary Remediation Program Application (dated July 25, 2011) and the voluntary Remediation Program Work Plan (VIRP) that was approved by Georgia EPD on November 20, 2012. Thus, Aramark certifies that the Site is in compliance with RRS per Rule 391-3-19-.07.

Monitoring wells MW-104 through MW-111, MW-210 and MW-211, and MW-402 and MW-403 are currently located on the Site (see Figure 2). Historical assessments have identified the presence of chlorinated and aromatic (petroleum) VOCs in groundwater at monitoring wells MW-108 and chlorinated VOCs in groundwater at monitoring wells MW-109 and MW-403. Currently monitoring wells MW-104, -105, -106, -107, and -108 are located underneath the soil pile on the Site and have not been sampled since 2006. Based on the January 2014 groundwater sampling event, only cis-1,2-dichloroethene (cis-1,2-DCE) and vinyl chloride exceed Type 1 RRSs in groundwater (see Table 3). Based on a review of historical groundwater analytical results, concentrations of chlorinated VOCs in groundwater are declining.

Although cis-1,2-DCE and vinyl chloride have recently been detected in groundwater above Type 1 RRSs at one monitoring well (MW-403) on the Former Dynamic Metals site, the

concentrations exhibit a decreasing trend. Additionally, these VOCs are degradation products of tetrachloroethene (PCE) and trichloroethene (TCE), source material associated with the adjacent Former Aratex site (690 DeKalb Avenue parcel). Thus, the groundwater impacts at the Former Dynamic Metals Site are not a result of historical releases at the subject parcel.

Reported releases to groundwater in January 2014 did not exceed HSRA Reportable Quantity per the Reportable Quantity Screening Method (RQSM). In accordance with §12-8-107(g)(2) of the VIRP, corrective action for groundwater is not required, nor is certification of compliance required for groundwater.

This Compliance Status Report (CSR) and Compliance Status Certification presents historical data collected and includes water table elevation contour maps, soil analytical data summary tables, groundwater analytical data summary tables, and historical time trend charts for select groundwater monitoring wells. The purpose of this CSR and Compliance Status Certification is to demonstrate that the soil at the former Dynamic Metals Site is below the Type 1 RRSs for VOCs and to request that the site be removed from the HSI.

SECTION 1.0 INTRODUCTION

Aramark Uniform & Career Apparel, LLC (Aramark) retained Atlanta Environmental Management, Inc. (AEM) to prepare a Compliance Status Report (CSR) and Compliance Status Certification documenting soil and groundwater assessment activities at the former Dynamic Metals parcel of the Aramark DeKalb Hazardous Site Inventory (HSI)/Voluntary Remediation Program Site No. 10704 (HSI Site). A facility location map is provided as Figure 1. The former Dynamic Metals parcel (the Site) is one of two separate property parcels that compose the Aramark DeKalb Avenue HSI Site. The former Dynamic Metals parcel is located at 690 DeKalb Avenue (see Figure 2). The second parcel (former Aratex site) is located at 670 DeKalb Avenue. The necessity and requirements for a CSR are outlined in Hazardous Site Response Act (HSRA) Rule 391-3-19-.06 (Georgia DNR, 2003).

Historically both parcels of the HSI site were treated as a single unit and previous investigations and CSRs included both parcels. This CSR addresses the former Dynamic Metals parcel ("Site) separately from the former Aratex parcel, in an effort to show that the Site is in compliance with the Georgia Environmental Protection Division (EPD) HSRA Rules and therefore will be removed from the HSI.

The initial CSR for the entire HSI Site (670 & 690 DeKalb Avenue parcels) was submitted to the Georgia Environmental Protection Division (EPD) on June 13, 2003 (AEM, 2003). EPD subsequently provided comments on the CSR in correspondence to Aramark, which required additional investigation at the HSI site. Further CSR soil and groundwater assessment activities were implemented between 2003 and 2005 and were subsequently included within the revised CSRs submitted by AEM on July 14, 2004, January 7, 2005, and March 15, 2006. A final CSR encompassing both parcels was submitted by MACTEC Engineering and Consulting, Inc. (MACTEC) to Georgia EPD's HSI Program in June 2006 (MACTEC, 2006).

1.1 SITE HISTORY

The Site is located at 690 DeKalb Avenue and occupies an area of approximately 1.245 acres (see Figure 2). A large soil pile is currently situated on the southeast portion of the parcel (see Figure 2). A more detailed site description is provided in Section 3.0.

Since the late 1940s, the adjacent former Aratex parcel was utilized as a commercial uniform laundry cleaning facility. Dry-cleaning operations were conducted at the Aratex parcel for more than 20 years and included the use of chlorinated solvents and mineral spirits. Drycleaning operations ceased in 1989. Aratex subsequently closed in 1995.

A release of chlorinated solvents, predominately tetrachloroethene (PCE), to the soil and groundwater at the former Aratex parcel was identified as part of an unrelated underground storage tank (UST) assessment performed between 1990 and 1992. In October 1994, Aramark submitted a release notification to the Georgia Environmental Protection Division (EPD) HSRA

program. In response to the notification, a "no listing" letter was issued from the HSRA program in April 1995. Subsequent environmental site assessments performed at the former Dynamic Metals parcel in 1999 and 2000 provided additional soil and groundwater data from both the 670 and 690 DeKalb Avenue properties. In October 2001, both parcels (670 & 690 DeKalb Avenue) were listed on the HSI as the Aramark DeKalb site.

In July 2011, Aramark submitted a Voluntary Remediation Program Application (dated July 25, 2011) and the voluntary Remediation Program Work Plan (VIRP) to enter both parcels into the Georgia EPD VRP Program. The VRP Application and VIRP Work Plan were approved by Georgia EPD on November 20, 2012.

No reported releases of chlorinated solvents or petroleum hydrocarbons occurred at the former Dynamic Metals parcel. Likewise, no impacted soil or source area (contaminated soil) was identified at the Site during subsequent investigations performed. Therefore, the most likely source of chlorinated VOC impact to groundwater at the Site appears to be operations conducted at the adjacent former Aratex parcel.

Chlorinated VOC impact to groundwater at the Site has historically been the degradation products of PCE and trichloroethene (TCE), the source material associated with operations conducted at the adjacent Aratex parcel. Although cis-1,2-dichloroethene (cis-1,2-DCE) and vinyl chloride continue to be reported at the Site within groundwater above Type 1 RRSs, as of 2011 the VOC concentrations exhibit a decreasing trend (see Section 6.1). As such, groundwater impacts at the former Dynamic Metals Site are not a result of historical releases at this site but are interpreted as the result of the migration of impacted groundwater from the source area located at the former Aratex property.

Corrective action activities that were performed at the Site, which include *in situ* chemical oxidation injections, are discussed in Section 5.0. Likewise, corrective action efforts implemented at the adjacent former Aratex parcel, which indirectly affect groundwater quality at the site, are also discussed in Section 5.0.

1.2 OBJECTIVE

The purpose of this *CSR* and *Compliance Status Certification* is to demonstrate that the soil at the former Dynamic Metals parcel is below the Type 1 RRSs for VOCs and to request that the site be removed from the HSI. This CSR was compiled on the basis of property conditions that were primarily characterized through a series of investigations and remedial activities performed at the Site by AEM and MACTEC, between April 2001 and January 2014. However, other data collected between 1999 and 2001 are also presented. The data collected include water table elevation contour maps, soil analytical data summary tables, groundwater analytical data summary tables, and historical time trend charts for the select groundwater monitoring wells.

1.3 REPORT ORGANIZATION

The report organization is provided in the following bulleted list.

- Section 2 contains a summary of regional and local geology-hydrogeology.
- Section 3 contains a background description of the former facility, historical land use, contaminant source area(s), contaminant of concern, and release history.
- Section 4 contains a description of historical soil analytical results from previous investigations.
- Section 5 contains a description of the groundwater corrective action implemented at the 670 & 690 DeKalb Avenue properties.
- Section 6 contains a description of historical groundwater monitoring results from previous investigations.
- Section 7 contains the summary monitoring well abandonment procedures.
- Section 8 contains the summary and conclusions.
- Section 9 contains the list of references
- Attachment A contains a summary of groundwater elevation data collected between 2001 and 2014.
- Attachment B contains a legal description for the 690 DeKalb Avenue parcel.
- Attachment C contains available soil boring logs.
- Attachment D contains a summary of historical groundwater analytical data collected between 1990 and 2014.
- Attachment E contains the January 2014 Laboratory Analytical Reports.
- Attachment F contains select monitoring well construction logs.
- Attachment G contains time trend charts for contaminants in groundwater at select monitoring wells.
- Attachment H contains the January 2014 field sampling forms.

SECTION 2.0 SITE GEOLOGY AND GROUNDWATER FLOW

2.1 REGIONAL GEOLOGY

The former Aramark facility is located in the Winder Slope District (WSD) of the Georgia Southern Piedmont Physiographic Province (Clark and Zisa, 1976). The geology of the Southern Piedmont, within the Greater Atlanta Area, consists primarily of Late Proterozoic to Lower Paleozoic interlayered schist, gneiss, and amphibolites that have been intruded by upper Paleozoic (Carboniferous) granite. Numerous dome-shaped granitic mountains, such as Stone Mountain, are located along the narrow, rounded stream divides. The WSD slopes gradually from an elevation of 1,000 feet in the north to 700 feet at the southern edge.

The gently rolling topography of the WSD is dissected by the headwater tributaries of major regional streams. North of the MARTA tracks bordering the subject property, the streams drain toward tributaries of the Chattahoochee River while, south of the MARTA tracks, the streams drain toward tributaries of the South River. As the Chattahoochee River is part of the Gulf of Mexico drainage system and the South River is part of the Atlantic Ocean drainage system, the drainage divide beneath the MARTA tracks is of regional significance.

The topography on the northern portion of the Site slopes down to the south and southwest from an elevation of approximately 1,026 feet along the northern property boundary near Edgewood Avenue toward Gunby Street. The topography on the southern portion of the site slopes down to the west and south from high areas at elevations of approximately 1,020 feet along the eastern property line and DeKalb Avenue toward Gunby Street. Gunby Street in turn drains toward the low, wet area on the adjacent Aratex parcel (670 DeKalb Avenue).

2.1.1 Site Bedrock Geology

The Site is underlain by metamorphic bedrock of the Late Proterozoic to Middle Ordovician Clarkston Formation (Higgins et al., 2003). In general, the Clarkston Formation (undifferentiated) consists of medium-grained, lustrous, pink- to purple-weathering sillimanite schist with lesser amounts of fine-grained, dark green amphibolite. This formation includes a unit composed only of biotite-muscovite schist (Fairburn Member) and a unit similar to the Clarkston undifferentiated (Tar Creek Member).

2.1.2 Site Residuum Geology

The residuum, derived from extensive weathering of the underlying parent bedrock, consists of the unconsolidated soil and saprolite. Surficial soil consists primarily of interlayered, red to orange brown, gray, micaceous, sandy silt to silty sand and silty-sandy clay. The saprolite consists of interlayered, orange brown-gray-tan-white-gold, micaceous, sandy silt to silty sand and silty-sandy clay, with trace quartz fragments (gravel). The saprolite contains remnant textural features (mottling/banding), indicative of the parent bedrock. Based on select

soil borings completed to auger refusal, the thickness of the residuum at the combined Aramark DeKalb HSI Site ranges from 75 to 109 feet.

2.2 REGIONAL HYDROGEOLOGY

The metamorphic rocks of the Southern Piedmont are generally not considered good producers of groundwater, except where secondary porosity occurs in the form of fractures, faults, and joints. Groundwater occupies these secondary openings, where present, as well as pore spaces in the overlying mantle of residuum soil and saprolite. Water recharges the subsurface openings in the bedrock by the seepage of precipitation through the residuum, or by flowing directly into openings in bedrock where exposed.

The subsurface bedrock beneath the Site is part of Water-Bearing Unit "A" of Cressler, Thurmond, and Hester (1983). Water-Bearing Unit A is a complex aquifer consisting of interlayered amphibolites, gneiss, and schist in varying proportions and thicknesses. The contact zones between the contrasting rock types have the potential for developing increased permeability and providing groundwater to wells. Wells within the unit may penetrate several permeable contact zones that contribute to the total yield. For the Greater Atlanta Area, well yields for this water-bearing unit range from 20 to 275 gallons per minute (GPM), averaging 56 GPM.

As is typical for the residuum overburden in the Georgia Piedmont, the water-table surface is generally a subdued image of the land surface, with groundwater within this aquifer flowing from higher to lower topographic relief. The residuum aquifer zone is recharged locally by precipitation that infiltrates through the shallow soil and/or saprolite down to the water table. Groundwater movement within this zone is characterized as porous-type flow. Wells screened within the residuum typically yield less than 1 GPM.

2.3 SITE HYDROGEOLOGY

2.3.1 Groundwater Occurrence

With the exception of MW-214 on 670 DeKalb Avenue, the current monitoring well network at the HSI Site was completed in the shallow residuum. Monitoring well MW-214 was installed in the deep residuum aquifer zone to a depth of approximately 75 feet below land surface. A location map for the current monitoring well network is included as Figure 2. A historic well construction summary table for the wells installed at the HSI Site from 1990 to 2013 is included as Table 4. Groundwater has been encountered within the residual soil and saprolite at depths ranging from less than 5 feet to just over 16 feet. More typically, the water table is encountered between depths of 8 and 12 feet. Historic groundwater elevations are summarized in Attachment A.

The discontinuous clay layers present in the saprolite appear to restrict the vertical migration of water. The areas where fill is present, including the excavated former dry-cleaning area on the adjacent former Aratex parcel (see Section 5.0), respond much more rapidly to

rainfall infiltration than the undisturbed areas. The increased storage capacity of the fill materials, particularly where the fill overlies clay-rich saprolite, affects the local groundwater flow in those areas.

2.3.2 Groundwater Flow Direction and Hydraulic Gradient

A water table elevation contour map for January 6, 2014, from the existing monitoring well network for the entire Aramark DeKalb HSI Site is provided as Figure 4. Groundwater within the shallow residuum at the Site was observed to flow toward Edgewood Avenue and DeKalb Avenue. Near DeKalb Avenue, groundwater flow within the water table aquifer at the DeKalb Site is toward the east-southeast, mimicking the surface topography (see Figure 4).

Groundwater flow within the water table aquifer at the adjacent former Aratex parcel generally migrates from the west toward Gunby Street and the Site. Near the end of Gunby Street, groundwater flows to the north through a trough (see Figure 4). The direction of groundwater flow beyond the northern property boundary is toward the headwaters of Lullwater Creek northeast of the property.

The horizontal hydraulic gradient in the shallow residuum aquifer zone across the entire Aramark HSI Site, for January 6, 2014, ranged from 0.006 to 0.033 ft/ft, averaging 0.024 ft/ft. The vertical gradients, as measured from the well midpoint screen for cluster wells MW-202/MW-208P (0.179 ft/ft), MW-409/MW-409D (0.000 ft/ft), and MW-213/MW-214 (0.014 ft/ft), were generally downward on January 6, 2014. The highest vertical gradient (0.179 ft/ft) was measured between residuum well MW-202 and adjacent shallow well MW-208P, which was installed within the surficial fill material. Well cluster MW-213/MW-214 was installed in 2013 to replace abandoned well cluster MW-103/MW-103D. Both well sets were installed within the shallow and deep water-bearing zones of the surficial aquifer. Downward hydraulic gradients, ranging from 0.008 to 0.038 ft/ft, were also measured from former well cluster MW103/MW-103D between April 2003 and July 2004 (MACTEC, 2006).

2.3.3 Hydraulic Conductivity

A rising head slug test was performed in May 1991 (DePaul, 1991) for former monitoring well MW-2, located near the Edgewood Avenue Bridge on the former Aratex parcel. MW-2 was screened below any surficial fill material, within the residuum to a depth of 26 feet below land surface. Hydraulic conductivity of 1.1 x 10⁻⁴ centimeter per second (cm/sec) or 0.32 foot/day was calculated for the residuum aquifer zone well. This hydraulic conductivity is within the typical range for silty sands.

2.3.4 Groundwater Flow Rate

The seepage velocity (v_s) of a conservative, unretarded contaminant in a homogeneous aquifer is calculated as follows:

$$v_s = -\frac{Kdh}{n_s dl}$$
 where:

 v_s = seepage velocity,

K = hydraulic conductivity (distance/time),

dh/dl = hydraulic gradient (dimensionless), and

 n_e = effective porosity (dimensionless).

A seepage velocity of approximately 0.03 foot/day was calculated using the average hydraulic gradient (0.024 ft/ft) observed in the shallow residuum water table aquifer on January 6, 2014, the hydraulic conductivity value of 1.1 x 10⁻⁴ cm/sec (0.32 ft/day) calculated from the slug test conducted on well MW-2 (DePaul, 1991), and an assumed effective porosity of 30 percent (0.30) for a silty sand. Seepage velocity represents the rate of groundwater movement along sinuous flow paths through pore spaces around the clay, silt, and sand grains within an aquifer. Seepage velocity overestimates the actual lateral flow velocity from one point to another because the flow paths are sinuous. Thus, in practice, VOCs are typically less mobile than would be expected from estimates of seepage velocity, because of the sinuosity of groundwater flow paths, because of VOC adsorption to clays (retardation), and because of VOC degradation processes.

SECTION 3.0 SITE BACKGROUND AND SOURCE AREA DESCRIPTION

3.1 SITE DESCRIPTION

The Site is located at 690 DeKalb Avenue on approximately 1.245 acres in a mixed industrial/commercial/residential setting within the Atlanta city limits in Fulton County, Georgia (see Figure 1). A large stock-pile of soil, dated back to 2005, is currently situated on the southeast portion of the parcel (see Figure 2).

The Site coordinates are latitude 33° 45′ 44″ north and longitude 84° 21′ 53″ west as estimated from the North Atlanta 7.5-minute topographic map (dated 1997). Excluding the soil stock-pile, the topography elevation across the Site ranges from 1,015 feet near the northeast corner of the site to 1,010 feet near the end of Gunby Street. Consequently, surface water runoff from the site is toward Gunby Street. Current Site topographic elevations, including the soil stockpile, are depicted in Figure 3.

3.2 RESPONSIBLE PARTIES

Aramark Uniform & Career Apparel, Inc., is the current owner of the 690 DeKalb Avenue parcel of the HSI Site, which, as defined by HSRA, consists of the 670 & 690 DeKalb Avenue parcels. The owner's address and site contact is presented below. Attachment B contains the legal description regarding the Site.

HSRA Site Contact

Mailing Address

Mr. Doug Helmstetler Manager, Environmental Health & Safety Aramark Uniform & Career Apparel, LLC 115 North First Street Burbank, California 91502 tel. (818) 973-3772

3.3 LAND USE AND OPERATIONS HISTORY

The Site is located west of the intersection of DeKalb Avenue and Krog Street (see Figure 1). Gunby Street lies to the immediate west of the Site. Farther west is the former Aratex Services parcel located at 670 DeKalb Avenue. North of the Site is a residential development (Skyline at Edgewood). Residential and commercial properties are located west of the Site. DeKalb Avenue is located south of the Site, followed by railroad and the Metropolitan Atlanta Rapid Transit Authority. Current access to the Site is via Gunby Street.

Sanborn Maps indicate that the former Dynamic Metals property was developed as individual residential properties from as early as 1911 until as late as 1986. Historical information, including aerial photography, indicates that the Site was previously used, as

recently as April 2000, to park truck trailers and to store scrap metal in recycling bins. As of 2002, no vehicles or recycling bins were evident on site. Aramark purchased the Site in 2002; however, the Site use remained idle and no operations have been conducted on the Site.

3.4 SITE-SPECIFIC CHEMICALS OF INTEREST

Site-specific chemicals of interest (COI) are chlorinated volatile organics and to a lesser degree petroleum aromatic volatile organics that were identified during the initial environmental assessments performed between 1992 and 2001 (see Sections 4.1 to 4.4). The primary COIs are PCE, along with its daughter byproducts TCE, cis-1,2-DCE, trans-1,2-dichloroethene (trans-1,2-DCE), and vinyl chloride. (see Table 1). Trace levels of petroleum hydrocarbons, related to the UST release from the adjacent former Aratex parcel, have also been reported within soil and groundwater at the Site but at concentrations well below their respective Type I RRSs. Type 1 RRSs for soil COIs are presented in Table 2.

Of the list of aromatic and chlorinated VOCs detected in soil samples collected from the Site (see Table 1), only vinyl chloride was detected above Type I RRSs. However, these elevated detections were obtained from a single soil sample (BH-2), which was collected well below the water table.

Historically, groundwater COIs consisted of benzene, PCE, TCE, 1,1-dichloroethene (1,1-DCE), cis-1,2-DCE and vinyl chloride that exceeded their respective Type I RRSs. Type 1 RRSs for groundwater COIs are presented in Table 2. As of January 2014, only cis-1,2-DCE and vinyl chloride have been detected in groundwater at one monitoring well (MW-403) at the Site. Concentrations of these COIs exceeded their respective Type I RRSs (see Table 3).

3.5 POTENTIAL SOURCES

As discussed earlier, no historical releases of chlorinated solvents and/or petroleum hydrocarbons (from the UST release) have been reported at the former Dynamic Metals parcel. Likewise, no impacted source area (contaminated soil) was identified at the Site during all subsequent investigations. Consequently, groundwater impacts at the Site are attributed to historical releases from the former Aratex parcel and the subsequent migration of impacted groundwater from the source area(s) to the Site. COI concentrations in groundwater have decreased over time and all constituents except vinyl chloride are now below their respective Type 1 RRSs (see Table 3).

The potential source areas identified at the former Aratex parcel, which may have impacted groundwater quality at the adjacent Dynamic Metals parcel, include the former mineral spirits UST, the former dry-cleaning area, and the impacted soil at the far northwest corner of the former Aratex parcel (see Potential Source Areas on Figure 2). The following sections provide a brief overview of potential off-site source areas.

3.5.1 **Underground Storage Tanks**

In 1989, two mineral spirits USTs were abandoned in place while one gasoline UST and one diesel UST were removed by Farlow Environmental Engineers, Inc. (Farlow). approximate UST locations on the former Aratex parcel are depicted in Figure 2. The two mineral spirits USTs were located beneath the former Aratex building within the dry-cleaning operations area while the fuel USTs were located north of the building. A fifth UST, unearthed during the subsequent soil excavation activities performed by MACTEC in 2006, was located beneath the former building within the dry-cleaning area (MACTEC, 2006). Subsequent testing of this tank's contents indicates that this tank likely stored PCE (see Section 2.5.2).

During the 1989 tank closure activities, a release from the mineral spirits USTs was identified and was subsequently reported to Georgia EPD Underground Storage Tank Management Program (USTMP) (Farlow, 1989). No releases were reported from the gasoline or diesel UST locations. The aromatic compounds identified in the soils at the site include benzene, toluene, ethylbenzene, xylenes, isopropylbenzene, naphthalene, n-butylbenzene, secbutylbenzene. cyclohexane. methylcyclohexane, p-isopropyltoluene, n-propylbenzene, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenzene.

The results of subsequent contaminant assessments of the UST release were provided in the Site Characterization Contaminant Assessment Progress Report (DePaul, 1990), the Contaminant Assessment Phase II Progress Report (DePaul, 1991), and the Contaminant Assessment Phase II Task-2 Progress Reports (DePaul, 1992). Per Georgia EPD's request (dated December 17, 1991), a Corrective Action Plan-Soil Vapor Extraction Remediation Plan (DePaul, 1993) was submitted to USTMP. As part of this plan, a soil vapor extraction (SVE) system was installed in July 1993 and operated for a short time. On September 3, 2006, USTMP issued a "no further action" (NFA) letter for the UST release at the Aratex facility (Facility ID: 0600608).

3.5.2 **Dry-Cleaning Operations Area**

Dry-cleaning operations were reportedly conducted within the southwest corner of the former Aratex building (see Figure 2) for a period of more than 20 years. A release of chlorinated solvents (predominately PCE) and mineral spirits to the soil and groundwater beneath the former Aratex building site was identified during the UST assessment performed between 1990 and 1992 (see Section 2.5.1). As a result of this release, the Aramark DeKalb site was listed on the HSI in October 2001. The chlorinated organic compounds identified in the soils at the former dry-cleaning area include PCE, TCE, cis-1,2-DCE, trans-1,2-DCE, 1,1-dichloroethene (1,1-DCE), vinyl chloride, and 1,1,1-trichloroethane (1,1,1-TCA).

Northwest Property Corner 3.5.3

No historical facility operations were reported at the northwest corner of the former Aratex parcel, which parallels the former Norfolk Southern railroad line (current Atlanta Beltline) and abuts the city of Atlanta right-of-way for Edgewood Avenue (see Figure 2). Likewise, no

virgin or waste chemicals were reportedly stored at this location. Historical aerial photographs depict a small structure (shed) at this location; however, with the exception of a concrete pad, nothing currently remains of this shed.

Delineation of the lateral and vertical extent of impacted soil and fill material at this source area, to Type 1 RRSs, was completed by AEM in 2013 (AEM, 2013). The chlorinated VOCs identified in the soil near the northern property boundary include PCE and its degradation products TCE, cis-1,2-DCE, trans-1,2-DCE, 1,1-DCE, and vinyl chloride. PCE concentrations ranging up to 45,000 µg/kg were detected from soil boring GP-9D, located near the northwest corner of the property. However, only low levels of PCE (up to 26 µg/L) were reported from a groundwater sample collected from this source area. Consequently, based on its location (hydrologically downgradient of the 690 DeKalb Avenue property) and the groundwater contaminate detected, the Northwest Property Corner is not a probable source for the VOC groundwater plume detected at the adjacent former Dynamic Metals property.

3.6 POTENTIAL RELEASE MECHANISMS

The actual quantity, time-line, and virgin chemical composition of releases associated with any potential source areas at the former Aratex facility are not known. It is estimated that the release of chlorinated solvents and Stoddard solvents (mineral spirits) occurred between the 1950s and 1989, although the mineral spirit USTs were last used in 1985.

The release(s) of the mineral spirits, beneath the former building, were the probable result of the leaking USTs or underground tank lines. Additionally, smaller amounts of Stoddard solvents may also have spilled during facility operations. Likewise, the release(s) of PCE may have derived from a leaking tank or tank lines (see Section 3.5.1) or during the dry-cleaning operations.

3.7 **HUMAN AND ENVIRONMENTAL RECEPTORS**

No reported releases of chlorinated solvents or petroleum hydrocarbons occurred at the former Dynamic Metals parcel. Likewise, no impacted soil or source area (contaminated soil) was identified at the Site during subsequent investigations performed (see Section 4.0). Thus, no apparent exposure risks to humans were identified.

No water supply wells have been identified within a two-mile radius of the Site. Thus, no human exposure is suspected. As documented in this report, VOC and hydrocarbon contaminants of concern were released at the adjacent Aratex tract and not the subject site.

Likewise, no surface water discharges to the Site, and therefore no human or environmental receptors exist due to surface water exposure. Exposure to impacted storm water run-off is also unlikely as no impacted soils were identified on site (see Section 4.0).

Vinyl chloride is the predominant VOC detected in groundwater at monitoring well MW-403. MW-403 is located on the northwest portion of the former Dynamic Metals parcel and immediately upgradient of the residential housing complex. Historically, vinyl chloride

concentrations ranged from nondetect to 1,600 μ g/L between 2006 and 2010. Since 2010, concentrations of vinyl chloride have declined from 1,600 μ g/L to 80 μ g/L.

As part of the *First Semiannual VRP Progress Report*, dated May 2, 2013, a vapor intrusion analysis was conducted to assess the potential for vapor intrusion from VOCs in groundwater (AEM, 2013) for the former Dynamic Metal parcel as well as the downgradient adjacent residential housing complex. An evaluation of the site conditions (i.e., geology, depth to groundwater) and vinyl chloride concentrations, as of October 2012, using the J&E Model indicated that concentrations less than 736 μ g/L would not pose a vapor intrusion risk to the adjacent residence.

3.8 RISK REDUCTION STANDARDS

The Type I RRS calculated for soils (see Table 2) are provided in the Voluntary Remediation Program Application (AEM, 2011, revised). The only constituents that exceeded Type I RRS in soil at the former 670 parcel are PCE, TCE, and benzene (AEM, 2011, revised). No contaminants were identified in soils at the former Dynamic Metals parcel.

Type I RRS for the contaminants of concern in groundwater are depicted in Attachment D and mimic U.S. EPA Region 4 maximum contaminant levels (MCLs) for drinking water quality. Type I RRS exceedences are discussed in Section 6.0.

SECTION 4.0 SOIL ANALYTICAL RESULTS

A number of environmental assessments have been performed at the former Dynamic Metals parcel, as part of a larger soil and groundwater study conducted for the overall Aramark DeKalb HSI Site. These include site contaminate characterization events performed by DePaul & Associates (DePaul) in 1992, Phase I/Phase II Environmental Site Assessments (ESA) conducted in 1999 and 2000 by QORE Property Sciences (QORE), Phase II environmental testing by Pickering Environmental Consultants, Inc. (Pickering) in 2000, and additional soil and groundwater sampling (well installation) performed by Bock Environmental Services, Inc. (Bock) and Law Engineering and Environmental Services, Inc. (LAW) in 2001.

Between 1992 and 2001, sixteen soil borings were drilled, sampled, and subsequently abandoned (see Section 6) on the Site (see Figure 3). From these borings, a total of thirty-two soil samples were collected for VOC analyses (see Table 1). Available lithologic boring logs are provided in Attachment C. A summary of the soil investigations conducted at the Site is provided below.

There is limited information regarding historic soil sampling procedures for each investigation discussed below. However, direct-push technology (DPT) was typically utilized to collect subsurface soil samples. Soil borings were continually sampled using acetate-lined DPT sample spoons for lithologic characterization and/or soil analyses. Historical soil samples may also have been collected using either stainless-steel hand augers or hollow-stem augers with split-spoon samplers.

4.1 1992 DEPAUL INVESTIGATION

In 1992, DePaul conducted soil and groundwater investigation on the adjacent former Aratex parcel to define the extent of soil and groundwater impacts as a result of a release from former USTs at the Aratex facility (DePaul, 1993). The investigation also required the installation of two soil borings (MW-5 and MW-6) on the adjacent former Dynamic Metals Site (see Figure 3).

DePaul utilized split-spoon sampling methods to collect soil samples to classify and establish the vertical and lateral extent of contamination. Soil borings were advanced to a depth of 25 feet at each location (MW-5 and MW-6) using Geoprobe technology. The technology utilized consisted of advancing a 11/2-inch-diameter hollow steel rod at five-foot intervals (DePaul, 1992 and 1993).

A soil sample collected at five feet below land surface (bls) from each boring was analyzed for VOCs. PCE (55 micrograms per kilogram [µg/kg]) and trans-1,2-dichloroethene (trans-1,2-DCE) (164 µg/kg) were detected in the soil sample collected at MW-5. Toluene (300 µg/kg) was the only VOC detected in the soil sample collected from MW-6. None of the concentrations detected in either sample exceeded their respective Type I RRSs (see Table 1). Following collection of soil samples, these soil borings were converted to monitoring wells MW-5 and MW-6 using hollow-stem auger drilling techniques (DePaul, 1993).

4.2 1999 QORE PHASE I/PHASE II ENVIRONMENTAL SITE ASSESSMENT

In 1999, on behalf of Arthur Geulding, QORE performed a combined Phase I/II ESA as part of due diligence for a potential property transaction (QORE, 1999). The purpose of the Phase II ESA was to evaluate whether past practices at the adjacent dry-cleaning facility (670 DeKalb Avenue) impacted soils and groundwater at the Site.

The Phase I ESA did not identify past uses of the Site that indicated the use, disposal, or production of hazardous/toxic materials. Additionally, no past industrial or agricultural use of the Site was noted.

To investigate the potential for soil and groundwater impacts from the former Aratex drycleaning facility, QORE installed three soil borings (B-1, -2, and -3). The soil borings were advanced using 3.25-inch inside diameter (i.d.) hollow-stem augers producing 6.25-inch i.d. boreholes to depths ranging from 25 feet to 30 feet bls (see Figure 3) (QORE, 1999).

Reportedly, soil samples were collected on five-foot intervals and only one sample from each soil boring was submitted to the laboratory for analysis of VOCs. Either the sample with the greatest photoionization detector (PID) vapor reading or, if no PID reading, the sample nearest the water table was submitted for laboratory analysis. The five-foot interval soil sample from boring B-3 was submitted to the laboratory for analysis because of the positive PID readings. There was no indication in the 1999 report that elevated PID readings were observed at B-1 and B-2, suggesting that these samples were collected nearest the groundwater table. Additionally, one groundwater sample was collected from each boring for laboratory analysis of VOCs (see Section 6.6.1). All borings were backfilled with soil cuttings (QORE, 1999).

TCE, cis-1,2-DCE, vinyl chloride, ethylbenzene, and toluene were detected in the soil samples analyzed from the Site (see Table 1). However, none of these VOCs exceeded their respective Type I RRSs. The same VOCs were previously detected in soil, at significantly higher concentrations, at the former Aratex facility (690 DeKalb Avenue), suggesting that the Aratex facility is the source of contamination at the Site.

4.3 2000 PICKERING PHASE II ENVIRONMENTAL SITE ASSESSMENT

In 2000, on behalf of Digital Teleport, Inc., Pickering performed a soil and groundwater assessment because of the presence of former off-site adjacent property dry-cleaning and petroleum storage activities at the former Aratex site and the presence of an off-site retail filling station on the north adjacent property (Pickering, 2000).

Pickering installed three soil borings (BH-1, -2, and -3) at the Site, at depths ranging from 25 to 30 feet bls (see Figure 3). Soil samples were collected using a 4-foot-long continuous hollow-stem auger sampler that collected a sample core as the core barrel advanced into the subsurface. Soil samples collected were screened with a PID (Pickering, 2000).

Reportedly, soil samples were collected, for laboratory analyses, at the following depths: 2–4 feet and 22–24 feet bls at BH-1, 22–24 feet bls at BH-2, and 14–16 feet bls at BH-3. The 14–16 feet and 22–24 feet samples were collected below the water table.

In November 2000, PCE, TCE, vinyl chloride, and benzene were detected in the soil sample collected from soil boring BH-2 (see Table 1). However, with the exception of vinyl chloride (at 324 µg/kg), none of the remaining VOCs detected exceeded their respective Type I RRSs. Based on further evaluation of historic reports it was determined that this soil sample was actually collected below the water table and thus is not considered a true soil sample.

4.4 2001 BOCK ENVIRONMENTAL SITE ASSESSMENT

In 2001, on behalf of Aramark, Bock performed additional soil and groundwater (well installation) assessment activities at both the Site and the adjacent former Aratex parcel (unpublished documentation). During the April 2001 well installation event (see Section 6.1.1), split-spoon samples were collected (split) by Bock and Law (Law, 2001) from three augered boreholes (MW-101, -102, and -103) completed at the former Aratex parcel (see Figure 2). In August 2001, Bock completed eight additional augered boreholes (MW-104 through MW-111) at the former Dynamic Metals parcel (see Figure 3). Following collection of soil samples, the eight soil borings were converted to permanent monitoring wells (see Section 6.1.1).

Three VOC soil samples were collected at varying intervals (between 0 and 16 feet bls) from each of the eight soil borehole locations (see Table 1). No VOCs were reported within soil at any of the eight locations.

SECTION 5.0 CORRECTIVE ACTION

Both soil and groundwater corrective action has been implemented at the Aramark DeKalb Avenue HSI Site. In 2005, Brisbane II, LLC (as directed by MACTEC) completed the initial shallow source area soil excavation at the 670 DeKalb Avenue property (MACTEC, 2006). Subsequent remedial activities performed by AEM included in situ chemical oxidation injections on both parcels (June 2006 and February 2007) and soil blending and additional soil excavation on the former Aratex parcel (September to October 2010). Corrective action efforts implemented at both the 670 and 690 DeKalb Avenue properties are discussed below.

5.1 IN SITU CHEMICAL OXIDANT INJECTIONS

An initial in situ chemical oxidation injection pilot test was performed at the 670 DeKalb Avenue property in September 2005. The field test methods and results of this study are documented in the 2005 Groundwater Monitoring and Pilot Test Report (AEM, 2005b). Sodium permanganate was injected into the impacted residuum water table using temporary direct-push technology (DPT) injection points. The study area, near former monitoring wells MW-101 and MW-102, represented a 30-foot by 40-foot grid containing several sumps and drains that were the apparent source of previous releases of chlorinated solvents to the groundwater. Three temporary monitoring wells were installed hydraulically upgradient (TW-1) sidegradient (TW-2), and downgradient (TW-3) of the pilot test injection area (see Figure 5). The results of this study indicated that those monitoring wells influenced by the oxidant injection (MW-101, MW-102, TW-2, and TW-3) exhibited significant decreases (down to non-detectable levels) in VOC concentrations.

An Underground Injection Control Permit Application for In Situ Chemical Oxidation, dated October 21, 2005, was submitted to Georgia EPD on October 25, 2005 (AEM, 2005a). An Underground Injection Control (UIC) Permit (UIC Permit No. 275), provided by the Georgia Geological Survey, was received in June 2006.

Full-scale implementation of the in situ chemical oxidation injection program was performed in June 2006 at the Aramark DeKalb Avenue HSI Site. The field methods implemented are discussed in the Corrective Action Plan (CAP) Supplement (AEM, 2006) and the Semiannual Groundwater Monitoring Report dated February 7, 2007 (AEM, 2007). Sodium permanganate was injected into the impacted residuum water table aquifer to break down the PCE and associated daughter products. The permanent sodium permanganate DPT injection points are depicted in Figure 6. The remedial activities were performed at two areas: (1) the vicinity of monitoring wells MW-301, -302, and -303 (670 DeKalb Avenue) and (2) the area encompassing monitoring wells MW-109, -207, and -403 (690 DeKalb Avenue). As a result of VOC rebound at former monitoring well MW-301, additional sodium permanganate injections were performed in February 2007.

5.2 SOIL BLENDING WITH CHEMICAL OXIDANT

A revised *Underground Injection Control Permit Application for In Situ Chemical Oxidation (UIC Permit No. 275)* was submitted to Georgia EPD on April 6, 2010 (AEM, 2010b). As part of this application, saturated soil blending with potassium permanganate was proposed for the chlorinated VOC source area at the former Aratex parcel. As chlorinated VOCs were detected within the soils beneath the water table, soil mixing was extended below the shallow water table.

Remediation of source area soil above and beneath the water table under the former building on the former Aratex parcel and the adjacent Gunby Street right-of-way (see Figure 7) was completed in October 2010. This work was performed in accordance with the *Notification of Change—Corrective Action Plan* (CAP) submitted to the Georgia Environmental Protection Division (EPD), dated August 8, 2006.

The PCE target cleanup goal for unsaturated soil was 500 μ g/kg. This value was the EPD-approved soil PCE RRS for the Aramark DeKalb HSI Site. This RRS did not apply to the soil under the water table (saturated soil) as the contamination is in direct contact with the groundwater. However, a PCE concentration of 100 μ g/kg was selected as the target concentration for soil in the saturated zone. This value was expected to be technologically achievable and would mitigate future groundwater impacts.

From September 4 to September 8, 2010, 1,365 tons of PCE-contaminated shallow soil (PCE > $500 \,\mu g/kg$), located adjacent to Gunby Street and outside the right-of-way, was excavated to an approximate depth of 10 feet bls, profiled, and disposed off site. An additional 762 tons of PCE-impacted soil was excavated between October 12 and October 19, 2010. The contaminated non-hazardous soils were removed from the site and were disposed as non-hazardous special waste at the Republic Services Pine Ridge Landfill in Griffin, Georgia. Sidewall verification sampling indicated that all contaminated soil beneath the former Aratex parcel as well as the adjacent Gunby Street right-of-way was removed to HSRA site-specific standards.

Potassium permanganate and tap water were blended with the soil to a depth of 14 to 21 feet below land surface. For the blended soils beneath Gunby Street, the soil was solidified with Portland cement. Test results of the blended soil below Gunby Street indicate that PCE was treated to concentrations below detection limits. In areas of previous soil excavation and backfill (by Brisbane II, LLC), source material below the water table containing up to 64,000 µg/kg PCE was treated to levels below 500 µg/kg.

Deep soil above the 500 $\mu g/kg$ PCE criteria and outside the soil blending area was identified and removed until confirmatory sampling indicated that sub-500 $\mu g/kg$ PCE margins were achieved.

SECTION 6.0 GROUNDWATER MONITORING

The earliest groundwater samples were collected from the former Aratex parcel (670 DeKalb Avenue) in August 1990 (DePaul, 1990). Tabulated historical groundwater analytical results for 1990 through 2014 are summarized in Attachment D. The analytical data sheets for the most recent groundwater monitoring event (January 2014) are provided as Attachment E and are discussed in Section 6.2.

As of 1990, numerous monitoring wells have been installed, sampled, and subsequently abandoned at the Aramark DeKalb Avenue HSI Site. Available monitoring well construction lithologic logs are provided in Attachment C. A list of all groundwater sample points (temporary and permanent monitoring wells) installed at the HSI Site (including well installation dates, abandonment dates, and construction specifications) is summarized in Table 4.

6.1 HISTORICAL GROUNDWATER MONITORING

6.1.1 **Pre–Corrective Action Monitoring**

The initial residuum groundwater monitoring wells (MW-1 to MW-9), installed and sampled between 1990 and 1994 (DePaul, 1990, 1991, 1994), confirmed the release of chlorinated solvents and aromatic hydrocarbons at the former Aratex parcel (see Figure 2). The VOCs PCE, TCE, trans-1,2-DCE, vinyl chloride, benzene, and/or toluene were detected in one or more of the wells (MW-1, -2, -3, -4, -7, and -8) installed at the former Aratex parcel, at concentrations that exceeded the Type 1 RRS (see Attachment D). In December 1994, PCE concentrations ranging up to 47,000 µg/L were reported in well MW-4, where dry-cleaning solvents were formerly utilized and stored, confirming a source area at the former Aratex parcel.

At the former Dynamic Metals Site, PCE, trans-1,2-DCE, vinyl chloride, and toluene were detected in the initial groundwater samples collected from MW-5 and MW-6; however, only PCE, trans-1,2-DCE, and vinyl chloride exceeded the Type 1 RRS. Concentrations of PCE in groundwater were significantly lower at the Site compared to the former Aratex parcel (see Attachment D).

In response to a release notification to the Georgia EPD HSRA program, in 1994, a "no listing" letter was issued from the HSRA program in April 1995. As a result, no further groundwater monitoring activities were performed until 1999. Subsequent investigations performed at the Site in 1999 and 2000 facilitated the collection of additional groundwater samples from both the former Aratex parcel and the Site.

In September 1999, QORE collected groundwater samples from three soil borings (B-1, -2, and -3) completed at the Site at depths ranging from 25 feet to 30 feet bls (see Figure 3). Benzene, chlorobenzene, chloroethane, 1,1-dichloroethene (1,1-DCE), cis-1,2-DCE, trans-1,2-DCE, PCE, TCE, toluene, and vinyl chloride were detected in one or more of the groundwater samples (QORE, 1999). Only benzene, PCE, TCE, 1,1-DCE, cis-1,2-DCE, and vinyl chloride exceeded their respective Type 1 RRSs (see Table D-2 of Attachment D).

In 2001, the next phase of temporary and permanent monitoring wells were installed and sampled at the Aramark DeKalb HSI Site. Shallow residuum temporary wells DP-1 through DP-7 were installed and sampled in April 2001 by Law (Law, 2001) (see Table D-4 of Attachment D). Split-samples from this sampling effort were collected by Bock (Bock, 2001). In April 2001, three additional residuum wells (MW-101, -102, and -103) were also installed by Law on the former Aratex parcel (Law, 2001) (see Table D-6 of Attachment D). In August 2001, a further eight residuum wells (MW-104 to MW-111) were constructed by Bock (Bock, 2001) on the Site (see Figure 3 and Table D-6 of Attachment D).

The subsequent results of the 2001 sampling effort confirmed that a release had occurred on the former Aratex parcel. PCE concentrations in groundwater ranged up to $8,500~\mu g/L$ in temporary well DP-104 (completed just south of MW-4) and up to $14,000~\mu g/L$ in monitoring well MW-103 (completed just north of MW-4) (see Table D-6 of Attachment D). As in the past, significantly lower concentrations of the chlorinated solvents TCE, cis-1,2-DCE, trans-1,2-DCE, and vinyl chloride were reported in the wells completed at the former Dynamic Metals Site. Based on these reported findings, both the 670 and 690 DeKalb Avenue parcels were listed on the HSI (HSI Site No. 10704) in October 2001.

From April 2003 to April 2006, eight additional residuum monitoring wells (MW-201 to MW-208) were installed by AEM (AEM, 2003) while three shallow residuum piezometers (MW-207P, -208P, and -209P) were installed by MACTEC at the Aramark facility (see Figure 8). With the exception of MW-204, -207, and -209P, the remaining wells were installed on the former Aratex parcel. MW-204 was installed in Gunby Street while MW-207 and MW-209P were installed on the former Aratex parcel. One deeper residuum monitoring well (MW-103D) was also completed by AEM on the former Aratex parcel for vertical plume delineation (see Figure 8).

With the exception of wells MW-109, -207, and -209P, no VOCs were detected (from April 2003 to April 2006) within the wells completed on the Site (see Tables D-7 and D-8 of Attachment D). These three wells are located northeast (downgradient) of the known source area on the former Aratex parcel (see Figure 8). Little or no PCE was reported within these wells. The predominant VOC constituents detected in groundwater at the Site included one or more of the following PCE break-down products: TCE (up to 247 μ g/L in MW-207), cis-1,2-DCE (up to 1,200 μ g/L in MW-109), trans-1,2-DCE (up to 540 μ g/L in MW-207), and vinyl chloride (up to 900 μ g/L in MW-109). Thus, no apparent PCE source area was identified at the Site.

Between April 2003 and April 2006, PCE concentrations in groundwater at monitoring wells MW-101, -102, and -103 ranged from 1,680 to 35,000 μ g/L, from 850 to 8,400 μ g/L, and from 6,700 to 16,200 μ g/L, respectively (see Table D-6 of Attachment D). Likewise, TCE concentrations from these wells ranged up to 201 μ g/L, 26 μ g/L, and 1,500 μ g/L, respectively. Cis-1,2-DCE, trans-1,2-DCE, and vinyl chloride concentrations were also significantly higher in MW-103. Notably lower VOC concentrations were detected in monitoring wells MW-201

through MW-209 as well as piezometers MW-207P, -208P, and -209P (see Table D-8 of Attachment D). When detected, only low levels of VOCs were reported within residuum wells MW-207P, MW-208P, and MW-201 through MW-205 installed along the perimeter of the former Aratex parcel. Slightly higher VOC concentrations were reported in the wells (MW-206, -207, and -208) constructed closer to the PCE source area.

No VOCs were detected within the deep residuum well MW-103D between April 2003 and April 2006. Thus, the vertical extent of the VOC plume at the PCE source area was defined by MW-103D (see Table D-6 of Attachment D).

In April 2006, the groundwater monitoring well network for the Aramark DeKalb Avenue HSI Site was expanded with the installation of 10 additional residuum wells. Monitoring wells MW-301, -302, -303, and -306 were installed by AEM on the former Aratex parcel to replace abandoned wells MW-101, -102 and -103 (see Section 7). The remaining six monitoring wells (MW-401 through MW-406) were installed by MACTEC (MACTEC, 2006). Monitoring wells MW-402 and MW-403 were completed near the northern edge of the Site while monitoring well MW-404 was constructed along the Gunby Street right-of-way adjacent to the Site (see Figure 8). MW-401 and MW-405 were installed as upgradient monitoring wells on the former Aratex parcel (see Figure 8).

In April 2006, groundwater at monitoring wells MW-301, -302, and -303, installed in the vicinity of the PCE source area, contained PCE concentrations of less than 5 μ g/L, 31 μ g/L, and 4,530 μ g/L, respectively (see Table D-10 of Attachment D). For comparison, July 2005 PCE concentrations in groundwater at monitoring wells MW-101 (replaced by MW-301) and MW-102 (replaced by MW-302) were 25,100 μ g/L and 1,140 μ g/L, respectively. The notable reduction in PCE concentrations, as well its daughter products, observed in groundwater at MW-301 and MW-302 is attributed to the September 2005 *in situ* chemical oxidation injection pilot test (see Section 5.1) performed near the former location of monitoring wells MW-101 and MW-102 (see Figure 8).

Monitoring wells MW-401 through MW-405 were also sampled in April 2006 (see Table D-11 of Attachment D). With the exception of MW-403, no VOCs were detected in these wells. MW-402, located at the northwest corner of the Site, contained no PCE or TCE. As with monitoring wells MW-109, -207, and -209P, located at the Site, the predominant VOC constituents detected in MW-403 included the PCE break-down products cis-1,2-DCE (at 2,600 μ g/L), trans-1,2-DCE (at 14 μ g/L), and vinyl chloride (at 1,500 μ g/L). These findings again suggest that no apparent VOC source area existed at the Site, as no PCE was detected.

6.1.2 Post–Corrective Action Monitoring

In accordance with the Corrective Action Plan (CAP) Supplement (AEM, 2006), quarterly groundwater monitoring was proposed for the following 14 monitoring wells:

- **670 DeKalb Avenue wells:** MW-202, -203, -205, -206, -208, -301, -302, -303, and -306
- Gunby Street well: MW-204
- **690 DeKalb Avenue wells:** MW-108, -109, -207, and -403

Per the CAP, the monitoring wells were sampled for VOCs as well as for select monitored natural attenuation parameters (MNAs). In addition, the UIC Permit required monitoring for potential by-products such as dissolved-phase metals and chloride, to demonstrate restoration of natural background conditions.

As the result of the stockpiling of clean soil at the Site, monitoring well MW-108 could not be accessed from June 2006 to the present. Likewise, the stockpiling of clean soil atop MW-203 (at the former Aratex parcel) prevented the sampling of this well in 2012 and 2013. MW-208 was abandoned in 2010 prior to the soil mixing event, and MW-205, last sampled in October 2012, was damaged during the Atlanta Beltline construction activities and was subsequently abandoned in 2013. In addition to the above 14 wells listed in the CAP, MW-110, -207P, and -209/209P were also sampled quarterly, whereas wells MW-111, -402, -404, and -405 were periodically sampled as part of one or more of the quarterly monitoring events.

In April 2007, MACTEC installed an additional five residuum wells (MW-406, -407, -408, -409, and -409D) on the former Aratex parcel (see Figure 8). With the exception of MW-409D, the new wells were screened across the water (see Table 4). MW-409D was screened below the water table to a depth of 30 feet below ground surface. These five monitoring wells were subsequently sampled as part of the December 2007, March 2008, June 2008, and September 2008 quarterly monitoring events and the December 2009 annual event. MW-409 and MW-409D were also sampled as part of the June 2011, July 2012, and January 2014 monitoring events (see Table D-11 of Attachment D). Wells MW-406, -407, and -408 were abandoned in 2010 (see Table 4 and Section 7).

Quarterly groundwater monitoring at the former Aramark facility was performed in August 2006, November 2006, February 2007, May/June 2007, September 2007, December 2007, March 2008, June 2008, and September 2008. Following the completion of the quarterly monitoring program, additional annual groundwater sampling was performed in December 2009, June 2011, October 2012, July 2013, and most recently in January 2014 (see Section 6.2).

For a period of approximately two years following the June 2006 *in situ* chemical oxidation injection at the Site, concentrations of VOCs in groundwater (predominately cis-1,2-DCE and vinyl chloride) significantly decreased at monitoring wells MW-109, -207, and -403 (see Tables D-7, D-8, and D-11 of Attachment D).

Likewise, when sampled, only random trace levels of VOCs were detected in groundwater at monitoring wells MW-110, -209/209P, -402, and -404. Time trend graphs depicting cis-1,2-DCE and vinyl chloride concentrations for monitoring wells MW-109 and MW-403 are provided in Attachment F.

A temporary rebound in VOC levels (predominately cis-1,2-DCE and vinyl chloride) was detected in groundwater at monitoring wells MW-109 and MW-403 from June 2008 through June 2011 and in groundwater at monitoring well MW-207 in December 2009. However, since June 2011 (following the implementation of the soil blending corrective action at the solvent source area on the former Aratex parcel) VOC concentrations have again shown a significant downward trend in groundwater at monitoring wells MW-109 and MW-403 from October 2012 to January 2014 (see Attachment F). VOCs were not detected in groundwater at monitoring well MW-109 during the July 2013 and January 2014 sampling events (see Table D-7 of Attachment D). Additionally, concentrations of cis-1,2-DCE in groundwater at monitoring well MW-403 have decreased to below the Type 1 RRS and, although vinyl chloride exceeds the Type 1 RRS, concentrations detected continue to exhibit a decreasing trend (see Table D-11 of Attachment D and Attachment F). With the remediation of the upgradient source material at the former Aratex parcel, to a depth well below the water table, decreasing VOC concentrations are anticipated to continue in groundwater at monitoring well MW-403.

Following the June 2006 in situ chemical oxidation injection at the former Aratex parcel, concentrations of VOCs (predominately PCE) in groundwater significantly decreased at former monitoring wells MW-301, -302, and -303 (see Table D-10 of Attachment D). For a period of approximately one year (dispersed between August 2006 and September 2009), no VOCs were detected in groundwater at these three monitoring wells.

Between June 2007 and December 2009, PCE concentrations in groundwater rebounded at these three monitoring wells. Similarly, VOCs were not detected in groundwater at monitoring well MW-407 from December 2007 to June 2008; however, PCE concentrations of 53 and 130 µg/L were reported in groundwater at MW-407 in September 2008 and December 2009, respectively (see Table D-11 of Attachment D).

The June 2006 in situ chemical oxidation injection had no apparent effect on the VOC plume in the vicinity of wells MW-208 and MW-406. When detected, only trace levels of VOCs were reported in groundwater at monitoring wells MW-306 from April 2006 to June 2008 and in MW-208 from April 2006 to September 2007 (see Tables D-8 and D-10 of Attachment D). As with the above wells, a slight rebound was reported in MW-306 from September 2008 to the present and in MW-208 from December 2007 to December 2009.

Additionally, when sampled, only trace to low levels of VOCs (predominately PCE) were detected from 2006 onward in groundwater at monitoring wells MW-202, -203, -204, -206, -207P, -306, -406, -409, and -409D (see Tables D-8, D-10, and D-11). No VOCs have historically been detected in upgradient wells MW-401 and MW-405 (see Table D-11 of Attachment D). Time trend graphs depicting PCE and TCE concentrations in groundwater for monitoring wells MW-203, -204, -205, -207P, -208P, and -409 are provided in Attachment F.

In May 2013, AEM installed five replacement wells (MW-210, -211, -212, -213, and -214) at the Aramark HSI/VRP site. Monitoring wells MW-210 and MW-211 were completed on the former Dynamic Metals parcel, while monitoring wells MW-212, -213, and -214 were completed on the former Aratex parcel (see Figure 3). With the exception of MW-214, the wells were screened across the residuum water table (see Table 4). Monitoring wells MW-212 and MW-213 are located downgradient of source areas 1 and 2 of the former Aratex parcel and were installed as replacement wells for MW-101 and MW-103 (see Figure 2). Monitoring well MW-214 (replacement well for MW-103D) was screened within the deep residuum to a depth of approximately 75 feet below ground surface.

Sonic well drilling and well installation activities were performed by Southern Sonic Solutions, of Aiken, South Carolina. The work was performed using a TSi 150T Sonic Rig and support truck. The sonic drilling procedure included the use of a double cased system to install the residuum boreholes. Thus, the boring is continuously cased, preventing borehole collapse and/or downhole sample contamination. Continuous soil samples were collected for lithologic characterization directly from the 4-inch-diameter inner-core-barrel, which was advanced (vibrated downward) at 10-feet intervals to the desired depth. The borehole diameter was enlarged using a 6-inch-diameter override casing, which was advanced over the 4-inchdiameter core-barrel. Soil cores were obtained, for lithologic characterization, from the innercore-barrel, which was extracted from the override casing. Well construction-lithologic boring logs are provided in Attachment C.

Each monitoring well was constructed through the 6-inch-diameter override casing following the removal of the inner-core-barrel. Deep residuum monitoring well MW-214 was installed to a depth of 74.5 feet below ground surface. The remaining four shallower wells were constructed (top of screen) at or near the water table to depths ranging from 17.5 to 23 feet below ground surface. Well construction materials were as follows:

- Pre-cleaned 2-inch-diameter schedule 40 polyvinyl chloride (PVC) riser and screen (10 feet of 0.010-inch slot screen).
- 20-30 mesh silica sand was installed from the base of the borehole to approximately 2.0 feet above the top of the well screen.
- High-grade bentonite pellets were installed atop the sand pack and allowed to hydrate.
- Portland Type I cement plus 5% high-grade bentonite slurry was placed from the top of the bentonite plug to within 1 foot of the ground surface.
- Metal protective well covers consisted of either (a) 4-inch by 4-inch metal stick-up cover or (b) 8-inch-diameter flush-mounted well vault. Each protective cover was completed within a 2-foot by 2-foot by 4-inch concrete pad and sealed with a pressure cap and lock.

Monitoring well development was completed in May 2013. Development activities included both the surging and evacuation of groundwater from each well. Well surging was implemented to extract fines (silts and clays) from the sand pack as well as increase flow to the

well. The evacuation (pumping) of the wells allowed for the removal of fines as well as any water introduced to the well during its construction.

These five residuum monitoring wells were subsequently sampled in June 2013 and again in July 2013 and January 2014 as part of the semiannual monitoring events (see Section 6.2).

VOCs were not detected in newly installed monitoring wells MW-210 or MW-211 or in the newly installed vertical monitoring well MW-214, during the 2013 sampling events or in the January 2014 sampling event (see Table D-9 of Attachment D).

Concentrations of VOCs in groundwater at MW-212 and MW-213 have exhibited a decreasing trend since these monitoring wells were installed. Concentrations of VOCs in groundwater were 263 µg/L (MW-212) and 1,190 µg/L (MW-213) in June 2013 and consisted mainly of PCE (160 µg/L and 720 µg/L, respectively). In January 2014, total VOCs decreased to 193 µg/L (MW-212) and 1,162 µg/L (MW-213). The predominant VOC in groundwater at MW-213 was cis-1,2-DCE (1,000 µg/L), while PCE remained the predominant VOC in groundwater at MW-212 (110 µg/L) (see Table D-9 of Attachment D).

6.2 2014 GROUNDWATER MONITORING EVENT

The most recent comprehensive groundwater level measurement and sampling event was performed by AEM between January 6 and January 27, 2014. The extended sampling period was due to inclement weather and the subsequent localized flooding (ponding of water) near the northern end of the former Aratex parcel. Installation of a silt fence along the northern edge of the former Aratex parcel, as part of the Atlanta Beltline construction project, prevented the normal flow of surface water run-off from the site. The resulting ponded water inundated monitoring wells (MW-206, -207P, and -306) for up to two weeks. Consequently, these wells could not be sampled until later in the month. Additionally, monitoring well MW-203 could not be sampled during this event as it was located beneath a soil pile from the Atlanta Beltline construction activities.

6.2.1 **Depth-to-Groundwater Measurements**

Depth-to-groundwater measurements were collected from 20 monitoring wells on January 6, 2014 (see Attachment A). The groundwater measurements were taken using a Solinst® (Model 101) electronic water level meter in accordance with U.S. EPA SESD Field Branch Quality System and Technical Procedure SESDPROC-105-R2 (Groundwater Level and Well Depth Measurement) dated January 29, 2013. AEM personnel collected water level measurements by recording the depth to groundwater below the marked (surveyed) top of the polyvinyl chloride (PVC) well casing for each well. Measurements were recorded in monitoring wells in the order of least to most contaminated.

Groundwater elevations were then calculated by subtracting the depth-to-water measurements from the measuring point surveyed elevations. Groundwater elevation data are summarized in Attachment A. The data summarized in Attachment A were used to prepare

water level contour figures for the shallow residuum (see Figure 4), which indicate a groundwater flow direction toward the north-northwest. There also appears to be a southeasterly groundwater flow direction on the south side of the former Aratex parcel along DeKalb Avenue.

6.2.2 Groundwater Sampling Event

AEM personnel, under the supervision of a Georgia licensed professional geologist (PG), conducted the latest groundwater monitoring activities at the Aramark DeKalb HSI/VRP parcels in January 2014. Groundwater samples were collected from monitoring wells MW-109, -110, -111, -202, -203 (in 2014), -204, -205, -206, -207P, -208P, -210, -211, -212, -213, -214, -306, -401, -402, -403, -405, and -406. Quality control samples included two duplicate samples and trip blanks. The groundwater and quality control samples were collected for VOC analysis.

Groundwater samples were collected in accordance with U.S. EPA SESD Field Branch Quality System and Technical Procedure SESDPROC-301-R3 (*Groundwater Sampling*) dated March 6, 2013.

Groundwater purging and sampling activities were implemented using either an adjustable-speed peristaltic pump with dedicated Teflon-lined tubing or a Grundfos Redi-Flo 2 electric submersible pump with dedicated Teflon-lined tubing. Conventional purge and sample methods, utilizing slow-flow techniques to minimize sample volatility, were utilized. Purge water from the monitoring wells was containerized in 55-gallon steel drums for later profiling and disposal. Based on historic data, the drums were labeled as non-hazardous waste.

Depth to groundwater was measured at each accessible monitoring well at the facility (prior to collection of groundwater samples). The water level data will be used to calculate the groundwater elevation at each well, which will be shown and contoured on the potentiometric surface map (see Figure 4). To prevent fluctuations caused by local weather, depth-to-water measurements will be collected within a 24-hour period.

Temperature, pH, turbidity, and conductivity were measured at each sampled well during the purging effort and immediately prior to the collection of groundwater samples. These parameters were recorded on groundwater sampling field logs for each well (see Attachment G). The field logs record the sampling personnel, time and date of sample collection, well depth, purge volume, and purge method.

The groundwater samples were delivered to Xenco for analysis of Environmental Protection Agency (EPA) Method 8260 list VOCs. The laboratory analytical data report for the groundwater samples collected in January 2014 is included in Attachment E.

Table 3 presents a summary of all VOCs detected in groundwater during the January 2014 sampling event. Tables in Attachment D present an updated historical summary of VOCs detected in groundwater at all active monitoring wells at the Aramark DeKalb HSI Site.

Shallow Residuum Aquifer

The shallow residuum aquifer is monitored by monitoring wells that are screened either across the water table or below/near the water table. The following wells are screened at the water table: MW-203, -204, -206, -207P, -208P, -210, -211, -212, -213, -401, -402, -403, and -409. Monitoring well MW-203 could not be located during the January 2014 sampling event, as it was underneath a pile of soil and debris from the Atlanta Beltline construction activities. MW-205 is also screened across the water table; however, as discussed above, MW-205 was abandoned prior to this sampling event as it was destroyed during the Atlanta Beltline construction activities.

The following constituents were detected in groundwater above the applicable Type 1 RRSs in samples collected from monitoring wells screened across the water table: PCE, TCE, cis-1,2-DCE, and vinyl chloride (see Table 3).

The following wells are screened below/near the water table: MW-109, -110, -111, -202, -306, and -409D. VOCs were not detected in groundwater samples collected from MW-109, -110, -111, -202, and -409D. PCE was the only VOC detected in a groundwater sample collected from MW-306 (32 μ g/L) (see Table 3).

Figures 9 to 12 present the current extent of PCE, TCE, cis-1,2-DCE, and vinyl chloride, respectively, exceeding their respective Type 1 RRSs in the shallow residuum.

When comparing concentrations of VOCs in groundwater prior to the interim corrective measures, the current analytical results indicate that the interim corrective measures were successful in treating source material and VOCs in groundwater. In the source area, concentrations of VOCs decreased from 9,360 µg/L in 2009 to 1,155 µg/L in January 2014. Although total VOC concentrations increased from July 2013, a majority of the constituents detected in January 2014 are the PCE daughter products cis-1,2-DCE and vinyl chloride. This indicates that reductive dechlorination continues to occur. Figure 13 presents a comparison of total VOCs in groundwater in December 2009, prior to conduct of interim corrective measures, and in January 2014. Tables in Attachment D provide a summary of historical detections of VOCs in all monitoring wells at the Site.

Also, concentrations of VOCs in groundwater at downgradient monitoring wells MW-403 and MW-109 at the Site were 539 μ g/L and 39 μ g/L, respectively, in December 2009, prior to the conduct of soil blending corrective measures. Concentrations of VOCs initially increased in groundwater at these downgradient monitoring wells, to 1,940 μ g/L (MW-403) and 61 μ g/L (MW-109), in June 2011. However, VOC concentrations in groundwater have decreased to 104 μ g/L (MW-403) and to below the detection limit (MW-109) in January 2014 (see Tables D-7 and D-11 of Attachment D). With the remediation of the upgradient source material at the former Aratex parcel, to a depth well below the water table, decreasing VOC concentrations are anticipated to continue in groundwater at monitoring well MW-403.

Concentrations of VOCs remain stable in groundwater upgradient along the western side of the 670 DeKalb Avenue parcel.

Trend charts are provided for select upgradient and downgradient monitoring wells (see Attachment F).

Deep Residuum

Monitoring well MW-214 monitors the deep residuum. VOCs were not detected in the groundwater sample collected from this monitoring well.

SECTION 7.0 MONITORING WELL ABANDONMENT

Over the course of the groundwater assessment and corrective action effort (1999 to 2012) numerous temporary and permanent monitoring wells and/or piezometers have been installed and subsequently abandoned from the 670 and 690 DeKalb Avenue properties, as well as the adjoining properties north of the former Aramark facility. A list of the historical sample points (former temporary and permanent monitoring wells and DPT boreholes) abandoned is included in Table 4. Based on available documentation, former temporary and permanent monitoring wells and DPT boreholes were abandoned (grouted) in place. However, select 1-inch temporary wells (TW-1, -2, and -3, TMW-1, -2, and -3, and ED-1 through ED-5) and piezometers (PZ-1), completed by AEM, were closed by removing the casing and screen and then tremie grouting down the open borehole.

Upon EPD approval of this CSR, Aramark will abandon the existing monitoring well network (MW-109, -110, -111, -210, -211, -402, and -403) at the 690 DeKalb Avenue property according to procedures set forth in EPA's Field Branches Quality System and Technical Procedures document SESDGUID-101-R1 (Design and Installation of Monitoring Wells). Proposed well abandonment procedures are outlined below.

It is proposed that the wells not be over-drilled because all the wells were properly constructed at the time of installation and all the annular spaces were grouted, thus preventing vertical migration of groundwater around the wells. The wells will be abandoned by pressure grouting the schedule 40 polyvinyl chloride (PVC) well screens and casings from the bottom to land surface. Thus, the grout will migrate through the screen to grout the sand pack. Thus, the abandoned wells will not provide a preferential migration pathway for groundwater.

The well casing/grout as well as the existing concrete pads, for wells completed in unpaved areas, will be removed to a depth of one to two feet below land surface. A concrete patch will then be placed over the abandoned well and the well covered with native soil to grade.

Wells completed in concrete or asphalt areas will be grouted flush to land surface including the area inside the well vaults. Likewise, stick-up well casings and their concrete pads will be removed flush to the ground. Thus, these wells will be effectively covered with a concrete pad after abandonment is complete, preventing the vertical migration of groundwater in the area of the abandoned monitoring wells.

Compliance Status Report and Compliance Status Certification Former Dynamic Metals—690 DeKalb Avenue, Atlanta, Georgia Aramark Uniform & Career Apparel, LLC April 28, 2014

SECTION 8.0 SUMMARY AND CONCLUSIONS

Based on a review of the historical VOC data collected for soil at the former Dynamic Metals Site (690 DeKalb Avenue), Aramark is certifying to the Type 1 RRS for VOCs in soil. Based on the site being certified to Type 1 RRS for soil, Aramark requests that the former Dynamic Metals Site be removed from the HSI.

Although cis-1,2-DCE and vinyl chloride have recently been detected in groundwater above Type 1 RRSs at one monitoring well (MW-403) on the Former Dynamic Metals Site, the concentrations exhibit a decreasing trend. Additionally, these VOCs are degradation products of PCE and TCE, source material associated with the adjacent Former Aratex site (690 DeKalb Avenue parcel). Thus, the groundwater impacts at the Former Dynamic Metals site are not a result of historical releases at the Site. Additionally, with the remediation of the upgradient source material at the former Aratex parcel, to a depth well below the water table, VOCs are expected to continue to decrease in groundwater at monitoring well MW-403. Aramark requests that monitoring wells at the Site be abandoned as discussed in Section 7.0 of this report.

Reported releases to groundwater in January 2014 did not exceed HSRA Reportable Quantity per the Reportable Quantity Screening Method (RQSM). In accordance with §12-8-107(g)(2) of the VIRP, corrective action for groundwater is not required, nor is certification of compliance required for groundwater.

SECTION 9.0 REFERENCES

- Atlanta Environmental Management, Inc. 2003. *Compliance Status Report.* Aratex Services Facility, Atlanta Georgia. June 13, 2003 (Revised July 14, 2004, January 7, 2005, and March 15, 2006).
- 2005a. Corrective Action Plan. Aramark Uniform and Career Apparel, Inc., Atlanta Georgia. April 23, 2005.
- 2005b. Groundwater Monitoring and Pilot Test Report. Former Aramark Uniform and Career Apparel, Inc., Atlanta Georgia. November 16, 2005.
- —. 2006. Corrective Action Plan Supplement (August 2006). Aramark DeKalb Avenue Site 670 DeKalb Avenue, Atlanta, Georgia. August 8, 2006.
- —. 2007. Semiannual Groundwater Monitoring Report. Former Aratex Services Facility 670 DeKalb Avenue, Atlanta, Georgia. February 7, 2007.
- 2010a. Soil Delineation Report and Proposed Remedial Scope. Former Aratex Services, Inc., Atlanta, Georgia. January 11, 2010 (revised).
- —. 2010b. Underground Injection Control Revised Permit Application In Situ Chemical Oxidation (UIC Permit No. 275). Former Aramark Facility (HSI No. 10704) 670 DeKalb Avenue, Atlanta, Georgia. April 6, 2010.
- —. 2011. Voluntary Remediation Program Application. Aramark Uniform and Career Apparel, LLC, 670 & 690 DeKalb Avenue Site, Atlanta, Georgia. July 15, 2011, revised.
- —. 2013. Voluntary Remediation Program First Semiannual Progress Report. Aramark Uniform and Career Apparel, LLC, 670 & 690 DeKalb Avenue, Atlanta, Georgia. May 20, 2013.
- Clark W. Z., and Zisa, A. C. 1976. Physiographic Map of Georgia. Georgia Department of Natural Resources, Georgia Geological Survey, Atlanta, 1976.
- Cressler, C. W., Thurmond, C. J., and Hester, W. G. 1983. *Ground Water in the Greater Atlanta Region, Georgia.* U.S. Geological Survey Information Circular 63, 144 p.
- DePaul. 1990. Site Characterization Contaminant Assessment Progress Report. Aratex Services, Inc., Atlanta, Georgia. DePaul and Associates, Inc., December 17, 1990.
- —. 1991. Contaminant Assessment Phase II Progress Report. Aratex Services, Inc., Atlanta, Georgia. DePaul and Associates, Inc., September 30, 1991.

- —. 1992. Contaminant Assessment Phase II Task-2 Progress Report. Aratex Services, Inc., Atlanta, Georgia. DePaul and Associates, Inc., June 19, 1992.
- —. 1993. Soil-Corrective Action Plan Soil Vapor Extraction Remediation Plan. Aratex Services, Inc., Atlanta, Georgia. DePaul and Associates, Inc., August 12, 1993.
- Farlow. 1989. UST Removal and Summary & Update Notification (Letter Report). Farlow Environmental Engineering, Inc., October 17, 1989.
- Georgia Environmental Protection Division. 2003. Chapter 391-3-19 Hazardous Site Response.
- Higgins, M. W., and Atkins, R. L. 1981. "The Stratigraphy of the Piedmont Southeast of the Brevard Zone in the Atlanta, Georgia, Area." In Wigley, P. B. (Ed.), *Latest Thinking on the Stratigraphy of Selected Areas in Georgia*. Georgia Geologic Survey Information Circular 54-A, pp. 3–40.
- Higgins, M. W., Crawford, T. J., Atkins, R. L., and Crawford, R. F. 2003. *Geologic map of the Atlanta 30' x 60' quadrangle, Georgia*. Scientific Investigations Map 2602. U.S. Geologic Survey, Reston, VA.
- Law. 2001. *Data Summary Report (Draft)*. Law Engineering and Environmental Services, Inc. May 21, 2001.
- MACTEC. 2006. Compliance Status Report, Former Aramark and Dynamics Properties 670 and 690 DeKalb Avenue. MACTAC Engineering and Consulting, Inc. June 22, 2006.
- McConnell, K. I., and Abrams, C. E. 1984. *Geology of the Greater Atlanta Region*. Georgia Geological Survey Bulletin 96, 127 p.
- Pickering. 2000. Report on Phase II Environmental Testing. Pickering Environmental Consultant, Inc. November 28, 2000.
- QORE. 1999. Report of *Phase I/Phase II Environmental Site Assessment*. QORE Property Science, Inc. November 9, 1999.
- United States Environmental Protection Agency (EPA) Region 4. 2007a. U.S. EPA Region 4 SESD *Operating Procedure—Field Equipment Cleaning and Decontamination*, SESDPROC-205-R2 (effective date December 20, 2011).
- 2007b. Operating Procedures—Groundwater Sampling, SESDPROC-301-R3 (effective date March 6, 2013).

Compliance Status Report and Compliance Status Certification Former Dynamic Metals—690 DeKalb Avenue, Atlanta, Georgia Aramark Uniform & Career Apparel, LLC April 28, 2014

 2013. Field Branches Quality System and Technical Procedures Document SESDGUID-101-R1 (Design and Installation of Monitoring Wells). January 29, 2013.

TABLES

Table 1. Summary of Historical Soil Sample Analytical Results.
690 DeKalb Avenue
ARAMARK DeKalb VRP/HSI Site No. 10704

		MW-5	MW-6	B-1	B-2	B-3	В	H-1	BH-2	BH-3		MW-104	
		5/21/92	5/21/92		09/28/99			11/03	3/00			8/13/2001	
		5'	5'	Depth U	Inknown	5'	2-4'	22-24'	22-24'	14-16'	0-1'	8-10'	14-16'
Chlorinated VOCs, μg/kg	Type 1 RRS												
Tetrachloroethene	500	55	<5	<5	<5	<5	<2	<2	217	<2	<5	<5	<5
1,1,1-Trichloroethane	20,000	<5	<5	<5	<5	<5	<2	<2	<2	<2	NA	NA	NA
Trichloroethene	500	<5	<5	<5	52	<5	<2	<2	447	<2	<5	<5	<5
1,1-Dichloroethene	700	<5	<5	<5	<5	<5	<2	<2	5.71	<2	<5	<5	<5
1,2-Dichloroethane	500	<5	<5	<5	<5	<5	<2	<2	<2	<2	<5	<5	<5
1,1-Dichloroethane	400,000	<5	<5	<5	<5	<5	<2	<2	<2	<2	<5	<5	<5
Chloroethane	170	<10	<10	<10	<10	<10	<2	<2	<2	<2	<5	<5	<5
cis-1,2-Dichloroethene	7,000	NA	NA	34	334	<5	<2	<2	273	<2	<5	<5	<5
trans-1,2-Dichloroethene	10,000	164	<5	<5	<5	<5	<2	<2	19.2	<2	<5	<5	<5
Vinyl Chloride	200	<10	<10	<10	109	<10	<2	<2	324	<2	<5	<5	<5
Aromatic Hydrocarbons, μg/kg													
Benzene	500	<2	<2	<5	<5	<5	<2	<2	4.40	<2	<5	<5	<5
Ethylbenzene	70,000	<2	<2	<5	<5	7.0	<2	<2	<2	<2	<5	<5	<5
Toluene	100,000	<2	300	<5	57	6.0	<2	<2	<2	<2	<5	<5	<5
Chlorobenzene	10,000	<5	<5	<5	<5	<5	<2	<2	<2	<2	NA	NA	NA
Cyclohexane	200,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	100,000	NA	NA	NA	NA	NA	<2	<2	<2	<2	<5	<5	<5
o-xylene	1,000,000	NA	NA	NA	NA	NA	<2	<2	<2	<2	NA	NA	NA
m,p-Xylene	1,000,000	NA	NA	NA	NA	NA	<4	<4	<4	<4	NA	NA	NA
Xylenes, total	1,000,000	<2	<2	<5	<5	19	NA	NA	NA	NA	<10	<10	<10
Isopropylbenzene	21,888	NA	NA	NA	NA	NA	<2	<2	<2	<2	<5	<5	<5
Non-Chlorinated VOCs, μg/kg													
2-Butanone	200,000	<100	<100	NA	NA	NA	4.51	<40	<40	<40	NA	NA	NA
Acetone	400,000	<100	<100	NA	NA	NA	172	<40	<40	<40	NA	NA	NA
Bromomethane	800	<10	<10	<10	<10	<10	<2	<2	<2	<2	NA	NA	NA
Carbon Disulfide	400,000	<10	<10	NA	NA	NA	<2	<2	<2	<2	NA	NA	NA
Iodomethane	NR	<5	<5	NA	NA	NA	<2	<2	<2	<2	NA	NA	NA
Methylene Chloride	500	<5	<5	<1	<1	<1	27.6	<20	<20	<20	NA	NA	NA

Table 1. Summary of Historical Soil Sample Analytical Results.
690 DeKalb Avenue
ARAMARK DeKalb VRP/HSI Site No. 10704

		MW-5	MW-6	B-1	B-2	B-3	BH	I-1	BH-2	BH-3		MW-104	
		5/21/92	5/21/92		09/28/99			11/03	3/00			8/13/2001	
		5'	5'	Depth U	nknown	5'	2-4'	22-24'	22-24'	14-16'	0-1'	8-10'	14-16'
Metals, mg/Kg													
Arsenic	20	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium	100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	75	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

RRS-Risk Reduction Standard VOCs-volatile organic compounds

NR-Not Regulated

μg/kg- micrograms per kilogram

mg/kg-milligrams per kilogram

NA-not analyzed

Sample collected in the water table

Exceeds Type 1 RRS

^{*--}sample collected from Soil Pile

Table 1. Summary of Historical Soil Sample Analytical Results.
690 DeKalb Avenue
ARAMARK DeKalb VRP/HSI Site No. 10704

			MW-105		MV	V-106		MW-107			MW-108			MW-109	
			8/13/2001		8/15	5/2001		8/14/2001			8/15/2001			8/16/2001	
		0-2'	4-6'	14-16'	0-2'	16-18'	0-2'	4-6'	14-16'	0-2'	4-6'	12-14'	0-2'	4-6'	10-12'
Chlorinated VOCs, μg/kg	Type 1 RRS														
Tetrachloroethene	500	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1,1-Trichloroethane	20,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Trichloroethene	500	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethene	700	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane	500	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane	400,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chloroethane	170	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
cis-1,2-Dichloroethene	7,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
trans-1,2-Dichloroethene	10,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl Chloride	200	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Aromatic Hydrocarbons, μg/kg															
Benzene	500	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Ethylbenzene	70,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Toluene	100,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cyclohexane	200,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	100,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
o-xylene	1,000,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
m,p-Xylene	1,000,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Xylenes, total	1,000,000	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Isopropylbenzene	21,888	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Non-Chlorinated VOCs, μg/kg															
2-Butanone	200,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	400,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Bromomethane	800	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbon Disulfide	400,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iodomethane	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methylene Chloride	500	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table 1. Summary of Historical Soil Sample Analytical Results.
690 DeKalb Avenue
ARAMARK DeKalb VRP/HSI Site No. 10704

			MW-105		MW	/-106		MW-107			MW-108			MW-109	
			8/13/2001		8/15	/2001		8/14/2001			8/15/2001			8/16/2001	
		0-2'	4-6'	14-16'	0-2'	16-18'	0-2'	4-6'	14-16'	0-2'	4-6'	12-14'	0-2'	4-6'	10-12'
Metals, mg/Kg															
Arsenic	20	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium	100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	75	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

RRS-Risk Reduction Standard VOCs-volatile organic compounds

NR-Not Regulated

μg/kg- micrograms per kilogram

mg/kg-milligrams per kilogram

NA-not analyzed

Sample collected in the water table

Exceeds Type 1 RRS

^{*--}sample collected from Soil Pile

Table 1. Summary of Historical Soil Sample Analytical Results.
690 DeKalb Avenue
ARAMARK DeKalb VRP/HSI Site No. 10704

		MW-110			MW-111		SP-1	SP-2	SP-3	SP-4	SP-5	SP-6	SP-7	
			8/16/2001			8/15/2001		4/11/13	4/11/13	4/11/13	4/11/13	4/11/13	4/11/13	4/11/13
		4-6'	6-8'	10-12'	0-2'	10-12'	14-16'	0-3'*	0-3'*	0-3'*	0-3'*	0-3'*	0-3'*	0-3'*
Chlorinated VOCs, μg/kg	Type 1 RRS													
Tetrachloroethene	500	<5	<5	<5	<5	<5	<5	NA						
1,1,1-Trichloroethane	20,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Trichloroethene	500	<5	<5	<5	<5	<5	<5	NA						
1,1-Dichloroethene	700	<5	<5	<5	<5	<5	<5	NA						
1,2-Dichloroethane	500	<5	<5	<5	<5	<5	<5	NA						
1,1-Dichloroethane	400,000	<5	<5	<5	<5	<5	<5	NA						
Chloroethane	170	<5	<5	<5	<5	<5	<5	NA						
cis-1,2-Dichloroethene	7,000	<5	<5	<5	<5	<5	<5	NA						
trans-1,2-Dichloroethene	10,000	<5	<5	<5	<5	<5	<5	NA						
Vinyl Chloride	200	<5	<5	<5	<5	<5	<5	NA						
Aromatic Hydrocarbons, μg/kg														
Benzene	500	<5	<5	<5	<5	<5	<5	NA						
Ethylbenzene	70,000	<5	<5	<5	<5	<5	<5	NA						
Toluene	100,000	<5	<5	<5	<5	<5	<5	NA						
Chlorobenzene	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cyclohexane	200,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	100,000	<5	<5	<5	<5	<5	<5	NA						
o-xylene	1,000,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
m,p-Xylene	1,000,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Xylenes, total	1,000,000	<10	<10	<10	<10	<10	<10	NA						
Isopropylbenzene	21,888	<5	<5	<5	<5	<5	<5	NA						
Non-Chlorinated VOCs, μg/kg														
2-Butanone	200,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	400,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Bromomethane	800	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbon Disulfide	400,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iodomethane	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methylene Chloride	500	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table 1. Summary of Historical Soil Sample Analytical Results.
690 DeKalb Avenue
ARAMARK DeKalb VRP/HSI Site No. 10704

			MW-110			MW-111		SP-1	SP-2	SP-3	SP-4	SP-5	SP-6	SP-7
			8/16/2001			8/15/2001		4/11/13	4/11/13	4/11/13	4/11/13	4/11/13	4/11/13	4/11/13
		4-6'	6-8'	10-12'	0-2'	10-12'	14-16'	0-3'*	0-3'*	0-3'*	0-3'*	0-3'*	0-3'*	0-3'*
Metals, mg/Kg														
Arsenic	20	NA	NA	NA	NA	NA	NA	<6.17	<5.39	<5.58	<5.78	<5.95	<5.35	<6.01
Barium	1,000	NA	NA	NA	NA	NA	NA	53.3	73.1	68.6	116	98.9	79	93.2
Cadmium	2	NA	NA	NA	NA	NA	NA	1.34	0.863	0.882	1.17	1.42	1.16	1.72
Chromium	100	NA	NA	NA	NA	NA	NA	20.1	7.19	8.44	11.1	11.8	9.32	13.1
Lead	75	NA	NA	NA	NA	NA	NA	17.9	14.6	12.9	13.4	15.4	16.8	23.4

RRS-Risk Reduction Standard VOCs-volatile organic compounds NR-Not Regulated

μg/kg- micrograms per kilogram mg/kg-milligrams per kilogram NA-not analyzed

Sample collected in the water table Exceeds Type 1 RRS

^{*--}sample collected from Soil Pile

Table 2. Type 1 Risk Reduction Standards for Constituents of Concern in Soil and Groundwater.
690 DeKalb Avenue
Aramark DeKalb VRP/HSI Site No. 10704

Chlorinated VOCs	Type 1 Soil RRS μg/kg	Type 1 Groundwater RRS μg/L
Tetrachloroethene	500	5
1,1,1-Trichloroethane	20,000	200
Trichloroethene	500	5
1,1-Dichloroethene	700	7
1,2-Dichloroethane	500	5
1,1-Dichloroethane	400,000	4,000
Chloroethane	170	10*
cis-1,2-Dichloroethene	7,000	70
trans-1,2-Dichloroethene	10,000	100
Vinyl Chloride	200	2
Aromatic Hydrocarbons		
Benzene	500	5
Ethylbenzene	70,000	700
Toluene	100,000	1,000
Chlorobenzene	10,000	100
Cyclohexane	200,000	5*
Naphthalene	100,000	20
o-xylene	1,000,000	10,000
m,p-Xylene	1,000,000	10,000
Xylenes, total	1,000,000	10,000
Isopropylbenzene	21,888	5*
Non-Chlorinated VOCs		
2-Butanone	200,000	2,000
Acetone	400,000	4,000
Bromomethane	800	5*
Carbon Disulfide	400,000	4,000
lodomethane	NR	NR
Methylene Chloride	500	5

RRS-Risk Reduction Standard

VOCs-volatile organic compounds

NR-Not Regulated

*-Risk Reduction Standard based on Detection limit

 $\mu g/kg$ - micrograms per kilogram $\mu g/L$ - micrograms per liter

Table 3. Summary of Constiuents of Concern Detected in Groundwater, January 2014. ARAMARK DeKalb Avenue VRP/HSI Site No. 10704 Atlanta, Georgia

			MW-109 01/13/14	MW-110 01/10/14	MW-111 01/10/14	MW-202 01/10/14	MW-204 01/10/14	MW-206 01/27/14	MW-207P 01/16/14	MW-208P 01/09/14	MW-210 01/09/14	MW-211 01/09/14	MW-212 01/13/14	MW-213 01/13/14	MW-214 01/10/14	MW-306 01/27/14
Chlorinated VOCs		Type 1 RRS														
Tetrachloroethene	μg/L	5	<5	<5	<5	<5	7.9	<5	5.9	9.3	<5	<5	110	100	<5	32
1,1,1-Trichloroethane	μg/L	200	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Trichloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	17	49	<5	<5
1,1-Dichloroethene	μg/L	7	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chloroethane	μg/L	4*	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
cis-1,2-Dichloroethene	μg/L	70	<5	<5	<5	<5	<5	11	<5	<5	<5	<5	61	1,000	<5	<5
trans-1,2-Dichloroethene	μg/L	100	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	7.0	<5	<5
Vinyl Chloride	μg/L	2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	4.8	6.4	<2	<2
Aromatic Hydrocarbons																
Benzene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Ethylbenzene	μg/L	700	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Toluene	μg/L	1,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene	μg/L	100	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Cyclohexane	μg/L	5*	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Naphthalene	μg/L	20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
o-xylene	μg/L	10,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
m,p-Xylene	μg/L	10,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Xylenes, total	μg/L	10,000	NA	NA	NA	NA	NA	NA	NA	NA						
Isopropylbenzene	μg/L	5*	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Non-Chlorinated VOCs																
2-Butanone (MEK)	μg/L	2,000	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	71	<50	<50	<50
Acetone	μg/L	4,000	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	280	<50	<50	<50
Bromomethane	μg/L	5*	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Carbon Disulfide	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Methyl-tert-butyl Ether	μg/L	NR	<5	<5	<5	<5	<5	66	<5	<5	<5	<5	<5	<5	<5	<5

Notes:

RRS-Risk Reduction Standard

VOCs-volatile organic compounds

μg/L- micrograms per liter

mg/L-milligrams per liter NA-not analyzed

NS- Monitoring well not sampled; under surface water

Exceeds Type 1 RRS

*-Risk Reduction Standard based on Detection limit

NR-Not regulated

Table 3. Summary of Constiuents of Concern Detected in Groundwater, January 2014. ARAMARK DeKalb Avenue VRP/HSI Site No. 10704 Atlanta, Georgia

			MW-401 01/09/14	MW-402 01/13/14	MW-403 01/13/14	MW-405 01/09/14	MW-409 01/10/14	MW-409D 01/10/14
Chlorinated VOCs		Type 1 RRS						
Tetrachloroethene	μg/L	5	<5	<5	<5	<5	5.1	<5
1,1,1-Trichloroethane	μg/L	200	<5	<5	<5	<5	<5	<5
Trichloroethene	μg/L	5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethene	μg/L	7	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5	<5
Chloroethane	μg/L	4*	<4	<4	<4	<4	<4	<4
cis-1,2-Dichloroethene	μg/L	70	<5	<5	24	<5	<5	<5
trans-1,2-Dichloroethene	μg/L	100	<5	<5	<5	<5	<5	<5
Vinyl Chloride	μg/L	2	<2	<2	80	<2	<2	<2
Aromatic Hydrocarbons								
Benzene	μg/L	5	<5	<5	<5	<5	<5	<5
Ethylbenzene	μg/L	700	<5	<5	<5	<5	<5	<5
Toluene	μg/L	1,000	<5	<5	<5	<5	<5	<5
Chlorobenzene	μg/L	100	<5	<5	<5	<5	<5	<5
Cyclohexane	μg/L	5*	<5	<5	<5	<5	<5	<5
Naphthalene	μg/L	20	<5	<5	<5	<5	<5	<5
o-xylene	μg/L	10,000	<5	<5	<5	<5	<5	<5
m,p-Xylene	μg/L	10,000	<5	<5	<5	<5	<5	<5
Xylenes, total	μg/L	10,000	NA	NA	NA	NA	NA	NA
Isopropylbenzene	μg/L	5*	<5	<5	<5	<5	<5	<5
Non-Chlorinated VOCs								
2-Butanone (MEK)	μg/L	2,000	<50	<50	<50	<50	<50	<50
Acetone	μg/L	4,000	<50	<50	<50	<50	<50	<50
Bromomethane	μg/L	5*	<5	<5	<5	<5	<5	<5
Carbon Disulfide	μg/L	4,000	<5	<5	<5	<5	<5	<5
Methyl-tert-butyl Ether	μg/L	NR	<5	<5	<5	<5	<5	<5

Notes:

RRS-Risk Reduction Standard

VOCs-volatile organic compounds

μg/L- micrograms per liter

mg/L-milligrams per liter

NA-not analyzed

NS- Monitoring well not sampled; under surface water

Exceeds Type 1 RRS

*-Risk Reduction Standard based on Detection limit

NR-Not regulated

Table 4. Monitoring Well Construction Details ARAMARK DeKalb VRP/HSI Site No. 10704 Atlanta, Georgia

Well No.	Date Installed	Date Abandoned	Consultant	Aquifer Zone	TOC Elevation (ft AMSL)	Total Depth (TOC)	Well Bottom Elevation (ft AMSL)	Casing Diameter (in)	Screen Interval (ft)	Screen Elevation (ft AMSL)	Screen Length (ft)
MW-1	8/1/1990	Unknown	Depaul	Shallow Residuum	1023.99	26	997.99	2.00	17-26	1047.99-997.99	9
MW-2	8/2/1990	Unknown	Depaul	Shallow Residuum	1015.20	25	990.20	2.00	16-26	1000.2-990.2	10
MW-3	8/2/1990	Unknown	Depaul	Shallow Residuum	1017.62	23	994.62	2.00	14-23	1003.62-994.62	9
MW-4	8/2/1990	Unknown	Depaul	Shallow Residuum	1021.62	22	999.62	2.00	10-25	1009.62-999.62	10
GP-8	5/22/1991	Unknown	Depaul	Soil Boring	NA	10	NA	NA	NA	NA	NA
MW-5	5/20/1992	Unknown	Depaul	Shallow Residuum	1019.76	25	994.76	2.00	15-25	1004.76-994.76	10
MW-6	5/20/1992	Unknown	Depaul	Shallow Residuum	1019.88	25	994.88	2.00	10-25	1001.88-994.88	10
MW-7	5/21/1992	Unknown	Depaul	Shallow Residuum	1020.39	25	995.39	2.00	10-25	1005.39-995.39	10
MW-8	5/21/1992	Unknown	Depaul	Shallow Residuum	NA	NA	NA	NA NA	NA	NA	NA
MW-9	5/21/1992	Unknown	Depaul	Deep Residuum	NA	88	NA	2.00	78-88	NA NA	10
B-1	9/28/1999	9/28/1999	QORE	Shallow Residuum	NA	25-30	NA	2.00	NA	NA	NA
B-2	9/28/1999	9/28/1999	QORE	Shallow Residuum	NA NA	25-30	NA NA	2.00	NA NA	NA NA	NA NA
B-3	9/28/1999	9/28/1999	QORE	Shallow Residuum	NA	25-30	NA NA	2.00	NA NA	NA NA	NA NA
вн-1	11/3/2000	11/3/2000	Pickering	Shallow Residuum	NA NA	28.00	NA NA	NA	NA NA	NA NA	NA NA
BH-2	11/3/2000	11/3/2000	Pickering	Shallow Residuum	NA NA	28.00	NA NA	NA NA	NA NA	NA NA	NA NA
			· ·	Shallow Residuum							
BH-3	11/3/2000	11/3/2000	Pickering	Shallow Residuum	NA NA	28.00	NA NA	NA 2.00	NA NA	NA NA	NA NA
DP-101	4/24/2001	4/24/2001	Law	Shallow Residuum	NA	28	NA NA	2.00	NA NA		NA NA
DP-102	4/25/2001	4/25/2001	Law		NA	28	NA	2.00	NA NA	NA	NA
DP-103	4/24/2001	4/24/2001	Law	Shallow Residuum	NA	28	NA NA	2.00	NA	NA	NA
DP-104	4/25/2001	4/25/2001	Law	Shallow Residuum	NA	28	NA	2.00	NA	NA	NA
DP-105	4/25/2001	4/25/2001	Law	Shallow Residuum	NA 1016.07	26	NA	2.00	NA 15 05 05 05	NA	NA
MW-101	4/24/2001	2005	Law	Shallow Residuum	1016.05	27.97	988.08	2.00	17.97-27.97	998.08 - 988.08	10
MW-102	4/23/2001	2005	Law	Shallow Residuum	1011.86	32.94	978.92	2.00	22.94-32.94	988.92 - 978.92	10
MW-103	4/24/2001	2005	Law	Shallow Residuum	1009.96	25.75	984.21	2.00	15.75-25.75	994.21 - 984.21	10
MW-104	8/31/2001	Under soil pile	Bock	Shallow Residuum	1013.75	24.17	989.58	2.00	14.17-24.17	999.58 - 989.58	10
MW-105	8/14/2001	Under soil pile	Bock	Shallow Residuum	NA	25.00	NA	2.00	NA	NA	15
MW-106	8/15/2001	Under soil pile	Bock	Shallow Residuum	1014.14	25.17	988.97	2.00	10.17-25.17	1,003.97 - 988.97	15
MW-107	8/14/2001	Under soil pile	Bock	Shallow Residuum	1014.19	25.17	989.02	2.00	7.17-22.17	1,004.02 - 989.02	15
MW-108	8/15/2001	Under soil pile	Bock	Shallow Residuum	1013.59	25.17	988.42	2.00	15.17-25.17	998.42 - 988.42	10
MW-109	8/16/2001	Active	Bock	Shallow Residuum	1012.74	25.17	987.57	2.00	7.17-25.17	1,002.57 - 987.57	15
MW-110	8/16/2001	Active	Bock	Shallow Residuum	1013.11	22.17	990.94	2.00	15.17-22.17	997.94 - 990.94	7
MW-111	8/15/2001	Active	Bock	Shallow Residuum	1013.73	25.00	988.73	2.00	10-25	1,003.73 - 988.73	15
MW-103D	4/17/2003	2005	AEM	Deep Residuum	1009.25	75.00	934.25	2.00	65-75	944.25 - 934.25	10
MW-201	4/14/2003	2005	AEM	Shallow Residuum	1015.76	23.82	991.94	2.00	13.82-23.82	1,001.94 - 991.94	10
MW-202	4/14/2003	Active	AEM	Shallow Residuum	1012.69	22.00	990.69	2.00	12-22	1,000.69 - 990.69	10
MW-203	4/15/2003	Active	AEM	Shallow Residuum	1013.47	25.00	988.47	2.00	15-25	998.47 - 988.47	10
MW-204	5/2/2003	Active	AEM	Shallow Residuum	1015.01	24.50	990.51	2.00	14.50-24.50	1,000.51 - 990.51	10
MW-205	3/31/2004	6/27/2013	AEM	Shallow Residuum	1009.90	17.00	992.90	2.00	7-17	1,002.90 - 992.90	10
MW-206	7/23/2004	Active	AEM	Shallow Residuum	1008.45	14.50	993.95	2.00	4.50-14.50	1003.95-993.95	10
MW-207	4/13/2006	7/7/2010	AEM	Shallow Residuum	1013.19	27.65	985.54	2.00	17.65-27.65	995.54-985.54	10
MW-208	4/3/2006	7/7/2010	AEM	Shallow Residuum	1011.57	29.18	982.39	2.00	19.18-29.18	992.39-982.39	10
MW-207P	9/2/2005	Active	MACTEC	Saturated Fill	1012.40	10.00	999.40	1.00	5.00-10.00	1004.40-999.40	5
MW-208P	9/2/2005	Active	MACTEC	Saturated Fill	1012.86	13.12	999.74	1.00	3.26-13.26	1009.74 - 999.74	10
MW-209P (PZ-2)	9/2/2005	7/7/2010	MACTEC	Saturated Fill	1013.20	16.52	998.78	1.00	6.52-16.52	1008.78 - 998.78	10

Table 4. Monitoring Well Construction Details ARAMARK DeKalb VRP/HSI Site No. 10704 Atlanta, Georgia

				Aquifer	TOC Elevation	Total Depth	Well Bottom Elevation	Casing Diameter	Screen Interval	Screen Elevation	Screen Length
Well No.	Date Installed	Date Abandoned	Consultant	Zone	(ft AMSL)	(TOC)	(ft AMSL)	(in)	(ft)	(ft AMSL)	(ft)
MW-210	5/22/2013	Active	AEM	Shallow Residuum	1016.28	23.00	993.28	2.00	13.00 -23.00	1003.28 - 993.28	10
MW-211	5/22/2013	Active	AEM	Shallow Residuum	1016.37	21.00	995.37	2.00	11.00 - 21.00	1005.37 - 995.37	10
MW-212	5/22/2013	Active	AEM	Shallow Residuum	1014.06	17.50	996.56	2.00	7.50 - 17.50	1006.56 - 996.56	10
MW-213	5/22/2013	Active	AEM	Shallow Residuum	1009.79	17.00	992.79	2.00	7.00 -17.00	1002.79 - 992.79	10
MW-214	5/22/2013	Active	AEM	Deep Residuum	1009.40	74.50	934.90	2.00	64.50 - 74.50	944.90 - 934.90	10
TW-34	12/8/2004	Unknown	MACTEC	Shallow Residuum	NA	20.00	NA	2.00	5-20	NA	15
TW-35	12/8/2004	Unknown	MACTEC	Shallow Residuum	NA	15.00	NA	2.00	10-15	NA	5
TW-36	12/7/2004	Unknown	MACTEC	Shallow Residuum	NA	11.00	NA	2.00	2-12	NA	10
MW-301	4/4/2006	7/7/2010	AEM	Shallow Residuum	1012.60	27.98	984.62	2.00	17.98-27.98	994.62 - 984.62	10
MW-302	4/4/2006	7/7/2010	AEM	Shallow Residuum	1011.91	29.97	981.94	2.00	19.97-29.97	991.94 - 981.94	10
MW-303	4/4/2006	7/7/2010	AEM	Shallow Residuum	1009.39	28.98	980.41	2.00	18.98-28.98	990.41 - 980.41	10
MW-306	4/3/2006	Active	AEM	Shallow Residuum	1008.50	30.67	977.83	2.00	20.67-30.67	987.83 - 977.83	10
MW-401	4/13/2006	Active	MACTEC	Shallow Residuum	1013.69	15.95	997.74	2.00	5.95-15.95	1007.74 - 997.74	10
MW-402	4/13/2006	Active	MACTEC	Shallow Residuum	1016.21	19.47	996.74	2.00	9.47-19.47	1006.74 - 996.74	10
MW-403	4/13/2006	Active	MACTEC	Shallow Residuum	1015.22	22.61	992.61	2.00	12.61-22.61	1002.61 - 992.61	10
MW-404	4/14/2006	7/7/2010	MACTEC	Shallow Residuum	1009.13	13.93	995.20	2.00	3.93-13.93	1005.20 - 995.20	10
MW-405	4/14/2006	Active	MACTEC	Shallow Residuum	1015.84	18.60	997.24	2.00	8.60-18.60	1007.24 - 997.24	10
MW-406	4/18/2006	Active	MACTEC	Shallow Residuum	1015.00	22.26	992.74	2.00	12.26-22.26	1002.74 - 992.74	10
MW-407	4/18/2007	7/7/2010	MACTEC	Shallow Residuum	1012.89	19.48	993.41	2.00	9.48-19.48	1003.41 - 993.41	10
MW-408	4/18/2007	7/7/2010	MACTEC	Shallow Residuum	1009.91	16.00	993.91	2.00	6-16	1003.91 - 993.91	10
MW-409	4/19/2007	Active	MACTEC	Shallow Residuum	1016.36	20.29	996.07	2.00	10.29-20.29	1006.07 - 996.07	10
MW-409D	4/19/2007	Active	MACTEC	Shallow Residuum	1016.07	30.70	985.37	2.00	28.70-30.70	987.37 - 985.37	2
PZ-1 (TPZ-1)	4/8/2003	2006	AEM	Shallow Residuum	1009.31	20.00	989.31	1.00	4.50-19.50	1,004.31 - 989.31	15
TW-1 ¹	9/7/2005	2005	AEM	Shallow Residuum	NA	25.5	NA	2.00	15.20-25.20	NA	10
TW-2 ¹	9/7/2005	2005	AEM	Shallow Residuum	NA	25.2	NA	2.00	15.20-25.20	NA	10
TW-3 ¹	9/7/2005	2005	AEM	Shallow Residuum	NA	25.2	NA	2.00	15.20-25.20	NA	10
TMW-1 (AEM-GP-4)	8/5/2008	7/7/2010	AEM	Shallow Residuum	NA	18.00	NA	1.00	8.00-18.00	NA	10
TMW-2 (AEM-GP-10)	8/5/2008	7/7/2010	AEM	Shallow Residuum	NA	19.55	NA	1.00	9.55-19.55	NA	10
TMW-3 (AEM-GP-14)	8/5/2008	7/7/2010	AEM	Shallow Residuum	NA	19.50	NA	1.00	9.50-19.50	NA	10
ED-1	12/7/2005	12/20/2005	AEM	Shallow Residuum	1028.59	32.5	996.09	1.00	22.5-32.5	1006.09-996.09	10
ED-2	12/7/2005	12/20/2005	AEM	Shallow Residuum	1028.28	29.35	998.93	1.00	19.35-29.35	1008.93-998.93	10
ED-3	12/7/2005	12/20/2005	AEM	Shallow Residuum	1028.89	32.7	996.19	1.00	22.70-32.70	1006.19-996.19	10
ED-4	12/7/2005	12/20/2005	AEM	Shallow Residuum	1028.81	34.3	994.51	1.00	24.30-34.30	1004.51-994.51	10
ED-5	12/7/2005	12/20/2005	AEM	Shallow Residuum	1031.5	42.1	989.40	1.00	32.10-42.10	999.40-989.40	10

NA- Not Available

AMSL - Above Mean Sea Level

TOC - Top Of Casing

ft - feet

in - inches

¹ Not surveyed (In- situ chemical oxydation pilot test temporary wells)

FIGURES

Soil Blending (December 2009) Post-Soil Blending (January 2014)

Legend

- AEM Groundwater Monitoring Well
- MACTEC Groundwater Monitoring Well
- VOCs Volatile Organic Compounds
- μg/L Micrograms per Liter
- BDL Below Detection Limits
- NO Not Occupie
- NS Not Sampled
- □2, □5 Below Detection Limit348 VOCs Concentration, μg/L

Note MW-205 v Historical

MW-205 was destroyed prior to the 2013 sampling event. Historical concentrations of VOCs were stable at approximately 20 μ g/L.

