July 28, 2017 0121021

Mr. David Brownlee Mr. Barrett Fischer Response and Remediation Program Georgia Environmental Protection Division 2 Martin Luther King, Jr. Drive, SE Suite 1054, East Tower Atlanta, Georgia 30334-9000

Subject: Former I. Schneid Facility Atlanta, Fulton County, Georgia, HSI Site No. 10753

Dear Messrs. Brownlee and Fischer:

Attached you will find the Voluntary Compliance Status Report (VCSR) for the referenced site. It provides a comprehensive summary of the site investigation and remediation activities conducted at the property since the 2002. A copy of the *Certification of Compliance with Risk Reduction Standards* statement has been sent to Mr. Steve Chapman for his signature. We will forward it to you once he returns it to us. We will also forward documentation of the publishing of the required public notice. Please note that the draft of the Uniform Environmental Covenant (UEC) is included as Appendix D to the report.

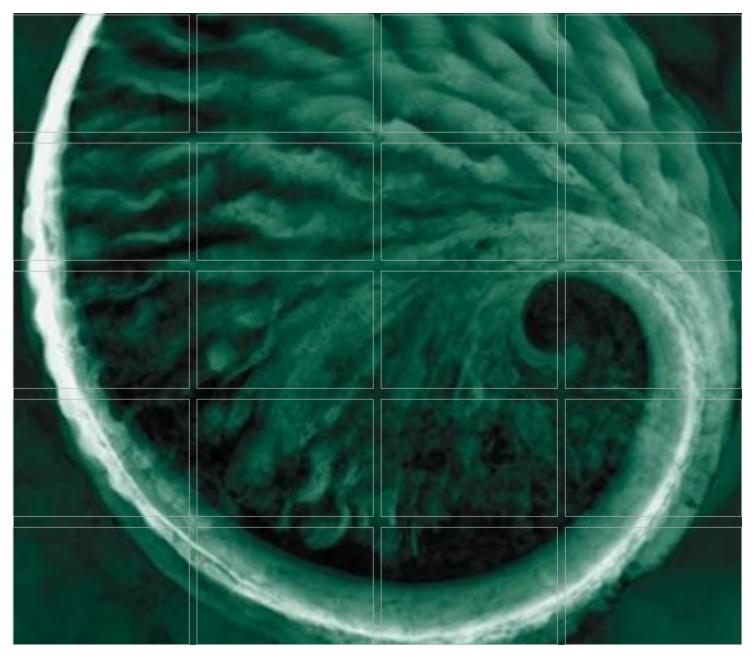
We look forward to your review of this VCSR and the draft UEC, and to the delisting of the site. Please contact us with any questions or comments you have concerning this matter.

Sincerely,

ler

Adria L. Reimer, P.G. #2004 GA Professional Geologist

cc: Steve Chapman


Jaffing M. Bilkert

Jeffrey N. Bilkert *Principal*

Environmental Resources Management

The Towers at Wildwood 3200 Windy Hill Road SE, Suite 1500W Atlanta, Georgia 30339 Phone (678) 486-2700 Fax (678) 745-0103

Voluntary Compliance Status Report

Former I. Schneid Facility 1429 Fairmont Avenue Atlanta, Georgia HSI Site No. 10753

Submitted Under Georgia's Voluntary Remediation Program (VRP) Act

July 27, 2017

www.erm.com

TABLE OF CONTENTS

STAT	TEMEN	NT OF FIN	IDINGS	V
CER	TIFICA	ATION OF	F COMPLIANCE WITH RISK REDUCTION STANDARDS	VIII
GRC	OUND	WATER S	CIENTIST STATEMENT	IX
1.0	INTRODUCTION			
	1.1	OVERV	TEW	1
	1.2	CHEMI	CALS OF INTEREST	2
	1.3	HSI SIT	TE STATUS	2
	1.4	PURPC	DSE OF THIS DOCUMENT	2
	1.5	ORGAN	NIZATION	3
2.0	SITE BACKGROUND INFORMATION & CONCEPTUAL SITE MODEL			
	2.1	LOCAT	ION AND DESCRIPTION	4
	2.2	POTENTIAL SOURCES OF REGULATED MATERIALS		
	2.3	SITE DESCRIPTION		
	2.4	RISK REDUCTION STANDARDS		
	2.5	CONCE 2.5.1 2.5.2 2.5.3 2.5.4	E PTUAL SITE MODEL Assessment of the Soil Exposure Pathway Assessment of the Ground Water Exposure Pathway Assessment of the Surface Water Exposure Pathway Assessment of the Vapor Intrusion Exposure Pathway	5 5 6 6
3.0	SUMMARY OF SITE INVESTIGATIONS			
	3.1	SOIL		8
	3.3	GROUND WATER		9

RESULTS OF SITE INVESTIGATIONS				
4.1	SOIL	10		
4.2	EVALUATION OF GROUND WATER CONDITIONS			
SUMMARY OF CORRECTIVE ACTION ACTIVITIES				
5.1	AREA B	13		
5.2	AREA L	14		
5.3	AREA P	15		
5.4	AREAS O AND S	16		
EVALUATION OF POST-REMEDIATION SOIL CONDITIONS				
6.1	CONFIRMATION SAMPLING	18		
6.2	RISK REDUCTION STANDARDS	18		
6.3	COMPLIANCE WITH RISK REDUCTION STANDARDS	18		
	6.3.1 Area B	18		
	6.3.2 Area L	19		
	6.3.3 Area P	19		
	6.3.4 Areas O and S	19		
6.4	SOIL COMPLIANCE CERTIFICATION REPORT	20		
DESCRIPTION OF SITE AND RESPONSIBLE PARTIES				
7.1	SITE INFORMATION	21		
7.2	PARTIES RESPONSIBLE FOR THE SITE	21		
PUBLIC NOTICE		22		
REFERENCES				
	 4.1 4.2 SUM 5.1 5.2 5.3 5.4 EVA 6.1 6.2 6.3 6.4 DES 7.1 7.2 PUB CON RED 	 4.1 SOIL 4.2 EVALUATION OF GROUND WATER CONDITIONS SUMMARY OF CORRECTIVE ACTION ACTIVITIES SUMMARY OF CORRECTIVE ACTION ACTIVITIES S.1 AREA B 5.2 AREA L 5.3 AREA P 5.4 AREAS O AND S EVALUATION OF POST-REMEDIATION SOIL CONDITIONS 6.1 CONFIRMATION SAMPLING 6.2 RISK REDUCTION STANDARDS 6.3 COMPLIANCE WITH RISK REDUCTION STANDARDS 6.3 COMPLIANCE WITH RISK REDUCTION STANDARDS 6.4 SOIL COMPLIANCE CERTIFICATION REPORT 6.5 COMPLIANCE CERTIFICATION REPORT 7.1 SITE INFORMATION 7.2 PARTIES RESPONSIBLE FOR THE SITE PUBLIC NOTICE CONTINUING ACTIONS TO MAINTAIN COMPLIANCE WITH RISK REDUCTION STANDARDS 		

LIST OF TABLES

- 1-1 Chemicals of Interest and Approved Risk Reduction Standards for Soil
- 4-1 Ground Water Quality Data
- 4-2 Free Phase Product Monitoring Summary
- 5-1 Analytical Results for Area B Excavation Confirmation Soil Samples
- 5-2 Analytical Results for Areas O and S Excavation Final Confirmation Soil Samples

LIST OF FIGURES

- 2-1 Site Location Map
- 2-2 Site Plan
- 4-1 Locations of Site Assessment Soil Borings
- 4-2 Locations of Ground Water Monitoring Wells
- 4-3 Potentiometric Surface, January 8, 2016
- 4-4 Ground Water Quality Data
- 5-1 Area B Confirmation Soil Sample Locations and Analytical Results
- 5-2 Area B Planned Limits of Excavation
- 5-3 Area B Final Limits of Excavation
- 5-4 Area L Confirmation Soil Sample Locations and Analytical Results
- 5-5 Area P Confirmation Soil Sample Locations and Analytical Results
- 5-6 Areas O and S Excavation Design
- 5-7 Areas O and S Final Limits of Excavation
- 5-8 Areas O and S Locations of Final Confirmation Soil Samples

LIST OF APPENDICES

- A Tax Parcel Map and Legal Description for the Site
- *B* Free Product Monitoring/Recovery and Surface Water Protection Report
- C Vapor Intrusion Assessment Report (Electronic Copy Only)
- D Draft Uniform Environmental Covenant

STATEMENT OF FINDINGS

This Voluntary Compliance Status Report (VCSR) has been prepared for the Former I. Schneid facility (the "Site") in Atlanta, Georgia. This section of the VCSR presents a concise statement of findings in plain English concerning the final resolution of soil contamination at the Site. In particular, it provides a summary of activities conducted to remediate soils at the Site and to demonstrate compliance with Georgia Environmental Protection Division (GAEPD)-approved cleanup standards.

Background

The Site is located at 1429 Fairmont Avenue, Atlanta, Fulton County, Georgia. Fulton County Tax Assessor records identify the Site as tax parcel identification number 17-0188-0002-017-0. The tax records indicate the Site includes 3.09 acres.

One building is located at the Site. I. Schneid operated as a specialty chemical manufacturing company at the Site from 1968 until 2002. The building is currently being renovated for commercial use.

The Site was listed on Georgia's Hazardous Sites Inventory (HSI) in February 2003 because of a release of naphthalene to soil that exceeded a reportable quantity. The Site was not listed on the HSI because of a release to ground water that exceeded a reportable quantity.

After being listed on the HSI, the Site was regulated by GAEPD rules established under the Hazardous Sites Response Act (HSRA). These rules are administered by GAEPD's Response and Remediation Program. Under these rules, certain activities were conducted at the Site. They included:

- Site investigations to evaluate the extent of soil and ground water contamination.
- Completion of soil cleanup using various techniques.
- Implementation of ground water cleanup.

The Site was enrolled in GAEPD's Voluntary Remediation Program (VRP) in March 2016. Remediation of sites enrolled under this program is regulated by Georgia's Voluntary Remediation Program Act. A key element of the Act is that sites listed on the HSI solely because of a release

to soil that exceeds a reportable quantity are only required to clean up soils. Ground water cleanup at such sites is not required.

Additional work conducted at the Site under the VRP included:

- Monitoring and removal of free phase liquid product from the top of the water table in a former source area.
- Evaluation of the vapor intrusion pathway.
- Evaluation of how dissolved phase ground water contamination that remains in the source area at the Site may affect Woodall Creek.
- Submittal of progress reports as required by the VRP.

The Site and surrounding area are served by a public water system operated by the city of Atlanta. Furthermore, contaminated ground water does not extend beyond the property boundaries of the Site. Therefore, human exposure to contaminants in ground water is not a complete exposure pathway. The vapor intrusion assessment demonstrated that vapor intrusion is not a concern at the Site. Similarly, the evaluation showed that dissolved phase ground water contamination that remains in the source area at the Site will not affect Woodall Creek at levels that will exceed established surface water quality standards.

Chemicals of Interest at this Site

The Chemicals of Interest (CoI) at this Site included Volatile Organic Compounds, Semi-Volatile Organic Compounds, pesticides, herbicides, and metals.

Summary of Site Investigation and Soil Cleanup

The primary sources of chemicals released at the Site include a floor trench drain, a sump, and a former solvent mixing room. The extent of chemicals in soil was investigated by drilling a number of soil borings and collecting soil samples for laboratory analyses. Based on the results of this work, five areas at the Site were identified as having soils that were not compliant with the approved cleanup standards. Most of these areas were located inside the building in proximity to the source areas. One was located just outside the building, in proximity to the former solvent mixing room.

Soils in the five areas were cleaned up using a variety of cleanup technologies, including excavation and off-Site disposal. The cleanup

activities were conducted between 2005 and 2014. Reports of cleanup progress were submitted periodically to GAEPD during this time.

Confirmation soil samples were collected from each of the areas following completion of the cleanup activities. Laboratory analyses of these samples demonstrated that each of the areas had been cleaned up to the approved cleanup standards.

Site Compliance

The cleanup standards for soils at the Site are referred to as Type 1 and Type 2 Risk Reduction Standards (RRS). They were approved by GAEPD and are protective of human health and the environment at residential properties. The results of the laboratory analyses conducted on soil samples collected at the Site following the completion of the soil cleanup demonstrate that the soils at the Site are compliant with Type 1 and Type 2 RRS.

Uniform Environmental Covenant

A Uniform Environmental Covenant (UEC) has been prepared and will be attached to the property deed for the Site. The UEC will prohibit the use of ground water at the Site. The UEC will also place certain restrictions on ground disturbance (e.g., excavation, trenching, etc.) in proximity to the location of the free phase liquid product.

CERTIFICATION OF COMPLIANCE WITH RISK REDUCTION STANDARDS

I certify under penalty of law that this report and all attachments were prepared under my direction in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Based on my review of the findings of this report with respect to the Risk Reduction Standards of the Rules for Hazardous Site Response, Rule 391-3-19-.07, I have determined that the soils at tax parcel identification number 17-0188-0002-017-0 are compliant with Type 1 and Type 2 RRS.

Certified By: __

_____Date: _____

Steve Chapman I.S. Liquidation, LLC

GROUND WATER SCIENTIST STATEMENT

I certify that I am a qualified ground water scientist who has received a baccalaureate or post-graduate degree in the natural sciences or engineering, and have sufficient training and experience in ground water hydrology and related fields, as demonstrated by state registration and completion of accredited university courses, that enable me to make sound professional judgments regarding ground water monitoring and contaminant fate and transport.

I further certify that this Voluntary Compliance Status Report for Hazardous Site Inventory 31, 10753 was prepared by me and appropriate qualified supporting tes working under my direction.

mm ESSIONAL GEO

Adria L. Reimer, P.G.

7/27/2017 Date

1.0 INTRODUCTION

1.1 OVERVIEW

Environmental Resources Management (ERM) has prepared this Voluntary Compliance Status Report (VCSR) on behalf of I.S. Liquidation, LLC ("ISL"). The VCSR is for the Former I. Schneid facility (the "facility" or "the Site"), which is currently listed on the Georgia Hazardous Site Inventory (HSI #10753). The Site is located at 1429 Fairmont Avenue, Fulton County, Georgia. ISL was a specialty chemicals manufacture that produced products for the janitorial and landscaping use.