Total VOCs Concentrations

- 1,000 to 10,000 μg/L

- 100 to 999 μg/L - 10 to 99 μg/L

- 5 to 9 μg/L

Graphic Scale

40 0 20 40 80

1 inch = 40 ft.

	Environr 2580 No	nental Consulting, Engin	al Management neering, Hydrogeologic S y • Atlanta, Georgia	ervices 30345	
Ņ	Ph	none: 404.329.9006	• Fax: 404.329.205	7	Γ
	PROJECT #:	1133-1401-6	DRAWN BY:	Tom Longo	

April 21, 201

Former Dynamic Metals Parcel Compliance Status Report

Total VOCs in Groundwater Pre and Post Soil Blending

/G\1133-1401 ARAMARK DeKalb\06\13 Total VOCs

13

Figure

ATTACHMENT A Groundwater Elevation Data, 2001–2014

MW-		MW-108		MW-107		MW-106		MW-104		MW-103D		MW-103		MW-102		MW-101		Observation Well:
8/16/2		8/15/2001		8/14/2001		8/15/20011		8/13/2001		4/17/2003		4/24/2001		4/23/2001		4/24/2001		Installation Date:
Shallow Residu		llow Residuum	Sha	low Residuum	Sha	allow Residuum	Sh	Illow Residuum	Sha	eep Residuum	ļ	low Residuum	Shall	allow Residuum	Sha	allow Residuum	Sh	Monitored Zone:
																		Elevation, ft. AMSL ^{1,2,3} :
1,012.7		1,013.591		1,014.191		1,014.141		1,013.746		1,009.251		1,009.956		1,011.856		1,016.046		Access Port/Well Casing. Elevation, ft. AMSL':
1001.94-991		98.42-988.42	9	4.02-989.02	10	03.97-988.97	1	99.25-989.25	9	44.25-934.25	(4.21-984.21	99	88.92-978.92	9	989.08-988.08	9	Well Screen Interval
Grou		Ground-		Ground-		Ground-		Ground-		Ground-		Ground-		Ground-		Ground-		
Wa	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	
Elevat	Water,	Elevation,	Water,	Elevation,	Water,	Elevation,	Water,	Elevation,	Water,	Elevation,	Water,	Elevation,	Water,	Elevation,	Water,	Elevation,	Water,	
ft. AN	feet	ft. AMSL	feet	ft. AMSL	feet	ft. AMSL	feet	ft. AMSL	feet	ft. AMSL	feet	ft. AMSL	feet	ft. AMSL	feet	ft. AMSL	feet	Date
1,001	11.38	1,001.30	12.29	1,002.05	12.14	1,000.66	13.48	1,000.08	13.67	NM	NI	1,001.24	8.72	1,001.39	10.47	1,002.09	13.96	08/17/01
1,001	10.76	1,002.04	11.55	1,002.91	11.28	1,002.90	11.24	1,001.93	11.82	NM	NI	1,001.54	8.42	1,001.55	10.31	1,002.40	13.65	03/04/03
1,002	10.28	1,002.41	11.18	1,003.32	10.87	1,003.33	10.81	1,002.29	11.46	1,001.75	7.50	1,002.12	7.84	1.002.02	9.84	1,002.90	13.15	04/22/03
1,002	10.48	1,002.53	11.06	1,003.57	10.62	1,003.50	10.64	1,002.39	11.36	1,001.65	7.60	1,002.09	7.87	1,001.91	9.95	1,002.86	13.19	05/02/03
1,003	9.61	1,002.86	10.73	1,003.93	10.26	1.003.69	10.45	1.002.86	10.89	1.002.95	6.30	1.003.37	6.59	1,003.00	8.86	1,006,19	9.86	05/07/03
1,003	9.50	1,003.08	10.51	1,004.18	10.01	1,003.94	10.20	1,003.09	10.66	1,002.83	6.42	1,003.54	6.42	1,003.20	8.66	1,007.83	8.22	05/16/03
.,	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	12/17/03
1,001	11.28	1,001.70	11.89	1,002.53	11.66	1,002.60	11.54	1,001.57	12.18	1,000.82	8.43	1,001.29	8.67	1,001.21	10.65	1,001.89	14.16	04/06/04
1,001	NM	1,001.71	11.88	1,002.00	12.19	NM	NM	1,001.55	12.20	1,000.24	9.01	1,002.11	7.85	1,001.94	9.92	1,003.71	12.34	07/27/04
1.004	8.70	1.003.78	9.81	1.004.59	9.60	NM	NM	1,003.90	9.85	1.004.34	4.91	NM	NM	1,004.65	7.21	1.008.85	7.20	07/12/05
1,002	10.40	1,002.93	10.66	1,003.54	10.65	NM	NM	1,003.09	10.66	1,002.13	7.12	NM	NM	1,002.29	9.57	1,003.43	12.62	09/07/05
1,001	10.76	1,002.71	10.88	1,003.11	11.08	NM	NM	1,002.46	11.29	1,001.58	7.67	NM	NM	1,002.05	9.81	1,002.60	13.45	09/19/05
1.002	10.56	NM	NM	NM	NM	NM	NM	1.002.43	11.32	1,002.23	7.02	NM	NM	1.002.32	9.54	1,003.51	12.54	10/11/05
1,002	NM	NM	NM	NM	NM	NM	NM	NM	NM	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	12/13/05
1,002	10.74	1,002.09	11.50	1,002.63	11.56	NM	NM	1,002.23	11.52	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	12/20/05
1,002	10.05	1,002.39	11.20	1,002.93	11.26	1.002.93	11.21	1.002.28	11.47	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	01/25/06
1,001	11.09	1,002.19	11.40	1,003.10	11.09	1,003.16	10.98	1,002.10	11.65	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	04/10/06
1,001	11.11	1,002.04	11.55	1,002.85	11.34	1,002.90	11.24	1,001.89	11.86	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	05/15/06
1,000	12.01	NM	NM	NM	NM	NM	NM	NM	NM	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	08/14/06
1,000	12.33	NM	NM	NM	NM	NM	NM	NM	NM	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	11/07/06
1,001	11.70	NM	NM	NM	NM	NM	NM	NM	NM	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	02/07/07
999 999	12.75 13.72	NM NM	NM NM	NM NM	NM NM	NM NM	NM NM	NM NM	NM NM	ABN ABN	ABN ABN	ABN ABN	ABN ABN	ABN ABN	ABN ABN	ABN ABN	ABN ABN	05/30/07 09/17/07
998	14.51	NM	NM	NM	NM	NM	NM	NM	NM	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	12/04/07
999	12.82	NM	NM	NM	NM	NM	NM	NM	NM	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	03/05/08
999	12.76	NM	NM	NM	NM	NM	NM	NM	NM	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	06/04/08
999	13.64	NM	NM	NM	NM	NM	NM	NM	NM	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	09/09/08
998	13.80	NM	NM	NM	NM	NM	NM	NM	NM	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	08/07/09
1,002	10.52	NM	NM	NM	NM	NM	NM	NM	NM	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	11/30/09
1,001 1,001	11.50 11.16	NM NM	NM NM	NM NM	NM NM	NM NM	NM NM	NM NM	NM NM	ABN ABN	ABN ABN	ABN ABN	ABN ABN	ABN ABN	ABN ABN	ABN ABN	ABN ABN	02/18/11 05/31/11
999	13.02	NM	NM	NM	NM	NM	NM	NM	NM	ABN	ABN		ABN	ABN	ABN	ABN	ABN	10/08/12
999	13.02 NM	NM	NM	NM	NM	NM	NM	NM	NM			ABN						06/03/13
										ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	
1,002	10.26	NM	NM	NM	NM	NM	NM	NM	NM	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	07/17/13
1,002	10.00	NM	NM	NM	NM	NM	NM	NM	NM	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	01/06/14

Notes: See last page of table.

MW-207		MW-206		MW-205		MW-204		MW-203		MW-202		MW-201		MW-111		MW-110		Observation Well:
4/3/2006		7/23/2004		3/31/2004		5/2/2003		4/15/2003		4/14/2003		4/14/2003		8/15/2001		8/16/2001		Installation Date:
llow Residuum	Shall	ow Residuum	Shall	ow Residuum	Shall	w Residuum	Shallo	allow Residuum	Sh	low Residuum	Shal	Illow Residuum	Sha	allow Residuum	Sha	allow Residuum	Sh	Monitored Zone:
																		Elevation, ft. AMSL ^{1,2,3} :
1,013.191		1,008.446		1,009.911		1,015.101		1,009.221		1,012.686		1,015.766		1,013.726		1,013.106		Access Port/Well Casing. Elevation, ft. AMSL':
95.54-985.54	99	3.95-993.95	100	2.90-992.90	100	5.51-990.51	1005	994.22-984.22	9	0.69-990.69	100	01.94-991.94	10	03.73-988.73	10	97.94-990.94	9	Well Screen Interval
Ground-		Ground-		Ground-		Ground-		Ground-		Ground-		Ground-		Ground-		Ground-		
Water	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	
Elevation,	Water,	Elevation,	Water,	Elevation,	Water,	Elevation,	Water,	Elevation,	Water,	Elevation,	Water,	Elevation,	Water,	Elevation,	Water,	Elevation,	Water,	
ft. AMSL	feet	ft. AMSL	feet	ft. AMSL	feet	ft. AMSL	feet	ft. AMSL	feet	ft. AMSL	feet	ft. AMSL	feet	ft. AMSL	feet	ft. AMSL	feet	Date
NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NM	NM	1,001.49	11.62	08/17/01
NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NM	NM	1,002.43	10.68	03/04/03
NI	NI	NI	NI	NI	NI	NI	NI	1,002.75	6.47	1,005.03	7.66	1,003.21	12.56	NM	NM	1.003.02	10.09	04/22/03
NI	NI	NI	NI	NI	NI	NI	NI	1,001.43	7.79	1,004.61	8.08	1,003.41	12.36	NM	NM	1,002.92	10.19	05/02/03
NI	NI	NI	NI	NM	NI	1.003.33	11.77	1,004.94	4.28	1,006,60	6.09	1.004.19	11.58	NM	NM	1.003.98	9.13	05/07/03
NI	NI	NI	NI	NM	NI	1,003.55	11.55	1,004.95	4.27	1,006.68	6.01	1,004.48	11.29	NM	NM	1,004.36	8.75	05/16/03
NI	NI	NI	NI	NM	NI	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	12/17/03
NI	NI	NI	NI	1,000.70	9.21	1,001.61	13.49	1,001.20	8.02	1,003.60	9.09	1.002.42	13.35	NM	NM	1.001.96	11.15	04/06/04
NI NI	NI	994.96	13.49	1,000.70	7.07	1,001.78	13.49	1,003.42	5.80	1,005.00	7.61	1,002.42	12.80	NM	NM	1,001.91	11.13	07/27/04
NI NI			13.49 NM														8.51	
	NI	NM		1,005.45	4.46	1,004.85	10.25	1,005.81	3.41	1,008.47	4.22	1,007.29	8.48	NM	NM	1,004.60		07/12/05
NI	NI	1,004.60	3.85	1,000.98	8.93	1,002.99	12.11	1,003.60	5.62	1,005.16	7.53	1,004.31	11.46	NM	NM	1,003.01	10.10	09/07/05
NI	NI	1,004.13	4.32	1,000.41	9.50	1,002.60	12.50	1,002.77	6.45	1,004.50	8.19	1,003.75	12.02	NM	NM	1,002.64	10.47	09/19/05
NI	NI	NM	NM	NM	NM	1,002.74	12.36	NM	NM	NM	NM	1,004.25	11.52	NM	NM	NM	NM	10/11/05
NI	NI	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	ABN	ABN	NM	NM	NM	NM	12/13/05
NI	NI	NM	NM	1,000.86	9.05	1,002.21	12.89	1,002.24	6.98	1,005.12	7.57	ABN	ABN	NM	NM	1,002.15	10.96	12/20/05
NI	NI	1,004.38	4.07	1,003.42	6.49	1,002.71	12.39	1,004.39	4.83	1,006.36	6.33	ABN	ABN	NM	NM	1,002.64	10.47	01/25/06
1,001.69	11.50	1,003.01	5.44	998.32	11.59	1,002.15	12.95	1,001.34	7.88	1,004.21	8.48	ABN	ABN	1,002.54	10.57	1,002.51	10.60	04/10/06
1,001.64 1,000.79	11.55	1,001.38	7.07	998.70	11.21	1,001.93	13.17	1,001.64	7.58	1,004.24	8.45 9.22	ABN	ABN	1,001.96	11.15	1,002.28	10.83 12.00	05/15/06 08/14/06
1,000.79	12.40 12.64	1,001.51 1.001.07	6.94 7.38	998.61 998.19	11.30 11.72	1,000.98 1.000.81	14.12 14.29	NM 1.000.94	NM 8.28	1,003.47 1.003.14	9.22	ABN ABN	ABN ABN	NM NM	NM NM	1,001.11 NM	12.00 NM	11/07/06
1,000.33	12.04	1,000.85	7.60	998.80	11.72	1,000.81	13.69	1,000.54	7.64	1,003.14	9.08	ABN	ABN	NM	NM	1,001.39	11.72	02/07/07
1,000.04	13.15	1,000.12	8.33	996.85	13.06	1,000.35	14.75	999.97	9.25	1,002.16	10.53	ABN	ABN	NM	NM	1,000.50	12.61	05/30/07
999.42	13.77	1,003.02	5.43	998.02	11.89	999.19	15.91	999.76	9.46	1,002.13	10.56	ABN	ABN	NM	NM	999.32	13.79	09/17/07
998.34	14.85	998.52	9.93	996.00	13.91	997.47	17.63	998.80	10.42	1,000.50	12.19	ABN	ABN	NM	NM	998.54	14.57	12/04/07
1,004.09	9.10	998.28	10.17	999.73	10.18	1,000.12	14.98	1,001.99	7.23	1,003.53	9.16	ABN	ABN	NM	NM	999.71	13.40	03/05/08
999.78	13.41	1,000.84	7.61	997.70	12.21	1,000.20	14.90	1,000.52	8.70	1,002.38	10.31	ABN	ABN	NM	NM	1,000.33	12.78	06/04/08
999.28	13.91	1,000.48	7.97	996.99	12.92	999.36	15.74	999.89	9.33	1,001.95	10.74	ABN	ABN	NM	NM	999.25	13.86	09/09/08
1,000.10	13.09	NM	NM	997.27	12.64	1,000.07	15.03	NM	NM	NM	NM	ABN	ABN	NM	NM	NM	NM 10.50	08/07/09
1,002.53	10.66	1,001.47	6.98	999.79	10.12	1,002.63	12.47	1,002.94	6.28	1,005.16	7.53	ABN	ABN	1,002.20	10.91	1,002.55	10.56	11/30/09
ABN ABN	ABN ABN	1,001.64 1,000.53	6.81 7.92	999.10 999.60	10.81 10.31	1,001.54 1,001.94	13.56 13.16	1,001.54 1.002.03	7.68 7.19	1,003.74 1.004.18	8.95 8.51	ABN ABN	ABN ABN	1,001.19 1,001.82	11.92 11.29	1,001.53 1.002.14	11.58 10.97	02/18/11 05/31/11
ABN	ABN	999.53	8.92	998.67	11.24	999.90	15.10	NM	NM	NM	NM	ABN	ABN	1,001.02 NM	NM	1,000.15	12.96	10/08/12
		999.53 NM	6.92 NM				15.20 NM	NM		NM	NM				NM	1,000.15 NM	12.96 NM	
ABN	ABN			ABN	ABN	NM			NM			ABN	ABN	NM				06/03/13
ABN	ABN	1,003.54	4.91	ABN	ABN	1,002.65	12.45	NM	NM	1,006.19	6.50	ABN	ABN	1,002.71	10.40	1,003.02	10.09	07/17/13
ABN	ABN	1,003.94	4.51	ABN	ABN	1,002.83	12.27	NM	NM	1,006.25	6.44	ABN	ABN	1,002.75	10.36	1,003.02	10.09	01/06/14

Notes: See last page of table.

MW-213 ³		MW-212		MW-211		MW-210		209P(PZ-2)	MW-	MW-208P		MW-208		MW-207P		Observation Well:						
5/22/2013		5/22/2013		5/22/2013		5/22/2013		NA		NA		4/3/2006		NA		Installation Date:						
low Residuum	Shall	ow Residuum	Shallo	w Residuum	Shallo	w Residuum	Shallo	ow Residuum	Shall	ow Residuum	Shallo	ow Residuum	Shall	low Residuum	Shall	Monitored Zone:						
																Elevation, ft. AMSL ^{1,2,3} :						
1,009.790		1,014.060		1,016.370		1,016.230		1,013.200		1,013.000		1,011.566		1,011.566		1,011.566		1,011.566		1,009.400		Access Port/Well Casing. Elevation, ft. AMSL':
2.79-992.79	100	-982.39 1009.74-999.74 1008.78-998.78 1003.28-993.28 1005.37-995.37 1006.56-996.56		2.39-982.39	99	9.40-989.40	99	Well Screen Interval														
		Ground-		Ground-		Ground-		Ground-		Ground-		Ground-		Ground-								
Ground-		Water	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water	Depth to							
Water	Depth to	Elevation,	Water,	Elevation,	Water,	Elevation,	Water,	Elevation,	Water,	Elevation,	Water,	Elevation,	Water,	Elevation,	Water,							
Elevation,	Water,	ft. AMSL	feet	ft. AMSL	feet	ft. AMSL	feet	ft. AMSL	feet	ft. AMSL	feet	ft. AMSL	feet	ft. AMSL	feet	Date						
NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	08/17/01						
NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	03/04/03						
NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	04/22/03						
NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	05/02/03						
NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	05/07/03						
NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	05/16/03						
NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	12/17/03						
NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI NI	04/06/04						
NI	NI NI	NI NI	NI NI	NI	NI	NI	NI	NI	NI	NI	NI	NI NI	NI	NI NI	NI NI	07/27/04						
NI NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI		NI	NI	07/12/05						
		NI NI	NI NI	NI NI	NI				NI NI	NI NI			NI									
NI	NI	NI NI	NI NI	NI NI	NI	NI	NI	NI	NI NI	NI NI	NI	NI	NI NI	NI	NI	09/07/05						
NI	NI					NI	NI	NI			NI	NI		NI	NI	09/19/05						
NI Ni	NI NI	NI	NI	NI VII	NI	NI VII	NI	NI	NI Ni	NI	NI	NI Ni	NI	NI 	NI	10/11/05						
NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	12/13/05						
NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	12/20/05						
NI	NI NI	NI NI	NI NI	NI NI	NI NI	NI NI	NI NI	1,003.55	9.65	NI NM	NI NI	NI 4 002 27	NI 0.20	NI NI	NI NI	01/25/06						
NI NI	NI NI	NI	NI NI	NI NI	NI	NI NI	NI NI	1,002.17 1.002.29	11.03 10.91	1.004.69	8.31	1,002.27 1.002.26	9.30 9.31	1.002.10	7.30	04/10/06 05/15/06						
NI	NI NI	NI	NI	NI	NI	NI	NI	1,002.23	12.08	1,003.98	9.02	1,001.38	10.19	NM	NM	08/14/06						
NI	NI	NI	NI	NI	NI	NI	NI	1,000.79	12.41	1,004.25	8.75	1,001.16	10.41	1,001.41	7.99	11/07/06						
NI	NI	NI	NI	NI	NI	NI	NI	1,002.06	11.14	1,004.75	8.25	1,001.89	9.68	1,001.19	8.21	02/07/07						
NI	NI	NI	NI	NI	NI	NI	NI	1,000.17	13.03	1,003.24	9.76	1,000.37	11.20	1,000.27	9.13	05/30/07						
NI	NI	NI	NI	NI	NI	NI	NI	999.23	13.97	1,003.58	9.42	999.86	11.71	1,002.18	7.22	09/17/07						
NI	NI	NI	NI	NI	NI	NI	NI	998.46	14.74	1,000.18	12.82	998.75	12.82	999.45	9.95	12/04/07						
NI NI	NI NI	NI NI	NI NI	NI NI	NI NI	NI NI	NI NI	1,002.87 1,000.34	10.33 12.86	1,006.02 1,003.54	6.98 9.46	1,001.45 1,000.77	10.12 10.80	1,004.42 1,000.67	4.98 8.73	03/05/08 06/04/08						
NI	NI	NI	NI	NI NI	NI	NI NI	NI	999.46	13.74	1,003.34	10.03	999.64	11.93	1,000.04	9.36	09/09/08						
NI NI	NI	NI	NI	NI	NI	NI	NI	NM	NM	NM	NM	NM	NM	NM	NM	08/07/09						
NI	NI	NI	NI	NI	NI	NI	NI	1,003.61	9.59	1,005.64	7.36	1,003.23	8.34	1,003.85	5.55	11/30/09						
NI	NI	NI	NI	NI	NI	NI	NI	ABN	ABN	1,004.82	8.18	ABN	ABN	1,002.19	7.21	02/18/11						
NI	NI	NI	NI	NI	NI	NI	NI	ABN	ABN	1,005.10	7.90	ABN	ABN	1,002.94	6.46	05/31/11						
NI	NI	NI	NI	NI	NI	NI	NI	ABN	ABN	NM	NM	ABN	ABN	1,002.35	7.05	10/08/12						
999.50	10.29	1,003.88	10.18	1,003.16	13.21	1,002.67	13.56	ABN	ABN	NM	NM	ABN	ABN	NM	NM	06/03/13						
1,003.03	6.76	1,004.07	9.99	1,003.92	12.45	1,002.87	13.36	ABN	ABN	1,005.10	7.90	ABN	ABN	1,005.42	3.98	07/17/13						
1,003.28	6.51	1,004.15	9.91	1,004.61	11.76	1,002.98	13.25	ABN	ABN	1,007.87	5.13	ABN	ABN	1,007.66	1.74	01/06/14						

Notes: See last page of table.

MW-40 4 4/14/2006 Illow Residuun	Shal	MW-403 4/13/2006 ow Residuum	Shall	MW-402 4/13/2006 ow Residuum	Shalle	MW-401 4/13/2006 w Residuum	Shallo	MW-306 4/3/2006 low Residuum	Shal	MW-303 4/4/2006 ow Residuum	Shall	MW-302 4/4/2006 Ilow Residuum	Sha	MW-301 4/4/2006 Ilow Residuum	Shal	MW-214 ³ 5/22/2013 eep Residuum	De	Observation Well: Installation Date: Monitored Zone:
1,009.130		1,015.220		1,016.210		1,013.690		1,008.496		1,009.386		1,011.911		1,012.600		1,009.400		Elevation, ft. AMSL ^{1,2,3} : Access Port/Well Casing.
																		Elevation, ft. AMSL':
05.20-995.20	100	2.61-992.61	100	6.74-996.74	100	7.74-997.74	1007	37.83-977.83	98	0.41-980.41	99	91.94-981.94	9:	94.62-984.62	99	4.90-934.90	94	Well Screen Interval
Ground		Ground-		Ground-		Ground-		Ground-		Ground-		Ground-		Ground-		_		
Wate	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Ground-		
Elevation	Water,	Elevation,	Water,	Elevation,	Water,	Elevation,	Water,	Elevation,	Water,	Elevation,	Water,	Elevation,	Water,	Elevation,	Water,	Water	Depth to	Data
ft. AMS	feet	ft. AMSL	feet	ft. AMSL	feet	ft. AMSL	feet	ft. AMSL	feet	ft. AMSL	feet	ft. AMSL	feet	ft. AMSL	feet	Elevation,	Water,	Date
N	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NM	NI	NI	NI	NI	NI	08/17/01
N	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NM	NI	NI	NI	NI	NI	03/04/03
N	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NM	NI	NI	NI	NI	NI	04/22/03
N	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NM	NI	NI	NI	NI	NI	05/02/03
N	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NM	NI	NI	NI	NI	NI	05/07/03
N	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NM	NI	NI	NI	NI	NI	05/16/03
N	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NM	NI	NI	NI	NI	NI	12/17/03
N	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NM	NI	NI	NI	NI	NI	04/06/04
N	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NM	NI	NI	NI	NI	NI	07/27/04
N	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NM	NI	NI	NI	NI	NI	07/12/05
N	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NM	NI	NI	NI	NI	NI	09/07/05
N	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NM	NI	NI	NI	NI	NI	09/19/05
	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NM	NI	NI	NI	NI	NI	10/11/05
N	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NM	NI	NI	NI	NI	NI	12/13/05
N	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NM	NI	NI	NI	NI	NI	12/20/05
N	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NM	NI	NM	NI	NI	NI	01/25/06
N	NI	NI	NI	NI	NI	NI NI	NI	1,001.00	7.50	1,001.66	7.73	1,001.54	10.37	1,002.20	10.40	NI	NI	04/10/06
1,003.36	5.77	1,000.34	14.88	1.002.39	13.82	1.005.99	7.70	1.001.02	7.48	1,001.60	7.79	1,001.45	10.46	1,002.11	10.49	NI NI	NI NI	05/15/06
1,001.67	7.46	999.68	15.54	1,001.15	15.06	1,005.03	8.66	1,000.31	8.19	1,000.74	8.65	1,000.92	10.99	1,001.29	11.31	NI	NI	08/14/06
1,001.98	7.15	999.52	15.70	1,000.84	15.37	1,004.86	8.83	1,000.09	8.41	1,000.60	8.79	1,000.78	11.13	1,001.14	11.46	NI	NI	11/07/06
1,002.8	6.28	1,000.11	15.11	1,001.39	14.82	NM	NM	1,000.09	8.41	1,001.11	8.28	1,001.14	10.77	1,001.64	10.96	NI	NI	02/07/07
1,000.3	8.78	998.84	16.38	1,000.56	15.65	NM	NM	999.36	9.14	1,000.01	9.38	1,000.29	11.62	1,000.43	12.17	NI	NI	05/30/07
998.8	10.25	998.35	16.87	999.35	16.86	NM	NM	999.03	9.47	999.26	10.13	999.56	12.35	999.64	12.96	NI	NI NI	09/17/07
997.50 1,003.2	11.63 5.86	997.47 999.63	17.75 15.59	NM 999.71	NM 16.50	NM NM	NM NM	997.93 1.000.24	10.57 8.26	998.33 999.94	11.06 9.45	998.55 1,000.23	13.36 11.68	998.74 1.000.69	13.86 11.91	NI NI	NI NI	12/04/07 03/05/08
1,000.5	8.56	999.03	16.19	1,000.39	15.82	NM	NM	999.68	8.82	1,000.04	9.35	1,000.25	11.55	1,000.55	12.05	NI NI	NI NI	06/04/08
998.7	10.34	998.41	16.81	999.27	16.94	NM	NM	999.08	9.42	999.37	10.02	999.57	12.34	999.57	13.03	NI	NI	09/09/08
NN	NM	998.91	16.31	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NI	NI	08/07/09
1,003.3	5.82	1,001.18	14.04	1,002.60	13.61	NM	NM	1,001.92	6.58	1,002.28	7.11	1,002.17	9.74	1,002.84	9.76	NI	NI	11/30/09
AB	ABN	999.99	15.23	1,001.59	14.62	NM	NM	1,000.59	7.91	ABN	ABN	ABN	ABN	ABN	ABN	NI	NI	02/18/11
AB	ABN	1,000.40	14.82	1,002.19	14.02	NM	NM	1,000.64	7.86	ABN	ABN	ABN	ABN	ABN	ABN	NI	NI	05/31/11
AB	ABN	998.70	16.52	1,000.02	16.19	NM	NM	NM	NM	ABN	ABN	ABN	ABN	ABN	ABN	NI	NI	10/08/12
AB	ABN	NM	NM	NM	NM	NM	NM	NM	NM	ABN	ABN	ABN	ABN	ABN	ABN	998.55	10.85	06/03/13
AB	ABN	1,000.77	14.45	1,003.17	13.04	1,008.00	5.69	1,001.60	6.90	ABN	ABN	ABN	ABN	ABN	ABN	1,002.05	7.35	07/17/13
ABI	ABN	1,001.83	13.39	1,003.17	13.04	1,007.58	6.11	1,002.46	6.04	ABN	ABN	ABN	ABN	ABN	ABN	1,002.49	6.91	01/06/14

Notes: See last page of table.

Observation Well:		MW-405		MW-406		MW-407		MW-408		MW-409		MW-409D		PZ-1	TV	V-1	T	W-2																												
nstallation Date:		4/14/2006		4/18/2007		4/18/2007		4/18/2007		4/19/2007		4/19/2007		4/8/2003		9/17/2005		9/17/20																												
Monitored Zone:	Sha	llow Residuum	Shal	low Residuum	Shall	ow Residuum	Sha	llow Residuum	Sha	Illow Residuum		Deep Residuum	Sh	allow Residuum	Sh	allow Residuum	S	Shallow Residu																												
Elevation, ft. AMSL ^{1,2,3} :																																														
Access Port/Well Casing. Elevation, ft. AMSL':		1,015.840		1,015.000		1,012.890		1,009.910		1,016.360	1,016.070		1,016.070		1,016.070		1,016.070		1,016.070		1,016.070		1,016.070		1,016.070		1,016.070		1,016.07		1,016.070		1,016.070		1,016.070		1,016.070		1,016.070			1,009.286		No Survey		No Survey
Vell Screen Interval	100	07.24-997.24	100	2.74-992.74	100	3.41-993.41	100	03.91-993.91	10	06.07-996.07		978.37-985.37	10	004.31-989.31		NA		NA																												
		Ground-		Ground-		Ground-		Groun																																						
	Depth to	Water	Depth to	Water		Water	Depth to	Wa																																						
	Water,	Elevation,	Water,	Elevation,		Elevation,	Water,	Elevation																																						
Date	feet	ft. AMSL	feet	ft. AMSL		ft. AMSL	feet	ft. AM																																						
08/17/01	NI	NI	NI	NM	NI	NI	NI	NI	NI																																					
03/04/03	NI	NI	NI	NI	NI	NI	NI																																							
04/22/03	NI	NI	4.48	1,004.81	NI	NI	NI																																							
05/02/03	NI	NI	5.83	1,003.46	NI	NI	NI																																							
05/07/03	NI	NI	2.02	1,007.27	NI	NI	NI																																							
05/16/03	NI	NI	NM	NM	NI	NI	NI																																							
12/17/03	NI	NI	NI	NI	NI	NI	NI	NI NI	NI	NI	NI	NI	NM	NM	NI	NI	NI																													
04/06/04	NI	NI	7.30	1,001.99	NI	NI	NI																																							
07/27/04	NI	NI	3.97	1.005.32	NI	NI	NI																																							
	NI	NI	NI	NI	NI	NI	NI	NI	NI	N	NI	NI			NI	NI	NI																													
07/12/05												NI NI	1.83	1,007.46																																
09/07/05	NI	NI	NI		6.59	1,002.70	14.04	No survey	14.31	No surv																																				
09/19/05	NI	NI	7.20	1,002.09	14.37	No survey	13.11	No surv																																						
10/11/05	NI	NI	NI	NI 	NI 	NI 	NI	NI 	NI 	NI 	NI 	NI 	NM	NM	13.69	No survey	12.90	No sur																												
12/13/05	NI	NI	NM	NM	ABN	ABN	ABN	A																																						
12/20/05	NI	NI	5.43	1,003.86	ABN	ABN	ABN	A																																						
01/25/06	NI	NI	2.83	1,006.46	ABN	ABN	ABN	Α																																						
04/10/06 05/15/06	NI 40.50	NI 1.003.28	NI NI	NI NI	ABN	ABN	ABN	ABN	ABN	A																																				
08/14/06	12.56 NM	1,003.26 NM	NI NI	NI NI	ABN ABN	ABN ABN	ABN ABN	ABN ABN	ABN ABN	A A																																				
11/07/06	13.85	1,001.99	NI	NI	ABN	ABN	ABN	ABN	ABN	A																																				
02/07/07	13.34	1.002.50	NI NI	NI	NI NI	NI NI	NI NI	NI	NI	NI	NI NI	NI NI	ABN	ABN	ABN	ABN	ABN	A																												
05/30/07	14.75	1,001.09	NM	NM	ABN	ABN	ABN	ABN	ABN	A																																				
09/17/07	15.67	1,000.17	NM	NM	ABN	ABN	ABN	ABN	ABN	А																																				
12/04/07	16.62	999.22	15.39	999.61	14.09	998.80	11.35	998.56	17.32	999.04	17.00	999.07	ABN	ABN	ABN	ABN	ABN	A																												
03/05/08	14.75	1,001.09	12.61	1,002.39	12.17	1,000.72	6.33	1,003.58	15.32	1,001.04	15.00	1,001.07	ABN	ABN	ABN	ABN	ABN	А																												
06/04/08	14.66	1,001.18	13.46	1,001.54	12.30	1,000.59	9.46	1,000.45	15.46	1,000.90	15.15	1,000.92	ABN	ABN	ABN	ABN	ABN	А																												
09/09/08	15.25	1,000.59	14.00	1,001.00	12.99	999.90	10.32	999.59	15.79	1,000.57	16.10	999.97	ABN	ABN	ABN	ABN	ABN	A																												
08/07/09 11/30/09	NM 11.72	NM 1,004.12	NM 10.81	NM 1,004.19	NM 9.85	NM 1,003.04	NM 7.56	NM 1,002.35	NM 12.82	NM 1,003.54	NM 12.62	NM 1,003.45	ABN ABN	ABN ABN	ABN ABN	ABN ABN	ABN ABN	A																												
02/18/11	13.14	1,004.12	ABN	1,004.19 ABN	9.85 ABN	1,003.04 ABN	7.56 ABN	1,002.35 ABN	14.08	1,003.54	13.80	1,003.45	ABN	ABN	ABN	ABN ABN	ABN	P																												
05/31/11	12.65	1,002.70	ABN	ABN	ABN	ABN	ABN	ABN	13.60	1,002.76	13.34	1,002.73	ABN	ABN	ABN	ABN	ABN	A																												
10/08/12	NM	NM	ABN	ABN	ABN	ABN	ABN	ABN	NM	NM	NM	NM	ABN	ABN	ABN	ABN	ABN	,																												
06/03/13	NM	NM	ABN	ABN	ABN	ABN	ABN	ABN	NM	NM	NM	NM	ABN	ABN	ABN	ABN	ABN	A																												
07/17/13	11.19	1,004.65	ABN	ABN	ABN	ABN	ABN	ABN	12.39	1,003.97	12.07	1,004.00	ABN	ABN	ABN	ABN	ABN	A																												
01/06/14	11.56	1,004.28	ABN	ABN	ABN	ABN	ABN	ABN	12.46	1,003.90	12.15	1,003.92	ABN	ABN	ABN	ABN	ABN	A																												

Notes: See last page of table.

Attachment A. Groundwater Elevation Data 2001-2014 ARAMARK Dekalb Site, Atlanta, GA

Observation Well: Installation Date: Monitored Zone:	TV Sh	9/17/2005 vallow Residuum	Т	MW-1 8/5/2008 Shallow Residuum		W-2 8/5/2008 shallow Residuum		MW-3 8/5/2008 allow Residuum	MW-1 (K	(EMRON) 10/9/2003 Shallow Residuum	MW-2 (K	EMRON) 10/9/2003 Shallow Residuum	MW-3	3 (KEMRON) 10/9/2003 Shallow Residuum	ED Sha	D-1 12/7/200 allow Residuur
Elevation, ft. AMSL ^{1,2,3} : access Port/Well Casing. Elevation, ft. AMSL':		No Survey		No Survey		No Survey		No Survey		No Survey		No Survey		No Survey		1028.5
Vell Screen Interval		NA		NA		NA		NA		NA		NA		NA	10	006.09-996.0
		Ground-		Ground-		Ground-		Ground-		Ground-		Ground-		Ground-		Ground
	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Wate
	Water,	Elevation,	Water,	Elevation,	Water,	Elevation,	Water,	Elevation,	Water,	Elevation,	Water,	Elevation,	Water,	Elevation,	Water,	Elevation
Date	feet	ft. AMSL	feet	ft. AMSL	feet	ft. AMSL	feet	ft. AMSL	feet	ft. AMSL	feet	ft. AMSL	feet	ft. AMSL	feet	ft. AMS
08/17/01	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	١
03/04/03	NI	NI	NI	NI	NI	NI NI	NI	NI NI	NI	NI	NI	NI	NI	NI	NI	N
04/22/03	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	1
05/02/03	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	N
05/07/03	NI	NI	NI	NI	NI	NI NI	NI NI	NI NI	NI	NI	NI NI	NI	NI NI	NI NI	NI	
																N
05/16/03	NI	NI	NI	NI	NI	NI	NI	NI	NI or oo	NI	NI or so	NI	NI	NI	NI	N
12/17/03	NI	NI	NI	NI	NI	NI	NI	NI	25.63	No survey	25.56	No survey	31.14	No survey	NI	N
04/06/04	NI	NI	NI	NI	NI	NI	NI	NI	ABN	ABN	ABN	ABN	ABN	ABN	NI	N
07/27/04	NI	NI	NI	NI	NI	NI	NI	NI	ABN	ABN	ABN	ABN	ABN	ABN	NI	N
07/12/05	NI	NI	NI	NI	NI	NI	NI	NI	ABN	ABN	ABN	ABN	ABN	ABN	NI	N
09/07/05	13.85	No survey	NI	NI	NI	NI	NI	NI	ABN	ABN	ABN	ABN	ABN	ABN	NI	N
09/19/05	14.20	No survey	NI	NI	NI	NI	NI	NI	ABN	ABN	ABN	ABN	ABN	ABN	NI	N
10/11/05	13.41	No survey	NI	NI	NI	NI	NI	NI	ABN	ABN	ABN	ABN	ABN	ABN	NI	N
12/13/05	ABN	ABN	NI	NI	NI	NI	NI	NI	ABN	ABN	ABN	ABN	ABN	ABN	29.11	999.4
12/20/05	ABN	ABN	NI	NI	NI	NI	NI	NI	ABN	ABN	ABN	ABN	ABN	ABN	29.88	998.7
01/25/06	ABN	ABN	NI	NI	NI	NI	NI	NI	ABN	ABN	ABN	ABN	ABN	ABN	ABN	AB
04/10/06	ABN	ABN	NI	NI	NI	NI	NI	NI	ABN	ABN	ABN	ABN	ABN	ABN	ABN	AB
05/15/06	ABN	ABN	NI	NI	NI	NI	NI	NI	ABN	ABN	ABN	ABN	ABN	ABN	ABN	AB
08/14/06	ABN	ABN	NI	NI	NI	NI	NI	NI	ABN	ABN	ABN	ABN	ABN	ABN	ABN	AB
11/07/06 02/07/07	ABN	ABN ABN	NI NI	NI NI	NI NI	NI NI	NI NI	NI NI	ABN	ABN	ABN	ABN	ABN	ABN	ABN	AB
05/30/07	ABN ABN	ABN	NI NI	NI NI	NI NI	NI NI	NI NI	NI NI	ABN ABN	ABN ABN	ABN ABN	ABN ABN	ABN ABN	ABN ABN	ABN ABN	AB AB
09/17/07	ABN	ABN	NI NI	NI	NI	NI	NI NI	NI	ABN	ABN	ABN	ABN	ABN	ABN	ABN	AB
12/04/07	ABN	ABN	NI	NI	NI	NI	NI	NI	ABN	ABN	ABN	ABN	ABN	ABN	ABN	AB
03/05/08	ABN	ABN	NI	NI	NI	NI	NI	NI	ABN	ABN	ABN	ABN	ABN	ABN	ABN	AB
06/04/08	ABN	ABN	NI	NI	NI	NI	NI	NI	ABN	ABN	ABN	ABN	ABN	ABN	ABN	AB
09/09/08	ABN	ABN	10.2	No survey	11.61	No survey	10.90	No survey	ABN	ABN	ABN	ABN	ABN	ABN	ABN	AB
08/07/09	ABN	ABN	NM	No survey	NM	No survey	NM	No survey	ABN	ABN	ABN	ABN	ABN	ABN	ABN	AB
11/30/09	ABN	ABN	7.83	No survey	8.85	No survey	8.36	No survey	ABN	ABN	ABN	ABN	ABN	ABN	ABN	AB
02/18/11	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	AE
05/31/11	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	AE
10/08/12	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	AE
06/03/13	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	AE
07/17/13	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	AE
01/06/14	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	AB

Notes: See last page of table.

08-034/Table 3 - GROUNDWATER ELEVATION DATA

Attachment A. Groundwater Elevation Data 2001-2014 ARAMARK Dekalb Site, Atlanta, GA

Observation Well:	ED-2		ED-	ED-3		4	ED-5		
nstallation Date:		12/7/2005		12/7/2005		12/7/2005	12/7/2005		
Nonitored Zone:	Shall	ow Residuum	Sha	llow Residuum	Shall	low Residuum	Shallow Residuum		
Elevation, ft. AMSL ^{1,2,3} :									
access Port/Well Casing.		1028.28		1028.89		1028.81		1031.5	
Elevation, ft. AMSL':		.020.20		.020.00		.020.01			
Vell Screen Interval	100	8.93-998.93	100	06.19-996.19	100	4.51-994.51	9	99.40-989.40	
		Ground-		Ground-		Ground-		Ground	
	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Wate	
	Water,	Elevation,	Water,	Elevation,	Water,	Elevation,	Water,	Elevation	
Date	feet	ft. AMSL	feet	ft. AMSL	feet	ft. AMSL	feet	ft. AMS	
08/17/01	NI	NI	NI	NI	NI	NI	NI	١	
03/04/03	NI	NI	NI	NI	NI	NI	NI	N	
04/22/03	NI	NI	NI	NI	NI	NI	NI	N	
05/02/03	NI	NI	NI	NI	NI	NI	NI		
05/07/03	NI	NI	NI	NI	NI	NI	NI		
05/16/03	NI	NI	NI	NI	NI	NI NI	NI	N	
12/17/03	NI	NI	NI	NI	NI	NI	NI	N	
04/06/04	NI	NI NI	NI NI	NI NI	NI NI	NI NI	NI NI	, ,	
07/27/04	NI	NI_	NI NI	NI Ni	NI_	NI NI	NI NI		
07/12/05	NI	NI	NI	NI	NI	NI	NI	N	
09/07/05	NI	NI	NI	NI	NI	NI	NI	N	
09/19/05	NI	NI	NI	NI	NI	NI	NI	١	
10/11/05	NI	NI	NI	NI	NI	NI	NI	N	
12/13/05	26.79	1,001.49	28.20	1,000.69	28.93	999.88	33.51	997.9	
12/20/05	26.63	1,001.65	27.90	1,000.99	28.96	999.85	33.54	997.9	
01/25/06	ABN	ABN	ABN	ABN	ABN	ABN	ABN	AB	
04/10/06	ABN	ABN	ABN	ABN	ABN	ABN	ABN	AB	
05/15/06	ABN	ABN	ABN	ABN	ABN	ABN	ABN	AB	
08/14/06 11/07/06	ABN	ABN	ABN	ABN	ABN	ABN	ABN	AB	
02/07/07	ABN ABN	ABN ABN	ABN ABN	ABN ABN	ABN ABN	ABN ABN	ABN ABN	AB AB	
05/30/07	ABN	ABN	ABN	ABN	ABN	ABN	ABN	AB	
09/17/07	ABN	ABN	ABN	ABN	ABN	ABN	ABN	AB	
12/04/07	ABN	ABN	ABN	ABN	ABN	ABN	ABN	AB	
03/05/08	ABN	ABN	ABN	ABN	ABN	ABN	ABN	AB	
06/04/08	ABN	ABN	ABN	ABN	ABN	ABN	ABN	AE	
09/09/08	ABN	ABN	ABN	ABN	ABN	ABN	ABN	AE	
08/07/09	ABN	ABN	ABN	ABN	ABN	ABN	ABN	AE	
11/30/09 02/18/11	ABN	ABN	ABN	ABN	ABN	ABN	ABN	AE	
02/18/11	ABN ABN	ABN ABN	ABN ABN	ABN ABN	ABN ABN	ABN ABN	ABN ABN	AE AE	
10/08/12	ABN	ABN	ABN	ABN	ABN	ABN	ABN	AE	
06/03/13									
	ABN	ABN	ABN	ABN	ABN	ABN	ABN	AE	
07/17/13	ABN	ABN	ABN	ABN	ABN	ABN	ABN	AE	
01/06/14	ABN	ABN	ABN	ABN	ABN	ABN	ABN	AB	

Notes: See last page of table.

08-034/Table 3 - GROUNDWATER ELEVATION DATA

Attachment A. Groundwater Elevation Data 2001-2014 ARAMARK DeKalb Site, Atlanta, GA

- 1. Feet above mean sea level.
- 2. Represents updated top-of-casing elevations. Monitoring wells MW-102, -201 through -205, and PZ-1 were resurveyed on July 30, 2004.
- 3 Monitoring wells MW-213 and MW-214 were resurveyed on October 21, 2013
- NI Well not installed.
- NM Not measured.
- NA Not Available
- ABN Well Abandoned
- Note: No potentiometric data available for: (1) DePaul monitoring wells MW-1, -2, -3, and -4 installed in August 1990 and MW-5, -6, -7, -8, and -9 installed in May 1992;
 - (2) Pickering Environmental Consultants Geoprobe sample points BH-1. BH-2, and BH-2 completed December 2002; (3) QORE Geoprobe Borings B-1, B-2, and B-3;
 - (4) Laws direct Push Borings DP-101, DP-201, DP-103, DP-104, and DP-105; (5) MACTEC Temp. Wells TW-34, TW-35, and TW-36

08-034/Table 3 - GROUNDWATER ELEVATION DATA
Page 8 of 8

ATTACHMENT B Legal Description of the 690 DeKalb Avenue Parcel

RECEIVED

	NOV	UZ	2010	
CATHELE	INE R	بدنتديا.	arms was y	پۇردەرىيەن س
D.C.S.				

PREPARED BY AND AFTER RECORDING RETURN TO:

Brent S. Gilfedder, Esq. King & Spalding LLP 1180 Peachtree Street, N.E. Atlanta, Georgia 30309-3521

DEED UNDER POWER OF SALE

THIS INDENTURE, made this 2nd day of November, 2010, by and between BRISBANE II, LLC, a Georgia limited liability company ("Grantor"), acting by and through its attorney-infact, ARAMARK UNIFORM & CAREER APPAREL, LLC, a Delaware limited liability company (formerly known as ARAMARK Uniform & Career Apparel, Inc., a Delaware corporation) ("Lender"), and ARAMARK UNIFORM & CAREER APPAREL, LLC, a Delaware limited liability company, having an address at 115 N. First Street, Burbank, California 91502 (herein called "Grantee;" the words "Grantor" and "Grantee" to include their respective heirs, legal representatives, successors, successors-in-title, and assigns where the context requires or permits, whether voluntary by act of the parties or involuntary by operation of law);

WITNESSETH: That,

For and in consideration of the sum of TWO MILLION THREE HUNDRED THOUSAND AND NO/100 DOLLARS (\$2,300,000.00), cash in hand paid at and before the sealing and delivery of these presents, receipt of which is hereby acknowledged, Grantor has granted, bargained, sold and conveyed and by these presents does grant, bargain, sell and convey unto Grantee, its successors and assigns, the following described property, being located at 670 and 690 DeKalb Avenue, Atlanta, Georgia (collectively, the "Property"):

PARCEL 1:

ALL THAT TRACT OR PARCEL OF LAND lying and being in Land Lot 20 of the 14th District of Fulton County, Georgia and being designated as Parcel 1 according to an ALTA/ACSM Survey for Brisbane II, LLC, First American Title Insurance Company, and ARAMARK Uniform & Career Apparel, Inc. prepared by Metro Engineering and Surveying Co., Inc. by Alexander Zeiger, Georgia Registered Land Surveyor No. 2530, dated June 17, 2005, last revised June 22, 2005 and being more particularly described as follows:

BEGINNING at a point marked by an iron pin placed located at the intersection of the westerly right-of-way line of Gumby Street (also known as "Gunby Street") (30' R/W) and the northerly right-of-way line of DeKalb Avenue (R/W Varies), run thence along the northerly right-of-way line of DeKalb Avenue following the arc of a curve an arc distance of 332.65 feet, said arc having a radius of 13,560.50 feet and being subtended by a chord bearing and distance of South 75 degrees 29 minutes and 26 seconds West 332.64 feet to a point marked by an iron pin placed located at the intersection of the aforementioned right-of-way line of DeKalb Avenue with the easterly right-of-way line of Airline Street (formerly Ella Place); continuing along the aforesaid right-of-way line of Airline Street, run thence North 13 degrees 23 minutes 46 seconds West a distance of 71.19 feet to a point marked by an iron pin placed; leaving the aforesaid right-of-way line of Airline Street, run thence following the arc of a curve to the left an arc distance of 413.25 feet, said arc having a radius of 614.49 feet and being subtended by a chord bearing and distance of North 30 degrees 25 minutes 38 second East 405.51 feet to a point marked by an iron pin placed located on the southerly right-of-way line of Edgewood Avenue (R/W Varies); continuing thence along the aforesaid right-of-way line of Edgewood Avenue following the arc of a curve an arc distance of 62.69 feet, said arc having a radius of 242.31 feet and being subtended by a chord bearing and distance of North 82 degrees 24 minutes 13 seconds East 62.52 feet to a point marked by an iron pin placed located on the westerly right-of-way line of Gumby Street; continuing along the aforesaid right-of-way line of Gumby Street run thence South 11 degrees 41 minutes 46 seconds East a distance of 351.13 feet to a point marked by an iron pin placed located at the intersection of the westerly right-of-way line of Gumby Street with the northerly right-ofway line of DeKalb Avenue, said point being the TRUE PLACE OR POINT OF BEGINNING.

Said parcel contains 1.637 acres.

TOGETHER WITH:

PARCEL 2:

ALL THAT TRACT OR PARCEL OF LAND lying and being in Land Lot 20 of the 14th District of Fulton County, Georgia and being designated as Parcel 2 according to an ALTA/ACSM Survey for Brisbane II, LLC, First American Title Insurance Company, and ARAMARK Uniform & Career Apparel, Inc. prepared by Metro Engineering and Surveying Co., Inc. by Alexander Zeiger, Georgia Registered Land Surveyor No. 2530, dated June 17, 2005, last revised June 22, 2005 and being more particularly described as follows:

BEGINNING at a point marked by an iron pin placed located at the intersection of the easterly right-of-way line of Gumby Street (30' R/W) and the northerly right-of-way line of DeKalb Avenue (R/W Varies), run thence along the aforesaid right-of-way line of Gumby Street North 11 degrees 40 minutes 58 seconds West a distance of 268.79 feet to a point marked by an iron pin placed; run then North 77 degrees 28 minutes 17 seconds East a distance of 172.10 feet to a

½ inch rebar found; run thence South 11 degrees 53 minutes 46 seconds East a distance of 71.74 feet to a ¾ inch rebar found; run thence North 78 degrees 47 minutes 18 seconds East a distance of 50.00 feet to a point marked by an iron pin placed; run thence South 11 degrees 55 minutes 38 seconds East a distance of 182.65 feet to a point marked by an iron pin placed located on the northerly right-of-way line of DeKalb Avenue; continuing along the aforesaid right-of-way line of DeKalb Avenue, run thence South 74 degrees 02 minutes 53 seconds West a distance of 221.34 feet to a point marked by an iron pin placed located at the intersection of the northerly right-of-way line of DeKalb Avenue with the easterly right-of-way line of Gumby Street, said point being the TRUE PLACE OR POINT OF BEGINNING.

Said parcel contains 1.245 acres.

TOGETHER WITH all the improvements now or hereafter erected on the property, all easements, appurtenances and fixtures now or hereafter a part of the property and the rents, profits, condemnation awards, and insurance proceeds thereof, and all replacements and additions.

This conveyance is made by virtue of the power of sale contained in that certain Deed to Secure Debt and Security Agreement, dated June 30, 2005 given by Grantor to Lender and recorded in Deed Book 40367, at pages 544 et seq., Fulton County, Georgia Records (the "Security Deed") and pursuant to the applicable provisions of the Uniform Commercial Code, as enacted in Georgia, including, without limitation, O.C.G.A. §§11-9-601 et seq.

The Security Deed was given to secure (1) the indebtedness evidenced by that certain Promissory Note dated June 30, 2005 made by Grantor to the order of Lender (the "Note"). The indebtedness (the "Indebtedness") evidenced by the Note and secured by the Security Deed and all other documents and instruments evidencing, securing, governing or otherwise pertaining to said indebtedness (said documents, together with the Note and the Security Deed are herein collectively referred to as the "Loan Documents") was declared due and immediately payable because of default by Grantor in payment of the Indebtedness in accordance with the terms of the Note, the Security Deed and the other Loan Documents and by reason of the failure of Grantor to perform its obligations under the Loan Documents. By reason of the defaults and in accordance with the terms of the Security Deed, Lender declared the total balance of the Indebtedness due and the Security Deed foreclosable, and, as attorney-in-fact for Grantor duly advertised the Property for sale in the FULTON COUNTY DAILY REPORT, a newspaper in which the Sheriff's sales for Fulton County, Georgia are advertised, on October 6, 13, 20 and 27, 2010, respectively, and proceeded to expose the same for sale before the Courthouse door in Fulton County, Georgia, on a legal sales day, to wit: the first Tuesday in November, 2010, the same being November 2, 2010, and within the legal hours of sale, at which sale Grantee, party of the second part, was the highest and best bidder for cash, and said property was knocked off to it for the sum of TWO MILLION THREE HUNDRED THOUSAND AND NO/100 DOLLARS (\$2,300,000.00), all in accordance with the power and terms contained in said Security Deed.

TO HAVE AND TO HOLD, the Property, together with all and singular the rights, members and appurtenances thereof, the same being, belonging, or in anywise appertaining to the only proper use, benefit and behoof of Grantee, its successors and assigns, forever, in FEE SIMPLE, in as full and ample a manner as the same were possessed and held by Grantor.

The Property is sold on an "as is, where is" basis without recourse against Lender and without representation or warranty of any kind or nature whatsoever, express or implied, with respect thereto, including, without limitation the warranties of merchantability and fitness for any particular purpose.

The sale and conveyance of the Property has been made subject to (1) all unpaid taxes and assessments which are liens against the Property and which are prior in right to the Security Deed; (2) riparian rights incident to the premises; (3) Easement from Albert Rhodes Perdue to the City of Atlanta, dated February 26, 1947, recorded in Deed Book 2172, page 365, Fulton County, Georgia records; (4) Right-of-way Easement from Five Realty Co. to Georgia Power Company, dated December 12, 1967, recorded in Deed Book 4844, page 370, aforesaid records; (5) Declaration of Construction Easement from Servisco, Inc. to Metropolitan Atlanta Rapid Transit Authority, dated January 15, 1976, recorded in Deed Book 6417, page 194, aforesaid records; (6) Notification of the Designation of Property under the City of Atlanta's Historic Preservation Ordinance by Karen Huebner, Executive Director Urban Design Commission City of Atlanta, dated April 18, 2002, recorded in Deed Book 32286, page 363, aforesaid records; (7) Georgia Environmental Protection Division Hazardous Site Inventory dated July 1, 2004 at Site 10704, ARAMARK Uniform Services; as affected by Affidavit by Brisbane II, LLC, dated March 6, 2006, recorded in Deed Book 42078, Page 506, aforesaid records; (8) Deed from Norfolk Southern Railway Company, successor to the Georgia Air Line Railway Company, the Atlanta and Richmond Air Line Railway Company, Richmond and Danville Railroad Company, the Atlanta and Charlotte Air Line Railway Company and Southern Railway Company to Ansley North Beltline, LLC, Ansley South Beltline, LLC, Piedmont Beltline, LLC, North Avenue Beltline, LLC, Corridor Beltline, LLC and Corridor Edgewood, LLC, dated December 30, 2004, recorded in Deed Book 39115, page 430, aforesaid records; as affected by Deed of Correction from Norfolk Southern Railway Company, successor to Georgia Air Line Railway Company, the Atlanta and Richmond Air Line Railway Company, Richmond and Danville Railroad Company, the Atlanta and Charlotte Air Line Railway Company and Southern Railway Company to Ansley North Beltline, LLC, Ansley South Beltline, LLC, Piedmont Beltline, LLC, North Avenue Beltline, LLC, Corridor Beltline, LLC, and Corridor Edgewood, LLC, dated June 11, 2007, recorded in Deed Book 45194, page 351, aforesaid records; as further affected by Limited Warranty Deed from NE Corridor Partners, LLC to The Atlanta Development Authority, dated October 31, 2008, recorded in Deed Book 47320, page 573, aforesaid records; (9) Temporary Access and Construction Easement and License Agreement between The Atlanta Development Authority, as successor in interest to NE Corridor Partners, The Piedmont Park Conservancy, Inc., and Norfolk Southern Railway Company, dated June 22, 2009, recorded in Deed Book 48163, page 403, aforesaid records; as amended by First Amendment to Temporary Access and Construction Easement and License Agreement between The Atlanta Development Authority, as successor in interest to NE Corridor Partners, LLC, The Piedmont Park Conservancy, Inc. and Norfolk Southern Railway Company, dated September 30, 2009, recorded in Deed Book 48586, page 481, aforesaid records; (10) matters shown on ALTA/ACSM Land Title Survey for ARAMARK, prepared by Georgia Land Surveying Co., Inc., dated December 3, 2001; and (11) any and all other easements, limitations, restrictions, reservations, covenants and encumbrances of record to which the Security Deed is subordinate in terms of priority.

None of the Property conveyed by this deed under power was used as a dwelling place by Grantor at the time the Security Deed was given, and none of the Property conveyed by this deed under power is now used as a dwelling place by Grantor.

[SIGNATURES IMMEDIATELY FOLLOW]

IN WITNESS WHEREOF, Grantor, acting by and through ARAMARK Uniform & Career Apparel, LLC, a Delaware limited liability company (formerly known as ARAMARK Uniform & Career Apparel, Inc., a Delaware corporation), its attorney-in-fact, as aforesaid, has hereunto set its hand and seal on the day and year first above written.

Signed, sealed and delivered in the presence of:

Witness

Votary Public

My Commission Expires:

[Notarial Seal]

Journ Der 1, 2013

BRISBANE II, LLC, a Georgia limited partnership, acting by and through ARAMARK UNIFORM & CAREER APPAREL, LLC, a Delaware limited liability company (formerly known as ARAMARK Uniform & Career Apparel, Inc., a Delaware corporation), its attorney-in-fact

Name: David Micriae Isor

Title: Vice President

LESLIE PERRY

Commission # 1867281

Notary Public - California

Los Angeles County

My Comm. Expires Nov 1, 2013

ATTACHMENT C Available Historical Soil Boring Logs/ Monitoring Well Construction Logs

DEPAUL

AND ASSOCIATES, INC.
ENVIRONMENTAL ENGINEERS

LOG OF BORING: MW5

Page flof 1

LOCATION: ATLANTA, GA CLIENT: ARATEX DATE DRILLED: 5/20/92 SURFACE ELEVATION: 1019.76 Feet MSLD DRILLING METHOD: HOLLOW STEM AUGER TOTAL DEPTH: 25 Feet DRILLING COMPANY: LAYNE ENVIRONMENTAL LOGGED BY: PAUL CHARLES LUNA CLASS RECOVERY (in.) FIELD VOC N-VALUE DEPTH feet SAMPLE (mdd) GRAPHIC SAMP. DESCRIPTION AND REMARKS WELL DIAGRAM CEMENT Black-tan silty SAND very fine grained abundant glass and wood debris present MW5-5FT 24 9 ND Lt. brown/tan sandy CLAY BENTONITEmoderately plastic, mottled, fine to medium grained sand 5 ND MW5-10FT 24 10-Lt. brown/tan sandy CLAY moderately plastic, mottled, sand in matrix is fine to medium grained MW5-15FT 24 ND 8 15. O.O! SLOTTED PYC SCREEN SILICA SAND Lt. tan sandy CLAY moderately plastic, mottled, medium grained sand MW5-20FT 24 8 ND 20-SM Tan silty SAND fine grained, well sorted 25-MW5-25FT 24 ND 30

DEPAUL

AND ASSOCIATES, INC. ENVIRONMENTAL ENGINEERS LOG OF BORING: MW6

Page 1 of 1

LOCATION: ATLANTA, GA CLIENT: ARATEX

SURFACE ELEVATION: 1019.68 Feet MSLD DATE DRILLED: 5/20/92

DRILLING METHOD: HOLLOW STEM AUGER TOTAL DEPTH: 25 Feet

DRIL	LIN	IG COMPA	NY:	LA	YNE	ENVI	RON	MENTAL	LOGGED BY: PAUL CHA	RLES LUN	A
DEРТН feet	SAMPLE	SAMP. NO.	RECOVERY (in.)	N-VALUE	FIELD VOC (ppm)	GRAPHIC LOG	SOIL CLASS	DESC	RIPTION AND REMARKS		WELL DIAGRAM
5-		MW8-5 FT	10	24	ND.		CL	Brown sandy CLAY moderately plastic, me	edium to coarse grained sand, mottled black/bi	OWN -3/4 2	BENTONITE - NON-SIMINK CEMENT
10-		MW6-10 FT	24	7	ND		SC		d sand, micaceous, minor gravel (0.33 cm) pres	ent A	BEWI
15-		MW6-15 FT	24	8	ND		SC		SAND ted, V.F. grained sand, banded black/brown	O.OI SLOTTED PVC SCREEN	SILICA SAND
20-	and the same of th	MW6-20 FT	24	7	ND		SC	brown-tan-white, v.f.	gravel (0.75 cm), mottled, thin layers of grained sand, wet spoon	7078/02	SILICA
25-		MW6-25 FT	24	9	ND			Brown clayey SAND micaceous, v.f. graine brown, dark brown, blu	d sand, minor white gravel (0.5 cm), layers of ack, and white	<u> </u>	
30-											

	ADAR	MARK	MW-104		Bock Environmental
	Uniform Services, Inc. 670 DeKalb Avenue Atlanta, GA.		Surface Elevation: NA	Services, Inc. 3108 Rolling Acres Pl.	
			Total Well Depth: 24.0-ft	Suite A Valrico, FL	
			Date Drilled: 8/13/01	Tanto, 15	
	DEPTH (Feet)	BLOW COUNTS	LITHOLOGIC DESCRIPTIONS	OVA (ppm)	WELL DIAGRAM DETAILS
	0 - 2	-	Concrete with a gravel base.	-	2-ft x 2-ft pad w/8-in metal manhole.
	2 - 4 4 - 6 6 - 8 8 - 10 10 - 12	17-8-11-18 5-5-7-10 7-6-7-10 6-9-13-6 7-4-7-10	Mottled beige-orange-brown, dense, slightly crumbly, micaceous, silty clay. " " No Returns.	425 400 325 575	14-ft 2-in PVC casing & 10-ft PVC 0.01 slotted screen. 20/40 sandpack, bentonite seal, grout to surface.
	12 - 14 14 - 16 16 - 18 18 - 20 20 - 22 22 - 24 24 - 26	4-5-7-10 6-8-11-13 4-8-14-16 5-5-8-7 4-8-14-17 5-8-12-14 13-48-55-5	Mottled beige-gold-brown, loose, crumbly, micaceous, silty clav. Wet. "" " " " " " " " " " " " " " " " " "	250 220 225 3 10 65 25	

Uniform S 670 DeKa	MARK fervices, Inc. alb Avenue a, GA.	TMW-105 Surface Elevation: NA Total Well Depth: 25.0-ft Date Drilled: 8/14/01	Bock Environmental Services, Inc. 3108 Rolling Acres Pl. Suite A Valrico, FL	
DEPTH (Feet)	BLOW COUNTS	LITHOLOGIC DESCRIPTIONS	OVA (ppm)	WELL DIAGRAM DETAILS
0 - 2	-	Concrete with a gravel base.	-	2-ft x 2-ft pad w/8-in metal manhole.
2 - 4 4 - 6 6 - 8 8 - 10 10 - 12	3-4-4-6 4-2-2-7 5-6-9-8 5-4-4-7 5-10-12-14	Orange-brown-black, soft, slightly moldable, silty clay. Trace of sand.	>900 38 8 7 4	10-ft 2-in PVC casing & 15-ft PVC 0.01 slotted screen. 20/40 sandpack, bentonite seal, grout to surface.
12 - 14 14 - 16 16 - 18 18 - 20 20 - 25	4-8-14-16 6-8-14-15 4-9-17-19 Refusal	Mottled beige-orange, dense, slightly moldable, micaceous, silty clay. Moist. Gold to gray, soft, moldable, micaceous, silty clay. Wet. Total Well Depth at 25-ft.	0 190 60 - -	

A	RAMARK	MW-106		Bock Environmental
Unifo	m Services, Inc.	Surface Elevation: NA	Services, Inc. 3108 Rolling Acres Pl.	
13	eKalb Avenue tlanta, GA.	Total Well Depth: 24.0-ft	Suite A	
		Date Drilled: 8/15/01	Valrico, FL	
DEPT (Feet		LITHOLOGIC DESCRIPTIONS	OVA (ppm)	WELL DIAGRAM DETAILS
0 - 2	-	Concrete with a gravel base.	-	2-ft x 2-ft pad w/8-in metal manhole.
2 - 4 4 - 6 6 - 8 8 - 10 10 - 12	1	Mottled beige-orange-brown, dense, dry, crumbly, silty clay with trace of sand & pebbles. Gold with black streaks, loose, micaceous, silty clay.	0 0 0 0	15-ft 2-in PVC casing & 9-ft PVC 0.01 slotted screen. 20/40 sandpack, bentonite seal, grout to surface.
12 - 14 14 - 16 16 - 18 18 - 20 20 - 24	3-5-7-9 4-10-13-18 4-3-3-5	Mottled black-gold-orange, loose, micaceous, silty clay. Moist. Mottled gold-black-white, crumbly, micaceous, silty clay with white limerock chips. Total Well Depth at 24-ft.	0 0 0 -	

Uniform S 670 DeK	MARK Services, Inc. alb Avenue ta, GA.	MW-107 Surface Elevation: NA Total Well Depth: 25.0-ft Date Drilled: 8/14/01		Bock Environmental Services, Inc. 3108 Rolling Acres Pl. Suite A Valrico, FL
DEPTH (Feet)	BLOW COUNTS	LITHOLOGIC DESCRIPTIONS	OVA (ppm)	WELL DIAGRAM DETAILS
0 - 2	-	Concrete with a gravel base.	-	2-ft x 2-ft pad w/8-in metal manhole.
2 - 4 4 - 6 6 - 8 8 - 10 10 - 12	4-5-9-7 6-4-6-7 3-3-4-6 2-3-4-6 3-3-8-7	Orange-brown-black, moderately dense, slightly moldable, silty clav. "" Orange, dense, moist, moldable clay with subangular pebbles & coarse grain sand.	>750 620 100 160 13	10-ft 2-in PVC casing & 15-ft PVC 0.01 slotted screen. 20/40 sandpack, bentonite seal, grout to surface.
12 - 14 14 - 16 16 - 18 18 - 25	3-4-9-7 3-6-9-4 3-3-5-5 No Returns	" " pebbles absent. " Total Well Depth at 25-ft.	28 2 -	

ARAMARK		MW-108	Bock Environmental		
Uniform S	Services, Inc.	Surface Elevation: NA	Services, Inc. 3108 Rolling Acres Pl.		
11	alb Avenue ta, GA.	Total Well Depth: 25.0-ft	Suite A		
		Date Drilled: 8/15/01	- Valrico, FL		
DEPTH (Feet)	BLOW COUNTS	LITHOLOGIC DESCRIPTIONS	OVA (ppm)	WELL DIAGRAM DETAILS	
0 - 2		Concrete with a gravel base.	-	2-ft x 2-ft pad w/8-in metal manhole.	
2 - 4 4 - 6 6 - 8 8 - 10 10 - 12	5-15-8-7 4-4-4-4 6-6-4-6 3-3-3-15 4-8-10-12	Mottled black-orange-brown, dense, dry, crumbly, silty clay with rock fragments. Gold-gray-white, dry, silty clay with a trace of coarse grain sand. Hard rock at 10-ft.	100 12 12 2 2	15-ft 2-in PVC casing & 10-ft PVC 0.01 slotted screen. 20/40 sandpack, bentonite seal, grout to surface.	
12 - 14 14 - 16 16 - 25	3-4-5-5 3-4-3-4	Gold, moist, micaceous, silty clay. Wet. " Total Well Depth at 25-ft.	6 8 -		

ARAI	MARK	TMW-109		Bock Environmental		
Uniform S	Services, Inc.	Surface Elevation: NA	Services, Inc. 3108 Rolling Acres Pl.			
	alb Avenue a, GA.	Total Well Depth: 25.0-ft	Suite A			
		Date Drilled: 8/16/01	Valrico, FL			
DEPTH (Feet)	BLOW COUNTS	LITHOLOGIC DESCRIPTIONS	OVA (ppm)	WELL DIAGRAM DETAILS		
0 - 2	-	Orange-brown-black, moist, silty clay with fragmented debris.	-	2-ft x 2-ft pad w/8-in metal manhole.		
2 - 4 4 - 6 6 - 8 8 - 10 10 - 12	4-3-2-4 6-9-11-10 4-3-4-5 6-22-33-Rf 9-6-4-5	Dark brown, slightly moist, grainy, dirty, clayey silt. Refusal at 10-ft. Dark brown to orange, slightly moldable, micaceous silt with a trace of sand.	>1000 >1000 >400 >150 50	10-ft 2-in PVC casing & 15-ft PVC 0.01 slotted screen. 20/40 sandpack, bentonite seal, grout to surface.		
12 - 14 14 - 16 16 - 18 18 - 25	4-4-3-4 4-4-6-9 -	No Recovery. Wet. " Light brown to gray, soft, moldable, micaceous, silty clay with trace of sand.	- - -			
		Total Well Depth at 25-ft.				

Uniform S 670 DeK	MARK Services, Inc. alb Avenue ta, GA.	MW-110 Surface Elevation: NA Total Well Depth: 22.0-ft Date Drilled: 8/16/01	Bock Environmental Services, Inc. 3108 Rolling Acres Pl. Suite A Valrico, FL	
DEPTH (Feet)	BLOW COUNTS	LITHOLOGIC DESCRIPTIONS	OVA (ppm)	WELL DIAGRAM DETAILS
0 - 2	-	Concrete with a gravel base.	_	2-ft x 2-ft pad w/8-in metal manhole.
2 - 4 4 - 6 6 - 8 8 - 10 10 - 12	8-7-6-13 4-6-9-9 3-6-7-9 4-3-4-6 4-3-4-5	No Recovery. Orange, dense, dry, crumbly, slightly micaceous, silt. Gold, dry, crumbly, micaceous silt with trace of coarse grain sand. Moist.	>500 450 340 290	15-ft 2-in PVC casing & 7-ft PVC 0.01 slotted screen. 20/40 sandpack, bentonite seal, grout to surface.
12 - 14 14 - 16 16 - 22	4-7-8-10 4-6-6-14 -	No Recovery. Wet. No Recovery. Total Well Depth at 24-ft.	- - - - -	

ARAMARK Uniform Services, Inc. 670 DeKalb Avenue Atlanta, GA.		MW-111 Surface Elevation: NA Total Well Depth: 25.0-ft Date Drilled: 8/15/01		Bock Environmental Services, Inc. 3108 Rolling Acres Pl. Suite A Valrico, FL
DEPTH (Feet)	BLOW COUNTS	LITHOLOGIC DESCRIPTIONS	OVA (ppm)	WELL DIAGRAM DETAILS
0 - 2	-	Concrete with a gravel base.	-	2-ft x 2-ft pad w/8-in metal manhole.
2 - 4 4 - 6 6 - 8 8 - 10 10 - 12	3-4-6-8 5-3-4-5 3-2-3-5 5-4-5-8 3-4-4-7	Orange, dry, crumbly, micaceous, silty, clay. Gold, loose, moist, micaceous, silty clay.	5 11 30 30 80	10-ft 2-in PVC casing & 15-ft PVC 0.01 slotted screen. 20/40 sandpack, bentonite seal, grout to surface.
12 - 14 14 - 16 16 - 18 18 - 25	5-9-15-12 3-9-27-30 7-15-17-13	" " with quartz fragments. " " Total Well Depth at 25-ft.	37 1 - -	

DRILLER: EQUIPMENT: MACTEC CME 550

METHOD:

Hollow Stem Auger 8 inches

HOLE DIA .: REMARKS

Type II well installed. Stabilized groundwater depth

13.72 feet below TOC.

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BEWEEN STRATA ARE APPROXIMATE. TRANSITIONS BETWEEN STRATA MAY BE GRADUAL.

SOIL TEST BORING RECORD

BORING NO.:

MW-402

PROJECT:

ARAMARK

LOCATION:

Atlanta, Georgia

DRILLED:

April 13, 2006

6306-05-0097

PROJECT NO.:

PAGE 1 OF 1

DRILLER: EQUIPMENT: MACTEC CME 550

METHOD: HOLE DIA.:

Hollow Stem Auger

REMARKS:

Type II well set. Stabilized groundwater depth 15.16 feet

below TOC.

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BEWEEN STRATA ARE APPROXIMATE. TRANSITIONS BETWEEN STRATA MAY BE GRADUAL.

SOIL TEST BORING RECORD

BORING NO.:

MW-403

PROJECT:

ARAMARK

LOCATION:

Atlanta, Georgia

DRILLED:

April 13, 2006

PROJECT NO.: 6306-05-0097

PAGE 1 OF 1

	Monito	rin	g We	10				
Project: ARAMARK - DeKalb	Drill Rig: 1						Top of Casing Elevation: 1016.28	3
Date: <i>May 22, 2013</i>	Driller:	South	east So	nic Solu	ıtior	ıs	Initial Groundwater Depth: 11.0 F	t Bbs
Logged By: <i>Tony Gordon, PG</i>	Hole Diame	eter:	6-inch				Final Groundwater Depth: 13.56	Ft. TOC
Description		USCS Class	Graphic Log	Depth	Sample Interval	Blows / 6"		-up Cover :2'x4" oncrete Pad
Concrete, Gravel, Paving				— o —				
Red-brown, brown , silty sand, trace gravel, non-moist (fill).	plastic,	SM		 - 2 -			Portland I/	Bentonite
Red-brown, dark-gray-black, clayey silt, trace-littl sand, trace glass fragments, very low plasticity (ML/ CL		- 4 - - 4 -			Grout 2-inch-diam Blank PVC	eter Sch. 40 Casing
Dark-gray, clayey-silt and fine-course sand, trace trace burnt wood fragments, low plasticity, moist	gravel, (fill).	CL/ SC		- 6 - - 8 -			7.5'	
Red-brown, brown, light gray, mottled, silty clay, fine-medium sand, low-medium plasticity, very odor).		CL/ SC		- 10 12 14 16 16			Bentonite S 11' — 20-30 Me Filter Paci	sh Sand
Gray, orange-brown, silty fine-course sand, trace (weathered rock) trace clay, trace mica, wet (no non-plastic , wet (no odor).		SM		- 18 20 22			2-inch-diam 40 0.010" S PVC Scree	Slotted n
Tan-brown, white, light gray, silty fine-course sar weathered rock fragments (granitic texture), no		SM/ GW		 _ 24 _ 			23' Borehole Cave in	
Terminate boring hole : 26 Ft. BGS.				- 26 32 36 38 40			26'	
Atlanta Environmental Management, Inc. Environmental Consulting, Engineering, Hydrogeologic Services 2580 Northeast Expressway • Atlanta Georgia 303 Telephone: (404) 329-9006 • Fax: (404) 329-205		2. G 3. B	SCS = Uni roudwater GS- below	measured ground s	d fror urfac	n top e.	ion System. casing (TOC).	roject No. 33-1303-1 ge 1 of 1

	Monito	rin	ıg We					
Project: ARAMARK - DeKalb	Drill Rig: 7							Top of Casing Elevation: 1016.37
Date: <i>May 22, 2013</i>	Driller: \$	South	heast So	nic Solu	tion	ıs		Initial Groundwater Depth: 8.30 Ft Bbs
Logged By: <i>Tony Gordon, PG</i>	Hole Diame	eter:	6-inch					Final Groundwater Depth: 13.21 Ft. TOC
Description		USCS Class	Graphic Log	Depth	Sample Interval	Blows / 6"	2'	Stick-up 2'x2'x4" Concrete Pad
Concrete, gravel paving				├ o			-	
Red-brown, brown, gray, silty clay, little fine-coul trace debris (red brick fragments, burnt wood), moist (fill).		CL		_ 2 _ _ 2 _ _ 4 _ 				Concrete Portland I - Bentonite Grout 6-inch-diameter Sch. 40 Blank PVC Casing
Dark-gray , black, silty fine-course sand, trace cl debris (red brick fragments, rocks and glass fragmon-plastic, moist (fill).		SM		- 6 - - 8 -				9.0' — Bentonite Seal
Red-brown , silty clay and fine-medium sand, low plasticity, very moist/wet (no odor).	v-medium	CL/ SC		- 10 12 14				7 11' ——————————————————————————————————
Tan-brown, light gray, orange-brown, mottled silt trace-little fine sand, medium plasticity, very mois odor), "saporlite" (% sand increases with depth)	st/wet (no	CL/ CH		- 16 - 18 - 20 - 22				2-inch-diameter Sch. 40 0.010" Slotted PVC Screen 6 inch-diameter
Gray, very silty fine-course sand, banded relic fo micaceous, non-plastic , wet.	rmation, very	SM		- 24 - 24			22	2.5-23' — Borehole Cave in
Terminate Borehole: 26 Ft. BGS.				- 26 28 30 34 36 38 40 40				26'
Atlanta Environmental Management, Inc. Environmental Consulting, Engineering, Hydrogeologic Services 2580 Northeast Expressway • Atlanta Georgia 30 Telephone: (404) 329-9006 • Fax: (404) 329-203	1 L 2 C 3 E	tes: JSCS = Un Groudwater BGS- below	1 (TOC). 1133-1303-1					
1 () ==== (==)/023 244		File r	name: C:\Us	ers\Tom Lo	ngo\a	appda	ta\local\t	tten Pri Ac Dabeis IN 65876 \wald 10 gs1 dv fc g am

	Monito	orin	ıg We						
Project: ARAMARK - DeKalb	Drill Rig:	Tsi-1	50 T Son	ic Rig				Top of Casing Elevation: 1	014.06
Date: <i>May 22, 2013</i>	Driller:	South	heast So	nic Solu	ıtio	าร		Initial Groundwater Depth:	7.00 Ft. BGS
Logged By: <i>Tony Gordon, PG</i>	Hole Diam	neter:	6-inch					Final Groundwater Depth:	10.19 Ft. TOC
Description		USCS Class	Graphic Log	Depth	Sample Interval	Blows / 6"	2.1'	Me	tal Stick-up Cover — 2'x2'x4" Concrete Pad
Red-brown, clayey silt, trace-little fine sand, mica non-plastic, moist (fill) (back fill).	aceous,	ML		- 0 - - 2 -		NA		/ / Grou	land I - Bentonite
Red-brown, silty-clay, trace-little fine sand, low-p micaceous, very moist (backfill) " black plastic a	lasticity, t 6' BGS".	CL		- 4 - - 6 -				3.5'	ntonite Seal
Red-brown, silty clay, little-some fine-medium sa low-medium plasticity, wet.	nd,	CL/ SC		- 8 10 12		NA	¥	7.5' Blan 7.5' 6 ir Bor	ch-diameter Sch. 40 k PVC Casing ch-diameter ehole 30 Mesh Sand er Pack
Red-brown, brown, light gray, mottled sitly-clayer fine-medium sand, low plastcity "saprolite".	У	SM/ SC		14 — - 16 — - 18 —				∴ 40 0	ch-diameter Sch. .010" Slotted Screen
Tan-brown, light gray, white, purple (KMn04), m silty fine-course sand, trace clay with seams of fi sand and weathered rock fragments, granitic-tex "saprolite".	ne-course	SM/ GW				NA		Ca	ve in
Terminate borehole : 26 Ft. BGS				- 26 30 34 38 40				26' —	
Atlanta Environmental Management, Inc. Environmental Consulting, Engineering, Hydrogeologic Services 2580 Northeast Expressway • Atlanta Georgia 303 Telephone: (404) 329-9006 • Fax: (404) 329-205	345 7	1. L 2. C 3. E	tes: JSCS = Un Groudwater BGS- below name: C:\Us	r measure v ground s	d froi urfac	m top e.	casing		Project No. 1133-1303-1 Page 1 of 1

	Monito	rin	g We	ell M	W	<u>-2</u>	13	
Project: ARAMARK - DeKalb	Drill Rig: 7							Top of Casing Elevation: <i>Pending</i>
Date: <i>May 22, 2013</i>	Driller:	South	east So	nic Solu	ıtior	าร		Initial Groundwater Depth: 6.99 Ft. BGS
Logged By: Tony Gordon, PG	Hole Diam	eter:	6-inch					Final Groundwater Depth: 6.97 Ft. BGS
Description		USCS Class	Graphic Log	Depth	Sample Interval	Blows / 6"		—2'x2'x6" Concrete Pad —8-inch-diameter Flushmount Vault
Red-brown, clayey-silt, little-some fine-medium sand , tr micaeous, non-plastic (no odor) (backfill).	race gravel,	ML/ SM		0 — - 2 —			1.0'—	2" Locking Cap Portland Cement
Red-brown, brown, silty clay and fine-medium sand, trac low-plasticity, very moist (no odor) (backfill) @ 7.0' wet		CL/ SC		- 4 6 8 10 10 10			į	
Tan-brown, gray, orange-brown, white, light-gray, mottle fine-course sand, trace rock fragments, trace clay, grani banding, micaceous, wet " saprolite".		SM		12 14 16				2-inch-diameter Sch. 40 0.010" Slotted PVC Screen
Tan-brown, gray, orange-brown, silt, trace-little fine sand very micaceous, wet (no odor) " saprolite"	d, trace clay,	ML						Cave in
Terminate borehole: 26 Ft. BGS.				- 26 28 30 34 36 38 40 40			26	5.0'
Atlanta Environmental Management, Inc. Environmental Consulting, Engineering, Hydrogeologic Services 2580 Northeast Expressway • Atlanta Georgia 30: Telephone: (404) 329-9006 • Fax: (404) 329-205	345 37	2. G 3. B	SCS = Un froudwater GS- below	measure ground s	d fror urfac	n top e.	casing	

ATTACHMENT D Historical Groundwater Analytical Data

Table D-1. Summary of Groundwater Analyses for DePaul Monitoring Well Samples (1990-1994).

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

					MW-1					MW-2			Ī		MW-3		
			8/2/90	7/22/91	8/7/91	5/21/92	12/29/94	8/2/90	7/22/91	8/7/91	5/21/92	12/29/94	8/2/90	7/22/91	8/7/91	5/21/92	12/29/94
		Tuno 1															
Chlorinated VOCs		Type 1 RRS															
			_										_				
Tetrachloroethene	μg/L	5	< 5	<5	<5	<2	<1	< 5	<5	<5	<2	<1	< 5	15	318	<2	<1
1,1,1-Trichloroethane	μg/L	200	< 5			21	<1	< 5			< 5	<1	< 5			< 5	<1
Trichloroethene	μg/L	5	<5	<5	70	<5	<1	< 5	<5	<2	<5	<1	< 5	<5	<2	<5	<1
1,1-Dichloroethene	μg/L	7	< 5			< 5	<1	< 5			< 5	<1	< 5			< 5	<1
1,2-Dichloroethane	μg/L	5	<5			<5	<1	<5			<5	<1	<5			<5	<1
1,1-Dichloroethane	μg/L	4,000	<5			<5	<1	<5			<5	<1	<5			<5	<1
Chloroethane	μg/L	10*	<5			<10	<5	<5			<10	<5	<5			<10	<5
cis-1,2-Dichloroethene	μg/L	70	NA			NA	<1	NA			NA	<1	NA			NA	<1
trans-1,2-Dichloroethene	μg/L	100	<5	<5	<5	<5	<1	<5	<5	<5	<5	<1	<5	<5	<5	<5	<1
Vinyl Chloride	μg/L	2	<5	<10	<5	<10	<5	<5	<10	<5	<10	<5	<5	<10	<5	<10	<5
Aromatic Hydrocarbons																	
Benzene	μg/L	5	<5	6.0	<5	<2	<1	<5	<5	<5	<2	<1	<5	<5	<5	<2	<1
Ethylbenzene	μg/L	700	<5			<2	<1	<5			<2	<1	<5			<2	<1
Toluene	μg/L	1,000	<5			1,370	<1	<5			836	<1	<5			531	<1
Chlorobenzene	μg/L	100	<5			<5	<1	<5			<5	<1	<5			<5	<1
Cyclohexane	μg/L	5*	NA			NA	NA	NA			NA	NA	NA			NA	NA
Naphthalene	μg/L	20	NA			NA	NA	NA			NA	NA	NA			NA	NA
o-xylene	μg/L	10,000	NA			NA	NA	NA			NA	NA	NA			NA	NA
m,p-Xylene	μg/L	10,000	NA			NA	NA	NA			NA	NA	NA			NA	NA
Xylenes, total	μg/L	10,000	NA			110	<2	NA			<2	<2	NA			<2	<2
Isopropylbenzene	μg/L	5*	NA			NA	NA	NA			NA	NA	NA			NA	NA
Non-Chlorinated VOCs																	
Acetone	μg/L	4,000	NA			<100	NA	NA			<100	NA	NA			<100	NA
Bromomethane	μg/L	5*	<5			<10	<1	<5			<10	<1	<5			<10	<1
Carbon Disulfide	μg/L	4,000	NA			<5	NA	NA			<5	NA	NA			<5	NA
Metals																	
Arsenic	mg/L	10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium	mg/L	2,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beryllium	mg/L	4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium	mg/L	100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	mg/L	15	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nickel	mg/L	100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sodium	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Thallium	mg/L	2	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Zinc	mg/L	2,000	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA
21110	IIIg/ L	2,000	14/4	INA	11/7	INA	INA	IVA	INA	INA	INA	INA	IVA	IVA	INA	INM	INA

Table D-1. Summary of Groundwater Analyses for DePaul Monitoring Well Samples (1990-1994).

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

				MW-1						MW-2					MW-3		
			8/2/90	7/22/91	8/7/91	5/21/92	12/29/94	8/2/90	7/22/91	8/7/91	5/21/92	12/29/94	8/2/90	7/22/91	8/7/91	5/21/92	12/29/94
Other																	
Chlorides	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrate (N)	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrite (N)	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sulfate	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Potassium Permanganate	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

VOCs-volatile organic compounds $\mu g/L$ - micrograms per liter mg/L-milligrams per liter NA-not analyzed

-- Laboratory data not available

*-Risk Reduction Standard based on Detection limit

NR-Not regulated

Exceeds Type 1 RRS

J- Estimated value. Presence of the compound was confirmed but less than the reported detection limit

Table D-1. Summary of Groundwater Analyses for DePaul Monitoring Well Samples (1990-1994).

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

					MW-4			MW-5	MW-6		V-7	MW-8	MW-9
			8/2/90	7/22/91	8/7/91	5/21/92	12/29/94	5/21/92	5/21/92	5/21/92	12/29/94	12/29/94	12/29/94
Chlorinated VOCs		Type 1 RRS											
Tetrachloroethene	μg/L	5	<5	24,000	32,000	3,380	47,000 J	2,020	180	<2	<1	14	<1
1,1,1-Trichloroethane	μg/L	200	<5			<5	<1	<5	<5	<5	<1	<1	<1
Trichloroethene	μg/L	5	<5	130	282	<5	190	<5	<5	<5	<1	<1	<1
1,1-Dichloroethene	μg/L	7	<5			<5	<1	<5	<5	<5	<1	<1	<1
1,2-Dichloroethane	μg/L	5	<5			<5	<1	<5	<5	<5	<1	<1	<1
1,1-Dichloroethane	μg/L	4,000	<5			<5	<1	<5	<5	<5	<1	<1	<1
Chloroethane	μg/L	10*	<5			<10	<5	<10	<10	<10	<5	<5	<5
cis-1,2-Dichloroethene	μg/L	70	NA			NA	<1	NA	NA	NA	<1	<1	<1
trans-1,2-Dichloroethene	μg/L	100	<5	220	102	56	56	229	<5	<5	<1	<1	<1
Vinyl Chloride	μg/L	2	<5	<100	<5	<10	<5	120	<10	<10	<5	<5	<5
Aromatic Hydrocarbons													
Benzene	μg/L	5	<5	<50	<5	<2	<1	<2	<2	<2	<1	<1	<1
Ethylbenzene	μg/L	700	<5			<2	2.9	<2	<2	<2	<1	<1	<1
Toluene	μg/L	1,000	<5			288	12	66	49	650	<1	<1	<1
Chlorobenzene	μg/L	100	<5			<5	<1	<5	<5	<5	<1	<1	<1
Cyclohexane	μg/L	5*	NA			NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	μg/L	20	NA			NA	NA	NA	NA	NA	NA	NA	NA
o-xylene	μg/L	10,000	NA			NA	NA	NA	NA	NA	NA	NA	NA
m,p-Xylene	μg/L	10,000	NA			NA	NA	NA	NA	NA	NA	NA	NA
Xylenes, total	μg/L	10,000	NA			80	52	<2	<2	<2	<2	<2	<2
Isopropylbenzene	μg/L	5*	NA			NA	NA	NA	NA	NA	NA	NA	NA
Non-Chlorinated VOCs													
Acetone	μg/L	4,000	NA			<100	NA	<100	<100	<100	NA	NA	NA
Bromomethane	μg/L	5*	<5			<10	<1	<10	<10	<10	<1	<1	<1
Carbon Disulfide	μg/L	4,000	NA			<5	NA	<5	<5	<5	NA	NA	NA
Metals													
Arsenic	mg/L	10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium	mg/L	2,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beryllium	mg/L	4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
, Chromium	mg/L	100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	mg/L	15	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nickel	mg/L	100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sodium	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Thallium	mg/L	2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Zinc	mg/L	2,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table D-1. Summary of Groundwater Analyses for DePaul Monitoring Well Samples (1990-1994).

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

					MW-4			MW-5	MW-6	MV	N-7	MW-8	MW-9
			8/2/90	7/22/91	8/7/91	5/21/92	12/29/94	5/21/92	5/21/92	5/21/92	12/29/94	12/29/94	12/29/94
Other													
Chlorides	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrate (N)	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrite (N)	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sulfate	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Potassium Permanganate	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

VOCs-volatile organic compounds μg/L- micrograms per liter mg/L-milligrams per liter NA-not analyzed

-- Laboratory data not available

*-Risk Reduction Standard based on Detection limit

NR-Not regulated

Exceeds Type 1 RRS

J- Estimated value. Presence of the compound was confirmed but less than the reported detection limit

Table D-2. Summary of Groundwater Analyses for QORE Samples B-1, B-2, and B-3 (1999).

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

			B-1	B-2	B-3
			09/28/99	09/28/99	09/28/99
Chlorinated VOCs		Type 1 RRS			
Tetrachloroethene	μg/L	5	69.	289.	<1
1,1,1-Trichloroethane	μg/L	200	<1	<1	<1
Trichloroethene	μg/L	5	269.	169.	<1
1,1-Dichloroethene	μg/L	7	8.2	15.	<1
1,2-Dichloroethane	μg/L	5	<1	<1	<1
1,1-Dichloroethane	μg/L	4,000	<1	<1	<1
Chloroethane	μg/L	10*	2.3	8.9	<2
cis-1,2-Dichloroethene	μg/L	70	5,000.	13,300.	<1
trans-1,2-Dichloroethene	μg/L	100	80.	98.	<1
Vinyl Chloride	μg/L	2	982.	2,090.	<2
Aromatic Hydrocarbons					
Benzene	μg/L	5	6.6	10.	<1
Ethylbenzene	μg/L	700	<1	<1	<1
Toluene	μg/L	1,000	<1	1.3	<1
Chlorobenzene	μg/L	100	<1	3.3	<1.0
Cyclohexane	μg/L	5*	NA	NA	NA
Naphthalene	μg/L	20	NA	NA	NA
o-xylene	μg/L	10,000	NA	NA	NA
m,p-Xylene	μg/L	10,000	NA	NA	NA
Xylenes, total	μg/L	10,000	<1	<1	<1
Isopropylbenzene	μg/L	5*	NA	NA	NA
Non-Chlorinated VOCs					
Acetone	μg/L	4,000	NA	NA	NA
Bromomethane	μg/L	5*	<2	<2	<2
Carbon Disulfide	μg/L	5*	NA	NA	NA

Table D-2. Summary of Groundwater Analyses for QORE Samples B-1, B-2, and B-3 (1999).

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

			B-1	B-2	B-3
			09/28/99	09/28/99	09/28/99
Metals					
Arsenic	mg/L	10	NA	NA	NA
Barium	mg/L	2,000	NA	NA	NA
Beryllium	mg/L	4	NA	NA	NA
Chromium	mg/L	100	NA	NA	NA
Iron	mg/L	NR	NA	NA	NA
Lead	mg/L	15	NA	NA	NA
Manganese	mg/L	NR	NA	NA	NA
Nickel	mg/L	100	NA	NA	NA
Sodium	mg/L	NR	NA	NA	NA
Thallium	mg/L	2	NA	NA	NA
Zinc	mg/L	2,000	NA	NA	NA
Other					
Chlorides	mg/L	NR	NA	NA	NA
Nitrate (N)	mg/L	NR	NA	NA	NA
Nitrite (N)	mg/L	NR	NA	NA	NA
Sulfate	mg/L	NR	NA	NA	NA
Potassium Permanganate	mg/L	NR	NA	NA	NA

Notes:

RRS-Risk Reduction Standard

VOCs-volatile organic compounds

μg/L- micrograms per liter

mg/L-milligrams per liter

NA-not analyzed

*-Risk Reduction Standard based on Detection limit

NR-Not regulated

Exceeds Type 1 RRS

Table D-3. Summary of Groundwater Analyses for Pickering Samples BH-1, BH-2, and BH-3 (2000).

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

			BH-1	BH-2	BH-3
			11/03/00	11/03/00	11/03/00
Chlorinated VOCs		Type 1 RRS			
Tetrachloroethene	μg/L	5	<1	<1	35.4
1,1,1-Trichloroethane	μg/L	200	<1	<1	<1
Trichloroethene	μg/L	5	<1	<1	184.
1,1-Dichloroethene	μg/L	7	<1	<1	9.02
1,2-Dichloroethane	μg/L	5	<1	<1	<1
1,1-Dichloroethane	μg/L	4,000	<1	<1	<1
Chloroethane	μg/L	10*	<1	<1	<1
cis-1,2-Dichloroethene	μg/L	70	<1	0.55 J	1,530 E
trans-1,2-Dichloroethene	μg/L	100	<1	<1	41.5
Vinyl Chloride	μg/L	2	<1	<1	1,150 E
Aromatic Hydrocarbons					
Benzene	μg/L	5	0.98	<1	4.76
Ethylbenzene	μg/L	700	<1	<1	<1
Toluene	μg/L	1,000	<1	<1	<1
Chlorobenzene	μg/L	100	<1	<1	<1
Cyclohexane	μg/L	5*	NA	NA	NA
Naphthalene	μg/L	20	<1	<1	<1
o-xylene	μg/L	10,000	<1	<1	<1
m,p-Xylene	μg/L	10,000	<2	<2	<2
Xylenes, total	μg/L	10,000	NA	NA	NA
Isopropylbenzene	μg/L	5*	<1	<1	<1
Non-Chlorinated VOCs					
Acetone	μg/L	4,000	<20	<20	<20
Bromomethane	μg/L	5*	1.77	<1	<1
Carbon Disulfide	μg/L	5*	<1	<1	<1

Table D-3. Summary of Groundwater Analyses for Pickering Samples BH-1, BH-2, and BH-3 (2000).

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

			BH-1	BH-2	BH-3
			11/03/00	11/03/00	11/03/00
Metals					
Arsenic	mg/L	10	NA	NA	NA
Barium	mg/L	2,000	NA	NA	NA
Beryllium	mg/L	4	NA	NA	NA
Chromium	mg/L	100	NA	NA	NA
Iron	mg/L	NR	NA	NA	NA
Lead	mg/L	15	NA	NA	NA
Manganese	mg/L	NR	NA	NA	NA
Nickel	mg/L	100	NA	NA	NA
Sodium	mg/L	NR	NA	NA	NA
Thallium	mg/L	2	NA	NA	NA
Zinc	mg/L	2,000	NA	NA	NA
Other					
Chlorides	mg/L	NR	NA	NA	NA
Nitrate (N)	mg/L	NR	NA	NA	NA
Nitrite (N)	mg/L	NR	NA	NA	NA
Sulfate	mg/L	NR	NA	NA	NA
Potassium Permanganate	mg/L	NR	NA	NA	NA

VOCs-volatile organic compounds

μg/L- micrograms per liter

mg/L-milligrams per liter

NA-not analyzed

NR-Not regulated

J- Estimated value. Presence of the compound was confirmed but less than the reported detection limit

E-Concentration exceeded the established method calibration range but is within the working range of the instrument

^{*-}Risk Reduction Standard based on Detection limit

Table D-4. Summary of Groundwater Analyses for Law/Bock Samples DP-101, DP-102, DP-103, DP-104, DP-105 and DP-107 (2001).

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

Law Bock L	54.7 <1 <1 <1 <1 <1 <1 <1 <1 <1
Chlorinated VOCs RRS RRS L	<1 <1 <1 <1 <1 <1
1,1,1-Trichloroethane $\mu g/L$ 200 <2 <1 <2 <1 <2 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <2 <1 <2 <2 <1 <2 <2 <1 <2 <2 <1 <2 <2 <1 <2 <2 <1 <2 <2 <1 <2 <2 <1 <2 <2 <1 <2 <2 <1 <2 <2 <1 <2 <2 <1 <2 <2 <1 <2 <2 <1 <2 <2 <1 <2 <2 <1 <2 <2 <1 <2 <2 <2 <1 <2 <2 <2 <2 <1 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	<1 <1 <1 <1 <1 <1
Trichloroethene μg/L 5 <2 <1 <2 <1 3.0 <2 38 35.4 3.0 4.7 <3 1.1-Dichloroethene μg/L 7 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <3 <1 <3 <1 <3 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<1 <1 <1 <1 <1 <1 <1 <1
1,1-Dichloroethene μ g/L 7 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<1 <1 <1
	<1 <1
1.2 Dishlargethans 1.7 1.1 5 42 41 42 42 43 43 43 43 43 43 43 43 43 43 43 43 43	<1
1,2-Dichloroethane μ g/L 5 <2 <1 <2 <1 <2 <2 <2 <1 <2 <1 <2	
1,1-Dichloroethane μ g/L 4,000 <2 <1 <2 <1 <2 <2 <2 <1 <2 <1 <2 <1	_1
Chloroethane $\mu g/L$ 10^* <5 <1 <5 <1 <5 <2 <5 <1 <5 <1 <5	<1
cis-1,2-Dichloroethene µg/L 70 <2 <1 <2 <1 <2 <2 15 20.3 <2 2.4 <2	<1
trans-1,2-Dichloroethene μ g/L 100 <2 <1 <2 <1 <2 <2 <2 <1 <2 <1 <2 <1	<1
Vinyl Chloride μg/L 2 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<1
Aromatic Hydrocarbons	
Benzene µg/L 5 <2 <1 <2 <1 <2 <2 <2 <1 <2 <1 <2	<1
Ethylbenzene μ g/L 700 <2 <1 <2 <1 <2 <2 <2 <1 <2 <1 <2	<1
Toluene μg/L 1,000 <2 <1 <2 <1 <2 <2 2.0 <1 <2 <1 <3	<1
Chlorobenzene µg/L 100 <10 <1 <10 <1 <10 <2 <10 <1 <10 <1 <1) <1
Cyclohexane µg/L 5* NA	NA NA
Naphthalene μg/L 20 <10 <5 <10 <5 <10 <10 <10 <5 <10 <5 <10	<5
o-xylene µg/L 10,000 <5 <1 <5 <1 <5 <2 <5 <1 <5 <1 <5	<1
m,p-Xylene μg/L 10,000 <5 <1 <5 <1 <5 <2 <5 <1 <5 <1 <5	<1
Xylenes, total μ g/L 10,000 <5 NA <5 NA <5 NA <5 NA <5	NA
Isopropylbenzene μg/L 5* <10 <1 <10 <1 <10 <2 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <10) <1
Non-Chlorinated VOCs	
Acetone μg/L 4,000 <100 NA <1	0 NA
Bromomethane $\mu g/L$ 5* <10 <1 <10 <1 <10 <2 <10 <1 <10 <1 <1	
Carbon Disulfide µg/L 4,000 <10 NA <1	
Metals	
Arsenic mg/L 10 NA	NA NA
Barium mg/L 2,000 NA	NA NA
Beryllium mg/L 4 NA	NA NA
Chromium mg/L 100 NA	NA NA
Iron mg/L NR NA	
Lead mg/L 15 NA	
Manganese mg/L NR NA	
Nickel mg/L 100 NA	
Sodium mg/L NR NA	
Thallium mg/L 2 NA	
Zinc mg/L 2,000 NA	NA NA

Table D-4. Summary of Groundwater Analyses for Law/Bock Samples DP-101, DP-102, DP-103, DP-104, DP-105 and DP-107 (2001).

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

			DP- 4/2			25/01		-103 24/01		·104 5/01		-105 5/01	DP-107 4/25/01	DP-107** 4/25/01
			Law	Bock	Law	Bock	Law	Bock	Law	Bock	Law	Bock	Law	Bock
Other														
Chlorides	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrate (N)	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrite (N)	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sulfate	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Potassium Permanganate	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

RRS-Risk Reduction Standard

VOCs-volatile organic compounds

μg/L- micrograms per liter

mg/L-milligrams per liter

NA-not analyzed

*-Risk Reduction Standard based on Detection limit

NR-Not regulated

**-Reportedly a duplicate sample of DP-104

Table D-5. Summary of Groundwater Analyses for PZ-1 (2003).

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

			PZ-1
			04/09/03
Chlorinated VOCs		Type 1 RRS	
Tetrachloroethene	μg/L	5	6.7
1,1,1-Trichloroethane	μg/L	200	NA
Trichloroethene	μg/L	5	<5
1,1-Dichloroethene	μg/L	7	<5
1,2-Dichloroethane	μg/L	5	<5
1,1-Dichloroethane	μg/L	4,000	<5
Chloroethane	μg/L	10*	<5
cis-1,2-Dichloroethene	μg/L	70	<5
trans-1,2-Dichloroethene	μg/L	100	<5
Vinyl Chloride	μg/L	2	<2
Aromatic Hydrocarbons			
Benzene	μg/L	5	<5
Ethylbenzene	μg/L	700	<5
Toluene	μg/L	1,000	<5
Chlorobenzene	μg/L	100	NA
Cyclohexane	μg/L	5*	NA
Naphthalene	μg/L	20	<5
o-xylene	μg/L	10,000	NA
m,p-Xylene	μg/L	10,000	NA
Xylenes, total	μg/L	10,000	<15
Isopropylbenzene	μg/L	5*	<5
Non-Chlorinated VOCs			
Acetone	μg/L	4,000	NA
Bromomethane	μg/L	5*	NA
Carbon Disulfide	μg/L	4,000	NA

Table D-5. Summary of Groundwater Analyses for PZ-1 (2003).

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

			PZ-1
			04/09/03
Metals			
Arsenic	mg/L	10	NA
Barium	mg/L	2,000	NA
Beryllium	mg/L	4	NA
Chromium	mg/L	100	NA
Iron	mg/L	NR	NA
Lead	mg/L	15	NA
Manganese	mg/L	NR	NA
Nickel	mg/L	100	NA
Sodium	mg/L	NR	NA
Thallium	mg/L	2	NA
Zinc	mg/L	2,000	NA
Other			
Chlorides	mg/L	NR	NA
Nitrate (N)	mg/L	NR	NA
Nitrite (N)	mg/L	NR	NA
Sulfate	mg/L	NR	NA
Potassium Permanganate	mg/L	NR	NA

RRS-Risk Reduction Standard

VOCs-volatile organic compounds

μg/L- micrograms per liter

mg/L-milligrams per liter

NA-not analyzed

*-Risk Reduction Standard based on Detection limit

NR-Not regulated

Table D-6. Summary of Groundwater Analyses for MW-101, MW-102, MW-103, MW-103D, MW-104, MW-106, MW-107, and MW-108. ARAMARK DeKalb Avenue VRP/HSI Site No. 10704 Atlanta, Georgia

					MW-101					MW-102					MW-103		
			04/26/01	4/26/01*	04/22/03	04/07/04	07/12/05	04/27/01	4/27/01*	03/04/03	04/07/04	07/13/05	04/26/01	4/26/01*	03/04/03	04/07/04	06/09/05
			' ' '			• •		, ,		· ·			, , ,	• •	· ·	• •	· ·
Chloringtod VOCo		Type 1															
Chlorinated VOCs		RRS															
Tetrachloroethene	μg/L	5	1,700	1,680	35,000	29,000	25,100	2,700	3,300	8,400	850	1,140	14,000	16,200	6,700	9,100	6,900
1,1,1-Trichloroethane	μg/L	200	<2	<1	<5	NA	NA	<2	<20	NA	NA	NA	<2	<1	NA	NA	<1
Trichloroethene	μg/L	5	20	21.5	170	210	150	65	62	26	<5	14	280	315	1,500	320	590
1,1-Dichloroethene	μg/L	7	<2	<1	<5	<5	<5	<2	<20	<5	<5	<5	4.0	7.5	<5	<5	2.8
1,2-Dichloroethane	μg/L	5	<2	<1	<5	<5	<5	<2	<20	<5	<5	<5	<2	<1	<5	<5	<1
1,1-Dichloroethane	μg/L	4,000	<2	<1	<5	<5	<5	<2	<20	<5	<5	<5	3.0	4.8	<5	<5	1.3
Chloroethane	μg/L	10*	<5	<1	<5	<5	<10	<5	<20	<5	<5	<10	<5	<1	<5	<5	<1
cis-1,2-Dichloroethene	μg/L	70	<2	2.2	5.2	5.2	6.2	47	56	9.3	<5	<5	3,400	3,220	1,700	3,200	3,000
trans-1,2-Dichloroethene	μg/L	100	<2	<1	<5	<5	<5	<2	<20	<5	<5	<5	9.0	24.8	<5	6.8	6.6
Vinyl Chloride	μg/L	2	<2	<1	<2	<2	<2	<2	<20	<2	<2	<2	3.0	5.9	15	25	33
Aromatic Hydrocarbons																	
Benzene	μg/L	5	<2	<1	<5	<5	<5	<2	<20	<5	<5	<5	<2	2.3	<5	<5	2.2
Ethylbenzene	μg/L	700	<2	<1	<5	<5	<5	<2	<20	<5	<5	<5	19	25.2	24	12	15
Toluene	μg/L	1,000	<2	<1	<5	<5	<5	<2	<20	<5	<5	<5	4.0	5.4	<5	<5	1.1
Chlorobenzene	μg/L	100	<10	<1	NA	NA	NA	<10	<20	NA	NA	NA	<10	<1	NA	NA	<1
Cyclohexane	μg/L	5*	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	μg/L	20	<10	<5	<5	<5	<5	<10	<100	<5	<5	<5	19	14.9	22	12	10
o-xylene	μg/L	10,000	<5	<1	NA	NA	NA	<5	<20	NA	NA	NA	100	125	NA	NA	NA
m,p-Xylene	μg/L	10,000	<5	<1	NA	NA	NA	<5	<20	NA	NA	NA	69	85.5	NA	NA	NA
Xylenes, total	μg/L	10,000	<5	NA	<15	<15	<15	<5	NA	<15	<15	<15	170	NA	260	180	160 E
Isopropylbenzene	μg/L	5*	<10	<1	<5	<5	<5	<10	<20	<5	<5	<5	41	46.5	50	39	39
Non-Chlorinated VOCs																	
Acetone	μg/L	4,000	<100	NA	NA	NA	NA	<100	NA	NA	NA	NA	<100	NA	NA	NA	NA
Bromomethane	μg/L	´5*	<10	<1	NA	NA	NA	<10	<20	NA	NA	NA	<10	<1	NA	NA	NA
Carbon Disulfide	μg/L	4,000	<10	NA	NA	NA	NA	<10	NA	NA	NA	NA	<10	NA	NA	NA	NA
Metals																	
Arsenic	mg/L	10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.005
Barium	mg/L	2,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beryllium	mg/L	4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.00156
, Chromium	mg/L	100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.005
Iron	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	mg/L	15	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.001
Manganese	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nickel	mg/L	100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.00976
Sodium	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Thallium	mg/L	2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0034
Zinc	mg/L	2,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0538
-	9/ -	_,500	, ,	, .			, .	,	, .	, .	. •/ `	, .	,,		. •, •	. •, •	2.3550

Table D-6. Summary of Groundwater Analyses for MW-101, MW-102, MW-103, MW-103D, MW-104, MW-106, MW-107, and MW-108.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

					MW-101					MW-102					MW-103		
			04/26/01	4/26/01*	04/22/03	04/07/04	07/12/05	04/27/01	4/27/01*	03/04/03	04/07/04	07/13/05	04/26/01	4/26/01*	03/04/03	04/07/04	06/09/05
Other																	
Chlorides	mg/L	NR	NA	NA	NA	NA	43.5	NA	NA	NA	NA	65.1	NA	NA	NA	NA	NA
Nitrate (N)	mg/L	NR	NA	NA	NA	NA	30.9	NA	NA	NA	NA	12.8	NA	NA	NA	NA	NA
Nitrite (N)	mg/L	NR	NA	NA	NA	NA	< 0.10	NA	NA	NA	NA	< 0.10	NA	NA	NA	NA	NA
Sulfate	mg/L	NR	NA	NA	NA	NA	157	NA	NA	NA	NA	9.0	NA	NA	NA	NA	NA
Potassium Permanganate	mg/L	NR	NA														

RRS-Risk Reduction Standard

VOCs-volatile organic compounds

μg/L- micrograms per liter

mg/L-milligrams per liter

NA-not analyzed

*-Risk Reduction Standard based on Detection limit

NR-Not regulated

Table D-6. Summary of Groundwater Analyses for MW-101, MW-102, MW-103, MW-103D, MW-104, MW-106, MW-107, and MW-108. ARAMARK DeKalb Avenue VRP/HSI Site No. 10704 Atlanta, Georgia

				MW-103D				MW-	104				MW-106			MW	-107	
			04/22/03	04/06/04	10/11/05	03/04/03	04/05/04	10/12/05	01/25/06	04/11/06	04/20/06	04/07/04	04/11/06	04/20/06	03/04/03	04/22/03	04/07/04	04/12/06
		Type 1																
Chlorinated VOCs		RRS																
Tetrachloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1,1-Trichloroethane	μg/L	200	NA	<5	NA	NA	<5	NA	NA	NA	NA							
Trichloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethene	μg/L	7	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chloroethane	μg/L	10*	<5	<5	<5	<5	<5	<5	<5	<10	<10	<5	<10	<10	<5	<5	<5	<10
cis-1,2-Dichloroethene	μg/L	70	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
trans-1,2-Dichloroethene	μg/L	100	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl Chloride	μg/L	2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Aromatic Hydrocarbons																		
Benzene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Ethylbenzene	μg/L	700	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Toluene	μg/L	1,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene	μg/L	100	NA	<5	NA	NA	<5	NA	NA	NA	NA							
Cyclohexane	μg/L	5*	NA	<5	NA	NA	<5	NA	NA	NA	NA							
Naphthalene	μg/L	20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
o-xylene	μg/L	10,000	NA	<5	<5	NA	<5	<5	NA	NA	NA	<5						
m,p-Xylene	μg/L	10,000	NA	<5	<10	NA	<5	<10	NA	NA	NA	<5						
Xylenes, total	μg/L	10,000	<15	<15	<5	<15	<15	<5	<15	NA	NA	<15	NA	NA	<15	<15	<15	NA
Isopropylbenzene	μg/L	5*	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Non-Chlorinated VOCs																		
Acetone	μg/L	4,000	NA	<50	NA	NA	<50	NA	NA	NA	NA							
Bromomethane	μg/L	5*	NA	<5	NA	NA	<5	NA	NA	NA	NA							
Carbon Disulfide	μg/L	4,000	NA	<5	NA	NA	<5	NA	NA	NA	NA							
Metals																		
Arsenic	mg/L	10	NA															
Barium	mg/L	2,000	NA															
Beryllium	mg/L	4	NA															
Chromium	mg/L	100	NA	NA	< 0.010	NA	NA	0.014	NA									
Iron	mg/L	NR	NA															
Lead	mg/L	15	NA															
Manganese	mg/L	NR	NA	NA	0.11	NA	NA	2.2	NA									
Nickel	mg/L	100	NA															
Sodium	mg/L	NR	NA															
Thallium	mg/L	2	NA															
Zinc	mg/L	2,000	NA															

Table D-6. Summary of Groundwater Analyses for MW-101, MW-102, MW-103, MW-103D, MW-104, MW-106, MW-107, and MW-108.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

				MW-103D				MW-	104	-			MW-106			MW	'-107	
			04/22/03	04/06/04	10/11/05	03/04/03	04/05/04	10/12/05	01/25/06	04/11/06	04/20/06	04/07/04	04/11/06	04/20/06	03/04/03	04/22/03	04/07/04	04/12/06
Other																		
Chlorides	mg/L	NR	NA															
Nitrate (N)	mg/L	NR	NA															
Nitrite (N)	mg/L	NR	NA															
Sulfate	mg/L	NR	NA															
Potassium Permanganate	mg/L	NR	NA															

RRS-Risk Reduction Standard VOCs-volatile organic compounds µg/L- micrograms per liter mg/L-milligrams per liter

NA-not analyzed

*-Risk Reduction Standard based on Detection limit

NR-Not regulated

Table D-6. Summary of Groundwater Analyses for MW-101, MW-102, MW-103, MW-103D, MW-104, MW-106, MW-107, and MW-108.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

					MW-108		
			03/04/03	04/07/04	07/13/05	01/25/06	04/11/06
		Type 1					
Chlorinated VOCs		RRS					
Tetrachloroethene	μg/L	5	<5	<5	<5	<5	<5
1,1,1-Trichloroethane	μg/L	200	NA	NA	NA	NA	NA
Trichloroethene	μg/L	5	<5	<5	<5	<5	<5
1,1-Dichloroethene	μg/L	7	<5	<5	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5
Chloroethane	μg/L	10*	<5	<5	<5	<5	<10
cis-1,2-Dichloroethene	μg/L	70	<5	<5	<5	<5	<5
trans-1,2-Dichloroethene	μg/L	100	<5	<5	<5	<5	<5
Vinyl Chloride	μg/L	2	<2	<2	<2	<2	<2
Aromatic Hydrocarbons							
Benzene	μg/L	5	<5	<5	<5	<5	<5
Ethylbenzene	μg/L	700	<5	<5	<5	<5	<5
Toluene	μg/L	1,000	<5	<5	<5	<5	<5
Chlorobenzene	μg/L	100	NA	NA	NA	NA	NA
Cyclohexane	μg/L	5*	NA	NA	NA	NA	NA
Naphthalene	μg/L	20	<5	<5	<5	<5	<5
o-xylene	μg/L	10,000	NA	NA	NA	NA	<5
m,p-Xylene	μg/L	10,000	NA	NA	NA	NA	<5
Xylenes, total	μg/L	10,000	<15	<15	<15	<5	NA
Isopropylbenzene	μg/L	5*	<5	<5	<5	<5	<5
Non-Chlorinated VOCs							
Acetone	μg/L	4,000	NA	NA	NA	NA	NA
Bromomethane	μg/L	5*	NA	NA	NA	NA	NA
Carbon Disulfide	μg/L	4,000	NA	NA	NA	NA	NA
Metals							
Arsenic	mg/L	10	NA	NA	NA	NA	<0.010
Barium	mg/L	2,000	NA	NA	NA	NA	0.04
Beryllium	mg/L	4	NA	NA	NA	NA	NA
Chromium	mg/L	100	NA	NA	NA	NA	<0.010
Iron	mg/L	NR	NA	NA	NA	NA	5.23
Lead	mg/L	15	NA	NA	NA	NA	< 0.010
Manganese	mg/L	NR	NA	NA	NA	NA	6.44
Nickel	mg/L	100	NA	NA	NA	NA	NA
Sodium	mg/L	NR	NA	NA	NA	NA	14.6
Thallium	mg/L	2	NA	NA	NA	NA	NA
Zinc	mg/L	2,000	NA	NA	NA	NA	NA

Table D-6. Summary of Groundwater Analyses for MW-101, MW-102, MW-103, MW-103D, MW-104, MW-106, MW-107, and MW-108.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

			03/04/03	04/07/04	MW-108 07/13/05	01/25/06	04/11/06
Other							
Chlorides	mg/L	NR	NA	NA	21.6	NA	26.1
Nitrate (N)	mg/L	NR	NA	NA	< 0.10	NA	<0.10
Nitrite (N)	mg/L	NR	NA	NA	< 0.10	NA	<0.10
Sulfate	mg/L	NR	NA	NA	203	NA	191
Potassium Permanganate	mg/L	NR	NA	NA	NA	NA	NA

RRS-Risk Reduction Standard

VOCs-volatile organic compounds

μg/L- micrograms per liter

mg/L-milligrams per liter

NA-not analyzed

*-Risk Reduction Standard based on Detection limit

NR-Not regulated

Table D-7. Summary of Groundwater Analyses for MW-109, MW-1110, and MW-111.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

			03/04/03	04/07/04	07/13/05	10/11/05	01/26/06	04/12/06	MW-109 08/18/06	11/09/06	02/09/07	05/31/07	09/19/07	12/06/07	03/11/08
			03/04/03	04/07/04	07/13/03	10/11/03	01/20/00	04/12/00	06/16/00	11/09/00	02/09/07	03/31/07	09/19/07	12/00/07	03/11/06
Chlorinated VOCs		Type 1 RRS													
Tetrachloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<25	<5
1,1,1-Trichloroethane	μg/L	200	NA	NA	NA	NA	NA	NA	NA						
Trichloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<25	<5
1,1-Dichloroethene	μg/L	7	<5	13	<5	<5	<5	<5	<5	<5	<5	<5	<5	<25	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<25	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<25	<5
Chloroethane	μg/L	10*	<5	<5	<10	<10	<5	<10	<10	<10	22	9.5 J	7 J	<25	<10
cis-1,2-Dichloroethene	μg/L	70	1,200	680	347	328	320	372	<5	<5	5.9	<5	<5	<25	<5
trans-1,2-Dichloroethene	μg/L	100	21	12.0	7.7	5.5	5.8	4.0 J	<5	<5	<5	<5	<5	<25	<5
Vinyl Chloride	μg/L	2	800	900	733	508	260	743	<2	<2	<2	<2	<2	<10	<2
Aromatic Hydrocarbons															
Benzene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<25	<5
Ethylbenzene	μg/L	700	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<25	<5
Toluene	μg/L	1,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<25	<5
Chlorobenzene	μg/L	100	NA	NA	NA	NA	NA	NA	NA						
Cyclohexane	μg/L	5*	NA	NA	NA	NA	NA	NA	NA						
Naphthalene	μg/L	20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<25	<5
o-xylene	μg/L	10,000	NA	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	NA	<5
m,p-Xylene	μg/L	10,000	NA	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	NA	<5
Xylenes, total	μg/L	10,000	<5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<25	NA
Isopropylbenzene	μg/L	5*	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<25	<5
Non-Chlorinated VOCs															
2-Butanone	μg/L	2,000	NA	NA	NA	NA	NA	NA	NA						
Acetone	μg/L	4,000	NA	NA	NA	NA	NA	NA	NA						
Bromomethane	μg/L	5*	NA	NA	NA	NA	NA	NA	NA						
Carbon Disulfide	μg/L	4,000	NA	NA	NA	NA	NA	NA	NA						
Metals															
Arsenic	mg/L	10	NA	NA	NA	NA	NA	NA	0.013	<0.010	<0.010	NA	<0.010	NA	NA
Barium	mg/L	2,000	NA	NA	NA	NA	NA	NA	0.073	0.023	0.033	NA	< 0.020	NA	< 0.020
Beryllium	mg/L	4	NA	NA	NA	NA	NA	NA	NA						
Chromium	mg/L	100	NA	NA	NA	0.013	NA	NA	0.056	0.043	0.01	0.024	0.017	< 0.05	< 0.010
Iron	mg/L	NR	NA	NA	NA	NA	NA	NA	2.89	0.811	0.943	0.304	0.212	0.1	0.217
Lead	mg/L	15	NA	NA	NA	NA	NA	NA	0.018	0.009 J	0.024	< 0.010	< 0.010	<0.01	< 0.010
Manganese	mg/L	NR	NA	NA	NA	1.96	NA	NA	70.3	54.6	14.4	59.7	32.3	14.8	5.8
Nickel	mg/L	100	NA	NA	NA	NA	NA	NA	NA						
Sodium	mg/L	NR	NA	NA	NA	NA	NA	NA	1,290	665	386	542	337	410	319
Thallium	mg/L	2	NA	NA	NA	NA	NA	NA	NA						
Zinc	mg/L	2,000	NA	NA	NA	NA	NA	NA	NA						

			03/04/03	04/07/04	07/13/05	10/11/05	01/26/06	04/12/06	MW-109 08/18/06	11/09/06	02/09/07	05/31/07	09/19/07	12/06/07	03/11/08
Other															
Chlorides	mg/L	NR	NA	NA	15	NA	NA	11.9	NA	NA	NA	NA	NA	NA	NA
Nitrate (N)	mg/L	NR	NA	NA	< 0.10	NA	NA	< 0.010	NA	NA	NA	NA	NA	NA	NA
Nitrite (N)	mg/L	NR	NA	NA	< 0.10	NA	NA	< 0.010	NA	NA	NA	NA	NA	NA	NA
Sulfate	mg/L	NR	NA	NA	313	NA	NA	23.3	NA	NA	NA	NA	NA	NA	NA
Potassium Permanganate	mg/L	NR	NA	NA	NA	180	100	NA	73						

Notes:

RRS-Risk Reduction Standard VOCs-volatile organic compounds µg/L- micrograms per liter mg/L-milligrams per liter NA-not analyzed

Exceeds Type 1 RRS

*-Risk Reduction Standard based on Detection limit NR-Not regulated

						NAVA 100								NAVA/ 110				
			06/08/08	09/11/08	08/07/09	MW-109 12/01/09	06/02/11	07/18/13	01/13/14	03/04/03	04/06/04	1/26/06	04/11/06	MW-110 08/17/06	02/08/07	05/30/07	09/18/07	03/10/08
			00/00/00	03/11/00	00/07/03	12/01/03	00/02/11	07/10/13	01/13/14	03/04/03	04/00/04	1/20/00	04/11/00	00/17/00	02/00/07	03/30/07	03/10/07	03/10/00
		Type 1																
Chlorinated VOCs		RRS																
Tetrachloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	2.2 J
1,1,1-Trichloroethane	μg/L	200	NA	NA	<5	<5	<5	<5	<5	NA	NA	NA	NA	NA	NA	NA	NA	NA
Trichloroethene	μg/L	5	4.7 J	12	6.3	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethene	μg/L	7	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chloroethane	μg/L	10*	<10	<10	<4	<4	<4	<4	<4	<5	<5	<5	<10	<10	<10	<10	<10	<10
cis-1,2-Dichloroethene	μg/L	70	145	389	520	29	37	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
trans-1,2-Dichloroethene	μg/L	100	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl Chloride	μg/L	2	8	40	110	10	24	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Aromatic Hydrocarbons																		
Benzene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Ethylbenzene	μg/L	700	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Toluene	μg/L	1,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene	μg/L	100	NA	NA	<5	NA	<5	<5	<5	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cyclohexane	μg/L	5*	NA	NA	<5	NA	<5	<5	<5	NA	NA	NA	NA	NA	NA	NA	NA	NA
, Naphthalene	μg/L	20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
o-xylene	μg/L	10,000	<5	<5	<5	<5	<5	<5	<5	NA	NA	NA	<5	<5	<5	<5	<5	<5
m,p-Xylene	μg/L	10,000	<5	<5	<5	<5	<5	<5	<5	NA	NA	NA	<5	<5	<5	<5	<5	<5
Xylenes, total	μg/L	10,000	NA	NA	NA	<5	NA	NA	NA	<5	<5	<5	NA	NA	NA	NA	NA	NA
Isopropylbenzene	μg/L	5*	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Non-Chlorinated VOCs																		
2-Butanone	μg/L	2,000	NA	NA	<50	NA	<50	<50	<50	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	μg/L	4,000	NA	NA	<50	NA	<50	<50	<50	NA	NA	NA	NA	NA	NA	NA	NA	NA
Bromomethane	μg/L	5*	NA	NA	<5	NA	<5	<5	<5	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbon Disulfide	μg/L	4,000	NA	NA	<5	NA	<5	<5	<5	NA	NA	NA	NA	NA	NA	NA	NA	NA
Metals																		
Arsenic	mg/L	10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.010	NA	NA	NA	NA
Barium	mg/L	2,000	0.034	0.016	NA	0.175	NA	NA	NA	NA	NA	NA	NA	0.086	NA	NA	NA	NA
Beryllium	mg/L	4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium	mg/L	100	<0.010	<0.010	NA	<0.050	NA	NA	NA	NA	NA	NA	NA	<0.010	NA	NA	NA	NA
Iron	mg/L	NR	0.084 J	0.267	NA	2.08	NA	NA	NA	NA	NA	NA	NA	<0.100	NA	NA	NA	NA
Lead	mg/L	15	<0.010	< 0.010	NA	< 0.010	NA	NA	NA	NA	NA	NA	NA	< 0.010	NA	NA	NA	NA
Manganese	mg/L	NR	1.47	2.85	NA	10.9	NA	NA	NA	NA	NA	NA	NA	7.96	NA	NA	NA	NA
Nickel	mg/L	100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sodium	mg/L	NR	239	190	NA	157	NA	NA	NA	NA	NA	NA	NA	9.06	NA	NA	NA	NA
Thallium	mg/L	2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Zinc	mg/L	2,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		,,,,,			• •						• •							

						MW-109								MW-110				
			06/08/08	09/11/08	08/07/09	12/01/09	06/02/11	07/18/13	01/13/14	03/04/03	04/06/04	1/26/06	04/11/06	08/17/06	02/08/07	05/30/07	09/18/07	03/10/08
Other																		
Chlorides	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA								
Nitrate (N)	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA								
Nitrite (N)	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA								
Sulfate	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA								
Potassium Permanganate	mg/L	NR	0.89	0.89	NA	NA	NA	NA	NA	NA	NA	NA						

Notes:

RRS-Risk Reduction Standard VOCs-volatile organic compounds µg/L- micrograms per liter mg/L-milligrams per liter NA-not analyzed

Exceeds Type 1 RRS

*-Risk Reduction Standard based on Detection limit NR-Not regulated

					MW-	-110				MW	/-111	
			06/09/08	09/09/08	12/01/09	06/01/11	07/18/13	01/10/14	12/01/09	06/01/11	07/18/13	01/10/14
		Type 1										
Chlorinated VOCs		RRS										
Tetrachloroethene	μg/L	5	<5	4.3 J	<5	<5	<5	<5	<5	<5	<5	<5
1,1,1-Trichloroethane	μg/L	200	NA	NA	NA	<5	<5	<5	NA	<5	<5	<5
Trichloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethene	μg/L	7	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chloroethane	μg/L	10*	<10	<10	<4	<4	<4	<4	<4	<4	<4	<4
cis-1,2-Dichloroethene	μg/L	70	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
trans-1,2-Dichloroethene	μg/L	100	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl Chloride	μg/L	2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Aromatic Hydrocarbons												
Benzene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Ethylbenzene	μg/L	700	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Toluene	μg/L	1,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene	μg/L	100	NA	NA	NA	<5	<5	<5	NA	<5	<5	<5
Cyclohexane	μg/L	5*	NA	NA	NA	<5	<5	<5	NA	<5	<5	<5
Naphthalene	μg/L	20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
o-xylene	μg/L	10,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
m,p-Xylene	μg/L	10,000	<5		<5	<5	<5		<5		<5	
Xylenes, total	μg/L	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Isopropylbenzene	μg/L	5*	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Non-Chlorinated VOCs	- Nov -											
2-Butanone	μg/L	2,000	NA	NA	<50	<50	<50	<50	<50	<50	<50	<50
Acetone	μg/L	4,000	NA	NA	NA	<50	<50	<50	NA	<50	<50	<50
Bromomethane	μg/L	5*	NA	NA	NA	<5	<5	<5	NA	<5	<5	<5
Carbon Disulfide	μg/L	4,000	NA	NA	NA	<5	<5	<5	NA	<5	<5	<5
Metals												
Arsenic	mg/L	10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium	mg/L	2,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beryllium	mg/L	4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium	mg/L	100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	mg/L	15	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nickel	mg/L	100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sodium	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Thallium	mg/L	2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Zinc	mg/L	2,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

					MW-	110				MW	-111	
			06/09/08	09/09/08	12/01/09	06/01/11	07/18/13	01/10/14	12/01/09	06/01/11	07/18/13	01/10/14
Other												
Chlorides	mg/L	NR	NA									
Nitrate (N)	mg/L	NR	NA									
Nitrite (N)	mg/L	NR	NA									
Sulfate	mg/L	NR	NA									
Potassium Permanganate	mg/L	NR	NA									

Notes:

RRS-Risk Reduction Standard VOCs-volatile organic compounds µg/L- micrograms per liter mg/L-milligrams per liter NA-not analyzed

Exceeds Type 1 RRS

^{*-}Risk Reduction Standard based on Detection limit NR-Not regulated

Table D-8. Summary of Groundwater Analyses for MW-201, MW-202, MW-203, MW-204, MW-205, MW-206, MW-207, MW-207P, MW-208, MW-208P and MW-209/209P.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

				MW	201		1			MW-	202			
			04/22/03	04/06/04	07/14/05	10/11/05	04/22/03	04/05/04	06/09/05	07/14/05	01/25/06	04/12/06	08/15/06	11/08/06
			J 1/ ==/ JJ	- 1, 1,			· · / ==/ · ·	- 1, 1,	00,00,00	0.7 = .700	,,	0 1/ ==/ 00		
Chlorinated VOCs		Type 1 RRS												
Tetrachloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	2.2	<5	<5	<5	<5	<5
1,1,1-Trichloroethane	μg/L	200	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA
Trichloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	<1	<5	<5	<5	<5	<5
1,1-Dichloroethene	μg/L	7	<5	<5	<5	<5	<5	<5	<1	<5	<5	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5	<5	<5	<1	<5	<5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5	<5	<1	<5	<5	<5	<5	<5
Chloroethane	μg/L	10*	<5	<5	<10	<10	<5	<5	<1	<10	<10	<10	<10	<10
cis-1,2-Dichloroethene	μg/L	70	<5	<5	<5	<5	<5	<5	<1	<5	<5	<5	<5	<5
trans-1,2-Dichloroethene	μg/L	100	<5	<5	<5	<5	<5	<5	<1	<5	<5	<5	<5	<5
Vinyl Chloride	μg/L	2	<2	<2	<2	<2	<2	<2	<1	<2	<2	<2	<2	<2
Aromatic Hydrocarbons														
Benzene	μg/L	5	<5	<5	<5	<5	<5	<5	<1	<5	<5	<5	<5	<5
Ethylbenzene	μg/L	700	<5	<5	<5	<5	<5	<5	<1	<5	<5	<5	<5	<5
Toluene	μg/L	1,000	<5	<5	<5	<5	<5	<5	<1	<5	<5	<5	<5	<5
Chlorobenzene	μg/L	100	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA
Cyclohexane	μg/L	5*	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	μg/L	20	<5	<5	<5	<5	<5	<5	NA	<5	<5	<5	<5	<5
o-xylene	μg/L	10,000	NA	NA	NA	NA	NA	NA	NA	<5	<5	<5	<5	<5
m,p-Xylene	μg/L	10,000	NA	NA	NA	NA	NA	NA	NA	<5	<5	<5	<5	<5
Xylenes, total	μg/L	10,000	<15	<5	<5	<5	<15	<5	NA	NA	NA	NA	NA	NA
Isopropylbenzene	μg/L	5*	<5	<5	<5	<5	<5	<5	NA	<5	<5	<5	<5	<5
Non-Chlorinated VOCs														
2-Butanone	μg/L	2,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	μg/L	4,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Bromomethane	μg/L	· 5*	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA
Carbon Disulfide	μg/L	4,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Metals														
Arsenic	mg/L	10	NA	NA	NA	NA	NA	NA	<0.005	NA	NA	NA	<0.010	<0.010
Barium	mg/L	2,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.043	0.045
Beryllium	mg/L	4	NA	NA	NA	NA	NA	NA	< 0.001	NA	NA	NA	NA	NA
, Chromium	mg/L	100	NA	NA	NA	< 0.010	NA	NA	<0.005	NA	NA	NA	< 0.010	< 0.010
Iron	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.100	<0.100
Lead	mg/L	15	NA	NA	NA	NA	NA	NA	< 0.001	NA	NA	NA	<0.010	<0.010
Manganese	mg/L	NR	NA	NA	NA	1.46	NA	NA	NA	NA	NA	NA	1.02	0.939
Nickel	mg/L	100	NA	NA	NA	NA	NA	NA	<0.005	NA	NA	NA	NA	NA
Sodium	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	9.42	8.79
Thallium	mg/L	2	NA	NA	NA	NA	NA	NA	<0.002	NA	NA	NA	NA	NA
Zinc	mg/L	2,000	NA	NA	NA	NA	NA	NA	0.0135	NA	NA	NA	NA	NA

Table D-8. Summary of Groundwater Analyses for MW-201, MW-202, MW-203, MW-204, MW-205, MW-206, MW-207, MW-207P, MW-208, MW-208P and MW-209/209P.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

				MW-	-201					MW-	202			
			04/22/03	04/06/04	07/14/05	10/11/05	04/22/03	04/05/04	06/09/05	07/14/05	01/25/06	04/12/06	08/15/06	11/08/06
Other														'
Chlorides	mg/L	NR	NA	NA	NA	14.2	NA	NA	NA	7.8	65.1	5.6	NA	NA
Nitrate (N)	mg/L	NR	NA	NA	NA	5.2	NA	NA	NA	1.1	12.8	0.31	NA	NA
Nitrite (N)	mg/L	NR	NA	NA	NA	< 0.10	NA	NA	NA	<0.1	<0.10	<0.10	NA	NA
Sulfate	mg/L	NR	NA	NA	NA	159	NA	NA	NA	107	9.0	122	NA	NA
Potassium Permanganate	mg/L	NR	NA											

RRS-Risk Reduction Standard

VOCs-volatile organic compounds

μg/L- micrograms per liter

mg/L-milligrams per liter

NA-not analyzed

*-Risk Reduction Standard based on Detection limit

NR-Not regulated

Exceeds Type 1 RRS

Table D-8. Summary of Groundwater Analyses for MW-201, MW-202, MW-203, MW-204, MW-205, MW-206, MW-207, MW-207P, MW-208, MW-208P and MW-209/209P.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

							MW-20	12									MW-203				
			02/08/07	05/30/07	09/18/07	03/06/08	06/05/08	9/9/08	12/01/09	06/02/11	07/17/13	01/10/14	04/22/03	04/06/04	01/25/06	04/12/06	04/20/06	09/21/06	11/08/06	02/08/07	05/30/07
Chlorinated VOCs		Type 1 RRS						• •													
Tetrachloroethene	μg/L	5	<5	<5	<5	2.6 J	<5	2.9 J	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	3.5 J	<5	<5
1,1,1-Trichloroethane	μg/L	200	NA	NA	NA	NA	NA	NA	<5	<5	<5	<5	NA	NA	NA	NA	<5	NA	NA	NA	NA
Trichloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	4.0 J	4.2 J	4.7 J	3.7 J
1,1-Dichloroethene	μg/L	7	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chloroethane	μg/L	10*	<10	<10	<10	<10	<10	<10	<4	<4	<4	<4	<5	<5	<5	<10	<10	<10	<10	<10	<10
cis-1,2-Dichloroethene	μg/L	70	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
trans-1,2-Dichloroethene	μg/L	100	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl Chloride	μg/L	2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Aromatic Hydrocarbons																					
Benzene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Ethylbenzene	μg/L	700	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Toluene	μg/L	1,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene	μg/L	100	NA	NA	NA	NA	NA	NA	NA	<5	<5	<5	NA	NA	NA	NA	<5	NA	NA	NA	NA
Cyclohexane	μg/L	5*	NA	NA	NA	NA	NA	NA	NA	<5	<5	<5	NA	NA	NA	NA	<5	NA	NA	NA	NA
Naphthalene	μg/L	20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
o-xylene	μg/L	10,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	NA	NA	NA	<5	<5	<5	<5	<5	<5
m,p-Xylene	μg/L	10,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	NA	NA	NA	<5	<5	<5	<5	<5	<5
Xylenes, total	μg/L	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<15	<5	<5	NA	NA	NA	NA	NA	NA
Isopropylbenzene	μg/L	5*	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Non-Chlorinated VOCs																					
2-Butanone	μg/L	2,000	NA	NA	NA	NA	NA	NA	NA	<50	<50	<50	NA	NA	NA	NA	<50	NA	NA	NA	NA
Acetone	μg/L	4,000	NA	NA	NA	NA	NA	NA	NA	<50	<50	<50	NA	NA	NA	NA	<50	NA	NA	NA	NA
Bromomethane	μg/L	5*	NA	NA	NA	NA	NA	NA	NA	<5	<5	<5	NA	NA	NA	NA	<5	NA	NA	NA	NA
Carbon Disulfide	μg/L	4,000	NA	NA	NA	NA	NA	NA	NA	<5	<5	<5	NA	NA	NA	NA	<5	NA	NA	NA	NA
Metals																					
Arsenic	mg/L	10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.010	NA
Barium	mg/L	2,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.047	NA	0.051	NA
Beryllium	mg/L	4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium	mg/L	100	NA	NA	< 0.010	NA	NA	0.014	NA	<0.010	NA	< 0.010	<0.010								
Iron	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.273	0.137
Lead	mg/L	15	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.010	< 0.010
Manganese	mg/L	NR	NA	NA	0.11	NA	NA	2.2	NA	0.418	NA	0.294	0.428								
Nickel	mg/L	100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sodium	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	9.73	NA	8.72	10.3
Thallium	mg/L	2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Zinc	mg/L	2,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table D-8. Summary of Groundwater Analyses for MW-201, MW-202, MW-203, MW-204, MW-205, MW-206, MW-207, MW-207P, MW-208, MW-208P and MW-209/209P.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

							MW-2	02									MW-203				
			02/08/07	05/30/07	09/18/07	03/06/08	06/05/08	9/9/08	12/01/09	06/02/11	07/17/13	01/10/14	04/22/03	04/06/04	01/25/06	04/12/06	04/20/06	09/21/06	11/08/06	02/08/07	05/30/07
Other																					
Chlorides	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	31.5	31.5	65.1	5.6	NA	NA
Nitrate (N)	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.84	0.84	12.8	0.31	NA	NA
Nitrite (N)	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.1	<0.1	<0.10	< 0.10	NA	NA
Sulfate	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	105	105	9.0	122	NA	NA
Potassium Permanganate	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

RRS-Risk Reduction Standard

VOCs-volatile organic compounds

μg/L- micrograms per liter

mg/L-milligrams per liter NA-not analyzed

*-Risk Reduction Standard based on Detection limit

NR-Not regulated

Exceeds Type 1 RRS

Table D-8. Summary of Groundwater Analyses for MW-201, MW-202, MW-203, MW-204, MW-205, MW-206, MW-207, MW-207P, MW-208, MW-208P and MW-209/209P.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

						MW-203							MW-	204			
			09/18/07	12/05/07	03/07/08	06/05/08	09/10/08	12/1/09	06/02/11	05/07/03	04/06/04	07/14/05	10/11/05	01/25/06	04/13/06	08/15/06	11/08/06
		Type 1															
Chlorinated VOCs		RRS															
Tetrachloroethene	μg/L	5	<5	<5	6.0	<5	2.7 J	<5	<5	<5	<5	<5	<5	<5	<5	2.7 J	2.0 J
1,1,1-Trichloroethane	μg/L	200	NA	NA	NA	NA	NA	NA	<5	NA	NA	NA	NA	NA	NA	NA	NA
Trichloroethene	μg/L	5	<5	<5	6.8	<5	3.8 J	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethene	μg/L	7	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chloroethane	μg/L	10*	<10	<10	<10	<10	<10	<4	<4	<5	<5	<10	<10	<5	<10	<10	<10
cis-1,2-Dichloroethene	μg/L	70	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
trans-1,2-Dichloroethene	μg/L	100	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl Chloride	μg/L	2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Aromatic Hydrocarbons	P6/ -		<u> </u>							-		-					
•	/1		<5	<5	<5	<5	<5	<5	·F	<5	<5	<5	<5	4 F	<5	<5	.F
Benzene	μg/L	5							<5					<5 .5			<5
Ethylbenzene	μg/L	700	< 5	<5	< 5	<5	<5										
Toluene	μg/L	1,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene	μg/L	100	NA	NA	NA	NA	NA	NA	<5	NA	NA	NA	NA	NA	NA	NA	NA
Cyclohexane	μg/L	5*	NA	NA	NA	NA	NA	NA	<5	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	μg/L	20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
o-xylene	μg/L	10,000	<5	<5	<5	<5	<5	<5	<5	NA	NA	NA	<5	<5	<5	<5	<5
m,p-Xylene	μg/L	10,000	<5	<5	<5	<5	<5	<5	<5	NA	NA	NA	<5	<5	<5	<5	<5
Xylenes, total	μg/L	10,000	NA	<15	<5	<5	NA	NA	NA	NA	NA						
Isopropylbenzene	μg/L	5*	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Non-Chlorinated VOCs																	
2-Butanone	μg/L	2,000	NA	NA	NA	NA	NA	NA	<50	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	μg/L	4,000	NA	NA	NA	NA	NA	NA	<50	NA	NA	NA	NA	NA	NA	NA	NA
Bromomethane	μg/L	5*	NA	NA	NA	NA	NA	NA	<5	NA	NA	NA	NA	NA	NA	NA	NA
Carbon Disulfide	μg/L	4,000	NA	NA	NA	NA	NA	NA	<5	NA	NA	NA	NA	NA	NA	NA	NA
Metals																	
Arsenic	mg/L	10	NA	NA	NA	NA	NA	NA	NA	<0.010	<0.010						
Barium	mg/L	2,000	0.046	NA	0.044	0.043	0.039	<0.05	NA	NA	NA	NA	NA	0.047	NA	0.119	0.097
Beryllium	mg/L	4	NA	NA	NA	NA	NA	NA	NA	NA	NA						
Chromium	mg/L	100	<0.010	<0.005	<0.010	<0.010	<0.010	<0.05	NA	NA	NA	NA	<0.010	<0.010	NA	<0.010	<0.010
Iron	mg/L	NR	0.181	0.367	0.339	0.107	0.087 J	<0.1	NA	NA NA	NA	NA	NA	NA	NA	<0.100	0.088 J
Lead	mg/L	15	<0.010	< 0.010	< 0.010	<0.010	< 0.010	<0.1	NA	NA NA	NA	NA	NA	NA	NA	<0.100	< 0.010
Manganese	mg/L	NR	0.326	0.261	0.409	0.368	0.394	0.451	NA	NA NA	NA	NA	1.55	0.418	NA	0.010 0.975	0.887
Nickel	mg/L	100	0.320 NA	0.201 NA	0.403 NA	NA	0.394 NA	0.431 NA	NA	NA NA	NA	NA	NA	0.418 NA	NA	0.973 NA	NA
Sodium	mg/L	NR	7.99	12.2	12	8.28	8.77	7.1	NA NA	NA NA	NA NA	NA NA	NA NA	9.73	NA NA	2.63	2.07
	=	2	7.99 NA						NA NA	NA NA						2.63 NA	
Thallium	mg/L			NA	NA	NA	NA	NA			NA	NA	NA	NA	NA		NA
Zinc	mg/L	2,000	NA	NA	NA	NA	NA	NA	NA	NA	NA						

Table D-8. Summary of Groundwater Analyses for MW-201, MW-202, MW-203, MW-204, MW-205, MW-206, MW-207, MW-207P, MW-208, MW-208P and MW-209/209P.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

						MW-203							MW-	204			
			09/18/07	12/05/07	03/07/08	06/05/08	09/10/08	12/1/09	06/02/11	05/07/03	04/06/04	07/14/05	10/11/05	01/25/06	04/13/06	08/15/06	11/08/06
Other																	
Chlorides	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	8.3	NA	NA	6.2	NA	NA
Nitrate (N)	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.1	NA	NA	2.40	NA	NA
Nitrite (N)	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.10	NA	NA	< 0.10	NA	NA
Sulfate	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	69	NA	NA	95	NA	NA
Potassium Permanganate	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

lotes.

RRS-Risk Reduction Standard VOCs-volatile organic compounds µg/L- micrograms per liter

mg/L-milligrams per liter NA-not analyzed

*-Risk Reduction Standard based on Detection limit

NR-Not regulated

Exceeds Type 1 RRS

Table D-8. Summary of Groundwater Analyses for MW-201, MW-202, MW-203, MW-204, MW-205, MW-206, MW-207, MW-207P, MW-208, MW-208P and MW-209/209P.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

									MW-204						
			02/08/07	04/23/07	05/31/07	09/18/07	12/05/07	3/7/08	6/6/08	9/10/08	8/7/09	12/3/09	06/02/11	07/18/13	01/10/14
			02/00/07	0 1/ 25/ 07	03/31/07	03/10/07	12,03,07	3/1/00	0/0/08	3/10/08	6/7/03	12/3/03	00/02/11	07/10/13	01/10/11
		Type 1													
Chlorinated VOCs		RRS													
Tetrachloroethene	μg/L	5	4.0 J	5.6	5.3	6.4	5.1	8.7	8.5	7.9	10	12	7.9	8.5	7.9
1,1,1-Trichloroethane	μg/L	200	NA	NA	NA	NA	NA	NA	NA	NA	<5	<5	<5	<5	<5
Trichloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethene	μg/L	7	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chloroethane	μg/L	10*	<10	<10	<10	<10	<10	<10	<10	<10	<4	<4	<4	<4	<4
cis-1,2-Dichloroethene	μg/L	70	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
trans-1,2-Dichloroethene	μg/L	100	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl Chloride	μg/L	2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Aromatic Hydrocarbons															
Benzene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Ethylbenzene	μg/L	700	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Toluene	μg/L	1,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene	μg/L	100	NA	NA	NA	NA	NA	NA	NA	NA	<5	<5	<5	<5	<5
Cyclohexane	μg/L	5*	NA	NA	NA	NA	NA	NA	NA	NA	<5	<5	<5	<5	<5
Naphthalene	μg/L	20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
o-xylene	μg/L	10,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
m,p-Xylene	μg/L	10,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Xylenes, total	μg/L	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Isopropylbenzene	μg/L	5*	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Non-Chlorinated VOCs															
2-Butanone	μg/L	2,000	NA	NA	NA	NA	NA	NA	NA	NA	<50	<50	<50	<50	<50
Acetone	μg/L	4,000	NA	NA	NA	NA	NA	NA	NA	NA	<50	<50	<50	<50	<50
Bromomethane	μg/L	5*	NA	NA	NA	NA	NA	NA	NA	NA	<5	<5	<5	<5	<5
Carbon Disulfide	μg/L	4,000	NA	NA	NA	NA	NA	NA	NA	NA	<5	<5	<5	<5	<5
Metals															
Arsenic	mg/L	10	< 0.010	NA	NA	<0.010	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium	mg/L	2,000	0.126	NA	NA	0.216	NA	0.413	0.347	0.34	NA	0.29	NA	NA	NA
Beryllium	mg/L	4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium	mg/L	100	< 0.010	NA	< 0.010	< 0.010	<0.05	< 0.010	< 0.010	< 0.010	NA	<0.05	NA	NA	NA
Iron	mg/L	NR	0.072 J	NA	<0.100	0.223	0.855	<0.100	<0.100	<0.100	NA	1.5	NA	NA	NA
Lead	mg/L	15	<0.010	NA	<0.010	<0.010	<0.01	<0.01	<0.01	<0.01	NA	<0.01	NA	NA	NA
Manganese	mg/L	NR	0.809	NA	0.844	0.538	0.327	0.454	0.534	0.566	NA	1.08	NA	NA	NA
Nickel	mg/L	100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sodium	mg/L	NR	2.82	NA	3.28	4.59	8.22	8.11	7.02	7.1	NA	7.1	NA	NA	NA
Thallium	mg/L	2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Zinc	mg/L	2,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table D-8. Summary of Groundwater Analyses for MW-201, MW-202, MW-203, MW-204, MW-205, MW-206, MW-207, MW-207P, MW-208, MW-208P and MW-209/209P.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

			02/08/07	04/23/07	05/31/07	09/18/07	12/05/07	3/7/08	MW-204 6/6/08	9/10/08	8/7/09	12/3/09	06/02/11	07/18/13	01/10/14
Other															
Chlorides	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrate (N)	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrite (N)	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sulfate	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Potassium Permanganate	mg/L	NR	NA	NA	0.89	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

RRS-Risk Reduction Standard

VOCs-volatile organic compounds

μg/L- micrograms per liter

mg/L-milligrams per liter

NA-not analyzed

*-Risk Reduction Standard based on Detection limit

NR-Not regulated

Exceeds Type 1 RRS

J- Estimated value. Presence of the compound was confirmed

but less than the reported detection limit

Table D-8. Summary of Groundwater Analyses for MW-201, MW-202, MW-203, MW-204, MW-205, MW-206, MW-207, MW-207P, MW-208, MW-208P and MW-209/209P.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

											1W-205							
			04/07/04	07/14/05	01/25/06	04/13/06	04/20/06	08/15/06	11/09/06	02/08/07	05/31/07	09/19/07	12/05/07	3/6/08	6/9/08	9/9/08	8/7/09	12/3/09
			01/07/01	07/11/03	01/25/00	04/15/00	0 1/ 20/ 00	00/15/00	11/05/00	02/00/07	03/31/07	03/13/07	12,03,07	3/0/08	0/3/08	3/3/08	8/1/03	12/3/03
		Type 1																
Chlorinated VOCs		RRS																
Tetrachloroethene	μg/L	5	5.7	7.6	6.8	18	23	19	20	22	25	22	15	25	22	23	26	22
1,1,1-Trichloroethane	μg/L	200	NA	NA	NA	NA	<5	NA	NA	NA	<5	<5						
Trichloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	1.4	<5	<5	<5	<5	<5
1,1-Dichloroethene	μg/L	7	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chloroethane	μg/L	10*	<5	<10	<10	<10	<10	<10	<10	<10	<10	<10	<5	<10	<10	<10	<4	<4
cis-1,2-Dichloroethene	μg/L	70	<5	<5	<5	<5	5.9	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
trans-1,2-Dichloroethene	μg/L	100	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl Chloride	μg/L	2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Aromatic Hydrocarbons																		
Benzene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Ethylbenzene	μg/L	700	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Toluene	μg/L	1,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene	μg/L	100	NA	NA	NA	NA	<5	NA	NA	NA	<5	<5						
Cyclohexane	μg/L	5*	NA	NA	NA	NA	<5	NA	NA	NA	<5	<5						
Naphthalene	μg/L	20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
o-xylene	μg/L	10,000	NA	NA	NA	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
m,p-Xylene	μg/L	10,000	NA	NA	NA	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Xylenes, total	μg/L	10,000	<5	<5	<5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Isopropylbenzene	μg/L	5*	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Non-Chlorinated VOCs	1.0																	
	/1	2.000	NA	NA	NA	NA	4 ۲0	NA	NA	NA	<50	4 F0						
2-Butanone	μg/L	2,000					<50											<50
Acetone	μg/L	4,000 5*	NA NA	NA NA	NA	NA	<50 <5	NA	NA	NA	NA NA	NA	NA	NA	NA	NA NA	<50 <5	<50 <5
Bromomethane	μg/L			NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA		
Carbon Disulfide	μg/L	4,000	NA	IVA	IVA	INA	<5	INA	INA	INA	IVA	NA	NA	INA	NA	INA	<5	<5
Metals																		
Arsenic	mg/L	10	NA	NA	NA	NA	NA	< 0.010	< 0.010	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium	mg/L	2,000	NA	NA	NA	NA	NA	0.057	0.063	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beryllium	mg/L	4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium	mg/L	100	NA	NA	NA	NA	NA	<0.010	<0.010	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron	mg/L	NR	NA	NA	NA	NA	NA	<0.100	<0.100	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	mg/L	15	NA	NA	NA	NA	NA	<0.010	< 0.010	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	mg/L	NR	NA	NA	NA	NA	NA	<0.050	< 0.050	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nickel	mg/L	100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sodium	mg/L	NR	NA	NA	NA	NA	NA	5.75	5.73	NA	NA	NA	NA	NA	NA	NA	NA	NA
Thallium	mg/L	2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Zinc	mg/L	2,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table D-8. Summary of Groundwater Analyses for MW-201, MW-202, MW-203, MW-204, MW-205, MW-206, MW-207, MW-207P, MW-208, MW-208P and MW-209/209P.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

										N	/W-205							
			04/07/04	07/14/05	01/25/06	04/13/06	04/20/06	08/15/06	11/09/06	02/08/07	05/31/07	09/19/07	12/05/07	3/6/08	6/9/08	9/9/08	8/7/09	12/3/09
Other																		
Chlorides	mg/L	NR	NA	7.8	NA	4.8	NA	6.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrate (N)	mg/L	NR	NA	0.4	NA	2.41	NA	2.40	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrite (N)	mg/L	NR	NA	< 0.10	NA	< 0.10	NA	< 0.10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sulfate	mg/L	NR	NA	35	NA	51	NA	95	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Potassium Permanganate	mg/L	NR	NA	NA	NA	NA	NA	NA										

RRS-Risk Reduction Standard VOCs-volatile organic compounds µg/L- micrograms per liter mg/L-milligrams per liter

NA-not analyzed

*-Risk Reduction Standard based on Detection limit

NR-Not regulated

Exceeds Type 1 RRS

Table D-8. Summary of Groundwater Analyses for MW-201, MW-202, MW-203, MW-204, MW-205, MW-206, MW-207, MW-207P, MW-208, MW-208P and MW-209/209P.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

				. 205	1							D 4347	206							
			06/01/11	/-205 10/08/12	08/06/04	01/25/06	04/12/06	08/16/06	11/09/06	02/08/07	05/31/07	MW- 09/18/07	3/6/08	6/9/08	9/9/08	12/1/09	06/02/11	10/08/12	07/18/13	01/27/14
			00/01/11	10/00/12	00/00/04	01/23/00	04/12/00	00/10/00	11/05/00	02/00/07	03/31/07	03/10/07	3/0/08	0/3/08	3/3/08	12/1/09	00/02/11	10/00/12	07/10/13	01/2//14
		Type 1																		
Chlorinated VOCs		RRS																		
Tetrachloroethene	μg/L	5	21	23	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1,1-Trichloroethane	μg/L	200	<5	<5	NA	NA	NA	NA	NA	<5	<5	<5	<5							
Trichloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethene	μg/L	7	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chloroethane	μg/L	10*	<4	<4	<5	<5	<10	<10	<10	<10	<10	<10	<10	<10	<10	<4	<4	<4	<4	<4
cis-1,2-Dichloroethene	μg/L	70	<5	<5	<5	22	12	9.6	10	8.2	6.5	7.0	5.6	6.7	6.2	13	10	<5	23	11
trans-1,2-Dichloroethene	μg/L	100	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl Chloride	μg/L	2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Aromatic Hydrocarbons																				
Benzene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Ethylbenzene	μg/L	700	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Toluene	μg/L	1,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene	μg/L	100	<5	<5	NA	NA	NA	NA	NA	<5	<5	<5	<5							
Cyclohexane	μg/L	5*	<5	<5	NA	NA	NA	NA	NA	<5	<5	<5	<5							
Naphthalene	μg/L	20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
o-xylene	μg/L	10,000	<5	<5	NA	NA	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
m,p-Xylene	μg/L	10,000	<5	<5	NA	NA	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Xylenes, total	μg/L	10,000	NA	NA	<5	<5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Isopropylbenzene	μg/L	5*	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Non-Chlorinated VOCs																				
2-Butanone	μg/L	2,000	<50	<50	NA	NA	NA	NA	NA	<50	<50	<50	<50							
Acetone	μg/L	4,000	<50	<50	NA	NA	NA	NA	NA	<50	<50	<50	<50							
Bromomethane	μg/L	5*	<5	<5	NA	NA	NA	NA	NA	<5	<5	<5	<5							
Carbon Disulfide	μg/L	4,000	<5	<5	NA	NA	NA	NA	NA	<5	<5	<5	<5							
Metals																				
Arsenic	mg/L	10	NA	NA	NA	NA	NA	< 0.010	<0.010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium	mg/L	2,000	NA	NA	NA	NA	NA	0.034	0.032	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beryllium	mg/L	4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium	mg/L	100	NA	NA	NA	NA	NA	<0.010	< 0.010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron	mg/L	NR	NA	NA	NA	NA	NA	16.1	12.9	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	mg/L	15	NA	NA	NA	NA	NA	<0.010	< 0.010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	mg/L	NR	NA	NA	NA	NA	NA	3.48	3.44	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nickel	mg/L	100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sodium	mg/L	NR	NA	NA	NA	NA	NA	53.5	49.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Thallium	mg/L	2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Zinc	mg/L	2,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table D-8. Summary of Groundwater Analyses for MW-201, MW-202, MW-203, MW-204, MW-205, MW-206, MW-207, MW-207P, MW-208, MW-208P and MW-209/209P.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

			MW	'-205								MW-	206							
			06/01/11	10/08/12	08/06/04	01/25/06	04/12/06	08/16/06	11/09/06	02/08/07	05/31/07	09/18/07	3/6/08	6/9/08	9/9/08	12/1/09	06/02/11	10/08/12	07/18/13	01/27/14
Other																				
Chlorides	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA									
Nitrate (N)	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA									
Nitrite (N)	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA									
Sulfate	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA									
Potassium Permanganate	mg/L	NR	NA	8.1	NA	NA	NA	NA	NA	NA	NA	NA	NA							

RRS-Risk Reduction Standard

VOCs-volatile organic compounds

μg/L- micrograms per liter

mg/L-milligrams per liter NA-not analyzed

*-Risk Reduction Standard based on Detection limit

NR-Not regulated

Exceeds Type 1 RRS

J- Estimated value. Presence of the compound was confirmed

but less than the reported detection limit

Table D-8. Summary of Groundwater Analyses for MW-201, MW-202, MW-203, MW-204, MW-205, MW-206, MW-207, MW-207P, MW-208, MW-208P and MW-209/209P.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

				MW	-207		1				MW-207					Ī	MW-2	207P	
			09/02/05	04/11/06	08/17/06	11/09/06	02/09/07	05/31/07	09/19/07	12/06/07	03/07/08	6/9/08	9/11/08	8/7/09	12/04/09	05/15/06	09/21/06	11/09/06	02/08/07
		Type 1											· · ·						
Chlorinated VOCs		RRS																	
Tetrachloroethene	μg/L	5	9.4	54	<5	<5	80	125	37	<25	58	77	59	79	110	10	13	10	9.5
1,1,1-Trichloroethane	μg/L	200	<5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<5	<5	NA	NA	NA	NA
Trichloroethene	μg/L	5	<5	247	<5	<5	<5	183	<5	<25	24	243	220	180	270	<5	<5	<5	<5
1,1-Dichloroethene	μg/L	7	<5	<5	<5	<5	<5	<5	<5	<25	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<25	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5	<25	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chloroethane	μg/L	10*	<10	<10	<10	<10	<10	<10	<10	<25	<10	<10	<10	<4	<4	<10	<10	<10	<10
cis-1,2-Dichloroethene	μg/L	70	<5	540	<5	<5	<5	179	<5	<25	14	443	448	560	860	<5	<5	<5	<5
trans-1,2-Dichloroethene	μg/L	100	<5	21	<5	<5	<5	<5	<5	<25	<5	9.3	12	13	19	<5	<5	<5	<5
Vinyl Chloride	μg/L	2	<2	90	<2	<2	<2	<2	<2	<10	<2	16	22	35	72	<2	<2	<2	<2
Aromatic Hydrocarbons																			
Benzene	μg/L	5	<5	<5	2.9 J	3.3 J	3.1 J	<5	2.4 J	<25	<5	<5	<5	<5	<5	<5	<5	<5	<5
Ethylbenzene	μg/L	700	<5	<5	<5	<5	<5	<5	<5	<25	<5	<5	<5	<5	<5	<5	<5	<5	<5
Toluene	μg/L	1,000	<5	<5	<5	<5	<5	<5	<5	<25	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene	μg/L	100	<5	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	<5	<5	NA	NA	NA	NA
Cyclohexane	μg/L	5*	<5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<5	<5	NA	NA	NA	NA
Naphthalene	μg/L	20	<5	<5	<5	<5	<5	<5	<5	NA	<5	<5	<5	<5	<5	<5	<5	<5	<5
o-xylene	μg/L	10,000	<5	<5	<5	<5	<5	<5	<5	NA	<5	<5	<5	<5	<5	NA	NA	NA	NA
m,p-Xylene	μg/L	10,000	<5	<5	<5	<5	<5	<5	<5 <5	<25	<5	<5 <5	<5	<5	<5 <5	NA NA	NA	NA	NA
Xylenes, total		10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<5	<5	<5	<5
' · · ·	μg/L	10,000 5*	<5	<5	<5	<5	<5	<5	<5	<25	<5	<5	<5	<5	<5	<5 <5	<5	<5	<5
Isopropylbenzene	μg/L	3	ζ3	\ 3	\ 3	\ 5	\ 3	\ 3	ζ3	\2 5	\ 3	<u> </u>	<u></u>	ζ3	<u></u>	\3	<u> </u>	ζ3	
Non-Chlorinated VOCs																			
2-Butanone	μg/L	2,000	<50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<50	<50	NA	NA	NA	NA
Acetone	μg/L	4,000	<50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<50	<50	NA	NA	NA	NA
Bromomethane	μg/L	5*	<5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<5	<5	NA	NA	NA	NA
Carbon Disulfide	μg/L	4,000	<5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<5	<5	NA	NA	NA	NA
Metals																1			
Arsenic	mg/L	10	<0.010	<0.010	< 0.010	<0.010	<0.010	NA	<0.010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium	mg/L	2,000	0.048	0.048	0.021	0.020	0.020	NA	0.021	NA	0.052	0.036	0.037	NA	NA	NA	0.086	NA	NA
Beryllium	mg/L	4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium	mg/L	100	<0.010	< 0.010	0.038	0.016	0.013	< 0.010	0.018	< 0.05	0.024	0.023	0.027	NA	NA	NA	< 0.010	NA	NA
Iron	mg/L	NR	0.487	0.487	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	0.876	<0.100	<0.100	NA	NA	NA	NA	NA	NA
Lead	mg/L	15	<0.010	< 0.010	0.028	< 0.010	<0.010	< 0.010	<0.010	< 0.010	< 0.010	<0.010	<0.010	NA	NA	NA	NA	NA	NA
Manganese	mg/L	NR	0.667	0.667	274	65.7	7.33	2.16	3.52	16.3	4.61	0.178	0.349	NA	NA	NA	0.027 J	NA	NA
Nickel	mg/L	100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sodium	mg/L	NR	13.2	13.2	202	60	41.8	29.6	34.9	48.7	41.5	36.7	39.1	NA	NA	NA	7.31	NA	NA
Thallium	mg/L	2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Zinc	mg/L	2,000	NA NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA	NA	NA
	9/ -	2,000	.,,,	1471	1471	1471	1471	1471	1171	1471	14/1	14/1	1471	1171	1471	1471	14/1	1471	

Table D-8. Summary of Groundwater Analyses for MW-201, MW-202, MW-203, MW-204, MW-205, MW-206, MW-207, MW-207P, MW-208, MW-208P and MW-209/209P.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

				MW	-207						MW-207						MW-	207P	
			09/02/05	04/11/06	08/17/06	11/09/06	02/09/07	05/31/07	09/19/07	12/06/07	03/07/08	6/9/08	9/11/08	8/7/09	12/04/09	05/15/06	09/21/06	11/09/06	02/08/07
Other																			
Chlorides	mg/L	NR	14.6	14.6	NA	NA	NA	NA	NA	NA	NA	NA	NA						
Nitrate (N)	mg/L	NR	0.65	0.65	NA	NA	NA	NA	NA	NA	NA	NA	NA						
Nitrite (N)	mg/L	NR	<0.10	<0.10	NA	NA	NA	NA	NA	NA	NA	NA	NA						
Sulfate	mg/L	NR	103	103	NA	NA	NA	NA	NA	NA	NA	NA	NA						
Potassium Permanganate	mg/L	NR	NA	NA	NA	NA	NA	8.0	11	NA	3.9	0.89	0.89	NA	NA	NA	NA	NA	NA

RRS-Risk Reduction Standard VOCs-volatile organic compounds μg/L- micrograms per liter

mg/L-milligrams per liter

NA-not analyzed

*-Risk Reduction Standard based on Detection limit

NR-Not regulated

Exceeds Type 1 RRS

Table D-8. Summary of Groundwater Analyses for MW-201, MW-202, MW-203, MW-204, MW-205, MW-206, MW-207, MW-207P, MW-208, MW-208P and MW-209/209P.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

							NAVA 207D									Λ.	1W-208				
			05/30/07	09/19/07	03/06/08	6/5/08	MW-207P 9/10/08	12/3/09	06/02/11	07/18/13	01/16/14	09/02/05	04/13/06	08/16/06	11/09/06	02/09/07	04/23/07	05/31/07	5/31/07 Dup	9/19/07	12/5/07
			03/30/07	03/13/07	03/00/00	0/3/08	3/10/08	12/3/03	00/02/11	07/10/13	01/10/11	03/02/03	01/13/00	00/10/00	11/05/00	02/03/07	01/23/07	03/31/07	3/31/07 Dup	3/13/07	12/3/07
		Type 1																			
Chlorinated VOCs		RRS																			
Tetrachloroethene	μg/L	5	18	18	8.7	13	19	11	9.8	12.0	5.9	<5	14	14	16	23	34	43	37	87	100
1,1,1-Trichloroethane	μg/L	200	NA	NA	NA	NA	NA	<5	<5	<5	<5	<5	NA	NA	NA						
Trichloroethene	μg/L	5	<5	<5	<5	<5	3.4 J	<5	<5	<5	<5	<5	3.4 J	4.2 J	2.5 J	4.8 J	6.0	4.7 J	3.6 J	2.5 J	<5
1,1-Dichloroethene	μg/L	7	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chloroethane	μg/L	10*	<10	<10	<10	<10	<10	<4	<4	<4	<4	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
cis-1,2-Dichloroethene	μg/L	70	<5	<5	<5	<5	2.6 J	<5	<5	<5	<5	<5	13	13	6.5	13	12	11	8.8	6.5	5.9
trans-1,2-Dichloroethene	μg/L	100	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl Chloride	μg/L	2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Aromatic Hydrocarbons																					
Benzene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Ethylbenzene	μg/L	700	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Toluene	μg/L	1,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene	μg/L	100	NA	NA	NA	NA	NA	<5	<5	<5	<5	<5	NA	NA	NA						
Cyclohexane	μg/L	5*	NA	NA	NA	NA	NA	<5	<5	<5	<5	<5	NA	NA	NA						
Naphthalene	μg/L	20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
o-xylene	μg/L	10,000	NA	NA	NA	NA	NA	<5	<5	<5	<5	<5	NA	NA	NA						
m,p-Xylene	μg/L	10,000	NA	NA	NA	NA	NA	<5	<5	<5	<5	<5	NA	NA	NA						
Xylenes, total	μg/L	10,000	<5	<5	<5	<5	<5	NA	NA	NA	NA	NA	<5	<5	<5	<5	<5	<5	<5	<5	<5
Isopropylbenzene	μg/L	5*	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Non-Chlorinated VOCs																					
2-Butanone	μg/L	2,000	NA	NA	NA	NA	NA	<50	<50	<50	<50	<50	NA	NA	NA						
Acetone	μg/L	4,000	NA	NA	NA	NA	NA	<50	<50	<50	<50	<50	NA	NA	NA						
Bromomethane	μg/L	5*	NA	NA	NA	NA	NA	<5	<5	<5	<5	<5	NA	NA	NA						
Carbon Disulfide	μg/L	4,000	NA	NA	NA	NA	NA	<5	<5	<5	<5	<5	NA	NA	NA						
Metals																					
Arsenic	mg/L	10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.010	< 0.010	< 0.010	<0.010	NA	NA	NA	<0.010	NA
Barium	mg/L	2,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.713	0.862	0.738	0.710	NA	NA	NA	0.649	NA
Beryllium	mg/L	4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium	mg/L	100	<0.010	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.010	< 0.010	<0.010	<0.010	NA	< 0.010	<0.010	<0.010	NA
Iron	mg/L	NR	1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.160	0.400	0.278	0.146	NA	<0.100	<0.100	0.127	NA
Lead	mg/L	15	0.015	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.01	< 0.010	<0.010	<0.010	NA	< 0.010	<0.010	<0.010	NA
Manganese	mg/L	NR	0.12	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.105	0.110	0.087	0.097	NA	0.093	0.093	0.091	NA
Nickel	mg/L	100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sodium	mg/L	NR	8.54	NA	NA	NA	NA	NA	NA	NA	NA	NA	16.2	14.2	9.79	17.2	NA	20.5	21.1	17.1	NA
Thallium	mg/L	2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Zinc	mg/L	2,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table D-8. Summary of Groundwater Analyses for MW-201, MW-202, MW-203, MW-204, MW-205, MW-206, MW-207, MW-207P, MW-208, MW-208P and MW-209/209P.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

							MW-207P									N	1W-208				
			05/30/07	09/19/07	03/06/08	6/5/08	9/10/08	12/3/09	06/02/11	07/18/13	01/16/14	09/02/05	04/13/06	08/16/06	11/09/06	02/09/07	04/23/07	05/31/07	5/31/07 Dup	9/19/07	12/5/07
Other																					
Chlorides	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	31	NA	NA	NA	NA	NA	NA	NA	NA
Nitrate (N)	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.36	NA	NA	NA	NA	NA	NA	NA	NA
Nitrite (N)	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.10	NA	NA	NA	NA	NA	NA	NA	NA
Sulfate	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	11	NA	NA	NA	NA	NA	NA	NA	NA
Potassium Permanganate	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.89	NA	0.89	NA

RRS-Risk Reduction Standard VOCs-volatile organic compounds

μg/L- micrograms per liter

mg/L-milligrams per liter

NA-not analyzed

*-Risk Reduction Standard based on Detection limit

NR-Not regulated

Exceeds Type 1 RRS

Table D-8. Summary of Groundwater Analyses for MW-201, MW-202, MW-203, MW-204, MW-205, MW-206, MW-207, MW-207P, MW-208, MW-208P and MW-209/209P. ARAMARK DeKalb Avenue VRP/HSI Site No. 10704 Atlanta, Georgia

				MW-	208									MW-208P							
			3/7/08	6/5/08	9/12/08	12/04/09	04/20/06	05/15/06	08/15/06	11/08/06	02/08/07	05/30/07	09/18/07	12/5/07	3/6/08	6/6/08	9/9/08	12/3/09	06/01/11	07/18/13	01/09/14
Chlorinated VOCs		Type 1 RRS																			
Tetrachloroethene	μg/L	5	127	155	248	330	<5	<5	<5	2.2 J	<5	<5	3.0 J	<5	5.2	8.8	5.3	8.8	<5	6.8	9.3
1,1,1-Trichloroethane	μg/L	200	NA	NA	NA	<5	<5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<5	<5	<5
Trichloroethene	μg/L	5	4.8 J	4.4 J	3.4 J	9.1	<5	<5	<5	2.5 J	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethene	μg/L	7	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chloroethane	μg/L	10*	<10	<10	<10	<4	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<4	<4	<4	<4
cis-1,2-Dichloroethene	μg/L	70	9.2	6.6	6.7	17	<5	<5	<5	6.5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
trans-1,2-Dichloroethene	μg/L	100	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl Chloride	μg/L	2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Aromatic Hydrocarbons																					
Benzene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Ethylbenzene	μg/L	700	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Toluene	μg/L	1,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene	μg/L	100	NA	NA	NA	<5	<5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<5	<5	<5	<5
Cyclohexane	μg/L	5*	NA	NA	NA	<5	<5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<5	<5	<5	<5
Naphthalene	μg/L	20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
o-xylene	μg/L	10,000	NA	NA	NA	<5	<5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<5	<5	<5	<5
m,p-Xylene	μg/L	10,000	NA	NA	NA	<5	<5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<5	<5	<5	<5
Xylenes, total	μg/L	10,000	<5	<5	<5	NA	NA	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	NA	NA	NA	NA
Isopropylbenzene	μg/L	5*	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Non-Chlorinated VOCs																					
2-Butanone	μg/L	2,000	NA	NA	NA	<50	<50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<50	<50	<50	<50
Acetone	μg/L	4,000	NA	NA	NA	<50	<50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<50	<50	<50	<50
Bromomethane	μg/L	5*	NA	NA	NA	<5	<5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<5	<5	<5	<5
Carbon Disulfide	μg/L	4,000	NA	NA	NA	<5	<5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<5	<5	<5	<5
Metals																					
Arsenic	mg/L	10	NA	NA	NA	NA	NA	NA	<0.010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium	mg/L	2,000	0.727	0.692	0.716	0.653	NA	NA	0.053	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beryllium	mg/L	4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium	mg/L	100	<0.010	< 0.010	< 0.010	< 0.050	NA	NA	< 0.010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron	mg/L	NR	<0.100	<0.100	0.061 J	<0.100	NA	NA	0.157	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	mg/L	15	<0.010	< 0.010	< 0.010	< 0.010	NA	NA	< 0.010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	mg/L	NR	0.105	0.087	0.087	0.094	NA	NA	0.209	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nickel	mg/L	100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sodium	mg/L	NR	20.7	18.7	18.3	14.9	NA	NA	7.25	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Thallium	mg/L	2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Zinc	mg/L	2,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table D-8. Summary of Groundwater Analyses for MW-201, MW-202, MW-203, MW-204, MW-205, MW-206, MW-207, MW-207P, MW-208, MW-208P and MW-209/209P.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

				MW-	-208									MW-208P							
			3/7/08	6/5/08	9/12/08	12/04/09	04/20/06	05/15/06	08/15/06	11/08/06	02/08/07	05/30/07	09/18/07	12/5/07	3/6/08	6/6/08	9/9/08	12/3/09	06/01/11	07/18/13	01/09/14
Other																					
Chlorides	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrate (N)	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrite (N)	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sulfate	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Potassium Permanganate	mg/L	NR	NA	0.89	0.89	NA	NA	NA	NA	NA	NA	NA	NA	NA							

RRS-Risk Reduction Standard VOCs-volatile organic compounds µg/L- micrograms per liter

mg/L-milligrams per liter

NA-not analyzed
*-Risk Reduction Standard based on Detection limit

NR-Not regulated

Exceeds Type 1 RRS

Table D-8. Summary of Groundwater Analyses for MW-201, MW-202, MW-203, MW-204, MW-205, MW-206, MW-207, MW-207P, MW-208, MW-208P and MW-209/209P.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

				MW-209/2	000 (07.3)		1		N 414	/ 200 /200D /DZ	, 2)		
			09/02/05	05/16/06	09P (PZ-2) 08/17/06	11/08/06	02/08/07	06/01/07	09/19/07	V-209/209P (PZ 3/7/08	2) 6/9/08	9/10/08	12/01/09
			03/02/03	03/10/00	08/17/00	11/08/00	02/08/07	00/01/07	03/13/07	3/7/06	0/9/08	9/10/08	12/01/03
Chlorinated VOCs		Type 1 RRS											
Tetrachloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1,1-Trichloroethane	μg/L	200	<5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Trichloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethene	μg/L	7	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chloroethane	μg/L	10*	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<4
cis-1,2-Dichloroethene	μg/L	70	<5	<5	<5	2.4 J	<5	<5	3.4 J	<5	<5	<5	<5
trans-1,2-Dichloroethene	μg/L	100	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl Chloride	μg/L	2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Aromatic Hydrocarbons													
Benzene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Ethylbenzene	μg/L	700	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Toluene	μg/L	1,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene	μg/L	100	<5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cyclohexane	μg/L	5*	<5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	μg/L	20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
o-xylene	μg/L	10,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
m,p-Xylene	μg/L	10,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Xylenes, total	μg/L	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Isopropylbenzene	μg/L	5*	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Non-Chlorinated VOCs													
2-Butanone	μg/L	2,000	<50	NA	NA	NA	NA	NA	NA	NA	NA	NA	<50
Acetone	μg/L	4,000	<50	NA	NA	NA	NA	NA	NA	NA	NA	NA	<50
Bromomethane	μg/L	5*	<5	NA	NA	NA	NA	NA	NA	NA	NA	NA	<5
Carbon Disulfide	μg/L	4,000	<5	NA	NA	NA	NA	NA	NA	NA	NA	NA	<5
Metals													
Arsenic	mg/L	10	NA	NA	< 0.010	< 0.010	NA	NA	NA	NA	NA	NA	NA
Barium	mg/L	2,000	NA	NA	< 0.020	0.023	NA	NA	NA	NA	NA	NA	NA
Beryllium	mg/L	4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium	mg/L	100	NA	NA	0.021	0.009 J	NA	NA	NA	NA	NA	NA	NA
Iron	mg/L	NR	NA	NA	<0.100	0.945	NA	NA	NA	NA	NA	NA	NA
Lead	mg/L	15	NA	NA	< 0.010	0.008 J	NA	NA	NA	NA	NA	NA	NA
Manganese	mg/L	NR	NA	NA	8.03	14.5	NA	NA	NA	NA	NA	NA	NA
Nickel	mg/L	100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sodium	mg/L	NR	NA	NA	299	231	NA	NA	NA	NA	NA	NA	NA
Thallium	mg/L	2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Zinc	mg/L	2,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table D-8. Summary of Groundwater Analyses for MW-201, MW-202, MW-203, MW-204, MW-205, MW-206, MW-207, MW-207P, MW-208, MW-208P and MW-209/209P.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

				MW-209/2	209P (PZ-2)			-	MW	/-209/209P (PZ	:-2)		-
			09/02/05	05/16/06	08/17/06	11/08/06	02/08/07	06/01/07	09/19/07	3/7/08	6/9/08	9/10/08	12/01/09
Other													
Chlorides	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrate (N)	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrite (N)	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sulfate	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Potassium Permanganate	mg/L	NR	NA	NA	NA	NA	NA	12	NA	NA	NA	NA	NA

RRS-Risk Reduction Standard

VOCs-volatile organic compounds

μg/L- micrograms per liter

mg/L-milligrams per liter

NA-not analyzed

*-Risk Reduction Standard based on Detection limit

NR-Not regulated

Exceeds Type 1 RRS

Table D-9. Summary of Groundwater Analyses for MW-210 through MW-214

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

				MW-210			MW-211			MW-212			MW-213	
			06/03/13	07/18/13	01/09/14	6/4/2013	07/18/13	01/09/14	06/03/13	07/19/13	01/13/14	06/03/13	07/19/13	01/13/14
Chlorinated VOCs		Type 1 RRS												
Tetrachloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	160	150	110	720	130	100
1,1,1-Trichloroethane	μg/L	200	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Trichloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	21	24	17	140	54	49
1,1-Dichloroethene	μg/L	7	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chloroethane	μg/L	4*	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
cis-1,2-Dichloroethene	μg/L	70	<5	<5	<5	<5	<5	<5	77	58	61	330	160	1,000
trans-1,2-Dichloroethene	μg/L	100	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	7.0
Vinyl Chloride	μg/L	2	<2	<2	<2	<2	<2	<2	5.7	<2	4.8	<2	3.5	6.4
Aromatic Hydrocarbons														
Benzene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Ethylbenzene	μg/L	700	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Toluene	μg/L	1,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene	μg/L	100	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Cyclohexane	μg/L	5*	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Naphthalene	μg/L	20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
o-xylene	μg/L	10,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
m,p-Xylene	μg/L	10,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Xylenes, total	μg/L	10,000	NA											
Isopropylbenzene	μg/L	5*	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Non-Chlorinated VOCs														
2-Butanone (MEK)	μg/L	2,000	<50	<50	<50	<50	<50	<50	270	160	71	<50	<50	<50
Acetone	μg/L	4,000	<50	<50	<50	<50	<50	<50	620	620	280	<50	<50	<50
Bromomethane	μg/L	5*	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Carbon Disulfide	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Methyl-tert-butyl Ether	μg/L	NR	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5

RRS-Risk Reduction Standard VOCs-volatile organic compounds

μg/L- micrograms per liter NA-not analyzed

Exceeds Type 1 RRS

*-Risk Reduction Standard based on Detection limit

NR-Not regulated

Table D-9. Summary of Groundwater Analyses for MW-210 through MW-214

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

			06/04/13	MW-214 07/18/13	01/10/14
Chlorinated VOCs		Type 1 RRS	00/04/13	07/10/13	01/10/14
Tetrachloroethene	μg/L	5	<5	<5	<5
1,1,1-Trichloroethane	μg/L	200	<5	<5	<5
Trichloroethene	μg/L	5	<5	<5	<5
1,1-Dichloroethene	μg/L	7	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5
Chloroethane	μg/L	4*	<4	<4	<4
cis-1,2-Dichloroethene	μg/L	70	<5	<5	<5
trans-1,2-Dichloroethene	μg/L	100	<5	<5	<5
Vinyl Chloride	μg/L	2	<2	<2	<2
Aromatic Hydrocarbons					
Benzene	μg/L	5	<5	<5	<5
Ethylbenzene	μg/L	700	<5	<5	<5
Toluene	μg/L	1,000	<5	<5	<5
Chlorobenzene	μg/L	100	<5	<5	<5
Cyclohexane	μg/L	5*	<5	<5	<5
Naphthalene	μg/L	20	<5	<5	<5
o-xylene	μg/L	10,000	<5	<5	<5
m,p-Xylene	μg/L	10,000	<5	<5	<5
Xylenes, total	μg/L	10,000	NA	NA	NA
Isopropylbenzene	μg/L	5*	<5	<5	<5
Non-Chlorinated VOCs					
2-Butanone (MEK)	μg/L	2,000	<50	<50	<50
Acetone	μg/L	4,000	<50	<50	<50
Bromomethane	μg/L	5*	<5	<5	<5
Carbon Disulfide	μg/L	4,000	<5	<5	<5
Methyl-tert-butyl Ether	μg/L	NR	<5	<5	<5

RRS-Risk Reduction Standard

VOCs-volatile organic compounds

μg/L- micrograms per liter

NA-not analyzed

Exceeds Type 1 RRS

*-Risk Reduction Standard based on Detection limit

NR-Not regulated

Table D-10. Summary of Groundwater Analyses for MW-301, MW-302, MW-303, and MW-306.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

						MW-	301			
			04/14/06	08/17/06	09/21/06	11/08/06	12/15/06	02/07/07	04/24/07	06/01/07
Chlorinated VOCs		Type 1 RRS								
Tetrachloroethene	μg/L	5	<5	31 E	<5	229	4,570	3,580	<5	<5
1,1,1-Trichloroethane	μg/L	200	NA							
Trichloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethene	μg/L	7	<5	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5	<5
Chloroethane	μg/L	10*	<10	<10	<10	<10	<10	<10	<10	<10
cis-1,2-Dichloroethene	μg/L	70	<5	<5	<5	<5	<5	<5	<5	<5
trans-1,2-Dichloroethene	μg/L	100	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl Chloride	μg/L	2	<2	<2	<2	<2	<2	<2	<2	<2
Aromatic Hydrocarbons										
Benzene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5
Ethylbenzene	μg/L	700	<5	<5	<5	<5	<5	<5	<5	<5
Toluene	μg/L	1,000	<5	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene	μg/L	100	NA							
Cyclohexane	μg/L	5*	NA							
Naphthalene	μg/L	20	<5	<5	<5	<5	<5	<5	<5	<5
o-xylene	μg/L	10,000	<5	<5	<5	<5	<5	<5	<5	<5
m,p-Xylene	μg/L	10,000	<5	<5	<5	<5	<5	<5	<5	<5
Xylenes, total	μg/L	10,000	NA							
Isopropylbenzene	μg/L	5*	<5	<5	<5	<5	<5	<5	<5	<5
Non-Chlorinated VOCs										
2-Butanone	μg/L	2,000	NA							
Acetone	μg/L	4,000	NA							
Bromomethane	μg/L	5*	NA	NA	<1	NA	NA	NA	NA	NA
Carbon Disulfide	μg/L	4,000	NA							
Metals										
Arsenic	mg/L	10	<0.10	0.01	NA	0.009 J	NA	<0.010	NA	<0.100
Barium	mg/L	2,000	<0.20	0.053	0.052	0.048	NA	0.037	NA	NA
Beryllium	mg/L	4	NA							
, Chromium	mg/L	100	<0.10	0.009 J	0.008 J	< 0.010	NA	< 0.010	NA	0.126
Iron	mg/L	NR	<1	<0.100	NA	0.134	NA	0.096 J	NA	<1
Lead	mg/L	15	<0.10	<0.010	NA	<0.010	NA	<0.010	NA	0.19
Manganese	mg/L	NR	273	44.7	64.3	24.3	NA	32.1	NA	2,710
Nickel	mg/L	100	NA							
Sodium	mg/L	NR	204	105	87.8	81.5	NA	81.3	NA	1,460
Thallium	mg/L	2	NA							
Zinc	mg/L	2,000	NA							

						MW-	301			
			04/14/06	08/17/06	09/21/06	11/08/06	12/15/06	02/07/07	04/24/07	06/01/07
Other										
Chlorides	mg/L	NR	<100	NA						
Nitrate (N)	mg/L	NR	27.9	NA						
Nitrite (N)	mg/L	NR	0.93	NA						
Sulfate	mg/L	NR	137	NA						
Potassium Permanganate	mg/L	NR	NA	NA	NA	NA	NA	110	NA	6,600

Notes:

RRS-Risk Reduction Standard

VOCs-volatile organic compounds

μg/L- micrograms per liter

mg/L-milligrams per liter

NA-not analyzed

*-Risk Reduction Standard based on Detection limit

NR-Not regulated

Exceeds Type 1 RRS

J- Estimated value. Presence of the compound was confirmed but less than the reported detection limit

Part						MW-	-301						MW-	-302			
Chiominated VOCs				09/20/07	12/06/07			9/11/08	12/01/09	04/13/06	08/16/06	11/09/06			04/23/07	06/01/07	09/20/07
Colorinate VOCE R85			Tuno 1					. ,									
1.4.1-Trischiocethame	Chlorinated VOCs																
Treithiorochethere 19/1 5	Tetrachloroethene	μg/L	5	<5	<50	<5	<5	<5	120	78	<5	<5	<5	<5	<5	9.3	16
1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	1,1,1-Trichloroethane	μg/L	200	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1.2 Dictriprocessaries ug/L 5,0 45 450 45 45 45 45 45	Trichloroethene	μg/L	5	<5	<50	<5	<5	<5	<5	3.5 J	<5	<5	<5	<5	<5	<5	<5
	1,1-Dichloroethene	μg/L	7	<5	<50	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chlorochane	1,2-Dichloroethane	μg/L	5	<5	<50	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
dis 3.1.2 Dehibrorethene µg/L 70 45 450 45 <t< td=""><td>1,1-Dichloroethane</td><td>μg/L</td><td>4,000</td><td><5</td><td><50</td><td><5</td><td><5</td><td><5</td><td><5</td><td><5</td><td><5</td><td><5</td><td><5</td><td><5</td><td><5</td><td><5</td><td><5</td></t<>	1,1-Dichloroethane	μg/L	4,000	<5	<50	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
trans 1,2 Dichtoroetherne	Chloroethane	μg/L	10*	<10	<50	<10	<10	<10	<4	<10	<10	<10	<10	<10	<10	<10	<10
Viry Chioride	cis-1,2-Dichloroethene	μg/L	70	<5	<50	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Viry Chindride	trans-1,2-Dichloroethene	μg/L	100	<5	<50	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Denzene	Vinyl Chloride		2	<2	<20	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Ethylbenzene µg/L 700 <5 <50 <5 <5 <5 <5 <5	Aromatic Hydrocarbons																
Ethylbenzene µg/L 700 <5 <50 <5 <5 <5 <5 <5	Benzene	μg/L	5	<5	<50	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Toluene yg/L 1,000 <5 <50 <5 <5 <5 <5 <5	Ethylbenzene																
Chloroberzene Ig/L 100																	
Cyclohexane				NA													
Naphthalene																	
- sylene μg/L 10,000 <5 NA <5 <5 <5 <5 <5 <5 <5 <																	
m,p-Xylene			10.000														
Xylenes, total μg/L 10,000 NA NA NA NA NA NA NA	-																
Sopropylenzene Hg/L 5* 5* 5* 5* 5* 5* 5* 5								NA					<5				
2-Butanone μg/L 2,000 NA	Isopropylbenzene			<5	<50												
Acetone µg/L 4,000 NA	Non-Chlorinated VOCs																
Acetone µg/L 4,000 NA	2-Butanone	ug/L	2.000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Bromomethane IRIJK 5* NA NA NA NA NA NA NA N	Acetone																
Carbon Disulfide μg/L 4,000 NA NA<																	
Arsenic mg/L 10 <0.010 0.0152 <0.010 <0.010 <0.010 NA <0.010 <0.010 <0.010 NA <0.010 NA <0.050 NA NA <0.050 NA NA <0.058 NA <0.058 NA NA <0.058 NA	Carbon Disulfide			+			-										
Barium mg/L 2,000 0.058 NA < 0.020 0.085 0.030 NA 0.122 0.041 0.042 NA 0.076 J NA NA NA 0.058 Beryllium mg/L 4 NA	Metals																
Barium mg/L 2,000 0.058 NA < 0.020 0.085 0.030 NA 0.122 0.041 0.042 NA 0.076 J NA NA NA 0.058 Beryllium mg/L 4 NA	Arsenic	mg/L	10	< 0.010	0.0152	<0.010	< 0.010	<0.010	NA	<0.010	<0.010	<0.010	NA	<0.050	NA	NA	<0.010
Beryllium mg/L 4 NA																	
Chromium mg/L 100 0.084 0.0643 0.009 J 0.087 0.042 NA <0.010 0.137 0.053 NA 0.037 J NA 0.034 0.036 Iron mg/L NR 0.176 2.73 <0.100																	
Iron mg/L NR 0.176 2.73 <0.100 5.32 <0.100 NA <0.100 <0.100 <0.100 NA 0.757 NA <0.100 <0.100 <0.100 NA 0.757 NA <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0	· ·		100														
Lead mg/L 15 0.129 0.0589 <0.010 <0.010 NA <0.010 0.104 0.026 NA <0.050 NA <0.010 <0.010 Manganese mg/L NR 1,470 908 131 605 194 NA 0.777 836 280 NA 178 NA 14.9 6.14 Nickel mg/L 100 NA	Iron			1		·	-						NA				
Manganese mg/L NR 1,470 908 131 605 194 NA 0.777 836 280 NA 178 NA 14.9 6.14 Nickel mg/L 100 NA	Lead																
Nickel mg/L 100 NA																	
Sodium mg/L NR 1,950 655 71.5 19.4 196 NA	Nickel																
Thallium mg/L 2 NA	Sodium			1													
	Thallium																
= ::	Zinc	mg/L	2,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

					MW-	301						MW	-302			
_			09/20/07	12/06/07	03/10/08	06/09/08	9/11/08	12/01/09	04/13/06	08/16/06	11/09/06	12/15/06	02/07/07	04/23/07	06/01/07	09/20/07
Other															,	,
Chlorides	mg/L	NR	NA	NA	NA	NA	NA	NA	33.1	NA						
Nitrate (N)	mg/L	NR	NA	NA	NA	NA	NA	NA	4.85	NA						
Nitrite (N)	mg/L	NR	NA	NA	NA	NA	NA	NA	<0.10	NA						
Sulfate	mg/L	NR	NA	NA	NA	NA	NA	NA	120	NA						
Potassium Permanganate	mg/L	NR	1,100	NA	4,100	2,800	700	NA	NA	NA	NA	NA	6,000	NA	38	18

Notes:

RRS-Risk Reduction Standard

VOCs-volatile organic compounds

μg/L- micrograms per liter

mg/L-milligrams per liter

NA-not analyzed

*-Risk Reduction Standard based on Detection limit

NR-Not regulated

Exceeds Type 1 RRS

J- Estimated value. Presence of the compound was confirmed but less than the reported detection limit

			MW-	202		MW-302						MW-303				
			12/06/07	03/11/08	06/06/08	09/12/08	12/01/09	04/14/06	08/17/06	11/10/06	12/17/06	02/07/07	04/23/07	06/01/07	09/20/07	12/06/07
			12/00/07	00, 11, 00	00,00,00	03/ 12/ 00	,,	0 .7 = .7 00	00/ 1// 00		,_,,	02/01/01	0., 20, 0.	00,02,0.	03/ = 0/ 0 /	, 00, 0.
lau :		Type 1														
Chlorinated VOCs		RRS														
Tetrachloroethene	μg/L	5	8.75	27	<5	9.3	26	4,530	<5	<5	<5	<5	<5	<5	<5	<50
1,1,1-Trichloroethane	μg/L	200	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Trichloroethene	μg/L	5	<5	<5	<5	<5	<5	104	<5	<5	<5	<5	<5	<5	<5	<50
1,1-Dichloroethene	μg/L	7	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<50
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<50
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<50
Chloroethane	μg/L	10*	<5	<10	<10	<10	<4	<10	<10	<10	<10	<10	<5	<10	<10	<50
cis-1,2-Dichloroethene	μg/L	70	<5	<5	<5	<5	<5	659	<5	<5	<5	<5	<5	<5	<5	<50
trans-1,2-Dichloroethene	μg/L	100	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<50
Vinyl Chloride	μg/L	2	<2	<2	<2	<2	<2	24	<2	<2	<2	<2	<2	<2	<2	<20
Aromatic Hydrocarbons																
Benzene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	2.7 J	<5	<5	<5	<5	<5	<50
Ethylbenzene	μg/L	700	<5	<5	<5	<5	<5	4.4 J	<5	<5	<5	<5	<5	<5	<5	<50
Toluene	μg/L	1,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<50
Chlorobenzene	μg/L	100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cyclohexane	μg/L	5*	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	μg/L	20	<5	<5	<5	<5	<5	5.5	<5	<5	<5	<5	<5	<5	<5	<50
o-xylene	μg/L	10,000	<5	<5	<5	<5	<5	76	<5	<5	<5	<5	<5	<5	<5	<50
m,p-Xylene	μg/L	10,000	NA	NA	<5	<5	<5	14	<5	<5	<5	<5	<5	<5	<5	<50
Xylenes, total	μg/L	10,000	<15	<5	NA	NA	NA	90	<15	<5	<5	<5	<5	<5	<5	<50
Isopropylbenzene	μg/L	5*	<5	<5	<5	<5	<5	14	<5	<5	<5	<5	<5	<5	<5	<50
Non-Chlorinated VOCs																
2-Butanone	μg/L	2,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	μg/L	4,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Bromomethane	μg/L	5*	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbon Disulfide	μg/L	4,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Metals																
Arsenic	mg/L	10	<0.010	NA	<0.010	NA	NA	<0.010	NA	<0.050	NA	<0.010	NA	NA	<0.010	<0.010
Barium	mg/L	2,000	NA	0.048	0.047	0.044	<0.05	0.407	NA	<0.100	NA	<0.020	NA	NA	<0.020	NA
Beryllium	mg/L	4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium	mg/L	100	<0.05	0.05	0.034	0.023	<0.05	<0.010	NA	0.071	NA	0.05	NA	0.034	0.028	<0.05
Iron	mg/L	NR	0.224	<0.100	<0.100	<0.100	<0.100	<0.100	NA	<0.500	NA	<0.100	NA	<0.100	<0.100	0.204
Lead	mg/L	15	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	NA	<0.050	NA	0.017	NA	0.023	0.012	<0.010
Manganese	mg/L	NR	4.01	3.9	12.9	10.9	6.67	0.302	NA	317	NA	221	NA	234	154	66.9
Nickel	mg/L	100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sodium	mg/L	NR	NA	NA	NA	NA	NA	41.1	NA	189	NA	160	NA	188	150	163
Thallium	mg/L	2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Zinc	mg/L	2,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