The Site was listed on the HSI in February 2003 because of a release of naphthalene to soil that exceeded a reportable quantity. The Site was not listed on the HSI because of a release to ground water that exceeded a reportable quantity.

After being listed on the HSI, the Site was regulated by Georgia Environmental Protection Division (GAEPD) rules promulgated under the Hazardous Sites Response Act (HSRA). These rules are administered by GAEPD's Response and Remediation Program. Under these rules, certain activities were conducted at the Site. They included:

- Site investigation to evaluate the extent of soil and ground water contamination.
- Completion of soil remediation using various techniques, including soil vapor extraction, *in-situ* chemical oxidation, and excavation.
- Ground water remediation using air sparging.

The Site was enrolled in GAEPD's Voluntary Remediation Program (VRP) in March 2016. Remediation of sites enrolled under this program is regulated by Georgia's Voluntary Remediation Program Act. A key element of the Act is that sites listed on the HSI solely because of a release to soil that exceeds a reportable quantity are only required to remediate soils. Ground water remediation at such sites is not required.

Additional work conducted at the Site under the VRP has included:

- Monitoring and removal of free phase liquid product from the top of the water table in a former source area.
- Evaluation of the vapor intrusion pathway.

- Modeling to evaluate the potential for residual dissolved phase ground water contamination in a former source area to affect Woodall Creek.
- Submittal of progress reports as required by the VRP.

1.2 CHEMICALS OF INTEREST

Site investigation activities at the Former I. Schneid facility date back to the mid-1990s. The Site investigation history includes analysis of soil and ground water samples for a variety of chemicals included in the following laboratory methods:

- Volatile Organic Compounds (VOCs) by method 8260.
- Semi-Volatile Organic Compounds (SVOCs) by method 8270.
- Pesticides by method 8080.
- Herbicides by method 8151.
- Metals by method 6010.

Based on the results of this work a list of Chemicals of Interest (CoI) for the Site was developed. The CoI list is shown in Table 1-1.

Over the course of correspondence between ERM and GAEPD, a set of Risk Reduction Standards (RRS) was approved to guide remediation efforts at the Site. The approved RRS for the various CoI in soil are included in Table 1-1. The RRS were approved by GAEPD by way of correspondence dated May 12, 2005 and November 28, 2006.

1.3 HSI SITE STATUS

This Site was placed on Georgia's HSI in 2003 because of a release of naphthalene to soil that exceeded a reportable quantity. A release to ground water that exceeded a reportable quantity did not occur at the Site.

This Site was accepted into Georgia's VRP on March 21, 2016.

1.4 PURPOSE OF THIS DOCUMENT

The purpose of this VCSR is to provide final documentation of soil remediation at the Site and to certify compliance with the applicable RRS within the framework of Georgia's VRP. In addition, this VCSR provides information concerning the evaluation of the vapor intrusion pathway at the Site, as well as modeling conducted to evaluate the potential for dissolved phase contamination that remains in the former source to affect Woodall Creek.

1.5 ORGANIZATION

This VCSR presents a discussion of the regulatory status and Certification of Compliance with RRS for HSI Site 10753, under the Voluntary Remediation Program Act, as follows:

- Section 2 presents a discussion of Site background information, including Site location and sources of regulated compounds. A Conceptual Site Model for the Site is also discussed in Section 2.
- Section 3 presents a summary of the Site investigation activities that have been conducted over the years at the Site.
- Section 4 presents a summary of the results of the Site investigation activities.
- Section 5 presents a summary of corrective action activities for soil that have been implemented at the Site.
- Section 6 presents a summary of post-remediation soil conditions at the Site, including compliance with the approved RRS.
- Section 7 presents information concerning the responsible parties for the Site.
- Section 8 describes the public notice provided by ISL.
- Section 9 describes the continuing actions that will be in place in order to maintain compliance with the approved RRS pending approval of this VCSR.
- Section 10 provides a list of references for pertinent documents that have been prepared previously for the Site.

3

2.0 SITE BACKGROUND INFORMATION & CONCEPTUAL SITE MODEL

2.1 LOCATION AND DESCRIPTION

The location of the Site is shown on Figure 2-1. The Site is located at 1429 Fairmont Avenue, Atlanta, Fulton County, Georgia. It includes 3.09-acres. Records maintained by the Fulton County Tax Assessor's office shows that the tax parcel identification number for the Site is 17-0188-0002-017-0. A Site Plan is provided as Figure 2-2.

2.2 POTENTIAL SOURCES OF REGULATED MATERIALS

A single building with approximately 95,000 square feet of space is located at the Site. It was reportedly developed in 1962. ISL was a specialty chemical manufacturing company that operated at the Site from 1962 to 2002. The sources of regulated materials in soil and ground water at the Site have been identified as a solvent mixing room, a floor trench drain, and a sump. These source areas were generally located in the northeastern portion of the Site building. The locations of these features are shown on Figure 2-2.

2.3 SITE DESCRIPTION

The Site includes 3.09-acres located on Fulton Count tax parcel number 17-0188-0002-017-0. A map of the tax parcel is provided in Appendix A. Current ownership information for the Site is as follows:

Fairmont Flats, LLC 1819 Peachtree Road, NE Suite 275 Atlanta, Georgia 30309

The elevation of the Site is approximately 915 feet above mean sea level. Ground surface topography at the Site is generally flat. The ground surface in the vicinity of the Site slopes generally southwest, towards Woodall Creek. Woodall Creek is located approximately 1,000 feet southwest of the Site.

A single building with approximately 95,000 square feet of space is located in the Site. Historically, the area surrounding the Site has been used for industrial purposes. In the last 10 years, however, residential development has occurred in the area. The Site and surrounding area are

4

served by a public water system operated by the city of Atlanta. No water supply wells used for drinking water area located near the Site.

2.4 RISK REDUCTION STANDARDS

RRS used to evaluate the remediation of soils at the Site are shown in Table 1-1. These were approved by GAEPD in correspondence dated May 12, 2005 and November 28, 2006.

RRS for ground water cleanup are not included for this Site, as ground water cleanup is not required per Section 12-8-107(g)(2) of Georgia's Voluntary Remediation Program Act.

2.5 CONCEPTUAL SITE MODEL

The Conceptual Site Model provides an assessment of exposure pathways to human and environmental receptors that may have been or could be potentially exposed to regulated chemicals from a release at the Site. ISL ceased operations at the Site in 2002. Following that time, the Site was occupied by a residential home builder who used the building for office space and storage. The Site was vacant for several years after the builder went bankrupt in the late 2000s. It is understood that the Site building is currently being renovated for future commercial use.

Although the release details are not known, the soil investigation data show that the regulated compounds were most likely released from the source areas discussed above, which were generally located in the northeast portion of the Site building.

2.5.1 Assessment of the Soil Exposure Pathway

The soil exposure pathway is a pathway that could potentially be completed for future commercial workers or residents at the Site; however, remediation activities have brought the Site soils into compliance with residential RRS. Therefore, the soils at the Site do not pose unacceptable risk. The residential RRS were calculated in a manner that considered protection of direct soil exposure and the soil-to-ground water pathway. Thus, the soils remaining on Site do not pose an unacceptable risk to human health or the environment.

2.5.2 Assessment of the Ground Water Exposure Pathway

The Site and surrounding area are served by a municipal water supply system operated by the city of Atlanta. Ground water is not being used for human consumption. Furthermore, ground water contamination does not extend beyond the Site property boundaries. Therefore, the human exposure to contaminated ground water is not currently an exposure pathway.

2.5.3 Assessment of the Surface Water Exposure Pathway

As requested by GAEPD, ERM conducted efforts to evaluate whether or not dissolved phase contaminants in ground water in the source area on the Site could affect Woodall Creek at levels that would result in an exceedance of Georgia's In-Stream Water Quality Standards. This evaluation was conducted using a mass balance approach that assumed the concentration of contaminants in the source area would discharge directly to Woodall Creek. This is a conservative approach, as Woodall Creek is located approximately 1,000 feet southwest of source area and the additional factors of dilution, dispersion, advection, and attenuation, which serve to reduce contaminant concentrations downgradient of the source, were not factored into the calculations.

The results of the mass balance calculations demonstrated that surface water quality standards in the Woodall Creek would not be exceeded by the contaminant concentrations present in the source area, even if the source area concentrations were directly discharged into the creek. Thus, the dissolved phase ground water contaminant concentrations remaining in the source area on Site do not pose an unacceptable risk to human health or the environment.

ERM presented the results of the mass balance calculations to GAEPD in a report dated February 9, 2017. A copy of this report is provided in Appendix B. GAEPD concurred that the surface water pathway had been sufficiently addressed in a letter dated May 2, 2017.

2.5.4 Assessment of the Vapor Intrusion Exposure Pathway

ERM conducted a Vapor Intrusion (VI) assessment at the Site in 2016. The assessment was conducted in accordance with a work plan dated May 25, 2016 and included:

- Visual observations at the building to identify and assess sampling locations and building interior conditions to identify potential underground utilities, potential preferential pathways, and materials that could potentially contribute VOCs to indoor air.
- Collection of four sub-floor slab soil vapor samples (three locations and one duplicate sample) and three samples each from two sub-

floor slab multi-depth soil gas sampling locations at the Site to assess VOCs in sub-floor slab soil vapor.

- Collection of five indoor air samples to evaluate VOCs inside the building. An outdoor, ambient air sample was also collected.
- Comparison of analytical results to applicable screening levels to evaluate whether additional assessment and/or other action is required.

Details concerning the field activities to conduct the observations and sampling were provided in a Vapor Intrusion Assessment Report dated August 3, 2016 (Appendix C).

The results of the sub-floor slab sampling showed that concentrations of 1,4-dichloroethene (1,4-DCE), ethylbenzene, naphthalene, and xylenes were present in sub-floor slab soil gas samples at concentrations that exceeded their respective commercial Vapor Intrusion Screening Levels (VISLs) established by USEPA for sub-floor slab soil gas. However, the results of the indoor air sampling/analyses indicated that VOCs detected in the sub-floor slab soil vapor samples do not present a VI risk to future building occupants. This conclusion was based on the following:

- None of the VOCs detected in sub-floor slab soil gas at concentrations above their respective soil vapor VISLs were detected in indoor air samples above their indoor air commercial or residential VISLs.
- Concentrations of ethylbenzene and xylenes were higher in the outdoor air than in indoor air indicating that the indoor air concentrations were likely attributable to upwind sources.
- The Target Risk for Carcinogens (R) associated with the highest detected concentrations of 1,4-DCE and naphthalene were at least 1.5 orders of magnitude below commercial VISLs (R = 1×10^{-5}) at a calculated R = 8.8×10^{-6} and R = 5.3×10^{-6} , respectively.

Based on the results of the assessment, no further assessment VI at the former I. Schneid facility building was recommended.

The results of the VI assessment were submitted to GAEPD in a report dated August 3, 2016. A copy of the report is provided in Appendix C. In a correspondence dated September 7, 2016, GAEPD concurred with the results of the VI assessment and stated that sub-floor slab vapor does not present a VI risk to future building occupants under current Site-specific conditions. Thus, VOCs in sub-floor slab soil gas do not pose an unacceptable risk to human health or the environment.

3.0 SUMMARY OF SITE INVESTIGATIONS

This section of the VCSR provides a summary of Site investigations conducted at 1429 Fairmont Avenue between 2002 and 2005, prior to the implementation of corrective action. The Site investigation activities conducted in 2002 and 2003 were performed by Earth Tech. ERM conducted additional Site investigation activities in 2004 and 2005.

3.1 SOIL

A summary of available details concerning the Site investigation activities related to the investigation of soil contamination at the Site are provided below.

EARTH TECH - 2002 and 2003

Site investigation activities conducted by Earth Tech between 2002 and 2003 are summarized as follows:

- 2002
 - Collected six soil samples.
 - Samples were analyzed for VOCs, SVOCs, chlorinated pesticides and herbicides.
- 2003
 - Installed 22 soil borings.
 - Soil samples were analyzed for VOCs.

Geologic logs and laboratory analytical reports for the work conducted by Earth Tech were included in the Corrective Action Plan (CAP) for the Site, which was submitted to GAEPD in October 2004. Additional details of the work conducted by Earth Tech are not available.

ERM- 2004 and 2005

ERM installed 16 soil borings at the Site in 2004 and 2005. The analyses conducted on soil samples collected from the borings included VOCs, SVOCs, pesticides and herbicides. Copies of the analytical reports for the work conducted by ERM were submitted previously to GAEPD in the

October 2004 CAP and other documents. Additional details of the work conducted by ERM in 2004 and 2005 are not available.

3.3 GROUND WATER

Fifteen ground water monitoring wells are currently located at the Site. These wells were installed over the years by Earth Tech and ERM. Geologic logs and well construction diagrams for the wells were submitted to GAEPD in the October 2004 CAP and other reports to GAEPD. Other wells have also been present at the Site, but were abandoned as part of Site remediation activities.

The 2004 CAP provided a sampling schedule for the ground water monitoring wells at the Site. Ground water monitoring at the Site has been performed periodically since 2005. The results of the monitoring, including copies of laboratory analytical reports, have been reported to GAEPD in various Corrective Action Effectiveness Reports and well as other submittals (e.g., Voluntary Remediation Plan and Conceptual Site Model).

4.0 **RESULTS OF SITE INVESTIGATIONS**

4.1 SOIL

The locations of soil brings installed at the Site between 2002 and 2005 are shown on Figure 4-1. Also shown on Figure 4-1 are the results of the analyses conducted on the soil samples collected from the borings. Concentrations of CoIs that exceed their respective RRS are highlighted on the figure.

The results of the Site investigation activities identified five areas of the Site that required remediation to be compliant with the approved RRS for soil. All were located in proximity to the source areas discussed in Section 2.2 and were referred to as Areas B, L, O, P, and S. The locations of these areas are shown on Figure 4-1.