			MW	-302		MW-302						MW-303				
_			12/06/07	03/11/08	06/06/08	09/12/08	12/01/09	04/14/06	08/17/06	11/10/06	12/17/06	02/07/07	04/23/07	06/01/07	09/20/07	12/06/07
Other															,	
Chlorides	mg/L	NR	NA	NA	NA	NA	NA	51	NA							
Nitrate (N)	mg/L	NR	NA	NA	NA	NA	NA	5.58	NA							
Nitrite (N)	mg/L	NR	NA	NA	NA	NA	NA	<0.10	NA							
Sulfate	mg/L	NR	NA	NA	NA	NA	NA	23	NA							
Potassium Permanganate	mg/L	NR	NA	9.5	51	31	NA	NA	NA	NA	NA	860	NA	690	480	NA

Notes:

RRS-Risk Reduction Standard VOCs-volatile organic compounds

μg/L- micrograms per liter

mg/L-milligrams per liter

NA-not analyzed

*-Risk Reduction Standard based on Detection limit

NR-Not regulated

Exceeds Type 1 RRS

J- Estimated value. Presence of the compound was confirmed but less than the reported detection limit

Table D-10. Summary of Groundwater Analyses for MW-301, MW-302, MW-303, and MW-306.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

				MW-	303						M	W-306				
			03/11/08	06/05/08	09/11/08	12/03/09	04/13/06	08/16/06	11/08/06	02/09/07	05/31/07	09/19/07	12/05/07	3/7/08	6/5/08	9/12/08
Chlorinated VOCs		Type 1 RRS														
Tetrachloroethene	μg/L	5	257	37	650	7,330	<5	2.9 J	2.7 J	<5	4.0 J	2.7 J	<5	<5	<5	4.8 J
1,1,1-Trichloroethane	μg/L	200	NA	NA	NA	<5	NA	NA	NA	NA						
Trichloroethene	μg/L	5	<5	<5	<5	310	<5	<5	<5	<5	<5	<5	1.4	<5	<5	<5
1,1-Dichloroethene	μg/L	7	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5	<5	3.0 J	2.2 J	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chloroethane	μg/L	10*	<10	<10	<10	<4	<10	<10	<10	<10	<10	<10	<5	<10	<10	<10
cis-1,2-Dichloroethene	μg/L	70	<5	<5	<5	1,700	<5	2.6 J	<5	<5	<5	<5	<5	<5	<5	<5
trans-1,2-Dichloroethene	μg/L	100	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl Chloride	μg/L	2	<2	<2	<2	20	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Aromatic Hydrocarbons																
Benzene	μg/L	5	2.6 J	<5	2.2 J	<5	15	43	34	6.8	26	17	33	7.1	4.1 J	9.3
Ethylbenzene	μg/L	700	3.9 J	<5	4.9 J	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Toluene	μg/L	1,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene	μg/L	100	NA	NA	NA	<5	NA	NA	NA	NA						
Cyclohexane	μg/L	5*	NA	NA	NA	<5	NA	NA	NA	NA						
, Naphthalene	μg/L	20	<5	<5	<5	<5	11	35	22	6.1	23	13	28	6.5	<5	6.2
o-xylene	μg/L	10,000	56	25	63	<5	<5	7.5	4.8 J	<5	3.9 J	<5	<5	<5	<5	<5
m,p-Xylene	μg/L	10,000	14	6.6	20	<5	<5	2.1	<5	<5	<5	<5	<5	<5	<5	<5
Xylenes, total	μg/L	10,000	70	31.6	83	NA	<5	9.6	4.8	<5	3.9 J	<5	<5	<5	<5	<5
Isopropylbenzene	μg/L	5*	19	5.4	19	<5	<5	4.2 J	2.8 J	<5	<5	<5	<5	<5	<5	<5
Non-Chlorinated VOCs																
2-Butanone	μg/L	2,000	NA	NA	NA	<50	NA	NA	NA	NA						
Acetone	μg/L	4,000	NA	NA	NA	<50	NA	NA	NA	NA						
Bromomethane	μg/L	5*	NA	NA	NA	<5	NA	NA	NA	NA						
Carbon Disulfide	μg/L	4,000	NA	NA	NA	<5	NA	NA	NA	NA						
Metals																
Arsenic	mg/L	10	<0.010	<0.010	NA	NA	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	NA	NA	NA
Barium	mg/L	2,000	0.020	0.022	NA	NA	0.210	0.152	0.128	0.138	<0.020	0.153	<0.020	0.109	0.097	0.116
Beryllium	mg/L	4	NA	NA	NA	NA										
Chromium	mg/L	100	0.014	0.019	<0.010	NA	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.05	<0.010	0.013	<0.010
Iron	mg/L	NR	0.131	<0.100	<0.100	NA	0.111	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	0.198	<0.100
Lead	mg/L	15	<0.010	<0.010	<0.010	NA	<0.010	<0.010	< 0.010	<0.010	<0.010	<0.010	< 0.010	< 0.010	<0.010	<0.010
Manganese	mg/L	NR	23.4	25.3	0.844	NA	0.286	0.394	0.308	0.308	0.363	0.319	0.329	0.337	0.337	0.340
Nickel	mg/L	100	NA	NA	NA	NA										
Sodium	mg/L	NR	88.2	98.2	3.28	NA	19	18.8	17.7	14.3	20.3	18.2	20.7	17.5	16.5	16.9
Thallium	mg/L	2	NA	NA	NA	NA										
Zinc	mg/L	2,000	NA	NA	NA	NA										

				MW-	303						М	W-306				
			03/11/08	06/05/08	09/11/08	12/03/09	04/13/06	08/16/06	11/08/06	02/09/07	05/31/07	09/19/07	12/05/07	3/7/08	6/5/08	9/12/08
Other																•
Chlorides	mg/L	NR	NA	NA	NA	NA	25.6	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrate (N)	mg/L	NR	NA	NA	NA	NA	0.21	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrite (N)	mg/L	NR	NA	NA	NA	NA	< 0.10	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sulfate	mg/L	NR	NA	NA	NA	NA	101	NA	NA	NA	NA	NA	NA	NA	NA	NA
Potassium Permanganate	mg/L	NR	NA	74	0.89	NA	NA	NA	NA	NA	0.89	0.89	NA	0.89	0.89	NA

Notes:

RRS-Risk Reduction Standard

VOCs-volatile organic compounds

μg/L- micrograms per liter

mg/L-milligrams per liter

NA-not analyzed

*-Risk Reduction Standard based on Detection limit

NR-Not regulated

Exceeds Type 1 RRS

J- Estimated value. Presence of the compound was confirmed but less than the reported detection limit

Table D-10. Summary of Groundwater Analyses for MW-301, MW-302, MW-303, and MW-306.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

				MW-	306	
			12/3/09	06/02/11	07/18/13	01/27/14
Chlorinated VOCs		Type 1 RRS				
Tetrachloroethene	μg/L	5	14	13	23	32
1,1,1-Trichloroethane	μg/L	200	<5	<5	<5	<5
Trichloroethene	μg/L	5	<5	<5	<5	<5
1,1-Dichloroethene	μg/L	7	<5	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5
Chloroethane	μg/L	10*	<4	<4	<4	<4
cis-1,2-Dichloroethene	μg/L	70	<5	<5	<5	<5
trans-1,2-Dichloroethene	μg/L	100	<5	<5	<5	<5
Vinyl Chloride	μg/L	2	<2	<2	<2	<2
Aromatic Hydrocarbons						
Benzene	μg/L	5	<5	<5	<5	<5
Ethylbenzene	μg/L	700	<5	<5	<5	<5
Toluene	μg/L	1,000	<5	<5	<5	<5
Chlorobenzene	μg/L	100	<5	<5	<5	<5
Cyclohexane	μg/L	5*	<5	<5	<5	<5
Naphthalene	μg/L	20	<5	<5	<5	<5
o-xylene	μg/L	10,000	<5	<5	<5	<5
m,p-Xylene	μg/L	10,000	<5	<5	<5	<5
Xylenes, total	μg/L	10,000	<5	<5	<5	<5
Isopropylbenzene	μg/L	5*	<5	<5	<5	<5
Non-Chlorinated VOCs						
2-Butanone	μg/L	2,000	<50	<50	<50	<50
Acetone	μg/L	4,000	<50	<50	<50	<50
Bromomethane	μg/L	5*	<5	<5	<5	<5
Carbon Disulfide	μg/L	4,000	<5	<5	<5	<5
Metals						
Arsenic	mg/L	10	NA	NA	NA	NA
Barium	mg/L	2,000	0.097	NA	NA	NA
Beryllium	mg/L	4	NA	NA	NA	NA
Chromium	mg/L	100	<0.05	NA	NA	NA
Iron	mg/L	NR	<0.100	NA	NA	NA
Lead	mg/L	15	<0.010	NA	NA	NA
Manganese	mg/L	NR	0.316	NA	NA	NA
Nickel	mg/L	100	NA	NA	NA	NA
Sodium	mg/L	NR	11	NA	NA	NA
Thallium	mg/L	2	NA	NA	NA	NA
Zinc	mg/L	2,000	NA	NA	NA	NA

Table D-10. Summary of Groundwater Analyses for MW-301, MW-302, MW-303, and MW-306.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

				MW-	306	
			12/3/09	06/02/11	07/18/13	01/27/14
Other						
Chlorides	mg/L	NR	NA	NA	NA	NA
Nitrate (N)	mg/L	NR	NA	NA	NA	NA
Nitrite (N)	mg/L	NR	NA	NA	NA	NA
Sulfate	mg/L	NR	NA	NA	NA	NA
Potassium Permanganate	mg/L	NR	NA	NA	NA	NA

RRS-Risk Reduction Standard VOCs-volatile organic compounds µg/L- micrograms per liter mg/L-milligrams per liter

NA-not analyzed

*-Risk Reduction Standard based on Detection limit

NR-Not regulated

Exceeds Type 1 RRS

J- Estimated value. Presence of the compound was confirmed but less than the reported detection limit

Table D-11. Summary of Groundwater Analyses for MW-401, MW-402, MW-403, MW-404, MW-405, MW-406, MW-407, MW-408, MW-409, and MW-409D.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

					MW-4	101							MW-402				
			04/19/06	05/15/06	08/15/06	11/09/06	07/17/13	01/09/14	04/20/06	05/16/06	08/15/06	11/09/06	5/31/07	12/01/09	06/01/11	07/18/13	01/13/14
			1 , 1,11			,,	- , , -	- , ,	- , -,	, -,		, ,	0,02,01	, . ,		- , -, -	- , -,
		Type 1															
Chlorinated VOCs		RRS															
Tetrachloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1,1-Trichloroethane	μg/L	200	<5	NA	NA	NA	<5	<5	<5	NA	NA	NA	NA	NA	<5	<5	<5
Trichloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethene	μg/L	7	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chloroethane	μg/L	10*	<10	<10	<10	<10	<4	<4	<10	<10	<10	<10	<10	<10	<10	<4	<4
cis-1,2-Dichloroethene	μg/L	70	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
trans-1,2-Dichloroethene	μg/L	100	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl Chloride	μg/L	2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Aromatic Hydrocarbons																	
Benzene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Ethylbenzene	μg/L	700	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Toluene	μg/L	1,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene	μg/L	100	<5	NA	NA	NA	<5	<5	<5	NA	NA	NA	NA	NA	<5	<5	<5
Cyclohexane	μg/L	5*	<5	NA	NA	NA	<5	<5	<5	NA	NA	NA	NA	NA	<5	<5	<5
Naphthalene	μg/L	20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
o-xylene	μg/L	10,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
m,p-Xylene	μg/L	10,000	<10	<5	<5	<5	<5	<5	<10	<5	<5	<5	<5	<5	<5	<5	<5
Xylenes, total	μg/L	10,000	NA	<5	<5	<5	NA	NA	NA	<5	<5	<5	<5	NA	NA	NA	NA
Isopropylbenzene	μg/L	5*	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Non-Chlorinated VOCs																	
2-Butanone	μg/L	2,000	<50	NA	NA	NA	<50	<50	<50	NA	NA	NA	NA	NA	<50	<50	<50
Acetone	μg/L	4,000	<50	NA	NA	NA	<50	<50	<50	NA	NA	NA	NA	NA	<50	<50	<50
Bromomethane	μg/L	´5*	<5	NA	NA	NA	<5	<5	<5	NA	NA	NA	NA	NA	<5	<5	<5
Carbon Disulfide	μg/L	4,000	<5	NA	NA	NA	<5	<5	<5	NA	NA	NA	NA	NA	<5	<5	<5
Metals																	
Arsenic	mg/L	10	NA	NA	<0.010	<0.010	NA	NA	NA	NA	<0.010	NA	NA	NA	NA	NA	NA
Barium	mg/L	2,000	NA	NA	0.07	0.071	NA	NA	NA	NA	0.037	NA	NA	NA	NA	NA	NA
Beryllium	mg/L	4	NA	NA	NA	NA	NA	NA									
Chromium	mg/L	100	NA	NA	<0.010	<0.010	NA	NA	NA	NA	<0.010	NA	NA	NA	NA	NA	NA
Iron	mg/L	NR	NA	NA	11.3	12	NA	NA	NA	NA	<0.100	NA	NA	NA	NA	NA	NA
Lead	mg/L	15	NA	NA	<0.010	< 0.010	NA	NA	NA	NA	<0.010	NA	NA	NA	NA	NA	NA
Manganese	mg/L	NR	NA	NA	6.26	6.42	NA	NA	NA	NA	0.603	NA	NA	NA	NA	NA	NA
Nickel	mg/L	100	NA	NA	NA	NA	NA	NA									
Sodium	mg/L	NR	NA	NA	4.99	5.97	NA	NA	NA	NA	6.52	NA	NA	NA	NA	NA	NA
Thallium	mg/L	2	NA	NA	NA	NA	NA	NA									
Zinc	mg/L	2,000	NA	NA	NA	NA	NA	NA									

Table D-11. Summary of Groundwater Analyses for MW-401, MW-402, MW-403, MW-404, MW-405, MW-406, MW-407, MW-408, MW-409, and MW-409D.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

					MW-4	101							MW-402				
			04/19/06	05/15/06	08/15/06	11/09/06	07/17/13	01/09/14	04/20/06	05/16/06	08/15/06	11/09/06	5/31/07	12/01/09	06/01/11	07/18/13	01/13/14
Other																	
Chlorides	mg/L	NR	NA	NA	NA	NA	NA	NA									
Nitrate (N)	mg/L	NR	NA	NA	NA	NA	NA	NA									
Nitrite (N)	mg/L	NR	NA	NA	NA	NA	NA	NA									
Sulfate	mg/L	NR	NA	NA	NA	NA	NA	NA									
Potassium Permanganate	mg/L	NR	NA	NA	NA	NA	NA	NA									

RRS-Risk Reduction Standard

VOCs-volatile organic compounds

μg/L- micrograms per liter

mg/L-milligrams per liter

NA-not analyzed

*-Risk Reduction Standard based on Detection limit

NR-Not regulated

Exceeds Type 1 RRS

Table D-11. Summary of Groundwater Analyses for MW-401, MW-402, MW-403, MW-404, MW-405, MW-406, MW-407, MW-408, MW-409, and MW-409D.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

			04/20/06	05/45/05	00/40/06	MW-403	12/17/06	02/00/07	06/04/07
			04/20/06	05/16/06	08/18/06	11/10/06	12/17/06	02/09/07	06/01/07
Chlorinated VOCs		Type 1 RRS							
Tetrachloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	<5
1,1,1-Trichloroethane	μg/L	200	<5	NA	NA	NA	NA	NA	NA
Trichloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethene	μg/L	7	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5
Chloroethane	μg/L	10*	67	14	11	35	29	<10	26
cis-1,2-Dichloroethene	μg/L	70	2,600	1,620	<5	<5	<5	304	<5
trans-1,2-Dichloroethene	μg/L	100	14	9.6	<5	<5	<5	<5	<5
Vinyl Chloride	μg/L	2	1,500	1,660	<2	<2	<2	<2	<2
Aromatic Hydrocarbons									
Benzene	μg/L	5	<5	<5	<5	<5	<5	<5	<5
Ethylbenzene	μg/L	700	<5	<5	<5	<5	<5	<5	<5
Toluene	μg/L	1,000	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene	μg/L	100	<5	NA	NA	NA	NA	NA	NA
Cyclohexane	μg/L	5*	<5	NA	NA	NA	NA	NA	NA
Naphthalene	μg/L	20	<5	16	3.9 J	<5	<5	<5	<5
o-xylene	μg/L	10,000	<5	<5	<5	<5	<5	<5	<5
m,p-Xylene	μg/L	10,000	<10	<5	4.8 J	<5	<5	<5	<5
Xylenes, total	μg/L	10,000	NA	<5	<5	<5	<5	<5	<5
Isopropylbenzene	μg/L	5*	<5	<5	<5	<5	<5	<5	<5
Non-Chlorinated VOCs									
2-Butanone	μg/L	2,000	NA						
Acetone	μg/L	4,000	NA						
Bromomethane	μg/L	5*	NA						
Carbon Disulfide	μg/L	4,000	NA						
Metals									
Arsenic	mg/L	10	NA	NA	<0.010	<0.050	NA	<0.010	NA
Barium	mg/L	2,000	NA	NA	<0.020	< 0.100	NA	< 0.020	NA
Beryllium	mg/L	4	NA						
Chromium	mg/L	100	NA	NA	0.288	0.211	NA	0.011	0.021
Iron	mg/L	NR	NA	NA	0.134	<0.500	NA	<0.100	<0.100
Lead	mg/L	15	NA	NA	0.083	< 0.050	NA	< 0.010	0.012
Manganese	mg/L	NR	NA	NA	693	295	NA	2.44	132
Nickel	mg/L	100	NA						
Sodium	mg/L	NR	NA	NA	1,090	417	NA	156	214
Thallium	mg/L	2	NA						
Zinc	mg/L	2,000	NA						

Table D-11. Summary of Groundwater Analyses for MW-401, MW-402, MW-403, MW-404, MW-405, MW-406, MW-407, MW-408, MW-409, and MW-409D.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

			04/20/06	05/16/06	08/18/06	MW-403 11/10/06	12/17/06	02/09/07	06/01/07
Other			0.720700	03, 23, 00	00, 20, 00	11/10/00	12/11/00	02/03/07	
Chlorides	mg/L	NR	NA	NA	NA	NA	NA	NA	NA
Nitrate (N)	mg/L	NR	NA	NA	NA	NA	NA	NA	NA
Nitrite (N)	mg/L	NR	NA	NA	NA	NA	NA	NA	NA
Sulfate	mg/L	NR	NA	NA	NA	NA	NA	NA	NA
Potassium Permanganate	mg/L	NR	NA	NA	NA	NA	NA	NA	250

RRS-Risk Reduction Standard VOCs-volatile organic compounds µg/L- micrograms per liter

mg/L-milligrams per liter

NA-not analyzed

*-Risk Reduction Standard based on Detection limit

NR-Not regulated

Exceeds Type 1 RRS

Table D-11. Summary of Groundwater Analyses for MW-401, MW-402, MW-403, MW-404, MW-405, MW-406, MW-407, MW-408, MW-409, and MW-409D.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

								MW-403						1		MW-404		
			09/19/07	12/06/07	03/11/08	06/09/08	09/11/08	08/07/09	12/01/09	06/02/11	10/08/12	07/19/13	01/13/14	04/20/06	05/16/06	08/17/06	11/08/06	02/08/07
			55, 55, 51	, ,	,,		55, ==, 55	,,	,,	,,		01, 20, 20	5-,-5,-	0 1/ = 0/ 00		55, =1, 55	,,	-,-,-,-
Chlorinated VOCs		Type 1 RRS																
	μg/L	5	<5	<25	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1,1-Trichloroethane	μg/L	200	NA	NA	NA	NA	NA	<5	NA	<5	<5	<5	<5	<5	NA	NA	NA	NA
Trichloroethene	μg/L	5	<5	<25	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethene	μg/L	7	<5	<25	<5		<5	<5	<5	<5	<5	<5	<5	<5	<5		<5	<5
1,2-Dichloroethane	μg/L	5	<5	<25	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<25	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chloroethane	μg/L	10*	23	42	15	17	40	23	19	<4	<10	<4	<4	<10	<10	<10	<10	<10
cis-1,2-Dichloroethene	μg/L	70	< 5	<25	< 5	<5	165	700	170	340	55	27	24	7.8	<5	<5	<5	<5
trans-1,2-Dichloroethene	μg/L	100	<5	<25	<5	<5	< 5	<5	< 5	<5	<5	<5	<5					
Vinyl Chloride	μg/L	2	<2	<10	<2	<2	108	750	350	1,600	400	190	80	<2	<2	<2	<2	<2
Aromatic Hydrocarbons	10									,								
Benzene	μg/L	5	<5	<25	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Ethylbenzene	μg/L μg/L	700	<5	<25	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5 <5	<5	<5	<5	<5
Toluene	μg/L μg/L	1,000	<5	<25	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene		100	NA	NA	NA	NA	NA	<5	NA	<5	<5	<5	<5	NA	NA	NA	NA	NA
Cyclohexane	μg/L μg/L	5*	NA NA	NA	NA	NA NA	NA NA	<5	NA	<5	<5	<5	<5	NA NA	NA NA	NA	NA	NA
Naphthalene		20	NA <5	<25	NA <5	NA <5	NA <5	<5	NA <5	<5	<5 <5	<5 <5	<5	NA <5	NA <5	NA <5	NA <5	NA <5
o-xylene	μg/L μg/L	10,000	<5	NA	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
m,p-Xylene		10,000	<5	NA	<5	<5	<5 <5	<5	<5	<5	<5	<5 <5	<5	<10	<5	<5 <5	<5	<5 <5
Xylenes, total	μg/L	10,000	<5	<25	<5	<5	<5	<5 <5	<15	<5	<5	NA	NA	<5	<5	<5	<5 <5	<5
' · · · · ·	μg/L	10,000 5*	<10	<25	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Isopropylbenzene	μg/L	3.	<10	\25	\ 3	\ 3	ζ3	< > >	\ 3	\ 3	< 5	<5	<3	ζ3	\ 3	<2	\ 3	<2
Non-Chlorinated VOCs																		
2-Butanone	μg/L	2,000	NA	NA	NA	NA	NA	<50	NA	<50	<50	<50	<50	NA	NA	NA	NA	NA
Acetone	μg/L	4,000	NA	NA	NA	NA	NA	<50	NA	<50	<50	<50	<50	NA	NA	NA	NA	NA
Bromomethane	μg/L	5*	NA	NA	NA	NA	NA	<5	NA	<5	<5	<5	<5	NA	NA	NA	NA	NA
Carbon Disulfide	μg/L	4,000	NA	NA	NA	NA	NA	<5	NA	<5	<5	<5	<5	NA	NA	NA	NA	NA
Metals																		
Arsenic	mg/L	10	<0.010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.010	NA	NA
Barium	mg/L	2,000	<0.020	NA	< 0.020	0.219	< 0.020	NA	< 0.050	NA	NA	NA	NA	NA	NA	0.055	NA	NA
Beryllium	mg/L	4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium	mg/L	100	0.043	< 0.05	0.022	0.044	0.024	NA	< 0.050	NA	NA	NA	NA	NA	NA	< 0.010	NA	NA
Iron	mg/L	NR	<0.100	<0.100	<0.100	22.5	0.255	NA	<0.100	NA	NA	NA	NA	NA	NA	4	NA	NA
Lead	mg/L	15	< 0.010	< 0.010	< 0.010	0.063	< 0.010	NA	< 0.01	NA	NA	NA	NA	NA	NA	< 0.010	NA	NA
Manganese	mg/L	NR	67.9	29.2	5.24	50.6	1.18	NA	0.455	NA	NA	NA	NA	NA	NA	0.162	NA	NA
Nickel	mg/L	100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sodium	mg/L	NR	205	260	163	165	134	NA	151	NA	NA	NA	NA	NA	NA	11	NA	NA
Thallium	mg/L	2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Zinc	mg/L	2,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table D-11. Summary of Groundwater Analyses for MW-401, MW-402, MW-403, MW-404, MW-405, MW-406, MW-407, MW-408, MW-409, and MW-409D.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

								MW-403								MW-404		
			09/19/07	12/06/07	03/11/08	06/09/08	09/11/08	08/07/09	12/01/09	06/02/11	10/08/12	07/19/13	01/13/14	04/20/06	05/16/06	08/17/06	11/08/06	02/08/07
Other																		
Chlorides	mg/L	NR	NA															
Nitrate (N)	mg/L	NR	NA															
Nitrite (N)	mg/L	NR	NA															
Sulfate	mg/L	NR	NA															
Potassium Permanganate	mg/L	NR	200	NA	15	13	0.89	NA										

RRS-Risk Reduction Standard VOCs-volatile organic compounds

μg/L- micrograms per liter mg/L-milligrams per liter

NA-not analyzed

*-Risk Reduction Standard based on Detection limit

NR-Not regulated

Exceeds Type 1 RRS

Table D-11. Summary of Groundwater Analyses for MW-401, MW-402, MW-403, MW-404, MW-405, MW-406, MW-407, MW-408, MW-409, and MW-409D.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

						NANA/ 404							NAVA / 40F			
			06/01/07	09/18/07	12/05/07	MW-404 03/06/08	06/05/08	09/12/08	12/01/09	04/20/06	05/16/06	09/21/06	MW-405 11/08/06	2/9/07	5/30/07	9/18/07
			00/01/07	03/10/07	12/03/07	03/00/08	00/03/00	03/12/00	12/01/03	04/20/00	03/10/00	03/21/00	11/00/00	2/3/07	3/30/07	3/10/07
		Type 1														
Chlorinated VOCs		RRS														
Tetrachloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1,1-Trichloroethane	μg/L	200	NA	NA	NA	NA	NA	NA	NA	<5	NA	NA	NA	NA	NA	NA
Trichloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethene	μg/L	7	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chloroethane	μg/L	10*	<10	<10	<10	<10	<10	<10	<4	<10	<10	<10	<10	<10	<10	<10
cis-1,2-Dichloroethene	μg/L	70	<5	<5	4.0 J	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
trans-1,2-Dichloroethene	μg/L	100	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl Chloride	μg/L	2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Aromatic Hydrocarbons																
Benzene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Ethylbenzene	μg/L	700	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
, Toluene	μg/L	1,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene	μg/L	100	NA	NA	NA	NA	NA	NA	NA	<5	NA	NA	NA	NA	NA	NA
Cyclohexane	μg/L	5*	NA	NA	NA	NA	NA	NA	NA	<5	NA	NA	NA	NA	NA	NA
, Naphthalene	μg/L	20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
o-xylene	μg/L	10,000	<5	<5	NA	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
m,p-Xylene	μg/L	10,000	<5	<5	NA	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Xylenes, total	μg/L	10,000	<5	<5	<5	<5	<5	<5	<5	NA	<5	<5	<5	<5	<5	<5
Isopropylbenzene	μg/L	5*	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Non-Chlorinated VOCs																
2-Butanone	μg/L	2,000	NA	NA	NA	<50	NA	NA	NA	<50	NA	NA	NA	NA	NA	NA
Acetone	μg/L	4,000	NA	NA	NA	<50	NA	NA	NA	<50	NA	NA	NA	NA	NA	NA
Bromomethane	μg/L	5*	NA	NA	NA	<5	NA	NA	NA	<5	NA	NA	NA	NA	NA	NA
Carbon Disulfide	μg/L	4,000	NA	NA	NA	<5	NA	NA	NA	<5	NA	NA	NA	NA	NA	NA
Metals	1-0	,														
Arsenic	mg/L	10	NA	<0.010	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.008 J	NA	<0.010
Barium	mg/L	2,000	NA NA	0.022	NA	NA	NA	NA	NA	NA NA	NA	0.020	NA	0.022	NA	0.023
Beryllium	mg/L	4	NA NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA NA	NA
Chromium	mg/L	100	<0.010	0.019	NA	NA	NA	NA	NA	NA NA	NA	<0.010	NA NA	<0.010	<0.010	<0.010
	mg/L	NR	0.353	<0.100	NA NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	0.446	0.220	0.545
Iron Lead	mg/L	15	<0.010	<0.100	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	< 0.010	< 0.010	< 0.010
Manganese	mg/L	NR	0.08	25.3	NA	NA	NA	NA	NA	NA NA	NA	1.23	NA	1.88	2.17	1.98
Nickel	mg/L	100	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA
Sodium	mg/L	NR	13.3	98.2	NA	NA	NA	NA NA	NA	NA NA	NA NA	9.09	NA NA	7.75	10.4	8.08
Thallium	mg/L	2	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA
Zinc	mg/L	2,000	NA NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA
ZIIIC	IIIg/L	2,000	IVA	INA	11/7	14/4	14/4	11/7	INA	IVA	11/7	INA	INA	11/7	1474	1474

Table D-11. Summary of Groundwater Analyses for MW-401, MW-402, MW-403, MW-404, MW-405, MW-406, MW-407, MW-408, MW-409, and MW-409D.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

						MW-404							MW-405			
			06/01/07	09/18/07	12/05/07	03/06/08	06/05/08	09/12/08	12/01/09	04/20/06	05/16/06	09/21/06	11/08/06	2/9/07	5/30/07	9/18/07
Other																
Chlorides	mg/L	NR	NA	NA	NA	NA										
Nitrate (N)	mg/L	NR	NA	NA	NA	NA										
Nitrite (N)	mg/L	NR	NA	NA	NA	NA										
Sulfate	mg/L	NR	NA	NA	NA	NA										
Potassium Permanganate	mg/L	NR	39	74	NA	NA	11	0.89	NA	NA	NA	NA	NA	NA	NA	NA

RRS-Risk Reduction Standard VOCs-volatile organic compounds µg/L- micrograms per liter mg/L-milligrams per liter

NA-not analyzed

*-Risk Reduction Standard based on Detection limit

NR-Not regulated

Exceeds Type 1 RRS

Table D-11. Summary of Groundwater Analyses for MW-401, MW-402, MW-403, MW-404, MW-405, MW-406, MW-407, MW-408, MW-409, and MW-409D.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

						MW-405						MW-406					MW-407		
			3/7/08	06/05/08	9/10/08	12/01/09	06/01/11	07/17/13	01/09/14	12/05/07	03/11/08	06/09/08	09/11/08	12/3/09	12/06/07	03/10/08	06/09/08	09/11/08	12/1/09
			37.700	,,	3, 20, 00	7 - 7	,-,	- , , -	- , ,	, , .	, ,	,,	, ,	12/3/03	, , .	, -,	, ,	, ,	12/1/00
Chlorinated VOCs		Type 1 RRS																	
		KKS																	
Tetrachloroethene	μg/L	5	<5	<5	4.9 J	<5	<5	<5	<5	72	88	73	80	37	<50	<5	<5	54	130
1,1,1-Trichloroethane	μg/L	200	NA	NA	<5	NA	<5	<5	<5	NA	NA	NA	NA	<5	NA	NA	NA	NA	NA
Trichloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	3.3 J	<5	<5	<50	<5	<5	<5	6.3
1,1-Dichloroethene	μg/L	7	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<50	<5	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<50	<5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<50	<5	<5	<5	<5
Chloroethane	μg/L	10*	<10	<10	<4	<4	<4	<4	<4	<5	<10	<10	<10	<4	<50	<10	<10	<10	<4
cis-1,2-Dichloroethene	μg/L	70	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<50	<5	<5	<5	<5
trans-1,2-Dichloroethene	μg/L	100	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<50	<5	<5	<5	<5
Vinyl Chloride	μg/L	2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<20	<2	<2	<2	<2
Aromatic Hydrocarbons																			
Benzene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<50	<5	<5	<5	<5
Ethylbenzene	μg/L	700	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<50	<5	<5	<5	<5
Toluene	μg/L	1,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<50	<5	<5	<5	<5
Chlorobenzene	μg/L	100	NA	NA	NA	NA	<5	<5	<5	NA	NA	NA	NA	<5	NA	NA	NA	NA	NA
Cyclohexane	μg/L	5*	NA	NA	NA	NA	<5	<5	<5	NA	NA	NA	NA	<5	NA	NA	NA	NA	NA
Naphthalene	μg/L	20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<50	<5	<5	<5	<5
o-xylene	μg/L	10,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	NA	NA	<5	<5	<5
m,p-Xylene	μg/L	10,000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	NA	NA	<5	<5	<5
Xylenes, total	μg/L	10,000	<5	<5	<5	<5	<5	NA	NA	<5	<5	<5	<5	<5	<50	<5	<5	<5	<5
Isopropylbenzene	μg/L	5*	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<50	<5	<5	<5	<5
Non-Chlorinated VOCs	P6/ -		,,,		.,					,,	.5		.,,		130				
2-Butanone	μg/L	2,000	NA	NA	NA	NA	<50	<50	<50	NA	NA	NA	NA	<50	NA	NA	NA	NA	NA
Acetone	μg/L	4,000	NA	NA	NA	NA	<50	<50	<50	NA	NA	NA	NA	<50	NA	NA	NA	NA	NA
Bromomethane	μg/L	5*	NA	NA	NA	NA	<5	<5	<5	NA	NA	NA	NA	<5	NA	NA	NA	NA	NA
Carbon Disulfide	μg/L	4,000	NA	NA	NA	NA	<5	<5	<5	NA	NA	NA	NA	<5	NA	NA	NA	NA	NA
Metals																			
Arsenic	mg/L	10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium	mg/L	2,000	0.062	0.029	0.016 J	< 0.05	NA	NA	NA	NA	NA	NA	NA						
Beryllium	mg/L	4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium	mg/L	100	<0.010	< 0.010	< 0.010	< 0.05	NA	NA	NA	NA	NA	NA	NA						
Iron	mg/L	NR	3.93	0.863	<0.100	<0.100	NA	NA	NA	NA	NA	NA	NA						
Lead	mg/L	15	<0.010	< 0.010	<0.010	< 0.010	NA	NA	NA	NA	NA	NA	NA						
Manganese	mg/L	NR	1.94	1.92	1.74	1.12	NA	NA	NA	NA	NA	NA	NA						
Nickel	mg/L	100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sodium	mg/L	NR	10.7	10.4	9.03	6.64	NA	NA	NA	NA	NA	NA	NA						
Thallium	mg/L	2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Zinc	mg/L	2,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
-		-,						* *** *				* ** *		* ** *					* ** *

Table D-11. Summary of Groundwater Analyses for MW-401, MW-402, MW-403, MW-404, MW-405, MW-406, MW-407, MW-408, MW-409, and MW-409D.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

						MW-405						MW-406					MW-407		
			3/7/08	06/05/08	9/10/08	12/01/09	06/01/11	07/17/13	01/09/14	12/05/07	03/11/08	06/09/08	09/11/08	12/3/09	12/06/07	03/10/08	06/09/08	09/11/08	12/1/09
Other																			
Chlorides	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrate (N)	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrite (N)	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sulfate	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Potassium Permanganate	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	0.89	0.89	0.89	NA	NA	560	380	120	NA

RRS-Risk Reduction Standard VOCs-volatile organic compounds µg/L- micrograms per liter

mg/L-milligrams per liter

NA-not analyzed

*-Risk Reduction Standard based on Detection limit

NR-Not regulated

Exceeds Type 1 RRS

Table D-11. Summary of Groundwater Analyses for MW-401, MW-402, MW-403, MW-404, MW-405, MW-406, MW-407, MW-408, MW-409, and MW-409D.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

					MW-408			1			N/I	W-409			
			12/06/07	03/11/08	06/05/08	09/11/08	12/4/09	12/05/07	03/10/08	06/06/08	09/09/08	12/3/09	6/1/11	7/18/13	1/10/14
		T 1	, , .	, ,	,,	, ,	127 .700	, , , , ,	, -,	,,	,,	12/0/00	0, 1, 11	7, 10, 10	2/10/11
Chlorinated VOCs		Type 1 RRS													
Tetrachloroethene	μg/L	5	660	7,240	9,360	7,760	1,200	<5	<5	<5	<5	5.8	5.2	9.7	5.1
1,1,1-Trichloroethane	μg/L	200	NA	NA	NA	NA	<5	NA	NA	NA	NA	<5	<5	<5	<5
Trichloroethene	μg/L	5	<50	102	285	340	120	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethene	μg/L	7	<50	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<50	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<50	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chloroethane	μg/L	10*	<50	<10	<10	<10	<4	<5	<10	<10	<10	<4	<4	<4	<4
cis-1,2-Dichloroethene	μg/L	70	<50	267	913	971	440	<5	<5	<5	<5	<5	<5	<5	<5
trans-1,2-Dichloroethene	μg/L	100	<50	<5	3.2 J	3.0 J	<5	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl Chloride	μg/L	2	<20	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Aromatic Hydrocarbons															
Benzene	μg/L	5	<50	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Ethylbenzene	μg/L	700	<50	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Toluene	μg/L	1,000	<50	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene	μg/L	100	NA	NA	NA	NA	<5	NA	NA	NA	NA	<5	<5	<5	<5
Cyclohexane	μg/L	5*	NA	NA	NA	NA	<5	NA	NA	NA	NA	<5	<5	<5	<5
Naphthalene	μg/L	20	<50	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
o-xylene	μg/L	10,000	NA	NA	<5	<5	<5	NA	NA	<5	<5	<5	<5	<5	<5
m,p-Xylene	μg/L	10,000	NA	NA	<5	<5	<5	NA	NA	<5	<5	<5	<5	<5	<5
Xylenes, total	μg/L	10,000	<50	<5	<5	<5	<5	<5	NA	NA	NA	NA	<5	NA	NA
Isopropylbenzene	μg/L	5*	<50	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Non-Chlorinated VOCs															
2-Butanone	μg/L	2,000	NA	NA	NA	NA	<50	NA	NA	NA	NA	<50	<50	<50	<50
Acetone	μg/L	4,000	NA	NA	NA	NA	<50	NA	NA	NA	NA	<50	<50	<50	<50
Bromomethane	μg/L	5*	NA	NA	NA	NA	<5	NA	NA	NA	NA	<5	<5	<5	<5
Carbon Disulfide	μg/L	4,000	NA	NA	NA	NA	<5	NA	NA	NA	NA	<5	<5	<5	<5
Metals		•													
Arsenic	mg/L	10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium	mg/L	2,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beryllium	mg/L	4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium	mg/L	100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	mg/L	15	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nickel	mg/L	100	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA
Sodium	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Thallium	mg/L	2	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA
Zinc	mg/L	2,000	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA
21110	1116/ L	2,000	INA	IVA	INA	INA	IVA	INA	INA	INA	INA	INA	INA	INA	INA

Table D-11. Summary of Groundwater Analyses for MW-401, MW-402, MW-403, MW-404, MW-405, MW-406, MW-407, MW-408, MW-409, and MW-409D.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

				MW-408				MW-409							
			12/06/07	03/11/08	06/05/08	09/11/08	12/4/09	12/05/07	03/10/08	06/06/08	09/09/08	12/3/09	6/1/11	7/18/13	1/10/14
Other															
Chlorides	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrate (N)	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrite (N)	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sulfate	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Potassium Permanganate	mg/L	NR	NA	2.2	1.2	0.89	NA	NA	0.89	NA	NA	NA	NA	NA	NA

RRS-Risk Reduction Standard

VOCs-volatile organic compounds

μg/L- micrograms per liter

mg/L-milligrams per liter

NA-not analyzed

*-Risk Reduction Standard based on Detection limit

NR-Not regulated

Exceeds Type 1 RRS

Table D-11. Summary of Groundwater Analyses for MW-401, MW-402, MW-403, MW-404, MW-405, MW-406, MW-407, MW-408, MW-409, and MW-409D.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

		MW-409D								
			12/05/07	03/10/08	06/06/08	09/09/08	12/3/09	6/1/11	7/18/13	1/10/14
Chlorinated VOCs		Type 1 RRS								
Tetrachloroethene	μg/L	5	<5	3.1 J	5.7	3.1 J	<5	<5	<5	<5
1,1,1-Trichloroethane	μg/L	200	NA	NA	NA	NA	<5	<5	<5	<5
Trichloroethene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethene	μg/L	7	<5	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane	μg/L	4,000	<5	<5	<5	<5	<5	<5	<5	<5
Chloroethane	μg/L	10*	<5	<10	<10	<10	<4	<4	<4	<4
cis-1,2-Dichloroethene	μg/L	70	<5	<5	<5	<5	<5	<5	<5	<5
trans-1,2-Dichloroethene	μg/L	100	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl Chloride	μg/L	2	<2	<2	<2	<2	<2	<2	<2	<2
Aromatic Hydrocarbons										
Benzene	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5
Ethylbenzene	μg/L	700	<5	<5	<5	<5	<5	<5	<5	<5
Toluene	μg/L	1,000	<5	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene	μg/L	100	NA	NA	NA	NA	<5	<5	<5	<5
Cyclohexane	μg/L	5*	NA	NA	NA	NA	<5	<5	<5	<5
Naphthalene	μg/L	20	<5	<5	<5	<5	<5	<5	<5	<5
o-xylene	μg/L	10,000	NA	<5	<5	<5	<5	<5	<5	<5
m,p-Xylene	μg/L	10,000	NA	<5	<5	<5	<5	<5	<5	<5
Xylenes, total	μg/L	10,000	<5	NA	NA	NA	NA	<5	NA	NA
Isopropylbenzene	μg/L	5*	<5	<5	<5	<5	<5	<5	<5	<5
Non-Chlorinated VOCs	1.0									
2-Butanone	ug/l	2,000	NA	NA	NA	NA	<50	<50	<50	<50
	μg/L	4,000	NA NA	NA NA	NA NA	NA NA	<50 <50	<50 <50	<50 <50	<50 <50
Acetone	μg/L	4,000 5*								
Bromomethane Carbon Disulfide	μg/L		NA NA	NA NA	NA NA	NA NA	<5 <5	<5 <5	<5 <5	<5 <5
	μg/L	4,000	INA	INA	INA	INA	<u> </u>	<5	<u> </u>	< > >
Metals										
Arsenic	mg/L	10	NA	NA	NA	NA	NA	NA	NA	NA
Barium	mg/L	2,000	NA	NA	NA	NA	NA	NA	NA	NA
Beryllium	mg/L	4	NA	NA	NA	NA	NA	NA	NA	NA
Chromium	mg/L	100	NA	NA	NA	NA	NA	NA	NA	NA
Iron	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA
Lead	mg/L	15	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA
Nickel	mg/L	100	NA	NA	NA	NA	NA	NA	NA	NA
Sodium	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA
Thallium	mg/L	2	NA	NA	NA	NA	NA	NA	NA	NA
Zinc	mg/L	2,000	NA	NA	NA	NA	NA	NA	NA	NA

Table D-11. Summary of Groundwater Analyses for MW-401, MW-402, MW-403, MW-404, MW-405, MW-406, MW-407, MW-408, MW-409, and MW-409D.

ARAMARK DeKalb Avenue VRP/HSI Site No. 10704

Atlanta, Georgia

			MW-409D								
			12/05/07	03/10/08	06/06/08	09/09/08	12/3/09	6/1/11	7/18/13	1/10/14	
Other											
Chlorides	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	
Nitrate (N)	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	
Nitrite (N)	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	
Sulfate	mg/L	NR	NA	NA	NA	NA	NA	NA	NA	NA	
Potassium Permanganate	mg/L	NR	NA	0.89	NA	NA	NA	NA	NA	NA	

RRS-Risk Reduction Standard

VOCs-volatile organic compounds

μg/L- micrograms per liter

mg/L-milligrams per liter

NA-not analyzed

*-Risk Reduction Standard based on Detection limit

NR-Not regulated

Exceeds Type 1 RRS

ATTACHMENT E January 2014 Laboratory Analytical Reports

Analytical Report 477225

for

Atlanta Environmental Management

Project Manager: Leona Miles

Aramark - Dekalb (Dekalb Ave)

1133-1401-3

17-JAN-14

Collected By: Client

6017 Financial Dr., Norcross, GA 30071 Ph:(770) 449-8800 Fax:(770) 449-5477

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-13-15-TX), Arizona (AZ0765), Florida (E871002), Louisiana (03054) New Jersey (TX007), North Carolina(681), Oklahoma (9218), Pennsylvania (68-03610)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135) Louisiana (04176), USDA (P330-07-00105)

Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900)

Xenco-Lakeland: Florida (E84098)

Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX) Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

17-JAN-14

Project Manager: Leona Miles Atlanta Environmental Management 2580 Northeast Expressway Atlanta, GA 30345

Reference: XENCO Report No(s): 477225

Aramark - Dekalb (Dekalb Ave)

Project Address: GA

Leona Miles:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 477225. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 477225 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Eben Buchanan

ben D. Buchancon

Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Sample Cross Reference 477225

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb (Dekalb Ave)

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-401	W	01-09-14 14:01		477225-001
MW-405	W	01-09-14 15:20		477225-002
MW-210	W	01-09-14 15:30		477225-003
MW-211	W	01-09-14 17:00		477225-004
MW-208P	W	01-09-14 16:33		477225-005
MW-202	W	01-10-14 10:49		477225-006
MW-110	W	01-10-14 11:10		477225-007
MW-111	W	01-10-14 12:25		477225-008
MW-409	W	01-10-14 14:28		477225-009
MW-409D	W	01-10-14 13:09		477225-010
MW-214	W	01-10-14 15:25		477225-011
MW-204	W	01-10-14 16:08		477225-012
Trip Blank	W	01-09-14 00:00		477225-013

CASE NARRATIVE

Client Name: Atlanta Environmental Management Project Name: Aramark - Dekalb (Dekalb Ave)

 Project ID:
 1133-1401-3
 Report Date:
 17-JAN-14

 Work Order Number(s):
 477225
 Date Received:
 01/10/2014

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-931887 VOCs by SW-846 8260B

2-Hexanone, 4-Methyl-2-pentanone (MIBK) recovered above QC limits in the Matrix Spike Duplicate. The Laboratory Control Sample for 4-Methyl-2-pentanone (MIBK), 2-Hexanone is within laboratory Control Limits.

Acetone, Methyl acetate, Methyl tert-butyl ether MS/MSD RPD was outside QC limits.

Batch: LBA-932045 VOCs by SW-846 8260B

1,2,4-Trichlorobenzene, 1,2-Dichloropropane, 1,3-Dichlorobenzene, 1,4-Dichlorobenzene, Benzene, Bromodichloromethane, Chlorobenzene, Cyclohexane, Ethylbenzene, Isopropylbenzene, Toluene, Trichloroethene, m,p-Xylenes, o-Xylene recovered below QC limits in the Matrix Spike Duplicate.

1,1,1-Trichloroethane, 1,1-Dichloroethane, 1,2-Dichlorobenzene, 1,2-Dichloroethane, 1,2-Dichloropropane, 1,3-Dichlorobenzene, 1,4-Dichlorobenzene, Benzene, Bromochloromethane, Bromodichloromethane, Bromomethane, Carbon disulfide, Carbon tetrachloride, Chlorobenzene, Chloroethane, Chloroform, Dibromochloromethane, Ethylbenzene, Methylene chloride, Styrene, Toluene, Trichloroethene, cis-1,2-Dichloroethene, cis-1,3-Dichloropropene, o-Xylene, trans-1,2-Dichloroethene MS/MSD RPD was outside QC limits.

The Laboratory Control Sample for 1,2-Dichloropropane, 1,3-Dichlorobenzene, Bromodichloromethane, Isopropylbenzene, Toluene, Trichloroethene, 1,4-Dichlorobenzene, Benzene, m,p-Xylenes, Ethylbenzene, o-Xylene, 1,2,4-Trichlorobenzene, Chlorobenzene, Cyclohexane is within laboratory Control Limits

Hits Summary 477225

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb (Dekalb Ave)

Sample Id: MW-208P Matrix: Ground Water % Moisture:

Lab Sample Id : 477225-005 Date Collected : 01.09.14 16.33 Date Received : 01.10.14 17.20

Analytical Method : VOCs by SW-846 8260B Prep Method: SW5030B

Seq Number 931887 Date Prep: 01.13.14 09.12

ParameterCas NumberResultUnitsAnalysis DateFlagDilTetrachloroethene127-18-49.3ug/L01.13.14 13.451

Hits Summary 477225

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb (Dekalb Ave)

Sample Id: MW-409 Matrix: Ground Water % Moisture:

Lab Sample Id : 477225-009 Date Collected : 01.10.14 14.28
Date Received : 01.10.14 17.20

Analytical Method : VOCs by SW-846 8260B Prep Method: SW5030B

Seq Number 931893 Date Prep: 01.13.14 07.01

Parameter	Cas Number	Result	Units	Analysis Date	Flag	Dil
Tetrachloroethene	127-18-4	5.1	ug/L	01.13.14 16.04		1

Hits Summary 477225

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb (Dekalb Ave)

% Moisture:

Sample Id: MW-204 Matrix: Ground Water

Lab Sample Id : 477225-012 Date Collected : 01.10.14 16.08
Date Received : 01.10.14 17.20

Analytical Method : VOCs by SW-846 8260B Prep Method: SW5030B

Seq Number 931893 Date Prep: 01.13.14 07.01

Parameter	Cas Number	Result	Units	Analysis Date	Flag	Dil
Tetrachloroethene	127-18-4	7.9	ug/L	01.13.14 17.53		1

Certificate of Analytical Results 477225

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb (Dekalb Ave)

Sample Id: MW-401 Matrix: Ground Water Date Received:01.10.14 17.20

Lab Sample Id: 477225-001 Date Collected: 01.09.14 14.01

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

Analyst: MLA Date Prep: 01.13.14 07.01

Seq Number: 931893

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1-Trichloroethane	71-55-6	BRL	5.0	ug/L	01.13.14 14.16	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	5.0	ug/L	01.13.14 14.16	U	1
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	BRL	5.0	ug/L	01.13.14 14.16	U	1
1,1,2-Trichloroethane	79-00-5	BRL	5.0	ug/L	01.13.14 14.16	U	1
1,1-Dichloroethane	75-34-3	BRL	5.0	ug/L	01.13.14 14.16	U	1
1,1-Dichloroethene	75-35-4	BRL	5.0	ug/L	01.13.14 14.16	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	5.0	ug/L	01.13.14 14.16	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	5.0	ug/L	01.13.14 14.16	U	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	BRL	5.0	ug/L	01.13.14 14.16	U	1
1,2-Dibromoethane (EDB)	106-93-4	BRL	5.0	ug/L	01.13.14 14.16	U	1
1,2-Dichlorobenzene	95-50-1	BRL	5.0	ug/L	01.13.14 14.16	U	1
1,2-Dichloroethane	107-06-2	BRL	5.0	ug/L	01.13.14 14.16	U	1
1,2-Dichloropropane	78-87-5	BRL	5.0	ug/L	01.13.14 14.16	U	1
1,3-Dichlorobenzene	541-73-1	BRL	5.0	ug/L	01.13.14 14.16	U	1
1,4-Dichlorobenzene	106-46-7	BRL	5.0	ug/L	01.13.14 14.16	U	1
2-Butanone (MEK)	78-93-3	BRL	50	ug/L	01.13.14 14.16	U	1
2-Hexanone	591-78-6	BRL	50	ug/L	01.13.14 14.16	U	1
4-Methyl-2-pentanone (MIBK)	108-10-1	BRL	50	ug/L	01.13.14 14.16	U	1
Acetone	67-64-1	BRL	50	ug/L	01.13.14 14.16	U	1
Benzene	71-43-2	BRL	5.0	ug/L	01.13.14 14.16	U	1
Bromochloromethane	74-97-5	BRL	5.0	ug/L	01.13.14 14.16	U	1
Bromodichloromethane	75-27-4	BRL	5.0	ug/L	01.13.14 14.16	U	1
Bromoform	75-25-2	BRL	5.0	ug/L	01.13.14 14.16	U	1
Bromomethane	74-83-9	BRL	5.0	ug/L	01.13.14 14.16	U	1
Carbon disulfide	75-15-0	BRL	5.0	ug/L	01.13.14 14.16	U	1
Carbon tetrachloride	56-23-5	BRL	5.0	ug/L	01.13.14 14.16	U	1
Chlorobenzene	108-90-7	BRL	5.0	ug/L	01.13.14 14.16	U	1
Chloroethane	75-00-3	BRL	4.0	ug/L	01.13.14 14.16	U	1
Chloroform	67-66-3	BRL	5.0	ug/L	01.13.14 14.16	U	1
Chloromethane	74-87-3	BRL	5.0	ug/L	01.13.14 14.16	U	1
cis-1,2-Dichloroethene	156-59-2	BRL	5.0	ug/L	01.13.14 14.16	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	5.0	ug/L	01.13.14 14.16	U	1
Cyclohexane	110-82-7	BRL	5.0	ug/L	01.13.14 14.16	U	1
Dibromochloromethane	124-48-1	BRL	5.0	ug/L	01.13.14 14.16	U	1
Dichlorodifluoromethane	75-71-8	BRL	5.0	ug/L	01.13.14 14.16	U	1
Ethylbenzene	100-41-4	BRL	5.0	ug/L	01.13.14 14.16	U	1
Isopropylbenzene	98-82-8	BRL	5.0	ug/L	01.13.14 14.16	U	1
m,p-Xylenes	179601-23-1	BRL	5.0	ug/L	01.13.14 14.16	U	1
Methyl acetate	79-20-9	BRL	5.0	ug/L	01.13.14 14.16	U	1

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb (Dekalb Ave)

Sample Id: MW-401 Matrix: Ground Water Date Received:01.10.14 17.20

Lab Sample Id: 477225-001 Date Collected: 01.09.14 14.01

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

Analyst: MLA Date Prep: 01.13.14 07.01

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Methyl tert-butyl ether	1634-04-4	BRL	5.0		ug/L	01.13.14 14.16	U	1
Methylcyclohexane	108-87-2	BRL	5.0		ug/L	01.13.14 14.16	U	1
Methylene chloride	75-09-2	BRL	5.0		ug/L	01.13.14 14.16	U	1
Naphthalene	91-20-3	BRL	5.0		ug/L	01.13.14 14.16	U	1
o-Xylene	95-47-6	BRL	5.0		ug/L	01.13.14 14.16	U	1
Styrene	100-42-5	BRL	5.0		ug/L	01.13.14 14.16	U	1
Tetrachloroethene	127-18-4	BRL	5.0		ug/L	01.13.14 14.16	U	1
Toluene	108-88-3	BRL	5.0		ug/L	01.13.14 14.16	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	5.0		ug/L	01.13.14 14.16	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	5.0		ug/L	01.13.14 14.16	U	1
Trichloroethene	79-01-6	BRL	5.0		ug/L	01.13.14 14.16	U	1
Trichlorofluoromethane	75-69-4	BRL	5.0		ug/L	01.13.14 14.16	U	1
Vinyl chloride	75-01-4	BRL	2.0		ug/L	01.13.14 14.16	U	1
			%					
Surrogate		Cas Number	Recovery	Units	Limits	Analysis Date	Flag	
1,2-Dichloroethane-D4		17060-07-0	100	%	53-159	01.13.14 14.16		
4-Bromofluorobenzene		460-00-4	100	%	30-186	01.13.14 14.16		
Toluene-D8		2037-26-5	100	%	70-130	01.13.14 14.16		

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb (Dekalb Ave)

Sample Id: MW-405 Matrix: Ground Water Date Received:01.10.14 17.20

Lab Sample Id: 477225-002 Date Collected: 01.09.14 15.20

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

Analyst: MLA Date Prep: 01.13.14 07.01

1,1,1-Trichloroethane 71-55-6 BRL 5.0 ug/L 01.13.14 14.43 U 1,1,2,2-Tetrachloroethane 79-34-5 BRL 5.0 ug/L 01.13.14 14.43 U 1,1,2-Trichloro-1,2,2-trifluoroethane 76-13-1 BRL 5.0 ug/L 01.13.14 14.43 U	1 1 1 1 1 1
1,1,2-Trichloro-1,2,2-trifluoroethane 76-13-1 BRL 5.0 ug/L 01.13.14 14.43 U	1 1 1
č	1 1
	1
1,1,2-Trichloroethane 79-00-5 BRL 5.0 ug/L 01.13.14 14.43 U	
1,1-Dichloroethane 75-34-3 BRL 5.0 ug/L 01.13.14 14.43 U	1
1,1-Dichloroethene 75-35-4 BRL 5.0 ug/L 01.13.14 14.43 U	
1,2,3-Trichlorobenzene 87-61-6 BRL 5.0 ug/L 01.13.14 14.43 U	1
1,2,4-Trichlorobenzene 120-82-1 BRL 5.0 ug/L 01.13.14 14.43 U	1
1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 BRL 5.0 ug/L 01.13.14 14.43 U	1
1,2-Dibromoethane (EDB) 106-93-4 BRL 5.0 ug/L 01.13.14 14.43 U	1
1,2-Dichlorobenzene 95-50-1 BRL 5.0 ug/L 01.13.14 14.43 U	1
1,2-Dichloroethane 107-06-2 BRL 5.0 ug/L 01.13.14 14.43 U	1
1,2-Dichloropropane 78-87-5 BRL 5.0 ug/L 01.13.14 14.43 U	1
1,3-Dichlorobenzene 541-73-1 BRL 5.0 ug/L 01.13.14 14.43 U	1
1,4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 01.13.14 14.43 U	1
2-Butanone (MEK) 78-93-3 BRL 50 ug/L 01.13.14 14.43 U	1
2-Hexanone 591-78-6 BRL 50 ug/L 01.13.14 14.43 U	1
4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 01.13.14 14.43 U	1
Acetone 67-64-1 BRL 50 ug/L 01.13.14 14.43 U	1
Benzene 71-43-2 BRL 5.0 ug/L 01.13.14 14.43 U	1
Bromochloromethane 74-97-5 BRL 5.0 ug/L 01.13.14 14.43 U	1
Bromodichloromethane 75-27-4 BRL 5.0 ug/L 01.13.14 14.43 U	1
Bromoform 75-25-2 BRL 5.0 ug/L 01.13.14 14.43 U	1
Bromomethane 74-83-9 BRL 5.0 ug/L 01.13.14 14.43 U	1
Carbon disulfide 75-15-0 BRL 5.0 ug/L 01.13.14 14.43 U	1
Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 01.13.14 14.43 U	1
Chlorobenzene 108-90-7 BRL 5.0 ug/L 01.13.14 14.43 U	1
Chloroethane 75-00-3 BRL 4.0 ug/L 01.13.14 14.43 U	1
Chloroform 67-66-3 BRL 5.0 ug/L 01.13.14 14.43 U	1
Chloromethane 74-87-3 BRL 5.0 ug/L 01.13.14 14.43 U	1
cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 01.13.14 14.43 U	1
cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 01.13.14 14.43 U	1
Cyclohexane 110-82-7 BRL 5.0 ug/L 01.13.14 14.43 U	1
Dibromochloromethane 124-48-1 BRL 5.0 ug/L 01.13.14 14.43 U	1
Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L 01.13.14 14.43 U	1
Ethylbenzene 100-41-4 BRL 5.0 ug/L 01.13.14 14.43 U	1
Isopropylbenzene 98-82-8 BRL 5.0 ug/L 01.13.14 14.43 U	1
m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 01.13.14 14.43 U	1
Methyl acetate 79-20-9 BRL 5.0 ug/L 01.13.14 14.43 U	1

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb (Dekalb Ave)

Sample Id: MW-405 Matrix: Ground Water Date Received:01.10.14 17.20

Lab Sample Id: 477225-002 Date Collected: 01.09.14 15.20

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

Analyst: MLA Date Prep: 01.13.14 07.01

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Methyl tert-butyl ether	1634-04-4	BRL	5.0		ug/L	01.13.14 14.43	U	1
Methylcyclohexane	108-87-2	BRL	5.0		ug/L	01.13.14 14.43	U	1
Methylene chloride	75-09-2	BRL	5.0		ug/L	01.13.14 14.43	U	1
Naphthalene	91-20-3	BRL	5.0		ug/L	01.13.14 14.43	U	1
o-Xylene	95-47-6	BRL	5.0		ug/L	01.13.14 14.43	U	1
Styrene	100-42-5	BRL	5.0		ug/L	01.13.14 14.43	U	1
Tetrachloroethene	127-18-4	BRL	5.0		ug/L	01.13.14 14.43	U	1
Toluene	108-88-3	BRL	5.0		ug/L	01.13.14 14.43	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	5.0		ug/L	01.13.14 14.43	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	5.0		ug/L	01.13.14 14.43	U	1
Trichloroethene	79-01-6	BRL	5.0		ug/L	01.13.14 14.43	U	1
Trichlorofluoromethane	75-69-4	BRL	5.0		ug/L	01.13.14 14.43	U	1
Vinyl chloride	75-01-4	BRL	2.0		ug/L	01.13.14 14.43	U	1
			%					
Surrogate		Cas Number	Recovery	Units	Limits	Analysis Date	Flag	
1,2-Dichloroethane-D4		17060-07-0	100	%	53-159	01.13.14 14.43		
4-Bromofluorobenzene		460-00-4	102	%	30-186	01.13.14 14.43		
Toluene-D8		2037-26-5	100	%	70-130	01.13.14 14.43		

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb (Dekalb Ave)

Sample Id: MW-210 Matrix: Ground Water Date Received:01.10.14 17.20

Lab Sample Id: 477225-003 Date Collected: 01.09.14 15.30

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

% Moisture:

Tech: MWE
Analyst: MLA Date Prep: 01.13.14 07.01

1,1,1-Trichloroethane	Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1.1.2-Trichloro-1.2-4rifluorethane 76-13-1 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1.1.2-Trichlorocthane 79-00-5 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1.1-Drichlorocthane 75-35-4 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1.2.3-Trichlorocthane 75-35-4 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1.2.3-Trichlorocthane 75-35-4 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1.2.3-Trichlorocthane 120-82-1 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1.2.3-Trichlorochenzene 120-82-1 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1.2.4-Trichlorochenzene 106-93-4 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1.2.4-Drichlorochenzene 107-06-2 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1.2.4-Drichlorochenzene 107-06-2 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1.2.4-Drichlorochenzene 107-06-2 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1.2.4-Drichlorochenzene 107-06-2 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1.2.4-Drichlorochenzene 106-46-7 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1.2.4-Drichlorochenzene 106-46-7 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1.2.4-Drichlorochenzene 106-46-7 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1.2-Drichlorochenzene 106-46-7 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1.2-Drichlorochenzene 106-46-7 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1.2-Drichlorochenzene 106-46-7 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1.2-Drichlorochenzene 106-46-7 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1.2-Drichlorochenzene 106-46-7 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1.2-Drichlorochenzene 106-46-7 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1.2-Drichlorochenzene 106-46-7 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1.2-Drichlorochenzene 106-46-7 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1.2-Drichlorochenzene 11-43-2 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1.2-Drichlorochenzene 11-43-2 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1.2-Drichlorochenzene 106-60-3 BRL 5.0	1,1,1-Trichloroethane	71-55-6	BRL	5.0	ug/L	01.13.14 15.10	U	1
1.1.2 Trickinforoethane 79-00-5 BRL 5.0 ug/L 0.1.3.1 4 15.10 U 1 1.1-Dickinforoethane 75-34-3 BRL 5.0 ug/L 0.11.3.1 4 15.10 U 1 1.2,3-Trickinforobenzene 87-61-6 BRL 5.0 ug/L 0.13.14 15.10 U 1 1.2,3-Trickinforobenzene 120-82-1 BRL 5.0 ug/L 0.13.14 15.10 U 1 1.2-Dibromochane (EDB) 160-82-4 BRL 5.0 ug/L 0.13.14 15.10 U 1 1,2-Dichlorobenzene 106-93-4 BRL 5.0 ug/L 0.13.14 15.10 U 1 1,2-Dichlorobenzene 95-90-1 BRL 5.0 ug/L 0.13.14 15.10 U 1 1,2-Dichlorobenzene 17-96-1 BRL 5.0 ug/L 0.13.14 15.10 U 1 1,3-Dichlorobenzene 541-73-1 BRL 5.0 ug/L 0.13.14 15.10 U 1 1,4-Dichlorobenzene 541-73-1 BRL <td>1,1,2,2-Tetrachloroethane</td> <td>79-34-5</td> <td>BRL</td> <td>5.0</td> <td>ug/L</td> <td>01.13.14 15.10</td> <td>U</td> <td>1</td>	1,1,2,2-Tetrachloroethane	79-34-5	BRL	5.0	ug/L	01.13.14 15.10	U	1
1,1-Dichloroethane	1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	BRL	5.0	ug/L	01.13.14 15.10	U	1
1.1-Dichlorochene	1,1,2-Trichloroethane	79-00-5	BRL	5.0	ug/L	01.13.14 15.10	U	1
1,2,3-Trichlorobenzene 87-61-6 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1,2,4-Trichlorobenzene 120-82-1 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1 1,2-Dibromod-chloropropane (DBCP) 96-12-8 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1 1,2-Dibromod-chloropropane (DBCP) 96-12-8 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1,2-Dibromochane (EDB) 106-93-4 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1,2-Dichlorobenzene 95-50-1 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1,2-Dichloropropane 78-87-5 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1,2-Dichloropropane 78-87-5 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1,3-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1,4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1,4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1,4-Dichlorobenzene 591-78-6 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1,4-Dichlorobenzene 591-78-6 BRL 50 ug/L 0.1.3.14 15.10 U 1 1,4-Dichlorobenzene 591-78-6 BRL 50 ug/L 0.1.3.14 15.10 U 1 1,4-Dichlorobenzene 591-78-6 BRL 50 ug/L 0.1.3.14 15.10 U 1 1,4-Dichlorobenzene 71-43-2 BRL 50 ug/L 0.1.3.14 15.10 U 1 1,4-Dichlorobenzene 71-43-2 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1,4-Dichlorobenzene 71-43-2 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1,4-Dichlorobenzene 71-43-2 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1,4-Dichlorobenzene 71-43-2 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1,4-Dichlorobenzene 71-43-2 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1,4-Dichlorobenzene 71-43-2 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1,4-Dichlorobenzene 71-43-2 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1,4-Dichlorobenzene 71-43-3 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1,4-Dichlorobenzene 71-43-3 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1,4-Dichlorobenzene 71-43-3 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1,4-Dichlorobenzen	1,1-Dichloroethane	75-34-3	BRL	5.0	ug/L	01.13.14 15.10	U	1
1,2,4-Trichlorobenzene 120-82-1 BRL 5.0 ug/L 0.1.13.14 15.10 U 1 1,2-Dibrimon-3-chloropropane (DBCP) 96-12-8 BRL 5.0 ug/L 0.1.13.14 15.10 U 1 1,2-Dibrimon-3-chloropropane (DBCP) 96-12-8 BRL 5.0 ug/L 0.1.13.14 15.10 U 1 1,2-Dibrimone-1-chloropropane 95-50-1 BRL 5.0 ug/L 0.1.13.14 15.10 U 1 1,2-Dichlorobenzene 95-50-1 BRL 5.0 ug/L 0.1.13.14 15.10 U 1 1,2-Dichloropropane 78-87-5 BRL 5.0 ug/L 0.1.13.14 15.10 U 1 1,2-Dichloropropane 78-87-5 BRL 5.0 ug/L 0.1.13.14 15.10 U 1 1,2-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 0.1.13.14 15.10 U 1 1,4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 0.1.13.14 15.10 U 1 1,4-Dichlorobenzene 591-78-6 BRL 5.0 ug/L 0.1.13.14 15.10 U 1 2-Butanone (MEK) 78-93-3 BRL 50 ug/L 0.1.13.14 15.10 U 1 2-Hexanone 591-78-6 BRL 50 ug/L 0.1.13.14 15.10 U 1 2-Hexanone 67-64-1 BRL 50 ug/L 0.1.13.14 15.10 U 1 2-Hexanone 74-97-5 BRL 50 ug/L 0.1.13.14 15.10 U 1 2-Burnone (MIBK) 75-27-4 BRL 5.0 ug/L 0.1.13.14 15.10 U 1 2-Bromodichloromethane 75-27-4 BRL 5.0 ug/L 0.1.13.14 15.10 U 1 2-Bromodichloromethane 75-25-2 BRL 5.0 ug/L 0.1.13.14 15.10 U 1 2-Bromodichloromethane 75-15-0 BRL 5.0 ug/L 0.1.13.14 15.10 U 1 2-Carbon disulfide 75-15-0 BRL 5.0 ug/L 0.1.13.14 15.10 U 1 2-Chlorobenzene 108-90-7 BRL 5.0 ug/L 0.1.13.14 15.10 U 1 2-Chlorobenzene 108-90-7 BRL 5.0 ug/L 0.1.13.14 15.10 U 1 2-Chlorobenzene 108-90-7 BRL 5.0 ug/L 0.1.13.14 15.10 U 1 2-Chlorobenzene 108-90-7 BRL 5.0 ug/L 0.1.13.14 15.10 U 1 2-Chlorobenzene 108-90-7 BRL 5.0 ug/L 0.1.13.14 15.10 U 1 2-Chlorobenzene 108-90-7 BRL 5.0 ug/L 0.1.13.14 15.10 U 1 2-Chlorobenzene 108-90-7 BRL 5.0 ug/L 0.1.13.14 15.10 U 1 2-Chlorobenzene 108-90-7 BRL 5.0 u	1,1-Dichloroethene	75-35-4	BRL	5.0	ug/L	01.13.14 15.10	U	1
1.2-Dibromo-3-chloropropane (DBCP) 96-12-8 BRL 5.0 ug/L 01.13.14 15.10 U 1 1.2-Dibromochtane (EDB) 106-93-4 BRL 5.0 ug/L 01.13.14 15.10 U 1 1.2-Dibromochtane (EDB) 95-50-1 BRL 5.0 ug/L 01.13.14 15.10 U 1 1.2-Dibromochtane 107-06-2 BRL 5.0 ug/L 01.13.14 15.10 U 1 1.2-Dibromochtane 107-06-2 BRL 5.0 ug/L 01.13.14 15.10 U 1 1.3-Dibromochtane 541-73-1 BRL 5.0 ug/L 01.13.14 15.10 U 1 1.3-Dibromochtane 107-06-2 BRL 5.0 ug/L 01.13.14 15.10 U 1 1.3-Dibromochtane 106-66-7 BRL 5.0 ug/L 01.13.14 15.10 U 1 1.3-Dibromochtane 106-66-7 BRL 5.0 ug/L 01.13.14 15.10 U 1 1.3-Dibromochtane 106-66-7 BRL 5.0 ug/L 01.13.14 15.10 U 1 1 1.3-Dibromochtane 108-10-1 BRL 5.0 ug/L 01.13.14 15.10 U 1 1 1.3-Dibromochtane 108-10-1 BRL 5.0 ug/L 01.13.14 15.10 U 1 1 1 1 1 1 1 1 1	1,2,3-Trichlorobenzene	87-61-6	BRL	5.0	ug/L	01.13.14 15.10	U	1
1.2-Dibromoethane (EDB) 106-93-4 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1.2-Dibromoethane 95-50-1 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1.2-Dibromoethane 107-06-2 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1.2-Dibromoethane 107-06-2 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1.2-Dibromoethane 78-87-5 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1.3-Dibromoethane 106-46-7 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1.4-Dibromoethane 106-46-7 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1.4-Dibromoethane 106-46-7 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1.4-Dibromoethane 591-78-6 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1.4-Dibromoethane 591-78-6 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1.4-Dibromoethane 67-64-1 BRL 50 ug/L 0.1.3.14 15.10 U 1 1.4-Dibromoethane 67-64-1 BRL 50 ug/L 0.1.3.14 15.10 U 1 1.4-Dibromoethane 74-97-5 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1.4-Dibromoethane 74-97-5 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1.4-Dibromoethane 75-27-4 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1.4-Dibromoethane 75-27-4 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1.4-Dibromoethane 75-15-0 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1.4-Dibromoethane 75-15-0 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1.4-Dibromoethane 75-15-0 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1.4-Dibromoethane 75-00-3 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1.4-Dibromoethane 75-00-3 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1.4-Dibromoethane 75-00-3 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1.4-Dibromoethane 75-00-3 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1.4-Dibromoethane 75-00-3 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1.4-Dibromoethane 75-60-3 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1.4-Dibromoethane 75-70-8 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1.4-Dibromoethane 75-70-3 BRL 5.0 ug/L 0.1.3.14 15.10 U 1.4-Dibromoethane 75-70-8 BRL 5.	1,2,4-Trichlorobenzene	120-82-1	BRL	5.0	ug/L	01.13.14 15.10	U	1
1.2-Dichlorobenzene 95-50-1 BRL 5.0 ug/L 01.13.14 15.10 U 1 1.2-Dichlorochtane 107-06-2 BRL 5.0 ug/L 01.13.14 15.10 U 1 1.2-Dichloropthane 78-87-5 BRL 5.0 ug/L 01.13.14 15.10 U 1 1.2-Dichloropthane 541-73-1 BRL 5.0 ug/L 01.13.14 15.10 U 1 1.3-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 01.13.14 15.10 U 1 1.4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 01.13.14 15.10 U 1 2-Butanone (MEK) 78-93-3 BRL 50 ug/L 01.13.14 15.10 U 1 2-Hexanone 591-78-6 BRL 50 ug/L 01.13.14 15.10 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 01.13.14 15.10 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 01.13.14 15.10 U 1 Benzene 71-43-2 BRL 50 ug/L 01.13.14 15.10 U 1 Bromochloromethane 74-97-5 BRL 5.0 ug/L 01.13.14 15.10 U 1 Bromochloromethane 75-27-4 BRL 5.0 ug/L 01.13.14 15.10 U 1 Bromochloromethane 74-83-9 BRL 5.0 ug/L 01.13.14 15.10 U 1 Bromochloromethane 74-83-9 BRL 5.0 ug/L 01.13.14 15.10 U 1 Bromochromethane 75-15-0 BRL 5.0 ug/L 01.13.14 15.10 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 01.13.14 15.10 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 01.13.14 15.10 U 1 Chlorochzane 108-90-7 BRL 5.0 ug/L 01.13.14 15.10 U 1 Chlorochane 75-00-3 BRL 5.0 ug/L 01.13.14 15.10 U 1 Chlorochane 74-87-3 BRL 5.0 ug/L 01.13.14 15.10 U 1 Chlorochane 74-87-3 BRL 5.0 ug/L 01.13.14 15.10 U 1 Chlorochane 106-10-15 BRL 5.0 ug/L 01.13.14 15.10 U 1 Chlorochane 110-82-7 BRL 5.0 ug/L 01.13.14 15.10 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 01.13.14 15.10 U 1 Cyclohexane 100-41-4 BRL 5.0 ug/L 01.13.14 15.10 U 1 Dichlorodifluoromethane 124-48-1 BRL 5.0 ug/L 01.13.14 15.10 U 1 Dichlorodifl	1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	BRL	5.0	ug/L	01.13.14 15.10	U	1
1,2-Dichloropethane 107-06-2 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1,2-Dichloropropane 78-87-5 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1,3-Dichlorobenzene 541-73-1 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 2-Butanone (MEK) 78-93-3 BRL 50 ug/L 0.1.3.14 15.10 U 1 2-Butanone (MEK) 78-93-3 BRL 50 ug/L 0.1.3.14 15.10 U 1 2-Hexanone 591-78-6 BRL 50 ug/L 0.1.3.14 15.10 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 0.11.3.14 15.10 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 0.11.3.14 15.10 U 1 4-Methyl-2-pentanone (MIBK) 71-43-2 BRL 50 ug/L 0.11.3.14 15.10 U 1 Benzene 71-43-2 BRL 5.0 ug/L 0.11.3.14 15.10 U 1 Bromodelhoromethane	1,2-Dibromoethane (EDB)	106-93-4	BRL	5.0	ug/L	01.13.14 15.10	U	1
1.2-Dichloropropane 78-87-5 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1.3-Dichlorobenzene 541-73-1 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1.4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 1 2-Butanone (MEK) 78-93-3 BRL 50 ug/L 0.1.3.14 15.10 U 1 1 2-Butanone (MEK) 591-78-6 BRL 50 ug/L 0.1.3.14 15.10 U 1 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 0.1.3.14 15.10 U 1 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 0.1.3.14 15.10 U 1 1 1 1 1 1 1 1 1	1,2-Dichlorobenzene	95-50-1	BRL	5.0	ug/L	01.13.14 15.10	U	1
1,3-Dichlorobenzene 541-73-1 BRL 5.0 ug/L 01.13.14 15.10 U 1 1,4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 01.13.14 15.10 U 1 2-Butanone (MEK) 78-93-3 BRL 50 ug/L 01.13.14 15.10 U 1 2-Hexanone 591-78-6 BRL 50 ug/L 01.13.14 15.10 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 01.13.14 15.10 U 1 Acetone 67-64-1 BRL 50 ug/L 01.13.14 15.10 U 1 Benzene 71-43-2 BRL 5.0 ug/L 01.13.14 15.10 U 1 Bromodichloromethane 74-97-5 BRL 5.0 ug/L 01.13.14 15.10 U 1 Bromodichloromethane 75-27-4 BRL 5.0 ug/L 01.13.14 15.10 U 1 Bromodichloromethane 75-52-2 BRL 5.0 ug/L	1,2-Dichloroethane	107-06-2	BRL	5.0	ug/L	01.13.14 15.10	U	1
1,4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 01.13.14 15.10 U 1 2-Butanone (MEK) 78-93-3 BRL 50 ug/L 01.13.14 15.10 U 1 2-Hexanone 591-78-6 BRL 50 ug/L 01.13.14 15.10 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 01.13.14 15.10 U 1 Acctone 67-64-1 BRL 50 ug/L 01.13.14 15.10 U 1 Benzene 71-43-2 BRL 5.0 ug/L 01.13.14 15.10 U 1 Bromochloromethane 74-97-5 BRL 5.0 ug/L 01.13.14 15.10 U 1 Bromofichloromethane 75-27-4 BRL 5.0 ug/L 01.13.14 15.10 U 1 Bromofichloromethane 75-15-0 BRL 5.0 ug/L 01.13.14 15.10 U 1 Carbon disulfide 75-16-0 BRL 5.0 ug/L	1,2-Dichloropropane	78-87-5	BRL	5.0	ug/L	01.13.14 15.10	U	1
2-Butanone (MEK) 78-93-3 BRL 50 ug/L 01.13.14 15.10 U 1 2-Hexanone 591-78-6 BRL 50 ug/L 01.13.14 15.10 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 01.13.14 15.10 U 1 Acetone 67-64-1 BRL 50 ug/L 01.13.14 15.10 U 1 Benzene 71-43-2 BRL 5.0 ug/L 01.13.14 15.10 U 1 Bromochloromethane 74-97-5 BRL 5.0 ug/L 01.13.14 15.10 U 1 Bromochloromethane 75-27-4 BRL 5.0 ug/L 01.13.14 15.10 U 1 Bromochloromethane 75-25-2 BRL 5.0 ug/L 01.13.14 15.10 U 1 Bromochdinomethane 74-83-9 BRL 5.0 ug/L 01.13.14 15.10 U 1 Bromoch disulfide 75-15-0 BRL 5.0 ug/L 01.13.14 15.10 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 01.13.14 15.10 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 01.13.14 15.10 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 01.13.14 15.10 U 1 Chlorothane 75-00-3 BRL 5.0 ug/L 01.13.14 15.10 U 1 Chlorothane 75-00-3 BRL 5.0 ug/L 01.13.14 15.10 U 1 Chlorothane 75-00-3 BRL 5.0 ug/L 01.13.14 15.10 U 1 Chlorothane 75-00-3 BRL 5.0 ug/L 01.13.14 15.10 U 1 Chlorothane 75-00-3 BRL 5.0 ug/L 01.13.14 15.10 U 1 Chlorothane 74-87-3 BRL 5.0 ug/L 01.13.14 15.10 U 1 Chlorothane 74-87-3 BRL 5.0 ug/L 01.13.14 15.10 U 1 Cis-1,2-Dichlorothene 156-59-2 BRL 5.0 ug/L 01.13.14 15.10 U 1 Cis-1,3-Dichlorothene 10061-01-5 BRL 5.0 ug/L 01.13.14 15.10 U 1 Cis-1,3-Dichlorothene 124-48-1 BRL 5.0 ug/L 01.13.14 15.10 U 1 Cyclobexane 110-82-7 BRL 5.0 ug/L 01.13.14 15.10 U 1 Dibromochloromethane 75-71-8 BRL 5.0 ug/L 01.13.14 15.10 U 1 Dibromochloromethane 75-71-8 BRL 5.0 ug/L 01.13.14 15.10 U 1 Dibromochloromethane 88-82-8 BRL 5.0 ug/L 01.13.14 15.10 U 1 Bromochloromethane 98-82-8 BRL 5.0 ug/L 01.13.14 15.10 U 1 Bromochloromethane 98-82-8 BRL 5.0 ug/L 01.13.14 15.10 U 1 Bromochloromethane 100-41-4 BRL 5.0 ug/L 01.13.14 15.10 U 1 Bromochloromethane 100-41-4 BRL 5.0 ug/L 01.13.14 15.10 U 1 Bromochloromethane 100-41-4 BRL 5.0 ug/L 01.13.14 15.10 U 1 Bromochloromethane 100-41-4 BRL 5.0 ug/L 01.13.14 15.10 U 1 Bromochloromethane 100-61-23-1 BRL 5.0 ug/L 01.13.14 15.10 U 1 Bromochloromethane 100-61-23-1 BRL 5.0 ug/L 01.13.14 15.10 U 1 Bromochloromethane 100-61-23-1 BRL	1,3-Dichlorobenzene	541-73-1	BRL	5.0	ug/L	01.13.14 15.10	U	1
2-Hexanone 591-78-6 BRL 50 ug/L 01.13.14 15.10 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 01.13.14 15.10 U 1 Acetone 67-64-1 BRL 50 ug/L 01.13.14 15.10 U 1 Benzene 71-43-2 BRL 5.0 ug/L 01.13.14 15.10 U 1 Bromochloromethane 74-97-5 BRL 5.0 ug/L 01.13.14 15.10 U 1 Bromodichloromethane 75-27-4 BRL 5.0 ug/L 01.13.14 15.10 U 1 Bromofform 75-25-2 BRL 5.0 ug/L 01.13.14 15.10 U 1 Bromofform 75-25-2 BRL 5.0 ug/L 01.13.14 15.10 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 01.13.14 15.10 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 01.13.14 15.10	1,4-Dichlorobenzene	106-46-7	BRL	5.0	ug/L	01.13.14 15.10	U	1
4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 01.13.14 15.10 U 1 Acetone 67-64-1 BRL 50 ug/L 01.13.14 15.10 U 1 Benzene 71-43-2 BRL 5.0 ug/L 01.13.14 15.10 U 1 Bromochloromethane 74-97-5 BRL 5.0 ug/L 01.13.14 15.10 U 1 Bromodichloromethane 75-27-4 BRL 5.0 ug/L 01.13.14 15.10 U 1 Bromoform 75-25-2 BRL 5.0 ug/L 01.13.14 15.10 U 1 Bromoform 75-25-2 BRL 5.0 ug/L 01.13.14 15.10 U 1 Bromoform 75-25-2 BRL 5.0 ug/L 01.13.14 15.10 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 01.13.14 15.10 U 1 Chlorofunce 108-90-7 BRL 5.0 ug/L 01.13.14 15.10	2-Butanone (MEK)	78-93-3	BRL	50	ug/L	01.13.14 15.10	U	1
Acetone 67-64-1 BRL 50 ug/L 01.13.14 15.10 U 1 Benzene 71-43-2 BRL 5.0 ug/L 01.13.14 15.10 U 1 Bromochloromethane 74-97-5 BRL 5.0 ug/L 01.13.14 15.10 U 1 Bromodichloromethane 75-27-4 BRL 5.0 ug/L 01.13.14 15.10 U 1 Bromoform 75-27-2 BRL 5.0 ug/L 01.13.14 15.10 U 1 Bromomethane 74-83-9 BRL 5.0 ug/L 01.13.14 15.10 U 1 Bromomethane 75-15-0 BRL 5.0 ug/L 01.13.14 15.10 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 01.13.14 15.10 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 01.13.14 15.10 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 01.13.14 15.10	2-Hexanone	591-78-6	BRL	50	ug/L	01.13.14 15.10	U	1
Benzene 71-43-2 BRL 5.0 ug/L 01.13.14 15.10 U 1 Bromochloromethane 74-97-5 BRL 5.0 ug/L 01.13.14 15.10 U 1 Bromodichloromethane 75-27-4 BRL 5.0 ug/L 01.13.14 15.10 U 1 Bromoform 75-25-2 BRL 5.0 ug/L 01.13.14 15.10 U 1 Bromomethane 74-83-9 BRL 5.0 ug/L 01.13.14 15.10 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 01.13.14 15.10 U 1 Carbon disulfide 56-23-5 BRL 5.0 ug/L 01.13.14 15.10 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 01.13.14 15.10 U 1 Chloroform 75-00-3 BRL 5.0 ug/L 01.13.14 15.10 U 1 Chloroformethane 74-87-3 BRL 5.0 ug/L 01.13.14 15.10	4-Methyl-2-pentanone (MIBK)	108-10-1	BRL	50	ug/L	01.13.14 15.10	U	1
Bromochloromethane 74-97-5 BRL 5.0 ug/L 0.1.13.14 15.10 U 1 Bromodichloromethane 75-27-4 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 Bromoform 75-25-2 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 Bromomethane 74-83-9 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 Carbon disulfide 75-05-3 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 Chloromethane 108-90-7 BRL 5.0 ug/L 0.1.3.14 15.10 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 0.1.	Acetone	67-64-1	BRL	50	ug/L	01.13.14 15.10	U	1
Bromodichloromethane 75-27-4 BRL 5.0 ug/L 01.13.14 15.10 U 1 Bromoform 75-25-2 BRL 5.0 ug/L 01.13.14 15.10 U 1 Bromomethane 74-83-9 BRL 5.0 ug/L 01.13.14 15.10 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 01.13.14 15.10 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 01.13.14 15.10 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 01.13.14 15.10 U 1 Chlorocethane 75-00-3 BRL 4.0 ug/L 01.13.14 15.10 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 01.13.14 15.10 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 01.13.14 15.10 U 1 cis-1,2-Dichlorocthene 156-59-2 BRL 5.0 ug/L 01	Benzene	71-43-2	BRL	5.0	ug/L	01.13.14 15.10	U	1
Bromoform 75-25-2 BRL 5.0 ug/L 01.13.14 15.10 U 1 Bromomethane 74-83-9 BRL 5.0 ug/L 01.13.14 15.10 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 01.13.14 15.10 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 01.13.14 15.10 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 01.13.14 15.10 U 1 Chloroethane 75-00-3 BRL 5.0 ug/L 01.13.14 15.10 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 01.13.14 15.10 U 1 Cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 01.13.14 15.10 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 01.13.14 15.10 U 1 Dibromochloromethane 75-71-8 BRL 5.0 ug/L 01.1	Bromochloromethane	74-97-5	BRL	5.0	ug/L	01.13.14 15.10	U	1
Bromomethane 74-83-9 BRL 5.0 ug/L 01.13.14 15.10 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 01.13.14 15.10 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 01.13.14 15.10 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 01.13.14 15.10 U 1 Chlorothane 75-00-3 BRL 4.0 ug/L 01.13.14 15.10 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 01.13.14 15.10 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 01.13.14 15.10 U 1 Cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 01.13.14 15.10 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 01.13.14 15.10 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L	Bromodichloromethane	75-27-4	BRL	5.0	ug/L	01.13.14 15.10	U	1
Carbon disulfide 75-15-0 BRL 5.0 ug/L 01.13.14 15.10 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 01.13.14 15.10 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 01.13.14 15.10 U 1 Chloroethane 75-00-3 BRL 4.0 ug/L 01.13.14 15.10 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 01.13.14 15.10 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 01.13.14 15.10 U 1 cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 01.13.14 15.10 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 01.13.14 15.10 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 01.13.14 15.10 U 1 Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L<	Bromoform	75-25-2	BRL	5.0	ug/L	01.13.14 15.10	U	1
Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 01.13.14 15.10 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 01.13.14 15.10 U 1 Chloroethane 75-00-3 BRL 4.0 ug/L 01.13.14 15.10 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 01.13.14 15.10 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 01.13.14 15.10 U 1 cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 01.13.14 15.10 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 01.13.14 15.10 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 01.13.14 15.10 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 01.13.14 15.10 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L	Bromomethane	74-83-9	BRL	5.0	ug/L	01.13.14 15.10	U	1
Chlorobenzene 108-90-7 BRL 5.0 ug/L 01.13.14 15.10 U 1 Chloroethane 75-00-3 BRL 4.0 ug/L 01.13.14 15.10 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 01.13.14 15.10 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 01.13.14 15.10 U 1 cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 01.13.14 15.10 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 01.13.14 15.10 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 01.13.14 15.10 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 01.13.14 15.10 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 01.13.14 15.10 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 01.13.14 15.10 U 1 m,p-Xylenes 179601-23-1 B	Carbon disulfide	75-15-0	BRL	5.0	ug/L	01.13.14 15.10	U	1
Chloroethane 75-00-3 BRL 4.0 ug/L 01.13.14 15.10 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 01.13.14 15.10 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 01.13.14 15.10 U 1 cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 01.13.14 15.10 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 01.13.14 15.10 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 01.13.14 15.10 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 01.13.14 15.10 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 01.13.14 15.10 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 01.13.14 15.10 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L	Carbon tetrachloride	56-23-5	BRL	5.0	ug/L	01.13.14 15.10	U	1
Chloroform 67-66-3 BRL 5.0 ug/L 01.13.14 15.10 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 01.13.14 15.10 U 1 cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 01.13.14 15.10 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 01.13.14 15.10 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 01.13.14 15.10 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 01.13.14 15.10 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 01.13.14 15.10 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 01.13.14 15.10 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 01.13.14 15.10 U 1	Chlorobenzene	108-90-7	BRL	5.0	ug/L	01.13.14 15.10	U	1
Chloromethane 74-87-3 BRL 5.0 ug/L 01.13.14 15.10 U 1 cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 01.13.14 15.10 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 01.13.14 15.10 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 01.13.14 15.10 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 01.13.14 15.10 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 01.13.14 15.10 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 01.13.14 15.10 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 01.13.14 15.10 U 1	Chloroethane	75-00-3	BRL	4.0	ug/L	01.13.14 15.10	U	1
cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 01.13.14 15.10 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 01.13.14 15.10 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 01.13.14 15.10 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 01.13.14 15.10 U 1 Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L 01.13.14 15.10 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 01.13.14 15.10 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 01.13.14 15.10 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 01.13.14 15.10 U 1	Chloroform	67-66-3	BRL	5.0	ug/L	01.13.14 15.10	U	1
cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 01.13.14 15.10 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 01.13.14 15.10 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 01.13.14 15.10 U 1 Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L 01.13.14 15.10 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 01.13.14 15.10 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 01.13.14 15.10 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 01.13.14 15.10 U 1	Chloromethane	74-87-3	BRL	5.0	ug/L	01.13.14 15.10	U	1
Cyclohexane 110-82-7 BRL 5.0 ug/L 01.13.14 15.10 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 01.13.14 15.10 U 1 Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L 01.13.14 15.10 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 01.13.14 15.10 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 01.13.14 15.10 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 01.13.14 15.10 U 1	cis-1,2-Dichloroethene	156-59-2	BRL	5.0	ug/L	01.13.14 15.10	U	1
Dibromochloromethane 124-48-1 BRL 5.0 ug/L 01.13.14 15.10 U 1 Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L 01.13.14 15.10 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 01.13.14 15.10 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 01.13.14 15.10 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 01.13.14 15.10 U 1	cis-1,3-Dichloropropene	10061-01-5	BRL	5.0	ug/L	01.13.14 15.10	U	1
Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L 01.13.14 15.10 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 01.13.14 15.10 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 01.13.14 15.10 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 01.13.14 15.10 U 1	Cyclohexane	110-82-7	BRL	5.0	ug/L	01.13.14 15.10	U	1
Ethylbenzene 100-41-4 BRL 5.0 ug/L 01.13.14 15.10 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 01.13.14 15.10 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 01.13.14 15.10 U 1	Dibromochloromethane	124-48-1	BRL	5.0	ug/L	01.13.14 15.10	U	1
Isopropylbenzene 98-82-8 BRL 5.0 ug/L 01.13.14 15.10 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 01.13.14 15.10 U 1	Dichlorodifluoromethane	75-71-8	BRL	5.0	ug/L	01.13.14 15.10	U	1
m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 01.13.14 15.10 U 1	Ethylbenzene	100-41-4	BRL	5.0	ug/L	01.13.14 15.10	U	1
	Isopropylbenzene	98-82-8	BRL	5.0	ug/L	01.13.14 15.10	U	1
Methyl acetate 79-20-9 BRL 5.0 ug/L 01.13.14 15.10 U 1	m,p-Xylenes	179601-23-1	BRL	5.0	ug/L	01.13.14 15.10	U	1
	Methyl acetate	79-20-9	BRL	5.0	ug/L	01.13.14 15.10	U	1

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb (Dekalb Ave)

Sample Id: MW-210 Matrix: Ground Water Date Received:01.10.14 17.20

Lab Sample Id: 477225-003 Date Collected: 01.09.14 15.30

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

Analyst: MLA Date Prep: 01.13.14 07.01

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Methyl tert-butyl ether	1634-04-4	BRL	5.0		ug/L	01.13.14 15.10	U	1
Methylcyclohexane	108-87-2	BRL	5.0		ug/L	01.13.14 15.10	U	1
Methylene chloride	75-09-2	BRL	5.0		ug/L	01.13.14 15.10	U	1
Naphthalene	91-20-3	BRL	5.0		ug/L	01.13.14 15.10	U	1
o-Xylene	95-47-6	BRL	5.0		ug/L	01.13.14 15.10	U	1
Styrene	100-42-5	BRL	5.0		ug/L	01.13.14 15.10	U	1
Tetrachloroethene	127-18-4	BRL	5.0		ug/L	01.13.14 15.10	U	1
Toluene	108-88-3	BRL	5.0		ug/L	01.13.14 15.10	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	5.0		ug/L	01.13.14 15.10	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	5.0		ug/L	01.13.14 15.10	U	1
Trichloroethene	79-01-6	BRL	5.0		ug/L	01.13.14 15.10	U	1
Trichlorofluoromethane	75-69-4	BRL	5.0		ug/L	01.13.14 15.10	U	1
Vinyl chloride	75-01-4	BRL	2.0		ug/L	01.13.14 15.10	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,2-Dichloroethane-D4		17060-07-0	102	%	53-159	01.13.14 15.10		
4-Bromofluorobenzene		460-00-4	102	%	30-186	01.13.14 15.10		
Toluene-D8		2037-26-5	100	%	70-130	01.13.14 15.10		

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb (Dekalb Ave)

Sample Id: MW-211 Matrix: Ground Water Date Received:01.10.14 17.20

Lab Sample Id: 477225-004 Date Collected: 01.09.14 17.00

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

Analyst: MLA Date Prep: 01.13.14 07.01

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1-Trichloroethane	71-55-6	BRL	5.0	ug/L	01.13.14 15.37	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	5.0	ug/L	01.13.14 15.37	U	1
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	BRL	5.0	ug/L	01.13.14 15.37	U	1
1,1,2-Trichloroethane	79-00-5	BRL	5.0	ug/L	01.13.14 15.37	U	1
1,1-Dichloroethane	75-34-3	BRL	5.0	ug/L	01.13.14 15.37	U	1
1,1-Dichloroethene	75-35-4	BRL	5.0	ug/L	01.13.14 15.37	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	5.0	ug/L	01.13.14 15.37	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	5.0	ug/L	01.13.14 15.37	U	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	BRL	5.0	ug/L	01.13.14 15.37	U	1
1,2-Dibromoethane (EDB)	106-93-4	BRL	5.0	ug/L	01.13.14 15.37	U	1
1,2-Dichlorobenzene	95-50-1	BRL	5.0	ug/L	01.13.14 15.37	U	1
1,2-Dichloroethane	107-06-2	BRL	5.0	ug/L	01.13.14 15.37	U	1
1,2-Dichloropropane	78-87-5	BRL	5.0	ug/L	01.13.14 15.37	U	1
1,3-Dichlorobenzene	541-73-1	BRL	5.0	ug/L	01.13.14 15.37	U	1
1,4-Dichlorobenzene	106-46-7	BRL	5.0	ug/L	01.13.14 15.37	U	1
2-Butanone (MEK)	78-93-3	BRL	50	ug/L	01.13.14 15.37	U	1
2-Hexanone	591-78-6	BRL	50	ug/L	01.13.14 15.37	U	1
4-Methyl-2-pentanone (MIBK)	108-10-1	BRL	50	ug/L	01.13.14 15.37	U	1
Acetone	67-64-1	BRL	50	ug/L	01.13.14 15.37	U	1
Benzene	71-43-2	BRL	5.0	ug/L	01.13.14 15.37	U	1
Bromochloromethane	74-97-5	BRL	5.0	ug/L	01.13.14 15.37	U	1
Bromodichloromethane	75-27-4	BRL	5.0	ug/L	01.13.14 15.37	U	1
Bromoform	75-25-2	BRL	5.0	ug/L	01.13.14 15.37	U	1
Bromomethane	74-83-9	BRL	5.0	ug/L	01.13.14 15.37	U	1
Carbon disulfide	75-15-0	BRL	5.0	ug/L	01.13.14 15.37	U	1
Carbon tetrachloride	56-23-5	BRL	5.0	ug/L	01.13.14 15.37	U	1
Chlorobenzene	108-90-7	BRL	5.0	ug/L	01.13.14 15.37	U	1
Chloroethane	75-00-3	BRL	4.0	ug/L	01.13.14 15.37	U	1
Chloroform	67-66-3	BRL	5.0	ug/L	01.13.14 15.37	U	1
Chloromethane	74-87-3	BRL	5.0	ug/L	01.13.14 15.37	U	1
cis-1,2-Dichloroethene	156-59-2	BRL	5.0	ug/L	01.13.14 15.37	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	5.0	ug/L	01.13.14 15.37	U	1
Cyclohexane	110-82-7	BRL	5.0	ug/L	01.13.14 15.37	U	1
Dibromochloromethane	124-48-1	BRL	5.0	ug/L	01.13.14 15.37	U	1
Dichlorodifluoromethane	75-71-8	BRL	5.0	ug/L	01.13.14 15.37	U	1
Ethylbenzene	100-41-4	BRL	5.0	ug/L	01.13.14 15.37	U	1
Isopropylbenzene	98-82-8	BRL	5.0	ug/L	01.13.14 15.37	U	1
m,p-Xylenes	179601-23-1	BRL	5.0	ug/L	01.13.14 15.37	U	1
Methyl acetate	79-20-9	BRL	5.0	ug/L	01.13.14 15.37	U	1

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb (Dekalb Ave)