4.2 EVALUATION OF GROUND WATER CONDITIONS

Fifteen (15) ground water monitoring wells are present at the Site. The locations of the wells are shown on Figure 4-2. Also shown on Figure 4-2 are the locations of five monitoring wells that were located at the Site, but have been abandoned during the course of corrective action. Geologic logs and other information concerning the construction of these wells have been provided previously to GAEPD.

Ground water monitoring at the Site has been performed periodically since 2005. The monitoring events have included ground water elevation monitoring and ground water sampling. The results of the January 8, 2016 ground water elevation monitoring are shown on Figure 4-3. Also shown on Figure 4-3 are potentiometric surface contours estimated from the data, as well as the estimated direction of ground water movement at the Site. As shown on Figure 4-3, the estimated direction of ground water movement based on the January 8, 2016 data is towards the southwest. This is consistent with estimates from previous monitoring events.

A summary of the ground water quality data for the Site is provided in Table 4-1. The most recent data for the existing wells at the Site are shown on Figure 4-4.

Free phase product has been detected on top of the water table at the Site in monitoring wells MW-19 and MW-20 (see Figure 4-2). These two wells are located at or in the immediate vicinity of former source areas O and S.

A summary of the results of the free phase monitoring conducted at wells MW-19 and MW-20 from March 2015 through January 2017 is provided in Table 4-2. During this time period, two technologies were used to assess practicability of free phase product recovery. They included:

- Product absorbing socks; and
- High vacuum extraction (HVE).

Details concerning the assessment of these technologies are provided in the report included in Appendix B. Based on the assessment, the following observations and conclusions concerning free phase product at the Site were made based:

- The monitoring results indicate that the presence and apparent thickness of free product at MW-19 and MW-20 are dependent on ground water levels. This indicates that the product is residual in nature (i.e., non-mobile product entrained in soil pore space) rather than a lense of mobile free phase product.
- Free product transmissivity is considered a better indicator of the feasibility of product recoverability than apparent thickness¹; however, the amount of product observed at MW-19 and MW-20 is considered insufficient to conduct a bail-down test to estimate transmissivity. Further, any transmissivity test results would be obfuscated by the observed correlation between water table fluctuations at the Site and apparent thickness.
- The extent of residual product at the Site appears localized to the former source area and conditions are not indicative of a migrating body.
- The average apparent thickness of free product remaining in the source area measured over a nearly two-year period is less than 0.05 foot and, due to the nature of product with a density less then water and as noted above, this thickness may exaggerate the true thickness in the aquifer by a factor of 2-10.
- The use of absorbent socks resulted in minimal free product recovery as the remaining product is primarily trapped in soil pore spaces as immobile residue, with minimal accumulation in the well occurring primarily as the result of drainage from pore spaces during periods of low ground water levels.
- The HVE event resulted in minimal free product recovery as the product is primarily trapped in soil pore spaces as immobile

¹ ITRC (Interstate Technology & Regulatory Council), 2009. Evaluating LNAPL Remedial Technologies for Achieving Project Goals. LNAPL-2. <u>http://www.itrcweb.org/GuidanceDocuments/LNAPL-2.pdf</u>

residue and appears to be limited in extent, as evidenced by the low ratio of product to ground water recovered during the event (i.e., < 0.3% of recovered liquid was identified as diesel-like product).

Based on a review of the assessment, GAEPD concluded that active recovery or further remediation of the free phase product was not necessary.

5.0 SUMMARY OF CORRECTIVE ACTION ACTIVITIES

A CAP was prepared for the Site and submitted to the GAEPD in October 2004. The CAP was approved by GAEPD by way of a correspondence dated February 2, 2005. The approved CAP called for the use of *in-situ* chemical oxidation to remediate unsaturated soils at the Site. It also called for the use of a biosparge system to remediate ground water. Because remediation of ground water at this Site is not required under the VRP, no further discussion of ground water remediation is included in this VCSR.

As discussed in Section 4.1, the results of the Site investigation activities showed that soils in five areas of the Site required remediation to be compliant with the approved RRS. The five areas were referred to as Areas B, L, O, P, and S. The locations of these areas are shown on Figure 4-1. Details concerning corrective action activities conducted at each area are provided is the following sections.

5.1 AREA B

Area B included approximately 450 square feet centered over a portion of a former floor trench drain. Soil samples collected from a depth of 6 – 8 feet at boring GP-12 during the Site assessment activities contained concentrations of 1,2-dichlorobenzene at concentrations which, at the time, exceeded the approved RRS (see Figure 4-1).

Soils in Area B were remediated using a combination of heat-catalyzed persulfate injections and excavation. The first round of persulfate injection in Area B was conducted in 2005. Confirmation soil sampling in Area B to evaluate the effectiveness of the chemical injection was conducted in February 2006 and included four soil borings (GP-58 through GP-61). Their locations are shown on Figure 5-1. Sample depths at each boring were 4 feet, 8 feet, and 12 feet. Soil samples from the borings were analyzed for VOCs and SVOCs. The results of the analyses are shown on Figure 5-1. Copies of the analytical reports for the samples were provided to GAEPD in the *First Annual Report on Effectiveness of Corrective Action* dated September 2006. As noted on Figure 5-1, concentrations of 2,4-dichlorophenol at soil boring GP-58 exceeded the approved RRS.

A second round of heat-catalyzed persulfate injection was conducted at Area B in November 2006. Confirmation soil sampling in Area B to evaluate the effectiveness of the second chemical injection was conducted in January 2007 and included two soil boring identified as B-1-1-3 and B-2-

13

1-3 (see Figure 5-1). These confirmation soil borings were located in immediate proximity to soil boring GP-12 and GP-58, respectively. Soil samples from borings B-1-1-3 and B-2-1-3 were analyzed for VOCs and SVOCs. The results of the analyses are shown on Figure 5-1. Copies of the analytical reports for the samples were provided to GAEPD in the *Second Annual Report on Effectiveness of Corrective Action* dated October 2007. As noted on Figure 5-1, the concentrations of VOCs and SVOCs at soil boring B-1-1-3 were less than the approved RRS. At soil boring B-2-1-3, however, the concentrations of several CoIs exceeded their respective RRS. These results show that the two rounds of heat-catalyzed persulfate injections did not completely remediate the soils at Area B.

Remediation of Area B was completed in 2010 by way of soil excavation and off-Site disposal. Details concerning these activities were provided to GAEPD in the *Fifth Annual Report on Effectiveness of Corrective Action* dated February 2011. The area excavated included that portion of Area B in proximity to confirmation soil borings GP-58 and B-2-1-3. The planned limits of the excavation are shown on Figure 5-2.

Confirmation soil samples were collected from the base and sidewalls of the excavation. The initial set of samples included 12 from the excavation sidewalls and one from the base of the excavation. The samples were analyzed for VOCs and SVOCs. A summary of the analytical results is provided in Table 5-1. As shown in Table 5-1, concentrations of phenanthrene, 1,2-dichlorobenzne, and 1,4-dichlorobenzene in confirmation samples from the south and west sidewalls exceeded the approved RRS. Because of this, the south and west sidewalls are the excavation were over-excavated and re-sampled. A second set of confirmation samples was collected from the over-excavated sidewalls and analyzed for VOCs and SVOCs. The analytical results are included in Table 5-1. The results showed that the concentrations of VOCs and SVOCs were below their respective RRS.

Final limits of the excavation are shown on Figure 5-3. Copies of laboratory data reports for the confirmation samples were provided to GAEPD in the *Fifth Annual Report on Effectiveness of Corrective Action* dated February 2011. GAEPD concurred that the soil in Area B were in compliance with the approved RRS in a letter dated March 10, 2011.

5.2 AREA L

Area L included approximately 275 square feet located west of a former sump. Soil samples collected from a depth of 2 – 4 feet at boring GP-10

during the Site assessment activities contained concentrations of several CoIs at concentrations that exceeded the approved RRS (see Figure 4-1).

Soils in Area L were remediated using two rounds of heat-catalyzed persulfate injections. The first round was performed in December 2005. Confirmation soil sampling in Area L to evaluate the effectiveness of the chemical injection was conducted in February 2006 and included five soil borings (GP-47 through GP-51). Their locations are shown on Figure 5-4. Sample depth at each of these locations was 4 feet. Soil samples from the borings were analyzed for VOCs and SVOCs. The results of the analyses are shown on Figure 5-4. Copies of the analytical reports for the samples were provided to GAEPD in the *First Annual Report on Effectiveness of Corrective Action* dated September 2006. As noted on Figure 5-4, concentrations of ethylbenzene and xylene at soil boring GP-48 exceeded the approved RRS.

A second round of heat-catalyzed persulfate injection was conducted at Area L in November 2006. Confirmation soil sampling in Area L to evaluate the effectiveness of the second chemical injection was conducted in January 2007 and included one soil boring identified as L-1-1-3 (see Figure 5-4), which was located in immediate proximity to soil boring GP-48. Soil samples from boring L-1-1-3 were analyzed for VOCs and SVOCs. The results of the analyses are shown on Figure 5-4. Copies of the analytical reports for the samples were provided to GAEPD in the *Second Annual Report on Effectiveness of Corrective Action* dated October 2007. As noted on Figure 5-4, the concentrations of VOCs and SVOCs at soil boring L-1-1-3 were less than the approved RRS. As was reported to GAEPD in the *Second Annual Report on Effectiveness of Corrective Action*, these results demonstrate that the soils in Area L are compliant with the approved RRS.

5.3 AREA P

Area P included approximately 2,050 square feet located south of the former floor trench drain. Concentrations of 2,6-dinitrotoluene in soil samples collected at borings GP-15 and GP-16 during the Site assessment exceeded the approved RRS (see Figure 4-1).

Soils in Area P were remediated using two rounds of heat-catalyzed persulfate injections. The first round was conducted in December 2005. The second round was conducted in January 2006. Confirmation soil samples were collected following the injection events at the five locations (GP-52 through GP-56) shown on Figure 5-5. Sample depths at each of these locations were 4 feet, 8 feet, and 12 feet. The samples were analyzed for VOCs and SVOCs.

The results of the analyses conducted on the confirmation samples collected from Area P are shown on Figure 5-5. The results demonstrate that the soils at Area P are compliant with the approved RRS. Copies of the laboratory reports for the analyses were provided to GAEPD in the *First Annual Report on Effectiveness of Corrective Action* dated September 2006.

5.4 AREAS O AND S

Areas O and S include approximately 900 square feet and 1,000 square feet, respectively. Both were located in proximity to the former solvent mixing room. Area O was located inside the northeast corner of the Site building. Area S was located outside the northeast corner. Concentrations of several CoIs in soil samples collected from Site assessment soil borings in these areas exceeded the approved RRS (see Figure 4-1).

Soils in Areas O and S were remediation using a combination of heatcatalyzed persulfate, soil vapor extraction (SVE) and excavation. Heatcatalyzed persulfate injections were performed in 2005 and 2006. The SVE system was started in 2007 and operated for a period of more than five years until repeated Site vandalism made continued operation of the system impracticable. The remediation efforts using heat-catalyzed persulfate and SVE did not bring the soils in Areas O and S into compliance with the approved RRS, however.

Excavation of Areas O and S was conducted between June 2013 and April 2014. Pre-excavation activities include the following:

- Installation of 21 soil borings.
- Collection/analyses of soil samples from the borings to better define the horizontal and vertical limits of the excavation.
- Excavation design.
- Demolition and temporary shoring of the northeast corner of the Site building to allow for excavation of Area O.

The excavation design based on the results of the sampling is shown on Figure 5-6. The excavation was performed using a track-mounted excavator. Confirmation soil samples were collected from the sidewalls and bottom of the excavation to evaluate compliance with the approved RRS. The confirmation samples were analyzed for selected VOCs and SVOCs. Selected samples were also analyzed for herbicides and selenium. Based on the results of the analyses, the horizontal and/or vertical extent

of the excavation was increased to remove additional contaminated soils. It should be noted, however, that the water table at the time of the work was approximately 13 feet below grade. Therefore, the maximum depth of the excavation was 13 feet. Additionally, confirmation samples were not collected from the bottom of the excavation in areas where the excavation extended to a depth of 13 feet.

The final limits of the excavation at Areas O and S are shown on Figure 5-7. Approximately 3,100 tons of soil was excavated. The locations of the final confirmation soil samples collected from the excavation are shown on Figure 5-8. The results of the analyses are summarized in Table 5-2. Also shown in Table 5-2 are the approved RRS for soils at the Site. A comparison of the analytical results for the confirmation soil samples to the approved RRS shows that the soils that remained in place following the excavation of Areas O and S were compliant with the approved RRS.

Details concerning the excavation activities conducted in Areas O and S, including the laboratory analytical reports for the confirmation samples, was provided to GAEPD in *Soil Corrective Action Completion and Certification Report* dated July 15, 2014. The report concluded that the soils that remained in place in Areas O and S following the completion of the excavation were compliant with the approved RRS. GAEPD concurred with this conclusion in a letter dated November 17, 2014.

6.0 EVALUATION OF POST-REMEDIATION SOIL CONDITIONS

6.1 CONFIRMATION SAMPLING

The Site remediation activities described in Section 5 were conducted between 2005 and 2014. Details concerning the remediation of Areas B, L, and P were provided to GAEPD by way of Annual Corrective Action Effectiveness Reports. In addition to providing details concerning the remedial actions taken, the reports provided details concerning the confirmation soil sampling and analyses that were conducted to evaluation the effectiveness of the remediation. A comparison of confirmation soil sample data to the approved RRS was presented in each report.

Details concerning the excavation and confirmation sampling conducted to remediate soils in Areas O and S were provided in the *Soil Corrective Action and Certification Report* dated July 15, 2014. A comparison of confirmation soil sample data to the approved RRS was presented in the report.

6.2 RISK REDUCTION STANDARDS

Soil RRS for the Site were first submitted to GAEPD in the October 2004 CAP. GAEPD issued comments concerning the CAP and RRS in a correspondence dated February 2, 2005. Revisions to the RRS were made to address GAEPD comments and were re-submitted to the agency in a correspondence dated March 25, 2005. GAEPD approved the revised RRS by way of a correspondence dated May 12, 2005.