Sample Id: MW-211 Matrix: Ground Water Date Received:01.10.14 17.20

Lab Sample Id: 477225-004 Date Collected: 01.09.14 17.00

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

Analyst: MLA Date Prep: 01.13.14 07.01

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Methyl tert-butyl ether	1634-04-4	BRL	5.0		ug/L	01.13.14 15.37	U	1
Methylcyclohexane	108-87-2	BRL	5.0		ug/L	01.13.14 15.37	U	1
Methylene chloride	75-09-2	BRL	5.0		ug/L	01.13.14 15.37	U	1
Naphthalene	91-20-3	BRL	5.0		ug/L	01.13.14 15.37	U	1
o-Xylene	95-47-6	BRL	5.0		ug/L	01.13.14 15.37	U	1
Styrene	100-42-5	BRL	5.0		ug/L	01.13.14 15.37	U	1
Tetrachloroethene	127-18-4	BRL	5.0		ug/L	01.13.14 15.37	U	1
Toluene	108-88-3	BRL	5.0		ug/L	01.13.14 15.37	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	5.0		ug/L	01.13.14 15.37	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	5.0		ug/L	01.13.14 15.37	U	1
Trichloroethene	79-01-6	BRL	5.0		ug/L	01.13.14 15.37	U	1
Trichlorofluoromethane	75-69-4	BRL	5.0		ug/L	01.13.14 15.37	U	1
Vinyl chloride	75-01-4	BRL	2.0		ug/L	01.13.14 15.37	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,2-Dichloroethane-D4		17060-07-0	102	%	53-159	01.13.14 15.37		
4-Bromofluorobenzene		460-00-4	102	%	30-186	01.13.14 15.37		
Toluene-D8		2037-26-5	98	%	70-130	01.13.14 15.37		

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb (Dekalb Ave)

Sample Id: MW-208P Matrix: Ground Water Date Received:01.10.14 17.20

Lab Sample Id: 477225-005 Date Collected: 01.09.14 16.33

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: LIH % Moisture:

Analyst: MLA Date Prep: 01.13.14 09.12

1,1,1-Trichlorochtane	Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1.1.2-Trichloro-1.2.4-rifluorechane 76-13-1 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.1.2-Trichlorochane 79-00-5 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.1-Dichlorochane 75-35-4 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.1.2-Trichlorochane 75-35-4 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.2.3-Trichlorochane 75-35-4 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.2.3-Trichlorochane 87-61-6 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.2.3-Trichlorochane 120-82-1 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.2.4-Trichlorochane 120-82-1 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.2.0-Trichlorochane (BDF) 96-12-8 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.2-Dichloroc-chlorochane (BDF) 106-93-4 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.2-Dichlorochane 107-06-2 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.2-Dichlorochane 107-06-2 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.2-Dichlorochane 107-06-2 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.2-Dichlorochane 108-06-2 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.2-Dichlorochane 106-46-7 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.2-Dichlorochane 106-46-7 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.2-Dichlorochane 106-46-7 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.2-Dichlorochane 106-46-7 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.2-Dichlorochane 106-46-7 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.2-Dichlorochane 106-46-7 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.2-Dichlorochane 106-46-7 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.2-Dichlorochane 106-46-7 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.2-Dichlorochane 106-46-7 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.2-Dichlorochane 106-46-7 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.2-Dichlorochane 106-46-7 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.2-Dichlorochane 106-46-7 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.2-Dichlorochane 106-46-7 BRL 5.0	1,1,1-Trichloroethane	71-55-6	BRL	5.0	ug/L	01.13.14 13.45	U	1
1,12-Trichloroethane	1,1,2,2-Tetrachloroethane	79-34-5	BRL	5.0	ug/L	01.13.14 13.45	U	1
1.1-Dichloroethane	1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	BRL	5.0	ug/L	01.13.14 13.45	U	1
1.1-Dichloroethene	1,1,2-Trichloroethane	79-00-5	BRL	5.0	ug/L	01.13.14 13.45	U	1
1,2,3-Trichlorobenzene 87-61-6 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1,2,4-Trichlorobenzene 120-82-1 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1,2-Dibromo-3-chloropropane (DBCP) 106-93-4 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1,2-Dichlorobenzene 95-50-1 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1,2-Dichloropropane 107-06-2 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1,2-Dichloropropane 78-87-5 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1,3-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1,3-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1,4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1,4-Dichlorobenzene 591-78-6 BRL 50 ug/L 0.1.3.14 13.45 U 1 1,4-Dichlorobenzene 591-78-6 BRL 50 ug/L 0.1.3.14 13.45 U 1 1,4-Dichlorobenzene 591-78-6 BRL 50 ug/L 0.1.3.14 13.45 U 1 1,4-Dichlorobenzene 591-78-6 BRL 50 ug/L 0.1.3.14 13.45 U 1 1,4-Dichlorobenzene 67-64-1 BRL 50 ug/L 0.1.3.14 13.45 U 1 1,4-Dichlorobenzene 71-43-2 BRL 50 ug/L 0.1.3.14 13.45 U 1 1,4-Dichlorobenzene 71-43-2 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1,4-Dichlorobenzene 71-43-2 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1,4-Dichlorobenzene 71-43-2 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1,4-Dichlorobenzene 71-43-2 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1,4-Dichlorobenzene 71-43-2 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1,4-Dichlorobenzene 71-43-2 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1,4-Dichlorobenzene 71-43-2 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1,4-Dichlorobenzene 71-43-3 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1,4-Dichlorobenzene 71-43-3 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1,4-Dichlorobenzene 71-43-3 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1,4-Dichlorobenzene 71-43-	1,1-Dichloroethane	75-34-3	BRL	5.0	ug/L	01.13.14 13.45	U	1
1.2.4-Trichlorobenzene 120-82-1 BRL 5.0 ugL 0.1.3.14 13.45 U 1 1.2.10 1.2	1,1-Dichloroethene	75-35-4	BRL	5.0	ug/L	01.13.14 13.45	U	1
1.2-Dibromo-3-chloropropane (DBCP) 96-12-8 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.2-Dibromo-bhame (EDB) 106-93-4 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.2-Dibromo-bhame (EDB) 95-50-1 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.2-Dibchlorobename 107-06-2 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.2-Dibchlorobename 107-06-2 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.3-Dibchlorobename 541-73-1 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.3-Dibchlorobename 107-06-2 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.3-Dibchlorobename 106-66-7 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.3-Dibchlorobename 106-66-7 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.3-Dibchlorobename 106-66-7 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.3-Dibchlorobename 108-04-7 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.3-Dibchlorobename 108-04-1 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.3-Dibchlorobename 108-04-1 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.3-Dibchlorobename 108-04-1 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.3-Dibchlorobename 108-04-1 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.3-Dibchlorobename 108-04-1 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.3-Dibchlorobename 108-04-1 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.3-Dibchlorobename 108-04-1 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.3-Dibchlorobename 108-04-7 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.3-Dibchlorobename 108-04-7 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.3-Dibchlorobename 108-04-7 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.3-Dibchlorobename 108-04-7 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.3-Dibchlorobename 108-04-7 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.3-Dibchlorobename 106-10-5 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.3-Dibchlorobename 106-10-5 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.3-Dibchloropename 106-10-15 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.3-Dibchloropename	1,2,3-Trichlorobenzene	87-61-6	BRL	5.0	ug/L	01.13.14 13.45	U	1
1.2-Dibromoethane (EDB) 106-93-4 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.2-Dibromoethane 95-50-1 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.2-Dibromoethane 107-06-2 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.2-Dibromoethane 107-06-2 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.2-Dibromoethane 78-87-5 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.3-Dibromoethane 106-46-7 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.4-Dibromoethane 106-46-7 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.4-Dibromoethane 106-46-7 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.4-Dibromoethane 591-78-6 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.4-Dibromoethane 591-78-6 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.4-Dibromoethane 67-64-1 BRL 50 ug/L 0.1.3.14 13.45 U 1 1.4-Dibromoethane 67-64-1 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.4-Dibromoethane 74-97-5 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.4-Dibromoethane 74-97-5 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.4-Dibromoethane 75-27-4 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.4-Dibromoethane 75-27-4 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.4-Dibromoethane 75-27-4 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.4-Dibromoethane 75-15-0 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.4-Dibromoethane 75-15-0 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.4-Dibromoethane 75-00-3 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.4-Dibromoethane 75-00-3 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.4-Dibromoethane 74-87-3 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.4-Dibromoethane 74-87-3 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.4-Dibromoethane 74-87-3 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.4-Dibromoethane 74-87-3 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.4-Dibromoethane 74-87-3 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1.4-Dibromoethane 74-87-3 BRL 5.0 ug/L 0.1.3.14 13.45 U 1.4-Dibromoethane 74-87-3 BRL 5	1,2,4-Trichlorobenzene	120-82-1	BRL	5.0	ug/L	01.13.14 13.45	U	1
1,2-Dichlorobenzene 95-50-1 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1,2-Dichlorochtane 107-06-2 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1,2-Dichlorochtane 78-87-5 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1,2-Dichlorochtane 541-73-1 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1,3-Dichlorochenzene 106-46-7 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1,4-Dichlorochenzene 106-46-7 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1,4-Dichlorochenzene 106-46-7 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1,4-Dichlorochenzene 591-78-6 BRL 50 ug/L 0.1.3.14 13.45 U 1 1,4-Dichlorochenzene 591-78-6 BRL 50 ug/L 0.1.3.14 13.45 U 1 1,4-Dichlorochenzene 67-64-1 BRL 50 ug/L 0.1.3.14 13.45 U 1 1,4-Dichlorochenzene 67-64-1 BRL 50 ug/L 0.1.3.14 13.45 U 1 1,4-Dichlorochenzene 71-43-2 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1,4-Dichlorochenzene 74-87-5 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1,4-Dichlorochenzene 74-87-5 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1,4-Dichlorochenzene 75-27-4 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1,4-Dichlorochenzene 75-25-2 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1,4-Dichlorochenzene 75-15-0 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1,4-Dichlorochenzene 108-90-7 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1,4-Dichlorochenzene 108-90-7 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1,4-Dichlorochenzene 108-90-7 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1,4-Dichlorochenzene 106-66-3 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1,4-Dichlorochenzene 106-60-3 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1,4-Dichlorochenzene 100-61-15 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1,4-Dichlorochenzene 100-61-15 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1,4-Dichlorochenzene 100-61-15 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1,4-Dichlorochenzene 100-61-15 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1,4-Dichlorochenzene 100-61-15	1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	BRL	5.0	ug/L	01.13.14 13.45	U	1
1,2-Dichloroethane 107-06-2 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1,2-Dichloropropane 78-87-5 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1,3-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 2-Butanone (MEK) 78-93-3 BRL 50 ug/L 0.1.3.14 13.45 U 1 2-Butanone (MEK) 78-93-3 BRL 50 ug/L 0.1.3.14 13.45 U 1 2-Hexanone 591-78-6 BRL 50 ug/L 0.1.3.14 13.45 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 0.1.3.14 13.45 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 0.1.3.14 13.45 U 1 4-Methyl-2-pentanone (MIBK) 71-43-2 BRL 50 ug/L 0.1.3.14 13.45 U 1 Benzene 71-43-2 BRL 50	1,2-Dibromoethane (EDB)	106-93-4	BRL	5.0	ug/L	01.13.14 13.45	U	1
1,2-Dichloropropane 78-87-5 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1,3-Dichlorobenzene 541-73-1 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1 1,4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1 1,4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 0.1.3.14 13.45 U 1 1 2-Butanone (MEK) 78-93-3 BRL 50 ug/L 0.1.3.14 13.45 U 1 1 2-Butanone (MIBK) 108-10-1 BRL 50 ug/L 0.1.3.14 13.45 U 1 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 0.1.3.14 13.45 U 1 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 0.1.3.14 13.45 U 1 1 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 0.1.3.14 13.45 U 1 1 1 1 1 1 1 1 1	1,2-Dichlorobenzene	95-50-1	BRL	5.0	ug/L	01.13.14 13.45	U	1
1,3-Dichlorobenzene 541-73-1 BRL 5.0 ug/L 01.13.14 13.45 U 1 1,4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 01.13.14 13.45 U 1 2-Butanone (MEK) 78-93-3 BRL 50 ug/L 01.13.14 13.45 U 1 2-Hexanone 591-78-6 BRL 50 ug/L 01.13.14 13.45 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 01.13.14 13.45 U 1 Acetone 67-64-1 BRL 50 ug/L 01.13.14 13.45 U 1 Benzene 71-43-2 BRL 5.0 ug/L 01.13.14 13.45 U 1 Bromodichloromethane 74-97-5 BRL 5.0 ug/L 01.13.14 13.45 U 1 Bromofichloromethane 75-27-4 BRL 5.0 ug/L 01.13.14 13.45 U 1 Bromofichloromethane 75-52-2 BRL 5.0 ug/L	1,2-Dichloroethane	107-06-2	BRL	5.0	ug/L	01.13.14 13.45	U	1
1.4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 01.13.14 13.45 U 1.2	1,2-Dichloropropane	78-87-5	BRL	5.0	ug/L	01.13.14 13.45	U	1
2-Butanone (MEK) 78-93-3 BRL 50 ug/L 01.13.14 13.45 U 1 2-Hexanone 591-78-6 BRL 50 ug/L 01.13.14 13.45 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 01.13.14 13.45 U 1 Acetone 67-64-1 BRL 50 ug/L 01.13.14 13.45 U 1 Benzene 71-43-2 BRL 5.0 ug/L 01.13.14 13.45 U 1 Benzene 74-97-5 BRL 5.0 ug/L 01.13.14 13.45 U 1 Bromochloromethane 74-97-5 BRL 5.0 ug/L 01.13.14 13.45 U 1 Bromochloromethane 75-27-4 BRL 5.0 ug/L 01.13.14 13.45 U 1 Bromochloromethane 75-25-2 BRL 5.0 ug/L 01.13.14 13.45 U 1 Bromochine 75-25-2 BRL 5.0 ug/L 01.13.14 13.45 U 1 Bromochine 75-25-2 BRL 5.0 ug/L 01.13.14 13.45 U 1 Bromochine 75-25-2 BRL 5.0 ug/L 01.13.14 13.45 U 1 Bromochine 75-25-2 BRL 5.0 ug/L 01.13.14 13.45 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 01.13.14 13.45 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 01.13.14 13.45 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 01.13.14 13.45 U 1 Chlorothane 75-00-3 BRL 5.0 ug/L 01.13.14 13.45 U 1 Chlorothane 75-00-3 BRL 5.0 ug/L 01.13.14 13.45 U 1 Chlorothane 75-00-3 BRL 5.0 ug/L 01.13.14 13.45 U 1 Chlorothane 74-87-3 BRL 5.0 ug/L 01.13.14 13.45 U 1 Chlorothane 74-87-3 BRL 5.0 ug/L 01.13.14 13.45 U 1 Cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 01.13.14 13.45 U 1 Cis-1,3-Dichloropopene 10061-01-5 BRL 5.0 ug/L 01.13.14 13.45 U 1 Cycloexane 110-82-7 BRL 5.0 ug/L 01.13.14 13.45 U 1 Cycloexane 124-48-1 BRL 5.0 ug/L 01.13.14 13.45 U 1 Dibromochloromethane 75-71-8 BRL 5.0 ug/L 01.13.14 13.45 U 1 Dibromochloromethane 75-71-8 BRL 5.0 ug/L 01.13.14 13.45 U 1 Dibromochloromethane 98-82-8 BRL 5.0 ug/L 01.13.14 13.45 U 1 Bropopylbenzene 98-82-8 BRL 5.0 ug/L 01.13.14 13.45 U 1 Bropopylbenzene 176-02-3-1 BRL 5.0 ug/L 01.13.14 13.45 U 1 Bropopylbenzene 176-02-3-1 BRL 5.0 ug/L 01.13.14 13.45 U 1 Bropopylbenzene 176-02-3-1 BRL 5.0 ug/L 01.13.14 13.45 U 1 Bropopylbenzene 176-02-3-1 BRL 5.0 ug/L 01.13.14 13.45 U 1 Bropopylbenzene 176-02-3-1 BRL 5.0 ug/L 01.13.14 13.45 U 1 Bropopylbenzene 176-02-3-1 BRL 5.0 ug/L 01.13.14 13.45 U 1 Bropopylbenzene 176-02-3-1 BRL 5.0 ug/L 01.13.14 13.45 U 1 Bropopylbenzene 176-02-3-1	1,3-Dichlorobenzene	541-73-1	BRL	5.0	ug/L	01.13.14 13.45	U	1
2-Hexanone 591-78-6 BRL 50 ug/L 01.13.14 13.45 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 01.13.14 13.45 U 1 Acetone 67-64-1 BRL 50 ug/L 01.13.14 13.45 U 1 Benzene 71-43-2 BRL 5.0 ug/L 01.13.14 13.45 U 1 Bromochloromethane 74-97-5 BRL 5.0 ug/L 01.13.14 13.45 U 1 Bromodichloromethane 75-27-4 BRL 5.0 ug/L 01.13.14 13.45 U 1 Bromofform 75-25-2 BRL 5.0 ug/L 01.13.14 13.45 U 1 Bromofform 75-25-2 BRL 5.0 ug/L 01.13.14 13.45 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 01.13.14 13.45 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 01.13.14 13.45	1,4-Dichlorobenzene	106-46-7	BRL	5.0	ug/L	01.13.14 13.45	U	1
4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 01.13.14 13.45 U 1 Acetone 67-64-1 BRL 50 ug/L 01.13.14 13.45 U 1 Benzene 71-43-2 BRL 5.0 ug/L 01.13.14 13.45 U 1 Bromochloromethane 74-97-5 BRL 5.0 ug/L 01.13.14 13.45 U 1 Bromodichloromethane 75-27-4 BRL 5.0 ug/L 01.13.14 13.45 U 1 Bromoform 75-25-2 BRL 5.0 ug/L 01.13.14 13.45 U 1 Bromoform 75-25-2 BRL 5.0 ug/L 01.13.14 13.45 U 1 Bromoform 75-25-2 BRL 5.0 ug/L 01.13.14 13.45 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 01.13.14 13.45 U 1 Chlorotethane 75-0-3 BRL 5.0 ug/L 01.13.14 13.45	2-Butanone (MEK)	78-93-3	BRL	50	ug/L	01.13.14 13.45	U	1
Acetone 67-64-1 BRL 50 ug/L 01.13.14 13.45 U 1 Benzene 71-43-2 BRL 5.0 ug/L 01.13.14 13.45 U 1 Bromochloromethane 74-97-5 BRL 5.0 ug/L 01.13.14 13.45 U 1 Bromodichloromethane 75-27-4 BRL 5.0 ug/L 01.13.14 13.45 U 1 Bromoform 75-27-2 BRL 5.0 ug/L 01.13.14 13.45 U 1 Bromomethane 74-83-9 BRL 5.0 ug/L 01.13.14 13.45 U 1 Bromomethane 74-83-9 BRL 5.0 ug/L 01.13.14 13.45 U 1 Carbon disulfide 56-23-5 BRL 5.0 ug/L 01.13.14 13.45 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 01.31.41 3.45 U 1 Chloromethane 75-00-3 BRL 5.0 ug/L 01.13.14 13.45	2-Hexanone	591-78-6	BRL	50	ug/L	01.13.14 13.45	U	1
Benzene 71-43-2 BRL 5.0 ug/L 01.13.14 13.45 U 1 Bromochloromethane 74-97-5 BRL 5.0 ug/L 01.13.14 13.45 U 1 Bromodichloromethane 75-27-4 BRL 5.0 ug/L 01.13.14 13.45 U 1 Bromoform 75-25-2 BRL 5.0 ug/L 01.13.14 13.45 U 1 Bromomethane 74-83-9 BRL 5.0 ug/L 01.13.14 13.45 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 01.13.14 13.45 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 01.13.14 13.45 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 01.13.14 13.45 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 01.13.14 13.45 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 01.13.14 13.4	4-Methyl-2-pentanone (MIBK)	108-10-1	BRL	50	ug/L	01.13.14 13.45	U	1
Bromochloromethane 74-97-5 BRL 5.0 ug/L 01.13.14 13.45 U 1 Bromodichloromethane 75-27-4 BRL 5.0 ug/L 01.13.14 13.45 U 1 Bromoform 75-25-2 BRL 5.0 ug/L 01.13.14 13.45 U 1 Bromomethane 74-83-9 BRL 5.0 ug/L 01.13.14 13.45 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 01.13.14 13.45 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 01.13.14 13.45 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 01.13.14 13.45 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 01.13.14 13.45 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 01.13.14 13.45 U 1 cis-1,3-Dichlorothene 156-59-2 BRL 5.0 ug/L <t< td=""><td>Acetone</td><td>67-64-1</td><td>BRL</td><td>50</td><td>ug/L</td><td>01.13.14 13.45</td><td>U</td><td>1</td></t<>	Acetone	67-64-1	BRL	50	ug/L	01.13.14 13.45	U	1
Bromodichloromethane 75-27-4 BRL 5.0 ug/L 01.13.14 13.45 U 1 Bromoform 75-25-2 BRL 5.0 ug/L 01.13.14 13.45 U 1 Bromomethane 74-83-9 BRL 5.0 ug/L 01.13.14 13.45 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 01.13.14 13.45 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 01.13.14 13.45 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 01.13.14 13.45 U 1 Chloroform 75-00-3 BRL 4.0 ug/L 01.13.14 13.45 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 01.13.14 13.45 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 01.13.14 13.45 U 1 cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 01.13	Benzene	71-43-2	BRL	5.0	ug/L	01.13.14 13.45	U	1
Bromoform 75-25-2 BRL 5.0 ug/L 01.13.14 13.45 U 1 Bromomethane 74-83-9 BRL 5.0 ug/L 01.13.14 13.45 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 01.13.14 13.45 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 01.13.14 13.45 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 01.13.14 13.45 U 1 Chloroform 75-00-3 BRL 5.0 ug/L 01.13.14 13.45 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 01.13.14 13.45 U 1 Cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 01.13.14 13.45 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 01.13.14 13.45 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 01.13	Bromochloromethane	74-97-5	BRL	5.0	ug/L	01.13.14 13.45	U	1
Bromomethane 74-83-9 BRL 5.0 ug/L 01.13.14 13.45 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 01.13.14 13.45 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 01.13.14 13.45 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 01.13.14 13.45 U 1 Chloroethane 75-00-3 BRL 4.0 ug/L 01.13.14 13.45 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 01.13.14 13.45 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 01.13.14 13.45 U 1 Cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 01.13.14 13.45 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 01.13.14 13.45 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L <td< td=""><td>Bromodichloromethane</td><td>75-27-4</td><td>BRL</td><td>5.0</td><td>ug/L</td><td>01.13.14 13.45</td><td>U</td><td>1</td></td<>	Bromodichloromethane	75-27-4	BRL	5.0	ug/L	01.13.14 13.45	U	1
Carbon disulfide 75-15-0 BRL 5.0 ug/L 01.13.14 13.45 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 01.13.14 13.45 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 01.13.14 13.45 U 1 Chloroethane 75-00-3 BRL 4.0 ug/L 01.13.14 13.45 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 01.13.14 13.45 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 01.13.14 13.45 U 1 cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 01.13.14 13.45 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 01.13.14 13.45 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 01.13.14 13.45 U 1 Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L<	Bromoform	75-25-2	BRL	5.0	ug/L	01.13.14 13.45	U	1
Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 01.13.14 13.45 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 01.13.14 13.45 U 1 Chloroethane 75-00-3 BRL 4.0 ug/L 01.13.14 13.45 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 01.13.14 13.45 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 01.13.14 13.45 U 1 cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 01.13.14 13.45 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 01.13.14 13.45 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 01.13.14 13.45 U 1 Dichlorodifluoromethane 124-48-1 BRL 5.0 ug/L 01.13.14 13.45 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L <td>Bromomethane</td> <td>74-83-9</td> <td>BRL</td> <td>5.0</td> <td>ug/L</td> <td>01.13.14 13.45</td> <td>U</td> <td>1</td>	Bromomethane	74-83-9	BRL	5.0	ug/L	01.13.14 13.45	U	1
Chlorobenzene 108-90-7 BRL 5.0 ug/L 01.13.14 13.45 U 1 Chloroethane 75-00-3 BRL 4.0 ug/L 01.13.14 13.45 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 01.13.14 13.45 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 01.13.14 13.45 U 1 cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 01.13.14 13.45 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 01.13.14 13.45 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 01.13.14 13.45 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 01.13.14 13.45 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 01.13.14 13.45 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 01.13.14 13.45 U 1 m,p-Xylenes 179601-23-1 B	Carbon disulfide	75-15-0	BRL	5.0	ug/L	01.13.14 13.45	U	1
Chloroethane 75-00-3 BRL 4.0 ug/L 01.13.14 13.45 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 01.13.14 13.45 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 01.13.14 13.45 U 1 cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 01.13.14 13.45 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 01.13.14 13.45 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 01.13.14 13.45 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 01.13.14 13.45 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 01.13.14 13.45 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 01.13.14 13.45 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L	Carbon tetrachloride	56-23-5	BRL	5.0	ug/L	01.13.14 13.45	U	1
Chloroform 67-66-3 BRL 5.0 ug/L 01.13.14 13.45 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 01.13.14 13.45 U 1 cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 01.13.14 13.45 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 01.13.14 13.45 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 01.13.14 13.45 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 01.13.14 13.45 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 01.13.14 13.45 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 01.13.14 13.45 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 01.13.14 13.45 U 1	Chlorobenzene	108-90-7	BRL	5.0	ug/L	01.13.14 13.45	U	1
Chloromethane 74-87-3 BRL 5.0 ug/L 01.13.14 13.45 U 1 cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 01.13.14 13.45 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 01.13.14 13.45 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 01.13.14 13.45 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 01.13.14 13.45 U 1 Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L 01.13.14 13.45 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 01.13.14 13.45 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 01.13.14 13.45 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 01.13.14 13.45 U 1	Chloroethane	75-00-3	BRL	4.0	ug/L	01.13.14 13.45	U	1
cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 01.13.14 13.45 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 01.13.14 13.45 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 01.13.14 13.45 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 01.13.14 13.45 U 1 Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L 01.13.14 13.45 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 01.13.14 13.45 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 01.13.14 13.45 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 01.13.14 13.45 U 1	Chloroform	67-66-3	BRL	5.0	ug/L	01.13.14 13.45	U	1
cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 01.13.14 13.45 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 01.13.14 13.45 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 01.13.14 13.45 U 1 Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L 01.13.14 13.45 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 01.13.14 13.45 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 01.13.14 13.45 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 01.13.14 13.45 U 1	Chloromethane	74-87-3	BRL	5.0	ug/L	01.13.14 13.45	U	1
Cyclohexane 110-82-7 BRL 5.0 ug/L 01.13.14 13.45 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 01.13.14 13.45 U 1 Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L 01.13.14 13.45 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 01.13.14 13.45 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 01.13.14 13.45 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 01.13.14 13.45 U 1	cis-1,2-Dichloroethene	156-59-2	BRL	5.0	ug/L	01.13.14 13.45	U	1
Dibromochloromethane 124-48-1 BRL 5.0 ug/L 01.13.14 13.45 U 1 Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L 01.13.14 13.45 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 01.13.14 13.45 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 01.13.14 13.45 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 01.13.14 13.45 U 1	cis-1,3-Dichloropropene	10061-01-5	BRL	5.0	ug/L	01.13.14 13.45	U	1
Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L 01.13.14 13.45 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 01.13.14 13.45 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 01.13.14 13.45 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 01.13.14 13.45 U 1	Cyclohexane	110-82-7	BRL	5.0	ug/L	01.13.14 13.45	U	1
Ethylbenzene 100-41-4 BRL 5.0 ug/L 01.13.14 13.45 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 01.13.14 13.45 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 01.13.14 13.45 U 1	Dibromochloromethane	124-48-1	BRL	5.0	ug/L	01.13.14 13.45	U	1
Isopropylbenzene 98-82-8 BRL 5.0 ug/L 01.13.14 13.45 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 01.13.14 13.45 U 1	Dichlorodifluoromethane	75-71-8	BRL	5.0	ug/L	01.13.14 13.45	U	1
m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 01.13.14 13.45 U 1	Ethylbenzene	100-41-4	BRL	5.0	ug/L	01.13.14 13.45	U	1
4 7	Isopropylbenzene	98-82-8	BRL	5.0	ug/L	01.13.14 13.45	U	1
Methyl acetate 79-20-9 BRL 5.0 ug/L 01.13.14 13.45 U 1	m,p-Xylenes	179601-23-1	BRL	5.0	ug/L	01.13.14 13.45	U	1
	Methyl acetate	79-20-9	BRL	5.0	ug/L	01.13.14 13.45	U	1

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb (Dekalb Ave)

Sample Id: MW-208P Matrix: Ground Water Date Received:01.10.14 17.20

Lab Sample Id: 477225-005 Date Collected: 01.09.14 16.33

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: LIH % Moisture:

2037-26-5

Analyst: MLA Date Prep: 01.13.14 09.12

Seq Number: 931887

Toluene-D8

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Methyl tert-butyl ether	1634-04-4	BRL	5.0		ug/L	01.13.14 13.45	U	1
Methylcyclohexane	108-87-2	BRL	5.0		ug/L	01.13.14 13.45	U	1
Methylene chloride	75-09-2	BRL	5.0		ug/L	01.13.14 13.45	U	1
Naphthalene	91-20-3	BRL	5.0		ug/L	01.13.14 13.45	U	1
o-Xylene	95-47-6	BRL	5.0		ug/L	01.13.14 13.45	U	1
Styrene	100-42-5	BRL	5.0		ug/L	01.13.14 13.45	U	1
Tetrachloroethene	127-18-4	9.3	5.0		ug/L	01.13.14 13.45		1
Toluene	108-88-3	BRL	5.0		ug/L	01.13.14 13.45	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	5.0		ug/L	01.13.14 13.45	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	5.0		ug/L	01.13.14 13.45	U	1
Trichloroethene	79-01-6	BRL	5.0		ug/L	01.13.14 13.45	U	1
Trichlorofluoromethane	75-69-4	BRL	5.0		ug/L	01.13.14 13.45	U	1
Vinyl chloride	75-01-4	BRL	2.0		ug/L	01.13.14 13.45	U	1
_			%					
Surrogate		Cas Number	Recovery	Units	Limits	Analysis Date	Flag	
1,2-Dichloroethane-D4		17060-07-0	108	%	53-159	01.13.14 13.45		
4-Bromofluorobenzene		460-00-4	102	%	30-186	01.13.14 13.45		

100

70-130

01.13.14 13.45

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb (Dekalb Ave)

Sample Id: MW-202 Matrix: Ground Water Date Received:01.10.14 17.20

Lab Sample Id: 477225-006 Date Collected: 01.10.14 10.49

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: LIH % Moisture:

Analyst: MLA Date Prep: 01.13.14 09.12

I.I.1-Trichlorocthane	Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1.1.2-Trichiforo-1.2.4-rifihoro-chane 76-13-1 BRL 5.0 ugL 0.113.14 14.10 U 1 1.1.2-Trichiforo-chane 79-00-5 BRL 5.0 ugL 0.113.14 14.10 U 1 1.1-Dichiforo-chane 75-34-3 BRL 5.0 ugL 0.113.14 14.10 U 1 1.1-Dichiforo-chane 75-35-4 BRL 5.0 ugL 0.113.14 14.10 U 1 1.2.3-Trichiforo-benzene 120-82-1 BRL 5.0 ugL 0.113.14 14.10 U 1 1.2.4-Trichiforo-benzene 120-82-1 BRL 5.0 ugL 0.113.14 14.10 U 1 1.2.4-Trichiforo-benzene 120-82-1 BRL 5.0 ugL 0.113.14 14.10 U 1 1.2.4-Trichiforo-benzene 120-82-1 BRL 5.0 ugL 0.113.14 14.10 U 1 1.2.4-Trichiforo-benzene 120-84 BRL 5.0 ugL 0.113.14 14.10 U 1 1.2.4-Trichiforo-benzene 106-94 BRL 5.0 ugL 0.113.14 14.10 U 1 1.2.4-Trichiforo-benzene 107-96-2 BRL 5.0 ugL 0.113.14 14.10 U 1 1.2.4-Trichiforo-benzene 107-96-2 BRL 5.0 ugL 0.113.14 14.10 U 1 1.2.4-Trichiforo-benzene 107-96-2 BRL 5.0 ugL 0.113.14 14.10 U 1 1.2.4-Trichiforo-benzene 107-96-2 BRL 5.0 ugL 0.113.14 14.10 U 1 1.2.4-Trichiforo-benzene 106-46-7 BRL 5.0 ugL 0.113.14 14.10 U 1 1.2.4-Trichiforo-benzene 106-46-7 BRL 5.0 ugL 0.113.14 14.10 U 1 1.2.4-Trichiforo-benzene 106-46-7 BRL 5.0 ugL 0.113.14 14.10 U 1 1.2.4-Trichiforo-benzene 106-46-7 BRL 5.0 ugL 0.113.14 14.10 U 1 1.2.4-Trichiforo-benzene 108-9-7 BRL 5.0 ugL 0.113.14 14.10 U 1 1.2.4-Trichiforo-benzene 108-9-7 BRL 5.0 ugL 0.113.14 14.10 U 1 1.2.4-Trichiforo-benzene 108-9-7 BRL 5.0 ugL 0.113.14 14.10 U 1 1.2.4-Trichiforo-benzene 108-9-7 BRL 5.0 ugL 0.113.14 14.10 U 1 1.2.4-Trichiforo-benzene 108-9-7 BRL 5.0 ugL 0.113.14 14.10 U 1 1.2.4-Trichiforo-benzene 108-9-7 BRL 5.0 ugL 0.113.14 14.10 U 1 1.2.4-Trichiforo-benzene 108-9-7 BRL 5.0 ugL 0.113.14 14.10 U 1 1.2.4-Trichiforo-benzene 108-9-	1,1,1-Trichloroethane	71-55-6	BRL	5.0	ug/L	01.13.14 14.10	U	1
1,12-Trichloroethane	1,1,2,2-Tetrachloroethane	79-34-5	BRL	5.0	ug/L	01.13.14 14.10	U	1
1-Dichloroethane	1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	BRL	5.0	ug/L	01.13.14 14.10	U	1
1-Dichloroethene 75-35-4 BRL 5.0 ugL 0.1.3.14 14.10 U 1.1.2.3-Trichlorobenzene 87-61-6 BRL 5.0 ugL 0.1.3.14 14.10 U 1.1.2.4-Trichlorobenzene 120-82-1 BRL 5.0 ugL 0.1.3.14 14.10 U 1.1.2.4-Trichlorobenzene 120-82-1 BRL 5.0 ugL 0.1.3.14 14.10 U 1.1.2-Dichomos-thenopropane (DBCP) 66-12-8 BRL 5.0 ugL 0.1.3.14 14.10 U 1.1.2-Dichlorome-thene (EDB) 166-93-4 BRL 5.0 ugL 0.1.3.14 14.10 U 1.1.2-Dichlorobenzene 107-06-2 BRL 5.0 ugL 0.1.3.14 14.10 U 1.1.2-Dichlorobenzene 107-06-2 BRL 5.0 ugL 0.1.3.14 14.10 U 1.1.2-Dichlorobenzene 107-06-2 BRL 5.0 ugL 0.1.3.14 14.10 U 1.1.2-Dichlorobenzene 58-87-5 BRL 5.0 ugL 0.1.3.14 14.10 U 1.1.2-Dichlorobenzene 106-46-7 BRL 5.0 ugL 0.1.3.14 14.10 U 1.1.2-Dichlorobenzene 106-46-7 BRL 5.0 ugL 0.1.3.14 14.10 U 1.1.2-Dichlorobenzene 106-46-7 BRL 5.0 ugL 0.1.3.14 14.10 U 1.1.2-Dichlorobenzene 59-78-6 BRL 5.0 ugL 0.1.3.14 14.10 U 1.1.2-Dichlorobenzene 59-78-6 BRL 5.0 ugL 0.1.3.14 14.10 U 1.1.2-Dichlorobenzene 108-10-1 BRL 5.0 ugL 0.1.3.14 14.10 U 1.1.2-Dichlorobenzene 108-90-7 BRL 5.0 ugL 0.1.3.14 14.10 U 1.1.2-Dichlorobenzene 108-	1,1,2-Trichloroethane	79-00-5	BRL	5.0	ug/L	01.13.14 14.10	U	1
1.2.3-Trichlorobenzene 120-82-1 BRL 5.0 ugL 0.1.3.14 14.10 U 1.1.2.4-Trichlorobenzene 120-82-1 BRL 5.0 ugL 0.1.3.14 14.10 U 1.1.2.1-Trichlorobenzene 120-82-1 BRL 5.0 ugL 0.1.3.14 14.10 U 1.1.2-Dibromos-achopropane (DBCP) 96-12-8 BRL 5.0 ugL 0.1.3.14 14.10 U 1.1.2-Dibromosthane (EDB) 106-93-4 BRL 5.0 ugL 0.1.3.14 14.10 U 1.1.2-Dibromothane (EDB) 106-93-4 BRL 5.0 ugL 0.1.3.14 14.10 U 1.1.2-Dichlorobenzene 107-06-2 BRL 5.0 ugL 0.1.3.14 14.10 U 1.1.2-Dichloropopane 78-87-5 BRL 5.0 ugL 0.1.3.14 14.10 U 1.1.2-Dichlorobenzene 541-73-1 BRL 5.0 ugL 0.1.3.14 14.10 U 1.1.4-Dichlorobenzene 106-46-7 BRL 5.0 ugL 0.1.3.14 14.10 U 1.1.4-Dichlorobenzene 106-46-7 BRL 5.0 ugL 0.1.3.14 14.10 U 1.1.4-Dichlorobenzene 591-78-6 BRL 5.0 ugL 0.1.3.14 14.10 U 1.1.4-Dichlorobenzene 74-97-5 BRL 5.0 ugL 0.1.3.14 14.10 U 1.1.4-Dichlorobenzene 74-83-9 BRL 5.0 ugL 0.1.3.14 14.10 U 1.1.4-Dichlorobenzene 74-83-3 BRL 5.0 ugL 0.1.3.14 14.10 U 1.1.4-Dichlorobenzene 75-03-3 BRL 5.0 ugL 0.1.3.14 14.10 U 1.1.4-Dichlorobenzene 75-03-3 B	1,1-Dichloroethane	75-34-3	BRL	5.0	ug/L	01.13.14 14.10	U	1
1.2.4-Trichlorobenzene 120-82-1 BRL 5.0 ug/L 0.1.3.14 14.10 U 1.2.4 14	1,1-Dichloroethene	75-35-4	BRL	5.0	ug/L	01.13.14 14.10	U	1
1.2-Dibromo-3-chloropropane (DBCP) 96-12-8 BRL 5.0 ug/L 0.1.13.14 14.10 U 1 1.2-Dibromo-bhame (EDB) 106-93-4 BRL 5.0 ug/L 0.1.13.14 14.10 U 1 1.2-Dibromo-bhame (EDB) 95-50-1 BRL 5.0 ug/L 0.1.13.14 14.10 U 1 1.2-Dibromo-bhame 107-06-2 BRL 5.0 ug/L 0.1.13.14 14.10 U 1 1.2-Dibromo-bhame 107-06-2 BRL 5.0 ug/L 0.1.13.14 14.10 U 1 1.2-Dibromo-bhame 54-73-1 BRL 5.0 ug/L 0.1.13.14 14.10 U 1 1.3-Dibribrobenzene 541-73-1 BRL 5.0 ug/L 0.1.13.14 14.10 U 1 1.4-Dibribrobenzene 106-46-7 BRL 5.0 ug/L 0.1.13.14 14.10 U 1 1.4-Dibribrobenzene 591-78-6 BRL 50 ug/L 0.1.13.14 14.10 U 1 1.4-Methyl-2-pentanone (MBK) 108-10-1 BRL 50 ug/L 0.1.13.14 14.10 U 1 1.4-Methyl-2-pentanone (MBK) 108-10-1 BRL 50 ug/L 0.1.13.14 14.10 U 1 1.4-Methyl-2-pentanone (MBK) 108-10-1 BRL 50 ug/L 0.1.13.14 14.10 U 1 1.4-Methyl-2-pentanone (MBK) 108-10-1 BRL 50 ug/L 0.1.13.14 14.10 U 1 1.4-Methyl-2-pentanone (MBK) 108-10-1 BRL 50 ug/L 0.1.13.14 14.10 U 1 1.4-Methyl-2-pentanone (MBK) 108-10-1 BRL 5.0 ug/L 0.1.13.14 14.10 U 1 1.4-Methyl-2-pentanone (MBK) 108-10-1 BRL 5.0 ug/L 0.1.13.14 14.10 U 1 1.4-Methyl-2-pentanone (MBK) 108-10-1 BRL 5.0 ug/L 0.1.13.14 14.10 U 1 1.4-Methyl-2-pentanone (MBK) 108-10-1 BRL 5.0 ug/L 0.1.13.14 14.10 U 1 1.4-Methyl-2-pentanone (MBK) 108-10-1 BRL 5.0 ug/L 0.1.13.14 14.10 U 1 1.4-Methyl-2-pentanone (MBK) 108-10-1 BRL 5.0 ug/L 0.1.13.14 14.10 U 1 1.4-Methyl-2-pentanone (MBK) 108-10-1 BRL 5.0 ug/L 0.1.13.14 14.10 U 1 1.4-Methyl-2-pentanone (MBK) 108-10-1 BRL 5.0 ug/L 0.1.13.14 14.10 U 1 1.4-Methyl-2-pentanone (MBK) 108-10-1 BRL 5.0 ug/L 0.1.13.14 14.10 U 1 1.4-Methyl-2-pentanone (MBK) 108-10-1 BRL 5.0 ug/L 0.1.13.14 14.10 U 1 1.4-Methyl-2-pentanone (MBK)	1,2,3-Trichlorobenzene	87-61-6	BRL	5.0	ug/L	01.13.14 14.10	U	1
1,2-Dibromoethane (EDB) 106-93-4 BRL 5.0 ug/L 01.13.14 14.10 U 1 1,2-Dibromoethane 95-50-1 BRL 5.0 ug/L 01.13.14 14.10 U 1 1,2-Dibromoethane 107-06-2 BRL 5.0 ug/L 01.13.14 14.10 U 1 1,2-Dibromoethane 107-06-2 BRL 5.0 ug/L 01.13.14 14.10 U 1 1,2-Dibromoethane 541-73-1 BRL 5.0 ug/L 01.13.14 14.10 U 1 1,3-Dibromoethane 106-46-7 BRL 5.0 ug/L 01.13.14 14.10 U 1 1,3-Dibromoethane 106-46-7 BRL 5.0 ug/L 01.13.14 14.10 U 1 1,3-Dibromoethane 591-78-6 BRL 5.0 ug/L 01.13.14 14.10 U 1 1,3-Dibromoethane 591-78-6 BRL 5.0 ug/L 01.13.14 14.10 U 1 1,3-Dibromoethane 67-64-1 BRL 50 ug/L 01.13.14 14.10 U 1 1,3-Dibromoethane 74-97-5 BRL 5.0 ug/L 01.13.14 14.10 U 1 1,3-Dibromoethane 74-97-5 BRL 5.0 ug/L 01.13.14 14.10 U 1 1,3-Dibromoethane 74-97-5 BRL 5.0 ug/L 01.13.14 14.10 U 1 1,3-Dibromoethane 75-27-4 BRL 5.0 ug/L 01.13.14 14.10 U 1 1,3-Dibromoethane 75-27-4 BRL 5.0 ug/L 01.13.14 14.10 U 1 1,3-Dibromoethane 75-27-4 BRL 5.0 ug/L 01.13.14 14.10 U 1 1,3-Dibromoethane 75-15-0 BRL 5.0 ug/L 01.13.14 14.10 U 1 1,3-Dibromoethane 75-15-0 BRL 5.0 ug/L 01.13.14 14.10 U 1 1,3-Dibromoethane 75-15-0 BRL 5.0 ug/L 01.13.14 14.10 U 1 1,3-Dibromoethane 75-03-3 BRL 5.0 ug/L 01.13.14 14.10 U 1 1,3-Dibromoethane 75-03-3 BRL 5.0 ug/L 01.13.14 14.10 U 1 1,3-Dibromoethane 75-03-3 BRL 5.0 ug/L 01.13.14 14.10 U 1 1,3-Dibromoethane 75-03-3 BRL 5.0 ug/L 01.13.14 14.10 U 1 1,3-Dibromoethane 75-03-3 BRL 5.0 ug/L 01.13.14 14.10 U 1 1,3-Dibromoethane 75-03-3 BRL 5.0 ug/L 01.13.14 14.10 U 1 1,3-Dibromoethane 75-03-3 BRL 5.0 ug/L 01.13.14 14.10 U 1 1,3-Dibromoethane 75-03-3 BRL 5.0 ug/L 01.13.14 14.10 U 1 1,3-Dibromoethane 75-03-3 BRL	1,2,4-Trichlorobenzene	120-82-1	BRL	5.0	ug/L	01.13.14 14.10	U	1
1,2-Dichlorobenzene 95-50-1 BRL 5.0 ug/L 0.11.3.14 14.10 U 1 1,2-Dichlorochtane 107-06-2 BRL 5.0 ug/L 0.11.3.14 14.10 U 1 1,2-Dichlorochtane 78-87-5 BRL 5.0 ug/L 0.11.3.14 14.10 U 1 1,3-Dichlorochtane 514-73-1 BRL 5.0 ug/L 0.11.3.14 14.10 U 1 1,3-Dichlorochenzene 106-46-7 BRL 5.0 ug/L 0.11.3.14 14.10 U 1 1,3-Dichlorochenzene 106-46-7 BRL 5.0 ug/L 0.11.3.14 14.10 U 1 1,3-Dichlorochenzene 106-46-7 BRL 5.0 ug/L 0.11.3.14 14.10 U 1 1,3-Dichlorochenzene 591-78-6 BRL 50 ug/L 0.11.3.14 14.10 U 1 1,3-Dichlorochenzene 67-64-1 BRL 50 ug/L 0.11.3.14 14.10 U 1 1,3-Dichlorochenzene 67-64-1 BRL 50 ug/L 0.11.3.14 14.10 U 1 1,3-Dichlorochenzene 71-43-2 BRL 5.0 ug/L 0.11.3.14 14.10 U 1 1,3-Dichlorochenzene 74-87-5 BRL 5.0 ug/L 0.11.3.14 14.10 U 1 1,3-Dichlorochenzene 74-87-5 BRL 5.0 ug/L 0.11.3.14 14.10 U 1 1,3-Dichlorochenzene 74-83-9 BRL 5.0 ug/L 0.11.3.14 14.10 U 1 1,3-Dichlorochenzene 75-27-4 BRL 5.0 ug/L 0.11.3.14 14.10 U 1 1,3-Dichlorochenzene 75-15-0 BRL 5.0 ug/L 0.11.3.14 14.10 U 1 1,3-Dichlorochenzene 75-15-0 BRL 5.0 ug/L 0.11.3.14 14.10 U 1 1,3-Dichlorochenzene 108-90-7 BRL 5.0 ug/L 0.11.3.14 14.10 U 1 1,3-Dichlorochenzene 75-00-3 BRL 5.0 ug/L 0.11.3.14 14.10 U 1 1,3-Dichlorochenzene 74-87-3 BRL 5.0 ug/L 0.11.3.14 14.10 U 1 1,3-Dichlorochenzene 74-87-3 BRL 5.0 ug/L 0.11.3.14 14.10 U 1 1,3-Dichlorochenzene 74-87-3 BRL 5.0 ug/L 0.11.3.14 14.10 U 1 1,3-Dichlorochenzene 74-87-3 BRL 5.0 ug/L 0.11.3.14 14.10 U 1 1,3-Dichlorochenzene 74-87-3 BRL 5.0 ug/L 0.11.3.14 14.10 U 1 1,3-Dichlorochenzene 100-10-15 BRL 5.0 ug/L 0.11.3.14 14.10 U 1 1,3-Dichlorochenzene 100-10-15 BRL 5.0 ug/L 0.11.3.14 14.10 U 1 1,3-Dichloroche	1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	BRL	5.0	ug/L	01.13.14 14.10	U	1
1,2-Dichloroethane 107-06-2 BRL 5.0 ug/L 0.1.3.14 14.10 U 1 1,2-Dichloropropane 78-87-5 BRL 5.0 ug/L 0.1.3.14 14.10 U 1 1,3-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 0.113.14 14.10 U 1 2-Butanone (MEK) 78-93-3 BRL 50 ug/L 0.113.14 14.10 U 1 2-Butanone (MEK) 78-93-3 BRL 50 ug/L 0.113.14 14.10 U 1 2-Hexanone 591-78-6 BRL 50 ug/L 0.113.14 14.10 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 0.113.14 14.10 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 0.113.14 14.10 U 1 4-Methyl-2-pentanone (MIBK) 71-43-2 BRL 50 ug/L 0.113.14 14.10 U 1 Bromodentane 71-43-2 BRL 5.0 </td <td>1,2-Dibromoethane (EDB)</td> <td>106-93-4</td> <td>BRL</td> <td>5.0</td> <td>ug/L</td> <td>01.13.14 14.10</td> <td>U</td> <td>1</td>	1,2-Dibromoethane (EDB)	106-93-4	BRL	5.0	ug/L	01.13.14 14.10	U	1
1.2-Dichloropropane 78-87-5 BRL 5.0 ug/L 0.1.3.14 14.10 U 1 1.3-Dichlorobenzene 541-73-1 BRL 5.0 ug/L 0.1.3.14 14.10 U 1 1.4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 0.1.3.14 14.10 U 1 1.4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 0.1.3.14 14.10 U 1 1.4-Dichlorobenzene 591-78-6 BRL 50 ug/L 0.1.3.14 14.10 U 1 1.4-Dichlorobenzene 591-78-6 BRL 50 ug/L 0.1.3.14 14.10 U 1 1.4-Dichlorobenzene 67-64-1 BRL 50 ug/L 0.1.3.14 14.10 U 1 1.4-Dichlorobenzene 71-43-2 BRL 50 ug/L 0.1.3.14 14.10 U 1 1.4-Dichlorobenzene 71-43-2 BRL 5.0 ug/L 0.1.3.14 14.10 U 1 1.4-Dichlorobenzene 75-27-4 BRL 5.0 ug/L 0.1.3.14 14.10 U 1 1.4-Dichlorobenzene 75-27-4 BRL 5.0 ug/L 0.1.3.14 14.10 U 1 1.4-Dichlorobenzene 75-25-2 BRL 5.0 ug/L 0.1.3.14 14.10 U 1 1.4-Dichlorobenzene 75-25-2 BRL 5.0 ug/L 0.1.3.14 14.10 U 1 1.4-Dichlorobenzene 75-25-2 BRL 5.0 ug/L 0.1.3.14 14.10 U 1 1.4-Dichlorobenzene 108-90-7 BRL 5.0 ug/L 0.1.3.14 14.10 U 1 1.4-Dichlorobenzene 108-90-7 BRL 5.0 ug/L 0.1.3.14 14.10 U 1 1.4-Dichlorobenzene 75-00-3 BRL 5.0 ug/L 0.1.3.14 14.10 U 1 1.4-Dichlorobenzene 75-00-3 BRL 5.0 ug/L 0.1.3.14 14.10 U 1 1.4-Dichlorobenzene 108-90-7 BRL 5.0 ug/L 0.1.3.14 14.10 U 1 1.4-Dichlorobenzene 108-90-7 BRL 5.0 ug/L 0.1.3.14 14.10 U 1 1.4-Dichlorobenzene 108-90-7 BRL 5.0 ug/L 0.1.3.14 14.10 U 1 1.4-Dichlorobenzene 10061-01-5 BRL 5.0 ug/L 0.1.3.14 14.10 U 1 1.4-Dichlorobenzene 10061-01-5 BRL 5.0 ug/L 0.1.3.14 14.10 U 1 1.4-Dichlorobenzene 10061-01-5 BRL 5.0 ug/L 0.1.3.14 14.10 U 1 1.4-Dichlorobenzene 10061-01-5 BRL 5.0 ug/L 0.1.3.14 14.10 U 1 1.4-Dichlorobenzene 10061-01-5 BRL 5.0 ug/L 0.1.3.14 14.10 U 1 1.4-Dichlorobenzene 10061-01-5 BRL 5.0	1,2-Dichlorobenzene	95-50-1	BRL	5.0	ug/L	01.13.14 14.10	U	1
1,3-Dichlorobenzene	1,2-Dichloroethane	107-06-2	BRL	5.0	ug/L	01.13.14 14.10	U	1
1.4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 01.13.14 14.10 U 1 2-Butanone (MEK) 78-93-3 BRL 50 ug/L 01.13.14 14.10 U 1 2-Butanone (MEK) 591-78-6 BRL 50 ug/L 01.13.14 14.10 U 1 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 01.13.14 14.10 U 1 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 01.13.14 14.10 U 1 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 01.13.14 14.10 U 1 1 1 1 1 1 1 1 1	1,2-Dichloropropane	78-87-5	BRL	5.0	ug/L	01.13.14 14.10	U	1
2-Butanone (MEK) 78-93-3 BRL 50 ug/L 01.13.14 14.10 U 1 2-Hexanone 591-78-6 BRL 50 ug/L 01.13.14 14.10 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 01.13.14 14.10 U 1 Acetone 67-64-1 BRL 50 ug/L 01.13.14 14.10 U 1 Benzene 71-43-2 BRL 5.0 ug/L 01.13.14 14.10 U 1 Bromochloromethane 74-97-5 BRL 5.0 ug/L 01.13.14 14.10 U 1 Bromochloromethane 75-27-4 BRL 5.0 ug/L 01.13.14 14.10 U 1 Bromoform 75-25-2 BRL 5.0 ug/L 01.13.14 14.10 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 01.13.14 14.10 U 1 Chlorothetane 75-03-3 BRL 5.0 ug/L 01.13.14 14.10 U 1 Chlorothane 75-00-3 BRL 5.0 <td>1,3-Dichlorobenzene</td> <td>541-73-1</td> <td>BRL</td> <td>5.0</td> <td>ug/L</td> <td>01.13.14 14.10</td> <td>U</td> <td>1</td>	1,3-Dichlorobenzene	541-73-1	BRL	5.0	ug/L	01.13.14 14.10	U	1
2-Hexanone 591-78-6 BRL 50 ug/L 01.13.14 14.10 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 01.13.14 14.10 U 1 Acetone 67-64-1 BRL 50 ug/L 01.13.14 14.10 U 1 Benzene 71-43-2 BRL 5.0 ug/L 01.13.14 14.10 U 1 Bromochloromethane 74-97-5 BRL 5.0 ug/L 01.13.14 14.10 U 1 Bromodichloromethane 75-27-4 BRL 5.0 ug/L 01.13.14 14.10 U 1 Bromofform 75-25-2 BRL 5.0 ug/L 01.13.14 14.10 U 1 Bromofitaline 74-83-9 BRL 5.0 ug/L 01.13.14 14.10 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 01.13.14 14.10 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 01.13.14 14	1,4-Dichlorobenzene	106-46-7	BRL	5.0	ug/L	01.13.14 14.10	U	1
4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 01.13.14 14.10 U 1 Acetone 67-64-1 BRL 50 ug/L 01.13.14 14.10 U 1 Benzene 71-43-2 BRL 5.0 ug/L 01.13.14 14.10 U 1 Bromochloromethane 74-97-5 BRL 5.0 ug/L 01.13.14 14.10 U 1 Bromodichloromethane 75-27-4 BRL 5.0 ug/L 01.13.14 14.10 U 1 Bromoform 75-25-2 BRL 5.0 ug/L 01.13.14 14.10 U 1 Bromoform 75-25-2 BRL 5.0 ug/L 01.13.14 14.10 U 1 Bromoform 75-25-2 BRL 5.0 ug/L 01.13.14 14.10 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 01.13.14 14.10 U 1 Chloromethane 108-90-7 BRL 5.0 ug/L 01.13.14 14.10 <td>2-Butanone (MEK)</td> <td>78-93-3</td> <td>BRL</td> <td>50</td> <td>ug/L</td> <td>01.13.14 14.10</td> <td>U</td> <td>1</td>	2-Butanone (MEK)	78-93-3	BRL	50	ug/L	01.13.14 14.10	U	1
Acetone 67-64-1 BRL 50 ug/L 01.13.14 14.10 U 1 Benzene 71-43-2 BRL 5.0 ug/L 01.13.14 14.10 U 1 Bromochloromethane 74-97-5 BRL 5.0 ug/L 01.13.14 14.10 U 1 Bromodichloromethane 75-27-4 BRL 5.0 ug/L 01.13.14 14.10 U 1 Bromoform 75-27-4 BRL 5.0 ug/L 01.13.14 14.10 U 1 Bromoform 75-27-2 BRL 5.0 ug/L 01.13.14 14.10 U 1 Bromomethane 74-83-9 BRL 5.0 ug/L 01.13.14 14.10 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 01.13.14 14.10 U 1 Carbon disulfide 56-23-5 BRL 5.0 ug/L 01.13.14 14.10 U 1 Chlorotene 108-90-7 BRL 5.0 ug/L 01.13.14 14.10	2-Hexanone	591-78-6	BRL	50	ug/L	01.13.14 14.10	U	1
Benzene 71-43-2 BRL 5.0 ug/L 01.13.14 14.10 U 1 Bromochloromethane 74-97-5 BRL 5.0 ug/L 01.13.14 14.10 U 1 Bromodichloromethane 75-27-4 BRL 5.0 ug/L 01.13.14 14.10 U 1 Bromoform 75-25-2 BRL 5.0 ug/L 01.13.14 14.10 U 1 Bromomethane 74-83-9 BRL 5.0 ug/L 01.13.14 14.10 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 01.13.14 14.10 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 01.13.14 14.10 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 01.13.14 14.10 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 01.13.14 14.10 U 1 Chloroformethane 74-87-3 BRL 5.0 ug/L 01.13.14 1	4-Methyl-2-pentanone (MIBK)	108-10-1	BRL	50	ug/L	01.13.14 14.10	U	1
Bromochloromethane 74-97-5 BRL 5.0 ug/L 01.13.14 14.10 U 1 Bromodichloromethane 75-27-4 BRL 5.0 ug/L 01.13.14 14.10 U 1 Bromoform 75-25-2 BRL 5.0 ug/L 01.13.14 14.10 U 1 Bromomethane 74-83-9 BRL 5.0 ug/L 01.13.14 14.10 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 01.13.14 14.10 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 01.13.14 14.10 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 01.13.14 14.10 U 1 Chloroform 67-66-3 BRL 4.0 ug/L 01.13.14 14.10 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 01.13.14 14.10 U 1 cis-1,2-Dichloroptehene 1066-01-5 BRL 5.0 ug/L	Acetone	67-64-1	BRL	50	ug/L	01.13.14 14.10	U	1
Bromodichloromethane 75-27-4 BRL 5.0 ug/L 01.13.14 14.10 U 1 Bromoform 75-25-2 BRL 5.0 ug/L 01.13.14 14.10 U 1 Bromomethane 74-83-9 BRL 5.0 ug/L 01.13.14 14.10 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 01.13.14 14.10 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 01.13.14 14.10 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 01.13.14 14.10 U 1 Chloroform 75-00-3 BRL 4.0 ug/L 01.13.14 14.10 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 01.13.14 14.10 U 1 Cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 01.13.14 14.10 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 01.13.	Benzene	71-43-2	BRL	5.0	ug/L	01.13.14 14.10	U	1
Bromoform 75-25-2 BRL 5.0 ug/L 01.13.14 14.10 U 1 Bromomethane 74-83-9 BRL 5.0 ug/L 01.13.14 14.10 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 01.13.14 14.10 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 01.13.14 14.10 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 01.13.14 14.10 U 1 Chloroethane 75-00-3 BRL 4.0 ug/L 01.13.14 14.10 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 01.13.14 14.10 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 01.13.14 14.10 U 1 cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 01.13.14 14.10 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 01.13.14 14	Bromochloromethane	74-97-5	BRL	5.0	ug/L	01.13.14 14.10	U	1
Bromomethane 74-83-9 BRL 5.0 ug/L 01.13.14 14.10 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 01.13.14 14.10 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 01.13.14 14.10 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 01.13.14 14.10 U 1 Chloroethane 75-00-3 BRL 4.0 ug/L 01.13.14 14.10 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 01.13.14 14.10 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 01.13.14 14.10 U 1 Cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 01.13.14 14.10 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 01.13.14 14.10 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L <td< td=""><td>Bromodichloromethane</td><td>75-27-4</td><td>BRL</td><td>5.0</td><td>ug/L</td><td>01.13.14 14.10</td><td>U</td><td>1</td></td<>	Bromodichloromethane	75-27-4	BRL	5.0	ug/L	01.13.14 14.10	U	1
Carbon disulfide 75-15-0 BRL 5.0 ug/L 01.13.14 14.10 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 01.13.14 14.10 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 01.13.14 14.10 U 1 Chloroethane 75-00-3 BRL 4.0 ug/L 01.13.14 14.10 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 01.13.14 14.10 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 01.13.14 14.10 U 1 cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 01.13.14 14.10 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 01.13.14 14.10 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 01.13.14 14.10 U 1 Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L<	Bromoform	75-25-2	BRL	5.0	ug/L	01.13.14 14.10	U	1
Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 01.13.14 14.10 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 01.13.14 14.10 U 1 Chloroethane 75-00-3 BRL 4.0 ug/L 01.13.14 14.10 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 01.13.14 14.10 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 01.13.14 14.10 U 1 cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 01.13.14 14.10 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 01.13.14 14.10 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 01.13.14 14.10 U 1 Dichlorodifluoromethane 124-48-1 BRL 5.0 ug/L 01.13.14 14.10 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L <td>Bromomethane</td> <td>74-83-9</td> <td>BRL</td> <td>5.0</td> <td>ug/L</td> <td>01.13.14 14.10</td> <td>U</td> <td>1</td>	Bromomethane	74-83-9	BRL	5.0	ug/L	01.13.14 14.10	U	1
Chlorobenzene 108-90-7 BRL 5.0 ug/L 01.13.14 14.10 U 1 Chloroethane 75-00-3 BRL 4.0 ug/L 01.13.14 14.10 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 01.13.14 14.10 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 01.13.14 14.10 U 1 cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 01.13.14 14.10 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 01.13.14 14.10 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 01.13.14 14.10 U 1 Dichlorodifluoromethane 124-48-1 BRL 5.0 ug/L 01.13.14 14.10 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 01.13.14 14.10 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L	Carbon disulfide	75-15-0	BRL	5.0	ug/L	01.13.14 14.10	U	1
Chloroethane 75-00-3 BRL 4.0 ug/L 01.13.14 14.10 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 01.13.14 14.10 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 01.13.14 14.10 U 1 cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 01.13.14 14.10 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 01.13.14 14.10 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 01.13.14 14.10 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 01.13.14 14.10 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 01.13.14 14.10 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 01.13.14 14.10 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L	Carbon tetrachloride	56-23-5	BRL	5.0	ug/L	01.13.14 14.10	U	1
Chloroform 67-66-3 BRL 5.0 ug/L 01.13.14 14.10 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 01.13.14 14.10 U 1 cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 01.13.14 14.10 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 01.13.14 14.10 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 01.13.14 14.10 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 01.13.14 14.10 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 01.13.14 14.10 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 01.13.14 14.10 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 01.13.14 14.10 U 1	Chlorobenzene	108-90-7	BRL	5.0	ug/L	01.13.14 14.10	U	1
Chloromethane 74-87-3 BRL 5.0 ug/L 01.13.14 14.10 U 1 cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 01.13.14 14.10 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 01.13.14 14.10 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 01.13.14 14.10 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 01.13.14 14.10 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 01.13.14 14.10 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 01.13.14 14.10 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 01.13.14 14.10 U 1	Chloroethane	75-00-3	BRL	4.0	ug/L	01.13.14 14.10	U	1
cis-1,2-Dichloroethene 156-59-2 BRL 5.0 ug/L 01.13.14 14.10 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 01.13.14 14.10 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 01.13.14 14.10 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 01.13.14 14.10 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 01.13.14 14.10 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 01.13.14 14.10 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 01.13.14 14.10 U 1	Chloroform	67-66-3	BRL	5.0	ug/L	01.13.14 14.10	U	1
cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 01.13.14 14.10 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 01.13.14 14.10 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 01.13.14 14.10 U 1 Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L 01.13.14 14.10 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 01.13.14 14.10 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 01.13.14 14.10 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 01.13.14 14.10 U 1	Chloromethane	74-87-3	BRL	5.0	ug/L	01.13.14 14.10	U	1
Cyclohexane 110-82-7 BRL 5.0 ug/L 01.13.14 14.10 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 01.13.14 14.10 U 1 Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L 01.13.14 14.10 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 01.13.14 14.10 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 01.13.14 14.10 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 01.13.14 14.10 U 1	cis-1,2-Dichloroethene	156-59-2	BRL	5.0	ug/L	01.13.14 14.10	U	1
Dibromochloromethane 124-48-1 BRL 5.0 ug/L 01.13.14 14.10 U 1 Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L 01.13.14 14.10 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 01.13.14 14.10 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 01.13.14 14.10 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 01.13.14 14.10 U 1	cis-1,3-Dichloropropene	10061-01-5	BRL	5.0	ug/L	01.13.14 14.10	U	1
Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L 01.13.14 14.10 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 01.13.14 14.10 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 01.13.14 14.10 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 01.13.14 14.10 U 1	Cyclohexane	110-82-7	BRL	5.0	ug/L	01.13.14 14.10	U	1
Ethylbenzene 100-41-4 BRL 5.0 ug/L 01.13.14 14.10 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 01.13.14 14.10 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 01.13.14 14.10 U 1	Dibromochloromethane	124-48-1	BRL	5.0	ug/L	01.13.14 14.10	U	1
Isopropylbenzene 98-82-8 BRL 5.0 ug/L 01.13.14 14.10 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 01.13.14 14.10 U 1	Dichlorodifluoromethane	75-71-8	BRL	5.0	ug/L	01.13.14 14.10	U	1
m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 01.13.14 14.10 U 1	Ethylbenzene	100-41-4	BRL	5.0	ug/L	01.13.14 14.10	U	1
	Isopropylbenzene	98-82-8	BRL	5.0	ug/L	01.13.14 14.10	U	1
Methyl acetate 79-20-9 BRL 5.0 ug/L 01.13.14 14.10 U 1	m,p-Xylenes	179601-23-1	BRL	5.0	ug/L	01.13.14 14.10	U	1
	Methyl acetate	79-20-9	BRL	5.0	ug/L	01.13.14 14.10	U	1

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb (Dekalb Ave)

Sample Id: MW-202 Matrix: Ground Water Date Received:01.10.14 17.20

Lab Sample Id: 477225-006 Date Collected: 01.10.14 10.49

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: LIH % Moisture:

Analyst: MLA Date Prep: 01.13.14 09.12

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Methyl tert-butyl ether	1634-04-4	BRL	5.0		ug/L	01.13.14 14.10	U	1
Methylcyclohexane	108-87-2	BRL	5.0		ug/L	01.13.14 14.10	U	1
Methylene chloride	75-09-2	BRL	5.0		ug/L	01.13.14 14.10	U	1
Naphthalene	91-20-3	BRL	5.0		ug/L	01.13.14 14.10	U	1
o-Xylene	95-47-6	BRL	5.0		ug/L	01.13.14 14.10	U	1
Styrene	100-42-5	BRL	5.0		ug/L	01.13.14 14.10	U	1
Tetrachloroethene	127-18-4	BRL	5.0		ug/L	01.13.14 14.10	U	1
Toluene	108-88-3	BRL	5.0		ug/L	01.13.14 14.10	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	5.0		ug/L	01.13.14 14.10	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	5.0		ug/L	01.13.14 14.10	U	1
Trichloroethene	79-01-6	BRL	5.0		ug/L	01.13.14 14.10	U	1
Trichlorofluoromethane	75-69-4	BRL	5.0		ug/L	01.13.14 14.10	U	1
Vinyl chloride	75-01-4	BRL	2.0		ug/L	01.13.14 14.10	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,2-Dichloroethane-D4		17060-07-0	112	%	53-159	01.13.14 14.10		
4-Bromofluorobenzene		460-00-4	100	%	30-186	01.13.14 14.10		
Toluene-D8		2037-26-5	100	%	70-130	01.13.14 14.10		

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb (Dekalb Ave)

Sample Id: MW-110 Matrix: Ground Water Date Received:01.10.14 17.20

Lab Sample Id: 477225-007 Date Collected: 01.10.14 11.10

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

Analyst: MLA Date Prep: 01.13.14 07.01

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1-Trichloroethane	71-55-6	BRL	5.0	ug/L	01.13.14 16.58	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	5.0	ug/L	01.13.14 16.58	U	1
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	BRL	5.0	ug/L	01.13.14 16.58	U	1
1,1,2-Trichloroethane	79-00-5	BRL	5.0	ug/L	01.13.14 16.58	U	1
1,1-Dichloroethane	75-34-3	BRL	5.0	ug/L	01.13.14 16.58	U	1
1,1-Dichloroethene	75-35-4	BRL	5.0	ug/L	01.13.14 16.58	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	5.0	ug/L	01.13.14 16.58	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	5.0	ug/L	01.13.14 16.58	U	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	BRL	5.0	ug/L	01.13.14 16.58	U	1
1,2-Dibromoethane (EDB)	106-93-4	BRL	5.0	ug/L	01.13.14 16.58	U	1
1,2-Dichlorobenzene	95-50-1	BRL	5.0	ug/L	01.13.14 16.58	U	1
1,2-Dichloroethane	107-06-2	BRL	5.0	ug/L	01.13.14 16.58	U	1
1,2-Dichloropropane	78-87-5	BRL	5.0	ug/L	01.13.14 16.58	U	1
1,3-Dichlorobenzene	541-73-1	BRL	5.0	ug/L	01.13.14 16.58	U	1
1,4-Dichlorobenzene	106-46-7	BRL	5.0	ug/L	01.13.14 16.58	U	1
2-Butanone (MEK)	78-93-3	BRL	50	ug/L	01.13.14 16.58	U	1
2-Hexanone	591-78-6	BRL	50	ug/L	01.13.14 16.58	U	1
4-Methyl-2-pentanone (MIBK)	108-10-1	BRL	50	ug/L	01.13.14 16.58	U	1
Acetone	67-64-1	BRL	50	ug/L	01.13.14 16.58	U	1
Benzene	71-43-2	BRL	5.0	ug/L	01.13.14 16.58	U	1
Bromochloromethane	74-97-5	BRL	5.0	ug/L	01.13.14 16.58	U	1
Bromodichloromethane	75-27-4	BRL	5.0	ug/L	01.13.14 16.58	U	1
Bromoform	75-25-2	BRL	5.0	ug/L	01.13.14 16.58	U	1
Bromomethane	74-83-9	BRL	5.0	ug/L	01.13.14 16.58	U	1
Carbon disulfide	75-15-0	BRL	5.0	ug/L	01.13.14 16.58	U	1
Carbon tetrachloride	56-23-5	BRL	5.0	ug/L	01.13.14 16.58	U	1
Chlorobenzene	108-90-7	BRL	5.0	ug/L	01.13.14 16.58	U	1
Chloroethane	75-00-3	BRL	4.0	ug/L	01.13.14 16.58	U	1
Chloroform	67-66-3	BRL	5.0	ug/L	01.13.14 16.58	U	1
Chloromethane	74-87-3	BRL	5.0	ug/L	01.13.14 16.58	U	1
cis-1,2-Dichloroethene	156-59-2	BRL	5.0	ug/L	01.13.14 16.58	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	5.0	ug/L	01.13.14 16.58	U	1
Cyclohexane	110-82-7	BRL	5.0	ug/L	01.13.14 16.58	U	1
Dibromochloromethane	124-48-1	BRL	5.0	ug/L	01.13.14 16.58	U	1
Dichlorodifluoromethane	75-71-8	BRL	5.0	ug/L	01.13.14 16.58	U	1
Ethylbenzene	100-41-4	BRL	5.0	ug/L	01.13.14 16.58	U	1
Isopropylbenzene	98-82-8	BRL	5.0	ug/L	01.13.14 16.58	U	1
m,p-Xylenes	179601-23-1	BRL	5.0	ug/L	01.13.14 16.58	U	1
Methyl acetate	79-20-9	BRL	5.0	ug/L	01.13.14 16.58	U	1

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb (Dekalb Ave)

Sample Id: MW-110 Matrix: Ground Water Date Received:01.10.14 17.20

Lab Sample Id: 477225-007 Date Collected: 01.10.14 11.10

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

Analyst: MLA Date Prep: 01.13.14 07.01

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Methyl tert-butyl ether	1634-04-4	BRL	5.0		ug/L	01.13.14 16.58	U	1
Methylcyclohexane	108-87-2	BRL	5.0		ug/L	01.13.14 16.58	U	1
Methylene chloride	75-09-2	BRL	5.0		ug/L	01.13.14 16.58	U	1
Naphthalene	91-20-3	BRL	5.0		ug/L	01.13.14 16.58	U	1
o-Xylene	95-47-6	BRL	5.0		ug/L	01.13.14 16.58	U	1
Styrene	100-42-5	BRL	5.0		ug/L	01.13.14 16.58	U	1
Tetrachloroethene	127-18-4	BRL	5.0		ug/L	01.13.14 16.58	U	1
Toluene	108-88-3	BRL	5.0		ug/L	01.13.14 16.58	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	5.0		ug/L	01.13.14 16.58	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	5.0		ug/L	01.13.14 16.58	U	1
Trichloroethene	79-01-6	BRL	5.0		ug/L	01.13.14 16.58	U	1
Trichlorofluoromethane	75-69-4	BRL	5.0		ug/L	01.13.14 16.58	U	1
Vinyl chloride	75-01-4	BRL	2.0		ug/L	01.13.14 16.58	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,2-Dichloroethane-D4		17060-07-0	100	%	53-159	01.13.14 16.58		
4-Bromofluorobenzene		460-00-4	102	%	30-186	01.13.14 16.58		
Toluene-D8		2037-26-5	102	%	70-130	01.13.14 16.58		

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb (Dekalb Ave)

Sample Id: MW-111 Matrix: Ground Water Date Received:01.10.14 17.20

Lab Sample Id: 477225-008 Date Collected: 01.10.14 12.25

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

Analyst: MLA Date Prep: 01.13.14 07.01

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1-Trichloroethane	71-55-6	BRL	5.0	ug/L	01.13.14 16.31	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	5.0	ug/L	01.13.14 16.31	U	1
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	BRL	5.0	ug/L	01.13.14 16.31	U	1
1,1,2-Trichloroethane	79-00-5	BRL	5.0	ug/L	01.13.14 16.31	U	1
1,1-Dichloroethane	75-34-3	BRL	5.0	ug/L	01.13.14 16.31	U	1
1,1-Dichloroethene	75-35-4	BRL	5.0	ug/L	01.13.14 16.31	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	5.0	ug/L	01.13.14 16.31	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	5.0	ug/L	01.13.14 16.31	U	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	BRL	5.0	ug/L	01.13.14 16.31	U	1
1,2-Dibromoethane (EDB)	106-93-4	BRL	5.0	ug/L	01.13.14 16.31	U	1
1,2-Dichlorobenzene	95-50-1	BRL	5.0	ug/L	01.13.14 16.31	U	1
1,2-Dichloroethane	107-06-2	BRL	5.0	ug/L	01.13.14 16.31	U	1
1,2-Dichloropropane	78-87-5	BRL	5.0	ug/L	01.13.14 16.31	U	1
1,3-Dichlorobenzene	541-73-1	BRL	5.0	ug/L	01.13.14 16.31	U	1
1,4-Dichlorobenzene	106-46-7	BRL	5.0	ug/L	01.13.14 16.31	U	1
2-Butanone (MEK)	78-93-3	BRL	50	ug/L	01.13.14 16.31	U	1
2-Hexanone	591-78-6	BRL	50	ug/L	01.13.14 16.31	U	1
4-Methyl-2-pentanone (MIBK)	108-10-1	BRL	50	ug/L	01.13.14 16.31	U	1
Acetone	67-64-1	BRL	50	ug/L	01.13.14 16.31	U	1
Benzene	71-43-2	BRL	5.0	ug/L	01.13.14 16.31	U	1
Bromochloromethane	74-97-5	BRL	5.0	ug/L	01.13.14 16.31	U	1
Bromodichloromethane	75-27-4	BRL	5.0	ug/L	01.13.14 16.31	U	1
Bromoform	75-25-2	BRL	5.0	ug/L	01.13.14 16.31	U	1
Bromomethane	74-83-9	BRL	5.0	ug/L	01.13.14 16.31	U	1
Carbon disulfide	75-15-0	BRL	5.0	ug/L	01.13.14 16.31	U	1
Carbon tetrachloride	56-23-5	BRL	5.0	ug/L	01.13.14 16.31	U	1
Chlorobenzene	108-90-7	BRL	5.0	ug/L	01.13.14 16.31	U	1
Chloroethane	75-00-3	BRL	4.0	ug/L	01.13.14 16.31	U	1
Chloroform	67-66-3	BRL	5.0	ug/L	01.13.14 16.31	U	1
Chloromethane	74-87-3	BRL	5.0	ug/L	01.13.14 16.31	U	1
cis-1,2-Dichloroethene	156-59-2	BRL	5.0	ug/L	01.13.14 16.31	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	5.0	ug/L	01.13.14 16.31	U	1
Cyclohexane	110-82-7	BRL	5.0	ug/L	01.13.14 16.31	U	1
Dibromochloromethane	124-48-1	BRL	5.0	ug/L	01.13.14 16.31	U	1
Dichlorodifluoromethane	75-71-8	BRL	5.0	ug/L	01.13.14 16.31	U	1
Ethylbenzene	100-41-4	BRL	5.0	ug/L	01.13.14 16.31	U	1
Isopropylbenzene	98-82-8	BRL	5.0	ug/L	01.13.14 16.31	U	1
m,p-Xylenes	179601-23-1	BRL	5.0	ug/L	01.13.14 16.31	U	1
Methyl acetate	79-20-9	BRL	5.0	ug/L	01.13.14 16.31	U	1

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb (Dekalb Ave)

Sample Id: MW-111 Matrix: Ground Water Date Received:01.10.14 17.20

Lab Sample Id: 477225-008 Date Collected: 01.10.14 12.25

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

Analyst: MLA Date Prep: 01.13.14 07.01

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Methyl tert-butyl ether	1634-04-4	BRL	5.0		ug/L	01.13.14 16.31	U	1
Methylcyclohexane	108-87-2	BRL	5.0		ug/L	01.13.14 16.31	U	1
Methylene chloride	75-09-2	BRL	5.0		ug/L	01.13.14 16.31	U	1
Naphthalene	91-20-3	BRL	5.0		ug/L	01.13.14 16.31	U	1
o-Xylene	95-47-6	BRL	5.0		ug/L	01.13.14 16.31	U	1
Styrene	100-42-5	BRL	5.0		ug/L	01.13.14 16.31	U	1
Tetrachloroethene	127-18-4	BRL	5.0		ug/L	01.13.14 16.31	U	1
Toluene	108-88-3	BRL	5.0		ug/L	01.13.14 16.31	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	5.0		ug/L	01.13.14 16.31	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	5.0		ug/L	01.13.14 16.31	U	1
Trichloroethene	79-01-6	BRL	5.0		ug/L	01.13.14 16.31	U	1
Trichlorofluoromethane	75-69-4	BRL	5.0		ug/L	01.13.14 16.31	U	1
Vinyl chloride	75-01-4	BRL	2.0		ug/L	01.13.14 16.31	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,2-Dichloroethane-D4		17060-07-0	100	%	53-159	01.13.14 16.31		
4-Bromofluorobenzene		460-00-4	100	%	30-186	01.13.14 16.31		
Toluene-D8		2037-26-5	100	%	70-130	01.13.14 16.31		

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb (Dekalb Ave)

Sample Id: MW-409 Matrix: Ground Water Date Received:01.10.14 17.20

Lab Sample Id: 477225-009 Date Collected: 01.10.14 14.28

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

Analyst: MLA Date Prep: 01.13.14 07.01

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1-Trichloroethane	71-55-6	BRL	5.0	ug/L	01.13.14 16.04	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	5.0	ug/L	01.13.14 16.04	U	1
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	BRL	5.0	ug/L	01.13.14 16.04	U	1
1,1,2-Trichloroethane	79-00-5	BRL	5.0	ug/L	01.13.14 16.04	U	1
1,1-Dichloroethane	75-34-3	BRL	5.0	ug/L	01.13.14 16.04	U	1
1,1-Dichloroethene	75-35-4	BRL	5.0	ug/L	01.13.14 16.04	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	5.0	ug/L	01.13.14 16.04	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	5.0	ug/L	01.13.14 16.04	U	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	BRL	5.0	ug/L	01.13.14 16.04	U	1
1,2-Dibromoethane (EDB)	106-93-4	BRL	5.0	ug/L	01.13.14 16.04	U	1
1,2-Dichlorobenzene	95-50-1	BRL	5.0	ug/L	01.13.14 16.04	U	1
1,2-Dichloroethane	107-06-2	BRL	5.0	ug/L	01.13.14 16.04	U	1
1,2-Dichloropropane	78-87-5	BRL	5.0	ug/L	01.13.14 16.04	U	1
1,3-Dichlorobenzene	541-73-1	BRL	5.0	ug/L	01.13.14 16.04	U	1
1,4-Dichlorobenzene	106-46-7	BRL	5.0	ug/L	01.13.14 16.04	U	1
2-Butanone (MEK)	78-93-3	BRL	50	ug/L	01.13.14 16.04	U	1
2-Hexanone	591-78-6	BRL	50	ug/L	01.13.14 16.04	U	1
4-Methyl-2-pentanone (MIBK)	108-10-1	BRL	50	ug/L	01.13.14 16.04	U	1
Acetone	67-64-1	BRL	50	ug/L	01.13.14 16.04	U	1
Benzene	71-43-2	BRL	5.0	ug/L	01.13.14 16.04	U	1
Bromochloromethane	74-97-5	BRL	5.0	ug/L	01.13.14 16.04	U	1
Bromodichloromethane	75-27-4	BRL	5.0	ug/L	01.13.14 16.04	U	1
Bromoform	75-25-2	BRL	5.0	ug/L	01.13.14 16.04	U	1
Bromomethane	74-83-9	BRL	5.0	ug/L	01.13.14 16.04	U	1
Carbon disulfide	75-15-0	BRL	5.0	ug/L	01.13.14 16.04	U	1
Carbon tetrachloride	56-23-5	BRL	5.0	ug/L	01.13.14 16.04	U	1
Chlorobenzene	108-90-7	BRL	5.0	ug/L	01.13.14 16.04	U	1
Chloroethane	75-00-3	BRL	4.0	ug/L	01.13.14 16.04	U	1
Chloroform	67-66-3	BRL	5.0	ug/L	01.13.14 16.04	U	1
Chloromethane	74-87-3	BRL	5.0	ug/L	01.13.14 16.04	U	1
cis-1,2-Dichloroethene	156-59-2	BRL	5.0	ug/L	01.13.14 16.04	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	5.0	ug/L	01.13.14 16.04	U	1
Cyclohexane	110-82-7	BRL	5.0	ug/L	01.13.14 16.04	U	1
Dibromochloromethane	124-48-1	BRL	5.0	ug/L	01.13.14 16.04	U	1
Dichlorodifluoromethane	75-71-8	BRL	5.0	ug/L	01.13.14 16.04	U	1
Ethylbenzene	100-41-4	BRL	5.0	ug/L	01.13.14 16.04	U	1
Isopropylbenzene	98-82-8	BRL	5.0	ug/L	01.13.14 16.04	U	1
m,p-Xylenes	179601-23-1	BRL	5.0	ug/L	01.13.14 16.04	U	1
Methyl acetate	79-20-9	BRL	5.0	ug/L	01.13.14 16.04	U	1

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb (Dekalb Ave)

Sample Id: MW-409 Matrix: Ground Water Date Received:01.10.14 17.20

Lab Sample Id: 477225-009 Date Collected: 01.10.14 14.28

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

Analyst: MLA Date Prep: 01.13.14 07.01

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Methyl tert-butyl ether	1634-04-4	BRL	5.0		ug/L	01.13.14 16.04	U	1
Methylcyclohexane	108-87-2	BRL	5.0		ug/L	01.13.14 16.04	U	1
Methylene chloride	75-09-2	BRL	5.0		ug/L	01.13.14 16.04	U	1
Naphthalene	91-20-3	BRL	5.0		ug/L	01.13.14 16.04	U	1
o-Xylene	95-47-6	BRL	5.0		ug/L	01.13.14 16.04	U	1
Styrene	100-42-5	BRL	5.0		ug/L	01.13.14 16.04	U	1
Tetrachloroethene	127-18-4	5.1	5.0		ug/L	01.13.14 16.04		1
Toluene	108-88-3	BRL	5.0		ug/L	01.13.14 16.04	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	5.0		ug/L	01.13.14 16.04	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	5.0		ug/L	01.13.14 16.04	U	1
Trichloroethene	79-01-6	BRL	5.0		ug/L	01.13.14 16.04	U	1
Trichlorofluoromethane	75-69-4	BRL	5.0		ug/L	01.13.14 16.04	U	1
Vinyl chloride	75-01-4	BRL	2.0		ug/L	01.13.14 16.04	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,2-Dichloroethane-D4		17060-07-0	100	%	53-159	01.13.14 16.04		
4-Bromofluorobenzene		460-00-4	102	%	30-186	01.13.14 16.04		
Toluene-D8		2037-26-5	98	%	70-130	01.13.14 16.04		

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb (Dekalb Ave)

Sample Id: MW-409D Matrix: Ground Water Date Received:01.10.14 17.20

Lab Sample Id: 477225-010 Date Collected: 01.10.14 13.09

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: JOL % Moisture:

Analyst: MLA Date Prep: 01.15.14 06.39

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1-Trichloroethane	71-55-6	BRL	5.0	ug/L	01.15.14 12.00	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	5.0	ug/L	01.15.14 12.00	U	1
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	BRL	5.0	ug/L	01.15.14 12.00	U	1
1,1,2-Trichloroethane	79-00-5	BRL	5.0	ug/L	01.15.14 12.00	U	1
1,1-Dichloroethane	75-34-3	BRL	5.0	ug/L	01.15.14 12.00	U	1
1,1-Dichloroethene	75-35-4	BRL	5.0	ug/L	01.15.14 12.00	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	5.0	ug/L	01.15.14 12.00	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	5.0	ug/L	01.15.14 12.00	U	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	BRL	5.0	ug/L	01.15.14 12.00	U	1
1,2-Dibromoethane (EDB)	106-93-4	BRL	5.0	ug/L	01.15.14 12.00	U	1
1,2-Dichlorobenzene	95-50-1	BRL	5.0	ug/L	01.15.14 12.00	U	1
1,2-Dichloroethane	107-06-2	BRL	5.0	ug/L	01.15.14 12.00	U	1
1,2-Dichloropropane	78-87-5	BRL	5.0	ug/L	01.15.14 12.00	U	1
1,3-Dichlorobenzene	541-73-1	BRL	5.0	ug/L	01.15.14 12.00	U	1
1,4-Dichlorobenzene	106-46-7	BRL	5.0	ug/L	01.15.14 12.00	U	1
2-Butanone (MEK)	78-93-3	BRL	50	ug/L	01.15.14 12.00	U	1
2-Hexanone	591-78-6	BRL	50	ug/L	01.15.14 12.00	U	1
4-Methyl-2-pentanone (MIBK)	108-10-1	BRL	50	ug/L	01.15.14 12.00	U	1
Acetone	67-64-1	BRL	50	ug/L	01.15.14 12.00	U	1
Benzene	71-43-2	BRL	5.0	ug/L	01.15.14 12.00	U	1
Bromochloromethane	74-97-5	BRL	5.0	ug/L	01.15.14 12.00	U	1
Bromodichloromethane	75-27-4	BRL	5.0	ug/L	01.15.14 12.00	U	1
Bromoform	75-25-2	BRL	5.0	ug/L	01.15.14 12.00	U	1
Bromomethane	74-83-9	BRL	5.0	ug/L	01.15.14 12.00	U	1
Carbon disulfide	75-15-0	BRL	5.0	ug/L	01.15.14 12.00	U	1
Carbon tetrachloride	56-23-5	BRL	5.0	ug/L	01.15.14 12.00	U	1
Chlorobenzene	108-90-7	BRL	5.0	ug/L	01.15.14 12.00	U	1
Chloroethane	75-00-3	BRL	4.0	ug/L	01.15.14 12.00	U	1
Chloroform	67-66-3	BRL	5.0	ug/L	01.15.14 12.00	U	1
Chloromethane	74-87-3	BRL	5.0	ug/L	01.15.14 12.00	U	1
cis-1,2-Dichloroethene	156-59-2	BRL	5.0	ug/L	01.15.14 12.00	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	5.0	ug/L	01.15.14 12.00	U	1
Cyclohexane	110-82-7	BRL	5.0	ug/L	01.15.14 12.00	U	1
Dibromochloromethane	124-48-1	BRL	5.0	ug/L	01.15.14 12.00	U	1
Dichlorodifluoromethane	75-71-8	BRL	5.0	ug/L	01.15.14 12.00	U	1
Ethylbenzene	100-41-4	BRL	5.0	ug/L	01.15.14 12.00	U	1
Isopropylbenzene	98-82-8	BRL	5.0	ug/L	01.15.14 12.00	U	1
m,p-Xylenes	179601-23-1	BRL	5.0	ug/L	01.15.14 12.00	U	1
Methyl acetate	79-20-9	BRL	5.0	ug/L	01.15.14 12.00	U	1

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb (Dekalb Ave)

Sample Id: MW-409D Matrix: Ground Water Date Received:01.10.14 17.20

Lab Sample Id: 477225-010 Date Collected: 01.10.14 13.09

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: JOL % Moisture:

2037-26-5

Analyst: MLA Date Prep: 01.15.14 06.39

Seq Number: 932045

Toluene-D8

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Methyl tert-butyl ether	1634-04-4	BRL	5.0		ug/L	01.15.14 12.00	U	1
Methylcyclohexane	108-87-2	BRL	5.0		ug/L	01.15.14 12.00	U	1
Methylene chloride	75-09-2	BRL	5.0		ug/L	01.15.14 12.00	U	1
Naphthalene	91-20-3	BRL	5.0		ug/L	01.15.14 12.00	U	1
o-Xylene	95-47-6	BRL	5.0		ug/L	01.15.14 12.00	U	1
Styrene	100-42-5	BRL	5.0		ug/L	01.15.14 12.00	U	1
Tetrachloroethene	127-18-4	BRL	5.0		ug/L	01.15.14 12.00	U	1
Toluene	108-88-3	BRL	5.0		ug/L	01.15.14 12.00	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	5.0		ug/L	01.15.14 12.00	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	5.0		ug/L	01.15.14 12.00	U	1
Trichloroethene	79-01-6	BRL	5.0		ug/L	01.15.14 12.00	U	1
Trichlorofluoromethane	75-69-4	BRL	5.0		ug/L	01.15.14 12.00	U	1
Vinyl chloride	75-01-4	BRL	2.0		ug/L	01.15.14 12.00	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,2-Dichloroethane-D4		17060-07-0	102	%	53-159	01.15.14 12.00	8	
4-Bromofluorobenzene		460-00-4	102	%	30-186	01.15.14 12.00		

100

70-130

01.15.14 12.00

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb (Dekalb Ave)

Sample Id: MW-214 Matrix: Ground Water Date Received:01.10.14 17.20

Lab Sample Id: 477225-011 Date Collected: 01.10.14 15.25

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

Analyst: MLA Date Prep: 01.13.14 07.01

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1-Trichloroethane	71-55-6	BRL	5.0	ug/L	01.13.14 13.49	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	5.0	ug/L	01.13.14 13.49	U	1
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	BRL	5.0	ug/L	01.13.14 13.49	U	1
1,1,2-Trichloroethane	79-00-5	BRL	5.0	ug/L	01.13.14 13.49	U	1
1,1-Dichloroethane	75-34-3	BRL	5.0	ug/L	01.13.14 13.49	U	1
1,1-Dichloroethene	75-35-4	BRL	5.0	ug/L	01.13.14 13.49	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	5.0	ug/L	01.13.14 13.49	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	5.0	ug/L	01.13.14 13.49	U	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	BRL	5.0	ug/L	01.13.14 13.49	U	1
1,2-Dibromoethane (EDB)	106-93-4	BRL	5.0	ug/L	01.13.14 13.49	U	1
1,2-Dichlorobenzene	95-50-1	BRL	5.0	ug/L	01.13.14 13.49	U	1
1,2-Dichloroethane	107-06-2	BRL	5.0	ug/L	01.13.14 13.49	U	1
1,2-Dichloropropane	78-87-5	BRL	5.0	ug/L	01.13.14 13.49	U	1
1,3-Dichlorobenzene	541-73-1	BRL	5.0	ug/L	01.13.14 13.49	U	1
1,4-Dichlorobenzene	106-46-7	BRL	5.0	ug/L	01.13.14 13.49	U	1
2-Butanone (MEK)	78-93-3	BRL	50	ug/L	01.13.14 13.49	U	1
2-Hexanone	591-78-6	BRL	50	ug/L	01.13.14 13.49	U	1
4-Methyl-2-pentanone (MIBK)	108-10-1	BRL	50	ug/L	01.13.14 13.49	U	1
Acetone	67-64-1	BRL	50	ug/L	01.13.14 13.49	U	1
Benzene	71-43-2	BRL	5.0	ug/L	01.13.14 13.49	U	1
Bromochloromethane	74-97-5	BRL	5.0	ug/L	01.13.14 13.49	U	1
Bromodichloromethane	75-27-4	BRL	5.0	ug/L	01.13.14 13.49	U	1
Bromoform	75-25-2	BRL	5.0	ug/L	01.13.14 13.49	U	1
Bromomethane	74-83-9	BRL	5.0	ug/L	01.13.14 13.49	U	1
Carbon disulfide	75-15-0	BRL	5.0	ug/L	01.13.14 13.49	U	1
Carbon tetrachloride	56-23-5	BRL	5.0	ug/L	01.13.14 13.49	U	1
Chlorobenzene	108-90-7	BRL	5.0	ug/L	01.13.14 13.49	U	1
Chloroethane	75-00-3	BRL	4.0	ug/L	01.13.14 13.49	U	1
Chloroform	67-66-3	BRL	5.0	ug/L	01.13.14 13.49	U	1
Chloromethane	74-87-3	BRL	5.0	ug/L	01.13.14 13.49	U	1
cis-1,2-Dichloroethene	156-59-2	BRL	5.0	ug/L	01.13.14 13.49	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	5.0	ug/L	01.13.14 13.49	U	1
Cyclohexane	110-82-7	BRL	5.0	ug/L	01.13.14 13.49	U	1
Dibromochloromethane	124-48-1	BRL	5.0	ug/L	01.13.14 13.49	U	1
Dichlorodifluoromethane	75-71-8	BRL	5.0	ug/L	01.13.14 13.49	U	1
Ethylbenzene	100-41-4	BRL	5.0	ug/L	01.13.14 13.49	U	1
Isopropylbenzene	98-82-8	BRL	5.0	ug/L	01.13.14 13.49	U	1
m,p-Xylenes	179601-23-1	BRL	5.0	ug/L	01.13.14 13.49	U	1
Methyl acetate	79-20-9	BRL	5.0	ug/L	01.13.14 13.49	U	1

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb (Dekalb Ave)

Sample Id: MW-214 Matrix: Ground Water Date Received:01.10.14 17.20

Lab Sample Id: 477225-011 Date Collected: 01.10.14 15.25

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

Analyst: MLA Date Prep: 01.13.14 07.01

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Methyl tert-butyl ether	1634-04-4	BRL	5.0		ug/L	01.13.14 13.49	U	1
Methylcyclohexane	108-87-2	BRL	5.0		ug/L	01.13.14 13.49	U	1
Methylene chloride	75-09-2	BRL	5.0		ug/L	01.13.14 13.49	U	1
Naphthalene	91-20-3	BRL	5.0		ug/L	01.13.14 13.49	U	1
o-Xylene	95-47-6	BRL	5.0		ug/L	01.13.14 13.49	U	1
Styrene	100-42-5	BRL	5.0		ug/L	01.13.14 13.49	U	1
Tetrachloroethene	127-18-4	BRL	5.0		ug/L	01.13.14 13.49	U	1
Toluene	108-88-3	BRL	5.0		ug/L	01.13.14 13.49	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	5.0		ug/L	01.13.14 13.49	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	5.0		ug/L	01.13.14 13.49	U	1
Trichloroethene	79-01-6	BRL	5.0		ug/L	01.13.14 13.49	U	1
Trichlorofluoromethane	75-69-4	BRL	5.0		ug/L	01.13.14 13.49	U	1
Vinyl chloride	75-01-4	BRL	2.0		ug/L	01.13.14 13.49	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,2-Dichloroethane-D4		17060-07-0	100	%	53-159	01.13.14 13.49		
4-Bromofluorobenzene		460-00-4	100	%	30-186	01.13.14 13.49		
Toluene-D8		2037-26-5	100	%	70-130	01.13.14 13.49		

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb (Dekalb Ave)

Sample Id: MW-204 Matrix: Ground Water Date Received:01.10.14 17.20

Lab Sample Id: 477225-012 Date Collected: 01.10.14 16.08

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

Analyst: MLA Date Prep: 01.13.14 07.01

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1-Trichloroethane	71-55-6	BRL	5.0	ug/L	01.13.14 17.53	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	5.0	ug/L	01.13.14 17.53	U	1
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	BRL	5.0	ug/L	01.13.14 17.53	U	1
1,1,2-Trichloroethane	79-00-5	BRL	5.0	ug/L	01.13.14 17.53	U	1
1,1-Dichloroethane	75-34-3	BRL	5.0	ug/L	01.13.14 17.53	U	1
1,1-Dichloroethene	75-35-4	BRL	5.0	ug/L	01.13.14 17.53	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	5.0	ug/L	01.13.14 17.53	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	5.0	ug/L	01.13.14 17.53	U	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	BRL	5.0	ug/L	01.13.14 17.53	U	1
1,2-Dibromoethane (EDB)	106-93-4	BRL	5.0	ug/L	01.13.14 17.53	U	1
1,2-Dichlorobenzene	95-50-1	BRL	5.0	ug/L	01.13.14 17.53	U	1
1,2-Dichloroethane	107-06-2	BRL	5.0	ug/L	01.13.14 17.53	U	1
1,2-Dichloropropane	78-87-5	BRL	5.0	ug/L	01.13.14 17.53	U	1
1,3-Dichlorobenzene	541-73-1	BRL	5.0	ug/L	01.13.14 17.53	U	1
1,4-Dichlorobenzene	106-46-7	BRL	5.0	ug/L	01.13.14 17.53	U	1
2-Butanone (MEK)	78-93-3	BRL	50	ug/L	01.13.14 17.53	U	1
2-Hexanone	591-78-6	BRL	50	ug/L	01.13.14 17.53	U	1
4-Methyl-2-pentanone (MIBK)	108-10-1	BRL	50	ug/L	01.13.14 17.53	U	1
Acetone	67-64-1	BRL	50	ug/L	01.13.14 17.53	U	1
Benzene	71-43-2	BRL	5.0	ug/L	01.13.14 17.53	U	1
Bromochloromethane	74-97-5	BRL	5.0	ug/L	01.13.14 17.53	U	1
Bromodichloromethane	75-27-4	BRL	5.0	ug/L	01.13.14 17.53	U	1
Bromoform	75-25-2	BRL	5.0	ug/L	01.13.14 17.53	U	1
Bromomethane	74-83-9	BRL	5.0	ug/L	01.13.14 17.53	U	1
Carbon disulfide	75-15-0	BRL	5.0	ug/L	01.13.14 17.53	U	1
Carbon tetrachloride	56-23-5	BRL	5.0	ug/L	01.13.14 17.53	U	1
Chlorobenzene	108-90-7	BRL	5.0	ug/L	01.13.14 17.53	U	1
Chloroethane	75-00-3	BRL	4.0	ug/L	01.13.14 17.53	U	1
Chloroform	67-66-3	BRL	5.0	ug/L	01.13.14 17.53	U	1
Chloromethane	74-87-3	BRL	5.0	ug/L	01.13.14 17.53	U	1
cis-1,2-Dichloroethene	156-59-2	BRL	5.0	ug/L	01.13.14 17.53	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	5.0	ug/L	01.13.14 17.53	U	1
Cyclohexane	110-82-7	BRL	5.0	ug/L	01.13.14 17.53	U	1
Dibromochloromethane	124-48-1	BRL	5.0	ug/L	01.13.14 17.53	U	1
Dichlorodifluoromethane	75-71-8	BRL	5.0	ug/L	01.13.14 17.53	U	1
Ethylbenzene	100-41-4	BRL	5.0	ug/L	01.13.14 17.53	U	1
Isopropylbenzene	98-82-8	BRL	5.0	ug/L	01.13.14 17.53	U	1
m,p-Xylenes	179601-23-1	BRL	5.0	ug/L	01.13.14 17.53	U	1
Methyl acetate	79-20-9	BRL	5.0	ug/L	01.13.14 17.53	U	1