Additional regulated substances were detected at the Site subsequent to the submittal of the March 25, 2005 correspondence. RRS for these additional regulated substances were submitted to GAEPD in a correspondence dated July 25, 2005. GAEPD provided comments concerning these RRS in a correspondence dated November 28, 2006. ERM accepted the comments in a correspondence dated December 18, 2006. The approved RRS for soil are shown in Table 1-1.

6.3 COMPLIANCE WITH RISK REDUCTION STANDARDS

6.3.1 Area B

As discussed in Section 5, soils in Area B were remediated using a combination of heat-catalyzed persulfate injections and excavation.

Confirmation sample locations are shown on Figures 5-1 and 5-3. Confirmation sample analytical results are shown in Table 5-1. Laboratory reports for the Area B confirmation samples were provided to GAEPD in the *First, Second, and Fifth Annual Reports on Effectiveness of Corrective Action* dated September 2006, October 2007, and February 2011, respectively. The analytical results show the soils in Area B were compliant with the approved RRS subsequent to the completion of the remediation.

GAEPD concurred that the soil in Area B were compliant with the approved RRS in a letter dated March 10, 2011.

6.3.2 Area L

As discussed in Section 5, soils in Area L were remediated using heatcatalyzed persulfate injections. Confirmation sample locations are shown on Figure 5-4. Analytical data for the sample are also shown on Figure 5-4. Copies of laboratory reports for the Area L confirmation samples were submitted to GAEPD in the *First and Second Annual Reports on Effectiveness of Corrective Action* dated September 2006 and October 2007, respectively. The analytical results show the soils in Area L were compliant with the approved RRS subsequent to the completion of the remediation.

6.3.3 Area P

As described in Section 5, soils in Area P were remediated using two rounds of heat-catalyzed persulfate injections. Confirmation soil samples were collected following the injection events at the locations shown on Figure 5-5. The results of the analyses conducted on the confirmation samples are also shown on Figure 5-5. The results show that the soils at Area P are compliant with the approved RRS. Copies of the laboratory reports for the analyses were provided to GAEPD in the *First Annual Report on Effectiveness of Corrective Action* dated September 2006.

6.3.4 Areas O and S

As described in Section 5, remediation of soils in Areas O and S was completed by excavation in 2013 and 2014. The final limits of the excavation at Areas O and S are shown on Figure 5-7. The locations of the final confirmation soil samples collected from the excavation are shown on Figure 5-8. The results of the analyses are summarized in Table 5-2. Copies of the laboratory analytical reports for the Areas O and S confirmation samples that were collected following completion of the excavation were provided to GAEPD in *Soil Corrective Action Completion*

and Certification Report dated July 15, 2014. A comparison of the analytical results for the confirmation soil samples to the approved RRS shows that the soils that remained in place following the excavation of Areas O and S were compliant with the approved RRS.

GAEPD concurred that the soil in Areas O and S were compliant with the approved RRS in a letter dated November 17, 2014.

6.4 SOIL COMPLIANCE CERTIFICATION REPORT

A *Soil Compliance Certification Report* for the Site dated September 15, 2015 was prepared by One Consulting Group, Inc. on behalf of the former Site owner, English Asset Holding LLC. The purpose of the report was to provide a comprehensive document to GAEPD's Brownfields Program to review and evaluate whether or not the soils at the Site are compliant with the approved RRS. The report was prepared utilizing soil laboratory analytical data collected from the Site dating back to 1995, including the post-remediation confirmation sampling/analytical data from the remediation efforts discussed above. In a letter dated October 13, 2015, GAEPD stated that based on a review of the report the agency concurred with the conclusion that the soils at the Site are compliant with the established Type 1/2 RRS.

7.0 DESCRIPTION OF SITE AND RESPONSIBLE PARTIES

This section of the VCSR provides a description of all properties that are part of the Site including the address and location of such property, its legal description, and the property owner's name, address, and telephone number. It also provides information concerning any other person who may be a responsible party for the Site.

7.1 SITE INFORMATION

The Site address is as follows:

1429 Fairmont Avenue Atlanta, Fulton County, Georgia 30318

The legal description for the Site (Tax Parcel Number 17-0188-0002-017-0) is provided in Appendix A. The property owner's name, address, and telephone number are as follows:

Fairmont Flats, LLC 1819 Peachtree Road, NE Suite 275 Atlanta, Georgia 30309 404/419-9400

No other properties are included in the Site at this time.

7.2 PARTIES RESPONSIBLE FOR THE SITE

The parties responsible for the Site currently include:

I.S. Liquidation, LLC 13048 Knaus Road Oswego, Oregon 97034 770/312-1035

No other parties responsible for the releases at the Site have been identified at this time.

8.0 PUBLIC NOTICE

Within seven days of submitted this VCSR to GAEPD, a Public Notice will be published in the Fulton County Daily Report and the Atlanta Journal Constitution. The Public Notice will indicate that the public may submit comments concerning the VCSR to GAEPD within 30 days. A notice of the VCSR availability for review will also be sent to Richard Anderson, Fulton County Manager, and Kasim Reed, Mayor of Atlanta.

CONTINUING ACTIONS TO MAINTAIN COMPLIANCE WITH RISK REDUCTION STANDARDS

No additional measures to ensure Site compliance with the approved RRS for soils are necessary or warranted. However, to ensure the ground water pathway is not completed, a Uniform Environmental Covenant that prohibits the use of ground water at the Site for non-remedial use will be placed on the deed to the property. The UEC will also place certain restrictions on ground disturbance (e.g., excavation, trenching, etc.) in proximity to the location of the free phase liquid product. A draft of the UEC is included in Appendix D.

9.0

10.0 REFERENCES

- 1. Corrective Action Plan, ERM, October 2004.
- 2. First Annual Report on Effectiveness of Corrective Action, ERM, September 2006.
- 3. Second Annual Report on Effectiveness of Corrective Action, ERM, October 2007.
- 4. Third Annual Report on Effectiveness of Corrective Action, ERM, October 2008.
- 5. Fourth Annual Report on Effectiveness of Corrective Action, ERM, February 2010.
- 6. Fifth Annual Report on Effectiveness of Corrective Action, ERM, February 2011.
- 7. Soil Corrective Action Completion and Certification Report, ERM, July 15, 2014.
- 8. Soil Compliance Certification Report, One Consulting Group, September 14, 2015.
- 9. Vapor Intrusion Assessment Report, ERM, August 3, 2016 (provided in Appendix C).
- 10. Free Product Monitoring/Recovery and Surface Water Protection Report, ERM, February 9, 2017 (provided in Appendix B).

Tables

July 27, 2017 Project No. 0121021 Former I. Schneid Facility

Table 1-1Chemicals of Interest and Approved Risk Reduction Standards for SoilFormer I. Schneid FacilityHSI Site No. 10753Atlanta, Fulton County, Georgia

		R	RS	
Chemical	Method	Туре	(µg/kg)	GAEPD Approved
	Organic Co		-	
1,1,1-TCA	SW8260	2	49,790	05/12/05
1,1,2,2-PCA	SW8260	2	371	05/12/05
1,1-Dichloroethane	SW8260	1	312,800	
1,1-Dichloroethene	SW8260	2	3,041	05/12/05
1,2-Dichloroethane	SW8260	1	500	11/28/06
1,2-Dichlorobenzene	SW8270	2	150,564	05/12/05
1,2,4-Trichlorobenzene	SW8270	2	50,130	05/12/05
1,3-Dichlorobenzene	SW8270	2	82,930	05/12/05
1,4-Dichlorobenzene	SW8270	2	18,823	05/12/05
2-Butanone (MEK)	SW8260	1	200,000	11/28/06
4-Methyl-2-pentanone (MIBK)	SW8260	NC	3,300	
Acetone	SW8260	1	297,500	05/12/05
Benzene	SW8260	1	500	05/12/05
Carbon disulfide	SW8260	1	182,500	05/12/05
Carbon tetrachloride	SW8260	1	500	11/28/06
Chlorobenzene	SW8260	1	10,000	05/12/05
Chloroethane	SW8260	2	619	05/12/05
Chloroform	SW8260	1	3,727	05/12/05
cis-1,2-Dichloroethene (DCE)	SW8260	1	530	11/28/06
Dibromochloromethane	SW8260	1	10,000	11/28/06
Ethylbenzene	SW8260	2	104,844	05/12/05
Isopropylbenzene	SW8260	1	21,880	05/12/05
Methylene chloride	SW8260	1	500	05/12/05
Naphthalene	SW8260	1	63,388	05/12/05
Styrene	SW8260	1	14,000	11/28/06
Tetrachloroethene (PCE)	SW8260	1	500	11/28/06
Toluene	SW8260	1	100,000	05/12/05
Trichloroethene (TCE)	SW8260	1	500	05/12/05
Xylenes (total)	SW8260	1/2	229,674	05/12/05
Vinyl chloride	SW8260	1	200	11/28/06
	tile Organic	Compound	ls	
2,4-Dichlorophenol	SW8270	1	2,000	05/12/05
2-Chlorophenol	SW8270	2	6,529	05/12/05
Acenaphthene	SW8270	2	3,692,000	05/12/05
Bis(2-ethylhexyl)phthalate	SW8270	2	800,400	05/12/05
Fluoranthene	SW8270	2	3,070,000	05/12/05
Fluorene	SW8270	2	2,805,000	05/12/05
Pentachlorophenol	SW8270	1	3,300	05/12/05
Phenanthrene	SW8270	2	3,042,000	05/12/05
2,4-Dimethylphenol	SW8270	1	70,000	11/28/06
2,6-Dinitrotoluene	SW8270	1	760	11/28/06
2-Methylphenol	SW8270	NC	3,800	
4-Methylphenol	SW8270	NC	3,800	
N-Nitrosodi-n-propylamine	SW8270	1	1,700	11/28/06
	01102.0	•	1,100	. 1/20/00

Table 1-1Chemicals of Interest and Approved Risk Reduction Standards for SoilFormer I. Schneid FacilityHSI Site No. 10753Atlanta, Fulton County, Georgia

		R	RS	04500
Chemical	Method	Туре	(µg/kg)	GAEPD Approved
Phenol	SW8270	1	400,000	11/28/06
m&p-Methylphenol	SW8270		0	
	Metals			
Arsenic	SW6010	1	20,000	11/28/06
Barium	SW6010	1	1,000,000	11/28/06
Cadmium	SW6010	1	2,000	11/28/06
Chromium	SW6010	1	100,000	11/28/06
Lead	SW6010	1	75,000	11/28/06
Mercury	SW6010	1	500	11/28/06
Selenium	SW6010	1	2,000	11/28/06
	Chlorinated Her	bicides		
2,4,5-TP (Silvex)	SW8151	1	10,000	05/12/05
Chlordane	SW8151	2	25,490	05/12/05
2,4-D	SW8151	1	7,000	05/12/05
(Chlorinated Pes	ticides		
4,4-DDE	SW8081	NC	660	
4,4-DDT	SW8081	NC	660	
Heptachlor Epoxide	SW8081	1	1,600	11/28/06

Notes:

NC: Notification Concentration

Table 4-1 Ground Water Quality Data (µg/L) Former I. Schneid Facility HSI Site 10753 Atlanta, Fulton County, Georgia