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb (Dekalb Ave)

Sample Id: MW-204 Matrix: Ground Water Date Received:01.10.14 17.20

Lab Sample Id: 477225-012 Date Collected: 01.10.14 16.08

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

Analyst: MLA Date Prep: 01.13.14 07.01

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Methyl tert-butyl ether	1634-04-4	BRL	5.0		ug/L	01.13.14 17.53	U	1
Methylcyclohexane	108-87-2	BRL	5.0		ug/L	01.13.14 17.53	U	1
Methylene chloride	75-09-2	BRL	5.0		ug/L	01.13.14 17.53	U	1
Naphthalene	91-20-3	BRL	5.0		ug/L	01.13.14 17.53	U	1
o-Xylene	95-47-6	BRL	5.0		ug/L	01.13.14 17.53	U	1
Styrene	100-42-5	BRL	5.0		ug/L	01.13.14 17.53	U	1
Tetrachloroethene	127-18-4	7.9	5.0		ug/L	01.13.14 17.53		1
Toluene	108-88-3	BRL	5.0		ug/L	01.13.14 17.53	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	5.0		ug/L	01.13.14 17.53	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	5.0		ug/L	01.13.14 17.53	U	1
Trichloroethene	79-01-6	BRL	5.0		ug/L	01.13.14 17.53	U	1
Trichlorofluoromethane	75-69-4	BRL	5.0		ug/L	01.13.14 17.53	U	1
Vinyl chloride	75-01-4	BRL	2.0		ug/L	01.13.14 17.53	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,2-Dichloroethane-D4		17060-07-0	98	%	53-159	01.13.14 17.53		
4-Bromofluorobenzene		460-00-4	100	%	30-186	01.13.14 17.53		
Toluene-D8		2037-26-5	100	%	70-130	01.13.14 17.53		

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb (Dekalb Ave)

Sample Id: Trip Blank Matrix: Water Date Received:01.10.14 17.20

Lab Sample Id: 477225-013 Date Collected: 01.09.14 00.00

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

Analyst: MLA Date Prep: 01.13.14 07.01

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1-Trichloroethane	71-55-6	BRL	5.0	ug/L	01.13.14 10.06	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	5.0	ug/L	01.13.14 10.06	U	1
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	BRL	5.0	ug/L	01.13.14 10.06	U	1
1,1,2-Trichloroethane	79-00-5	BRL	5.0	ug/L	01.13.14 10.06	U	1
1,1-Dichloroethane	75-34-3	BRL	5.0	ug/L	01.13.14 10.06	U	1
1,1-Dichloroethene	75-35-4	BRL	5.0	ug/L	01.13.14 10.06	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	5.0	ug/L	01.13.14 10.06	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	5.0	ug/L	01.13.14 10.06	U	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	BRL	5.0	ug/L	01.13.14 10.06	U	1
1,2-Dibromoethane (EDB)	106-93-4	BRL	5.0	ug/L	01.13.14 10.06	U	1
1,2-Dichlorobenzene	95-50-1	BRL	5.0	ug/L	01.13.14 10.06	U	1
1,2-Dichloroethane	107-06-2	BRL	5.0	ug/L	01.13.14 10.06	U	1
1,2-Dichloropropane	78-87-5	BRL	5.0	ug/L	01.13.14 10.06	U	1
1,3-Dichlorobenzene	541-73-1	BRL	5.0	ug/L	01.13.14 10.06	U	1
1,4-Dichlorobenzene	106-46-7	BRL	5.0	ug/L	01.13.14 10.06	U	1
2-Butanone (MEK)	78-93-3	BRL	50	ug/L	01.13.14 10.06	U	1
2-Hexanone	591-78-6	BRL	50	ug/L	01.13.14 10.06	U	1
4-Methyl-2-pentanone (MIBK)	108-10-1	BRL	50	ug/L	01.13.14 10.06	U	1
Acetone	67-64-1	BRL	50	ug/L	01.13.14 10.06	U	1
Benzene	71-43-2	BRL	5.0	ug/L	01.13.14 10.06	U	1
Bromochloromethane	74-97-5	BRL	5.0	ug/L	01.13.14 10.06	U	1
Bromodichloromethane	75-27-4	BRL	5.0	ug/L	01.13.14 10.06	U	1
Bromoform	75-25-2	BRL	5.0	ug/L	01.13.14 10.06	U	1
Bromomethane	74-83-9	BRL	5.0	ug/L	01.13.14 10.06	U	1
Carbon disulfide	75-15-0	BRL	5.0	ug/L	01.13.14 10.06	U	1
Carbon tetrachloride	56-23-5	BRL	5.0	ug/L	01.13.14 10.06	U	1
Chlorobenzene	108-90-7	BRL	5.0	ug/L	01.13.14 10.06	U	1
Chloroethane	75-00-3	BRL	4.0	ug/L	01.13.14 10.06	U	1
Chloroform	67-66-3	BRL	5.0	ug/L	01.13.14 10.06	U	1
Chloromethane	74-87-3	BRL	5.0	ug/L	01.13.14 10.06	U	1
cis-1,2-Dichloroethene	156-59-2	BRL	5.0	ug/L	01.13.14 10.06	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	5.0	ug/L	01.13.14 10.06	U	1
Cyclohexane	110-82-7	BRL	5.0	ug/L	01.13.14 10.06	U	1
Dibromochloromethane	124-48-1	BRL	5.0	ug/L	01.13.14 10.06	U	1
Dichlorodifluoromethane	75-71-8	BRL	5.0	ug/L	01.13.14 10.06	U	1
Ethylbenzene	100-41-4	BRL	5.0	ug/L	01.13.14 10.06	U	1
Isopropylbenzene	98-82-8	BRL	5.0	ug/L	01.13.14 10.06	U	1
m,p-Xylenes	179601-23-1	BRL	5.0	ug/L	01.13.14 10.06	U	1
Methyl acetate	79-20-9	BRL	5.0	ug/L	01.13.14 10.06	U	1

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb (Dekalb Ave)

Sample Id: Trip Blank Matrix: Water Date Received:01.10.14 17.20

Lab Sample Id: 477225-013 Date Collected: 01.09.14 00.00

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

Analyst: MLA Date Prep: 01.13.14 07.01

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Methyl tert-butyl ether	1634-04-4	BRL	5.0		ug/L	01.13.14 10.06	U	1
Methylcyclohexane	108-87-2	BRL	5.0		ug/L	01.13.14 10.06	U	1
Methylene chloride	75-09-2	BRL	5.0		ug/L	01.13.14 10.06	U	1
Naphthalene	91-20-3	BRL	5.0		ug/L	01.13.14 10.06	U	1
o-Xylene	95-47-6	BRL	5.0		ug/L	01.13.14 10.06	U	1
Styrene	100-42-5	BRL	5.0		ug/L	01.13.14 10.06	U	1
Tetrachloroethene	127-18-4	BRL	5.0		ug/L	01.13.14 10.06	U	1
Toluene	108-88-3	BRL	5.0		ug/L	01.13.14 10.06	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	5.0		ug/L	01.13.14 10.06	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	5.0		ug/L	01.13.14 10.06	U	1
Trichloroethene	79-01-6	BRL	5.0		ug/L	01.13.14 10.06	U	1
Trichlorofluoromethane	75-69-4	BRL	5.0		ug/L	01.13.14 10.06	U	1
Vinyl chloride	75-01-4	BRL	2.0		ug/L	01.13.14 10.06	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,2-Dichloroethane-D4		17060-07-0	100	%	53-159	01.13.14 10.06		
4-Bromofluorobenzene		460-00-4	98	%	30-186	01.13.14 10.06		
Toluene-D8		2037-26-5	100	%	70-130	01.13.14 10.06		

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- BRL Below Reporting Limit.
- **RL** Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	Fax
4143 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
2505 North Falkenburg Rd, Tampa, FL 33619	(813) 620-2000	(813) 620-2033
12600 West I-20 East, Odessa, TX 79765	(432) 563-1800	(432) 563-1713
6017 Financial Drive, Norcross, GA 30071	(770) 449-8800	(770) 449-5477
3725 E. Atlanta Ave, Phoenix, AZ 85040	(602) 437-0330	

Atlanta Environmental Management

Aramark - Dekalb (Dekalb Ave)

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Seq Number:931893Matrix:WaterDate Prep:01.13.14MB Sample Id:649686-1-BLKLCS Sample Id:649686-1-BKSLCSD Sample Id:649686-1-BSD

MB Sample Id: 049080-1-BLK				LCS Sample Id. 049000-1-DKS				LC3D Sample Id. 047000-1-D3D					
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag	
1,1,1-Trichloroethane	< 0.34	50	52	104	51	102	56-141	2	20	ug/L	01.13.14 07:50		
1,1,2,2-Tetrachloroethane	< 2.0	50	47	94	46	92	64-135	2	20	ug/L	01.13.14 07:50		
1,1,2-Trichloro-1,2,2-trifluoroethane	< 0.97	50	55	110	54	108	54-134	2	20	ug/L	01.13.14 07:50		
1,1,2-Trichloroethane	< 0.88	50	51	102	49	98	73-123	4	20	ug/L	01.13.14 07:50		
1,1-Dichloroethane	< 0.74	50	51	102	50	100	66-126	2	20	ug/L	01.13.14 07:50		
1,1-Dichloroethene	< 0.98	50	53	106	52	104	65-129	2	20	ug/L	01.13.14 07:50		
1,2,3-Trichlorobenzene	< 2.6	50	53	106	51	102	56-146	4	20	ug/L	01.13.14 07:50		
1,2,4-Trichlorobenzene	<1.3	50	50	100	47	94	62-141	6	20	ug/L	01.13.14 07:50		
1,2-Dibromo-3-chloropropane (DBCP)	< 2.8	50	44	88	45	90	48-144	2	20	ug/L	01.13.14 07:50		
1,2-Dibromoethane (EDB)	< 0.79	50	51	102	50	100	70-130	2	20	ug/L	01.13.14 07:50		
1,2-Dichlorobenzene	< 0.73	50	51	102	49	98	77-123	4	20	ug/L	01.13.14 07:50		
1,2-Dichloroethane	< 0.82	50	50	100	50	100	57-137	0	20	ug/L	01.13.14 07:50		
1,2-Dichloropropane	< 0.81	50	51	102	49	98	74-121	4	20	ug/L	01.13.14 07:50		
1,3-Dichlorobenzene	< 0.74	50	51	102	49	98	79-120	4	20	ug/L	01.13.14 07:50		
1,4-Dichlorobenzene	< 0.59	50	50	100	49	98	77-119	2	20	ug/L	01.13.14 07:50		
2-Butanone (MEK)	<1.3	100	99	99	96	96	42-165	3	20	ug/L	01.13.14 07:50		
2-Hexanone	<2.5	100	98	98	97	97	46-157	1	20	ug/L	01.13.14 07:50		
4-Methyl-2-pentanone (MIBK)	<2.2	100	97	97	95	95	54-145	2	20	ug/L	01.13.14 07:50		
Acetone (MIBIC)	<1.4	100	97	97	95	95	42-178	2	20	ug/L ug/L	01.13.14 07:50		
Benzene	< 0.67	50	51	102	50	100	76-119	2	20	ug/L ug/L	01.13.14 07:50		
Bromochloromethane	<0.47	50	53	106	51	102	75-123	4	20	ug/L ug/L	01.13.14 07:50		
Bromodichloromethane	<0.96	50	53	106	51	102	69-131	4	20	ug/L ug/L	01.13.14 07:50		
Bromoform	<1.4	50	51	100	50	100	66-130	2	20	ug/L ug/L	01.13.14 07:50		
Bromomethane	<2.7	50	51	102	50	100	59-141	2	20	ug/L ug/L	01.13.14 07:50		
Carbon disulfide	<0.73	50	54	102	51	102	47-144	6	20	ug/L ug/L	01.13.14 07:50		
Carbon tetrachloride	<0.73	50	55	110	53	102	46-155	4	20	ug/L ug/L	01.13.14 07:50		
Chlorobenzene	<0.59	50	51	102	50	100	81-114	2	20	ug/L ug/L	01.13.14 07:50		
Chloroethane	<0.23	50	50	102	51	102	63-133	2	20	ug/L ug/L	01.13.14 07:50		
Chloroform	<1.4	50	52	100	50	102	68-127	4	20	ug/L ug/L	01.13.14 07:50		
Chloromethane	<1.4	50	46	92	46	92	43-141	0	20	ug/L ug/L	01.13.14 07:50		
cis-1,2-Dichloroethene	<0.80	50	53	106	52	104	73-124	2	20	ug/L ug/L	01.13.14 07:50		
cis-1,3-Dichloropropene	< 0.76	50	54	108	53	104	73-124	2	20	ug/L ug/L	01.13.14 07:50		
Cyclohexane	<0.70	50	52	108	52	104	58-125	0	20	ug/L ug/L	01.13.14 07:50		
Dibromochloromethane	<0.79	50	52	104	51	104	69-128	2	20	ug/L ug/L	01.13.14 07:50		
Dichlorodifluoromethane	<0.73	50	52	104	52	102	24-153	0	20	_	01.13.14 07:50		
Ethylbenzene	<0.73	50	51	104	49	98	78-122	4	20	ug/L ug/L	01.13.14 07:50		
Isopropylbenzene	<1.0	50	50	102	49	98	71-131	2	20	ug/L ug/L	01.13.14 07:50		
m,p-Xylenes	<1.0	100	100	100	99	99	76-124	1	20	_	01.13.14 07:50		
	<0.15		49	98	47	94	65-135		20	ug/L	01.13.14 07:50		
Methyl acetate		50						4		ug/L	01.13.14 07:50		
Methyl tert-butyl ether	< 0.62	100	110	110	100	100	59-135	10	20	ug/L	01.13.14 07:50		
Methylcyclohexane	<0.76	50	56 47	112 94	54 48	108	61-125 64-135	4	20	ug/L	01.13.14 07.50		
Methylene chloride	< 0.92	50				96		2	20	ug/L			
Naphthalene	<4.0	50	46	92	45	90	46-159	2	20	ug/L	01.13.14 07:50		
o-Xylene	< 0.57	50	52	104	50	100	78-124	4	20	ug/L	01.13.14 07:50		
Styrene	< 0.56	50	51	102	50	100	79-123	2	20	ug/L	01.13.14 07:50		
Tetrachloroethene	<1.8	50	52	104	51	102	71-125	2	20	ug/L	01.13.14 07:50		
Toluene	< 0.68	50	51	102	49	98	78-118	4	20	ug/L	01.13.14 07:50		
trans-1,2-Dichloroethene	< 0.73	50	51	102	51	102	71-126	0	20	ug/L	01.13.14 07:50		
trans-1,3-Dichloropropene	< 0.84	50	53	106	51	102	68-131	4	20	ug/L	01.13.14 07:50		
Trichloroethene	< 0.72	50	52	104	51	102	76-118	2	20	ug/L	01.13.14 07:50		
Trichlorofluoromethane	< 0.85	50	55	110	53	106	35-153	4	20	ug/L	01.13.14 07:50		
Vinyl chloride	< 0.15	50	48	96	48	96	59-129	0	20	ug/L	01.13.14 07:50		

Atlanta Environmental Management

Aramark - Dekalb (Dekalb Ave)

Analytical Method: VOCs by SW-846 8260B

Prep Method: SW5030B Date Prep: 01.13.14

 Seq Number:
 931893

 MB Sample Id:
 649686-1-BLK

Matrix: Water Date Prep: 01.13.14 LCS Sample Id: 649686-1-BKS LCSD Sample Id: 649686-1-BSD

Surrogate	MB %Rec	MB Flag	LCS %Rec	LCS Flag	LCSD %Rec	LCSD Flag	Limits	Units	Analysis Date
1,2-Dichloroethane-D4	102		98		100		53-159	%	01.13.14 07:50
4-Bromofluorobenzene	96		98		98		30-186	%	01.13.14 07:50
Toluene-D8	100		98		100		70-130	%	01.13.14 07:50

Atlanta Environmental Management

Aramark - Dekalb (Dekalb Ave)

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Seq Number:931887Matrix:WaterDate Prep:01.13.14MB Sample Id:649685-1-BLKLCS Sample Id:649685-1-BKSLCSD Sample Id:649685-1-BSD

MB Sample Id: 049085-1		LCS Sai	npie iu.	049003-1-	-DK9		LCSI	Sample	Iu. 045	063-1-DSD		
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,1,1-Trichloroethane	< 0.34	50	56	112	53	106	56-141	6	20	ug/L	01.13.14 09:59	
1,1,2,2-Tetrachloroethane	< 2.0	50	63	126	60	120	64-135	5	20	ug/L	01.13.14 09:59	
1,1,2-Trichloro-1,2,2-trifluoroethane	< 0.97	50	60	120	60	120	54-134	0	20	ug/L	01.13.14 09:59	
1,1,2-Trichloroethane	< 0.88	50	60	120	56	112	73-123	7	20	ug/L	01.13.14 09:59	
1,1-Dichloroethane	< 0.74	50	53	106	52	104	66-126	2	20	ug/L	01.13.14 09:59	
1,1-Dichloroethene	< 0.98	50	57	114	57	114	65-129	0	20	ug/L	01.13.14 09:59	
1,2,3-Trichlorobenzene	< 2.6	50	62	124	58	116	56-146	7	20	ug/L	01.13.14 09:59	
1,2,4-Trichlorobenzene	<1.3	50	62	124	57	114	62-141	8	20	ug/L	01.13.14 09:59	
1,2-Dibromo-3-chloropropane (DBCP)	< 2.8	50	63	126	59	118	48-144	7	20	ug/L	01.13.14 09:59	
1,2-Dibromoethane (EDB)	< 0.79	50	60	120	57	114	70-130	5	20	ug/L	01.13.14 09:59	
1,2-Dichlorobenzene	< 0.73	50	59	118	55	110	77-123	7	20	ug/L	01.13.14 09:59	
1,2-Dichloroethane	< 0.82	50	54	108	52	104	57-137	4	20	ug/L	01.13.14 09:59	
1,2-Dichloropropane	< 0.81	50	53	106	51	102	74-121	4	20	ug/L	01.13.14 09:59	
1,3-Dichlorobenzene	< 0.74	50	59	118	55	110	79-120	7	20	ug/L	01.13.14 09:59	
1,4-Dichlorobenzene	< 0.59	50	57	114	53	106	77-119	7	20	ug/L	01.13.14 09:59	
2-Butanone (MEK)	<1.3	100	110	110	110	110	42-165	0	20	ug/L	01.13.14 09:59	
2-Hexanone	<2.5	100	140	140	140	140	46-157	0	20	ug/L	01.13.14 09:59	
4-Methyl-2-pentanone (MIBK)	<2.2	100	130	130	130	130	54-145	0	20	ug/L	01.13.14 09:59	
Acetone (WIEI)	<1.4	100	130	130	130	130	42-178	0	20	ug/L	01.13.14 09:59	
Benzene	< 0.67	50	53	106	52	104	76-119	2	20	ug/L ug/L	01.13.14 09:59	
Bromochloromethane	<0.47	50	61	122	55	110	75-123	10	20	ug/L ug/L	01.13.14 09:59	
Bromodichloromethane	<0.47	50	59	118	58	116	69-131	2	20	ug/L ug/L	01.13.14 09:59	
Bromoform	<1.4	50	58	116	53	106	66-130	9	20	-	01.13.14 09:59	
	<2.7	50		118	59	118	59-141		20	ug/L	01.13.14 09:59	
Bromomethane Carbon disulfide	<0.73	50	59 61	122	61	122	47-144	0	20	ug/L	01.13.14 09:59	
				122						ug/L	01.13.14 09.59	
Carbon tetrachloride	< 0.89	50	61		59 54	118	46-155	3	20	ug/L		
Chlorobenzene	<0.59	50	56	112	54	108	81-114	4	20	ug/L	01.13.14.09:59	
Chloroethane	< 0.23	50	61	122	57	114	63-133	7	20	ug/L	01.13.14.09:59	
Chloroform	<1.4	50	54	108	51	102	68-127	6	20	ug/L	01.13.14 09:59	
Chloromethane	<1.2	50	56	112	53	106	43-141	6	20	ug/L	01.13.14 09:59	
cis-1,2-Dichloroethene	< 0.80	50	56	112	54	108	73-124	4	20	ug/L	01.13.14 09:59	
cis-1,3-Dichloropropene	< 0.76	50	58	116	56	112	72-132	4	20	ug/L	01.13.14 09:59	
Cyclohexane	< 0.99	50	54	108	53	106	58-125	2	20	ug/L	01.13.14 09:59	
Dibromochloromethane	< 0.79	50	54	108	52	104	69-128	4	20	ug/L	01.13.14 09:59	
Dichlorodifluoromethane	< 0.73	50	56	112	55	110	24-153	2	20	ug/L	01.13.14 09:59	
Ethylbenzene	< 0.66	50	57	114	55	110	78-122	4	20	ug/L	01.13.14 09:59	
Isopropylbenzene	<1.0	50	58	116	55	110	71-131	5	20	ug/L	01.13.14 09:59	
m,p-Xylenes	<1.2	100	110	110	110	110	76-124	0	20	ug/L	01.13.14 09:59	
Methyl acetate	< 0.15	50	59	118	59	118	65-135	0	20	ug/L	01.13.14 09:59	
Methyl tert-butyl ether	< 0.62	100	110	110	120	120	59-135	9	20	ug/L	01.13.14 09:59	
Methylcyclohexane	< 0.76	50	55	110	57	114	61-125	4	20	ug/L	01.13.14 09:59	
Methylene chloride	< 0.92	50	59	118	57	114	64-135	3	20	ug/L	01.13.14 09:59	
Naphthalene	<4.0	50	69	138	66	132	46-159	4	20	ug/L	01.13.14 09:59	
o-Xylene	< 0.57	50	59	118	57	114	78-124	3	20	ug/L	01.13.14 09:59	
Styrene	< 0.56	50	60	120	57	114	79-123	5	20	ug/L	01.13.14 09:59	
Tetrachloroethene	<1.8	50	56	112	52	104	71-125	7	20	ug/L	01.13.14 09:59	
Toluene	< 0.68	50	54	108	52	104	78-118	4	20	ug/L	01.13.14 09:59	
trans-1,2-Dichloroethene	< 0.73	50	60	120	57	114	71-126	5	20	ug/L	01.13.14 09:59	
trans-1,3-Dichloropropene	< 0.84	50	60	120	57	114	68-131	5	20	ug/L	01.13.14 09:59	
Trichloroethene	< 0.72	50	51	102	55	110	76-118	8	20	ug/L	01.13.14 09:59	
Trichlorofluoromethane	< 0.85	50	60	120	57	114	35-153	5	20	ug/L	01.13.14 09:59	
Vinyl chloride	< 0.15	50	58	116	57	114		2	20	ug/L	01.13.14 09:59	
,					- '			-		<i>3</i> –		

Atlanta Environmental Management

Aramark - Dekalb (Dekalb Ave)

Analytical Method: VOCs by SW-846 8260B Seq Number: 931887

Matrix: Water

Prep Method: SW5030B Date Prep: 01.13.14

 Seq Number:
 931887

 MB Sample Id:
 649685-1-BLK

LCS Sample Id: 649685-1-BKS

Date Prep: 01.13.14 LCSD Sample Id: 649685-1-BSD

Surrogate	MB %Rec	MB Flag	LCS %Rec	LCS Flag	LCSD %Rec	LCSD Flag	Limits	Units	Analysis Date
1,2-Dichloroethane-D4	108		96		96		53-159	%	01.13.14 09:59
4-Bromofluorobenzene	102		98		98		30-186	%	01.13.14 09:59
Toluene-D8	100		98		100		70-130	%	01.13.14 09:59

Prep Method: SW5030B

Atlanta Environmental Management

Aramark - Dekalb (Dekalb Ave)

Analytical Method: VOCs by SW-846 8260B

Seq Number:932045Matrix:WaterDate Prep:01.15.14MB Sample Id:649782-1-BLKLCS Sample Id:649782-1-BKSLCSD Sample Id:649782-1-BSD

MB Sample Id: 649/82-1		LCS Sai	npie iu.	049782-1	-DIZO		LCSI	Sample	iu. 049	702-1-DSD		
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,1,1-Trichloroethane	< 0.34	50	43	86	47	94	56-141	9	20	ug/L	01.15.14 07:55	
1,1,2,2-Tetrachloroethane	< 2.0	50	49	98	52	104	64-135	6	20	ug/L	01.15.14 07:55	
1,1,2-Trichloro-1,2,2-trifluoroethane	< 0.97	50	42	84	46	92	54-134	9	20	ug/L	01.15.14 07:55	
1,1,2-Trichloroethane	< 0.88	50	47	94	51	102	73-123	8	20	ug/L	01.15.14 07:55	
1,1-Dichloroethane	< 0.74	50	44	88	49	98	66-126	11	20	ug/L	01.15.14 07:55	
1,1-Dichloroethene	< 0.98	50	42	84	47	94	65-129	11	20	ug/L	01.15.14 07:55	
1,2,3-Trichlorobenzene	< 2.6	50	45	90	46	92	56-146	2	20	ug/L	01.15.14 07:55	
1,2,4-Trichlorobenzene	1.4	50	42	84	44	88	62-141	5	20	ug/L	01.15.14 07:55	
1,2-Dibromo-3-chloropropane (DBCP)	< 2.8	50	48	96	49	98	48-144	2	20	ug/L	01.15.14 07:55	
1,2-Dibromoethane (EDB)	< 0.79	50	48	96	52	104	70-130	8	20	ug/L	01.15.14 07:55	
1,2-Dichlorobenzene	< 0.73	50	45	90	48	96	77-123	6	20	ug/L	01.15.14 07:55	
1,2-Dichloroethane	< 0.82	50	46	92	51	102	57-137	10	20	ug/L	01.15.14 07:55	
1,2-Dichloropropane	< 0.81	50	45	90	49	98	74-121	9	20	ug/L	01.15.14 07:55	
1.3-Dichlorobenzene	< 0.74	50	44	88	48	96	79-120	9	20	ug/L	01.15.14 07:55	
1,4-Dichlorobenzene	< 0.59	50	44	88	48	96	77-119	9	20	ug/L	01.15.14 07:55	
2-Butanone (MEK)	<1.3	100	100	100	110	110	42-165	10	20	ug/L	01.15.14 07:55	
2-Hexanone	<2.5	100	100	100	110	110	46-157	10	20	ug/L	01.15.14 07:55	
4-Methyl-2-pentanone (MIBK)	<2.2	100	100	100	100	100	54-145	0	20	ug/L	01.15.14 07:55	
Acetone	<1.4	100	110	110	110	110	42-178	0	20	ug/L	01.15.14 07:55	
Benzene	< 0.67	50	44	88	48	96	76-119	9	20	ug/L	01.15.14 07:55	
Bromochloromethane	< 0.47	50	48	96	53	106	75-123	10	20	ug/L	01.15.14 07:55	
Bromodichloromethane	<0.96	50	46	92	50	100	69-131	8	20	ug/L ug/L	01.15.14 07:55	
Bromoform	<1.4	50	49	98	53	106	66-130	8	20	ug/L ug/L	01.15.14 07:55	
Bromomethane	<2.7	50	41	82	45	90	59-141	9	20	ug/L ug/L	01.15.14 07:55	
Carbon disulfide	<0.73	50	43	86	46	92	47-144	7	20	ug/L ug/L	01.15.14 07:55	
Carbon tetrachloride	<0.79	50	43	86	47	94	46-155	9	20	ug/L ug/L	01.15.14 07:55	
Chlorobenzene	<0.59	50	44	88	48	96	81-114	9	20	ug/L ug/L	01.15.14 07:55	
Chloroethane	<0.23	50	40	80	43	86	63-133	7	20	ug/L ug/L	01.15.14 07:55	
Chloroform	<1.4	50	45	90	50	100	68-127	11	20	ug/L ug/L	01.15.14 07:55	
Chloromethane	<1.4	50	40	80	43	86	43-141	7	20	ug/L ug/L	01.15.14 07:55	
cis-1,2-Dichloroethene	<0.80	50	46	92	50	100	73-124	8	20	ug/L ug/L	01.15.14 07:55	
cis-1,3-Dichloropropene	< 0.76	50	40	94	51	100	73-124	8	20	ug/L ug/L	01.15.14 07:55	
Cyclohexane	<0.70	50	41	82	45	90	58-125	9	20	ug/L ug/L	01.15.14 07:55	
Dibromochloromethane	<0.79	50	47	94	51	102	69-128	8	20	ug/L ug/L	01.15.14 07:55	
Dichlorodifluoromethane	<0.79	50	47	86	47	94	24-153	9	20	_	01.15.14 07:55	
	< 0.73	50	43	84	46	92	78-122	9	20	ug/L	01.15.14 07:55	
Ethylbenzene	<0.00	50	42	84	46	92	71-131	9	20	ug/L	01.15.14 07.55	
Isopropylbenzene										ug/L		
m,p-Xylenes	<1.2	100	85 53	85	93	93	76-124	9	20	ug/L	01.15.14 07:55 01.15.14 07:55	
Methyl acetate	<0.15	50	53	106	55	110	65-135	4	20	ug/L	01.15.14 07.55	
Methyl tert-butyl ether	< 0.62	100	100	100	110	110	59-135	10	20	ug/L		
Methylcyclohexane	0.79	50	41	82	46	92	61-125	11	20	ug/L	01.15.14 07:55	
Methylene chloride	<0.92	50	46	92	50	100	64-135	8	20	ug/L	01.15.14 07:55	
Naphthalene	<4.0	50	45	90	45	90	46-159	0	20	ug/L	01.15.14 07:55	
o-Xylene	< 0.57	50	44	88	47	94	78-124	7	20	ug/L	01.15.14 07:55	
Styrene	< 0.56	50	44	88	48	96	79-123	9	20	ug/L	01.15.14 07:55	
Tetrachloroethene	<1.8	50	42	84	45	90	71-125	7	20	ug/L	01.15.14 07:55	
Toluene	< 0.68	50	43	86	46	92	78-118	7	20	ug/L	01.15.14 07:55	
trans-1,2-Dichloroethene	< 0.73	50	44	88	48	96	71-126	9	20	ug/L	01.15.14 07:55	
trans-1,3-Dichloropropene	< 0.84	50	47	94	52	104	68-131	10	20	ug/L	01.15.14 07:55	
Trichloroethene	3.5	50	43	86	48	96	76-118	11	20	ug/L	01.15.14 07:55	
Trichlorofluoromethane	< 0.85	50	41	82	45	90	35-153	9	20	ug/L	01.15.14 07:55	
Vinyl chloride	< 0.15	50	42	84	45	90	59-129	7	20	ug/L	01.15.14 07:55	

Seq Number:

QC Summary 477225

Atlanta Environmental Management

Aramark - Dekalb (Dekalb Ave)

Analytical Method: VOCs by SW-846 8260B

Matrix: Water

Prep Method: SW5030B Date Prep: 01.15.14

MB Sample Id: 649782-1-BLK

932045

LCS Sample Id: 649782-1-BKS

Date Prep: 01.15.14 LCSD Sample Id: 649782-1-BSD

Surrogate	MB %Rec	MB Flag	LCS %Rec	LCS Flag	LCSD %Rec	LCSD Flag	Limits	Units	Analysis Date
1,2-Dichloroethane-D4	102		100		102		53-159	%	01.15.14 07:55
4-Bromofluorobenzene	102		102		102		30-186	%	01.15.14 07:55
Toluene-D8	98		96		96		70-130	%	01.15.14 07:55

SW5030B

Prep Method:

Atlanta Environmental Management

Aramark - Dekalb (Dekalb Ave)

Analytical Method: VOCs by SW-846 8260B

 Seq Number:
 931893
 Matrix:
 Ground Water
 Date Prep:
 01.13.14

 Parent Sample Id:
 477225-001
 MS Sample Id:
 477225-001 S
 MSD Sample Id:
 477225-001 SD

%RPD MS MS RPD Parent Spike **MSD MSD** Limits Units Analysis Flag **Parameter** Result Result Limit Date Amount %Rec Result %Rec 01.13.14 18:20 1,1,1-Trichloroethane < 0.34 50 51 102 49 98 63-149 4 20 ug/L 47 01.13.14 18:20 50 49 98 94 20 1,1,2,2-Tetrachloroethane < 2.0 58-140 4 ug/L $1,1,2\text{-}Trichloro\text{-}1,2,2\text{-}trifluoroethane}$ 54 < 0.97 50 108 51 102 42-156 6 20 ug/L 01.13.14 18:20 50 49 01.13.14 18:20 1,1,2-Trichloroethane < 0.88 50 100 98 49-140 2 20 ug/L < 0.74 50 50 100 48 96 67-136 4 20 ug/L 01.13.14 18:20 1.1-Dichloroethane 01.13.14 18:20 50 47 52-141 50 100 94 6 20 1,1-Dichloroethene < 0.98 ug/L 49 ug/L 01.13.14 18:20 1,2,3-Trichlorobenzene < 2.6 50 98 50 100 50-131 2 20 1,2,4-Trichlorobenzene 50 46 92 46 51-125 0 20 01.13.14 18:20 <1.3 92 ug/L 1,2-Dibromo-3-chloropropane (DBCP) ug/L < 2.8 50 46 92 46 92 43-155 0 20 01.13.14 18:20 1,2-Dibromoethane (EDB) 01.13.14 18:20 50 50 100 50 100 0 20 < 0.79 66-136 ug/L 1,2-Dichlorobenzene < 0.73 50 49 98 48 96 70-124 2 20 ug/L 01.13.14 18:20 50 50 49 98 2 01.13.14 18:20 1,2-Dichloroethane < 0.82100 71 - 14320 ug/L ug/L 1,2-Dichloropropane < 0.81 50 49 98 48 96 74-125 2 20 01.13.14 18:20 73-123 01.13.14 18:20 49 49 0 20 ug/L 1,3-Dichlorobenzene < 0.7450 98 98 01.13.14 18:20 1,4-Dichlorobenzene < 0.59 50 48 96 48 96 74-116 0 20 ug/L 100 100 96 96 43-155 4 20 01.13.14 18:20 2-Butanone (MEK) < 1.3 100 ug/L 2-Hexanone < 2.5 100 100 100 99 99 52-148 1 20 ug/L 01.13.14 18:20 98 01.13.14 18:20 < 2.2 100 100 98 61-141 2 20 4-Methyl-2-pentanone (MIBK) 100 ug/L Acetone <1.4 100 100 100 96 96 40-140 4 20 ug/L 01.13.14 18:20 Benzene < 0.67 50 49 98 47 94 78-117 4 20 ug/L 01.13.14 18:20 ug/L Bromochloromethane < 0.47 50 51 102 50 100 65-127 2 20 01.13.14 18:20 Bromodichloromethane 50 50 100 49 71-133 2 20 01.13.14 18:20 < 0.96 98 ug/L 48 0 01 13 14 18:20 Bromoform <1.4 50 96 48 96 55-129 20 ug/L 50 55 52 104 49-157 20 01.13.14 18:20 Bromomethane < 2.7 110 6 ug/L 50 01.13.14 18:20 Carbon disulfide < 0.73 50 100 49 98 31-142 2 20 ug/L 50 50 47 94 20 ug/L 01.13.14 18:20 Carbon tetrachloride < 0.89 100 63-152 6 50 49 48 96 2 20 01.13.14 18:20 Chlorobenzene < 0.59 98 75-117 ug/L Chloroethane < 0.23 50 52 104 52 104 49-147 0 20 01.13.14 18:20 ug/L 01.13.14 18:20 Chloroform <1.4 50 51 102 50 100 67-136 2 20 ug/L 43 37 01.13.14 18:20 Chloromethane 50 86 74 35-162 15 20 < 1.2ug/L 01.13.14 18:20 50 50 49 cis-1,2-Dichloroethene < 0.80 100 98 64-132 2 20 ug/L cis-1,3-Dichloropropene 50 51 102 49 98 69-116 4 20 01.13.14 18:20 < 0.76 ug/L 7 01.13.14 18:20 Cyclohexane < 0.99 50 46 92 43 86 59-141 20 ug/L 50 49 98 49 98 54-144 0 20 ug/L 01.13.14 18:20 Dibromochloromethane < 0.79 48 43 01.13.14 18:20 Dichlorodifluoromethane 50 96 86 26-171 11 20 < 0.73 ug/L Ethylbenzene 50 48 96 47 94 74-131 2 20 ug/L 01.13.14 18:20 < 0.66 49 01.13.14 18:20 Isopropylbenzene <1.0 50 98 48 96 63-133 2 20 ug/L 100 98 98 95 ug/L 01.13.14 18:20 m,p-Xylenes <1.2 95 67-134 3 20 01.13.14 18:20 49 98 92 65-135 20 Methyl acetate < 0.15 50 46 6 ug/L 01.13.14 18:20 Methyl tert-butyl ether 100 100 100 100 100 51-156 0 20 < 0.62ug/L 01.13.14 18:20 Methylcyclohexane < 0.76 50 54 108 51 102 62-123 6 20 ug/L 50 50 100 47 94 52-165 20 01.13.14 18:20 Methylene chloride 6 < 0.92ug/L 20 01.13.14 18:20 Naphthalene 50 45 90 45 90 31-151 0 ug/L < 4.0o-Xylene < 0.57 50 49 98 48 96 70-125 2 20 ug/L 01.13.14 18:20 01.13.14 18:20 Styrene < 0.56 50 49 98 48 96 42-145 2 20 ug/L 50 49 98 48 96 57-132 2 20 01.13.14 18:20 Tetrachloroethene < 1.8 ug/L 50 48 47 94 76-119 2 20 01.13.14 18:20 Toluene < 0.68 96 ug/L trans-1,2-Dichloroethene < 0.73 50 49 98 47 94 46-152 4 20 ug/L 01.13.14 18:20 trans-1,3-Dichloropropene < 0.84 50 49 98 49 98 60-132 0 20 ug/L 01.13.14 18:20 Trichloroethene < 0.7250 51 102 49 98 77-120 4 20 ug/L 01.13.14 18:20 Trichlorofluoromethane < 0.85 50 53 106 50 100 47-165 6 20 ug/L 01.13.14 18:20 Vinyl chloride < 0.15 50 46 92 44 88 43-148 4 20 ug/L 01.13.14 18:20

Atlanta Environmental Management

Aramark - Dekalb (Dekalb Ave)

Analytical Method: VOCs by SW-846 8260B

Prep Method: SW5030B Seq Number: 931893 Matrix: Ground Water Date Prep: 01.13.14 Parent Sample Id: 477225-001 MS Sample Id: 477225-001 S MSD Sample Id: 477225-001 SD

Surrogate	MS %Rec	MS Flag	MSD %Rec	MSD Flag	Limits	Units	Analysis Date
1,2-Dichloroethane-D4	100		100		53-159	%	01.13.14 18:20
4-Bromofluorobenzene	100		100		30-186	%	01.13.14 18:20
Toluene-D8	98		100		70-130	%	01.13.14 18:20

Atlanta Environmental Management

Aramark - Dekalb (Dekalb Ave)

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

 Seq Number:
 931887
 Matrix:
 Ground Water
 Date Prep:
 01.13.14

 Parent Sample Id:
 477183-024
 MS Sample Id:
 477183-024 S
 MSD Sample Id:
 477183-024 SD

Parent Sample Id: 47/183-024 Wis Sample Id. 47/183-024 S						Sampi	e Iu. 4//	103-024 SD				
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,1,1-Trichloroethane	< 0.34	50	56	112	56	112	63-149	0	20	ug/L	01.13.14 12:29	
1,1,2,2-Tetrachloroethane	< 2.0	50	58	116	62	124	58-140	7	20	ug/L	01.13.14 12:29	
1,1,2-Trichloro-1,2,2-trifluoroethane	< 0.97	50	57	114	57	114	42-156	0	20	ug/L	01.13.14 12:29	
1,1,2-Trichloroethane	< 0.88	50	57	114	59	118	49-140	3	20	ug/L	01.13.14 12:29	
1,1-Dichloroethane	< 0.74	50	53	106	53	106	67-136	0	20	ug/L	01.13.14 12:29	
1,1-Dichloroethene	< 0.98	50	56	112	58	116	52-141	4	20	ug/L	01.13.14 12:29	
1,2,3-Trichlorobenzene	< 2.6	50	57	114	58	116	50-131	2	20	ug/L	01.13.14 12:29	
1,2,4-Trichlorobenzene	<1.3	50	54	108	56	112	51-125	4	20	ug/L	01.13.14 12:29	
1,2-Dibromo-3-chloropropane (DBCP)	< 2.8	50	59	118	61	122	43-155	3	20	ug/L	01.13.14 12:29	
1,2-Dibromoethane (EDB)	< 0.79	50	56	112	60	120	66-136	7	20	ug/L	01.13.14 12:29	
1,2-Dichlorobenzene	< 0.73	50	53	106	55	110	70-124	4	20	ug/L	01.13.14 12:29	
1,2-Dichloroethane	< 0.82	50	54	108	56	112	71-143	4	20	ug/L	01.13.14 12:29	
1,2-Dichloropropane	< 0.81	50	51	102	54	108	74-125	6	20	ug/L	01.13.14 12:29	
1,3-Dichlorobenzene	< 0.74	50	53	106	56	112	73-123	6	20	ug/L	01.13.14 12:29	
1,4-Dichlorobenzene	< 0.59	50	52	104	54	108	74-116	4	20	ug/L	01.13.14 12:29	
2-Butanone (MEK)	<1.3	100	130	130	150	150	43-155	14	20	ug/L	01.13.14 12:29	
2-Hexanone	<2.5	100	130	130	140	140	52-148	7	20	ug/L	01.13.14 12:29	
4-Methyl-2-pentanone (MIBK)	<2.2	100	130	130	140	140	61-141	7	20	ug/L	01.13.14 12:29	
Acetone	<1.4	100	130	130	100	100	40-140	26	20	ug/L	01.13.14 12:29	F
Benzene	< 0.67	50	50	100	53	106	78-117	6	20	ug/L	01.13.14 12:29	
Bromochloromethane	< 0.47	50	58	116	59	118	65-127	2	20	ug/L	01.13.14 12:29	
Bromodichloromethane	< 0.96	50	56	112	58	116	71-133	4	20	ug/L	01.13.14 12:29	
Bromoform	<1.4	50	52	104	55	110	55-129	6	20	ug/L	01.13.14 12:29	
Bromomethane	<2.7	50	56	112	60	120	49-157	7	20	ug/L	01.13.14 12:29	
Carbon disulfide	< 0.73	50	58	116	61	122	31-142	5	20	ug/L	01.13.14 12:29	
Carbon tetrachloride	< 0.89	50	61	122	64	128	63-152	5	20	ug/L	01.13.14 12:29	
Chlorobenzene	< 0.59	50	53	106	54	108	75-117	2	20	ug/L	01.13.14 12:29	
Chloroethane	< 0.23	50	55	110	59	118	49-147	7	20	ug/L	01.13.14 12:29	
Chloroform	<1.4	50	53	106	54	108	67-136	2	20	ug/L	01.13.14 12:29	
Chloromethane	<1.2	50	50	100	54	108	35-162	8	20	ug/L	01.13.14 12:29	
cis-1,2-Dichloroethene	< 0.80	50	52	104	55	110	64-132	6	20	ug/L	01.13.14 12:29	
cis-1,3-Dichloropropene	< 0.76	50	52	104	55	110	69-116	6	20	ug/L	01.13.14 12:29	
Cyclohexane	<0.99	50	53	106	54	108	59-141	2	20	ug/L	01.13.14 12:29	
Dibromochloromethane	< 0.79	50	52	104	54	108	54-144	4	20	ug/L	01.13.14 12:29	
Dichlorodifluoromethane	< 0.73	50	52	104	51	102	26-171	2	20	ug/L	01.13.14 12:29	
Ethylbenzene Ethylbenzene	< 0.66	50	53	106	55	110	74-131	4	20	ug/L	01.13.14 12:29	
Isopropylbenzene	<1.0	50	52	104	54	108	63-133	4	20	ug/L ug/L	01.13.14 12:29	
m,p-Xylenes	<1.2	100	110	110	110	110	67-134	0	20	ug/L ug/L	01.13.14 12:29	
Methyl acetate	<0.15	50	56	112	38	76	65-135	38	20	ug/L ug/L	01.13.14 12:29	F
Methyl tert-butyl ether	<0.13	100	110	110	87	87	51-156	23	20	ug/L ug/L	01.13.14 12:29	F
Methylcyclohexane	<0.02	50	53	106	54	108	62-123	2	20	ug/L ug/L	01.13.14 12:29	1.
Methylene chloride	<0.70	50	56	112	55	110	52-165	2	20	ug/L ug/L	01.13.14 12:29	
Naphthalene	<4.0	50	64	128	66	132	31-151	3	20	ug/L ug/L	01.13.14 12:29	
o-Xylene	<0.57	50	54	108	55	110	70-125	2	20	ug/L ug/L	01.13.14 12:29	
Styrene	<0.56	50	56	112	57	110	42-145	2	20	ug/L ug/L	01.13.14 12:29	
Tetrachloroethene	<1.8	50	51	102	52	104	57-132	2	20	-	01.13.14 12:29	
Toluene							76-119			ug/L	01.13.14 12:29	
trans-1,2-Dichloroethene	<0.68 <0.73	50 50	51 55	102 110	53 45	106 90	46-152	4 20	20 20	ug/L	01.13.14 12:29	
,		50 50								ug/L	01.13.14 12:29	
trans-1,3-Dichloropropene	<0.84	50	55 54	110	59 56	118	60-132	7	20	ug/L	01.13.14 12:29	
Trichloroethene Trichlorofluoromethane	<0.72	50 50	54 57	108	56 57	112	77-120	4	20	ug/L	01.13.14 12:29	
	<0.85	50	57 52	114	57 55	114	47-165	0	20	ug/L		
Vinyl chloride	< 0.15	50	52	104	55	110	43-148	6	20	ug/L	01.13.14 12:29	

Atlanta Environmental Management

Aramark - Dekalb (Dekalb Ave)

Analytical Method: VOCs by SW-846 8260B

Prep Method: SW5030B Seq Number: 931887 Matrix: Ground Water Date Prep: 01.13.14 Parent Sample Id: 477183-024 MS Sample Id: 477183-024 S MSD Sample Id: 477183-024 SD

Surrogate	MS %Rec	MS Flag	MSD %Rec	MSD Flag	Limits	Units	Analysis Date
1,2-Dichloroethane-D4	102		98		53-159	%	01.13.14 12:29
4-Bromofluorobenzene	96		96		30-186	%	01.13.14 12:29
Toluene-D8	98		98		70-130	%	01.13.14 12:29

QC Summary 477225

Atlanta Environmental Management

Aramark - Dekalb (Dekalb Ave)

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

 Seq Number:
 932045
 Matrix:
 Ground Water
 Date Prep:
 01.15.14

 Parent Sample Id:
 477297-001
 MS Sample Id:
 477297-001 S
 MSD Sample Id:
 477297-001 SD

Parent Sample Id: 4//29/-00	int Sample Id: 47/297-001 Mis Sample Id. 47/297-001 S											
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,1,1-Trichloroethane	< 0.34	50	43	86	35	70	63-149	21	20	ug/L	01.15.14 17:06	F
1,1,2,2-Tetrachloroethane	< 2.0	50	49	98	44	88	58-140	11	20	ug/L	01.15.14 17:06	
1,1,2-Trichloro-1,2,2-trifluoroethane	< 0.97	50	44	88	41	82	42-156	7	20	ug/L	01.15.14 17:06	
1,1,2-Trichloroethane	< 0.88	50	47	94	39	78	49-140	19	20	ug/L	01.15.14 17:06	
1,1-Dichloroethane	< 0.74	50	44	88	35	70	67-136	23	20	ug/L	01.15.14 17:06	F
1,1-Dichloroethene	< 0.98	50	42	84	35	70	52-141	18	20	ug/L	01.15.14 17:06	
1,2,3-Trichlorobenzene	<2.6	50	39	78	34	68	50-131	14	20	ug/L	01.15.14 17:06	
1,2,4-Trichlorobenzene	<1.3	50	37	74	31	62	51-125	18	20	ug/L	01.15.14 17:06	
1,2-Dibromo-3-chloropropane (DBCP)	<2.8	50	45	90	44	88	43-155	2	20	ug/L	01.15.14 17:06	
1,2-Dibromoethane (EDB)	< 0.79	50	47	94	40	80	66-136	16	20	ug/L	01.15.14 17:06	
1,2-Dichlorobenzene	< 0.73	50	43	86	35	70	70-124	21	20	ug/L	01.15.14 17:06	F
1,2-Dichloroethane	< 0.82	50	46	92	37	74	71-143	22	20	ug/L	01.15.14 17:06	F
1,2-Dichloropropane	< 0.81	50	45	90	35	70	74-125	25	20	ug/L	01.15.14 17:06	XF
1,3-Dichlorobenzene	< 0.74	50	42	84	34	68	73-123	21	20	ug/L	01.15.14 17:06	XF
1,4-Dichlorobenzene	< 0.59	50	42	84	34	68	74-116	21	20	ug/L	01.15.14 17:06	XF
2-Butanone (MEK)	<1.3	100	100	100	94	94	43-155	6	20	ug/L	01.15.14 17:06	
2-Hexanone	<2.5	100	100	100	95	95	52-148	5	20	ug/L	01.15.14 17:06	
4-Methyl-2-pentanone (MIBK)	<2.2	100	100	100	93	93	61-141	7	20	ug/L	01.15.14 17:06	
Acetone (MIBIL)	<1.4	100	100	100	97	97	40-140	3	20	ug/L	01.15.14 17:06	
Benzene	< 0.67	50	43	86	35	70	78-117	21	20	ug/L ug/L	01.15.14 17:06	XF
Bromochloromethane	< 0.47	50	46	92	37	74	65-127	22	20	ug/L ug/L	01.15.14 17:06	F
Bromodichloromethane	<0.47	50	45	90	36	72	71-133	22	20	ug/L ug/L	01.15.14 17:06	F
Bromoform	<1.4	50	48	96	42	84	55-129	13	20	ug/L ug/L	01.15.14 17:06	1
Bromomethane	<2.7	50	47	94	36	72	49-157	27	20	ug/L ug/L	01.15.14 17:06	F
Carbon disulfide	<0.73	50	41	82	33	66	31-142	22	20	ug/L ug/L	01.15.14 17:06	F
Carbon tetrachloride	<0.73	50	41	82	33	66	63-152	22	20	ug/L ug/L	01.15.14 17:06	F
Chlorobenzene	< 0.59	50	42	84	34	68	75-117	21	20	_	01.15.14 17:06	XF
Chloroethane	<0.23	50	45	90	36	72	49-147	22	20	ug/L	01.15.14 17:06	F
Chloroform	<0.23	50	45	90			67-136	22	20	ug/L	01.15.14 17:06	г F
	<1.4	50	40	80	36 35	72	35-162			ug/L	01.15.14 17:06	Г
Chloromethane	<0.80	50		90	35	70	64-132	13	20	ug/L	01.15.14 17:06	F
cis-1,2-Dichloroethene			45			70		25	20	ug/L	01.15.14 17:06	г F
cis-1,3-Dichloropropene	<0.76	50 50	46 34	92 68	36 31	72	69-116	24 9	20	ug/L		r X
Cyclohexane	< 0.99					62	59-141		20	ug/L	01.15.14 17:06	л F
Dibromochloromethane	< 0.79	50	46	92	37	74	54-144	22	20	ug/L	01.15.14 17:06	Г
Dichlorodifluoromethane	< 0.73	50	44	88	38	76	26-171	15	20	ug/L	01.15.14 17:06 01.15.14 17:06	WE
Ethylbenzene	< 0.66	50	41	82	33	66	74-131	22	20	ug/L		XF
Isopropylbenzene	<1.0	50	40	80	33	66	63-133	19	20	ug/L	01.15.14 17:06	X
m,p-Xylenes	<1.2	100	82	82	67	67	67-134	20	20	ug/L	01.15.14 17:06	X
Methyl acetate	< 0.15	50	48	96	43	86	65-135	11	20	ug/L	01.15.14 17:06	
Methyl tert-butyl ether	< 0.62	100	97	97	80	80	51-156	19	20	ug/L	01.15.14 17:06	
Methylcyclohexane	<0.76	50	39	78	38	76	62-123	3	20	ug/L	01.15.14 17:06	
Methylene chloride	< 0.92	50	44	88	35	70	52-165	23	20	ug/L	01.15.14 17:06	F
Naphthalene	<4.0	50	38	76	36	72	31-151	5	20	ug/L	01.15.14 17:06	***
o-Xylene	< 0.57	50	41	82	33	66	70-125	22	20	ug/L	01.15.14 17:06	XF
Styrene	< 0.56	50	42	84	34	68	42-145	21	20	ug/L	01.15.14 17:06	F
Tetrachloroethene	<1.8	50	41	82	34	68	57-132	19	20	ug/L	01.15.14 17:06	
Toluene	< 0.68	50	42	84	33	66	76-119	24	20	ug/L	01.15.14 17:06	XF
trans-1,2-Dichloroethene	< 0.73	50	43	86	35	70	46-152	21	20	ug/L	01.15.14 17:06	F
trans-1,3-Dichloropropene	< 0.84	50	45	90	37	74	60-132	20	20	ug/L	01.15.14 17:06	
Trichloroethene	< 0.72	50	42	84	34	68	77-120	21	20	ug/L	01.15.14 17:06	XF
Trichlorofluoromethane	< 0.85	50	43	86	37	74	47-165	15	20	ug/L	01.15.14 17:06	
Vinyl chloride	< 0.15	50	42	84	36	72	43-148	15	20	ug/L	01.15.14 17:06	

QC Summary 477225

Atlanta Environmental Management

Aramark - Dekalb (Dekalb Ave)

Analytical Method: VOCs by SW-846 8260B

Prep Method: SW5030B Seq Number: 932045 Matrix: Ground Water Date Prep: 01.15.14 Parent Sample Id: 477297-001 MS Sample Id: 477297-001 S MSD Sample Id: 477297-001 SD

Surrogate	MS %Rec	MS Flag	MSD %Rec	MSD Flag	Limits	Units	Analysis Date
1,2-Dichloroethane-D4	102		106		53-159	%	01.15.14 17:06
4-Bromofluorobenzene	102		106		30-186	%	01.15.14 17:06
Toluene-D8	98		100		70-130	%	01.15.14 17:06

XENCO LABO ATORIES

Page 6017 Financial Drive, Norcross, GA 30071

Turnaround Time Requested:

Phone # (770) 449-8800 Fax # (770) 449-5477

CHAIN OF CUSTODY

4						CARRARIA OR C	COLOD	ж					1 11	OIIO II	(,,	٠, ٠.	., 00	700 Tan (70) 117 217
	Company Name:	Atlanta Environm	enta	al M	anage	ment		Billi	ing addr	ess:	258	30 No:	rthea	st Ex	pres	sway	, At	lanta, GA 303	345
	Address: 2580	Northeast Express	way	, A	lanta,	GA 30345	-	P.O	# (if re	quire	l):								
	Results Sent to: (Clie	ent Contact): Har	d C	op;	/ (Mai	l) to Leona Miles		For	Labora	atory	Us	e On	ly:			AAL	LIM	S System ID:	5672
	Email address: EDD	to leona-miles@a	em	-ne	t.com			QC	Level:	1 2 3	4	CLP-	Like		Rece	eiver'	's Ini	itials/Temp:	3.76,
	Contact Phone #:	404-329-9006				Fax #: 404-329-20	57	Cus	tody Sea	l(s):_		Υl	T	`ape		AAI	Wc	ork Order#	177225
	Project (Site) Name:	ARAMARK DeK	alb							Aı	aly:	sis Re	ques	ted		,,			
		1133-1401-3				Preservation Cod	le: (See below)	1											
	Sampler(s): (signature)	ß				Sampler(s): (printed)													
1	ony of Low	h				long L Golden		8260B											
	,		osite		irix elow)			\$ 826											XENCO Lab ID:
	Sample ID#	Sample Date / Time	Comp	Grab	Matrix (See below)	Sample Location	No. of Containers	00 00 00 00											Lao io.
	mw-401	11914, 1401		X	Ch	610 Delicilo Ave	2	X											_
?	mw-405	1/9/14 1520		X	GW	670 Dehallo Av	ə	У											
}	mw-210	1/9/14, 1530		X	GW	690 Dekelb Aug	2	Х											
ļ	mw-211	1914, 1700		X	GW	690 Dehalh Ave	2	Х											
•	mw-208P	1914, 1633		×	GW	670 DeKall AVC	2	X											
Ì	mw-202	1/10/14,1049		X	(div	670 Dohalb aux	d	У											_
,	mw-110	1/10/14, 1110		X	GW	690 behalf Ave)	X											_
}	mw-111	1/10/14, 1225		X	لانمای	670 Dehelb Avr	J	X											-
)	mw-409	1/10/14, 1428		×	GW	670 Dehalb Aur	a	χ											-
0	mw-409D	1/10/14/1309		X	6W	670 Dehalb Au	d	У											_
R	elinquished By:	south,	1	//i	Date / 7	Time 2) Received By:	1	***************************************	0	1 1		/ Tim 1 7 1	3			•	•	cle One) AAL Pickup (Tandy Other

Matrix Guide: (W=Water) (DW = Drinking Water) (GW = Groundwater) (SW = Surface Water) (L = Liquid) (O = Oil) (S = Soil) (SD = Solid) (SL = Sludge) (A = Air) (C = Air Cartridge) Preservation Codes: 1 = HCL / 2 = HNO₃ / 3 = H₂SO₄ / 4 = NaOH + NaAsO₂ / 5 = NaOH + ZnAc / 6 = Na₂S₂O₃ / 7 = NaHSO₄ / 8 = MeOH

4) Received By:

Date / Time

Page 47 of 50

3) Relinquished By:

Laboratories

XENCO LAB(ATORIES

Page 2 of 2

6017 Financial Drive, Norcross, GA 30071 Phone # (770) 449-8800 Fax # (770) 449-5477

CHAIN OF CUSTODY

	Company Name: Atlanta Environmental Management							Bill	ing a	ddres	ss:	2580) No	rthea	st Ex	kpres	sway	/, At	lanta, GA 30)345			
	Address: 2580	Northeast Express	way	, A	tlanta,	GA 30	345			P.O	.# (i	f requ	uired):									_
	Results Sent to: (Clie	ent Contact): Har	d C	ору	y (Mai	l) to L	eona M	iles		For	Lal	orat	tory	Use	On	ly:			AAL	LIM	S System ID:	8672	
	Email address: EDI) to leona-miles@a	ıem	-ne	t.com					QC	Leve	d: 1	2 3	4 (CLP-	Like		Rec	eiver	's Ini	itials/Temp:	3.76	N
	Contact Phone #:	404-329-9006				Fax #	: 4	404-329-20	57	Cus	tody	Seal	(s):		ΥÌ	T			AAl	. Wo	ork Order#	477225	
	Project (Site) Name:	ARAMARK DeK	alb						•				An	alysi	s Re	ques	ted						
	Project Number:	1133-1401-3					Pr	eservation Cod	te: (See below)	1													
	Sampler(s): (signature) Sampler(s): (printed) Tony L Gordin				?	JB																	
Line No.	/ Sample ID #	Sample Date / Time	Composite	Grab	Matrix (See below)	Sa	mple L	ocation	No. of Containers	VOCs 8260B												XENCO Lab ID:	
1	mw-214	1/10/14, 1525		×	GW	670	Doka'y	h Ave	2	Χ												*****	
2	mw - 204	1/10/14, 1608		×	GJ.	N	b	l (2	X													
3	Trip Blank	arlac		×	W	`-			J.	X												*****	
4																						_	
5																						_	
6								*****														_	
7																						_	
8																						_	
9																							
10																							
	elinquished By:	2 Couls						eived By:	-	I		01	/lc		1:	7:7	Deli Fed	Ex/[JPS/I	DHL		Hand Other	
3) K	elinquished By:			L	Date / T	ime	4) Kece	eived By:					L	Date /	Lim	e		`]	urna S)	roun	nd Time Req	inested:	

Final 1.000

Page 48 of 50

Matrix Guide: (W=Water) (DW = Drinking Water) (GW = Groundwater) (SW = Surface Water) (L = Liquid) (O = Oil) (S = Soil) (SD = Soild) (SL = Sludge) (A = Air) (C = Air Cartridge) Preservation Codes: $1 = HCL / 2 = HNO_3 / 3 = H_2SO_4 / 4 = NaOH + NaAsO_2 / 5 = NaOH + ZnAc / 6 = Na_2S_2O_3 / 7 = NaHSO_4 / 8 = MeOH$

Analyst:

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: Atlanta Environmental Management

Date/ Time Received: 01/10/2014 05:20:00 PM

Work Order #: 477225

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Temperature Measuring device used: #61

Sample Receipt Checklis	t	Comments
#1 *Temperature of cooler(s)?	3.7	
#2 *Shipping container in good condition?	Yes	
#3 *Samples received on ice?	Yes	
#4 *Custody Seals intact on shipping container/ cooler?	Yes	
#5 Custody Seals intact on sample bottles?	N/A	
#6 *Custody Seals Signed and dated?	Yes	
#7 *Chain of Custody present?	Yes	
#8 Sample instructions complete on Chain of Custody?	Yes	
#9 Any missing/extra samples?	No	
#10 Chain of Custody signed when relinquished/ received?	Yes	
#11 Chain of Custody agrees with sample label(s)?	Yes	
#12 Container label(s) legible and intact?	Yes	
#13 Sample matrix/ properties agree with Chain of Custody?	Yes	
#14 Samples in proper container/ bottle?	Yes	
#15 Samples properly preserved?	Yes	
#16 Sample container(s) intact?	Yes	
#17 Sufficient sample amount for indicated test(s)?	Yes	
#18 All samples received within hold time?	Yes	
#19 Subcontract of sample(s)?	No	
#20 VOC samples have zero headspace (less than 1/4 inch bubble)?	Yes	
#21 <2 for all samples preserved with HNO3,HCL, H2SO4?	N/A	
#22 >10 for all samples preserved with NaAsO2+NaOH, ZnAc+NaOH?	N/A	

Must be completed for after-hours deliver	ry of samples prior	r to placing in the refrigerate	٥r
---	---------------------	---------------------------------	----

PH Device/Lot#:

Checklist completed by:	Dario Lagunas	Date: <u>01/11/2014</u>
Checklist reviewed by:	Elen D. Buhan J.	Date: 01/13/2014

Eben Buchanan

Analytical Report 477297

for

Atlanta Environmental Management

Project Manager: Leona Miles

Aramark - Dekalb

1133-1401-3

17-JAN-14

Collected By: Client

6017 Financial Dr., Norcross, GA 30071 Ph:(770) 449-8800 Fax:(770) 449-5477

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-13-15-TX), Arizona (AZ0765), Florida (E871002), Louisiana (03054) New Jersey (TX007), North Carolina(681), Oklahoma (9218), Pennsylvania (68-03610)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135) Louisiana (04176), USDA (P330-07-00105)

Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900)

Xenco-Lakeland: Florida (E84098)

Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX) Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

Page 1 of 28

17-JAN-14

Project Manager: **Leona Miles Atlanta Environmental Management**2580 Northeast Expressway
Atlanta, GA 30345

Reference: XENCO Report No(s): 477297

Aramark - Dekalb Project Address: GA

Leona Miles:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 477297. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 477297 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Eben Buchanan

ben D. Buchancon

Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Sample Cross Reference 477297

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-402	W	01-13-14 11:15		477297-001
MW-109	W	01-13-14 13:10		477297-002
MW-212	W	01-13-14 13:22		477297-003
MW-213	W	01-13-14 11:20		477297-004
MW-213 Dup	W	01-13-14 11:20		477297-005
MW-403	W	01-13-14 14:35		477297-006
Trip Blank	W	01-13-14 00:00		477297-007

CASE NARRATIVE

Client Name: Atlanta Environmental Management

Project Name: Aramark - Dekalb

 Project ID:
 1133-1401-3
 Report Date:
 17-JAN-14

 Work Order Number(s):
 477297
 Date Received:
 01/14/2014

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-932045 VOCs by SW-846 8260B

1,2,4-Trichlorobenzene, 1,2-Dichloropropane, 1,3-Dichlorobenzene, 1,4-Dichlorobenzene, Benzene, Bromodichloromethane, Chlorobenzene, Cyclohexane, Ethylbenzene, Isopropylbenzene, Toluene, Trichloroethene, m,p-Xylenes, o-Xylene recovered below QC limits in the Matrix Spike Duplicate. Samples affected are: 477297-001.

The Laboratory Control Sample for 1,2-Dichloropropane, 1,3-Dichlorobenzene, Bromodichloromethane, Isopropylbenzene, Toluene, Trichloroethene, 1,4-Dichlorobenzene, Benzene, m,p-Xylenes, Ethylbenzene, o-Xylene, 1,2,4-Trichlorobenzene, Chlorobenzene, Cyclohexane is within laboratory Control Limits

1,1,1-Trichloroethane, 1,1-Dichloroethane, 1,2-Dichlorobenzene, 1,2-Dichloroethane, 1,2-Dichloropropane, 1,3-Dichlorobenzene, 1,4-Dichlorobenzene, Benzene, Bromochloromethane, Bromodichloromethane, Bromomethane, Carbon disulfide, Carbon tetrachloride, Chlorobenzene, Chloroethane, Chloroform, Dibromochloromethane, Ethylbenzene, Methylene chloride, Styrene, Toluene, Trichloroethene, cis-1,2-Dichloroethene, cis-1,3-Dichloropropene, o-Xylene, trans-1,2-Dichloroethene MS/MSD RPD was outside QC limits.

Samples affected are: 477297-001.

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb

Sample Id: MW-212 Matrix: Ground Water % Moisture:

Lab Sample Id : 477297-003 Date Collected : 01.13.14 13.22 Date Received : 01.14.14 16.55

Analytical Method : VOCs by SW-846 8260B Prep Method: SW5030B

Parameter	Cas Number	Result	Units	Analysis Date	Flag	Dil
2-Butanone (MEK)	78-93-3	71	ug/L	01.15.14 12.27		1
Acetone	67-64-1	280	ug/L	01.15.14 12.27		1
cis-1,2-Dichloroethene	156-59-2	61	ug/L	01.15.14 12.27		1
Tetrachloroethene	127-18-4	110	ug/L	01.15.14 12.27		1
Trichloroethene	79-01-6	17	ug/L	01.15.14 12.27		1
Vinyl chloride	75-01-4	4.8	ug/L	01.15.14 12.27		1

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb

Sample Id: MW-213 Matrix: Ground Water % Moisture:

Lab Sample Id : 477297-004 Date Collected : 01.13.14 11.20 Date Received : 01.14.14 16.55

Analytical Method : VOCs by SW-846 8260B Prep Method: SW5030B

Parameter	Cas Number	Result	Units	Analysis Date	Flag	Dil
cis-1,2-Dichloroethene	156-59-2	1000	ug/L	01.15.14 13.53	D	10
Tetrachloroethene	127-18-4	100	ug/L	01.15.14 12.55		1
trans-1,2-Dichloroethene	156-60-5	7.0	ug/L	01.15.14 12.55		1
Trichloroethene	79-01-6	49	ug/L	01.15.14 12.55		1
Vinyl chloride	75-01-4	6.4	ug/L	01.15.14 12.55		1

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb

Sample Id: MW-213 Dup Matrix: Ground Water % Moisture:

Lab Sample Id : 477297-005 Date Collected : 01.13.14 11.20 Date Received : 01.14.14 16.55

Analytical Method : VOCs by SW-846 8260B Prep Method: SW5030B

Parameter	Cas Number	Result	Units	Analysis Date	Flag	Dil
cis-1,2-Dichloroethene	156-59-2	930	ug/L	01.15.14 14.23	D	10
Tetrachloroethene	127-18-4	88	ug/L	01.15.14 13.23		1
trans-1,2-Dichloroethene	156-60-5	6.5	ug/L	01.15.14 13.23		1
Trichloroethene	79-01-6	43	ug/L	01.15.14 13.23		1
Vinyl chloride	75-01-4	5.4	ug/L	01.15.14 13.23		1

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb

Sample Id: MW-403 Matrix: Ground Water % Moisture:

Lab Sample Id : 477297-006 Date Collected : 01.13.14 14.35 Date Received : 01.14.14 16.55

Analytical Method : VOCs by SW-846 8260B Prep Method: SW5030B

Parameter	Cas Number	Result	Units	Analysis Date	Flag	Dil
cis-1,2-Dichloroethene	156-59-2	24	ug/L	01.15.14 11.33		1
Vinyl chloride	75-01-4	80	ug/L	01.15.14 11.33		1

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb

Sample Id: MW-402 Matrix: Ground Water Date Received:01.14.14 16.55

Lab Sample Id: 477297-001 Date Collected: 01.13.14 11.15

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: JOL % Moisture:

Analyst: MLA Date Prep: 01.15.14 06.39

1,1,1-Trichloroethane 71-55-6 1,1,2,2-Tetrachloroethane 79-34-5 1,1,2-Trichloro-1,2,2-trifluoroethane 76-13-1 1,1,2-Trichloroethane 79-00-5 1,1-Dichloroethane 75-34-3 1,1-Dichloroethene 75-35-4 1,2,3-Trichlorobenzene 87-61-6 1,2,4-Trichlorobenzene 120-82-1 1,2-Dibromo-3-chloropropane (DBCP) 96-12-8	BRL	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	01.15.14 10.39 01.15.14 10.39 01.15.14 10.39 01.15.14 10.39 01.15.14 10.39 01.15.14 10.39 01.15.14 10.39 01.15.14 10.39 01.15.14 10.39 01.15.14 10.39	U U U U U U U U	1 1 1 1 1 1 1 1
1,1,2-Trichloro-1,2,2-trifluoroethane 76-13-1 1,1,2-Trichloroethane 79-00-5 1,1-Dichloroethane 75-34-3 1,1-Dichloroethene 75-35-4 1,2,3-Trichlorobenzene 87-61-6 1,2,4-Trichlorobenzene 120-82-1	BRL BRL BRL BRL BRL BRL BRL BRL	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	01.15.14 10.39 01.15.14 10.39 01.15.14 10.39 01.15.14 10.39 01.15.14 10.39 01.15.14 10.39 01.15.14 10.39	U U U U U U	1 1 1 1 1 1
1,1,2-Trichloroethane 79-00-5 1,1-Dichloroethane 75-34-3 1,1-Dichloroethene 75-35-4 1,2,3-Trichlorobenzene 87-61-6 1,2,4-Trichlorobenzene 120-82-1	BRL BRL BRL BRL BRL BRL BRL	5.0 5.0 5.0 5.0 5.0 5.0 5.0	ug/L ug/L ug/L ug/L ug/L ug/L	01.15.14 10.39 01.15.14 10.39 01.15.14 10.39 01.15.14 10.39 01.15.14 10.39 01.15.14 10.39	U U U U U	1 1 1 1 1 1
1,1-Dichloroethane 75-34-3 1,1-Dichloroethene 75-35-4 1,2,3-Trichlorobenzene 87-61-6 1,2,4-Trichlorobenzene 120-82-1	BRL BRL BRL BRL BRL BRL	5.0 5.0 5.0 5.0 5.0 5.0	ug/L ug/L ug/L ug/L ug/L	01.15.14 10.39 01.15.14 10.39 01.15.14 10.39 01.15.14 10.39 01.15.14 10.39	U U U U	1 1 1 1 1
1,1-Dichloroethene 75-35-4 1,2,3-Trichlorobenzene 87-61-6 1,2,4-Trichlorobenzene 120-82-1	BRL BRL BRL BRL BRL BRL	5.0 5.0 5.0 5.0 5.0	ug/L ug/L ug/L ug/L	01.15.14 10.39 01.15.14 10.39 01.15.14 10.39 01.15.14 10.39	U U U U	1 1 1
1,2,3-Trichlorobenzene 87-61-6 1,2,4-Trichlorobenzene 120-82-1	BRL BRL BRL BRL BRL	5.0 5.0 5.0 5.0	ug/L ug/L ug/L	01.15.14 10.39 01.15.14 10.39 01.15.14 10.39	U U U	1 1 1
1,2,4-Trichlorobenzene 120-82-1	BRL BRL BRL BRL	5.0 5.0 5.0	ug/L ug/L	01.15.14 10.39 01.15.14 10.39	U U	1
	BRL BRL BRL	5.0 5.0	ug/L	01.15.14 10.39	U	1
1,2-Dibromo-3-chloropropane (DBCP) 96-12-8	BRL BRL	5.0				-
	BRL		ug/L	01 15 14 10 39	TT	
1,2-Dibromoethane (EDB) 106-93-4		5.0		01.13.14 10.37	U	1
1,2-Dichlorobenzene 95-50-1	BRL		ug/L	01.15.14 10.39	U	1
1,2-Dichloroethane 107-06-2		5.0	ug/L	01.15.14 10.39	U	1
1,2-Dichloropropane 78-87-5	BRL	5.0	ug/L	01.15.14 10.39	U	1
1,3-Dichlorobenzene 541-73-1	BRL	5.0	ug/L	01.15.14 10.39	U	1
1,4-Dichlorobenzene 106-46-7	BRL	5.0	ug/L	01.15.14 10.39	U	1
2-Butanone (MEK) 78-93-3	BRL	50	ug/L	01.15.14 10.39	U	1
2-Hexanone 591-78-6	BRL	50	ug/L	01.15.14 10.39	U	1
4-Methyl-2-pentanone (MIBK) 108-10-1	BRL	50	ug/L	01.15.14 10.39	U	1
Acetone 67-64-1	BRL	50	ug/L	01.15.14 10.39	U	1
Benzene 71-43-2	BRL	5.0	ug/L	01.15.14 10.39	U	1
Bromochloromethane 74-97-5	BRL	5.0	ug/L	01.15.14 10.39	U	1
Bromodichloromethane 75-27-4	BRL	5.0	ug/L	01.15.14 10.39	U	1
Bromoform 75-25-2	BRL	5.0	ug/L	01.15.14 10.39	U	1
Bromomethane 74-83-9	BRL	5.0	ug/L	01.15.14 10.39	U	1
Carbon disulfide 75-15-0	BRL	5.0	ug/L	01.15.14 10.39	U	1
Carbon tetrachloride 56-23-5	BRL	5.0	ug/L	01.15.14 10.39	U	1
Chlorobenzene 108-90-7	BRL	5.0	ug/L	01.15.14 10.39	U	1
Chloroethane 75-00-3	BRL	4.0	ug/L	01.15.14 10.39	U	1
Chloroform 67-66-3	BRL	5.0	ug/L	01.15.14 10.39	U	1
Chloromethane 74-87-3	BRL	5.0	ug/L	01.15.14 10.39	U	1
cis-1,2-Dichloroethene 156-59-2	BRL	5.0	ug/L	01.15.14 10.39	U	1
cis-1,3-Dichloropropene 10061-01-5	BRL	5.0	ug/L	01.15.14 10.39	U	1
Cyclohexane 110-82-7	BRL	5.0	ug/L	01.15.14 10.39	U	1
Dibromochloromethane 124-48-1	BRL	5.0	ug/L	01.15.14 10.39	U	1
Dichlorodifluoromethane 75-71-8	BRL	5.0	ug/L	01.15.14 10.39	U	1
Ethylbenzene 100-41-4	BRL	5.0	ug/L	01.15.14 10.39	U	1
Isopropylbenzene 98-82-8	BRL	5.0	ug/L	01.15.14 10.39	U	1
m,p-Xylenes 179601-23-1	BRL	5.0	ug/L	01.15.14 10.39	U	1
Methyl acetate 79-20-9	BRL	5.0	ug/L	01.15.14 10.39	U	1

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb

Sample Id: MW-402 Matrix: Ground Water Date Received:01.14.14 16.55

Lab Sample Id: 477297-001 Date Collected: 01.13.14 11.15

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: JOL % Moisture:

Analyst: MLA Date Prep: 01.15.14 06.39

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Methyl tert-butyl ether	1634-04-4	BRL	5.0		ug/L	01.15.14 10.39	U	1
Methylcyclohexane	108-87-2	BRL	5.0		ug/L	01.15.14 10.39	U	1
Methylene chloride	75-09-2	BRL	5.0		ug/L	01.15.14 10.39	U	1
Naphthalene	91-20-3	BRL	5.0		ug/L	01.15.14 10.39	U	1
o-Xylene	95-47-6	BRL	5.0		ug/L	01.15.14 10.39	U	1
Styrene	100-42-5	BRL	5.0		ug/L	01.15.14 10.39	U	1
Tetrachloroethene	127-18-4	BRL	5.0		ug/L	01.15.14 10.39	U	1
Toluene	108-88-3	BRL	5.0		ug/L	01.15.14 10.39	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	5.0		ug/L	01.15.14 10.39	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	5.0		ug/L	01.15.14 10.39	U	1
Trichloroethene	79-01-6	BRL	5.0		ug/L	01.15.14 10.39	U	1
Trichlorofluoromethane	75-69-4	BRL	5.0		ug/L	01.15.14 10.39	U	1
Vinyl chloride	75-01-4	BRL	2.0		ug/L	01.15.14 10.39	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,2-Dichloroethane-D4		17060-07-0	104	%	53-159	01.15.14 10.39		
4-Bromofluorobenzene		460-00-4	104	%	30-186	01.15.14 10.39		
Toluene-D8		2037-26-5	100	%	70-130	01.15.14 10.39		

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb

Sample Id: MW-109 Matrix: Ground Water Date Received:01.14.14 16.55

Lab Sample Id: 477297-002 Date Collected: 01.13.14 13.10

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: JOL % Moisture:

Analyst: MLA Date Prep: 01.15.14 06.39

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1-Trichloroethane	71-55-6	BRL	5.0	ug/L	01.15.14 11.05	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	5.0	ug/L	01.15.14 11.05	U	1
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	BRL	5.0	ug/L	01.15.14 11.05	U	1
1,1,2-Trichloroethane	79-00-5	BRL	5.0	ug/L	01.15.14 11.05	U	1
1,1-Dichloroethane	75-34-3	BRL	5.0	ug/L	01.15.14 11.05	U	1
1,1-Dichloroethene	75-35-4	BRL	5.0	ug/L	01.15.14 11.05	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	5.0	ug/L	01.15.14 11.05	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	5.0	ug/L	01.15.14 11.05	U	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	BRL	5.0	ug/L	01.15.14 11.05	U	1
1,2-Dibromoethane (EDB)	106-93-4	BRL	5.0	ug/L	01.15.14 11.05	U	1
1,2-Dichlorobenzene	95-50-1	BRL	5.0	ug/L	01.15.14 11.05	U	1
1,2-Dichloroethane	107-06-2	BRL	5.0	ug/L	01.15.14 11.05	U	1
1,2-Dichloropropane	78-87-5	BRL	5.0	ug/L	01.15.14 11.05	U	1
1,3-Dichlorobenzene	541-73-1	BRL	5.0	ug/L	01.15.14 11.05	U	1
1,4-Dichlorobenzene	106-46-7	BRL	5.0	ug/L	01.15.14 11.05	U	1
2-Butanone (MEK)	78-93-3	BRL	50	ug/L	01.15.14 11.05	U	1
2-Hexanone	591-78-6	BRL	50	ug/L	01.15.14 11.05	U	1
4-Methyl-2-pentanone (MIBK)	108-10-1	BRL	50	ug/L	01.15.14 11.05	U	1
Acetone	67-64-1	BRL	50	ug/L	01.15.14 11.05	U	1
Benzene	71-43-2	BRL	5.0	ug/L	01.15.14 11.05	U	1
Bromochloromethane	74-97-5	BRL	5.0	ug/L	01.15.14 11.05	U	1
Bromodichloromethane	75-27-4	BRL	5.0	ug/L	01.15.14 11.05	U	1
Bromoform	75-25-2	BRL	5.0	ug/L	01.15.14 11.05	U	1
Bromomethane	74-83-9	BRL	5.0	ug/L	01.15.14 11.05	U	1
Carbon disulfide	75-15-0	BRL	5.0	ug/L	01.15.14 11.05	U	1
Carbon tetrachloride	56-23-5	BRL	5.0	ug/L	01.15.14 11.05	U	1
Chlorobenzene	108-90-7	BRL	5.0	ug/L	01.15.14 11.05	U	1
Chloroethane	75-00-3	BRL	4.0	ug/L	01.15.14 11.05	U	1
Chloroform	67-66-3	BRL	5.0	ug/L	01.15.14 11.05	U	1
Chloromethane	74-87-3	BRL	5.0	ug/L	01.15.14 11.05	U	1
cis-1,2-Dichloroethene	156-59-2	BRL	5.0	ug/L	01.15.14 11.05	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	5.0	ug/L	01.15.14 11.05	U	1
Cyclohexane	110-82-7	BRL	5.0	ug/L	01.15.14 11.05	U	1
Dibromochloromethane	124-48-1	BRL	5.0	ug/L	01.15.14 11.05	U	1
Dichlorodifluoromethane	75-71-8	BRL	5.0	ug/L	01.15.14 11.05	U	1
Ethylbenzene	100-41-4	BRL	5.0	ug/L	01.15.14 11.05	U	1
Isopropylbenzene	98-82-8	BRL	5.0	ug/L	01.15.14 11.05	U	1
m,p-Xylenes	179601-23-1	BRL	5.0	ug/L	01.15.14 11.05	U	1
Methyl acetate	79-20-9	BRL	5.0	ug/L	01.15.14 11.05	U	1

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb

Sample Id: MW-109 Matrix: Ground Water Date Received:01.14.14 16.55

Lab Sample Id: 477297-002 Date Collected: 01.13.14 13.10

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: JOL % Moisture:

Analyst: MLA Date Prep: 01.15.14 06.39

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Methyl tert-butyl ether	1634-04-4	BRL	5.0		ug/L	01.15.14 11.05	U	1
Methylcyclohexane	108-87-2	BRL	5.0		ug/L	01.15.14 11.05	U	1
Methylene chloride	75-09-2	BRL	5.0		ug/L	01.15.14 11.05	U	1
Naphthalene	91-20-3	BRL	5.0		ug/L	01.15.14 11.05	U	1
o-Xylene	95-47-6	BRL	5.0		ug/L	01.15.14 11.05	U	1
Styrene	100-42-5	BRL	5.0		ug/L	01.15.14 11.05	U	1
Tetrachloroethene	127-18-4	BRL	5.0		ug/L	01.15.14 11.05	U	1
Toluene	108-88-3	BRL	5.0		ug/L	01.15.14 11.05	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	5.0		ug/L	01.15.14 11.05	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	5.0		ug/L	01.15.14 11.05	U	1
Trichloroethene	79-01-6	BRL	5.0		ug/L	01.15.14 11.05	U	1
Trichlorofluoromethane	75-69-4	BRL	5.0		ug/L	01.15.14 11.05	U	1
Vinyl chloride	75-01-4	BRL	2.0		ug/L	01.15.14 11.05	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,2-Dichloroethane-D4		17060-07-0	102	%	53-159	01.15.14 11.05		
4-Bromofluorobenzene		460-00-4	104	%	30-186	01.15.14 11.05		
Toluene-D8		2037-26-5	98	%	70-130	01.15.14 11.05		

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb

Sample Id: MW-212 Matrix: Ground Water Date Received:01.14.14 16.55

Lab Sample Id: 477297-003 Date Collected: 01.13.14 13.22

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: JOL % Moisture:

Analyst: MLA Date Prep: 01.15.14 06.39

I.I.1-Trichloroethane	Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1.1.2-Trichloro-1.2-Arithworethane 76-13-1 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.1.2-Trichloroethane 79-00.5 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.1-Dichloroethane 75-34-3 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.1-Dichloroethane 75-35-4 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.2.3-Trichloroethene 120-81 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.2.3-Trichloroethenene 120-82-1 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.2.3-Trichloroethenene 120-82-1 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.2.3-Trichloroethenene 120-82-1 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.2.3-Trichloroethenene 100-93-4 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.2.3-Trichloroethenene 100-93-4 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.2.3-Trichloroethenene 107-06-2 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.2.3-Trichloroethenene 107-06-2 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.2.3-Trichloroethenene 107-06-2 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.2.3-Trichloroethenene 107-06-2 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.2.3-Trichloroethenene 106-46-7 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.2.3-Trichloroethenene 106-46-7 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.2.3-Trichloroethenene 106-46-7 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.2.3-Trichloroethenene 106-46-7 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.2.3-Trichloroethenene 106-46-7 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.2.3-Trichloroethenene 108-04 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.2.3-Trichloroethenene 108-04 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.2.3-Trichloroethenene 108-04 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.2.3-Trichloroethenene 108-04 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.2.3-Trichloroethenene 108-04 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.2.3-Trichloroethene 108-04 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.2.3-Trichloroethene 108-04 BRL 5.0	1,1,1-Trichloroethane	71-55-6	BRL	5.0	ug/L	01.15.14 12.27	U	1
1,12-Prichloroethane 79-00-5 BRL 5.0 ug/L 0.115.14 12.27 U 1 1.1-Dichloroethane 75-34-3 BRL 5.0 ug/L 0.115.14 12.27 U 1 1.1-Dichloroethane 75-35-4 BRL 5.0 ug/L 0.115.14 12.27 U 1 1.1-Dichloroethane 75-35-4 BRL 5.0 ug/L 0.115.14 12.27 U 1 1.2-A-Trichlorobenzene 120-82-1 BRL 5.0 ug/L 0.115.14 12.27 U 1 1.2-Dichloroethane (BCD) 96-12-8 BRL 5.0 ug/L 0.115.14 12.27 U 1 1.2-Dichlorobenzene (BCD) 160-93-4 BRL 5.0 ug/L 0.115.14 12.27 U 1 1.2-Dichlorobenzene (BDB) 106-93-4 BRL 5.0 ug/L 0.115.14 12.27 U 1 1.2-Dichlorobenzene 107-06-2 BRL 5.0 ug/L 0.115.14 12.27 U 1 1.2-Dichlorobenzene 107-06-2 BRL 5.0 ug/L 0.115.14 12.27 U 1 1.2-Dichlorobenzene 58-75-1 BRL 5.0 ug/L 0.115.14 12.27 U 1 1.3-Dichlorobenzene 541-73-1 BRL 5.0 ug/L 0.115.14 12.27 U 1 1.3-Dichlorobenzene 541-73-1 BRL 5.0 ug/L 0.115.14 12.27 U 1 1.3-Dichlorobenzene 541-73-1 BRL 5.0 ug/L 0.115.14 12.27 U 1 1.3-Dichlorobenzene 591-78-6 BRL 5.0 ug/L 0.115.14 12.27 U 1 1.3-Dichlorobenzene 591-78-6 BRL 5.0 ug/L 0.115.14 12.27 U 1 1.3-Dichlorobenzene 591-78-6 BRL 5.0 ug/L 0.115.14 12.27 U 1 1.3-Dichlorobenzene 591-78-6 BRL 5.0 ug/L 0.115.14 12.27 U 1 1.3-Dichlorobenzene 74-97-5 BRL 5.0 ug/L 0.115.14 12.27 U 1 1.3-Dichlorobenzene 74-97-5 BRL 5.0 ug/L 0.115.14 12.27 U 1 1.3-Dichlorobenzene 74-97-5 BRL 5.0 ug/L 0.115.14 12.27 U 1 1.3-Dichlorobenzene 75-27-4 BRL 5.0 ug/L 0.115.14 12.27 U 1 1.3-Dichlorobenzene 74-83-9 BRL 5.0 ug/L 0.115.14 12.27 U 1 1.3-Dichlorobenzene 75-18-0 BRL 5.0 ug/L 0.115.14 12.27 U 1 1.3-Dichlorobenzene 108-90-7 BRL 5.0 ug/L 0.115.14 12.27 U 1 1.3-Dichlorobenzene 108-90-7 BRL 5.0 ug/L 0.115.14 12.27 U 1 1.3-Dichlorobenzene 108-90-7 BRL	1,1,2,2-Tetrachloroethane	79-34-5	BRL	5.0	ug/L	01.15.14 12.27	U	1
Displayments Disp	1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	BRL	5.0	ug/L	01.15.14 12.27	U	1
1.1-Dichloroethene	1,1,2-Trichloroethane	79-00-5	BRL	5.0	ug/L	01.15.14 12.27	U	1
1.2.3-Trichlorobenzene 120-82-1 BRL 5.0 ugl. 0.1.5.1.4 12.27 U 1.2.4	1,1-Dichloroethane	75-34-3	BRL	5.0	ug/L	01.15.14 12.27	U	1
12-4-Trichlorobenzene 120-82-1 BRL 5.0 ugL 0.1.51.4 1.2.7 U 1.2.0	1,1-Dichloroethene	75-35-4	BRL	5.0	ug/L	01.15.14 12.27	U	1
Description	1,2,3-Trichlorobenzene	87-61-6	BRL	5.0	ug/L	01.15.14 12.27	U	1
1.2-Dibromoethane (EDB) 106-93-4 BRL 5.0 ug/L 01.15.14 12.27 U 1 1.2-Dichlorobenzene 95-50-1 BRL 5.0 ug/L 01.15.14 12.27 U 1 1 1.2-Dichloroethane 107-06-2 BRL 5.0 ug/L 01.15.14 12.27 U 1 1 1.2-Dichloroethane 170-06-2 BRL 5.0 ug/L 01.15.14 12.27 U 1 1 1.2-Dichloroethane 541-73-1 BRL 5.0 ug/L 01.15.14 12.27 U 1 1 1.3-Dichloroethane 106-46-7 BRL 5.0 ug/L 01.15.14 12.27 U 1 1 1.3-Dichloroethane 106-46-7 BRL 5.0 ug/L 01.15.14 12.27 U 1 1 1.3-Dichloroethane 591-78-6 BRL 5.0 ug/L 01.15.14 12.27 U 1 1 1 1 1 1 1 1 1	1,2,4-Trichlorobenzene	120-82-1	BRL	5.0	ug/L	01.15.14 12.27	U	1
1.2-Dichlorobenzene 95-50-1 BRL 5.0 ug/L 0.1.15.14 12.27 U 1 1.2-Dichlorocthane 107-06-2 BRL 5.0 ug/L 0.1.15.14 12.27 U 1 1.2-Dichloropropane 78-87-5 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.3-Dichlorobenzene 541-73-1 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.3-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.4-Dichlorobenzene 591-78-6 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.4-Dichlorobenzene 67-64-1 280 50 ug/L 0.1.5.14 12.27 U 1 1.4-Dichlorobenzene 67-64-1 280 50 ug/L 0.1.5.14 12.27 U 1 1.4-Dichlorobenzene 71-43-2 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.4-Dichlorobenzene 74-97-5 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.4-Dichlorobenzene 75-27-4 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.4-Dichlorobenzene 75-27-2 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1 1.4-Dichlorobenzene 75-25-2 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1 1.4-Dichlorobenzene 75-15-0 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1 1.4-Dichlorobenzene 108-90-7 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1 1.4-Dichlorobenzene 108-90-7 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1 1 1.4-Dichlorobenzene 75-00-3 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1 1 1 1 1 1 1 1	1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	BRL	5.0	ug/L	01.15.14 12.27	U	1
1,2-Dichloroethane 107-06-2 BRL 5.0 ug/L 01.51.412.27 U 1 1,2-Dichloropropane 78-87-5 BRL 5.0 ug/L 01.15.1412.27 U 1 1,3-Dichlorobenzene 541-73-1 BRL 5.0 ug/L 01.15.1412.27 U 1 2-Butanone (MEK) 78-93-3 71 50 ug/L 01.15.1412.27 U 1 2-Hexanone 591-78-6 BRL 50 ug/L 01.15.1412.27 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 01.15.1412.27 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 01.15.1412.27 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 01.15.1412.27 U 1 4-Methyl-2-pentanone (MIBK) 71-43-2 BRL 50 ug/L 01.15.1412.27 U 1 4-Methyl-2-pentanone (MIBK) 71-43-2 BRL	1,2-Dibromoethane (EDB)	106-93-4	BRL	5.0	ug/L	01.15.14 12.27	U	1
1.2-Dichloropropane 78-87-5 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.3-Dichlorobenzene 541-73-1 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.4-Dichlorobenzene 591-78-6 BRL 50 ug/L 0.1.5.14 12.27 U 1 1.4-Dichlorobenzene 591-78-6 BRL 50 ug/L 0.1.5.14 12.27 U 1 1.4-Dichlorobenzene 67-64-1 280 50 ug/L 0.1.5.14 12.27 U 1 1.4-Dichlorobenzene 71-43-2 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.4-Dichlorobenzene 71-43-2 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.4-Dichlorobenzene 75-27-4 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.4-Dichlorobenzene 75-27-4 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.4-Dichlorobenzene 75-25-2 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.4-Dichlorobenzene 75-25-2 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.4-Dichlorobenzene 75-15-0 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.4-Dichlorobenzene 108-90-7 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.4-Dichlorobenzene 108-90-7 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.4-Dichlorobenzene 108-90-7 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.4-Dichlorobene 75-00-3 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.4-Dichlorobene 75-00-3 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.4-Dichlorobene 106-10-5 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.4-Dichlorobene 100-10-5 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.4-Dichlorobene 100-10-5 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.4-Dichlorobene 100-10-5 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.4-Dichlorobene 100-10-5 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.4-Dichlorobene 100-10-5 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.4-Dichlorobene 100-10-5 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 1.4-Dichlorobene 100-10-5 BRL 5.0 ug/L 0.1.5.14 12.27 U 1.4-Dichlorob	1,2-Dichlorobenzene	95-50-1	BRL	5.0	ug/L	01.15.14 12.27	U	1
1.3-Dichlorobenzene 541-73-1 BRL 5.0 ug/L 01.15.14 12.27 U 1 1.4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 01.15.14 12.27 U 1 2.5 2.5 2.5 Ug/L 01.15.14 12.27 U 1 2.5 Ug/L 01.15.14 12.27 U 1	1,2-Dichloroethane	107-06-2	BRL	5.0	ug/L	01.15.14 12.27	U	1
1,4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 01.15.14 12.27 U 1 2-Butanone (MEK) 78-93-3 71 50 ug/L 01.15.14 12.27 U 1 2-Hexanone 591-78-6 BRL 50 ug/L 01.15.14 12.27 U 1 2-Hexanone (MIBK) 108-10-1 BRL 50 ug/L 01.15.14 12.27 U 1 2-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 01.15.14 12.27 U 1 2-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 01.15.14 12.27 U 1 2-Methyl-2-pentanone (MIBK) 115-14 12.27 U 1	1,2-Dichloropropane	78-87-5	BRL	5.0	ug/L	01.15.14 12.27	U	1
2-Butanone (MEK) 78-93-3 71 50 ug/L 0.1.5.14 12.27 U 1 2-Hexanone 591-78-6 BRL 50 ug/L 0.1.5.14 12.27 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 0.1.5.14 12.27 U 1 Actone 67-64-1 280 50 ug/L 0.1.5.14 12.27 U 1 Benzene 71-43-2 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 Bromochloromethane 74-97-5 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 Bromofiloromethane 75-27-4 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 Bromoform 75-25-2 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 0.1.5.14 12.27 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 0.1.5.14 12.27	1,3-Dichlorobenzene	541-73-1	BRL	5.0	ug/L	01.15.14 12.27	U	1
2-Hexanone 591-78-6 BRL 50 ug/L 01.15.14 12.27 U 1 4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 01.15.14 12.27 U 1 Acetone 67-64-1 280 50 ug/L 01.15.14 12.27 U 1 Benzene 71-43-2 BRL 5.0 ug/L 01.15.14 12.27 U 1 Bromochloromethane 74-97-5 BRL 5.0 ug/L 01.15.14 12.27 U 1 Bromochloromethane 75-27-4 BRL 5.0 ug/L 01.15.14 12.27 U 1 Bromofform 75-25-2 BRL 5.0 ug/L 01.15.14 12.27 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 01.15.14 12.27 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 01.15.14 12.27 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 01.15.	1,4-Dichlorobenzene	106-46-7	BRL	5.0	ug/L	01.15.14 12.27	U	1
4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 01.15.14 12.27 U 1 Acetone 67-64-1 280 50 ug/L 01.15.14 12.27 U 1 Benzene 71-43-2 BRL 5.0 ug/L 01.15.14 12.27 U 1 Bromochloromethane 74-97-5 BRL 5.0 ug/L 01.15.14 12.27 U 1 Bromodichloromethane 75-27-4 BRL 5.0 ug/L 01.15.14 12.27 U 1 Bromoform 75-25-2 BRL 5.0 ug/L 01.15.14 12.27 U 1 Bromomethane 75-25-2 BRL 5.0 ug/L 01.15.14 12.27 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 01.15.14 12.27 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 01.15.14 12.27 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 01.15.14 12.2	2-Butanone (MEK)	78-93-3	71	50	ug/L	01.15.14 12.27		1
Acetone 67-64-1 280 50 ug/L 01.15.14 12.27 1 Benzene 71-43-2 BRL 5.0 ug/L 01.15.14 12.27 U 1 Bromochloromethane 74-97-5 BRL 5.0 ug/L 01.15.14 12.27 U 1 Bromodichloromethane 75-27-4 BRL 5.0 ug/L 01.15.14 12.27 U 1 Bromoform 75-27-2 BRL 5.0 ug/L 01.15.14 12.27 U 1 Bromomethane 74-83-9 BRL 5.0 ug/L 01.15.14 12.27 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 01.15.14 12.27 U 1 Carbon disulfide 56-23-5 BRL 5.0 ug/L 01.15.14 12.27 U 1 Carbon disulfide 56-23-5 BRL 5.0 ug/L 01.15.14 12.27 U 1 Chloromethane 75-00-3 BRL 5.0 ug/L 01.15.14 12.27 U	2-Hexanone	591-78-6	BRL	50	ug/L	01.15.14 12.27	U	1
Benzene 71-43-2 BRL 5.0 ug/L 01.15.14 12.27 U 1 Bromochloromethane 74-97-5 BRL 5.0 ug/L 01.15.14 12.27 U 1 Bromodichloromethane 75-27-4 BRL 5.0 ug/L 01.15.14 12.27 U 1 Bromoform 75-25-2 BRL 5.0 ug/L 01.15.14 12.27 U 1 Bromomethane 74-83-9 BRL 5.0 ug/L 01.15.14 12.27 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 01.15.14 12.27 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 01.15.14 12.27 U 1 Chlorochane 108-90-7 BRL 5.0 ug/L 01.15.14 12.27 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 01.15.14 12.27 U 1 Chlorodihane 75-09-3 BRL 5.0 ug/L 01.15.14 12.27 </td <td>4-Methyl-2-pentanone (MIBK)</td> <td>108-10-1</td> <td>BRL</td> <td>50</td> <td>ug/L</td> <td>01.15.14 12.27</td> <td>U</td> <td>1</td>	4-Methyl-2-pentanone (MIBK)	108-10-1	BRL	50	ug/L	01.15.14 12.27	U	1
Bromochloromethane 74-97-5 BRL 5.0 ug/L 01.15.14 12.27 U 1 Bromodichloromethane 75-27-4 BRL 5.0 ug/L 01.15.14 12.27 U 1 Bromoform 75-25-2 BRL 5.0 ug/L 01.15.14 12.27 U 1 Bromomethane 74-83-9 BRL 5.0 ug/L 01.15.14 12.27 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 01.15.14 12.27 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 01.15.14 12.27 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 01.15.14 12.27 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 01.15.14 12.27 U 1 Chloroformethane 74-87-3 BRL 5.0 ug/L 01.15.14 12.27 U 1 Cis-1,3-Dichlorotethene 156-59-2 61 5.0 ug/L	Acetone	67-64-1	280	50	ug/L	01.15.14 12.27		1
Bromodichloromethane 75-27-4 BRL 5.0 ug/L 01.15.14 12.27 U 1 Bromoform 75-25-2 BRL 5.0 ug/L 01.15.14 12.27 U 1 Bromomethane 74-83-9 BRL 5.0 ug/L 01.15.14 12.27 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 01.15.14 12.27 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 01.15.14 12.27 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 01.15.14 12.27 U 1 Chloroform 75-00-3 BRL 4.0 ug/L 01.15.14 12.27 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 01.15.14 12.27 U 1 cis-1,2-Dichloroethene 156-59-2 61 5.0 ug/L 01.15.14 12.27 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L	Benzene	71-43-2	BRL	5.0	ug/L	01.15.14 12.27	U	1
Bromoform 75-25-2 BRL 5.0 ug/L 01.15.14 12.27 U 1 Bromomethane 74-83-9 BRL 5.0 ug/L 01.15.14 12.27 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 01.15.14 12.27 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 01.15.14 12.27 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 01.15.14 12.27 U 1 Chloroethane 75-00-3 BRL 4.0 ug/L 01.15.14 12.27 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 01.15.14 12.27 U 1 Cis-1,2-Dichloroethene 156-59-2 61 5.0 ug/L 01.15.14 12.27 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 01.15.14 12.27 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L <td< td=""><td>Bromochloromethane</td><td>74-97-5</td><td>BRL</td><td>5.0</td><td>ug/L</td><td>01.15.14 12.27</td><td>U</td><td>1</td></td<>	Bromochloromethane	74-97-5	BRL	5.0	ug/L	01.15.14 12.27	U	1
Bromomethane 74-83-9 BRL 5.0 ug/L 01.15.14 12.27 U 1 Carbon disulfide 75-15-0 BRL 5.0 ug/L 01.15.14 12.27 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 01.15.14 12.27 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 01.15.14 12.27 U 1 Chloroethane 75-00-3 BRL 4.0 ug/L 01.15.14 12.27 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 01.15.14 12.27 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 01.15.14 12.27 U 1 cis-1,3-Dichloropthene 156-59-2 61 5.0 ug/L 01.15.14 12.27 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 01.15.14 12.27 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L	Bromodichloromethane	75-27-4	BRL	5.0	ug/L	01.15.14 12.27	U	1
Carbon disulfide 75-15-0 BRL 5.0 ug/L 01.15.14 12.27 U 1 Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 01.15.14 12.27 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 01.15.14 12.27 U 1 Chloroethane 75-00-3 BRL 4.0 ug/L 01.15.14 12.27 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 01.15.14 12.27 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 01.15.14 12.27 U 1 cis-1,3-Dichloropropene 156-59-2 61 5.0 ug/L 01.15.14 12.27 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 01.15.14 12.27 U 1 Dichlorodifluoromethane 124-48-1 BRL 5.0 ug/L 01.15.14 12.27 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L	Bromoform	75-25-2	BRL	5.0	ug/L	01.15.14 12.27	U	1
Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 01.15.14 12.27 U 1 Chlorobenzene 108-90-7 BRL 5.0 ug/L 01.15.14 12.27 U 1 Chloroethane 75-00-3 BRL 4.0 ug/L 01.15.14 12.27 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 01.15.14 12.27 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 01.15.14 12.27 U 1 cis-1,3-Dichloropropene 156-59-2 61 5.0 ug/L 01.15.14 12.27 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 01.15.14 12.27 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 01.15.14 12.27 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 01.15.14 12.27 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L <t< td=""><td>Bromomethane</td><td>74-83-9</td><td>BRL</td><td>5.0</td><td>ug/L</td><td>01.15.14 12.27</td><td>U</td><td>1</td></t<>	Bromomethane	74-83-9	BRL	5.0	ug/L	01.15.14 12.27	U	1
Chlorobenzene 108-90-7 BRL 5.0 ug/L 01.15.14 12.27 U 1 Chloroethane 75-00-3 BRL 4.0 ug/L 01.15.14 12.27 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 01.15.14 12.27 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 01.15.14 12.27 U 1 cis-1,2-Dichloroethene 156-59-2 61 5.0 ug/L 01.15.14 12.27 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 01.15.14 12.27 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 01.15.14 12.27 U 1 Dichlorodifluoromethane 124-48-1 BRL 5.0 ug/L 01.15.14 12.27 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 01.15.14 12.27 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L	Carbon disulfide	75-15-0	BRL	5.0	ug/L	01.15.14 12.27	U	1
Chloroethane 75-00-3 BRL 4.0 ug/L 01.15.14 12.27 U 1 Chloroform 67-66-3 BRL 5.0 ug/L 01.15.14 12.27 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 01.15.14 12.27 U 1 cis-1,2-Dichloroethene 156-59-2 61 5.0 ug/L 01.15.14 12.27 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 01.15.14 12.27 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 01.15.14 12.27 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 01.15.14 12.27 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 01.15.14 12.27 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 01.15.14 12.27 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L	Carbon tetrachloride	56-23-5	BRL	5.0	ug/L	01.15.14 12.27	U	1
Chloroform 67-66-3 BRL 5.0 ug/L 01.15.14 12.27 U 1 Chloromethane 74-87-3 BRL 5.0 ug/L 01.15.14 12.27 U 1 cis-1,2-Dichloroethene 156-59-2 61 5.0 ug/L 01.15.14 12.27 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 01.15.14 12.27 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 01.15.14 12.27 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 01.15.14 12.27 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 01.15.14 12.27 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 01.15.14 12.27 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 01.15.14 12.27 U 1	Chlorobenzene	108-90-7	BRL	5.0	ug/L	01.15.14 12.27	U	1
Chloromethane 74-87-3 BRL 5.0 ug/L 01.15.14 12.27 U 1 cis-1,2-Dichloroethene 156-59-2 61 5.0 ug/L 01.15.14 12.27 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 01.15.14 12.27 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 01.15.14 12.27 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 01.15.14 12.27 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 01.15.14 12.27 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 01.15.14 12.27 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 01.15.14 12.27 U 1	Chloroethane	75-00-3	BRL	4.0	ug/L	01.15.14 12.27	U	1
cis-1,2-Dichloroethene 156-59-2 61 5.0 ug/L 01.15.14 12.27 U 1 cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 01.15.14 12.27 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 01.15.14 12.27 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 01.15.14 12.27 U 1 Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L 01.15.14 12.27 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 01.15.14 12.27 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 01.15.14 12.27 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 01.15.14 12.27 U 1	Chloroform	67-66-3	BRL	5.0	ug/L	01.15.14 12.27	U	1
cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 01.15.14 12.27 U 1 Cyclohexane 110-82-7 BRL 5.0 ug/L 01.15.14 12.27 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 01.15.14 12.27 U 1 Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L 01.15.14 12.27 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 01.15.14 12.27 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 01.15.14 12.27 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 01.15.14 12.27 U 1	Chloromethane	74-87-3	BRL	5.0	ug/L	01.15.14 12.27	U	1
Cyclohexane 110-82-7 BRL 5.0 ug/L 01.15.14 12.27 U 1 Dibromochloromethane 124-48-1 BRL 5.0 ug/L 01.15.14 12.27 U 1 Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L 01.15.14 12.27 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 01.15.14 12.27 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 01.15.14 12.27 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 01.15.14 12.27 U 1	cis-1,2-Dichloroethene	156-59-2	61	5.0	ug/L	01.15.14 12.27		1
Dibromochloromethane 124-48-1 BRL 5.0 ug/L 01.15.14 12.27 U 1 Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L 01.15.14 12.27 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 01.15.14 12.27 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 01.15.14 12.27 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 01.15.14 12.27 U 1	cis-1,3-Dichloropropene	10061-01-5	BRL	5.0	ug/L	01.15.14 12.27	U	1
Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L 01.15.14 12.27 U 1 Ethylbenzene 100-41-4 BRL 5.0 ug/L 01.15.14 12.27 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 01.15.14 12.27 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 01.15.14 12.27 U 1	Cyclohexane	110-82-7	BRL	5.0	ug/L	01.15.14 12.27	U	1
Ethylbenzene 100-41-4 BRL 5.0 ug/L 01.15.14 12.27 U 1 Isopropylbenzene 98-82-8 BRL 5.0 ug/L 01.15.14 12.27 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 01.15.14 12.27 U 1	Dibromochloromethane	124-48-1	BRL	5.0	ug/L	01.15.14 12.27	U	1
Isopropylbenzene 98-82-8 BRL 5.0 ug/L 01.15.14 12.27 U 1 m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 01.15.14 12.27 U 1	Dichlorodifluoromethane	75-71-8	BRL	5.0	ug/L	01.15.14 12.27	U	1
m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 01.15.14 12.27 U 1	Ethylbenzene	100-41-4	BRL	5.0	ug/L	01.15.14 12.27	U	1
4 7	Isopropylbenzene	98-82-8	BRL	5.0	ug/L	01.15.14 12.27	U	1
Methyl acetate 79-20-9 BRL 5.0 ug/L 01.15.14 12.27 U 1	m,p-Xylenes	179601-23-1	BRL	5.0	ug/L	01.15.14 12.27	U	1
	Methyl acetate	79-20-9	BRL	5.0	ug/L	01.15.14 12.27	U	1