Atlanta, I		<i>ing)</i> , cool													Compounds	Detected (µg	/L)											
Well ID	Date Installed	Date Sampled	Acetone	Benzene	Chlorobenzene	cis-1,2-Dichloroethene	1,4-Dichlorobenzene	1,2-Dichlorobenzene	, 1,3-Dichlorobenzene	1,1-Dichloroethane	1,1-Dichloroethene	, 1,4 Dioxane	Ethylbenzene	Isopropylbenzene	Naphthalene	1,1,1-Trichloroethane	Trichloroethene	. Tetrachloroethene	Methyl tert -butyl ether	Methylene Chloride	Toluene	Xylenes	Vinyl Choride	2,4-D	Acenaphthene	Dibenzofuran	Pentachlorophenol	2,4-Dichlorophenol
		RRS (Type)	1	2	1	2	1	1	1	1	2	1	1	2	1	2	1	1	1	2	1	1	1	1	1		2	1
	Ар	plicable RRS	4,000	5.50 25.60	100	31	75	600	600	4,000	103	0	700	200	20	1,011	5	5	0	55	1,000	10,000	2	70	2,000	10	1	20
		Jun-05 Mar-07	<25	23.60 < 5	10,100 < 5	< 1 < 5	142 < 10	341 < 10	11.6	< 1 < 5	< 1 < 5	NA NA	21 NA	6.6 < 5	12.5 NS	< 1 < 5	<1 NA	<1 NA	NA NA	<2.5	5.3	10.7		<25 NA	<10	<10	<10 NA	<10 NA
		Nov-08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		NS	NS	NS	NS	NS
		Mar-09 Jun-09	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}		NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}
		Sep-09	NS ^{DRY}	NSDRY	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NSDRY	NS ^{DRY}	NSDRY	NS ^{DRY}	NSDRY	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NSDRY	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}		NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NSDRY	NSDRY
ET-MW-4	5/2/2002	Dec-09 Dec-10	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY} NS ^{DRY}	NS ^{DRY}	NS ^{DRY} NS ^{DRY}	NS ^{DRY} NS ^{DRY}	NS ^{DRY} NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY} NS ^{DRY}	NS ^{DRY} NS ^{DRY}	NS ^{DRY}	NS ^{DRY} NS ^{DRY}		NS ^{DRY}	NS ^{DRY} NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}
		Jul-11	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		NS	NS	NS	NS	NS
		Jul-12 May-14	NS <50	NS < 5	NS 1200	NS NA	NS 16	NS 180	NS <5	NS < 5	NS < 5	NS NA	NS < 5	NS < 5	NS < 5	NS < 5	NS < 5	NS NA	NS NA	NS <5	NS <5	NS <5		NS NA	NS <10	NS NA	NS <25	NS <10
		Oct-14	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY		NSDRY	NSDRY	NSDRY	NSDRY	NSDRY
		Mar-15 Aug-15	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS		NS NS	NS NS	NS NS	NS NS	NS NS
		Dec-15	<50	<5	1300	<5	21	160	<5	<5	<5	NA	<5	<5	<10	<5	<5	<5	<5	<5	<5	<5		<2	<10	<10	<25	<25
		Jun-05 Mar-07	<25	< 1 < 5	< 1 < 5	< 1	<1 < 5	<1 < 5	<1	< 1 < 5	< 1	NA	<1 NA	< 1 < 5	<5 NA	< 1 < 5	<1 NA	<1 NA	NA NA	<2.5	<1	<1		<5 NA	<11.1	<11.1	<11.1 NA	<11.1 NA
		Nov-08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		NS	NS	NS	NS	NS
		Mar-09 Jun-09	<50 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS	<5 NS	9.7 NS	< 5 NS	NA NS	<5 NS	< 5 NS	<5 NS	< 5 NS	<5 NS	<5 NS	NA NS	<5 NS	<5 NS	<5 NS		NA NS	NA NS	NA NS	NA NS	NA NS
		Sep-09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		NS	NS	NS	NS	NS
ET-MW-5	5/2/2002	Dec-09 Dec-10	<50 <50	< 5 < 5	< 5 < 5	< 5	< 5 < 5	< 5 < 5	<5 <5	< 5 < 5	< 5 < 5	<150 <150	<5 <5	< 5	NA <5	< 5 < 5	< 5	< 5	< 5	< 5	< 5 < 5	< 5		NA NA	NA NA	NA	NA	NA
		Jul-11	<50	< 5	< 5	< 5	< 5	< 5	<5	< 5	< 5	< 150	< 5	< 5	< 5	< 5	< 5	< 5	<5	<5	<5	<5		NA	NA	NA	NA	NA
		Jul-12 May-14	<50 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS	<5 NS	< 5 NS	< 5 NS	< 150 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS	<5 NS	<5 NS	<5 NS	<5 NS		NA NS	NA NS	NA NS	NA NS	NA NS
		Oct-14	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		NS	NS	NS	NS	NS
		Mar-15 Aug-15	NS <50	NS < 5	NS < 5	NS < 5	NS < 5	NS < 5	NS <5	NS < 5	NS < 5	NS < 150	NS < 5	NS < 5	NS < 5	NS < 5	NS < 5	NS < 5	NS < 5	NS <5	NS <5	NS <5		NS NA	NS NA	NS NA	NS NA	NS NA
		Jun-05	<25	< 1	< 1	< 1	<1	<1	<1	< 1	< 1	NA	<1	< 1	<5	< 1	<1	<1	NA	<2.5	<1	<1		<5	<10	<10	<10	<10
		Mar-07 Nov-08	NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS	NS	< 5 NS	< 5 NS	NA NS	NA NS	< 5 NS	NA NS	< 5 NS	NA NS	NA NS	NA NS	NS	NS	NS		NA NS	NS	NS	NA NS	NA NS
		Mar-09	NS ^{DRY}	NSDRY	NSDRY	NSDRY	NS ^{DRY}	NSDRY	NSDRY	NSDRY	NS ^{DRY}	NSDRY	NSDRY	NSDRY	NS ^{DRY}	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY		NSDRY	NSDRY	NSDRY	NSDRY	NS ^{DRY}
		Jun-09 Sep-09	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS		NS NS	NS NS	NS NS	NS NS	NS NS
ET-MW-6	10/28/2002	Dec-09	<50	< 5	< 5	< 5	< 5	< 5	<5	< 5	< 5	<150	<5	< 5	NA	< 5	< 5	< 5	< 5	< 5	< 5	< 5		NA	NA	NA	NA	NA
21	10/20/2002	Dec-10 Jul-11	<50 <50	< 5	< 5	< 5	< 5 < 5	< 5 < 5	<5 <5	< 5 < 5	< 5	<150 < 150	<5 < 5	< 5	<5	< 5 < 5	< 5	< 5	< 5 <5	< 5	< 5 <5	< 5 <5		NA NA	NA NA	NA	NA NA	NA
		Jul-12	<50	< 5	< 5	< 5	< 5	< 5	<5	< 5	< 5	< 150	< 5	< 5	< 5	< 5	< 5	< 5	<5	<5	<5	<5		NA	NA	NA	NA	NA
		May-14 Oct-14	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS		NS NS	NS NS	NS NS	NS NS	NS NS
		Mar-15	<50	< 5	33	NA	< 5	17	<5	< 5	< 5	NA	< 5	< 5	9.3	< 5	< 5	NA	NA	<5	<5	<5		NA	<10	NA	< 25	< 10
		Aug-15 Jun-05	<50 <25	< 5 63	< 5 2	< 5 3	< 5 6	< 5 57	<5 1	< 5 38	< 5 13	< 150 NA	< 5 21	< 5 16	< 5 167	< 5 < 1	< 5 4	< 5 <1	< 5 NA	<5 <2.5	<5 4	<5 30		NA <100	NA 11	NA <10	NA <10	NA <10
		Mar-07	<2J	38	< 5	< 5	< 5	29	1	36	7	NA	NA	7	NA	< 5	NA	NA	NA	N2.5	4			NA		<10	NA	NA
		Nov-08	<50	14	< 5	< 5	< 5	27	<5	100	25	NA	<5	6	<5	< 5	<5	<5	NA	<5	<5	<5		NA	NA	NA	NA	NA
		Mar-09 Jun-09	<50 <50	< 5 < 5	< 5 < 5	< 5 < 5	< 5 < 5	7	<5 <5	130 54	19 < 5	NA <150	<5 <5	< 5 < 5	<5 NA	< 5 < 5	<5 < 5	<5 < 5	NA < 5	<5 < 5	<5 < 5	<5 <10		NA NA	NA NA	NA NA	NA NA	NA NA
		Sep-09	<50	7	< 5	< 5	8	55	<5	130	14 NC	<150	<5	< 5	NA	< 5	< 5	< 5	< 5	< 5	< 5	< 5		NA	NA	NA	NA	NA
ET-MW-8	10/24/2002	Dec-09 Dec-10	NS <50	NS < 5	NS < 5	NS < 5	NS 7	NS 54	NS <5	NS 78	NS < 5	NS <150	NS <5	NS < 5	NS 5	NS < 5	NS < 5	NS < 5	NS < 5	NS < 5	NS < 5	NS < 5		NS NA	NS NA	NS NA	NS NA	NS NA
		Jul-11	<50	< 5	< 5	< 5	< 5	18	<5	39	< 5	<150	<5	< 5	<5	< 5	<5	<5	<5	<5	<5	<5		NA	NA	NA	NA	NA
		Jul-12 May-14	<50 <50	< 5 < 5	< 5 < 5	< 5 NA	13 9	86 78	<5 <5	70 35	< 5 < 5	<150 NA	<5 <5	< 5 < 5	<5 <5	< 5 < 5	< 5 <5	< 5 NA	< 5 NA	< 5 <5	< 5 <5	< 5 <5		NA NA	NA <10	NA NA	NA <25	NA <10
		Oct-14	<50	<5	<5	NA	<5	39	<5	19	<5	NA	<5	<5	<5	<5	<5	NA	NA	<5	<5	<5		NA	<10	NA	<25	<10
		Mar-15 Aug-15	NS <50	NS <5	NS <5	NS <5	NS 10	NS 92	NS <5	NS 28	NS <5	NS <150	NS <5.0	NS <5.0	NS 5	NS <5.0	NS <5.0	NS <5.0	NS <5.0	NS <5	NS <5	NS <5		NS NA	NS NA	NS NA	NS NA	NS NA
L	1	, ug 10	~00	~0	~0	-0		02	~0	20	-0	100	~0.0	50.0		~0.0	~0.0	~0.0	50.0	~~	~~	~0	1	1.07.1	11/1	1.47.1	1973	

Table 4-1 Ground Water Quality Data (µg/L) Former I. Schneid Facility HSI Site 10753 Atlanta, Fulton County, Georgia

Addina, I	-uiton Cou														Compounds	Detected (µg/	/L)											
Well ID	Date Installed	Date Sampled	Acetone	Benzene	Chlorobenzene	cis-1,2-Dichloroethene	1,4-Dichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,1-Dichloroethane	1,1-Dichloroethene	1,4 Dioxane	Ethylbenzene	Isopropylbenzene	Naphthalene	1,1,1-Trichloroethane	Trichloroethene	Tetrachloroethene	Methyl tert -butyl ether	Methylene Chloride	Toluene	Xylenes	Vinyl Choride	2,4-D	Acenaphthene	Dibenzofuran	Pentachlorophenol	2,4-Dichlorophenol
		RRS (Type)	1	2	1	2	1	1	1	1	2	1	1	2	1	2	1	1	1	2	1	1	1	1	1		2	1
	Ар	plicable RRS	4,000	5.50	100	31	75	600	600	4,000	103	0	700	200	20	1,011	5	5	0	55	1,000	10,000	2	70	2,000		1	20
		Jun-05 Mar-07	<25	< 1 < 5	< 1 < 5	< 1 < 5	<1 < 5	<1 < 5	<1	< 1 < 5	< 1	NA NA	<1 NA	< 1 < 5	<5 NA	< 1 < 5	<1 NA	<1 NA	NA NA	<2.5	<1	<1		<5 NA	<11.1	<11.1	<11.1 NA	<11.1 NA
		Nov-08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		NS	NS	NS	NS	NS
		Mar-09 Jun-09	<50 NS	< 5 NS	<5 NS	< 5 NS	< 5 NS	NA NS	<5 NS	< 5 NS	<5 NS	< 5 NS	< 5 NS	< 5 NS	NA NS	< 5 NS	< 5 NS	< 5 NS		NA NS	NA NS	NA NS	NA NS	NA NS				
		Sep-09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		NS	NS	NS	NS	NS
ET-MW-8D	12/30/2002	Dec-09 Dec-10	<50 <50	< 5	< 5	< 5 < 5	< 5	< 5	<5 <5	< 5 < 5	< 5	<150 <150	<5 <5	< 5	NA <5	< 5	< 5	< 5	< 5 < 5	< 5	< 5 < 5	< 5		NA NA	NA	NA	NA	NA
		Jul-11	<50	< 5	< 5	< 5	< 5	< 5	<5	< 5	< 5	< 150	< 5	< 5	< 5	< 5	< 5	< 5	<5	<5	<5	<5		NA	NA	NA	NA	NA
		Jul-12 May-14	<50 NS	< 5 NS	<5 NS	< 5 NS	< 5 NS	< 150 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS		NA NS	NA NS	NA NS	NA NS	NA NS				
		Oct-14	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		NS	NS	NS	NS	NS
		Mar-15	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		NS	NS	NS	NS	NS
		Aug-15 Jun-05	<50 <25	< 5 < 1	< 5 < 1	< 5 < 1	< 5 <10	< 5 < 10	<5 <1	< 5 < 1	< 5	< 150 NA	< 5 <1	< 5	< 5 <5	< 5 < 1	< 5	< 5	< 5 NA	<5 <2.5	<5 <1	<5 <1		NA <5	NA <10	NA <10	NA <10	NA <10
		Mar-07		< 5	< 5	< 5	< 5	< 5		< 5	< 5	NA	NA	< 5	NA	< 5	NA	NA	NA					NA			NA	NA
		Nov-08 Mar-09	NS <50	NS < 5	NS <5	NS < 5	NS < 5	NS NA	NS <5	NS < 5	NS <5	NS < 5	NS <5	NS <5	NS NA	NS <5	NS <5	NS <5		NS NA	NS NA	NS NA	NS NA	NS NA				
		Jun-09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		NS	NS	NS	NS	NS
		Sep-09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS 450	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		NS	NS	NS	NS	NS
ET-MW-9	10/24/2002	Dec-09 Dec-10	<50 <50	< 5 < 5	<5 <5	< 5 < 5	< 5 < 5	<150 <150	<5 <5	< 5 < 5	NA <5	< 5 < 5	< 5	< 5 < 5	< 5 < 5	< 5 < 5	< 5 < 5	< 5		NA NA	NA	NA NA	NA NA	NA				
		Jul-11	<50	< 5	< 5	< 5	< 5	< 5	<5	< 5	< 5	< 150	< 5	< 5	< 5	< 5	<5	<5	<5	<5	<5	<5		NA	NA	NA	NA	NA
		Jul-12 May-14	<50 <50	< 5 < 5	< 5 < 5	< 5 NA	< 5 < 5	< 5 < 5	<5 <5	< 5 < 5	< 5 < 5	< 150 NA	< 5 < 5	< 5	< 5	< 5 < 5	<5 <5	<5 NA	<5 NA	<5 <5	<5 <5	<5 <5		NA NA	NA <10	NA	NA <25	NA <10
		Oct-14	<50	<5	<5	NA	<5	<5	<5	<5	<5	NA	<5	<5	<5	<5	<5	NA	NA	<5	<5	<5		NA	<10	NA	<25	<10
		Mar-15	NS 150	NS	NS	NS	NS	NS < 5	NS <5	NS	NS	NS < 150	NS	NS < 5	NS < 5	NS	NS	NS	NS < 5	NS <5	NS <5	NS <5		NS NA	NS NA	NS NA	NS NA	NS NA
		Aug-15 Jun-05	<50 <25	< 5 2.50	< 5 < 1	< 5 < 1	< 5 <1	< 0	<> <1	< 5 < 1	< 5 < 1	< 150 NA	< 5 <1	< 1	< 5	< 5 < 1	< 5 <1	< 5 <1	< 5 NA	<0	<0	<0		NA <5	<10	<10	<10	<10
		Mar-07		24.00	< 5	< 5	< 5	< 5	10	< 5	< 5	NA	NA	< 5	NA	< 5	NA	NA	NA	10	110			NA	10		NA	NA
		Nov-08 Mar-09	NS <50	NS < 5	NS <5	NS < 5	NS < 5	NS NA	NS <5	NS < 5	NS <5	NS < 5	NS <5	NS <5	NS NA	NS <5	NS <5	NS <5		NS NA	NS NA	NS NA	NS NA	NS NA				
		Jun-09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		NS	NS	NS	NS	NS
		Sep-09 Dec-09	NS <50	NS < 5	NS <5	NS < 5	NS < 5	NS <150	NS <5	NS < 5	NS NA	NS < 5	NS <5	NS <5	NS <5	NS <5	NS <5	NS <5		NS NA	NS NA	NS NA	NS NA	NS NA				
ET-MW-10	12/23/2002	Dec-10	<50	< 5	< 5	< 5	< 5	< 5	<5	< 5	< 5	<150	<5	< 5	<5	< 5	< 5	< 5	< 5	< 5	< 5	< 5		NA	NA	NA	NA	NA
		Jul-11	<50	< 5	< 5	< 5	< 5	< 5	<5	< 5	< 5	< 150	< 5	< 5	< 5	< 5	< 5	< 5	<5	<5	<5	<5		NA	NA	NA	NA	NA
		Jul-12 May-14	<50 NS	< 5 NS	<5 NS	< 5 NS	< 5 NS	< 150 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS	<5 NS	<5 NS	<5 NS	<5 NS		NA NS	NA NS	NA NS	NA NS	NA NS				
		Oct-14	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		NS	NS	NS	NS	NS
		Mar-15 Aug-15	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS		NS NS	NS NS	NS NS	NS NS	NS NS
		Dec-15	<50	<5	<5	<5	<5	<5	<5	<5	<5	NA	<5	<5	NA	<5	<5	<5	<5	<5	<5	<5		NA	NA	NA	NA	NA
		Jun-05 Mar-07	<25	46 < 5	29 < 5	3 < 5	98 < 10	260 65	25	47 < 5	30 < 5	NA NA	635 NA	53 < 5	1,010 NA	77 < 5	10 NA	<1 NA	NA NA	17	141	2,670		<100 NA	51	22	<10 NA	<10 NA
		Nov-08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		NS	NS	NS	NS	NS
		Mar-09	<50	< 5	< 5	< 5	< 10	< 10	<10	< 5	< 5	NA 150	<5	< 5	<10	< 5	<5	<5	NA	<5	<5	<5		<2	<10	<10	<1	<10
		Jun-09 Sep-09	<50 NS ^{DRY}	< 5 NS ^{DRY}	<5 NS ^{DRY}	< 5 NS ^{DRY}	< 5 NS ^{DRY}	<150 NS ^{DRY}	<5 NS ^{DRY}	< 5 NS ^{DRY}	NA NS ^{DRY}	< 5 NS ^{DRY}	>5 NS ^{DRY}	<5 NS ^{DRY}	<5 NS ^{DRY}	<5 NS ^{DRY}	<5 NS ^{DRY}	<10 NS ^{DRY}		NA NS ^{DRY}								
ET-MW-11	12/27/2002	Dec-09	NSDRY	NSDRY	NSDRY	NS	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY		NS	NSDRY	NSDRY	NSDRY	NSDRY
		Dec-10 Jul-11	<50 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS	5 NS	<5 NS	< 5 NS	< 5 NS	<150 NS	<5 NS	< 5 NS	6 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS		NA NS	NA NS	NA NS	NA NS	NA NS
		Jul-12	<50	< 5	< 5	< 5	< 5	< 5	<5	< 5	< 5	< 150	< 5	< 5	< 5	< 5	< 5	< 5	<5	<5	<5	<5		<2	<10	<10	<25	<10
		May-14	NS NS ^{DRY}	NS NS ^{DRY}	NS NS ^{DRY}	NS NS ^{DRY}	NS NS ^{DRY}	NS NS ^{DRY}	NS NS ^{DRY}	NS NS ^{DRY}	NS NS ^{DRY}	NS NS ^{DRY}	NS NS ^{DRY}	NS NS ^{DRY}	NS NS ^{DRY}	NS NS ^{DRY}	NS NS ^{DRY}		NS NS ^{DRY}									
		Oct-14 Mar-15	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		NS	NS	NS	NS	NS
		Aug-15	<50	< 5	5	< 5	< 5	8	<5	14	< 5	< 150	< 5	< 5	9	< 5	< 5	< 5	< 5	<5	<5	6		7	<10	<10	< 25	< 10