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb

Sample Id: MW-212 Matrix: Ground Water Date Received:01.14.14 16.55

Lab Sample Id: 477297-003 Date Collected: 01.13.14 13.22

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: JOL % Moisture:

Analyst: MLA Date Prep: 01.15.14 06.39

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Methyl tert-butyl ether	1634-04-4	BRL	5.0		ug/L	01.15.14 12.27	U	1
Methylcyclohexane	108-87-2	BRL	5.0		ug/L	01.15.14 12.27	U	1
Methylene chloride	75-09-2	BRL	5.0		ug/L	01.15.14 12.27	U	1
Naphthalene	91-20-3	BRL	5.0		ug/L	01.15.14 12.27	U	1
o-Xylene	95-47-6	BRL	5.0		ug/L	01.15.14 12.27	U	1
Styrene	100-42-5	BRL	5.0		ug/L	01.15.14 12.27	U	1
Tetrachloroethene	127-18-4	110	5.0		ug/L	01.15.14 12.27		1
Toluene	108-88-3	BRL	5.0		ug/L	01.15.14 12.27	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	5.0		ug/L	01.15.14 12.27	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	5.0		ug/L	01.15.14 12.27	U	1
Trichloroethene	79-01-6	17	5.0		ug/L	01.15.14 12.27		1
Trichlorofluoromethane	75-69-4	BRL	5.0		ug/L	01.15.14 12.27	U	1
Vinyl chloride	75-01-4	4.8	2.0		ug/L	01.15.14 12.27		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,2-Dichloroethane-D4		17060-07-0	100	%	53-159	01.15.14 12.27		
4-Bromofluorobenzene		460-00-4	100	%	30-186	01.15.14 12.27		
Toluene-D8		2037-26-5	102	%	70-130	01.15.14 12.27		

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb

Sample Id: MW-213 Matrix: Ground Water Date Received:01.14.14 16.55

Lab Sample Id: 477297-004 Date Collected: 01.13.14 11.20

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: JOL % Moisture:

Analyst: MLA Date Prep: 01.15.14 06.39

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1-Trichloroethane	71-55-6	BRL	5.0	ug/L	01.15.14 12.55	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	5.0	ug/L	01.15.14 12.55	U	1
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	BRL	5.0	ug/L	01.15.14 12.55	U	1
1,1,2-Trichloroethane	79-00-5	BRL	5.0	ug/L	01.15.14 12.55	U	1
1,1-Dichloroethane	75-34-3	BRL	5.0	ug/L	01.15.14 12.55	U	1
1,1-Dichloroethene	75-35-4	BRL	5.0	ug/L	01.15.14 12.55	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	5.0	ug/L	01.15.14 12.55	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	5.0	ug/L	01.15.14 12.55	U	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	BRL	5.0	ug/L	01.15.14 12.55	U	1
1,2-Dibromoethane (EDB)	106-93-4	BRL	5.0	ug/L	01.15.14 12.55	U	1
1,2-Dichlorobenzene	95-50-1	BRL	5.0	ug/L	01.15.14 12.55	U	1
1,2-Dichloroethane	107-06-2	BRL	5.0	ug/L	01.15.14 12.55	U	1
1,2-Dichloropropane	78-87-5	BRL	5.0	ug/L	01.15.14 12.55	U	1
1,3-Dichlorobenzene	541-73-1	BRL	5.0	ug/L	01.15.14 12.55	U	1
1,4-Dichlorobenzene	106-46-7	BRL	5.0	ug/L	01.15.14 12.55	U	1
2-Butanone (MEK)	78-93-3	BRL	50	ug/L	01.15.14 12.55	U	1
2-Hexanone	591-78-6	BRL	50	ug/L	01.15.14 12.55	U	1
4-Methyl-2-pentanone (MIBK)	108-10-1	BRL	50	ug/L	01.15.14 12.55	U	1
Acetone	67-64-1	BRL	50	ug/L	01.15.14 12.55	U	1
Benzene	71-43-2	BRL	5.0	ug/L	01.15.14 12.55	U	1
Bromochloromethane	74-97-5	BRL	5.0	ug/L	01.15.14 12.55	U	1
Bromodichloromethane	75-27-4	BRL	5.0	ug/L	01.15.14 12.55	U	1
Bromoform	75-25-2	BRL	5.0	ug/L	01.15.14 12.55	U	1
Bromomethane	74-83-9	BRL	5.0	ug/L	01.15.14 12.55	U	1
Carbon disulfide	75-15-0	BRL	5.0	ug/L	01.15.14 12.55	U	1
Carbon tetrachloride	56-23-5	BRL	5.0	ug/L	01.15.14 12.55	U	1
Chlorobenzene	108-90-7	BRL	5.0	ug/L	01.15.14 12.55	U	1
Chloroethane	75-00-3	BRL	4.0	ug/L	01.15.14 12.55	U	1
Chloroform	67-66-3	BRL	5.0	ug/L	01.15.14 12.55	U	1
Chloromethane	74-87-3	BRL	5.0	ug/L	01.15.14 12.55	U	1
cis-1,2-Dichloroethene	156-59-2	1000	50	ug/L	01.15.14 13.53	D	10
cis-1,3-Dichloropropene	10061-01-5	BRL	5.0	ug/L	01.15.14 12.55	U	1
Cyclohexane	110-82-7	BRL	5.0	ug/L	01.15.14 12.55	U	1
Dibromochloromethane	124-48-1	BRL	5.0	ug/L	01.15.14 12.55	U	1
Dichlorodifluoromethane	75-71-8	BRL	5.0	ug/L	01.15.14 12.55	U	1
Ethylbenzene	100-41-4	BRL	5.0	ug/L	01.15.14 12.55	U	1
Isopropylbenzene	98-82-8	BRL	5.0	ug/L	01.15.14 12.55	U	1
m,p-Xylenes	179601-23-1	BRL	5.0	ug/L	01.15.14 12.55	U	1
Methyl acetate	79-20-9	BRL	5.0	ug/L	01.15.14 12.55	U	1

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb

Sample Id: MW-213 Matrix: Ground Water Date Received:01.14.14 16.55

Lab Sample Id: 477297-004 Date Collected: 01.13.14 11.20

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: JOL % Moisture:

Analyst: MLA Date Prep: 01.15.14 06.39

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Methyl tert-butyl ether	1634-04-4	BRL	5.0		ug/L	01.15.14 12.55	U	1
Methylcyclohexane	108-87-2	BRL	5.0		ug/L	01.15.14 12.55	U	1
Methylene chloride	75-09-2	BRL	5.0		ug/L	01.15.14 12.55	U	1
Naphthalene	91-20-3	BRL	5.0		ug/L	01.15.14 12.55	U	1
o-Xylene	95-47-6	BRL	5.0		ug/L	01.15.14 12.55	U	1
Styrene	100-42-5	BRL	5.0		ug/L	01.15.14 12.55	U	1
Tetrachloroethene	127-18-4	100	5.0		ug/L	01.15.14 12.55		1
Toluene	108-88-3	BRL	5.0		ug/L	01.15.14 12.55	U	1
trans-1,2-Dichloroethene	156-60-5	7.0	5.0		ug/L	01.15.14 12.55		1
trans-1,3-Dichloropropene	10061-02-6	BRL	5.0		ug/L	01.15.14 12.55	U	1
Trichloroethene	79-01-6	49	5.0		ug/L	01.15.14 12.55		1
Trichlorofluoromethane	75-69-4	BRL	5.0		ug/L	01.15.14 12.55	U	1
Vinyl chloride	75-01-4	6.4	2.0		ug/L	01.15.14 12.55		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,2-Dichloroethane-D4		17060-07-0	104	%	53-159	01.15.14 12.55		
4-Bromofluorobenzene		460-00-4	102	%	30-186	01.15.14 12.55		
Toluene-D8		2037-26-5	100	%	70-130	01.15.14 12.55		

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb

Sample Id: MW-213 Dup Matrix: Ground Water Date Received:01.14.14 16.55

Lab Sample Id: 477297-005 Date Collected: 01.13.14 11.20

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: JOL % Moisture:

Analyst: MLA Date Prep: 01.15.14 06.39

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1-Trichloroethane	71-55-6	BRL	5.0	ug/L	01.15.14 13.23	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	5.0	ug/L	01.15.14 13.23	U	1
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	BRL	5.0	ug/L	01.15.14 13.23	U	1
1,1,2-Trichloroethane	79-00-5	BRL	5.0	ug/L	01.15.14 13.23	U	1
1,1-Dichloroethane	75-34-3	BRL	5.0	ug/L	01.15.14 13.23	U	1
1,1-Dichloroethene	75-35-4	BRL	5.0	ug/L	01.15.14 13.23	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	5.0	ug/L	01.15.14 13.23	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	5.0	ug/L	01.15.14 13.23	U	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	BRL	5.0	ug/L	01.15.14 13.23	U	1
1,2-Dibromoethane (EDB)	106-93-4	BRL	5.0	ug/L	01.15.14 13.23	U	1
1,2-Dichlorobenzene	95-50-1	BRL	5.0	ug/L	01.15.14 13.23	U	1
1,2-Dichloroethane	107-06-2	BRL	5.0	ug/L	01.15.14 13.23	U	1
1,2-Dichloropropane	78-87-5	BRL	5.0	ug/L	01.15.14 13.23	U	1
1,3-Dichlorobenzene	541-73-1	BRL	5.0	ug/L	01.15.14 13.23	U	1
1,4-Dichlorobenzene	106-46-7	BRL	5.0	ug/L	01.15.14 13.23	U	1
2-Butanone (MEK)	78-93-3	BRL	50	ug/L	01.15.14 13.23	U	1
2-Hexanone	591-78-6	BRL	50	ug/L	01.15.14 13.23	U	1
4-Methyl-2-pentanone (MIBK)	108-10-1	BRL	50	ug/L	01.15.14 13.23	U	1
Acetone	67-64-1	BRL	50	ug/L	01.15.14 13.23	U	1
Benzene	71-43-2	BRL	5.0	ug/L	01.15.14 13.23	U	1
Bromochloromethane	74-97-5	BRL	5.0	ug/L	01.15.14 13.23	U	1
Bromodichloromethane	75-27-4	BRL	5.0	ug/L	01.15.14 13.23	U	1
Bromoform	75-25-2	BRL	5.0	ug/L	01.15.14 13.23	U	1
Bromomethane	74-83-9	BRL	5.0	ug/L	01.15.14 13.23	U	1
Carbon disulfide	75-15-0	BRL	5.0	ug/L	01.15.14 13.23	U	1
Carbon tetrachloride	56-23-5	BRL	5.0	ug/L	01.15.14 13.23	U	1
Chlorobenzene	108-90-7	BRL	5.0	ug/L	01.15.14 13.23	U	1
Chloroethane	75-00-3	BRL	4.0	ug/L	01.15.14 13.23	U	1
Chloroform	67-66-3	BRL	5.0	ug/L	01.15.14 13.23	U	1
Chloromethane	74-87-3	BRL	5.0	ug/L	01.15.14 13.23	U	1
cis-1,2-Dichloroethene	156-59-2	930	50	ug/L	01.15.14 14.23	D	10
cis-1,3-Dichloropropene	10061-01-5	BRL	5.0	ug/L	01.15.14 13.23	U	1
Cyclohexane	110-82-7	BRL	5.0	ug/L	01.15.14 13.23	U	1
Dibromochloromethane	124-48-1	BRL	5.0	ug/L	01.15.14 13.23	U	1
Dichlorodifluoromethane	75-71-8	BRL	5.0	ug/L	01.15.14 13.23	U	1
Ethylbenzene	100-41-4	BRL	5.0	ug/L	01.15.14 13.23	U	1
Isopropylbenzene	98-82-8	BRL	5.0	ug/L	01.15.14 13.23	U	1
m,p-Xylenes	179601-23-1	BRL	5.0	ug/L	01.15.14 13.23	U	1
Methyl acetate	79-20-9	BRL	5.0	ug/L	01.15.14 13.23	U	1

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb

Sample Id: MW-213 Dup Matrix: Ground Water Date Received:01.14.14 16.55

Lab Sample Id: 477297-005 Date Collected: 01.13.14 11.20

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: JOL % Moisture:

Analyst: MLA Date Prep: 01.15.14 06.39

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Methyl tert-butyl ether	1634-04-4	BRL	5.0		ug/L	01.15.14 13.23	U	1
Methylcyclohexane	108-87-2	BRL	5.0		ug/L	01.15.14 13.23	U	1
Methylene chloride	75-09-2	BRL	5.0		ug/L	01.15.14 13.23	U	1
Naphthalene	91-20-3	BRL	5.0		ug/L	01.15.14 13.23	U	1
o-Xylene	95-47-6	BRL	5.0		ug/L	01.15.14 13.23	U	1
Styrene	100-42-5	BRL	5.0		ug/L	01.15.14 13.23	U	1
Tetrachloroethene	127-18-4	88	5.0		ug/L	01.15.14 13.23		1
Toluene	108-88-3	BRL	5.0		ug/L	01.15.14 13.23	U	1
trans-1,2-Dichloroethene	156-60-5	6.5	5.0		ug/L	01.15.14 13.23		1
trans-1,3-Dichloropropene	10061-02-6	BRL	5.0		ug/L	01.15.14 13.23	U	1
Trichloroethene	79-01-6	43	5.0		ug/L	01.15.14 13.23		1
Trichlorofluoromethane	75-69-4	BRL	5.0		ug/L	01.15.14 13.23	U	1
Vinyl chloride	75-01-4	5.4	2.0		ug/L	01.15.14 13.23		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,2-Dichloroethane-D4		17060-07-0	102	%	53-159	01.15.14 13.23	~-8	
4-Bromofluorobenzene		460-00-4	104	%	30-186	01.15.14 13.23		
Toluene-D8		2037-26-5	100	%	70-130	01.15.14 13.23		

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb

Sample Id: MW-403 Matrix: Ground Water Date Received:01.14.14 16.55

Lab Sample Id: 477297-006 Date Collected: 01.13.14 14.35

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: JOL % Moisture:

Analyst: MLA Date Prep: 01.15.14 06.39

1,1,1-Trichloroethane 71-55-6 BRL 5.0 ug/L 01.15.14 11.33	U U	1
4400 m. 11 4 m. 200 m.	II	
1,1,2,2-Tetrachloroethane 79-34-5 BRL 5.0 ug/L 01.15.14 11.33	0	1
1,1,2-Trichloro-1,2,2-trifluoroethane 76-13-1 BRL 5.0 ug/L 01.15.14 11.33	U	1
1,1,2-Trichloroethane 79-00-5 BRL 5.0 ug/L 01.15.14 11.33	U	1
1,1-Dichloroethane 75-34-3 BRL 5.0 ug/L 01.15.14 11.33	U	1
1,1-Dichloroethene 75-35-4 BRL 5.0 ug/L 01.15.14 11.33	U	1
1,2,3-Trichlorobenzene 87-61-6 BRL 5.0 ug/L 01.15.14 11.33	U	1
1,2,4-Trichlorobenzene 120-82-1 BRL 5.0 ug/L 01.15.14 11.33	U	1
1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 BRL 5.0 ug/L 01.15.14 11.33	U	1
1,2-Dibromoethane (EDB) 106-93-4 BRL 5.0 ug/L 01.15.14 11.33	U	1
1,2-Dichlorobenzene 95-50-1 BRL 5.0 ug/L 01.15.14 11.33	U	1
1,2-Dichloroethane 107-06-2 BRL 5.0 ug/L 01.15.14 11.33	U	1
1,2-Dichloropropane 78-87-5 BRL 5.0 ug/L 01.15.14 11.33	U	1
1,3-Dichlorobenzene 541-73-1 BRL 5.0 ug/L 01.15.14 11.33	U	1
1,4-Dichlorobenzene 106-46-7 BRL 5.0 ug/L 01.15.14 11.33	U	1
2-Butanone (MEK) 78-93-3 BRL 50 ug/L 01.15.14 11.33	U	1
2-Hexanone 591-78-6 BRL 50 ug/L 01.15.14 11.33	U	1
4-Methyl-2-pentanone (MIBK) 108-10-1 BRL 50 ug/L 01.15.14 11.33	U	1
Acetone 67-64-1 BRL 50 ug/L 01.15.14 11.33	U	1
Benzene 71-43-2 BRL 5.0 ug/L 01.15.14 11.33	U	1
Bromochloromethane 74-97-5 BRL 5.0 ug/L 01.15.14 11.33	U	1
Bromodichloromethane 75-27-4 BRL 5.0 ug/L 01.15.14 11.33	U	1
Bromoform 75-25-2 BRL 5.0 ug/L 01.15.14 11.33	U	1
Bromomethane 74-83-9 BRL 5.0 ug/L 01.15.14 11.33	U	1
Carbon disulfide 75-15-0 BRL 5.0 ug/L 01.15.14 11.33	U	1
Carbon tetrachloride 56-23-5 BRL 5.0 ug/L 01.15.14 11.33	U	1
Chlorobenzene 108-90-7 BRL 5.0 ug/L 01.15.14 11.33	U	1
Chloroethane 75-00-3 BRL 4.0 ug/L 01.15.14 11.33	U	1
Chloroform 67-66-3 BRL 5.0 ug/L 01.15.14 11.33	U	1
Chloromethane 74-87-3 BRL 5.0 ug/L 01.15.14 11.33	U	1
cis-1,2-Dichloroethene 156-59-2 24 5.0 ug/L 01.15.14 11.33		1
cis-1,3-Dichloropropene 10061-01-5 BRL 5.0 ug/L 01.15.14 11.33	U	1
Cyclohexane 110-82-7 BRL 5.0 ug/L 01.15.14 11.33	U	1
Dibromochloromethane 124-48-1 BRL 5.0 ug/L 01.15.14 11.33	U	1
Dichlorodifluoromethane 75-71-8 BRL 5.0 ug/L 01.15.14 11.33	U	1
Ethylbenzene 100-41-4 BRL 5.0 ug/L 01.15.14 11.33	U	1
Isopropylbenzene 98-82-8 BRL 5.0 ug/L 01.15.14 11.33	U	1
m,p-Xylenes 179601-23-1 BRL 5.0 ug/L 01.15.14 11.33	U	1
Methyl acetate 79-20-9 BRL 5.0 ug/L 01.15.14 11.33	U	1

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb

Sample Id: MW-403 Matrix: Ground Water Date Received:01.14.14 16.55

Lab Sample Id: 477297-006 Date Collected: 01.13.14 14.35

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: JOL % Moisture:

Analyst: MLA Date Prep: 01.15.14 06.39

Seq Number:	932045

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Methyl tert-butyl ether	1634-04-4	BRL	5.0		ug/L	01.15.14 11.33	U	1
Methylcyclohexane	108-87-2	BRL	5.0		ug/L	01.15.14 11.33	U	1
Methylene chloride	75-09-2	BRL	5.0		ug/L	01.15.14 11.33	U	1
Naphthalene	91-20-3	BRL	5.0		ug/L	01.15.14 11.33	U	1
o-Xylene	95-47-6	BRL	5.0		ug/L	01.15.14 11.33	U	1
Styrene	100-42-5	BRL	5.0		ug/L	01.15.14 11.33	U	1
Tetrachloroethene	127-18-4	BRL	5.0		ug/L	01.15.14 11.33	U	1
Toluene	108-88-3	BRL	5.0		ug/L	01.15.14 11.33	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	5.0		ug/L	01.15.14 11.33	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	5.0		ug/L	01.15.14 11.33	U	1
Trichloroethene	79-01-6	BRL	5.0		ug/L	01.15.14 11.33	U	1
Trichlorofluoromethane	75-69-4	BRL	5.0		ug/L	01.15.14 11.33	U	1
Vinyl chloride	75-01-4	80	2.0		ug/L	01.15.14 11.33		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,2-Dichloroethane-D4		17060-07-0	102	%	53-159	01.15.14 11.33		
4-Bromofluorobenzene		460-00-4	104	%	30-186	01.15.14 11.33		
Toluene-D8		2037-26-5	98	%	70-130	01.15.14 11.33		

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb

Sample Id: Trip Blank Matrix: Water Date Received:01.14.14 16.55

Lab Sample Id: 477297-007 Date Collected: 01.13.14 00.00

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: JOL % Moisture:

Analyst: MLA Date Prep: 01.15.14 06.39

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1-Trichloroethane	71-55-6	BRL	5.0	ug/L	01.15.14 10.11	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	5.0	ug/L	01.15.14 10.11	U	1
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	BRL	5.0	ug/L	01.15.14 10.11	U	1
1,1,2-Trichloroethane	79-00-5	BRL	5.0	ug/L	01.15.14 10.11	U	1
1,1-Dichloroethane	75-34-3	BRL	5.0	ug/L	01.15.14 10.11	U	1
1,1-Dichloroethene	75-35-4	BRL	5.0	ug/L	01.15.14 10.11	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	5.0	ug/L	01.15.14 10.11	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	5.0	ug/L	01.15.14 10.11	U	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	BRL	5.0	ug/L	01.15.14 10.11	U	1
1,2-Dibromoethane (EDB)	106-93-4	BRL	5.0	ug/L	01.15.14 10.11	U	1
1,2-Dichlorobenzene	95-50-1	BRL	5.0	ug/L	01.15.14 10.11	U	1
1,2-Dichloroethane	107-06-2	BRL	5.0	ug/L	01.15.14 10.11	U	1
1,2-Dichloropropane	78-87-5	BRL	5.0	ug/L	01.15.14 10.11	U	1
1,3-Dichlorobenzene	541-73-1	BRL	5.0	ug/L	01.15.14 10.11	U	1
1,4-Dichlorobenzene	106-46-7	BRL	5.0	ug/L	01.15.14 10.11	U	1
2-Butanone (MEK)	78-93-3	BRL	50	ug/L	01.15.14 10.11	U	1
2-Hexanone	591-78-6	BRL	50	ug/L	01.15.14 10.11	U	1
4-Methyl-2-pentanone (MIBK)	108-10-1	BRL	50	ug/L	01.15.14 10.11	U	1
Acetone	67-64-1	BRL	50	ug/L	01.15.14 10.11	U	1
Benzene	71-43-2	BRL	5.0	ug/L	01.15.14 10.11	U	1
Bromochloromethane	74-97-5	BRL	5.0	ug/L	01.15.14 10.11	U	1
Bromodichloromethane	75-27-4	BRL	5.0	ug/L	01.15.14 10.11	U	1
Bromoform	75-25-2	BRL	5.0	ug/L	01.15.14 10.11	U	1
Bromomethane	74-83-9	BRL	5.0	ug/L	01.15.14 10.11	U	1
Carbon disulfide	75-15-0	BRL	5.0	ug/L	01.15.14 10.11	U	1
Carbon tetrachloride	56-23-5	BRL	5.0	ug/L	01.15.14 10.11	U	1
Chlorobenzene	108-90-7	BRL	5.0	ug/L	01.15.14 10.11	U	1
Chloroethane	75-00-3	BRL	4.0	ug/L	01.15.14 10.11	U	1
Chloroform	67-66-3	BRL	5.0	ug/L	01.15.14 10.11	U	1
Chloromethane	74-87-3	BRL	5.0	ug/L	01.15.14 10.11	U	1
cis-1,2-Dichloroethene	156-59-2	BRL	5.0	ug/L	01.15.14 10.11	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	5.0	ug/L	01.15.14 10.11	U	1
Cyclohexane	110-82-7	BRL	5.0	ug/L	01.15.14 10.11	U	1
Dibromochloromethane	124-48-1	BRL	5.0	ug/L	01.15.14 10.11	U	1
Dichlorodifluoromethane	75-71-8	BRL	5.0	ug/L	01.15.14 10.11	U	1
Ethylbenzene	100-41-4	BRL	5.0	ug/L	01.15.14 10.11	U	1
Isopropylbenzene	98-82-8	BRL	5.0	ug/L	01.15.14 10.11	U	1
m,p-Xylenes	179601-23-1	BRL	5.0	ug/L	01.15.14 10.11	U	1
Methyl acetate	79-20-9	BRL	5.0	ug/L	01.15.14 10.11	U	1

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb

Sample Id: Trip Blank Matrix: Water Date Received:01.14.14 16.55

Lab Sample Id: 477297-007 Date Collected: 01.13.14 00.00

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: JOL % Moisture:

2037-26-5

Analyst: MLA Date Prep: 01.15.14 06.39

Seq Number: 932045

Toluene-D8

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Methyl tert-butyl ether	1634-04-4	BRL	5.0		ug/L	01.15.14 10.11	U	1
Methylcyclohexane	108-87-2	BRL	5.0		ug/L	01.15.14 10.11	U	1
Methylene chloride	75-09-2	BRL	5.0		ug/L	01.15.14 10.11	U	1
Naphthalene	91-20-3	BRL	5.0		ug/L	01.15.14 10.11	U	1
o-Xylene	95-47-6	BRL	5.0		ug/L	01.15.14 10.11	U	1
Styrene	100-42-5	BRL	5.0		ug/L	01.15.14 10.11	U	1
Tetrachloroethene	127-18-4	BRL	5.0		ug/L	01.15.14 10.11	U	1
Toluene	108-88-3	BRL	5.0		ug/L	01.15.14 10.11	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	5.0		ug/L	01.15.14 10.11	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	5.0		ug/L	01.15.14 10.11	U	1
Trichloroethene	79-01-6	BRL	5.0		ug/L	01.15.14 10.11	U	1
Trichlorofluoromethane	75-69-4	BRL	5.0		ug/L	01.15.14 10.11	U	1
Vinyl chloride	75-01-4	BRL	2.0		ug/L	01.15.14 10.11	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,2-Dichloroethane-D4		17060-07-0	104	%	53-159	01.15.14 10.11		
4-Bromofluorobenzene		460-00-4	104	%	30-186	01.15.14 10.11		

100

70-130

01.15.14 10.11

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- **RL** Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	Fax
4143 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
2505 North Falkenburg Rd, Tampa, FL 33619	(813) 620-2000	(813) 620-2033
12600 West I-20 East, Odessa, TX 79765	(432) 563-1800	(432) 563-1713
6017 Financial Drive, Norcross, GA 30071	(770) 449-8800	(770) 449-5477
3725 E. Atlanta Ave, Phoenix, AZ 85040	(602) 437-0330	

QC Summary 477297

Prep Method: SW5030B

Atlanta Environmental Management

Aramark - Dekalb

Analytical Method: VOCs by SW-846 8260B

Seq Number:932045Matrix:WaterDate Prep:01.15.14MB Sample Id:649782-1-BLKLCS Sample Id:649782-1-BKSLCSD Sample Id:649782-1-BSD

WID Sample Id. 047/82-1-	DLK		Leb bui	npre ra.	0177021	DILO		LCD.	o bumpie	10. 017	702 1 202		
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag	
1,1,1-Trichloroethane	< 0.34	50	43	86	47	94	56-141	9	20	ug/L	01.15.14 07:55		
1,1,2,2-Tetrachloroethane	< 2.0	50	49	98	52	104	64-135	6	20	ug/L	01.15.14 07:55		
1,1,2-Trichloro-1,2,2-trifluoroethane	< 0.97	50	42	84	46	92	54-134	9	20	ug/L	01.15.14 07:55		
1,1,2-Trichloroethane	< 0.88	50	47	94	51	102	73-123	8	20	ug/L	01.15.14 07:55		
1,1-Dichloroethane	< 0.74	50	44	88	49	98	66-126	11	20	ug/L	01.15.14 07:55		
1,1-Dichloroethene	< 0.98	50	42	84	47	94	65-129	11	20	ug/L	01.15.14 07:55		
1,2,3-Trichlorobenzene	< 2.6	50	45	90	46	92	56-146	2	20	ug/L	01.15.14 07:55		
1,2,4-Trichlorobenzene	1.4	50	42	84	44	88	62-141	5	20	ug/L	01.15.14 07:55		
1,2-Dibromo-3-chloropropane (DBCP)	< 2.8	50	48	96	49	98	48-144	2	20	ug/L	01.15.14 07:55		
1,2-Dibromoethane (EDB)	< 0.79	50	48	96	52	104	70-130	8	20	ug/L	01.15.14 07:55		
1,2-Dichlorobenzene	< 0.73	50	45	90	48	96	77-123	6	20	ug/L	01.15.14 07:55		
1,2-Dichloroethane	< 0.82	50	46	92	51	102	57-137	10	20	ug/L	01.15.14 07:55		
1,2-Dichloropropane	< 0.81	50	45	90	49	98	74-121	9	20	ug/L	01.15.14 07:55		
1,3-Dichlorobenzene	< 0.74	50	44	88	48	96	79-120	9	20	ug/L	01.15.14 07:55		
1,4-Dichlorobenzene	< 0.59	50	44	88	48	96	77-119	9	20	ug/L	01.15.14 07:55		
2-Butanone (MEK)	<1.3	100	100	100	110	110	42-165	10	20	ug/L	01.15.14 07:55		
2-Hexanone	< 2.5	100	100	100	110	110	46-157	10	20	ug/L	01.15.14 07:55		
4-Methyl-2-pentanone (MIBK)	<2.2	100	100	100	100	100	54-145	0	20	ug/L	01.15.14 07:55		
Acetone	<1.4	100	110	110	110	110	42-178	0	20	ug/L	01.15.14 07:55		
Benzene	< 0.67	50	44	88	48	96	76-119	9	20	ug/L	01.15.14 07:55		
Bromochloromethane	< 0.47	50	48	96	53	106	75-123	10	20	ug/L	01.15.14 07:55		
Bromodichloromethane	< 0.96	50	46	92	50	100	69-131	8	20	ug/L	01.15.14 07:55		
Bromoform	<1.4	50	49	98	53	106	66-130	8	20	ug/L	01.15.14 07:55		
Bromomethane	< 2.7	50	41	82	45	90	59-141	9	20	ug/L	01.15.14 07:55		
Carbon disulfide	< 0.73	50	43	86	46	92	47-144	7	20	ug/L	01.15.14 07:55		
Carbon tetrachloride	< 0.89	50	43	86	47	94	46-155	9	20	ug/L	01.15.14 07:55		
Chlorobenzene	< 0.59	50	44	88	48	96	81-114	9	20	ug/L	01.15.14 07:55		
Chloroethane	< 0.23	50	40	80	43	86	63-133	7	20	ug/L	01.15.14 07:55		
Chloroform	<1.4	50	45	90	50	100	68-127	11	20	ug/L	01.15.14 07:55		
Chloromethane	<1.2	50	40	80	43	86	43-141	7	20	ug/L	01.15.14 07:55		
cis-1,2-Dichloroethene	< 0.80	50	46	92	50	100	73-124	8	20	ug/L	01.15.14 07:55		
cis-1,3-Dichloropropene	< 0.76	50	47	94	51	102	72-132	8	20	ug/L	01.15.14 07:55		
Cyclohexane	< 0.99	50	41	82	45	90	58-125	9	20	ug/L	01.15.14 07:55		
Dibromochloromethane	< 0.79	50	47	94	51	102	69-128	8	20	ug/L	01.15.14 07:55		
Dichlorodifluoromethane	< 0.73	50	43	86	47	94	24-153	9	20	ug/L	01.15.14 07:55		
Ethylbenzene	< 0.66	50	42	84	46	92	78-122	9	20	ug/L	01.15.14 07:55		
Isopropylbenzene	<1.0	50	42	84	46	92	71-131	9	20	ug/L	01.15.14 07:55		
m,p-Xylenes	<1.2	100	85	85	93	93	76-124	9	20	ug/L	01.15.14 07:55		
Methyl acetate	< 0.15	50	53	106	55	110	65-135	4	20	ug/L	01.15.14 07:55		
Methyl tert-butyl ether	< 0.62	100	100	100	110	110	59-135	10	20	ug/L	01.15.14 07:55		
Methylcyclohexane	0.79	50	41	82	46	92	61-125	11	20	ug/L	01.15.14 07:55		
Methylene chloride	< 0.92	50	46	92	50	100	64-135	8	20	ug/L	01.15.14 07:55		
Naphthalene	<4.0	50	45	90	45	90	46-159	0	20	ug/L	01.15.14 07:55		
o-Xylene	< 0.57	50	44	88	47	94	78-124	7	20	ug/L	01.15.14 07:55		
Styrene	< 0.56	50	44	88	48	96	79-123	9	20	ug/L	01.15.14 07:55		
Tetrachloroethene	<1.8	50	42	84	45	90	71-125	7	20	ug/L	01.15.14 07:55		
Toluene	< 0.68	50	43	86	46	92	78-118	7	20	ug/L	01.15.14 07:55		
trans-1,2-Dichloroethene	< 0.73	50	44	88	48	96	71-126	9	20	ug/L	01.15.14 07:55		
trans-1,3-Dichloropropene	< 0.84	50	47	94	52	104	68-131	10	20	ug/L	01.15.14 07:55		
Trichloroethene	3.5	50	43	86	48	96	76-118	11	20	ug/L	01.15.14 07:55		
Trichlorofluoromethane	< 0.85	50	41	82	45	90	35-153	9	20	ug/L	01.15.14 07:55		
Vinyl chloride	< 0.15	50	42	84	45	90	59-129	7	20	ug/L	01.15.14 07:55		

QC Summary 477297

Prep Method: SW5030B

Atlanta Environmental Management

Aramark - Dekalb

Analytical Method: VOCs by SW-846 8260B

Seq Number: 932045 Matrix: Water Date Prep: 01.15.14

MB Sample Id: 649782-1-BLK LCS Sample Id: 649782-1-BKS LCSD Sample Id: 649782-1-BSD

Surrogate	MB %Rec	MB Flag	LCS %Rec	LCS Flag	LCSD %Rec	LCSD Flag	Limits	Units	Analysis Date
1,2-Dichloroethane-D4	102		100		102		53-159	%	01.15.14 07:55
4-Bromofluorobenzene	102		102		102		30-186	%	01.15.14 07:55
Toluene-D8	98		96		96		70-130	%	01.15.14 07:55

Seq Number:

QC Summary 477297

Atlanta Environmental Management

Aramark - Dekalb

Analytical Method: VOCs by SW-846 8260B

932045 Matrix: Ground Water

Parent Sample Id: 477297-001 MS Sample Id: 477297-001 S

Prep Method: SW5030B

Date Prep: 01.15.14

MSD Sample Id: 477297-001 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,1,1-Trichloroethane	< 0.34	50	43	86	35	70	63-149	21	20	ug/L	01.15.14 17:06	F
1,1,2,2-Tetrachloroethane	< 2.0	50	49	98	44	88	58-140	11	20	ug/L	01.15.14 17:06	
1,1,2-Trichloro-1,2,2-trifluoroethane	< 0.97	50	44	88	41	82	42-156	7	20	ug/L	01.15.14 17:06	
1,1,2-Trichloroethane	< 0.88	50	47	94	39	78	49-140	19	20	ug/L	01.15.14 17:06	
1,1-Dichloroethane	< 0.74	50	44	88	35	70	67-136	23	20	ug/L	01.15.14 17:06	F
1,1-Dichloroethene	< 0.98	50	42	84	35	70	52-141	18	20	ug/L	01.15.14 17:06	
1,2,3-Trichlorobenzene	< 2.6	50	39	78	34	68	50-131	14	20	ug/L	01.15.14 17:06	
1,2,4-Trichlorobenzene	<1.3	50	37	74	31	62	51-125	18	20	ug/L	01.15.14 17:06	
1,2-Dibromo-3-chloropropane (DBCP)	< 2.8	50	45	90	44	88	43-155	2	20	ug/L	01.15.14 17:06	
1,2-Dibromoethane (EDB)	< 0.79	50	47	94	40	80	66-136	16	20	ug/L	01.15.14 17:06	
1,2-Dichlorobenzene	< 0.73	50	43	86	35	70	70-124	21	20	ug/L	01.15.14 17:06	F
1,2-Dichloroethane	< 0.82	50	46	92	37	74	71-143	22	20	ug/L	01.15.14 17:06	F
1,2-Dichloropropane	< 0.81	50	45	90	35	70	74-125	25	20	ug/L	01.15.14 17:06	XF
1,3-Dichlorobenzene	< 0.74	50	42	84	34	68	73-123	21	20	ug/L	01.15.14 17:06	XF
1,4-Dichlorobenzene	< 0.59	50	42	84	34	68	74-116	21	20	ug/L	01.15.14 17:06	XF
2-Butanone (MEK)	<1.3	100	100	100	94	94	43-155	6	20	ug/L	01.15.14 17:06	
2-Hexanone	< 2.5	100	100	100	95	95	52-148	5	20	ug/L	01.15.14 17:06	
4-Methyl-2-pentanone (MIBK)	<2.2	100	100	100	93	93	61-141	7	20	ug/L	01.15.14 17:06	
Acetone	<1.4	100	100	100	97	97	40-140	3	20	ug/L	01.15.14 17:06	
Benzene	< 0.67	50	43	86	35	70	78-117	21	20	ug/L	01.15.14 17:06	XF
Bromochloromethane	< 0.47	50	46	92	37	74	65-127	22	20	ug/L	01.15.14 17:06	F
Bromodichloromethane	< 0.96	50	45	90	36	72	71-133	22	20	ug/L	01.15.14 17:06	F
Bromoform	<1.4	50	48	96	42	84	55-129	13	20	ug/L	01.15.14 17:06	_
Bromomethane	<2.7	50	47	94	36	72	49-157	27	20	ug/L	01.15.14 17:06	F
Carbon disulfide	< 0.73	50	41	82	33	66	31-142	22	20	ug/L	01.15.14 17:06	F
Carbon tetrachloride	< 0.89	50	41	82	33	66	63-152	22	20	ug/L	01.15.14 17:06	F
Chlorobenzene	< 0.59	50	42	84	34	68	75-117	21	20	ug/L	01.15.14 17:06	XF
Chloroethane	< 0.23	50	45	90	36	72	49-147	22	20	ug/L	01.15.14 17:06	F
Chloroform	<1.4	50	45	90	36	72	67-136	22	20	ug/L	01.15.14 17:06	F
Chloromethane	<1.2	50	40	80	35	70	35-162	13	20	ug/L	01.15.14 17:06	•
cis-1,2-Dichloroethene	< 0.80	50	45	90	35	70	64-132	25	20	ug/L ug/L	01.15.14 17:06	F
cis-1,3-Dichloropropene	< 0.76	50	46	92	36	72	69-116	24	20	ug/L ug/L	01.15.14 17:06	F
Cyclohexane	< 0.99	50	34	68	31	62	59-141	9	20	ug/L ug/L	01.15.14 17:06	X
Dibromochloromethane	< 0.79	50	46	92	37	74	54-144	22	20	ug/L ug/L	01.15.14 17:06	F
Dichlorodifluoromethane	< 0.73	50	44	88	38	76	26-171	15	20	ug/L ug/L	01.15.14 17:06	•
Ethylbenzene	< 0.66	50	41	82	33	66	74-131	22	20	ug/L ug/L	01.15.14 17:06	XF
Isopropylbenzene	<1.0	50	40	80	33	66	63-133	19	20	ug/L ug/L	01.15.14 17:06	X
m,p-Xylenes	<1.2	100	82	82	67	67	67-134	20	20	ug/L ug/L	01.15.14 17:06	X
Methyl acetate	<0.15	50	48	96	43	86	65-135	11	20	ug/L ug/L	01.15.14 17:06	Λ
Methyl tert-butyl ether	<0.13	100	97	97	80	80	51-156	19	20	ug/L ug/L	01.15.14 17:06	
Methylcyclohexane	< 0.76	50	39	78	38	76	62-123	3	20	ug/L ug/L	01.15.14 17:06	
Methylene chloride	<0.70	50	44	88	35	70	52-165	23	20	ug/L ug/L	01.15.14 17:06	F
Naphthalene	<4.0	50	38	76	36	70	31-151	5	20	ug/L ug/L	01.15.14 17:06	1
o-Xylene	< 0.57	50	41	82	33	66	70-125	22	20	ug/L ug/L	01.15.14 17:06	XF
Styrene	<0.56	50	42	84	34	68	42-145	21	20	ug/L ug/L	01.15.14 17:06	F
Tetrachloroethene		50	42	82	34	68	57-132	19	20	_	01.15.14 17:06	Г
	<1.8									ug/L		VE
Toluene	< 0.68	50	42	84	33	66	76-119	24	20	ug/L	01.15.14 17:06	XF
trans-1,2-Dichloroethene	< 0.73	50	43	86	35	70	46-152	21	20	ug/L	01.15.14 17:06	F
trans-1,3-Dichloropropene	< 0.84	50	45	90	37	74	60-132	20	20	ug/L	01.15.14 17:06	375
Trichloroethene	< 0.72	50	42	84	34	68	77-120	21	20	ug/L	01.15.14 17:06	XF
Trichlorofluoromethane	< 0.85	50	43	86	37	74	47-165	15	20	ug/L	01.15.14 17:06	
Vinyl chloride	< 0.15	50	42	84	36	72	43-148	15	20	ug/L	01.15.14 17:06	

QC Summary 477297

Atlanta Environmental Management

Aramark - Dekalb

Analytical Method: VOCs by SW-846 8260B

Prep Method: SW5030B 932045 Seq Number: Matrix: Ground Water Date Prep: 01.15.14 Parent Sample Id: 477297-001 MS Sample Id: 477297-001 S MSD Sample Id: 477297-001 SD

Surrogate	MS %Rec	MS Flag	MSD %Rec	MSD Flag	Limits	Units	Analysis Date
1,2-Dichloroethane-D4	102		106		53-159	%	01.15.14 17:06
4-Bromofluorobenzene	102		106		30-186	%	01.15.14 17:06
Toluene-D8	98		100		70-130	%	01.15.14 17:06

Page 28 of 28

CHAIN OF CUSTODY

Page 6017 Financial Drive, Norcross, GA 30071

Phone # (770) 449-8800 Fax # (770) 449-5477

	·									·······		**					***************************************				
	Company Name:	Bill	ing a	ddres	s:	2580) Nor	thea	st Ex	cpres	sway	y, At	lanta, GA	30345							
	Address: 2580	P.O	.# (i	f requ	iired):															
	Results Sent to: (Clie		For	For Laboratory Use Only: AAL LIMS Syst							S System ID	<u>. 84</u>	ナー								
	Email address: EDD	QC	QC Level: 1 2 3 4 CLP-Like Receiver's Initials/Temp:							<i>10</i> С р:	<u>a</u> 3°0										
	Contact Phone #:	Cus	Custody Seal(s): Y N Tape AAL Work Order #							# <i>4</i> }	7297										
	Project (Site) Name:	Analysis Requested																			
	Project Number:	1133-1401-3				Preservation Cod	de: (See below)	1													
	Sampler(s): (signature)	1				Sampler(s): (printed)															
	Clary 2 Cov	rb				Tony L Godon		8								:					
No.	/		site		rix low)			8260B												1	KENCO
Line No.	Sample ID#	Sample Date / Time	odwo	Grab	Matrix (See below)	Sample Location	No. of Containers	VOCs													Lab ID:
			Ŭ	0	_			>													
	MW-402	1/13/14 1115	<u> </u>	X	বিদ	690 Dehall Ave	2	K					_								
2	mw-109	1/13/14 1310		X	(ch)	690 Dekalb Am	2	X													
3	mw-112	1/13/14 1322		X	Gwi	670 Dehalb Aur	2	$ \chi $			l									-	-
4	mw-113 =	1/13/14 1120		X	'GW	670 Delkalb AND	2	\setminus												-	-
	mw-213Dup	1/13/14 1120		X	GN)	670 DeKelly Av	2	λ	1											-	
6	mw-403	1/13/14 1435		1	GW	690 Dehalbar	2	\setminus												-	••
	Trip Blad	1/13/14-		X	W	Q4/Q(2	X												-	
8																				-	-
9																				-	
10														4						-	
1	elinquished By:	7	1)		Date /]		4)			13				•					cle One) AAL Picku	p Hand	7 Other
) Relinquished By: Date / Time 4) Received By: Date											Time Q:S			T			d Time Ro ndard	equeste	d:		

Matrix Guide: (W=Water) (DW = Drinking Water) (GW = Groundwater) (SW = Surface Water) (L = Liquid) (O = Oil) (S = Soil) (SD = Solid) (SL = Sludge) (A = Air) (C = Air Cartridge) Preservation Codes: $1 = HCL / 2 = HNO_3 / 3 = H_2SO_4 / 4 = NaOH + NaAsO_2 / 5 = NaOH + ZnAc / 6 = Na_2S_2O_3 / 7 = NaHSO_4 / 8 = MeOH$

Analytical Report 477666

for

Atlanta Environmental Management

Project Manager: Leona Miles

Aramark - Dekalb

1133-1401-3

22-JAN-14

Collected By: Client

6017 Financial Dr., Norcross, GA 30071 Ph:(770) 449-8800 Fax:(770) 449-5477

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-14-16-TX), Arizona (AZ0765), Florida (E871002), Louisiana (03054) New Jersey (TX007), North Carolina(681), Oklahoma (9218), Pennsylvania (68-03610)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135) Louisiana (04176), USDA (P330-07-00105)

Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900)

Xenco-Lakeland: Florida (E84098)

Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX) Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

Page 1 of 16

22-JAN-14

Project Manager: **Leona Miles Atlanta Environmental Management**2580 Northeast Expressway
Atlanta, GA 30345

Reference: XENCO Report No(s): 477666

Aramark - Dekalb Project Address: GA

Leona Miles:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 477666. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 477666 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Eben Buchanan

ben D. Buchancon

Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Sample Cross Reference 477666

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-207 P	W	01-16-14 14:40		477666-001
Trip Blank	W	01-16-14 00:00		477666-002

CASE NARRATIVE

Client Name: Atlanta Environmental Management

Project Name: Aramark - Dekalb

Project ID: 1133-1401-3 Report Date: 22-JAN-14 Work Order Number(s): 477666 Date Received: 01/17/2014

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-932378 VOCs by SW-846 8260B

1,1,2-Trichloroethane, 1,2-Dibromoethane (EDB), 1,2-Dichlorobenzene, 1,2-Dichloropropane, 1,3-Dichlorobenzene, 1,4-Dichlorobenzene, Benzene, Chlorobenzene, Isopropylbenzene recovered below QC limits in the Matrix Spike Duplicate. Methylcyclohexane, o-Xylene recovered above QC limits in the Matrix Spike.

Samples affected are: 477666-001.

The Laboratory Control Sample for 1,2-Dichloropropane, 1,3-Dichlorobenzene, Isopropylbenzene, Methylcyclohexane, 1,4-Dichlorobenzene, Benzene, o-Xylene, 1,2-Dibromoethane (EDB), 1,2-Dichlorobenzene, Chlorobenzene, 1,1,2-Trichloroethane is within laboratory Control Limits.

Ethylbenzene, Styrene, Toluene, m,p-Xylenes, o-Xylene MS/MSD RPD was outside QC limits. Samples affected are: 477666-001.

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb

Sample Id: MW-207 P Matrix: Water % Moisture:

Lab Sample Id : 477666-001 Date Collected : 01.16.14 14.40
Date Received : 01.17.14 08.42

Analytical Method : VOCs by SW-846 8260B Prep Method: SW5030B

Seq Number 932378 Date Prep: 01.20.14 10.28

ParameterCas NumberResultUnitsAnalysis DateFlagDilTetrachloroethene127-18-45.9ug/L01.20.14 13.591

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb

Sample Id: MW-207 P Matrix: Water Date Received:01.17.14 08.42

Lab Sample Id: 477666-001 Date Collected: 01.16.14 14.40

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: JOL % Moisture:

Analyst: MLA Date Prep: 01.20.14 10.28

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1-Trichloroethane	71-55-6	BRL	5.0	ug/L	01.20.14 13.59	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	5.0	ug/L	01.20.14 13.59	U	1
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	BRL	5.0	ug/L	01.20.14 13.59	U	1
1,1,2-Trichloroethane	79-00-5	BRL	5.0	ug/L	01.20.14 13.59	U	1
1,1-Dichloroethane	75-34-3	BRL	5.0	ug/L	01.20.14 13.59	U	1
1,1-Dichloroethene	75-35-4	BRL	5.0	ug/L	01.20.14 13.59	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	5.0	ug/L	01.20.14 13.59	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	5.0	ug/L	01.20.14 13.59	U	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	BRL	5.0	ug/L	01.20.14 13.59	U	1
1,2-Dibromoethane (EDB)	106-93-4	BRL	5.0	ug/L	01.20.14 13.59	U	1
1,2-Dichlorobenzene	95-50-1	BRL	5.0	ug/L	01.20.14 13.59	U	1
1,2-Dichloroethane	107-06-2	BRL	5.0	ug/L	01.20.14 13.59	U	1
1,2-Dichloropropane	78-87-5	BRL	5.0	ug/L	01.20.14 13.59	U	1
1,3-Dichlorobenzene	541-73-1	BRL	5.0	ug/L	01.20.14 13.59	U	1
1,4-Dichlorobenzene	106-46-7	BRL	5.0	ug/L	01.20.14 13.59	U	1
2-Butanone (MEK)	78-93-3	BRL	50	ug/L	01.20.14 13.59	U	1
2-Hexanone	591-78-6	BRL	50	ug/L	01.20.14 13.59	U	1
4-Methyl-2-pentanone (MIBK)	108-10-1	BRL	50	ug/L	01.20.14 13.59	U	1
Acetone	67-64-1	BRL	50	ug/L	01.20.14 13.59	U	1
Benzene	71-43-2	BRL	5.0	ug/L	01.20.14 13.59	U	1
Bromochloromethane	74-97-5	BRL	5.0	ug/L	01.20.14 13.59	U	1
Bromodichloromethane	75-27-4	BRL	5.0	ug/L	01.20.14 13.59	U	1
Bromoform	75-25-2	BRL	5.0	ug/L	01.20.14 13.59	U	1
Bromomethane	74-83-9	BRL	5.0	ug/L	01.20.14 13.59	U	1
Carbon disulfide	75-15-0	BRL	5.0	ug/L	01.20.14 13.59	U	1
Carbon tetrachloride	56-23-5	BRL	5.0	ug/L	01.20.14 13.59	U	1
Chlorobenzene	108-90-7	BRL	5.0	ug/L	01.20.14 13.59	U	1
Chloroethane	75-00-3	BRL	4.0	ug/L	01.20.14 13.59	U	1
Chloroform	67-66-3	BRL	5.0	ug/L	01.20.14 13.59	U	1
Chloromethane	74-87-3	BRL	5.0	ug/L	01.20.14 13.59	U	1
cis-1,2-Dichloroethene	156-59-2	BRL	5.0	ug/L	01.20.14 13.59	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	5.0	ug/L	01.20.14 13.59	U	1
Cyclohexane	110-82-7	BRL	5.0	ug/L	01.20.14 13.59	U	1
Dibromochloromethane	124-48-1	BRL	5.0	ug/L	01.20.14 13.59	U	1
Dichlorodifluoromethane	75-71-8	BRL	5.0	ug/L	01.20.14 13.59	U	1
Ethylbenzene	100-41-4	BRL	5.0	ug/L	01.20.14 13.59	U	1
Isopropylbenzene	98-82-8	BRL	5.0	ug/L	01.20.14 13.59	U	1
m,p-Xylenes	179601-23-1	BRL	5.0	ug/L	01.20.14 13.59	U	1
Methyl acetate	79-20-9	BRL	5.0	ug/L	01.20.14 13.59	U	1

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb

Sample Id: MW-207 P Matrix: Water Date Received:01.17.14 08.42

Lab Sample Id: 477666-001 Date Collected: 01.16.14 14.40

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: JOL % Moisture:

Analyst: MLA Date Prep: 01.20.14 10.28

Parameter	Cas Numbe	r Result	Units	Analysis Date	Flag	Dil		
Methyl tert-butyl ether	1634-04-4	BRL	5.0		ug/L	01.20.14 13.59	U	1
Methylcyclohexane	108-87-2	BRL	5.0		ug/L	01.20.14 13.59	U	1
Methylene chloride	75-09-2	BRL	5.0		ug/L	01.20.14 13.59	U	1
Naphthalene	91-20-3	BRL	5.0		ug/L	01.20.14 13.59	U	1
o-Xylene	95-47-6	BRL	5.0		ug/L	01.20.14 13.59	U	1
Styrene	100-42-5	BRL	5.0		ug/L	01.20.14 13.59	U	1
Tetrachloroethene	127-18-4	5.9	5.0		ug/L	01.20.14 13.59		1
Toluene	108-88-3	BRL	5.0		ug/L	01.20.14 13.59	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	5.0		ug/L	01.20.14 13.59	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	5.0		ug/L	01.20.14 13.59	U	1
Trichloroethene	79-01-6	BRL	5.0		ug/L	01.20.14 13.59	U	1
Trichlorofluoromethane	75-69-4	BRL	5.0		ug/L	01.20.14 13.59	U	1
Vinyl chloride	75-01-4	BRL	2.0		ug/L	01.20.14 13.59	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,2-Dichloroethane-D4		17060-07-0	102	%	53-159	01.20.14 13.59		
4-Bromofluorobenzene		460-00-4	98	%	30-186	01.20.14 13.59		
Toluene-D8		2037-26-5	94	%	70-130	01.20.14 13.59		

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb

Sample Id: Trip Blank Matrix: Water Date Received:01.17.14 08.42

Lab Sample Id: 477666-002 Date Collected: 01.16.14 00.00

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: JOL % Moisture:

Analyst: MLA Date Prep: 01.20.14 10.28

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1-Trichloroethane	71-55-6	BRL	5.0	ug/L	01.20.14 13.32	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	5.0	ug/L	01.20.14 13.32	U	1
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	BRL	5.0	ug/L	01.20.14 13.32	U	1
1,1,2-Trichloroethane	79-00-5	BRL	5.0	ug/L	01.20.14 13.32	U	1
1,1-Dichloroethane	75-34-3	BRL	5.0	ug/L	01.20.14 13.32	U	1
1,1-Dichloroethene	75-35-4	BRL	5.0	ug/L	01.20.14 13.32	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	5.0	ug/L	01.20.14 13.32	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	5.0	ug/L	01.20.14 13.32	U	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	BRL	5.0	ug/L	01.20.14 13.32	U	1
1,2-Dibromoethane (EDB)	106-93-4	BRL	5.0	ug/L	01.20.14 13.32	U	1
1,2-Dichlorobenzene	95-50-1	BRL	5.0	ug/L	01.20.14 13.32	U	1
1,2-Dichloroethane	107-06-2	BRL	5.0	ug/L	01.20.14 13.32	U	1
1,2-Dichloropropane	78-87-5	BRL	5.0	ug/L	01.20.14 13.32	U	1
1,3-Dichlorobenzene	541-73-1	BRL	5.0	ug/L	01.20.14 13.32	U	1
1,4-Dichlorobenzene	106-46-7	BRL	5.0	ug/L	01.20.14 13.32	U	1
2-Butanone (MEK)	78-93-3	BRL	50	ug/L	01.20.14 13.32	U	1
2-Hexanone	591-78-6	BRL	50	ug/L	01.20.14 13.32	U	1
4-Methyl-2-pentanone (MIBK)	108-10-1	BRL	50	ug/L	01.20.14 13.32	U	1
Acetone	67-64-1	BRL	50	ug/L	01.20.14 13.32	U	1
Benzene	71-43-2	BRL	5.0	ug/L	01.20.14 13.32	U	1
Bromochloromethane	74-97-5	BRL	5.0	ug/L	01.20.14 13.32	U	1
Bromodichloromethane	75-27-4	BRL	5.0	ug/L	01.20.14 13.32	U	1
Bromoform	75-25-2	BRL	5.0	ug/L	01.20.14 13.32	U	1
Bromomethane	74-83-9	BRL	5.0	ug/L	01.20.14 13.32	U	1
Carbon disulfide	75-15-0	BRL	5.0	ug/L	01.20.14 13.32	U	1
Carbon tetrachloride	56-23-5	BRL	5.0	ug/L	01.20.14 13.32	U	1
Chlorobenzene	108-90-7	BRL	5.0	ug/L	01.20.14 13.32	U	1
Chloroethane	75-00-3	BRL	4.0	ug/L	01.20.14 13.32	U	1
Chloroform	67-66-3	BRL	5.0	ug/L	01.20.14 13.32	U	1
Chloromethane	74-87-3	BRL	5.0	ug/L	01.20.14 13.32	U	1
cis-1,2-Dichloroethene	156-59-2	BRL	5.0	ug/L	01.20.14 13.32	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	5.0	ug/L	01.20.14 13.32	U	1
Cyclohexane	110-82-7	BRL	5.0	ug/L	01.20.14 13.32	U	1
Dibromochloromethane	124-48-1	BRL	5.0	ug/L	01.20.14 13.32	U	1
Dichlorodifluoromethane	75-71-8	BRL	5.0	ug/L	01.20.14 13.32	U	1
Ethylbenzene	100-41-4	BRL	5.0	ug/L	01.20.14 13.32	U	1
Isopropylbenzene	98-82-8	BRL	5.0	ug/L	01.20.14 13.32	U	1
m,p-Xylenes	179601-23-1	BRL	5.0	ug/L	01.20.14 13.32	U	1
Methyl acetate	79-20-9	BRL	5.0	ug/L	01.20.14 13.32	U	1

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb

Sample Id: Trip Blank Matrix: Water Date Received:01.17.14 08.42

Lab Sample Id: 477666-002 Date Collected: 01.16.14 00.00

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: JOL % Moisture:

Analyst: MLA Date Prep: 01.20.14 10.28

Parameter	Cas Numbe	Cas Number Result RI			Units	Analysis Date	Flag	Dil
Methyl tert-butyl ether	1634-04-4	BRL	5.0		ug/L	01.20.14 13.32	U	1
Methylcyclohexane	108-87-2	BRL	5.0		ug/L	01.20.14 13.32	U	1
Methylene chloride	75-09-2	BRL	5.0		ug/L	01.20.14 13.32	U	1
Naphthalene	91-20-3	BRL	5.0		ug/L	01.20.14 13.32	U	1
o-Xylene	95-47-6	BRL	5.0		ug/L	01.20.14 13.32	U	1
Styrene	100-42-5	BRL	5.0		ug/L	01.20.14 13.32	U	1
Tetrachloroethene	127-18-4	BRL	5.0		ug/L	01.20.14 13.32	U	1
Toluene	108-88-3	BRL	5.0		ug/L	01.20.14 13.32	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	5.0		ug/L	01.20.14 13.32	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	5.0		ug/L	01.20.14 13.32	U	1
Trichloroethene	79-01-6	BRL	5.0		ug/L	01.20.14 13.32	U	1
Trichlorofluoromethane	75-69-4	BRL	5.0		ug/L	01.20.14 13.32	U	1
Vinyl chloride	75-01-4	BRL	2.0		ug/L	01.20.14 13.32	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,2-Dichloroethane-D4		17060-07-0	102	%	53-159	01.20.14 13.32		
4-Bromofluorobenzene		460-00-4	96	%	30-186	01.20.14 13.32		
Toluene-D8		2037-26-5	96	%	70-130	01.20.14 13.32		

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- **RL** Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	Fax
4143 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
2505 North Falkenburg Rd, Tampa, FL 33619	(813) 620-2000	(813) 620-2033
12600 West I-20 East, Odessa, TX 79765	(432) 563-1800	(432) 563-1713
6017 Financial Drive, Norcross, GA 30071	(770) 449-8800	(770) 449-5477
3725 E. Atlanta Ave, Phoenix, AZ 85040	(602) 437-0330	

QC Summary 477666

Atlanta Environmental Management

Aramark - Dekalb

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Seq Number:932378Matrix:WaterDate Prep:01.20.14MB Sample Id:649984-1-BLKLCS Sample Id:649984-1-BKSLCSD Sample Id:649984-1-BSD

MB Sample Id: 049984-1-BLK LC3 Sample Id. 049764-1-BK3 LC3D Sample Id. 049764-1-						704-1-DSD						
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,1,1-Trichloroethane	< 0.34	50	53	106	53	106	56-141	0	20	ug/L	01.20.14 11:17	
1,1,2,2-Tetrachloroethane	< 2.0	50	48	96	48	96	64-135	0	20	ug/L	01.20.14 11:17	
1,1,2-Trichloro-1,2,2-trifluoroethane	< 0.97	50	44	88	47	94	54-134	7	20	ug/L	01.20.14 11:17	
1,1,2-Trichloroethane	< 0.88	50	50	100	49	98	73-123	2	20	ug/L	01.20.14 11:17	
1,1-Dichloroethane	< 0.74	50	52	104	51	102	66-126	2	20	ug/L	01.20.14 11:17	
1,1-Dichloroethene	< 0.98	50	58	116	59	118	65-129	2	20	ug/L	01.20.14 11:17	
1,2,3-Trichlorobenzene	< 2.6	50	58	116	59	118	56-146	2	20	ug/L	01.20.14 11:17	
1,2,4-Trichlorobenzene	<1.3	50	55	110	56	112	62-141	2	20	ug/L	01.20.14 11:17	
1,2-Dibromo-3-chloropropane (DBCP)	< 2.8	50	49	98	50	100	48-144	2	20	ug/L	01.20.14 11:17	
1,2-Dibromoethane (EDB)	< 0.79	50	50	100	52	104	70-130	4	20	ug/L	01.20.14 11:17	
1,2-Dichlorobenzene	< 0.73	50	50	100	49	98	77-123	2	20	ug/L	01.20.14 11:17	
1,2-Dichloroethane	< 0.82	50	53	106	54	108	57-137	2	20	ug/L	01.20.14 11:17	
1,2-Dichloropropane	< 0.81	50	52	104	51	102	74-121	2	20	ug/L	01.20.14 11:17	
1,3-Dichlorobenzene	< 0.74	50	49	98	49	98	79-120	0	20	ug/L	01.20.14 11:17	
1,4-Dichlorobenzene	< 0.59	50	49	98	48	96	77-119	2	20	ug/L	01.20.14 11:17	
2-Butanone (MEK)	<1.3	100	110	110	110	110	42-165	0	20	ug/L	01.20.14 11:17	
2-Hexanone	<2.5	100	100	100	100	100	46-157	0	20	ug/L	01.20.14 11:17	
4-Methyl-2-pentanone (MIBK)	<2.2	100	98	98	96	96	54-145	2	20	ug/L	01.20.14 11:17	
Acetone	<1.4	100	88	88	93	93	42-178	6	20	ug/L	01.20.14 11:17	
Benzene	< 0.67	50	52	104	51	102	76-119	2	20	ug/L	01.20.14 11:17	
Bromochloromethane	< 0.47	50	57	114	57	114	75-123	0	20	ug/L	01.20.14 11:17	
Bromodichloromethane	< 0.96	50	54	108	54	108	69-131	0	20	ug/L ug/L	01.20.14 11:17	
Bromoform	<1.4	50	54	108	53	106	66-130	2	20	ug/L	01.20.14 11:17	
Bromomethane	<2.7	50	41	82	41	82	59-141	0	20	ug/L ug/L	01.20.14 11:17	
Carbon disulfide	< 0.73	50	41	82	42	84	47-144	2	20	ug/L ug/L	01.20.14 11:17	
Carbon tetrachloride	< 0.89	50	53	106	54	108	46-155	2	20	ug/L ug/L	01.20.14 11:17	
Chlorobenzene	< 0.59	50	50	100	50	100	81-114	0	20	ug/L ug/L	01.20.14 11:17	
Chloroethane	<0.23	50	41	82	43	86	63-133	5	20	ug/L ug/L	01.20.14 11:17	
Chloroform	<1.4	50	52	104	51	102	68-127	2	20	ug/L ug/L	01.20.14 11:17	
Chloromethane	<1.2	50	43	86	40	80	43-141	7	20	ug/L	01.20.14 11:17	
cis-1,2-Dichloroethene	< 0.80	50	53	106	54	108	73-124	2	20	ug/L ug/L	01.20.14 11:17	
cis-1,3-Dichloropropene	< 0.76	50	55	110	55	110	72-132	0	20	ug/L ug/L	01.20.14 11:17	
Cyclohexane	<0.70	50	45	90	51	102	58-125	13	20	ug/L ug/L	01.20.14 11:17	
Dibromochloromethane	<0.79	50	53	106	52	104	69-128	2	20	ug/L ug/L	01.20.14 11:17	
Dichlorodifluoromethane	<0.73	50	39	78	41	82	24-153	5	20	ug/L ug/L	01.20.14 11:17	
Ethylbenzene	<0.75	50	50	100	49	98	78-122	2	20	ug/L ug/L	01.20.14 11:17	
Isopropylbenzene	<1.0	50	48	96	48	96	71-131	0	20	ug/L ug/L	01.20.14 11:17	
m,p-Xylenes	<1.2	100	100	100	99	99	76-124	1	20	ug/L ug/L	01.20.14 11:17	
Methyl acetate	<0.15	50	49	98	49	98	65-135	0	20	ug/L ug/L	01.20.14 11:17	
Methyl tert-butyl ether	< 0.62	100	110	110	110	110	59-135	0	20	ug/L ug/L	01.20.14 11:17	
Methylcyclohexane	<0.02	50	49	98	51	102	61-125	4	20	ug/L ug/L	01.20.14 11:17	
Methylene chloride	<0.70	50	49	98	48	96	64-135	2	20	ug/L ug/L	01.20.14 11:17	
Naphthalene	<4.0	50	51	102	52	104	46-159	2	20	ug/L ug/L	01.20.14 11:17	
o-Xylene	<0.57	50	51	102	50	100	78-124	2	20	ug/L ug/L	01.20.14 11:17	
Styrene	< 0.56	50	52	102	50	100	79-123	4	20		01.20.14 11:17	
Tetrachloroethene	<0.36	50	50	104	52		79-125			ug/L	01.20.14 11:17	
Toluene		50	49	98	52 49	104 98	71-125 78-118	4	20 20	ug/L	01.20.14 11:17	
trans-1,2-Dichloroethene	<0.68 <0.73		53	98 106		108	78-118 71-126	0	20	ug/L	01.20.14 11:17	
		50 50			54 53			2		ug/L	01.20.14 11:17	
trans-1,3-Dichloropropene	< 0.84	50	53 54	106	53	106	68-131	0	20	ug/L		
Trichloroethene Trichloroflyoromethene	<0.72	50 50	54	108	54	108	76-118	0	20	ug/L	01.20.14 11:17 01.20.14 11:17	
Trichlorofluoromethane	< 0.85	50	43	86 84	42	84	35-153	2	20	ug/L		
Vinyl chloride	< 0.15	50	42	84	42	84	59-129	0	20	ug/L	01.20.14 11:17	

Seq Number:

QC Summary 477666

Atlanta Environmental Management

Aramark - Dekalb

Analytical Method: VOCs by SW-846 8260B 932378

Matrix: Water

MB Sample Id: LCS Sample Id: 649984-1-BKS 649984-1-BLK

Prep Method: SW5030B Date Prep: 01.20.14 LCSD Sample Id: 649984-1-BSD

Surrogate	MB %Rec	MB Flag	LCS %Rec	LCS Flag	LCSD %Rec	LCSD Flag	Limits	Units	Analysis Date
1,2-Dichloroethane-D4	100		96		98		53-159	%	01.20.14 11:17
4-Bromofluorobenzene	96		98		96		30-186	%	01.20.14 11:17
Toluene-D8	96		96		94		70-130	%	01.20.14 11:17

QC Summary 477666

Atlanta Environmental Management

Aramark - Dekalb

Analytical Method: VOCs by SW-846 8260B

Prep Method: SW5030B Date Prep: 01.20.14

Seq Number: 932378 Parent Sample Id: 477666-001

MS Sample Id: 477666-001 S

Matrix: Water

Date Prep: 01.20.14 MSD Sample Id: 477666-001 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,1,1-Trichloroethane	< 0.34	50	49	98	45	90	63-149	9	20	ug/L	01.20.14 21:48	
1,1,2,2-Tetrachloroethane	< 2.0	50	46	92	43	86	58-140	7	20	ug/L	01.20.14 21:48	
1,1,2-Trichloro-1,2,2-trifluoroethane	< 0.97	50	43	86	47	94	42-156	9	20	ug/L	01.20.14 21:48	
1,1,2-Trichloroethane	< 0.88	50	43	86	37	74	49-140	15	20	ug/L	01.20.14 21:48	X
1,1-Dichloroethane	< 0.74	50	44	88	38	76	67-136	15	20	ug/L	01.20.14 21:48	
1,1-Dichloroethene	< 0.98	50	42	84	39	78	52-141	7	20	ug/L	01.20.14 21:48	
1,2,3-Trichlorobenzene	< 2.6	50	47	94	41	82	50-131	14	20	ug/L	01.20.14 21:48	
1,2,4-Trichlorobenzene	<1.3	50	43	86	36	72	51-125	18	20	ug/L	01.20.14 21:48	
1,2-Dibromo-3-chloropropane (DBCP)	< 2.8	50	47	94	50	100	43-155	6	20	ug/L	01.20.14 21:48	
1,2-Dibromoethane (EDB)	< 0.79	50	46	92	39	78	66-136	16	20	ug/L	01.20.14 21:48	X
1,2-Dichlorobenzene	< 0.73	50	41	82	34	68	70-124	19	20	ug/L	01.20.14 21:48	X
1,2-Dichloroethane	< 0.82	50	51	102	42	84	71-143	19	20	ug/L	01.20.14 21:48	
1,2-Dichloropropane	< 0.81	50	42	84	36	72	74-125	15	20	ug/L	01.20.14 21:48	X
1,3-Dichlorobenzene	< 0.74	50	40	80	34	68	73-123	16	20	ug/L	01.20.14 21:48	X
1,4-Dichlorobenzene	< 0.59	50	40	80	34	68	74-116	16	20	ug/L	01.20.14 21:48	X
2-Butanone (MEK)	<1.3	100	98	98	100	100	43-155	2	20	ug/L	01.20.14 21:48	
2-Hexanone	<2.5	100	96	96	95	95	52-148	1	20	ug/L	01.20.14 21:48	
4-Methyl-2-pentanone (MIBK)	<2.2	100	91	91	88	88	61-141	3	20	ug/L	01.20.14 21:48	
Acetone	<1.4	100	94	94	110	110	40-140	16	20	ug/L	01.20.14 21:48	
Benzene	< 0.67	50	44	88	37	74	78-117	17	20	ug/L	01.20.14 21:48	X
Bromochloromethane	< 0.47	50	48	96	41	82	65-127	16	20	ug/L	01.20.14 21:48	
Bromodichloromethane	< 0.96	50	47	94	39	78	71-133	19	20	ug/L ug/L	01.20.14 21:48	
Bromoform	<1.4	50	48	96	44	88	55-129	9	20	ug/L ug/L	01.20.14 21:48	
Bromomethane	<2.7	50	39	78	33	66	49-157	17	20	ug/L ug/L	01.20.14 21:48	
Carbon disulfide	< 0.73	50	37	74	33	66	31-142	11	20	ug/L ug/L	01.20.14 21:48	
Carbon tetrachloride	< 0.89	50	49	98	48	96	63-152	2	20	ug/L ug/L	01.20.14 21:48	
Chlorobenzene	< 0.59	50	43	86	36	72	75-117	18	20	ug/L ug/L	01.20.14 21:48	X
Chloroethane	<0.23	50	41	82	38	76	49-147	8	20	ug/L ug/L	01.20.14 21:48	71
Chloroform	<1.4	50	48	96	41	82	67-136	16	20	ug/L ug/L	01.20.14 21:48	
Chloromethane	<1.4	50	30	60	28	56	35-162	7	20	ug/L ug/L	01.20.14 21:48	
cis-1,2-Dichloroethene	< 0.80	50	44	88	38	76	64-132	15	20	_	01.20.14 21:48	
cis-1,3-Dichloropropene	< 0.76	50	45	90	38	76 76	69-116	17	20	ug/L ug/L	01.20.14 21:48	
Cyclohexane	<0.70	50	37	74	36	70	59-110	3	20	ug/L ug/L	01.20.14 21:48	
Dibromochloromethane	<0.79	50	48	96	40	80	54-144	18	20	ug/L ug/L	01.20.14 21:48	
Dichlorodifluoromethane	<0.73	50	35	70	37	74	26-171	6	20	ug/L ug/L	01.20.14 21:48	
Ethylbenzene	< 0.73	50	54	108	40	80	74-131	30	20	ug/L ug/L	01.20.14 21:48	F
•	<1.0	50	44	88	37	74	63-133	30 17	20	_	01.20.14 21:48	X
Isopropylbenzene		100			88	88		39	20	ug/L	01.20.14 21:48	л F
m,p-Xylenes	<1.2		130	130			67-134			ug/L	01.20.14 21:48	Г
Methyl acetate	< 0.15	50	56 99	112	47	94	65-135	17	20	ug/L	01.20.14 21:48	
Methyl tert-butyl ether	< 0.62	100		99	85	85	51-156	15	20	ug/L		37
Methylcyclohexane	< 0.76	50	66	132	54	108	62-123 52-165	20	20	ug/L	01.20.14 21:48 01.20.14 21:48	X
Methylene chloride	< 0.92	50	40	80	33	66		19	20	ug/L		
Naphthalene	<4.0	50	53	106	48	96	31-151	10	20	ug/L	01.20.14 21:48	ME
o-Xylene	< 0.57	50	64	128	43	86	70-125	39	20	ug/L	01.20.14 21:48	XF
Styrene	< 0.56	50	43	86	35	70	42-145	21	20	ug/L	01.20.14 21:48	F
Tetrachloroethene	5.9	50	48	84	44	76	57-132	9	20	ug/L	01.20.14 21:48	-
Toluene	< 0.68	50	53	106	38	76	76-119	33	20	ug/L	01.20.14 21:48	F
trans-1,2-Dichloroethene	< 0.73	50	43	86	39	78	46-152	10	20	ug/L	01.20.14 21:48	
trans-1,3-Dichloropropene	< 0.84	50	47	94	39	78	60-132	19	20	ug/L	01.20.14 21:48	
Trichloroethene	<0.72	50	46	92	41	82	77-120	11	20	ug/L	01.20.14 21:48	
Trichlorofluoromethane	< 0.85	50	44	88	45	90	47-165	2	20	ug/L	01.20.14 21:48	
Vinyl chloride	< 0.15	50	35	70	33	66	43-148	6	20	ug/L	01.20.14 21:48	

QC Summary 477666

Atlanta Environmental Management

Aramark - Dekalb

Analytical Method: VOCs by SW-846 8260B

Prep Method: SW5030B 932378 Seq Number: Matrix: Water Date Prep: 01.20.14 Parent Sample Id: 477666-001 MS Sample Id: 477666-001 S MSD Sample Id: 477666-001 SD

Surrogate	MS %Rec	MS Flag	MSD %Rec	MSD Flag	Limits	Units	Analysis Date
1,2-Dichloroethane-D4	110		108		53-159	%	01.20.14 21:48
4-Bromofluorobenzene	100		102		30-186	%	01.20.14 21:48
Toluene-D8	96		94		70-130	%	01.20.14 21:48

Laboratories

CHAIN OF CUSTODY

					Pag	ge _	1	_ of		1	
	60	17	Fin	ancia	al D	rive,	Norc	ross,	GA	30	071
Dhone	4	177	701	440	990	Λ	Tov #	(770	1 44	0.5	477

	Company Name:		Billing address: 2580 Northeast Expressway, Atlanta, GA 30345						45										
	Address: 2580	Northeast Express	way,	At	lanta,	GA 30345		P.0	O.# (i:	f requ	ired):							-
	Results Sent to: (Cli	ient Contact): Hai	rd C	ору	(Mai	l) to Leona Miles		Fo	r Lat	orat	ory	Use	Only:			AAI	. LIM	S System ID:	もしゅう
	Email address: EDI	D to leona-miles@	aem-	net	t.com			QQ	Leve	l: 1	2 3	4 CL	P-Lik	е	Rec	eive	r's In	itials/Temp.	3,100
	Contact Phone #:	404-329-9006				Fax #: 404-329-20	57	Cu	stody	Seal(s):	Y	N	Tape				ork Order #	70
	Project (Site) Name	: ARAMARK DeK	alb				:		Santahoo oo faasa daabaa daaabaa daabaa daabaa daabaa daabaa daabaa daabaa daabaa daabaa daab		An	alysis	Reque	sted				(12)	7 666
	Project Number: 1133-1401-3 Preservation Code: (See below																	77	
1	Sampler(s): (signature) Lony Cordon Sampler(s): (printed) Tony L Gordon																		
Line No.																			XENCO Lab ID:
1	MW-2079	1/16/14 1440	1 1		GW	670 DeKelb Auz	2	X											_
2	Drum #3	thift 1510	$\left - \right\rangle$	$\langle $	V ∪'	From Sangle (DW)	_2	X			To	2		-					
3	Trip Blank	C		$\langle $	W	RAIRE	2	X											_
4	√			7															
5																			
6							****									<u> </u>			_
7																			-
8																			_
9			П																
10																			_
		Soda 11	17/	14		:36 6		_		1//	7/		842	ı	Ex/l	UPS/	DHL.	cle One) / AAL Pickup / H	
3) R	3) Relinquished By: Date / Time 4) Received By:							Date / Time Turnaround Tim					sted:						

Matrix Guide: (W=Water) (DW = Drinking Water) (GW = Groundwater) (SW = Surface Water) (L = Liquid) (O = Oil) (S = Soil) (SD = Solid) (SL = Sludge) (A = Air) (C = Air Cartridge) Preservation Codes: $1 = HCL / 2 = HNO_3 / 3 = H_2SO_4 / 4 = NaOH + NaAsO_2 / 5 = NaOH + ZnAc / 6 = Na_2S_2O_3 / 7 = NaHSO_4 / 8 = MeOH$

Page 15 of 16

Analyst:

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: Atlanta Environmental Management

Date/ Time Received: 01/17/2014 08:42:00 AM

Work Order #: 477666

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Temperature Measuring device used: #61

Sample Receipt Checklist		Comments
#1 *Temperature of cooler(s)?	3.1	
#2 *Shipping container in good condition?	Yes	
#3 *Samples received on ice?	Yes	
#4 *Custody Seals intact on shipping container/ cooler?	N/A	
#5 Custody Seals intact on sample bottles?	N/A	
#6 *Custody Seals Signed and dated?	N/A	
#7 *Chain of Custody present?	Yes	
#8 Sample instructions complete on Chain of Custody?	Yes	
#9 Any missing/extra samples?	No	
#10 Chain of Custody signed when relinquished/ received?	Yes	
#11 Chain of Custody agrees with sample label(s)?	Yes	
#12 Container label(s) legible and intact?	Yes	
#13 Sample matrix/ properties agree with Chain of Custody?	Yes	
#14 Samples in proper container/ bottle?	Yes	
#15 Samples properly preserved?	Yes	
#16 Sample container(s) intact?	Yes	
#17 Sufficient sample amount for indicated test(s)?	Yes	
#18 All samples received within hold time?	Yes	
#19 Subcontract of sample(s)?	No	
#20 VOC samples have zero headspace (less than 1/4 inch bubble)?	Yes	
#21 <2 for all samples preserved with HNO3,HCL, H2SO4?	N/A	
#22 >10 for all samples preserved with NaAsO2+NaOH, ZnAc+NaOH?	N/A	

Must be completed for after-hours deliver	ry of samples prior	r to placing in the refrigerate	٥r
---	---------------------	---------------------------------	----

PH Device/Lot#:

Checklist completed by:	Dario Lagunas	Date: <u>01/17/2014</u>
Checklist reviewed by:	Elen D. Buham J.	Date: 01/17/2014

Eben Buchanan

Analytical Report 478156

for

Atlanta Environmental Management

Project Manager: Leona Miles

Aramark - Dekalb Ave

1133-1401-3

03-FEB-14

Collected By: Client

6017 Financial Dr., Norcross, GA 30071 Ph:(770) 449-8800 Fax:(770) 449-5477

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-14-16-TX), Arizona (AZ0765), Florida (E871002), Louisiana (03054) New Jersey (TX007), North Carolina(681), Oklahoma (9218), Pennsylvania (68-03610)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135) Louisiana (04176), USDA (P330-07-00105)

Xenco-Lakeland: Florida (E84098)

Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX)

Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757)

Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

03-FEB-14

Project Manager: **Leona Miles Atlanta Environmental Management**2580 Northeast Expressway
Atlanta, GA 30345

Reference: XENCO Report No(s): 478156

Aramark - Dekalb Ave Project Address: GA

Leona Miles:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 478156. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 478156 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Eben Buchanan

ben D. Buchancon

Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Sample Cross Reference 478156

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb Ave

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-306	W	01-27-14 11:20		478156-001
MW-206	W	01-27-14 12:45		478156-002
Drum#3	W	01-27-14 13:00		478156-003
Trip Blank	W	01-27-14 00:00		478156-004

CASE NARRATIVE

Client Name: Atlanta Environmental Management

Project Name: Aramark - Dekalb Ave

 Project ID:
 1133-1401-3
 Report Date:
 03-FEB-14

 Work Order Number(s):
 478156
 Date Received:
 01/27/2014

	Sample receipt non conformances and comments:
-	Sample receipt non conformances and comments per sample:
	None

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb Ave

Sample Id: MW-306 Matrix: Water % Moisture:

Lab Sample Id : 478156-001 Date Collected : 01.27.14 11.20
Date Received : 01.27.14 15.18

Analytical Method : VOCs by SW-846 8260B Prep Method: SW5030B

Seq Number 933213 Date Prep: 02.03.14 07.06

ParameterCas NumberResultUnitsAnalysis DateFlagDilTetrachloroethene127-18-432ug/L02.03.14 10.361

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb Ave

Sample Id: MW-206 Matrix: Water % Moisture:

Lab Sample Id : 478156-002 Date Collected : 01.27.14 12.45
Date Received : 01.27.14 15.18

Analytical Method : VOCs by SW-846 8260B Prep Method: SW5030B

Seq Number 933213 Date Prep: 02.03.14 07.06

Parameter	Cas Number	Result	Units	Analysis Date	Flag	Dil
cis-1,2-Dichloroethene	156-59-2	11	ug/L	02.03.14 11.04		1
Methyl tert-butyl ether	1634-04-4	66	ug/L	02.03.14 11.04		1

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb Ave

Sample Id: Drum#3 Matrix: Water % Moisture:

Lab Sample Id : 478156-003 Date Collected : 01.27.14 13.00 Date Received : 01.27.14 15.18

Analytical Method : VOCs by SW-846 8260B Prep Method: SW5030B

Seq Number 933213 Date Prep: 02.03.14 07.06

Parameter	Cas Number	Result	Units	Analysis Date	Flag	Dil
Acetone	67-64-1	69	ug/L	02.03.14 11.31		1
cis-1,2-Dichloroethene	156-59-2	17	ug/L	02.03.14 11.31		1
Tetrachloroethene	127-18-4	10	ug/L	02.03.14 11.31		1

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb Ave

Sample Id: MW-306 Matrix: Water Date Received:01.27.14 15.18

Lab Sample Id: 478156-001 Date Collected: 01.27.14 11.20

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

Analyst: MLA Date Prep: 02.03.14 07.06

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1-Trichloroethane	71-55-6	BRL	5.0	ug/L	02.03.14 10.36	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	5.0	ug/L	02.03.14 10.36	U	1
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	BRL	5.0	ug/L	02.03.14 10.36	U	1
1,1,2-Trichloroethane	79-00-5	BRL	5.0	ug/L	02.03.14 10.36	U	1
1,1-Dichloroethane	75-34-3	BRL	5.0	ug/L	02.03.14 10.36	U	1
1,1-Dichloroethene	75-35-4	BRL	5.0	ug/L	02.03.14 10.36	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	5.0	ug/L	02.03.14 10.36	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	5.0	ug/L	02.03.14 10.36	U	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	BRL	5.0	ug/L	02.03.14 10.36	U	1
1,2-Dibromoethane (EDB)	106-93-4	BRL	5.0	ug/L	02.03.14 10.36	U	1
1,2-Dichlorobenzene	95-50-1	BRL	5.0	ug/L	02.03.14 10.36	U	1
1,2-Dichloroethane	107-06-2	BRL	5.0	ug/L	02.03.14 10.36	U	1
1,2-Dichloropropane	78-87-5	BRL	5.0	ug/L	02.03.14 10.36	U	1
1,3-Dichlorobenzene	541-73-1	BRL	5.0	ug/L	02.03.14 10.36	U	1
1,4-Dichlorobenzene	106-46-7	BRL	5.0	ug/L	02.03.14 10.36	U	1
2-Butanone (MEK)	78-93-3	BRL	50	ug/L	02.03.14 10.36	U	1
2-Hexanone	591-78-6	BRL	50	ug/L	02.03.14 10.36	U	1
4-Methyl-2-pentanone (MIBK)	108-10-1	BRL	50	ug/L	02.03.14 10.36	U	1
Acetone	67-64-1	BRL	50	ug/L	02.03.14 10.36	U	1
Benzene	71-43-2	BRL	5.0	ug/L	02.03.14 10.36	U	1
Bromochloromethane	74-97-5	BRL	5.0	ug/L	02.03.14 10.36	U	1
Bromodichloromethane	75-27-4	BRL	5.0	ug/L	02.03.14 10.36	U	1
Bromoform	75-25-2	BRL	5.0	ug/L	02.03.14 10.36	U	1
Bromomethane	74-83-9	BRL	5.0	ug/L	02.03.14 10.36	U	1
Carbon disulfide	75-15-0	BRL	5.0	ug/L	02.03.14 10.36	U	1
Carbon tetrachloride	56-23-5	BRL	5.0	ug/L	02.03.14 10.36	U	1
Chlorobenzene	108-90-7	BRL	5.0	ug/L	02.03.14 10.36	U	1
Chloroethane	75-00-3	BRL	4.0	ug/L	02.03.14 10.36	U	1
Chloroform	67-66-3	BRL	5.0	ug/L	02.03.14 10.36	U	1
Chloromethane	74-87-3	BRL	5.0	ug/L	02.03.14 10.36	U	1
cis-1,2-Dichloroethene	156-59-2	BRL	5.0	ug/L	02.03.14 10.36	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	5.0	ug/L	02.03.14 10.36	U	1
Cyclohexane	110-82-7	BRL	5.0	ug/L	02.03.14 10.36	U	1
Dibromochloromethane	124-48-1	BRL	5.0	ug/L	02.03.14 10.36	U	1
Dichlorodifluoromethane	75-71-8	BRL	5.0	ug/L	02.03.14 10.36	U	1
Ethylbenzene	100-41-4	BRL	5.0	ug/L	02.03.14 10.36	U	1
Isopropylbenzene	98-82-8	BRL	5.0	ug/L	02.03.14 10.36	U	1
m,p-Xylenes	179601-23-1	BRL	5.0	ug/L	02.03.14 10.36	U	1
Methyl acetate	79-20-9	BRL	5.0	ug/L	02.03.14 10.36	U	1

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb Ave

Sample Id: MW-306 Matrix: Water Date Received:01.27.14 15.18

Lab Sample Id: 478156-001 Date Collected: 01.27.14 11.20

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

Analyst: MLA Date Prep: 02.03.14 07.06

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Methyl tert-butyl ether	1634-04-4	BRL	5.0		ug/L	02.03.14 10.36	U	1
Methylcyclohexane	108-87-2	BRL	5.0		ug/L	02.03.14 10.36	U	1
Methylene chloride	75-09-2	BRL	5.0		ug/L	02.03.14 10.36	U	1
Naphthalene	91-20-3	BRL	5.0		ug/L	02.03.14 10.36	U	1
o-Xylene	95-47-6	BRL	5.0		ug/L	02.03.14 10.36	U	1
Styrene	100-42-5	BRL	5.0		ug/L	02.03.14 10.36	U	1
Tetrachloroethene	127-18-4	32	5.0		ug/L	02.03.14 10.36		1
Toluene	108-88-3	BRL	5.0		ug/L	02.03.14 10.36	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	5.0		ug/L	02.03.14 10.36	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	5.0		ug/L	02.03.14 10.36	U	1
Trichloroethene	79-01-6	BRL	5.0		ug/L	02.03.14 10.36	U	1
Trichlorofluoromethane	75-69-4	BRL	5.0		ug/L	02.03.14 10.36	U	1
Vinyl chloride	75-01-4	BRL	2.0		ug/L	02.03.14 10.36	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,2-Dichloroethane-D4		17060-07-0	102	%	53-159	02.03.14 10.36		
4-Bromofluorobenzene		460-00-4	104	%	30-186	02.03.14 10.36		
Toluene-D8		2037-26-5	112	%	70-130	02.03.14 10.36		

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb Ave

Sample Id: MW-206 Matrix: Water Date Received:01.27.14 15.18

Lab Sample Id: 478156-002 Date Collected: 01.27.14 12.45

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

Analyst: MLA Date Prep: 02.03.14 07.06

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1-Trichloroethane	71-55-6	BRL	5.0	ug/L	02.03.14 11.04	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	5.0	ug/L	02.03.14 11.04	U	1
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	BRL	5.0	ug/L	02.03.14 11.04	U	1
1,1,2-Trichloroethane	79-00-5	BRL	5.0	ug/L	02.03.14 11.04	U	1
1,1-Dichloroethane	75-34-3	BRL	5.0	ug/L	02.03.14 11.04	U	1
1,1-Dichloroethene	75-35-4	BRL	5.0	ug/L	02.03.14 11.04	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	5.0	ug/L	02.03.14 11.04	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	5.0	ug/L	02.03.14 11.04	U	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	BRL	5.0	ug/L	02.03.14 11.04	U	1
1,2-Dibromoethane (EDB)	106-93-4	BRL	5.0	ug/L	02.03.14 11.04	U	1
1,2-Dichlorobenzene	95-50-1	BRL	5.0	ug/L	02.03.14 11.04	U	1
1,2-Dichloroethane	107-06-2	BRL	5.0	ug/L	02.03.14 11.04	U	1
1,2-Dichloropropane	78-87-5	BRL	5.0	ug/L	02.03.14 11.04	U	1
1,3-Dichlorobenzene	541-73-1	BRL	5.0	ug/L	02.03.14 11.04	U	1
1,4-Dichlorobenzene	106-46-7	BRL	5.0	ug/L	02.03.14 11.04	U	1
2-Butanone (MEK)	78-93-3	BRL	50	ug/L	02.03.14 11.04	U	1
2-Hexanone	591-78-6	BRL	50	ug/L	02.03.14 11.04	U	1
4-Methyl-2-pentanone (MIBK)	108-10-1	BRL	50	ug/L	02.03.14 11.04	U	1
Acetone	67-64-1	BRL	50	ug/L	02.03.14 11.04	U	1
Benzene	71-43-2	BRL	5.0	ug/L	02.03.14 11.04	U	1
Bromochloromethane	74-97-5	BRL	5.0	ug/L	02.03.14 11.04	U	1
Bromodichloromethane	75-27-4	BRL	5.0	ug/L	02.03.14 11.04	U	1
Bromoform	75-25-2	BRL	5.0	ug/L	02.03.14 11.04	U	1
Bromomethane	74-83-9	BRL	5.0	ug/L	02.03.14 11.04	U	1
Carbon disulfide	75-15-0	BRL	5.0	ug/L	02.03.14 11.04	U	1
Carbon tetrachloride	56-23-5	BRL	5.0	ug/L	02.03.14 11.04	U	1
Chlorobenzene	108-90-7	BRL	5.0	ug/L	02.03.14 11.04	U	1
Chloroethane	75-00-3	BRL	4.0	ug/L	02.03.14 11.04	U	1
Chloroform	67-66-3	BRL	5.0	ug/L	02.03.14 11.04	U	1
Chloromethane	74-87-3	BRL	5.0	ug/L	02.03.14 11.04	U	1
cis-1,2-Dichloroethene	156-59-2	11	5.0	ug/L	02.03.14 11.04		1
cis-1,3-Dichloropropene	10061-01-5	BRL	5.0	ug/L	02.03.14 11.04	U	1
Cyclohexane	110-82-7	BRL	5.0	ug/L	02.03.14 11.04	U	1
Dibromochloromethane	124-48-1	BRL	5.0	ug/L	02.03.14 11.04	U	1
Dichlorodifluoromethane	75-71-8	BRL	5.0	ug/L	02.03.14 11.04	U	1
Ethylbenzene	100-41-4	BRL	5.0	ug/L	02.03.14 11.04	U	1
Isopropylbenzene	98-82-8	BRL	5.0	ug/L	02.03.14 11.04	U	1
m,p-Xylenes	179601-23-1	BRL	5.0	ug/L	02.03.14 11.04	U	1
Methyl acetate	79-20-9	BRL	5.0	ug/L	02.03.14 11.04	U	1