Table 4-1 Ground Water Quality Data (µg/L) Former I. Schneid Facility HSI Site 10753 Atlanta, Fulton County, Georgia

		inty, Georg													Compounds [Detected (µg/	/L)											
Well ID	Date Installed	Date Sampled	Acetone	Benzene	Chlorobenzene	cis-1,2-Dichloroethene	1,4-Dichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,1-Dichloroethane	1,1-Dichloroethene	1,4 Dioxane	Ethylbenzene	Isopropylbenzene	Naphthalene	1,1,1-Trichloroethane	Trichloroethene	Tetrachloroethene	Methyl tert -butyl ether	Methylene Chloride	Toluene	Xylenes	Vinyl Choride	2,4-D	Acenaphthene	Dibenzofuran	Pentachlorophenol	2,4-Dichlorophenol
		RRS (Type)	1	2	1	2	1	1	1	1	2	1	1	2	1	2	1	1	1	2	1	1	1	1	1		2	1
	Ap	plicable RRS	-	5.50	100	31	75	600	600	4,000	103	0	700	200	20	1,011	5	5	0	55	1,000	10,000	2	70	2,000	<u> </u>	1	20
		Jun-05 Mar-07	<25	< 1 < 5	< 1 < 5	< 1	<1 < 5	<1 < 5	<1	< 1	< 1	NA NA	<1 NA	< 1 < 5	<5 NA	< 1 < 5	<1 NA	<1 NA	<2.5 NA	<1	<1	<1		<5 NA	<10	<10	<10 NA	<10 NA
		Nov-08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		NS	NS	NS	NS	NS
		Mar-09	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY		NSDRY	NSDRY	NSDRY	NSDRY	NSDRY
		Jun-09 Sep-09	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS		NS NS	NS NS	NS NS	NS NS	NS NS
		Dec-09	<50	< 5	< 5	< 5	< 5	< 5	<5	< 5	< 5	<150	<5	< 5	NA	< 5	< 5	< 5	< 5	< 5	< 5	< 5		NA	NA	NA	NA	NA
ET-MW-12	12/23/2002	Dec-10	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NS ^{DRY}	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY		NSDRY	NSDRY	NSDRY	NSDRY	NSDRY
		Jul-11 Jul-12	<50 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS	<5 NS	< 5 NS	< 5 NS	< 150 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS		NA NS	NA NS	NA NS	NA NS	NA NS
		May-14	<50	< 5	< 5	NA	< 5	< 5	<5	< 5	< 5	NA	< 5	< 5	< 5	< 5	< 5	NA	NA	<5	<5	<5		NA	<10	NA	<25	<10
		Oct-14	NS	NS	NS	NS	NS	NS	NS NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		NS	NS	NS	NS	NS
		Mar-15 Aug-15	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS		NS NS	NS NS	NS NS	NS NS	NS NS
		Dec-15	<50	<5	<5	<5	<5	<5	<5	<5	<5	NA	<5	<5	NA	<5	<5	<5	<5	<5	<5	<5		NA	NA	NA	NA	NA
		Jun-05	<25	< 1	< 1	< 1	<1	<1	<1	< 1	< 1	NA	<1	< 1	<5	< 1	<1	<1	NA	<2.5	<1	<1		<5	<10	<10	<10	<10
		Mar-07 Nov-08	NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS	NS	< 5 NS	< 5 NS	NA NS	NA NS	< 5 NS	NA NS	< 5 NS	NA NS	NA NS	NA NS	NS	NS	NS		NA NS	NS	NS	NA NS	NA NS
		Mar-09	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NS ^{DRY}	NSDRY	NSDRY	NSDRY	NS ^{DRY}	NS ^{DRY}	NSDRY	NS ^{DRY}	NS ^{DRY}		NSDRY	NSDRY	NSDRY	NSDRY	NSDRY
		Jun-09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		NS	NS	NS	NS	NS
		Sep-09 Dec-09	NS <50	NS < 5	NS < 5	NS < 5	NS < 5	NS < 5	NS <5	NS < 5	NS < 5	NS <150	NS <5	NS < 5	NS NA	NS < 5	NS <5	NS <5	NS <5	NS <5	NS <5	NS <5		NS NA	NS NA	NS NA	NS NA	NS NA
ET-MW-13	12/27/2002	Dec-10	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY		NS ^{DRY}	NSDRY	NSDRY	NSDRY	NS ^{DRY}
		Jul-11	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		NS	NS	NS	NS	NS
		Jul-12 May-14	NS <50	NS < 5	NS < 5	NS NA	NS < 5	NS < 5	NS <5	NS < 5	NS < 5	NS NA	NS < 5	NS < 5	NS < 5	NS < 5	NS < 5	NS NA	NS NA	NS <5	NS <5	NS <5		NS NA	NS <10	NS NA	NS <25	NS <10
		Oct-14	NSDRY	NSDRY	NSDRY	NSDRY	NS ^{DRY}	NSDRY	NSDRY	NSDRY	NS ^{DRY}	NS ^{DRY}	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NS ^{DRY}	NS ^{DRY}	NSDRY	NSDRY	NS ^{DRY}		NS ^{DRY}	NSDRY	NSDRY	NSDRY	NS ^{DRY}
		Mar-15	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		NS	NS	NS	NS	NS
		Aug-15 Jun-05	<50 <25	< 5 < 1	< 5 163	< 5	< 5	< 5 11	<5	< 5	< 5	< 150 NA	< 5 2	< 5	< 5 17	< 5 < 1	< 5 <1	< 5	< 5 NA	<5 <2.5	<5	<5 7		NA	NA NA	NA NA	NA NA	NA NA
		Mar-07	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		NS	NS	NS	NS	NS
		Nov-08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		NS	NS	NS	NS	NS
		Mar-09 Jun-09	<50 NS	5 NS	1,300 NS	< 5 NS	12 NS	29 NS	<5 NS	< 5 NS	< 5 NS	NA NS	<5 NS	< 5 NS	<5 NS	< 5 NS	< 5 NS	< 5 NS	NA NS	< 5 NS	<5 NS	<5 NS		NA NS	NA NS	NA NS	NA NS	NA NS
		Sep-09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		NS	NS	NS	NS	NS
MW-15	6/7/2005	Dec-09	<50	< 5	140	< 5	< 5	9	<5	< 5	< 5	<150	<5	< 5	NA	< 5	< 5	< 5	< 5	< 5	< 5	< 5		NA	NA	NA	NA	NA
		Dec-10 Jul-11	<50 <50	< 5 < 5	32 34	< 5 < 5	< 5 < 5	< 5	<5	< 5	< 5	<150 < 150	<5 < 5	< 5 < 5	12 < 5	< 5 < 5	<5 < 5	<5 < 5	<5 <5	<5 <5	<5 <5	<5 <5		NA	NA NA	NA NA	NA NA	NA NA
		Jul-12	<50	< 5	13	< 5	< 5	< 5	<5	23	< 5	< 150	< 5	< 5	< 5	< 5	< 5	< 5	<5	<5	<5	<5		NA	NA	NA	NA	NA
		May-14	<50	< 5	22	NA	< 5	11	<5	< 5	< 5	NA	< 5	<5	< 5	< 5	< 5	NA	NA	<5	<5	<5		NA	<10	NA	<25	<10
		Oct-14 Mar-15	<50 <50	<5 < 5	<5 < 5	NA	<5 < 5	<5 < 5	<0.005 <5	<5 < 5	<5 < 5	NA NA	<5 < 5	<5 < 5	<5 < 5	<5 < 5	<5 < 5	NA NA	NA NA	<0.005 <5	<0.005 <5	<0.005 <5		NA	<10 <10	NA NA	<25 < 25	<10 < 10
		Aug-15	<50	< 5	18	< 5	< 5	18	<5	< 5	< 5	< 150	< 5	< 5	< 5	< 5	< 5	< 5	< 5	<5	<5	<5		NA	NA	NA	× 25 NA	NA
MW-17	3/13/2015	Mar-15	150	5	19	NA	< 5	66	<5	67	11	NA	36	13	130	25	< 5	NA	NA	6	82	290		NA	<10	NA	< 25	< 10
		Aug-15	62	5.6	32	< 5	5.1	150	<5	54	14	< 150	53	16	200	47	< 5	< 5	< 5	<5	94	390		NA	NA 10	NA	NA 25	NA 10
	0/10/5515	Mar-15 Aug-15	<50 <50	< 5 < 5	9.6 12	NA < 5	< 5	< 5 15	<5 <5	< 5	< 5 <5	NA < 150	< 5 < 5	< 5 < 5	< 5 5.2	< 5 < 5	< 5 < 5	NA < 5	NA < 5	<5 <5	<5 <5	<5 <5	<u> </u>	NA 50	<10 <10	NA <10	< 25 < 25	< 10 < 10
MW-18	3/13/2015	Aug-15 DUP- 01		< 5	13	< 5	< 5	16	<5	< 5	< 5	< 150	< 5	< 5	5.3	< 5	< 5	< 5	< 5	<5	<5	<5		57	<10	<10	< 25	< 10
\rightarrow		Mar-15	<50	< 5	84	NA	19	140	<5	21	< 5	NA	59	7.7	180	< 5	< 5	NA	NA	<5	<5	330		NA	13	NA	26	< 10
MW-19	3/13/2015	Mar-15 DUP- 01	<50	<5	85	NA	19	140	<5	21	<5	NA	60	8.1	180	<5	<5	NA	NA	<5	<5	340		NA	15	NA	28	<10
		Aug-15	<50	< 5	200	6.1	71	580	12	21	< 5	< 150	200	25	900	< 5	< 5	< 5	< 5	<5	23	1300		19	34	12	40	< 10
		Nov-16	<50	<50	89	<5	41	450	7.9	12	<5	NA	90	13	250	<5	<5	<5	<5	<5	14	480	<2	NA	21	<10	<mark>46</mark>	<10
MW-20		Nov-16	170	23	11	6.7	70	500	16	160	23	NA	160	19	330	40	<5	<5	<5	120	30	810	3.9	NA	38	13	160	1,100

NA = Not Analyzed. NS = Not Sampled.

Table 4-2Free Phase Product Monitoring SummaryFormer I. Schneid FacilityHSI Site No. 10753Atlanta, Fulton County, Georgia

Well	Data	Screened Interval Depth (feet	Depth to Free Product (feet BTOC)	Depth to Groundwater	Free Product Thickness
Well MW-19	Date	BTOC)	NP	(feet BTOC) 14.19	(feet)
10100-19	3/20/2015	12-22	NP	14.19	0
	8/24/2015	12-22 12-22			
	12/7/2015		13.51	13.52	0.01
	12/18/2015	12-22	13.74	13.77	0.03
	12/23/2015	12-22	13.42	13.43	0.01
	12/28/2015	12-22	13.20	13.21	0.01
	1/8/2016	12-22	13.05	13.06	0.01
	2/26/2016	12-22	13.01	13.14	0.13
	3/16/2016	12-22	NP	12.73	0
	6/7/2016	12-22	12.58	12.60	0.02
	6/24/2016	12-22	NP	12.77	0
	8/31/2016	12-22	13.63	13.72	0.09
	9/16/2016	12-22	14.17	14.36	0.19
	10/3/2016	12-22	14.03	14.18	0.15
	10/19/2016	12-22	14.33	14.55	0.22
	11/17/2016	12-22	15.33	15.35	0.02
	12/1/2016	12-22	15.235	15.24	0.005
	12/16/2016	12-22	15.035	15.04	0.005
	1/12/2017	12-22	14.72	14.79	0.07
MW-20	12/7/2015	9-24	NP	12.94	0
	12/18/2015	9-24	NP	12.98	0
	12/23/2015	9-24	12.49	12.50	0.01
	12/28/2015	9-24	12.54	12.55	0.01
	1/8/2016	9-24	NP	12.38	0
	2/26/2016	9-24	trace	12.01	trace
	3/16/2016	9-24	NP	12.02	0
	6/7/2016	9-24	NP	12.75	0
	6/24/2016	9-24	NP	13.23	0
	8/31/2016	9-24	14.23	14.25	0.02
	9/16/2016	9-24	NP	14.68	0
	10/3/2016	9-24	NP	15.52	0
	10/19/2016	9-24	14.92	15.03	0.11
	11/17/2016	9-24	15.47	15.49	0.02
	12/1/2016	9-24	NP	14.96	0.00
	12/16/2016	9-24	14.83	14.83	0.002
	1/12/2017	9-24	NP	14.34	0

Notes:

1. BTOC = Below Top of Casing.

2. NP = Not Present.

Table 5-1 Analytical Results for Area B Excavation Confirmation Soil Samples Former I. Schneid Facility HSI Site 10753 Atlanta, Fulton County, Georgia

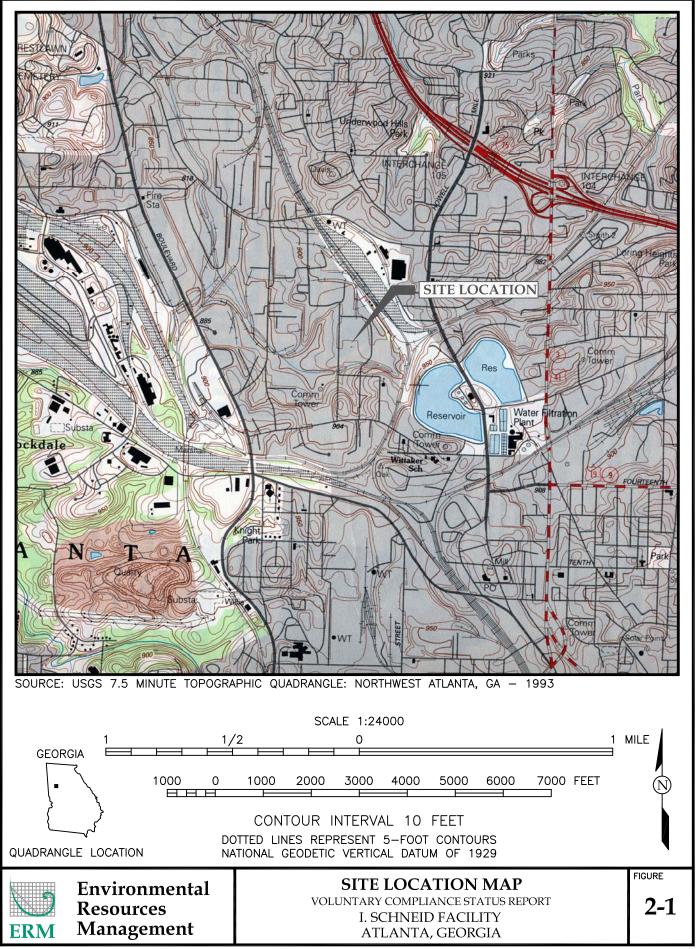
			WEST SID	DEWALL			SOUTH S	IDEWALL			EAST SIDEWALL		N	ORTH SIDEWAL	L	BASE
Chemical Name	Approved RRS (ug/kg)	West-1.5	West-OE1-1.5	West-6	West-10	South-1.5	South-6	South-OE1-6	South-10	East-1.5	East-6	East-10	North-1.5	North-6	North-10	Base-12
Acenaphthene	3,692,266	17,000	< 400	< 420	650	< 2000	13,000	< 410	< 400	< 4000	< 440	< 390	< 390	< 400	< 420	< 350
Bis(2-ethylhexyl)phthalate	800,439	< 3800	< 400	< 420	< 430	< 2000	920	< 410	< 400	4,200	< 440	< 390	< 390	< 400	< 420	< 350
Diethyl phthalate	NC	< 3800	< 400	< 420	< 430	< 2000	3,800	< 410	< 400	< 4000	< 440	< 390	< 390	< 400	< 420	< 350
Di-n-butyl phthalate	NC	< 3800	< 400	< 420	< 430	< 2000	1,500	< 410	< 400	< 4000	< 440	< 390	< 390	< 400	< 420	< 350
Fluorene	2,804,591	5,900	< 400	< 420	< 430	< 2000	650	< 410	< 400	< 4000	< 440	< 390	< 390	< 400	< 420	< 350
Naphthalene - from 8270 Method	63,388	18,000	< 400	< 420	680	3,500	15,000	< 410	1,700	< 4000	< 440	< 390	< 390	< 400	< 420	7,000
Phenanthrene	2,360,142	8,600	< 400	< 420	< 430	< 2000	950	< 410	< 400	< 4000	< 440	< 390	< 390	< 400	< 420	< 350
1,1,1-Trichloroethane	49,790	< 160	< 3.8	< 3.4	4	< 190	< 180	< 3.9	< 120	11	< 3.2	4.8	< 3	< 3.5	< 3.2	< 3.8
1,1-Dichloroethane	312,821	< 160	< 3.8	< 3.4	9	< 190	< 180	4.4	< 120	12	8.9	13	< 3	< 3.5	16	9
1,2,4-Trichlorobenzene	50,127	< 160	< 3.8	< 3.4	< 3.1	< 190	6,100	6.2	< 120	31	4.5	< 3	< 3	< 3.5	< 3.2	< 3.8
1,2-Dibromo-3-chloropropane	NC	< 160	< 3.8	< 3.4	< 3.1	< 190	< 180	< 3.9	180	< 4.9	< 3.2	< 3	< 3	< 3.5	< 3.2	< 3.8
1,2-Dichlorobenzene	150,564	200,000	68	14	100	17,000	140,000	510	6,600	110	390	63	8.8	100	23	7,600
1,3-Dichlorobenzene	82,931	4,300	< 3.8	< 3.4	6	1,200	8,100	31	150	47	17	< 3	< 3	4	< 3.2	12
1,4-Dichlorobenzene	18,823	23,000	8.4	< 3.4	22	3,300	24,000	94	670	15	71	8.6	< 3	16	3.9	51
Acetone	297,501	<3200	< 76	< 68	130	< 3800	< 3600	210	< 2400	< 98	580	< 60	< 61	< 70	< 64	< 76
Bromomethane	NC	< 160	< 3.8	< 3.4	7	< 190	< 180	< 3.9	< 120	< 4.9	< 3.2	< 3	< 3	< 3.5	< 3.2	< 3.8
Carbon Disulfide	182,466	< 320	< 7.6	< 6.8	< 6.2	< 380	< 360	< 7.8	< 240	27	< 6.4	< 6	< 6.1	< 7	< 6.4	< 7.6
Chlorobenzene	10,000	600	< 3.8	< 3.4	4	330	860	28	< 120	< 4.9	16	7.4	< 3	4.9	< 3.2	12
Chloromethane	NC	< 320	< 7.6	< 6.8	7	< 380	< 360	< 7.8	< 240	< 9.8	< 6.4	< 6	< 6.1	< 7	< 6.4	< 7.6
Ethylbenzene	104,844	1,000	< 3.8	< 3.4	3	300	1,400	29	1,100	< 4.9	11	6.5	< 3	< 3.5	< 3.2	110
Isopropylbenzene	21,880	790	< 3.8	< 3.4	< 3.1	< 190	860	8	140	< 4.9	3.3	< 3	< 3	< 3.5	< 3.2	11
Xylenes, total	229,674	5,800	< 7.6	< 6.8	20	1,860	12,100	215	5,600	22	93	78	< 6.1	< 7	3.2	4,400
Tetrachloroethene	500	< 160	< 3.8	< 3.4	< 3.1	< 190	< 180	< 3.9	< 120	15	< 3.2	< 3	< 3	< 3.5	< 3.2	< 3.8
Toluene	100,000	< 160	< 3.8	< 3.4	< 3.1	< 190	< 180	17	< 120	< 4.9	3.8	< 3	< 3	< 3.5	< 3.2	13
Naphthalene - from 8260 Method	63,388	24,000	5.3	< 3.4	20	5,500	33,000	120	4,500	< 4.9	91	7	< 3	20	7.2	6,700
COMMENTS ON OVEREXCAVATION		REMOVED BY EXCAVATION ON 11/22/10	RESAMPLE RESULTS FOLLOWING 11/22/10 EXCAVATION				REMOVED BY EXCAVATION ON 11/22/10	RESAMPLE RESULTS FOLLOWING 11/22/10 EXCAVATION					-			

NC = Not Calculated
Value Exceeds Approved RRS

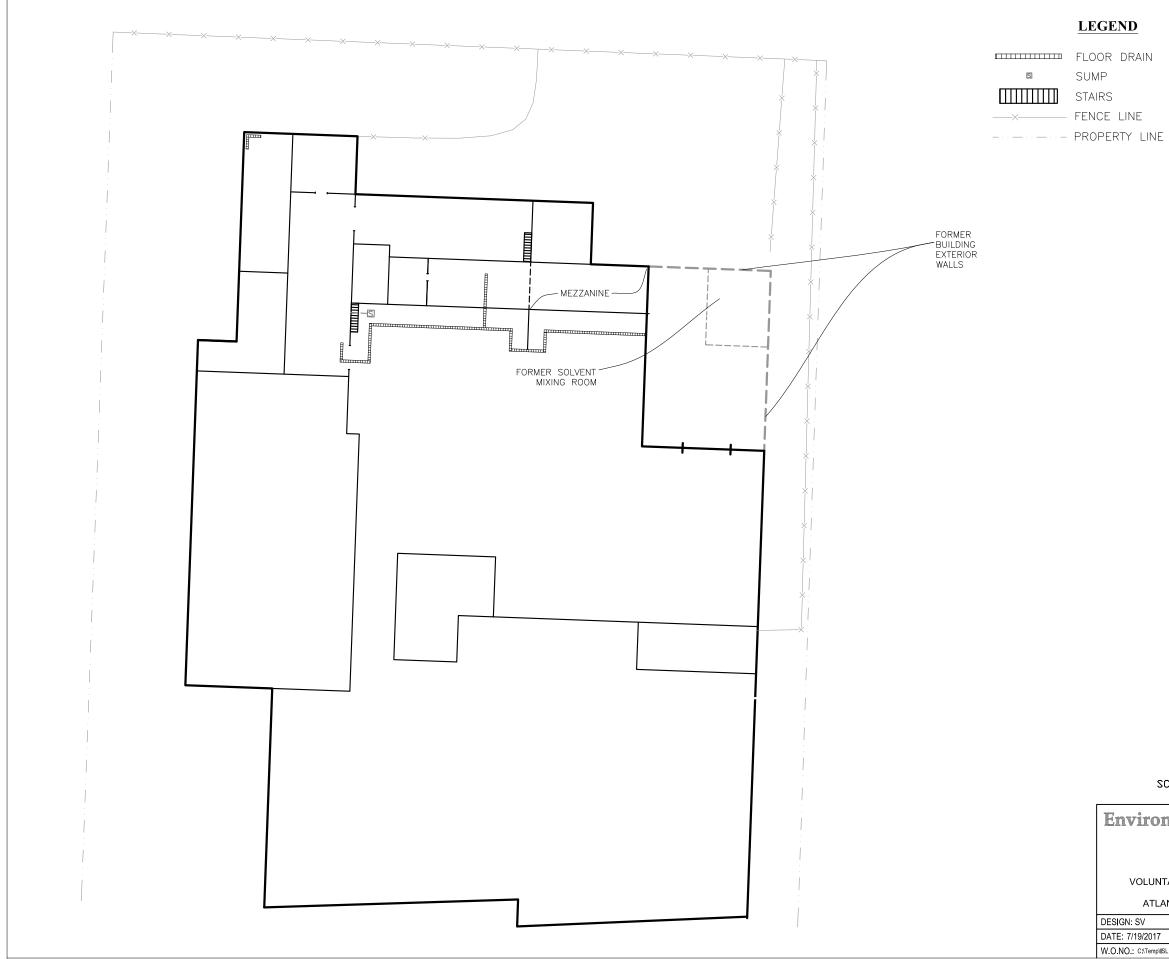
Table 5-2 Analytical Results for Areas O and S Confirmation Soil Samples Former I. Schneid Facility HSI Site No. 10753 Atlanta, Fulton County, Georgia