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb Ave

Sample Id: MW-206 Matrix: Water Date Received:01.27.14 15.18

Lab Sample Id: 478156-002 Date Collected: 01.27.14 12.45

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

Analyst: MLA Date Prep: 02.03.14 07.06

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Methyl tert-butyl ether	1634-04-4	66	5.0		ug/L	02.03.14 11.04		1
Methylcyclohexane	108-87-2	BRL	5.0		ug/L	02.03.14 11.04	U	1
Methylene chloride	75-09-2	BRL	5.0		ug/L	02.03.14 11.04	U	1
Naphthalene	91-20-3	BRL	5.0		ug/L	02.03.14 11.04	U	1
o-Xylene	95-47-6	BRL	5.0		ug/L	02.03.14 11.04	U	1
Styrene	100-42-5	BRL	5.0		ug/L	02.03.14 11.04	U	1
Tetrachloroethene	127-18-4	BRL	5.0		ug/L	02.03.14 11.04	U	1
Toluene	108-88-3	BRL	5.0		ug/L	02.03.14 11.04	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	5.0		ug/L	02.03.14 11.04	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	5.0		ug/L	02.03.14 11.04	U	1
Trichloroethene	79-01-6	BRL	5.0		ug/L	02.03.14 11.04	U	1
Trichlorofluoromethane	75-69-4	BRL	5.0		ug/L	02.03.14 11.04	U	1
Vinyl chloride	75-01-4	BRL	2.0		ug/L	02.03.14 11.04	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,2-Dichloroethane-D4		17060-07-0	104	%	53-159	02.03.14 11.04		
4-Bromofluorobenzene		460-00-4	104	%	30-186	02.03.14 11.04		
Toluene-D8		2037-26-5	108	%	70-130	02.03.14 11.04		

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb Ave

Sample Id: Drum#3 Matrix: Water Date Received:01.27.14 15.18

Lab Sample Id: 478156-003 Date Collected: 01.27.14 13.00

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

Analyst: MLA Date Prep: 02.03.14 07.06

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1-Trichloroethane	71-55-6	BRL	5.0	ug/L	02.03.14 11.31	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	5.0	ug/L	02.03.14 11.31	U	1
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	BRL	5.0	ug/L	02.03.14 11.31	U	1
1,1,2-Trichloroethane	79-00-5	BRL	5.0	ug/L	02.03.14 11.31	U	1
1,1-Dichloroethane	75-34-3	BRL	5.0	ug/L	02.03.14 11.31	U	1
1,1-Dichloroethene	75-35-4	BRL	5.0	ug/L	02.03.14 11.31	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	5.0	ug/L	02.03.14 11.31	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	5.0	ug/L	02.03.14 11.31	U	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	BRL	5.0	ug/L	02.03.14 11.31	U	1
1,2-Dibromoethane (EDB)	106-93-4	BRL	5.0	ug/L	02.03.14 11.31	U	1
1,2-Dichlorobenzene	95-50-1	BRL	5.0	ug/L	02.03.14 11.31	U	1
1,2-Dichloroethane	107-06-2	BRL	5.0	ug/L	02.03.14 11.31	U	1
1,2-Dichloropropane	78-87-5	BRL	5.0	ug/L	02.03.14 11.31	U	1
1,3-Dichlorobenzene	541-73-1	BRL	5.0	ug/L	02.03.14 11.31	U	1
1,4-Dichlorobenzene	106-46-7	BRL	5.0	ug/L	02.03.14 11.31	U	1
2-Butanone (MEK)	78-93-3	BRL	50	ug/L	02.03.14 11.31	U	1
2-Hexanone	591-78-6	BRL	50	ug/L	02.03.14 11.31	U	1
4-Methyl-2-pentanone (MIBK)	108-10-1	BRL	50	ug/L	02.03.14 11.31	U	1
Acetone	67-64-1	69	50	ug/L	02.03.14 11.31		1
Benzene	71-43-2	BRL	5.0	ug/L	02.03.14 11.31	U	1
Bromochloromethane	74-97-5	BRL	5.0	ug/L	02.03.14 11.31	U	1
Bromodichloromethane	75-27-4	BRL	5.0	ug/L	02.03.14 11.31	U	1
Bromoform	75-25-2	BRL	5.0	ug/L	02.03.14 11.31	U	1
Bromomethane	74-83-9	BRL	5.0	ug/L	02.03.14 11.31	U	1
Carbon disulfide	75-15-0	BRL	5.0	ug/L	02.03.14 11.31	U	1
Carbon tetrachloride	56-23-5	BRL	5.0	ug/L	02.03.14 11.31	U	1
Chlorobenzene	108-90-7	BRL	5.0	ug/L	02.03.14 11.31	U	1
Chloroethane	75-00-3	BRL	4.0	ug/L	02.03.14 11.31	U	1
Chloroform	67-66-3	BRL	5.0	ug/L	02.03.14 11.31	U	1
Chloromethane	74-87-3	BRL	5.0	ug/L	02.03.14 11.31	U	1
cis-1,2-Dichloroethene	156-59-2	17	5.0	ug/L	02.03.14 11.31		1
cis-1,3-Dichloropropene	10061-01-5	BRL	5.0	ug/L	02.03.14 11.31	U	1
Cyclohexane	110-82-7	BRL	5.0	ug/L	02.03.14 11.31	U	1
Dibromochloromethane	124-48-1	BRL	5.0	ug/L	02.03.14 11.31	U	1
Dichlorodifluoromethane	75-71-8	BRL	5.0	ug/L	02.03.14 11.31	U	1
Ethylbenzene	100-41-4	BRL	5.0	ug/L	02.03.14 11.31	U	1
Isopropylbenzene	98-82-8	BRL	5.0	ug/L	02.03.14 11.31	U	1
m,p-Xylenes	179601-23-1	BRL	5.0	ug/L	02.03.14 11.31	U	1
Methyl acetate	79-20-9	BRL	5.0	ug/L	02.03.14 11.31	U	1

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb Ave

Sample Id: Drum#3 Matrix: Water Date Received:01.27.14 15.18

Lab Sample Id: 478156-003 Date Collected: 01.27.14 13.00

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

Analyst: MLA Date Prep: 02.03.14 07.06

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Methyl tert-butyl ether	1634-04-4	BRL	5.0		ug/L	02.03.14 11.31	U	1
Methylcyclohexane	108-87-2	BRL	5.0		ug/L	02.03.14 11.31	U	1
Methylene chloride	75-09-2	BRL	5.0		ug/L	02.03.14 11.31	U	1
Naphthalene	91-20-3	BRL	5.0		ug/L	02.03.14 11.31	U	1
o-Xylene	95-47-6	BRL	5.0		ug/L	02.03.14 11.31	U	1
Styrene	100-42-5	BRL	5.0		ug/L	02.03.14 11.31	U	1
Tetrachloroethene	127-18-4	10	5.0		ug/L	02.03.14 11.31		1
Toluene	108-88-3	BRL	5.0		ug/L	02.03.14 11.31	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	5.0		ug/L	02.03.14 11.31	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	5.0		ug/L	02.03.14 11.31	U	1
Trichloroethene	79-01-6	BRL	5.0		ug/L	02.03.14 11.31	U	1
Trichlorofluoromethane	75-69-4	BRL	5.0		ug/L	02.03.14 11.31	U	1
Vinyl chloride	75-01-4	BRL	2.0		ug/L	02.03.14 11.31	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,2-Dichloroethane-D4		17060-07-0	104	%	53-159	02.03.14 11.31		
4-Bromofluorobenzene		460-00-4	104	%	30-186	02.03.14 11.31		
Toluene-D8		2037-26-5	108	%	70-130	02.03.14 11.31		

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb Ave

Sample Id: Trip Blank Matrix: Water Date Received:01.27.14 15.18

Lab Sample Id: 478156-004 Date Collected: 01.27.14 00.00

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

Analyst: MLA Date Prep: 02.03.14 07.06

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
1,1,1-Trichloroethane	71-55-6	BRL	5.0	ug/L	02.03.14 10.09	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	5.0	ug/L	02.03.14 10.09	U	1
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	BRL	5.0	ug/L	02.03.14 10.09	U	1
1,1,2-Trichloroethane	79-00-5	BRL	5.0	ug/L	02.03.14 10.09	U	1
1,1-Dichloroethane	75-34-3	BRL	5.0	ug/L	02.03.14 10.09	U	1
1,1-Dichloroethene	75-35-4	BRL	5.0	ug/L	02.03.14 10.09	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	5.0	ug/L	02.03.14 10.09	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	5.0	ug/L	02.03.14 10.09	U	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	BRL	5.0	ug/L	02.03.14 10.09	U	1
1,2-Dibromoethane (EDB)	106-93-4	BRL	5.0	ug/L	02.03.14 10.09	U	1
1,2-Dichlorobenzene	95-50-1	BRL	5.0	ug/L	02.03.14 10.09	U	1
1,2-Dichloroethane	107-06-2	BRL	5.0	ug/L	02.03.14 10.09	U	1
1,2-Dichloropropane	78-87-5	BRL	5.0	ug/L	02.03.14 10.09	U	1
1,3-Dichlorobenzene	541-73-1	BRL	5.0	ug/L	02.03.14 10.09	U	1
1,4-Dichlorobenzene	106-46-7	BRL	5.0	ug/L	02.03.14 10.09	U	1
2-Butanone (MEK)	78-93-3	BRL	50	ug/L	02.03.14 10.09	U	1
2-Hexanone	591-78-6	BRL	50	ug/L	02.03.14 10.09	U	1
4-Methyl-2-pentanone (MIBK)	108-10-1	BRL	50	ug/L	02.03.14 10.09	U	1
Acetone	67-64-1	BRL	50	ug/L	02.03.14 10.09	U	1
Benzene	71-43-2	BRL	5.0	ug/L	02.03.14 10.09	U	1
Bromochloromethane	74-97-5	BRL	5.0	ug/L	02.03.14 10.09	U	1
Bromodichloromethane	75-27-4	BRL	5.0	ug/L	02.03.14 10.09	U	1
Bromoform	75-25-2	BRL	5.0	ug/L	02.03.14 10.09	U	1
Bromomethane	74-83-9	BRL	5.0	ug/L	02.03.14 10.09	U	1
Carbon disulfide	75-15-0	BRL	5.0	ug/L	02.03.14 10.09	U	1
Carbon tetrachloride	56-23-5	BRL	5.0	ug/L	02.03.14 10.09	U	1
Chlorobenzene	108-90-7	BRL	5.0	ug/L	02.03.14 10.09	U	1
Chloroethane	75-00-3	BRL	4.0	ug/L	02.03.14 10.09	U	1
Chloroform	67-66-3	BRL	5.0	ug/L	02.03.14 10.09	U	1
Chloromethane	74-87-3	BRL	5.0	ug/L	02.03.14 10.09	U	1
cis-1,2-Dichloroethene	156-59-2	BRL	5.0	ug/L	02.03.14 10.09	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	5.0	ug/L	02.03.14 10.09	U	1
Cyclohexane	110-82-7	BRL	5.0	ug/L	02.03.14 10.09	U	1
Dibromochloromethane	124-48-1	BRL	5.0	ug/L	02.03.14 10.09	U	1
Dichlorodifluoromethane	75-71-8	BRL	5.0	ug/L	02.03.14 10.09	U	1
Ethylbenzene	100-41-4	BRL	5.0	ug/L	02.03.14 10.09	U	1
Isopropylbenzene	98-82-8	BRL	5.0	ug/L	02.03.14 10.09	U	1
m,p-Xylenes	179601-23-1	BRL	5.0	ug/L	02.03.14 10.09	U	1
Methyl acetate	79-20-9	BRL	5.0	ug/L	02.03.14 10.09	U	1

Atlanta Environmental Management, Atlanta, GA

Aramark - Dekalb Ave

Sample Id: Trip Blank Matrix: Water Date Received:01.27.14 15.18

Lab Sample Id: 478156-004 Date Collected: 01.27.14 00.00

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Tech: MWE % Moisture:

Analyst: MLA Date Prep: 02.03.14 07.06

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Methyl tert-butyl ether	1634-04-4	BRL	5.0		ug/L	02.03.14 10.09	U	1
Methylcyclohexane	108-87-2	BRL	5.0		ug/L	02.03.14 10.09	U	1
Methylene chloride	75-09-2	BRL	5.0		ug/L	02.03.14 10.09	U	1
Naphthalene	91-20-3	BRL	5.0		ug/L	02.03.14 10.09	U	1
o-Xylene	95-47-6	BRL	5.0		ug/L	02.03.14 10.09	U	1
Styrene	100-42-5	BRL	5.0		ug/L	02.03.14 10.09	U	1
Tetrachloroethene	127-18-4	BRL	5.0		ug/L	02.03.14 10.09	U	1
Toluene	108-88-3	BRL	5.0		ug/L	02.03.14 10.09	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	5.0		ug/L	02.03.14 10.09	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	5.0		ug/L	02.03.14 10.09	U	1
Trichloroethene	79-01-6	BRL	5.0		ug/L	02.03.14 10.09	U	1
Trichlorofluoromethane	75-69-4	BRL	5.0		ug/L	02.03.14 10.09	U	1
Vinyl chloride	75-01-4	BRL	2.0		ug/L	02.03.14 10.09	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,2-Dichloroethane-D4		17060-07-0	102	%	53-159	02.03.14 10.09		
4-Bromofluorobenzene		460-00-4	106	%	30-186	02.03.14 10.09		
Toluene-D8		2037-26-5	106	%	70-130	02.03.14 10.09		

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- BRL Below Reporting Limit.
- **RL** Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	Fax
4143 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
2505 North Falkenburg Rd, Tampa, FL 33619	(813) 620-2000	(813) 620-2033
12600 West I-20 East, Odessa, TX 79765	(432) 563-1800	(432) 563-1713
6017 Financial Drive, Norcross, GA 30071	(770) 449-8800	(770) 449-5477
3725 E. Atlanta Ave, Phoenix, AZ 85040	(602) 437-0330	

QC Summary 478156

Atlanta Environmental Management

Aramark - Dekalb Ave

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Seq Number:933213Matrix:WaterDate Prep:02.03.14MB Sample Id:650521-1-BLKLCS Sample Id:650521-1-BKSLCSD Sample Id:650521-1-BSD

MB Sample Id: 050521-1-	-BLK		LCS Sai	npie iu.	030321-1	-DIZO		LCSI	Sample	Iu. 050.	321-1-DSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,1,1-Trichloroethane	< 0.34	50	45	90	45	90	56-141	0	20	ug/L	02.03.14 07:55	
1,1,2,2-Tetrachloroethane	< 2.0	50	63	126	63	126	64-135	0	20	ug/L	02.03.14 07:55	
1,1,2-Trichloro-1,2,2-trifluoroethane	< 0.97	50	45	90	44	88	54-134	2	20	ug/L	02.03.14 07:55	
1,1,2-Trichloroethane	< 0.88	50	57	114	56	112	73-123	2	20	ug/L	02.03.14 07:55	
1,1-Dichloroethane	< 0.74	50	50	100	49	98	66-126	2	20	ug/L	02.03.14 07:55	
1,1-Dichloroethene	< 0.98	50	45	90	45	90	65-129	0	20	ug/L	02.03.14 07:55	
1,2,3-Trichlorobenzene	< 2.6	50	57	114	57	114	56-146	0	20	ug/L	02.03.14 07:55	
1,2,4-Trichlorobenzene	<1.3	50	55	110	54	108	62-141	2	20	ug/L	02.03.14 07:55	
1,2-Dibromo-3-chloropropane (DBCP)	< 2.8	50	56	112	57	114	48-144	2	20	ug/L	02.03.14 07:55	
1,2-Dibromoethane (EDB)	< 0.79	50	57	114	56	112	70-130	2	20	ug/L	02.03.14 07:55	
1,2-Dichlorobenzene	< 0.73	50	54	108	53	106	77-123	2	20	ug/L	02.03.14 07:55	
1,2-Dichloroethane	< 0.82	50	49	98	48	96	57-137	2	20	ug/L	02.03.14 07:55	
1,2-Dichloropropane	< 0.81	50	52	104	50	100	74-121	4	20	ug/L	02.03.14 07:55	
1,3-Dichlorobenzene	< 0.74	50	53	106	52	104	79-120	2	20	ug/L	02.03.14 07:55	
1,4-Dichlorobenzene	< 0.59	50	53	106	51	102	77-119	4	20	ug/L	02.03.14 07:55	
2-Butanone (MEK)	<1.3	100	130	130	130	130	42-165	0	20	ug/L	02.03.14 07:55	
2-Hexanone	<2.5	100	130	130	140	140	46-157	7	20	ug/L	02.03.14 07:55	
4-Methyl-2-pentanone (MIBK)	<2.2	100	110	110	110	110	54-145	0	20	ug/L	02.03.14 07:55	
Acetone (William)	<1.4	100	120	120	110	110	42-178	9	20	ug/L	02.03.14 07:55	
Benzene	< 0.67	50	49	98	48	96	76-119	2	20	ug/L ug/L	02.03.14 07:55	
Bromochloromethane	<0.47	50	51	102	51	102	75-123	0	20	ug/L ug/L	02.03.14 07:55	
Bromodichloromethane	<0.47	50	50	102	49	98	69-131	2	20	ug/L ug/L	02.03.14 07:55	
Bromoform	<1.4	50	57	114	59	118	66-130	3	20	_	02.03.14 07:55	
	<2.7	50	40	80			59-141	2		ug/L	02.03.14 07:55	
Bromomethane Carbon disulfide	<0.73	50	39	78	41 38	82 76	39-141 47-144	3	20 20	ug/L	02.03.14 07:55	
										ug/L	02.03.14 07.55	
Carbon tetrachloride	< 0.89	50	45	90	45	90	46-155	0	20	ug/L		
Chlorobenzene	<0.59	50	52	104	51	102	81-114	2	20	ug/L	02.03.14 07:55	
Chloroethane	< 0.23	50	45	90	49	98	63-133	9	20	ug/L	02.03.14 07:55	
Chloroform	<1.4	50	47	94	47	94	68-127	0	20	ug/L	02.03.14 07:55	
Chloromethane	<1.2	50	43	86	43	86	43-141	0	20	ug/L	02.03.14 07:55	
cis-1,2-Dichloroethene	< 0.80	50	49	98	48	96	73-124	2	20	ug/L	02.03.14 07:55	
cis-1,3-Dichloropropene	< 0.76	50	52	104	51	102	72-132	2	20	ug/L	02.03.14 07:55	
Cyclohexane	< 0.99	50	39	78	40	80	58-125	3	20	ug/L	02.03.14 07:55	
Dibromochloromethane	< 0.79	50	55	110	54	108	69-128	2	20	ug/L	02.03.14 07:55	
Dichlorodifluoromethane	< 0.73	50	40	80	40	80	24-153	0	20	ug/L	02.03.14 07:55	
Ethylbenzene	< 0.66	50	51	102	50	100	78-122	2	20	ug/L	02.03.14 07:55	
Isopropylbenzene	<1.0	50	51	102	51	102	71-131	0	20	ug/L	02.03.14 07:55	
m,p-Xylenes	<1.2	100	100	100	100	100	76-124	0	20	ug/L	02.03.14 07:55	
Methyl acetate	< 0.15	50	54	108	55	110	65-135	2	20	ug/L	02.03.14 07:55	
Methyl tert-butyl ether	< 0.62	100	100	100	100	100	59-135	0	20	ug/L	02.03.14 07:55	
Methylcyclohexane	< 0.76	50	41	82	40	80	61-125	2	20	ug/L	02.03.14 07:55	
Methylene chloride	< 0.92	50	51	102	50	100	64-135	2	20	ug/L	02.03.14 07:55	
Naphthalene	<4.0	50	60	120	60	120	46-159	0	20	ug/L	02.03.14 07:55	
o-Xylene	< 0.57	50	52	104	51	102	78-124	2	20	ug/L	02.03.14 07:55	
Styrene	< 0.56	50	53	106	52	104	79-123	2	20	ug/L	02.03.14 07:55	
Tetrachloroethene	<1.8	50	50	100	49	98	71-125	2	20	ug/L	02.03.14 07:55	
Toluene	< 0.68	50	52	104	51	102	78-118	2	20	ug/L	02.03.14 07:55	
trans-1,2-Dichloroethene	< 0.73	50	48	96	47	94	71-126	2	20	ug/L	02.03.14 07:55	
trans-1,3-Dichloropropene	< 0.84	50	57	114	56	112	68-131	2	20	ug/L	02.03.14 07:55	
Trichloroethene	< 0.72	50	49	98	48	96	76-118	2	20	ug/L	02.03.14 07:55	
Trichlorofluoromethane	< 0.85	50	45	90	47	94	35-153	4	20	ug/L	02.03.14 07:55	
Vinyl chloride	< 0.15	50	46	92	45	90	59-129	2	20	ug/L	02.03.14 07:55	
y								-		<i>3</i> –		

QC Summary 478156

Atlanta Environmental Management

Aramark - Dekalb Ave

Analytical Method: VOCs by SW-846 8260B Prep Method: SW5030B

Seq Number:933213Matrix:WaterDate Prep:02.03.14MB Sample Id:650521-1-BLKLCS Sample Id:650521-1-BKSLCSD Sample Id:650521-1-BSD

Surrogate	MB %Rec	MB Flag	LCS %Rec	LCS Flag	LCSD %Rec	LCSD Flag	Limits	Units	Analysis Date
1,2-Dichloroethane-D4	103		102		103		53-159	%	02.03.14 07:55
4-Bromofluorobenzene	103		104		104		30-186	%	02.03.14 07:55
Toluene-D8	107		106		106		70-130	%	02.03.14 07:55

Seq Number:

Parent Sample Id:

QC Summary 478156

Atlanta Environmental Management

Aramark - Dekalb Ave

Analytical Method: VOCs by SW-846 8260B

933213

478065-027

Matrix: Ground Water
MS Sample Id: 478065-027 S

Date Prep: 02.03.14 MSD Sample Id: 478065-027 SD

Prep Method: SW5030B

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
1,1,1-Trichloroethane	< 0.34	50	43	86	47	94	63-149	9	20	ug/L	02.03.14 14:41	
1,1,2,2-Tetrachloroethane	< 2.0	50	62	124	63	126	58-140	2	20	ug/L	02.03.14 14:41	
1,1,2-Trichloro-1,2,2-trifluoroethane	< 0.97	50	46	92	47	94	42-156	2	20	ug/L	02.03.14 14:41	
1,1,2-Trichloroethane	< 0.88	50	56	112	57	114	49-140	2	20	ug/L	02.03.14 14:41	
1,1-Dichloroethane	< 0.74	50	48	96	50	100	67-136	4	20	ug/L	02.03.14 14:41	
1,1-Dichloroethene	< 0.98	50	45	90	47	94	52-141	4	20	ug/L	02.03.14 14:41	
1,2,3-Trichlorobenzene	< 2.6	50	53	106	57	114	50-131	7	20	ug/L	02.03.14 14:41	
1,2,4-Trichlorobenzene	<1.3	50	50	100	55	110	51-125	10	20	ug/L	02.03.14 14:41	
1,2-Dibromo-3-chloropropane (DBCP)	< 2.8	50	56	112	63	126	43-155	12	20	ug/L	02.03.14 14:41	
1,2-Dibromoethane (EDB)	< 0.79	50	56	112	59	118	66-136	5	20	ug/L	02.03.14 14:41	
1,2-Dichlorobenzene	< 0.73	50	52	104	55	110	70-124	6	20	ug/L	02.03.14 14:41	
1,2-Dichloroethane	< 0.82	50	48	96	51	102	71-143	6	20	ug/L	02.03.14 14:41	
1,2-Dichloropropane	< 0.81	50	50	100	53	106	74-125	6	20	ug/L	02.03.14 14:41	
1,3-Dichlorobenzene	< 0.74	50	50	100	53	106	73-123	6	20	ug/L	02.03.14 14:41	
1,4-Dichlorobenzene	< 0.59	50	50	100	53	106	74-116	6	20	ug/L	02.03.14 14:41	
2-Butanone (MEK)	<1.3	100	130	130	130	130	43-155	0	20	ug/L	02.03.14 14:41	
2-Hexanone	< 2.5	100	140	140	140	140	52-148	0	20	ug/L	02.03.14 14:41	
4-Methyl-2-pentanone (MIBK)	<2.2	100	120	120	120	120	61-141	0	20	ug/L	02.03.14 14:41	
Acetone	<1.4	100	120	120	120	120	40-140	0	20	ug/L	02.03.14 14:41	
Benzene	< 0.67	50	47	94	50	100	78-117	6	20	ug/L	02.03.14 14:41	
Bromochloromethane	< 0.47	50	50	100	53	106	65-127	6	20	ug/L	02.03.14 14:41	
Bromodichloromethane	< 0.96	50	49	98	51	102	71-133	4	20	ug/L	02.03.14 14:41	
Bromoform	<1.4	50	60	120	59	118	55-129	2	20	ug/L	02.03.14 14:41	
Bromomethane	<2.7	50	42	84	41	82	49-157	2	20	ug/L	02.03.14 14:41	
Carbon disulfide	< 0.73	50	44	88	42	84	31-142	5	20	ug/L	02.03.14 14:41	
Carbon tetrachloride	< 0.89	50	43	86	46	92	63-152	7	20	ug/L	02.03.14 14:41	
Chlorobenzene	< 0.59	50	49	98	52	104	75-117	6	20	ug/L	02.03.14 14:41	
Chloroethane	< 0.23	50	45	90	44	88	49-147	2	20	ug/L	02.03.14 14:41	
Chloroform	<1.4	50	46	92	50	100	67-136	8	20	ug/L	02.03.14 14:41	
Chloromethane	<1.2	50	43	86	46	92	35-162	7	20	ug/L	02.03.14 14:41	
cis-1,2-Dichloroethene	5.9	50	53	94	55	98	64-132	4	20	ug/L	02.03.14 14:41	
cis-1,3-Dichloropropene	< 0.76	50	51	102	54	108	69-116	6	20	ug/L	02.03.14 14:41	
Cyclohexane	< 0.99	50	41	82	41	82	59-141	0	20	ug/L	02.03.14 14:41	
Dibromochloromethane	< 0.79	50	54	108	57	114	54-144	5	20	ug/L	02.03.14 14:41	
Dichlorodifluoromethane	< 0.73	50	40	80	40	80	26-171	0	20	ug/L	02.03.14 14:41	
Ethylbenzene	< 0.66	50	48	96	51	102	74-131	6	20	ug/L	02.03.14 14:41	
Isopropylbenzene	<1.0	50	48	96	50	100	63-133	4	20	ug/L	02.03.14 14:41	
m,p-Xylenes	<1.2	100	97	97	100	100	67-134	3	20	ug/L	02.03.14 14:41	
Methyl acetate	< 0.15	50	56	112	57	114	65-135	2	20	ug/L	02.03.14 14:41	
Methyl tert-butyl ether	< 0.62	100	100	100	110	110	51-156	10	20	ug/L	02.03.14 14:41	
Methylcyclohexane	< 0.76	50	40	80	41	82	62-123	2	20	ug/L	02.03.14 14:41	
Methylene chloride	< 0.92	50	48	96	50	100	52-165	4	20	ug/L	02.03.14 14:41	
Naphthalene	<4.0	50	58	116	61	122	31-151	5	20	ug/L	02.03.14 14:41	
o-Xylene	< 0.57	50	49	98	51	102	70-125	4	20	ug/L	02.03.14 14:41	
Styrene	< 0.56	50	50	100	54	108	42-145	8	20	ug/L	02.03.14 14:41	
Tetrachloroethene	<1.8	50	47	94	49	98	57-132	4	20	ug/L	02.03.14 14:41	
Toluene	< 0.68	50	50	100	52	104	76-119	4	20	ug/L	02.03.14 14:41	
trans-1,2-Dichloroethene	< 0.73	50	46	92	48	96	46-152	4	20	ug/L	02.03.14 14:41	
trans-1,3-Dichloropropene	< 0.84	50	56	112	58	116	60-132	4	20	ug/L ug/L	02.03.14 14:41	
Trichloroethene	29	50	70	82	74	90	77-120	6	20	ug/L ug/L	02.03.14 14:41	
Trichlorofluoromethane	< 0.85	50	45	90	47	94	47-165	4	20	ug/L ug/L	02.03.14 14:41	
Vinyl chloride	< 0.15	50	47	94	47	94	43-148	0	20	ug/L	02.03.14 14:41	
•			, and the second second	-	-		-	-	-	3		

QC Summary 478156

Atlanta Environmental Management

Aramark - Dekalb Ave

Analytical Method: VOCs by SW-846 8260B

Prep Method: SW5030B Seq Number: 933213 Matrix: Ground Water Date Prep: 02.03.14 Parent Sample Id: 478065-027 MS Sample Id: 478065-027 S MSD Sample Id: 478065-027 SD

Surrogate	MS %Rec	MS Flag	MSD %Rec	MSD Flag	Limits	Units	Analysis Date
1,2-Dichloroethane-D4	104		103		53-159	%	02.03.14 14:41
4-Bromofluorobenzene	104		103		30-186	%	02.03.14 14:41
Toluene-D8	107		107		70-130	%	02.03.14 14:41

Notice: Signature of this document and relinquishment of these samples constitutes a valid purchase order from client company to Xenco Laboratories and its affiliates,

3231 NW 7th Ave. Boca Raton, FL33431 561-447-7373

Final 1.000

subcontractors and assigns under Xenco's standard terms and conditions of service unless previously negotiated under a fully executed client contract.

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: Atlanta Environmental Management

Date/ Time Received: 01/27/2014 03:18:00 PM

Work Order #: 478156

Analyst:

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Temperature Measuring device used:

Sample Receipt	Checklist	Comments
#1 *Temperature of cooler(s)?	1.9	
#2 *Shipping container in good condition?	Yes	
#3 *Samples received on ice?	Yes	
#4 *Custody Seals intact on shipping container/ cooler?	N/A	
#5 Custody Seals intact on sample bottles?	N/A	
#6 *Custody Seals Signed and dated?	N/A	
#7 *Chain of Custody present?	Yes	
#8 Sample instructions complete on Chain of Custody?	Yes	
#9 Any missing/extra samples?	No	
#10 Chain of Custody signed when relinquished/ received?	Yes	
#11 Chain of Custody agrees with sample label(s)?	Yes	
#12 Container label(s) legible and intact?	Yes	
#13 Sample matrix/ properties agree with Chain of Custody?	Yes	
#14 Samples in proper container/ bottle?	Yes	
#15 Samples properly preserved?	Yes	
#16 Sample container(s) intact?	Yes	
#17 Sufficient sample amount for indicated test(s)?	Yes	
#18 All samples received within hold time?	Yes	
#19 Subcontract of sample(s)?	No	
#20 VOC samples have zero headspace (less than 1/4 inch bub	oble)? Yes	
#21 <2 for all samples preserved with HNO3,HCL, H2SO4?	N/A	
#22 >10 for all samples preserved with NaAsO2+NaOH, ZnAc+	NaOH? N/A	

· Moore has a supplement of f	an aften berine delli			the nefulacions
' Must be completed f	or after-mours deliv	ery of Sambles brid	or to biacing in	the remacrator

PH Device/Lot#:

Checklist completed by:	Dario Lagunas	Date: 01/28/2014
Checklist reviewed by:	Elen D. Buhawa J.	Date: 01/28/2014

Eben Buchanan

ATTACHMENT F Time Trend Charts

PCE and TCE Concentrations vs Time, MW-203

PCE and TCE Concentrations vs Time, MW-204

PCE and TCE Concentrations vs Time, MW-207P

PCE and TCE Concentrations vs Time, MW-208P

PCE and TCE Concentrations vs Time, MW-409

cis-1,2-DCE and Vinyl Chloride Concentrations vs Time, MW-109

PCE and TCE Concentrations vs Time, MW-205

cis-1,2-DCE and Vinyl Chloride Concentrations vs Time, MW-403

ATTACHMENT G January 2014 Field Sampling Logs

NEM Project:	ARAMARK De	Kalb	AEM Job No.	: 1133-1401-3	Well No.	: MW-1	09
ampling Personnel:	Tony G	ordon, Chad Cru	ımbley, Neil S	Sargent	Date:	1/13/1	4
omments:					Time In:	1125 Time	Out: 1319
Well Information						0.04 gal/ft i	n 1-inch-ID well
Well Diameter:	7-0 inches	Refe	erence Point	Marked: (Yes) No	0.16 gal/ft i	n 2-inch-ID well
Depth to Water:	9.07 feet bel	ow T.O.C. Wel	l Depth: } 낙	. 7 \ feet belov	v T.O.C.	0.65 gal/ft i	n 4-inch-ID well
Purging Information	Pui	ge Low Flow-	Micro-	Purging Ed	quipment and	Calibration Inf	ormation
Water Column: 14	Met	hod Low Stress		ailer: Teflon [Poly. Pump:	Grundfos 🗹	Peri. ID# P- 9
1 Well Volume= ^		ge Start Time: 1	154 P	ump Tubing Ty	pe: Teflon	Teflon-Lined Pol	y. Polyethyle
3 Well Volume= *	· · · · · · · · · · · · · · · · · · ·	ge End Time: \		eter(s) Used:			1614
		al Time: 71		alibration Date	/Time: 160	0 1/13/1	14
Well Purge Dry (?)		ge Rate: 0.\(gpm C	omments:			
Groundwater Field		0.11		Dissolved			
Gallons	Temp.	Cond.	pН	Oxygen	ORP	Turbidity	Water Level
Time Purged	Deg. Cel	μS/cm	SU	mg/L	mV	NTUs	ft. from TOC
1210 2.5	17.60	1,408	6-87			10.15	10.70
1217 3.5	17.20	1,320	7.02		_	6.76	10.87
1231 4.5	17.70	1,227	7.09			7.12	10.55
1240 5.5	17.06	1,272	7.10			8.74	10.78
1253 6.5	17.20	1,264	7,14			5.56	10.95
1305 7.5	17.20	1,261	7.15			3.89	10.97
		/ F00				40 NTU-	
Stabilization Info:	N/A	+/- 5%	+/- 0.1 SU			<10 NTUs	
Sample Collection Final Tubing/Pum	n Method (check np Depth: \\.25	feet below	T.O.C (Frad) Fi	ethod Pum	er Depth(if app	lic.) fe	eet below T.O.C
Final Sample Turk	oidity:	NTUs	Fe	errous Iron Cond	centration (if s	sampled): N	d mg/L
Comments:	hab - 20 - 11	tint/ dea	v 50-1	rio tuibid	J.		
	Nt yellow	tint/ dea	y somob	rio tuibid	147		
Sample ID		alysis	Conta	iner Qt	v. Prese	rvative -	Time Sample
mw - 109	VOCs (Method		40 mL VOA		HCL		1310
77.100 10]	· Ses (mecho	32000)			<u> </u>		1010
	4 6						
			17				
	.5 10						
Sample Laborator	y (circle): AC	Xenco/AES#Oth	ner	Delivery Metho	d: Hand Deliv	ery/Fed-Ex/U	PS/Other
ield Personnel Signa		$\overline{}$	/ /				
era Lei zoillier sigue	Lor	14	Code	り			

AEM Project:	ARAMARK Dek	alb	AEM Job N	lo.: 1133-1401-3	Well No.	: MW-1	10
Sampling Personnel:	(Tony Go	rdon, Chad Cr	umbley, Ne	il Sargent	Date:	1/12/2	014
Comments:					Time In:	0950 Time	Out: 1/15
Well Information						0.04 gal/ft	in 1-inch-ID well
Well Diameter:	2-6 inches	Ret	ference Poir	nt Marked: Yes	No	0.16 gal/ft	in 2-inch-ID well
Depth to Water:	0.05 feet belo	w T.O.C. We	ll Depth:)	1.15 feet below	T.O.C.	0.65 gal/ft	in 4-inch-ID well
Purging Information	Purg		Micro-	Purging Eq	uipment and	Calibration In	formation
Water Column: \1	Meth	DO LOW Stress		Bailer: Tefton	Poly. Pump	: Grundfos 🛭	Peri. ID# 19-6
1 Well Volume= j		e Start Time:	100 7	Pump Tubing Typ	e: 🛘 Teflon 🖡	Teflon-Lined Po	ly. 🗌 Polyethylene
3 Well Volume=	5.31 gal Purg	e End Time: /	1105	Meter(s) Used:	Hanna 991300	YSI 556 Lamot	te 2020 ID#s 7/8
Total Purged: 5	gal Tota	Time: 59	min	Calibration Date	Time:	10/14 (094)	r)
Well Purge Dry (?): yes(no) Purg	e Rate: O.1	() gpm	Comments: Clu	in Parge a	1a ben	
Groundwater Field	Parameters			Dissolved	V		
Gallons	Temp.	Cond.	pН	Oxygen	ORP	Turbidity	Water Level
Time Purged	Deg. Cel	μS/cm	SU	mg/L	mV	NTUs	ft. from TOC
1027 2.0	14-Z°	474	5.79	-	_	2.44	10.20
1037 3.0	14.6	476	5.79	-	_	1.22	10.20
1047 4.0	15.4°	464	5.77			0.90	10-10
1057 5.0	15-56	462	5-82			0.45	10.20
1102 5.5	15.60	464	5,80			6.60	10.20
						-	-
-			,	_		-	
			-				-
						-	
7							
Stabilization Info:	N/A	+/- 5%	+/- 0.1 SI			<10 NTUs	*****
Sample Collection							
	n Method (check	all)	r V Straw	Method Pum	n Tubing	Vacuum Jug	Other
	np Depth: 10.5	feet below	_	Final Groundwate			ш.
Final Sample Tur		NTUs		Ferrous Iron Conc			
	clear sample.	no odov					
Laboratory Analytic	cal Information						
Sample ID	Ana	lysis	Cor	ntainer Qty	. Prese	ervative	Time Sampled
mw-110	VOCs (Method	8260B)	40 mL VC	A Vials 2	HCL		1110
•							
2			0 1				
-	* :				-		
		-			-		
Cample Laborate	ry (circle): ACL	Xenco/AFC/O	her	Delivery Metho	d: Hand Deli	very/Fed-Fx/I	JPS/Other
Dample Laborato	ry (circle). Acu	ACTICO/ AES/O	and .	Detrivery Metho	(. S.J. J CO EAT	
Field Personnel Sign	ature:	26	soch				

M Projec	t:	ARAMARK De	Kalb	AEM Job No	.: 1133-1401-:	Well No.	: mw-1	
mpling Pe	ersonnel:	(Tony G	ordon, Chad C	rumbley, Neil	Sargent	Date:	1/10/2011	
omments:						Time In:	IIIS Time	e Out: 1230
Well Info	rmation				1	ν.	0.04 gal/ft	in 1-inch-ID well
Well D	iameter: 2	- O inches	Re	eference Point	Marked: (Yes	No	0.16 gal/ft	in 2-inch-ID well
Depth	to Water: うと	0.35 feet bel	ow T.O.C. W	ell Depth: ఎ5	1-19 feet belov	w T.O.C.	0. 65 gal/ft	in 4-inch-ID well
Purging I	nformation		rge Now Flow	- Micro-	Purging E	quipment and	Calibration In	formation
Water	Column: 14	Met (che		s U purge	Bailer: 🗌 Teflon [Poly. Pump:	: 🗌 Grundfos 🛭	Peri, ID# V
	Volume= 3		ge Start Time:	1135 F	Pump Tubing Ty	pe: 🛘 Teflon 🗘	Teflon-Lined Po	ly. 🗌 Polyethyle
3 Well	Volume= 7	. 2 gal Pur	ge End Time:	1272 1	Meter(s) Used:	Hanna 991300	YSI 556 Lamot	te 2020 ID#'s 7 /
	Purged: 7.5		al Time: 4:	} min (Calibration Date	:/Time:0945	1/10/15	. 100
Well P	urge Dry (?):	yes/no) Pur	ge Rate: 0 , 1	gpm (Comments: Cl	on Pica W	icles	
Groundy	rater Field Pa				Dissolved	- J		
Ground	Gallons	Temp.	Cond.	рН	Oxygen	ORP	Turbidity	Water Level
Time	Purged	Deg. Cel	μS/cm	SU	mg/L	mV	NTUs	ft. from TOO
1152	7.5	14.10	284	4.54			2.25	10.85
1150	3.5	15.00	282	4.57		_	2.90	10.70
1204	4.5	15.00	271	4.58		-	2.16	10.73
1710	5.5	15.00	265	4.63		-	1.41	10.75
1216	6-5	15.20	265	4,57	-	-	1,27	10-75
1221	7.5	15.30	265	4.59			1.20	10.75
		,					-	
					<u> </u>			-
							-	-
		-	,	-		d 3	-	
	,				- *	0		-
=							40 NTUe	
Stabiliz	zation Info:	N/A	+/- 5%	+/- 0.1 SU	(2000)	*****	<10 NTUs	
	Collection Pa			_				
		Method (check	_	er 📉 Straw A	Method Pur	np Tubing [Vacuum Jug	Other
		Depth: 6			inal Groundwat			
	Sample Turbi	,	NTUs		errous Iron Con	centration (if	sampled): /V	A Ilig/
Comm	nents: O	how somply	no oder					
		l Information	ali sata	Cont	tainer Q1	by Proce	ervative	Time Sample
	imple ID	VOCs (Metho	alysis	40 mL VO		ty. Prese	- vacive	1225
MIN	1-11)	VOCS (Metho	0 02000)	40 IIIL VOF	A VIais Z			1000
				· ·		-		
-								
		S		3		-		
		(circle): ACL	Name	Othor	Delivery Meth	od: Hand Dali	Vehy/Fed. Dv //	IPS/Other

AEM Project:	ARAMARK Del	Kalb	AEM Job No	.: 1133-1401-	3 Well No.:	: Mw-20	2
Sampling Personnel:	Tony Go	ordon, Chad Cru	ımbley, Neil	Sargent -	Date:	1-10-14	
Comments: Clou	idy (s	light mi	11/	1001	Time In:	09/8 Time	Out: 1/03
Well Information	•		/	0		0.04 gal/ft in	1-inch-ID well
Well Diameter: 2	inches	Refe	erence Point	Marked: (Yes)	No	0.16 gal/ft in	2-inch-ID well
Depth to Water:	59 feet bel	ow T.O.C. Well	l Depth: 2/	.53 feet below	w T.O.C.	0.65 gal/ft in	4-inch-ID well
Purging Information	A Pur	ge Low Flow- [☐ Micro-	Purging E	quipment and	Calibration Info	ormation
. Water Column: بهبر	17.07 Meti	nod Low Stress		Bailer: Teflon	Poly. Pump:	Grundfos	Peri. ID# <i>D</i> = 7
2.41 1 Well Volume= 2.1		ge Start Time: (Pump Tubing Ty			
			1 2 1	Meter(s) Used:			
7.24 3 Well Volume = 1 Total Purged: 7,5		al Time: 63		Calibration Date	8		9/0
Well Purge Dry (?):		W. 2		Comments:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		77 0
		ge Rate: ,/Z	gpiii				
Groundwater Field Pa		C1	-11	Dissolved	ORP	Turbidity	Water Level
Gallons Tìme Purged	Temp. Deg. Cel	Cond. µS/cm	pH SU	Oxygen mg/L	mV	NTUs	ft. from TOC
·			6.83			-	970
0941 1.0	15.1	<u>503</u> 469				2.62	9.70
<u> </u>	14.7	462	6.69			2.29	9,93
1003 30	14.8	459	6.63			2.11	10.01
1026 6.0	14.3	462	6.65	; —		2.19	10.01
1044 7.50		466	6.68			2.01	10.01
<u> </u>							7, 5, 1
			6				
Stabilization Info:	N/A	+/- 5%	+/- 0.1 SU			<10 NTUs	
		+7- 3%		Control of the contro			
Sample Collection Pa Sample Collection P Final Tubing/Pump Final Sample Turbic Comments:	Method (check Depth: ~/o		т.о.с <u></u> F	Method Puninal Groundwat	er Depth(if app	lic.) 10-5/ fe	Other set below T.O.C mg/L
Laboratory Analytica	Information						
Sample ID		alysis	Cont	ainer Qt	y. Prese	rvative 1	Fime Sampled
MW-202	VOCs (Method	1 8260B)	40 mL VOA	Vials 2	HCL		1049
			4				
-					- ==		
				Dalin - Track	No. No. of Dall	ioni/End Eu/III	DS /Othor
Sample Laboratory	(circle): ACL	xencor AES/Oth	ner	Delivery Meth	ou: mand belly	very/Fee-Ex/UI	-3/ Other
Field Personnel Signat	ure:		1				

Sampling Personnel:	Tony Gordon, Chad Ci	mmbloy Mail Cargon	33-1401-3 Well N Date:	1-10-1	- 6 204
Comments:	+ony-ourdon, Chad Ci	unibley, sen sarger		n: 1450 Time	
Well Information					n 1-inch-ID well
Well Diameter: 2	- D inches Re	ference Point Marke	d: Tyes No	7	n 2-inch-ID well
		ell Depth: 22.70			n 4-inch-1D well
			urging Equipment ar	d Calibration Int	formation
Purging Information	Purge Method (check): Low Flow- Low Stress	MICIO-	Teflon Poly. Purn		/
Water Column: 10	73		ubing Type: Teflon	-/	
1 Well Volume= /. 3 Well Volume= 5.		1005) Used: Hanna 991300		
·	Do gal Total Time:	100		1-10-14	09/0
Well Purge Dry (?):				70	
Groundwater Field P	Temp. Cond.		ssolved Oxygen ORP	Turbidity	Water Level
Time Purged	Deg. Cel μS/cm	•	mg/L mV	NTUs	ft. from TOC
14 10	15.1 26722	J 4.76		3,70	12.54
1525 2.0	14.9 260	4.87		3.04	13.07
1537 3.0	14.2 263	4.89		2.27	13.07
1550 4-0	14.) 263	4.92		1.16	13.07
					-
				-	. —
	·				1 1
		-			2
		(V. 1
					· ——
					: : >
Stabilization Info:	N/A +/- 5%	+/- 0.1 SU	****	<10 NTUs	100000
Sample Collection Pa	arameters				
		er X Straw Method		Vacuum Jug	
and the same of th	Depth: ~/3./ feet below		oundwater Depth(if a		
Final Sample Turbi	idity: , 6 8 NTUs	Ferrous	Iron Concentration (ir sampled):	mg/L
Comments:					 :
Laboratomi Analytica	l Information				
Laboratory Analytica Sample ID	Analysis	Container	Qty. Pre	servative	Time Sampled
Mw. 204	VOCs (Method 8260B)	40 mL VOA Vials	— 2 HCL		1608
1,10, 50-1		: P====================================			
•	-				
:					
			1		
	-			100 000 000 000 000 000 000 000 000 000	IDC /Other
Sample Laboratory	(circle): ACL (Xence AES/O	ther Deliv	ery Method. Hand De	elivery/Ped-Ex/l	JPS/Other
Sample Laboratory Field Personnel Signal	7 11,	ther Deliv	ery Method. Hand De	elivery/Ped-Ex/l	JPS/Other

EM Project:	ARAMARK Dek	(alb	AEM Job No.:	1133-1401-3	Well No.	· Mw-	204
ampling Personnel:	-Tony Go	rdon, Chad Cr	umbley, Neil s	argent	Date:	1-27-	14
omments:					Time In:	1141 Time	e Out: 1252
Well Information						0.04 gal/ft	in 1-inch-ID well
Well Diameter: 2	• o inches	Ref	erence Point M	arked: (Yes)	No	0.16 Al/ft	in 2-inch-ID well
Depth to Water: 3	feet belo	w т.о.с. We	ll Depth: 14.2	feet below	T.O.C.	0.65 gal/ft	in 4-inch-ID well
Purging Information	Purg		☐ Micro-	Purging Eq	uipment and	Calibration In	formation
Water Column: /O	.70 ft (chec	k): A Low Stress	Da Da	iler:□Teflon 🏻			
1 Well Volume= /.	7/gal Purg	e Start Time:					oly. 🗌 Polyethylene
3 Well Volume= 🧖	(4 gal Purg	e End Time:	1242 ME	eter(s) Used: 🛛	Hanna 991300	YSI 556 Lamot	tte 2020 ID#'s 3, 1/
Total Purged: 5.	2 5 gal Tota	l Time: 5	5 min Ca	libration Date	Time: -	27-14	0945
Well Purge Dry (?):	yes (no) Purg	e Rate: 🎵	o gpm Co	mments:			
Groundwater Field Pa	arameters			Dissolved			
Gallons	Temp.	Cond.	рН	Oxygen	ORP	Turbidity	Water Level
Time Purged	Deg. Cel	μS/cm	SU	mg/L	mV	NTUs	ft. from TOC
1158 1.0	17.2	4/2	5.13			3.21	5.02
1209 2.0	16.8	389	5.01			2.71	7.13
1718 3.0	16.9	381	4.93			1.99	7.19
1227 4.0	16.7	382	4.10			2.19	7.70
1238 5.0	16.4	388	4.88			2.21	<u>7.2</u> 2
1242 5.25	165	386	4.83			2.27	7.22
							<u> </u>
							<u></u>
							-
Stabilization Info:	N/A	+/- 5%	+/- 0.1 SU	****	*****	<10 NTUs	5
Sample Collection Pa	rameters						
Sample Collection				thod 🔲 Pum	p Tubing 🗌	Vacuum Jug	Other
Final Tubing/Pump	Depth: 27.	o feet below	T.O.C Fin	al Groundwate	er Depth(if app	lic.) 7.72	feet below T.O.C
Final Sample Turbi	dity: 22コ	NTUs	Fe	rous Iron Conc	entration (if	sampled): -	mg/L
Comments:							
Laboratory Analytica	l Information						
Sample ID	Ana	lysis	Conta			ervative	Time Sampled
MW-206	VOCs (Method	8260B)	40 mL VOA \	ials Z	HCL		1245
	6						
			3 4				
			8			_	
Sample Laboratory	(circle): ACL	Xenco/ ES/Ot	her	Delivery Metho	d: Hand Deli	very/Fed-Ex/	UPS/Other
	$\neg \cap$	0. 1	ş				
Field Personnel Signat	$\neg \cap$		h-	_/			

AEM Project:	ARAMARK DeKa	lb	AEM Job N	No.: 1133-1401-	3 Well No.	mw-z	207P
Sampling Personnel:	Tony Gord	don, Chad Cr	umbley, Ne	il Sargent	Date:	1/16/20	114
Comments:					Time In:	1340 Time	Out: 1500
Well Information				~ 1		0.04 gal/ft i	n 1-inch-ID well
Well Diameter:	\mathcal{J} . \Diamond inches	Ref	ference Poir	nt Marked: (Yes)	No	0.16 gal/ft i	n 2-inch-ID well
Depth to Water: $$	13 feet below	т.о.с. We	ell Depth: \	0.05 feet belov	v T.O.C.	0.65 gal/ft i	n 4-inch-ID well
Purging Information	Purge Method	Low Flow-		Purging Ed	quipment and	Calibration Inf	ormation
Water Column: &	ft (check):		purge	Bailer: Teflon	Poly. Pump:	☐ Grundfos 🗗	Peri. ID# P.
1 Well Volume= \.	3 gal Purge	Start Time:	1352	Pump Tubing Ty	pe: 🛘 Teflon 🖟	Teflon-Lined Pol	y. 🗌 Polyethylene
3 Well Volume= 3	G gal Purge	End Time:	1432	Meter(s) Used:	Hanna 991300	YSI 556 Lamott	e 2020 ID#'s 1/7
Total Purged: 4-	O gal Total	Time: 40	min	Calibration Date	/Time: 1300	1/16/20	14
Well Purge Dry (?):	yes/no) Purge	Rate: ტ . 1 (gpm	Comments: C	has prose	wite	
Groundwater Field P	arameters			Dissolved			
Gallons	Temp.	Cond.	рН	Oxygen	ORP	Turbidity	Water Level
Time Purged	Deg. Cel	μS/cm	SU	mg/L	mV	NTUs	ft. from TOC
1402 1-0	11.60	504	6.41			1,81	1.24
1407 1.5	11.70	483	6.67			2-15	1.24
1417 2.0	11-36	482	6.74			1-68	1.25
1917 2.5		481	6.77	- =		1.38	1.25
1422 3.0		485	6.78			1,21	1.25
	11.26	482	6.78			1,13	1.25
1432 4-6	11.2	480	6.79			1-09	1.0
	· ·						
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -						-	
	· M						
Stabilization Info:	N/A	+/- 5%	+/- 0.1 SU	J		<10 NTUs	55555
Sample Collection Pa	rameters						
Sample Collection): Baile	r Straw	Method Pum	p Tubing	Vacuum Jug	Other
Final Tubing/Pump		feet below	_	Final Groundwate			eet below T.O.C
Final Sample Turbi	dity: 1.09	NTUs		Ferrous Iron Cond	entration (if s	ampled):	∠ mg/L
Comments: Clic	n soul, no	odon					
	· ·						
Laboratory Analytica	lInformation						
Sample ID	Analy	sis	Con	tainer Qty	y. Preser	vative	Time Sampled
mw-207p	VOCs (Method 82	260B)	40 mL VO	A Vials 2	HCL		1440
2	?)\$				
:							
8 11			-				
Sample Laboratory	(circle): ACL/Xe	nco/AES/Ot	her	Delivery Metho	d: Hand Deliv	ery)Fed-Ex/UI	PS/Other
	7	7	,				
Field Personnel Signat	uie. Jon	4/	Gou	h			

well Information Well Diameter: Depth to Water: 5. Purging Information Water Column: 7.8 1 Well Volume= ,3/ 3 Well Volume= ,90 Total Purged: 1.00	inches inches Purge Method Method Method	Reference Poi Well Depth:	nt Marked: (Ye	es N		1-9-69 / 5-1/6Time 0	Out: 1645
Well Information Well Diameter: 1. Compete to Water: 5. Purging Information Water Column: 7. 8 1 Well Volume= .3/ 3 Well Volume= .90	inches / 3 feet below T.O.C. Purge Method Low Fl	Reference Poi Well Depth:	nt Marked: (Ye	es N		720	
Well Diameter: 1. Depth to Water: 5. Purging Information Water Column: 7. 8 1 Well Volume= ,3/ 3 Well Volume= ,90	/3 feet below T.O.C. Purge Method Low FI	Well Depth:		es N		0.04 al/ft in	1-inch-ID well
Depth to Water: 5. Purging Information Water Column: 7.8 1 Well Volume= ,3/ 3 Well Volume= ,90	/3 feet below T.O.C. Purge Method Low FI	Well Depth:		es N			
Purging Information Water Column: 7.8 1 Well Volume= ,3/ 3 Well Volume= ,90	Purge Low Fl		12 AA feet b		0	0.16 gal/ft in	2-inch-ID well
Water Column: 7.8 1 Well Volume≈ ,3/ 3 Well Volume= ,90	Method Low St	- 112-11	/ 5- 00	elow T.O	.c.	0.65 gal/ft in	4-inch-ID well
Water Column: 7.8 1 Well Volume≈ ,3/ 3 Well Volume= ,90	Method Low St		Purging	g Equip	ment and Ca	libration Info	rmation
1 Well Volume= ,3/		ress purge	Bailer: Teflo	on 🏻 Pol	ly. Pump:	Grundfos P	eri. ID# P- 7
3 Well Volume= 90	gal Purge Start Tim	e: 1359	Pump Tubing	Туре:	Teflon T	eflon-Lined Poly.	Polyethylene
			Meter(s) Used	d: Har	nna 991300 🗌 YS	Lamotte	2020 ID#'s C2 ///
- 111		7 min	Calibration D	ate/Tir	ne: /-	9-14	1230
Well Purge Dry (?): yes		04 gpm	Comments:			· · ·	
Groundwater Field Para		0 1	Dissolved				
Gallons	Temp. Cond.	рН	Oxygen		ORP	Turbidity	Water Level
Time Purged	Deg. Cel μS/cm	SU	mg/L		mV	NTUs	ft. from TOC
1606,25	14.7 58	5 5.8	8 -			5.23	6-22
1614 .50	14.1 64		9 _			5.62	6.30
1621 175	14.4 6	11 5.8	7			3.14	6.30
1626 1.00	14.4 6	18 5.8	<u> </u>			2.62	6.30
		_					
; 							
				_			
——	***						
		_					*************************************
		_					
Stabilization Info:	N/A +/- 5%	+/- 0.1 9	SU			<10 NTUs	34444
Sample Collection Para	meters						
	thod (check all): Ba	ailer X Strav	v Method F	Pump T	ubing 🔲 Va	acuum Jug	Other
	epth: 26.35 feet be		Final Groundy				
Final Sample Turbidit	y: 7.62 NTUs		Ferrous Iron C				mg/L
Comments:							
-							
Laboratory Analytical Ir							
Sample ID	Analysis		ntainer	Qty.	Preserv	ative T	ime Sampled
MW-208P	VOCs (Method 8260B)	40 mL V	OA Vials	<u>2</u>	HCL		1633
-					-		
							
		-, -		_	_		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-					_		
Sample Laboratory (c	ircle): ACL Xenco AES	/Other	Delivery Me	ethod:	Hand Deliver	Fed-Ex/UP	S/Other
2002 14 2 6 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 //	percentage in the contract of	-		`		
Field Personnel Signature	e: ////		_				
	AN P						2011, ARAMARK DeKalb (2), Pago

ampling Personnel:		Kalb	AEM Job No.	: 1133-1401-3	Well No.	mw-a	010
ampang i cisonilet	(Tony G	ordon, Chad C	rumbley, Neil	Sargent	Date:	1/9/201	555
iomments:					Time In:	1400 Time	Out: 1540
Well Information						0.04 gal/ft i	n 1-inch-ID well
Well Diameter:	$\partial . \mathcal{O}$ inches	Re	eference Point	Marked: (Yes)	No	0.16 gal/ft i	n 2-inch-ID well
Depth to Water:	13.25 feet be	low T.O.C. W	ell Depth: යුද්	5.35 feet below	T.O.C.	0.65 gal/ft i	n 4-inch-1D well
Purging Information		rge Tow Flow	- Micro-	Purging Ec	uipment and	Calibration Inf	ormation
Water Column: \	O Vo ft (che	chod Low Stres		ailer: 🗌 Teflon 🛭	Poly. Pump:	: Grundfos	Peri. ID# 7-8
1 Well Volume=		ge Start Time:	1410 P	ump Tubing Typ	e: 🛘 Teflon 🖟	Teflon-Lined Poly	y. Polyethyler
3 Well Volume=		ge End Time:	1525 N	leter(s) Used:	Hanna 991300	YSI 556 Lamott	e 2020 ID#'s7 9
Total Purged:	(O\O) gal Tot	al Time: 75	min C	alibration Date	/Time: 1 9	2013 (13	370
Well Purge Dry (?): yes/no Pur	ge Rate: 💍 , 0	5-0.10 gpm C	comments: Co	lun pers	aster.	10/100V
Groundwater Field	Parameters			Dissolved	V Z		
Gallons	Temp.	Cond.	рН	Oxygen	ORP	Turbidity	Water Level
Time Purged	Deg. Cel	μ\$/cm	SU	mg/L	mV	NTUs	ft. from TOC
1440 2.0	15.00	691	6.11			8.27	15.90
1452 3.0	15.7°	631	6.36		********	7.31	15.99
1503 4.0	15.60	630	6.31			5-18	16.03
1514 5-0	15.60	632	6.31			2.69	16.05
1525 6.0	15,7°	626	6.29			1.66	16.05
				-			
	- 3				7 1 1 1 1 1 1 1 1		-
							-
14 (84-4)		-			-		***************************************
Stabilization Info:	N/A	+/- 5%	+/- 0.1 SU	*****		<10 NTUs	
Sample Collection					-		7
	on Method (check	all): 🗌 Bail	er 🛛 Straw M	ethod 🔲 Pum	p Tubing 🗌	Vacuum Jug [Other
Final Tubing/Pu	mp Depth: しょ,	35 feet belo	w T.O.C Fi	nal Groundwate	r Depth(if app	lic.) 16.05 f	eet below T.O.C
Final Sample Tu	rbidity:	NTUs	<u>F</u>	errous Iron Conc	entration (if	sampled): 📈	A mg/L
Comments: C	seek Sample,	no odov				-	
Laboratory Analyt	ical Information						
Sample ID		l alysis	Conta	ainer Qty	. Prese	rvative	Time Sample
mu-210	VOCs (Metho	d 8260B)	40 mL VOA	Vials 2	HCL		1530
	-						
	_	7,57-00C	-		-	-	
Sample Laborate	ory (circle): ACL	Xenco/ABS/C	ether	Delivery Metho	d:/Hand Deli	very/Fed-Ex/U	PS/Other

AEM Project: ARA	MARK DeKalb	AEM Job N	No.: 1133-1401-3	Well No.:	mw-al	1
Sampling Personnel:	Tony Gordon Chad Cru	mbley, Ne	il Sargent	Date: \	19/2014	
Comments:				Time In: 155	บ Time C	out: 1790
Well Information					0.04 gal/ft in	1-inch-ID well
Well Diameter: 3.0	inches Refe	rence Poir	nt Marked: (Yes) N	lo	0.16 gal/ft in 2	2-inch-ID well
Depth to Water: \\.76	feet below T.O.C. Well	Depth: J	3.35 feet below T.O).C.	0.65 gal/ft in	4-inch-ID well
Purging Information	Purge Method Low Flow-	Micro-	Purging Equip	ment and Cal	ibration Info	mation
Water Column: 11.59	(check): Low Stress	purge	Bailer: Teflon Pol	ly. Pump: 🗌	Grundfos 🛮 Pe	eri. ID# <i>P-E</i>
1 Well Volume= 1.75 ga	al Purge Start Time: \	200	Pump Tubing Type:			
3 Well Volume=5.25 ga	al Purge End Time:		Meter(s) Used: Har	nna 991300 🗌 YSI	556 Lamotte 2	020 ID#s 7/8
Total Purged: ga	al Total Time:	min	Calibration Date/Tin	ne: 1330	1/4/2012	1
Well Purge Dry (?): yes(no	Purge Rate:	gpm	Comments:			
Groundwater Field Paramet	ters		Dissolved			
Gallons T	emp. Cond.	pН	Oxygen	ORP	Turbidity	Water Level
	eg. Cel µS/cm	SU	mg/L	mV	NTUs	ft. from TOC
	1.30 1019	6-93		- (0.34	11.97
	70 966	7.07		5	5,73	12.00
	70 965	7.03			6-86	12.04
	50 968	7:05			-64	1Z. 05
1658 5.25 13	.50 905	7.05		S	:15	12.06
(
V						
Stabilization Info:	N/A +/- 5%	+/- 0.1 SL	l server		<10 NTUs	
Sample Collection Paramete	ers					
Sample Collection Method	(check all): Bailer	Straw	Method Pump Tu	ıbing 🔲 Vacı	uum Jug	Other
Final Tubing/Pump Depth	: 17.4 feet below T.	o.c	Final Groundwater De	epth(if applic.)	12.06 feet	below T.O.C
Final Sample Turbidity:	NTUs		Ferrous Iron Concentr	ation (if samp	oled): 🎤 🏄	mg/L
Comments: Wan Hzs	odure, chewe simpl	-				
Laboratory Analytical Inform		_				
Sample ID	Analysis		tainer Qty.	Preservati		ne Sampled
mw-31/ vocs	(Method 8260B)	40 mL VO	A Vials 2	HCL		1700
		-				
		1				
Sample Laboratory (circle): ACL/Xenco/AES/Othe	r	Delivery Method: H	and Delivery/	Fed-Ex/UPS/	Other
Field Personnel Signature:	Tons) 6	rch				

AEM Project:	ARAMARK DeKalb	AEM Job No.: 1133	-1401-3 Well No.	: MW-212
Sampling Personnel:	Tony Gordon Chad Cr	rumbley, Neil Sargent	Date:	1-13-14
Comments:	Juny (001		Time In:	1147 Time Out: 1337
Well Information				0.04 gal/ft in 1-inch-ID well
Well Diameter:	2.0 inches Ref	ference Point Marked:	Yes No	0.16 gal/ft in 2-inch-ID well
Depth to Water:	feet below T.O.C. We	ell Depth: 19.85 fe	eet below T.O.C.	0.65 gal/ft in 4-inch-ID well
Purging Information	Method M	MICIO-		Calibration Information
Water Column: 9	c94 ft (check): Low Stress	Bailer:		Grundfos Peri. ID#P 7
1 Well Volume=	Purge Start Time:			Teflon-Lined Poly. Polyethylene
3 Well Volume= 4	Purge End Time:	13/9 Meter(s) I	Used: Hanna 991300	YSI 556 A Lamotte 2020 ID#s 3 11
Total Purged: 5	OD gal Total Time:	5 min Calibratio	on Date/Time:	13-14 0940
Well Purge Dry (?)	: yes/no Purge Rate: , ()	gpm Comment	:5:	
Groundwater Field	Parameters	Disso	olved	***
Gallons	Temp. Cond.	рН Оху	_	Turbidity Water Level
Time Purged	Deg. Cel µS/cm	SU mg	g/L mV	NTUs ft. from TOC
1220 1.0	14.9 1019	10.18		8.73 1135
1133 2.0	16.1 1022	10.85		14.12 12.33
1250 3.0	16.5 1835	9.27 -		14.30 13.20
1305 4.0	16.4 1830	9.33		10.47 13.96
1311 4.5	16.1 1836	9.32		8.79 14.61
1319 5.0	<u> 15.8 _ 1839</u>	936		8. #
* Hab PH	Lillely due to	Portlad cem	nt wed to	stabelite
barell-Fill in	£ 4.4			
	ater produces a	Form like	Substance	on surface
when agi	tated.			(
	· —— ——	. 		
Stabilization Info:	N/A +/- 5%	+/- 0.1 SU		<10 NTUs
Sample Collection P			_	
	Method (check all): Baile	_		
	p Depth: 14.70 feet below		indwater Depth(if app	
Final Sample Turb	oidity: 8.78 NTUs	Ferrous Iro	on Concentration (if	sampled): mg/L
Comments:				
Laboratory Analytic	al Information I			
Sample ID	Analysis	Container	Qty. Prese	rvative Time Sampled
Mw-212	VOCs (Method 8260B)	40 mL VOA Vials	- Z HCL	1322
3		0-0-0		
	8 19	D.		
Sample Laborator	y (circle): ACL Xenco/AES/Ot	ner Delivery	Method Hand Deli	very/Fed-Ex/UPS/Other
Field Personnel Signa	iture:			

AEM Project:	ARAMARK DeKalb	AEM Job N	o.: 1133-1401-3	Well No.:	MW-	2/3	
Sampling Personnel:	Tony Gordon, Chac	Crumbley, Ne	l Sargent	Date:	1-13-14	W.	
Comments:	unny (001			Time In: C	947 Time	Out: //45	
Well Information					0.04 gal/ft in	n 1-inch-ID well	
		Reference Poin	t Marked: (Yes)	No	0.16 gal/ft in	n 2-inch-ID well	
Depth to Water: 6	.51 feet below T.O.C.	Well Depth: /	7.48 feet below	T.O.C.	0.65 gal/ft in	n 4-inch-ID well	
Purging Information	Purge Method Low St			uipment and C			
Water Column: /o			Bailer: Teflon D Pump Tubing Typ				
1 Well Volume=).		7010	Meter(s) Used:				
3 Well Volume= 5.		1110				2/1	
		o min	Calibration Date/	11me: 1-15	-14 C	940	
Well Purge Dry (?):		09 gpm	Comments:				
Groundwater Field P		.06a6	Dissolved			. A MATTER OF A PROTECTION AS	
Gallons Time Purged	Temp. Cond. Deg. Cel µS/cm	pH SU	Oxygen mg/L	ORP mV	Turbidity NTUs	Water Level ft. from TOC	
		- 1 11	- Ing/ E				
1030 1.0	14.8 413	6.//			9.92	X.83	
1051 3.0	14.6 401	6.19			6-87	9.52	
1102 40	145 409	6.21			6-05	10.02	
1112 50	14.4 418				5.41	10.02	
1116 5.5	14,4 414	6.2	2		2.11	10-02	
	· · · · · · · · · · · · · · · · · · ·	_					
	1 N	_	-				
			-				
Stabilization Info:	N/A +/- 5%	+/- 0.1 SU	30000	*****	<10 NTUs		
Sample Collection Pa	rameters	. /				7	
		iler X Straw	_	Tubing 🗌 V		Other	,
	Depth: 210.05 feet be		Final Groundwater				
Final Sample Turbi	dity: 2 // NTUs		errous Iron Conce	entration (if sa	mpled):	mg/L	
Comments:							/
							Ų.
Laboratory Analytica		-				The a Carlotte	
Sample ID	Analysis		tainer Qty	_	ative T	Time Sampled	,
Mw-213	VOCs (Method 8260B)	40 mL VO	Vials 2	HCL		1120	N.
MW-213 Dup						1120	
3	21 	-		• •			
	8					_	
		_					
Sample Laboratory	(circle): ACL/Xenco/AES/	Other	Delivery Method	Hand Delive	ry/Fed-Ex/UF	S/Other	
	7////		• name = 221				
Field Personnel Signat	ure:	//	2/				
	(m)		1)				
			12/30/201	3, 1:44 PM, CURRENT-	SamplingFieldLog-Od	t2011, ARAMARK DeKalb (2), P	Page 1 of 1

AEM Project:	ARAMARK DeKalb	AEM Job N	lo.: 1133-1401-3	Well No.: /	NW-214
Sampling Personnel:	Tony Gordon, Chao	Crumbley, Ne	il Sargent	Date: 1/	10/14
Comments:				Time In: /33	(i) Time Out: 1545
Well Information					0.04 gal/ft in 1-inch-ID well
Well Diameter: 6	Q.U inches	Reference Poir	nt Marked: (Yes)	No	0.16 gal/ft in 2-inch-ID well
Depth to Water: 6	feet below T.O.C.	Well Depth: フ	3. 75 feet below T	r.o.c.	0.65 gal/ft in 4-inch-ID well
Purging Information	Purge Method Low Fi	ow- Micro-	Purging Equ	ipment and Cali	bration Information
Water Column: 74		ress U purge	Bailer: Teflon	Poly. Pump: 🔀	Frundfos 🗌 Peri. ID# 🏱
1 Well Volume= 12	gal Purge Start Tim	e: 1356	Pump Tubing Type	: 🛘 Teflon 🖾 Tefl	on-Lined Poly. Polyethylene
3 Well Volume= 3	gal Purge End Time	: 1518	Meter(s) Used:	Hanna 991300 YSI 5	56 Damotte 2020 ID#s 7/8
Total Purged: H	D gal Total Time: Y	32 min	Calibration Date/1	Time: 0945	1 /10/2014
Well Purge Dry (?):	yes(no) Purge Rate: O	.50 gpm	Comments: d	un pirge	weter
Groundwater Field Pa	arameters		Dissolved		
Gailons	Temp. Cond.	pН	Oxygen	ORP	Turbidity Water Level
Time Purged	Deg. Cel μS/cm	SU	mg/L	mV	NTUs ft. from TOC
1417-10	15-90 713	5.47		_	1.11 11.85
1428 15	16.60 687	5-43			0.87 11.90
1438 20	17.40 675	5-38			0.55 11.91
1449 25	17.00 671	5-35			0.21 11.95
1459 30	16.70 670	5-35			0.71 11.96
1509 35	16.60 663	5.33			0.65 11.98
1518 40	16.50 665	5,33			0.62 11.99
2 					
				-	
Stabilization Info:	N/A +/- 5%	+/- 0.1 SL	1		<10 NTUs
		+/- 0.1 30			10 14103
Sample Collection Pa		,,		- 100	L Dost
Sample Collection A			Method Pump	_	_
Final Tubing/Pump			Ferrous Iron Conce		oled): NA mg/L
Final Sample Turbic			Terrous from conce	incracion (ii samp	ned). /\//4 mg/c
Comments. Cope	2 Sample, no odor				
Laboratory Analytical	Information				
Sample ID	Analysis	Con	ntainer Qty.	Preservati	ive Time Sampled
MW-314	VOCs (Method 8260B)	40 mL VO		HCL	1525
		_			

9	*	_			
Participal Principal Princ	- C)				2
Sample Laboratory	(circle): ACL (Xenco/AES	Other	Delivery Method	Hand Delivery	Fed-Ex/UPS/Other
Field Personnel Signati	ure: Jony	Gorde	ን		

AEM Project:	ARAMARK Dek	alb	AEM Job No.:	1133-1401-3	Well No.:	Mw-	304
Sampling Personnel:	Tony-Go	rdon, Chad Cr	umbley) N eil S	argent	Date:	1-27	-13
Comments:					Time In:	/øə/ Time	Out: 1/30
Well Information						0.04 gal/ft in	n 1-inch-ID well
Well Diameter:	2.0 inches	Ref	erence Point A	Marked: (Yes)	No	.16 al/ft i	n 2-inch-ID well
Depth to Water: 🕼	.31 feet belo	w T.O.C. We	ll Depth: 30,	25 feet below	T.O.C.	0.65 gal/ft ii	n 4-inch-ID well
Purging Information	Purg		☐ Micro-	Purging Eq	uipment and (Calibration Inf	ormation
Water Column: 23	.94 ft (chec		D purge Ba	iler: 🗌 Teflon 🛭	Poly. Pump:	Grundfos 🛭	Peri. ID# P - 8
1 Well Volume= 3.	93 gal Purge	e Start Time:	1067 PL	ımp Tubing Typ	e: 🗌 Teflon 🏻	Teflon-Lined Poly	y. 🗌 Polyethylene
3 Well Volume= //	49 gal Purge	e End Time:	1117 M	eter(s) Used: 🏻	Hanna 991300	YSI 556 🔏 Lamotto	e 2020 ID#'s 3, 11
Total Purged: /	gal Total عود	Time: 7	min Ca	libration Date/	'Time: /- (27-13 (942
Well Purge Dry (?):	yes.no Purge	e Rate: , / 3	gpm Co	omments:			
Groundwater Field P	arameters			Dissolved			
Gallons	Temp.	Cond.	pH	Oxygen	ORP	Turbidity	Water Level
Time Purged	Deg. Cel	μ\$/cm	SU	mg/L	mV	NTUs	ft. from TOC
1033 5.00	17.1	381	4.91			1.29	6.85
1047 8.00	16.9	388	5.02			2.01	6.9/
1059 1000 10.	00 16.7	784	<u>5.09</u>			1.82	6.92
1108 11.00	16.3	780	5.10			2.13	6.92
1117 12.00	16.5	382	4.08			1.97	6.92
				; ;			
· · · · · · · · · · · · · · · · · · ·					: 		
				(
		:					
Stabilization Info:	N/A	+/- 5%	+/- 0.1 SU			<10 NTUs	(4444)
Sample Collection Pa	rameters						
Sample Collection		all): 🗍 Baile	r Straw Me	thod Pumi	p Tubing \	/acuum Jug	Other
Final Tubing/Pump			\sim	al Groundwate			_
Final Sample Turbi		NTUs		rous Iron Conc			mg/L
Comments:							
Laboratory Analytica	l Information						
Sample ID	Ana	lysis	Conta	iner Qty	. Preser	vative	Time Sampled
Mw-306	VOCs (Method	8260B)	40 mL VOA \	ials 2	HCL		1120
· · · · · · · · · · · · · · · · · · ·							
-	-						
Sample Laboratory	(circle): ACL	(enco/AFS/Ot	her	Delivery Metho	d: Hand Delive	ery/Fed-Ex/UI	PS/Other
Sample Edbordedly	7) , , /	1	Ø			
Field Personnel Signat	ure:	111	1				
		hal (1	$\overline{}$			

AEM Project:	ARAMARK DeKalb	AEM Job No.: 1	133-1401-3	Well No.: /	1h-401	
Sampling Personnel:	Tony Cordo n, Chad Cr	umbley Heit Sarge	rit-	Date: 💋	1-9-14	
Comments: Clo	udy/(001			Time In: 124	6 Time Out: 1416	
Well Information	7		$\overline{}$	ō.	04 gal/ft in 1-inch-ID well	
Well Diameter:		erence Point Marke			16 gal/ft in 2-inch-ID well	
Depth to Water: (p. // feet below T.O.C. We	ll Depth: 15.72	feet below T.(o.c. 0.	65 gal/ft in 4-inch-ID well	
Purging Information	Purge Method Low Flow- Low Stress	Willero			ation Information	,
	(check):	Bailer:			indfos Peri. ID# P- 7	
1 Well Volume= 1.		701			-Lined Poly. Polyethylene	b.
3 Well Volume= 14		, , , , , , , , , , , , , , , , , , , 			Lamotte 2020 ID#'s 8/	1 /
Total Purged: 4.			tion Date/Ti	me: 1-9-1	4 1230	
Well Purge Dry (?):		gpm Comme	ents:			
Groundwater Field P	The second second		issolved			
Gallons Time Purged	Temp. Cond. Deg. Cel µS/cm	pH SU	Oxygen mg/L		rbidity Water Level NTUs ft. from TOC	
						100
1329 1.25	16.2 371	5.83			1284 6.26	
1338 7.25	15.6 364	<u>5.72</u> _			2 20 6.82	
7.7		5.70			1.87 6.72	
1356 4.00	15.5 369	5.77			7.21 6.27	
1)3/ (1)	1/2 /11	<u> </u>			(2.9)	
· · · · · · · · · · · · · · · · · · ·	***********					
Stabilization Info:	N/A +/- 5%	+/- 0.1 SU		<1	0 NTUs	
Sample Collection Pa	rameters					•
Sample Collection	Method (check all): Bailer	Straw Method	Pump T	ubing 🗌 Vacuu	m Jug 🔲 Other	
Final Tubing/Pump	Depth: 26.35 feet below	T.O.C Final Gr	oundwater D	epth(if applic.) 🕻	feet below T.O.C	
Final Sample Turbi	dity: 7.21 NTUs	Ferrous	Iron Concent	ration (if sample	ed): mg/L	
Comments:						
Laboratory Analytica	l Information					
Sample ID	Analysis	Container	Qty.	Preservative		
MW-401	VOCs (Method 8260B)	40 mL VOA Vials	2	HCL	1401	
		·		8-11-11-1-1		
					2 3	
		/				
V		·				
Sample Laboratory	(circle): ACL/(enco/AES/Oth	ner Dolin	ary Mathod: A	dand Delivery	ed-Ex/UPS/Other	
Dample Laboratory	Circle). ACLINETICGIAES/OU	ici Dellvi	ery mediod.	iand betivery/	EG-LA/ OF 3/ Other	
Field Personnel Signat	ure: ////					
	1///					
			12/30/2013, 1	14 PM, CURRENT-Samplin	ngFieldLog-Oct2011, ARAMARK DeKalb	(2), Page 1 c

AEM Project:	ARAMARK DeK	alb	AEM Job No	o.: 1133-1401-3	Well No.:	mw-40	52
Sampling Personnel:	Tony Go	rdon, Chad Cr	umbley, Nei	l Sargent	Date:	1/13/14	
Comments:					Time In:	1076 Time	Out: 1175
Well Information						0.04 gal/ft i	n 1-inch-ID well
Well Diameter:) - () inches	Ref	erence Poin	t Marked: (Yes)	No	0.16 gal/ft i	n 2-inch-ID well
Depth to Water: $)$ 3	.59 feet belo	w т.о.с. We	ll Depth: 19	-37 feet below	T.O.C.	0.65 gal/ft i	n 4-inch-ID well
Purging Information	Purg Metho	ZOW FLOW-	Micro-	Purging Eq	uipment and	Calibration Inf	ormation
Water Column: 6			□ purge	Bailer: 🗌 Teflon 🛭	Poly. Pump:	Grundfos	Peri, ID#P-8
1 Well Volume= /,) gal Purge	Start Time:	037	Pump Tubing Typ	e: 🛘 Teflon 🖟	Teflon-Lined Pol	y. 🛮 Polyethylene
3 Well Volume= 3.	3 gal Purge	End Time: \	113	Meter(s) Used: 🗓	Hanna 991300	YSI 556 W Lamott	e 2020 ID#'s 1/7
Total Purged: 3.5	gal Total	Time: 4	min	Calibration Date	Time: 1060	> 1/13/14	
Well Purge Dry (?):	yes (no Purge	Rate: 🕖 👓	7 gpm	Comments: Cle	en purge	water, no	oder
Groundwater Field Pa	arameters			Dissolved	· · · · · ·		
Gallons	Temp.	Cond.	рН	Oxygen	ORP	Turbidity	Water Level
Time Purged	Deg. Cel	μ5/cm	SU	mg/L	mV	NTUs	ft. from TOC
1046 1.0	16,30	300	5.49			7.57	12.85
1052 1.5	16.40	302	5.61			5.26	12.87
1056 2.0	16.20	308	5-68			4.02	12.89
1102 7.5	16.4°	303	5.69		<u> </u>	4.08	12.90
1107 3.0	16.36	303	5.72			2.08	12.91
1113 3.5	16.3	366	5.70			-01.08	10. 11
			·	→ : 34		3	:
	-			= =====================================		8	
Stabilization Info:	N/A	+/- 5%	+/- 0.1 SU	*****	****	<10 NTUs	*****
Sample Collection Pa	rameters						
Sample Collection A		ll): 🗌 Bailer	Straw /	Method Pum	o Tubing	Vacuum Jug	Other
Final Tubing/Pump	Depth: \3.2	feet below	T.O.C F	inal Groundwate	r Depth(if appl	ic.) 12-91 fe	eet below T.O.C
Final Sample Turbio	lity: 1.08	NTUs	F	errous Iron Conc	entration (if s	ampled): الم	Mg/L
Comments: clu	es sarple,	no odal					
Laboratory Analytical							
Sample ID	Anal			tainer Qty	_	rvative]	Fime Sampled
mw-402	VOCs (Method	8260B)	40 mL VO	Vials 2	HCL_		1115
-	-		-		-	-	
			-		_	-	
·			16		-) -	-	
	:		_			The same	
Sample Laboratory	(circle): ACL/X	enco/AES/Otl	ner	Delivery Metho	d: Hand Deliv	ery/Fed-Ex U	PS/Other
Field Personnel Signatu	ıre:	Long	26	zls			

	ARAMARK Del		AEM Job N		_	: mw -	
ampling Personnel:	(Tony Go	ordon, Chad Cr	umbley, Nei	l Sargent	Date:		2014
omments:					Time In:	1336 Tim	e Out:
Well Information						0.04 gal/ft	in 1-inch-ID well
Well Diameter;	1.0 inches	Ref	ference Poin	t Marked: (Yes)	No	0.16 gal/ft	in 2-inch-ID well
Depth to Water: 12	2.50 feet belo	ow T.O.C. We	ell Depth: 7	Z-45 feet below	T.O.C.	0.65 gal/ft	in 4-inch-ID well
Purging Information	Pur		☐ Micro-	Purging Eq	uipment and	Calibration I	nformation
Water Column: 9	75 ft (chec	low Stress		Bailer: 🗌 Teflon 🛭	Poly. Pump:	: Grundfos	Peri. 10# P-8
1 Well Volume=) (gal Purg	e Start Time:	1347	Pump Tubing Typ	e: 🛘 Teflon 🗓	Teflon-Lined Pe	oly. Polyethyler
3 Well Volume= 4.	gal Purg	e End Time:	1432	Meter(s) Used: 🛭	Hanna 991300	YSI 556 Lamo	tte 2020 ID#'s 1/
Total Purged: 5.0	gal Tota	l Time: 4	S min	Calibration Date	Time: (oc	W 1 13	14
Well Purge Dry (?): y	ves (no) Purg	e Rate: O . () gpm	Comments: cla	u pron	witer	
Groundwater Field Pa	rameters			Dissolved	1 9		
Gallons	Temp.	Cond.	рΗ	Oxygen	ORP	Turbidity	Water Level
Time Purged	Deg. Cel	μS/cm	SU	mg/L	mV	NTUs	ft. from TOC
1358 1.5	16.60	1.123	7.60	(4)		14-0	14.51
1403 2.0	17.20	1,089	7.30			5.70	15.05
14/1 3.0	16.80	1,025	7.11			4.03	15.62
1423 4.0	17.20	1,009	7.08			1.62	16.15
1427 4.5	17.10	1,007	7.06			1.05	16.18
1432 5.0	17.30	1,005	7.06		-	0.82	16.19
	: :		1	* :			
			-	2 2			
							4 =
			1			P	
***************************************			-	-			* *
		(· 10	: 	0	* *
Stabilization Info:	N/A	+/- 5%	+/- 0.1 SU			<10 NTUs	
		+/- J/6	+/- 0.1 30		551.55	10 M105	
Sample Collection Par		🗆			\square		
Sample Collection M Final Tubing/Pump I			_	Method Pump			_
Final Sample Turbid		feet below NTUs		inal Groundwater errous Iron Conce			
Comments:	en Somb	no oder		errous from Conce	entration (ii s	sampled). N	T IIIg/L
commence.	er seizu	rro ovey					
	Information						
Laboratory Analytical		lysis	Cont	ainer Qty	. Prese	rvative	Time Sampled
Laboratory Analytical Sample ID		.,,,,,,			HCL		1435
Sample ID	(8260B)	40 mL VOA				
	VOCs (Method	8260B)	40 mL VOA	· viats			
Sample ID	(8260B)	40 mL VOA	viats			
Sample ID	(8260B)	40 mL VOA	viats			
Sample ID	(8260B)	40 mL VOA				
Sample ID	(8260B)	40 mL VOA	(Viats			
Sample ID	VOCs (Method			Delivery Method		ery)Fed-Ex/U	

AEM Project: ARAMARK DeKalbAEM Job No.:	1133-1401-3		-405
Sampling Personnel: Tony-Gordon Chad Crumbley Neil Sampling Personnel:	rgent_	Date: 1-9-	-14
Comments: Cloudy/Cool		Time In: 14/9 T	ime Out: 1536
Well Information		0.04 gal	/ft in 1-inch-ID well
Well Diameter: 7.0 inches Reference Point Ma	arked: (Yes) No	0.16 al	/ft in 2-inch-ID well
Depth to Water: 11.56 feet below T.O.C. Well Depth: 18.6	feet below T.O.	.C. 0.65 gal	l/ft in 4-inch-ID well
Purging Information Purge Method Micro- Micro-	Purging Equip	ment and Calibration	1 Information
Method IIV	er: 🗌 Teflon 🖟 Poly	y. Pump: Grundfos	₽ Peri. ID# /2-7
1 Well Volume= 1.13 gal Purge Start Time: 1434 Pur	np Tubing Type: [Teflon Teflon-Lineo	Poly. Polyethylene
3 Well Volume= 3.40 gal Purge End Time: 1518 Met	er(s) Used: Han	na 991300 🗌 YSI 556 🏻 La	motte 2020 ID#'s 8//
Total Purged: 3.5 gal Total Time: 44 min Cali	ibration Date/Tim	ne: 1-9-14	1230
Well Purge Dry (?): yes no Purge Rate: , v gpm Con	nments:		
Groundwater Field Parameters	Dissolved		
Gallons Temp. Cond. pH	Oxygen	ORP Turbidit	y Water Level
Time Purged Deg. Cel μS/cm SU	mg/L	mV NTUs	ft. from TOC
1454 1.25 15.9 368 3.98		5.50	12.15
1502 2.25 15:6 361 4.24		<u> 4. 1</u>	11 15.15
1512 3.25 15.2 359 4.28			2 12.15
1518 3.50 15.3 362 4.31		3.8	12.15
		· · · · · · · · · · · · · · · · · · ·	
		· · · · · · · · · · · · · · · · · · ·	

Stabilization Info: N/A +/- 5% +/- 0.1 SU		<10 NTU	Js
Sample Collection Parameters			<u> </u>
Sample Collection Method (check all): Bailer X Straw Meth	_	ibing Vacuum Ju	
		epth(if applic.) /2·/	mg/L
Comments:	ods from Concenti	acion (ii sampled).	
Laboratory Analytical Information			
Sample ID Analysis Contain	er Qty.	Preservative	Time Sampled
Mw- 205 VOCs (Method 8260B) 40 mL VOA Via	ls <u>2</u>	HCL	1520
			
, <u></u>			-
			
Sample Laboratory (circle): ACL Xenco (AES/Other De	elivery Method H	land Delivery/Fed-Ex	/UPS/Other
Sample Education (Circle). Note the state of	arely method	and beinery/red-L/	51 57 54161
Field Personnel Signature:			
[M	7		

AEM Project:	ARAMARK DeKalb	AEM Job N	o.: 1133-1401-	3 Well No.:	Mr.	409
Sampling Personnel:	Jony Gordon, Chad C	rumbley, Ne	l Sargent	Date:	1-10-	14
Comments: Clou	by cmist)/c	001		Time In:	1325 Time	Out: 1440
Well Information	-		<i></i>		0.04 gal/ft ii	n 1-inch-ID well
Well Diameter:	P inches Re	ference Poir	t Marked: (Yes) No	0.16 gal/ft i	n 2-inch-ID well
Depth to Water: /	2.46 feet below T.O.C. We	ell Depth: Z	0.05 feet below	w T.O.C.	0.65 gal/ft i	n 4-inch-ID well
Purging Information	Purge Low Flow	- Micro-	Purging E	quipment and	Calibration Inf	ormation
Water Column: 7.	Method (check): Low Stress	s U purge	Bailer: Teflon	Poly. Pump:	☐ Grundfos 🎤	Peri. ID# P-7
1 Well Volume= /	21 gal Purge Start Time:	1336	Pump Tubing Ty	pe: 🛘 Teflon 🛭	Teflon-Lined Poly	y. 🗌 Polyethylene
3 Well Volume= 3.	64gal Purge End Time:		Meter(s) Used:	Hanna 991300 🗌	YSI 556 Lamotte	2020 ID#s 3/ //
Total Purged:	gal Total Time:	min	Calibration Date	e/Time:	-10-14	0910
Well Purge Dry (?): y	yes/no Purge Rate:	gpm	Comments:			
Groundwater Field Pa	rameters		Dissolved			
Gallons	Temp. Cond.	рН	Oxygen	ORP	Turbidity	Water Level
Time Purged	Deg. Cel µS/cm	SU	mg/L	mV	NTUs	ft. from TOC
1348 1.0	15.2 547	6.7	5		3.25	13.30
1359 2.0	14.8 531	6.7			3.//	13.44
1410 3.0	14.5 530	6.72			3.10	13.59
1418 3.5	14.3 533 14.1 538	6.78			3.00	13.64 13.6 p
1429 -7.6	17.1 238	<u> </u>			2.00	3. 6 }
***************************************			-			
						-
						·
				0		
Stabilization Info:	N/A +/- 5%	+/- 0.1 Sl	J some	****	<10 NTUs	*****
Sample Collection Par	rameters					
Sample Collection A		4-4	_	np Tubing 🔲	_	Other
Final Tubing/Pump			Final Groundwat			eet below T.O.C
Final Sample Turbio	dity: NTUs		Ferrous Iron Con	centration (if s	sampled):	mg/L
Comments:						
	1-6					<u> </u>
Laboratory Analytical		Con	ıtainer Qt	y Preco	rvative 1	Fime Sampled
Sample ID Mw-409	Analysis VOCs (Method 8260B)	40 mL VC		HCL	744176	1428
1.1W-201	TOCS (MCCHOOL 0200D)	10 1112 40		1102		, , , ,
· · · · · · · · · · · · · · · · · · ·	X -11					
	8					
				1		
Sample Laboratory	(circle): ACL (Xenco AES/O	ther	Delivery Meth	od: Hand Deliv	ery/Feo Ex/UI	PS/Other
Field Personnel Signature					استنا	
Field Personnel Signati	1///		7_	7/		
			12/30/2	3, 1:44 PM, CURREN	IT-SamplingFieldLog-O	ct2011, ARAMARK DeKalb (2), Page 1 of

pling Personnel:	ARAMARK DeKa		AEM Job No.:	1133-1401-3	Well No.		409D
Print i Ci Joinier	Tony Gor	don Chad Cru	umbley Neil Sa	ergent_	Date:	1-10-14	<i>'</i>
nments: Cloc	. Ly/(00	/			Time In:	1119 Time	Out: /324
ell Information				^		0.04 gal/ft ir	n 1-inch-ID well
Well Diameter: 7	• O inches		erence Point M		No	0.16 gg//ft ir	n 2-inch-ID well
Depth to Water: /	2.15 feet below	T.O.C. Wel	l Depth: 29	8/ feet below	T.O.C.	0.65 gal/ft i	n 4-inch-ID well
urging Information	Purge		☐ Micro-	Purging Equ	uipment and	Calibration Inf	ormation
Water Column: 17	Method (check)	Low Stress		iler: 🗌 Teflon 🛭	Poly. Pump:	Grundfos	Peri. ID# P-7
1 Well Volume= Z.		Start Time:	1/34 Pui	mp Tubing Typ	e: 🗌 Teflon 🛭	Teflon-Lined Poly	Polyethylene
3 Well Volume= 8.		End Time:	1303 Me	ter(s) Used: 🔀	Hanna 991300	YSI 556 Lamotto	2020 ID#s 3/1
Total Purged: 8	50gal Total	Time: 89	min Ca	libration Date/	Time: /	-10-14	0910
Well Purge Dry (?):	_	Rate: ,/1	gpm Co	mments:	·		
roundwater Field Pa	arameters			Dissolved	n		
Gallons	Temp.	Cond.	рН	Oxygen	ORP	Turbidity	Water Level
Time Purged	Deg. Cel	μS/cm	SU	mg/L	mV	NTUs	ft. from TOC
145 1.0	14.6	513	6.13			5.62	13.3/
7.	14.2	5 19	6.28			4.29	13.53
1207 30	14.4	528	6.21			3.96	13.49
1224 5.0	14.1	529	6.28	33		3.89	13.48
1236 6-0	14.1	530	<u>6.26</u>			2.6	
1247 7.0	14.2	532	6.29			7.19	13.48
1303 8.50		531	6-29			2.32	13.43

						-	
					-		
	· · · · · · · · · · · · · · · · · · ·						
	N/A	+/- 5%	+/- 0.1 SU	*****	*****	<10 NTUs	*****
Stabilization Info:							
	rameters						
ample Collection Pa		l): Bailer	Straw Me	thod Pump	Tubing	Vacuum Jug	Other
ample Collection Pa	Method (check al		77		_	Vacuum Jug [lic.) /34 / fi	_
ample Collection Pa	Method (check al Depth: ~13,55		т.о.с Fina	thod Pump al Groundwater rous Iron Conce	Depth(if app	lic.) 1348 fo	_
ample Collection Pa Sample Collection I Final Tubing/Pump	Method (check al Depth: ~13,55	feet below	т.о.с Fina	al Groundwate	Depth(if app	lic.) 1348 fo	eet below T.O.C
Sample Collection Pa Final Tubing/Pump Final Sample Turbic	Method (check al Depth: ~13,55	feet below	т.о.с Fina	al Groundwate	Depth(if app	lic.) 1348 fo	eet below T.O.C
Sample Collection Pa Final Tubing/Pump Final Sample Turbic	Method (check al Depth: ~13,55 dity: ~2.3~2	feet below	т.о.с Fina	al Groundwate	Depth(if app	lic.) 1348 fo	eet below T.O.C
Sample Collection Pa Sample Collection I Final Tubing/Pump Final Sample Turbio Comments:	Method (check al Depth: ~13,55 dity: ~2.3~2	feet below NTUs	т.о.с Fina	al Groundwater	r Depth(if app	lic.) <i>1348</i> fo	eet below T.O.C
Sample Collection Pa Sample Collection I Final Tubing/Pump Final Sample Turbio Comments:	Method (check al Depth: ~13,55 dity: 2.32	feet below NTUS	T.O.C Final Fer	al Groundwater rous Iron Conce ner Qty	r Depth(if app	lic.) <i>1348</i> fo	mg/L
Sample Collection Pa Sample Collection I Final Tubing/Pump Final Sample Turbic Comments: aboratory Analytical Sample ID	Method (check al Depth: ~13,55 dity: ~2.3 2 Information	feet below NTUS	T.O.C Final Fer	al Groundwater rous Iron Conce ner Qty	r Depth(if appending if	lic.) <i>1348</i> fo	mg/L Fime Sampled
Sample Collection Pa Sample Collection I Final Tubing/Pump Final Sample Turbic Comments: aboratory Analytical Sample ID	Method (check al Depth: ~13,55 dity: ~2.3 2 Information	feet below NTUS	T.O.C Final Fer	al Groundwater rous Iron Conce ner Qty	r Depth(if appending if	lic.) <i>1348</i> fo	mg/L Fime Sampled
Sample Collection Pa Sample Collection I Final Tubing/Pump Final Sample Turbic Comments: aboratory Analytical Sample ID	Method (check al Depth: ~13,55 dity: ~2.3 2 Information	feet below NTUS	T.O.C Final Fer	al Groundwater rous Iron Conce ner Qty	r Depth(if appending if	lic.) <i>1348</i> fo	mg/L Fime Sampled
Sample Collection Pa Sample Collection I Final Tubing/Pump Final Sample Turbic Comments: aboratory Analytical Sample ID	Method (check al Depth: ~13,55 dity: ~2.3 2 Information	feet below NTUS	T.O.C Final Fer	al Groundwater rous Iron Conce ner Qty	r Depth(if appending if	lic.) <i>1348</i> fo	mg/L Fime Sampled
Sample Collection Pa Sample Collection Pa Final Tubing/Pump Final Sample Turbic Comments: aboratory Analytica Sample ID Mw- 4090	Method (check all Depth: ~13.55 dity: 2.32 Information Analy VOCs (Method 8	NTUS //Sis 3260B)	Contain 40 mL VOA V	ner Qty	r Depth(if appendiction (if	sampled):	Fime Sampled
Sample Collection Pa Sample Collection I Final Tubing/Pump Final Sample Turbic Comments: aboratory Analytical Sample ID	Method (check all Depth: ~13.55 dity: 2.32 Information Analy VOCs (Method 8	NTUS //Sis 3260B)	Contain 40 mL VOA V	al Groundwater rous Iron Conce ner Qty	r Depth(if appendiction (if	sampled):	rime Sampled
Sample Collection Pa Sample Collection Pa Final Tubing/Pump Final Sample Turbic Comments: aboratory Analytica Sample ID Mw- 4090	Method (check al Depth: ~13,55 dity: ~2.3 2 I Information Analy VOCs (Method 8	NTUS //Sis 3260B)	Contain 40 mL VOA V	ner Qty	r Depth(if appendiction (if	sampled):	rime Sampled