						Vo	latile Organio (Method		S					Se	emivolatile Orga (Methoo		ls		Herbicides (Method 8151)	Metals (Method 6010)
Sample Location	Sample Depth (ft bgs)	Date	1,1-Dichloroethene	Methylene chloride	1,1,1-Trichloroethane	Benzene	Trichloroethene	Ethylbenzene	1,1,2,2- Tetrachloroethane	isopropylbenzene	Naphthalene	Xylenes (total)	1,2-Dichlorobenzene	1,4-Dichlorobenzene	2,4-Dichlorophenol	2-Methylphenol	3,4-Methylphenol	Pentachlorophenol	2,4 D	Selenium
Approved RRS	(ug/kg)		3,041	500	49,790	500	500	104,844	371	21,880	63,388	229,674	150,564	18,823	2,000	3,800		3,300	7,000	2,000
AREA S - SIDEWALL SAMPLES				II	I	I	•	I	I		I					I				
Vest Wall 6' North 14'	5	07/02/13	< 4.2	< 17	10	< 4.2	< 4.2	22	< 4.2	6.0	2,300	1,400	9,300	1,600	< 380	< 380	< 380	< 2000		
Vest Sidewall 6' South 7'	6	07/09/13	< 160	< 660	< 160	< 160	< 160	280	< 160	< 160	6,600	2,600	< 390	< 390	< 390	< 390	< 390	< 2000	6,800	< 2.27
Vest 6' South 12'	6	07/16/13	< 4.8	< 19	< 4.8	< 4.8	< 4.8	< 4.8	< 4.8	< 4.8	12	< 4.8	< 420	< 420	< 420	< 420	< 420	< 2200		
Vest 12' South 12'	12	07/16/13	< 4.3	< 17	< 4.3	19	< 4.3	19	< 4.3	14	18	13	< 430	< 430	< 430	< 430	< 430	< 2200		
Vest Sidewall 3' South 27'	3	07/16/13	< 4.1	< 16	10	< 4.1	< 4.1	5.1	< 4.1	< 4.1	1,400	40	< 380	< 380	< 380	< 380	< 380	< 2000		
SW Corner 10'	10	07/02/13	< 4.8	< 19	< 4.8	< 4.8	< 4.8	< 4.8	< 4.8	< 4.8	330	< 4.8	< 390	< 390	< 390	< 390	< 390	< 2000		
-6', 5'	5	07/10/13											< 410	<410	< 410	< 410	< 410	< 2100		
2-6', 5'	5	07/10/13											< 410	< 410	< 410	< 410	< 410	< 2100		
East Sidewall 9' South 12'	9	07/16/13	< 4.7	< 19	< 4.7	< 4.7	< 4.7	6.3	< 4.7	8.7	430	22	< 440	< 440	< 440	< 440	< 440	< 2200		
North Sidewall 9' West 17'	9	07/16/13	< 4.3	< 17	< 4.3	< 4.3	< 4.3	< 4.3	< 4.3	< 4.3	6.5	< 4.3	< 420	< 420	< 420	< 420	< 420	< 2100		
j' Inside West 6'	6	07/10/13	< 3.4	< 14	< 3.4	< 3.4	< 3.4	3.5	< 3.4	< 3.4	540	1,100	< 400	< 400	< 400	< 400	< 400	< 2000		< 2.0
AREA S - BOTTOM SAMPLES	•											-			•	L. L.			•	•
NE	5	07/18/13	< 4.5	< 18	30	< 4.5	< 4.5	230	< 4.5	1,000	1,500	1,900	< 480	< 480	< 480	< 480	< 480	< 2500		
SW	5	07/18/13	35	< 15	300	< 3.7	< 3.7	3,100	< 3.7	970	37,000	22,000	1,600	< 460	< 460	< 460	< 460	< 2400		
AREA O - SIDEWALL SAMPLES		•					•													
East Wall 7' 30'N	7	06/27/13	< 210	< 830	< 210	< 210	< 210	< 210	< 210	< 210	1,100	230	< 400	<400	< 400	< 400	< 400	< 2100		
East Wall Center 2.5'	2.5	06/27/13	5.4	< 18	< 4.4	< 4.4	< 4.4	12	< 4.4	3.4	86	29	210	< 400	< 400	< 400	< 400	< 2100		
NE Sidewall 5' South 15'	5	06/28/13	< 240	< 950	< 240	< 240	< 240	< 240	< 240	310	3,300	750	< 4100	< 4100	< 4100	< 4100	< 4100	< 21000		
South Sidewall 12' West 0'	12	07/02/13	< 4.2	< 17	< 4.2	< 4.2	< 4.2	28	< 4.2	< 4.2	40	17	< 410	< 410	< 410	< 410	< 410	< 2100		
North Sidewall 5' West 3'	5	07/16/13	< 250	< 1000	< 250	< 250	< 250	< 250	< 250	400	< 250	< 250	< 470	< 470	< 470	< 470	< 470	< 2400		
IA-SE-2	5	07/24/13	< 3.1	< 13	< 3.1	< 3.1	< 3.1	< 3.1	< 3.1	< 3.1	5.6	< 3.1	< 420	<420	< 420	< 420	< 420	<2200		
SS-03-4ft	4	12/11/13	15	< 15	< 3.6	< 3.6	< 3.6	61	< 3.6	5.2	1,000	220	810	< 410	< 410	< 410	< 410	< 2,100		
SS-04-4ft	4	12/11/13	< 3.4	< 14	< 3.4	< 3.4	< 3.4	48	< 3.4	< 3.4	1,600	190	580	< 410	< 410	< 410	< 410	< 2,100		
SS-06-4ft	4	12/11/13	< 4.1	< 17	< 4.1	< 4.1	< 4.1	120	< 4.1	59	1,300	380	4,900	660	< 430	< 430	< 430	< 2,200		
SS-07-4ft	4	12/11/13	< 3.3	< 13	< 3.3	< 3.3	< 3.3	16	< 3.3	7.5	2,900	43	< 400	< 400	< 400	< 400	< 400	< 2,100		
IA-SE-10-4.5ft	4.5	04/16/14	< 6.2	< 25	< 6.2	< 6.2	< 6.2	< 6.2	< 6.2	< 6.2	8.8	< 6.2	< 420	< 420	< 420	< 420	< 420	< 2,200		
AREA O - BOTTOM SAMPLES		· ·																		-
Southeast Corner Bottom 11'	11	06/27/13	< 230	< 940	< 230	< 230	< 230	540	< 230	61	6,300	740	1,000	< 460	< 460	< 460	< 460	< 2400		
Sottom 9' South 20' Pipe	9	06/28/13	< 6	< 24	65	< 6	17	120	< 6	110	3,300	2,700	1,100	< 450	< 450	< 450	< 450	< 2300		
	7	12/11/13	< 3.2	< 13	< 3.2	< 3.2	< 3.2	61	< 3.2	9.5	5,400	860	< 410	< 410	< 410	< 410	< 410	< 2,100		
IA-SE-5	5	08/01/13	< 4.0	< 16	7.1	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	2,400	31	< 460	< 460	< 460	< 460	< 460	< 2,400		
HA-N-11-13ft	13	04/16/14	< 4.4	< 18	< 4.4	< 4.4	< 4.4	< 4.4	< 4.4	< 4.4	< 4.4	< 4.4	< 470	< 470	< 470	< 470	< 470	< 2,400		
LOOR DRAIN	•	· ·		· · ·							I								-	-
2'	2	07/10/13	< 3.4	< 14	3.6	< 3.4	< 3.4	7.4	< 3.4	5.3	4,800	68	6,400	680	< 400	< 400	< 400	< 2100		< 2.0
3'	8	07/10/13	< 4.1	< 16	< 4.1	< 4.1	< 4.1	< 4.1	< 4.1	< 4.1	< 4.1	< 4.1	< 400	< 400	<400	< 400	< 400	< 2000		< 2.0

NR = Not Regulated by HSRA


Bold values indicate compound detected above the Reporting Limit

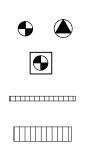
Bold and italic values indicate Reporting Limit above the RRS


Bold and higlighted values indicate compound detected above the RRS

Figures

July 27, 2017 Project No. 0121021 Former I. Schneid Facility

c:\Temp\ISL FIGURES\121021 ISL\2017\07 2017\121021Site0.dwg



Environmental Resources Management FIGURE 2-2 SITE PLAN VOLUNTARY COMPLIANCE STATUS REPORT I. SCHNEID FACILITY ATLANTA, FULTON COUNTY, GEORGIA EKM

ESIGN: SV	DRAWN: SV	CHKD.: BF	
ATE: 7/19/2017	SCALE: AS SHOWN	REV.: 0	
V.O.NO.: C:\Temp\ISL FIGUF	RES\121021 ISL\2017\07 2017\12102	1Site1.dwg	

LEGEND

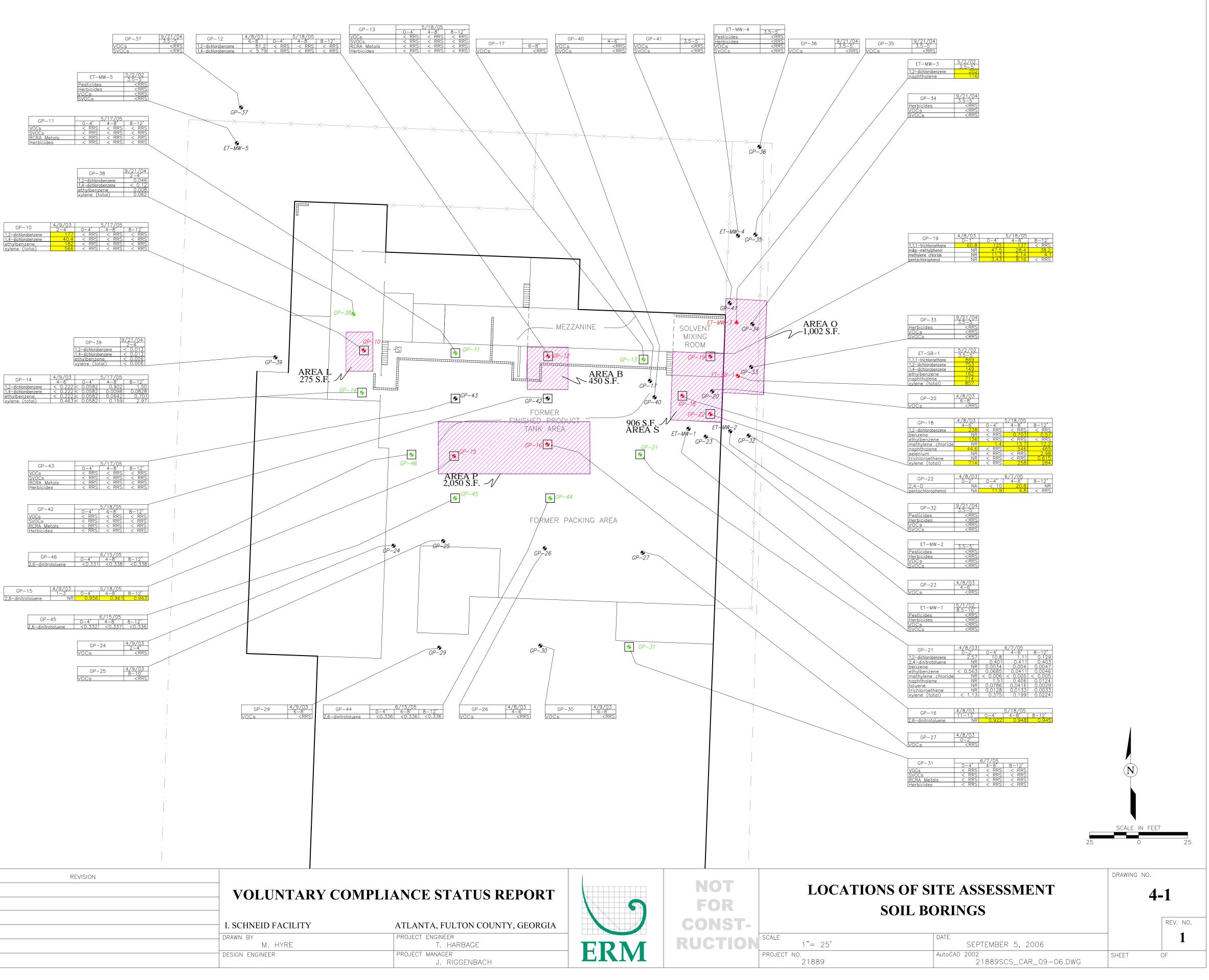
S

SOIL SAMPLE LOCATION (PRE-CAP) 2005 SOIL DELINEATION SAMPLES (PRE-ISCO) FLOOR DRAIN STAIRS SUMP FENCE LINE PROPERTY LINE SOIL REMEDIATION AREAS

RED SAMPLE POINT EXCEEDS RRS

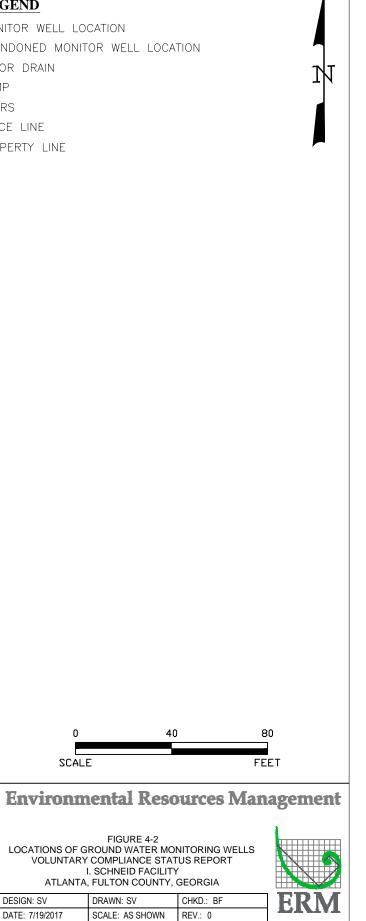
GREEN SAMPLE POINT BELOW RRS

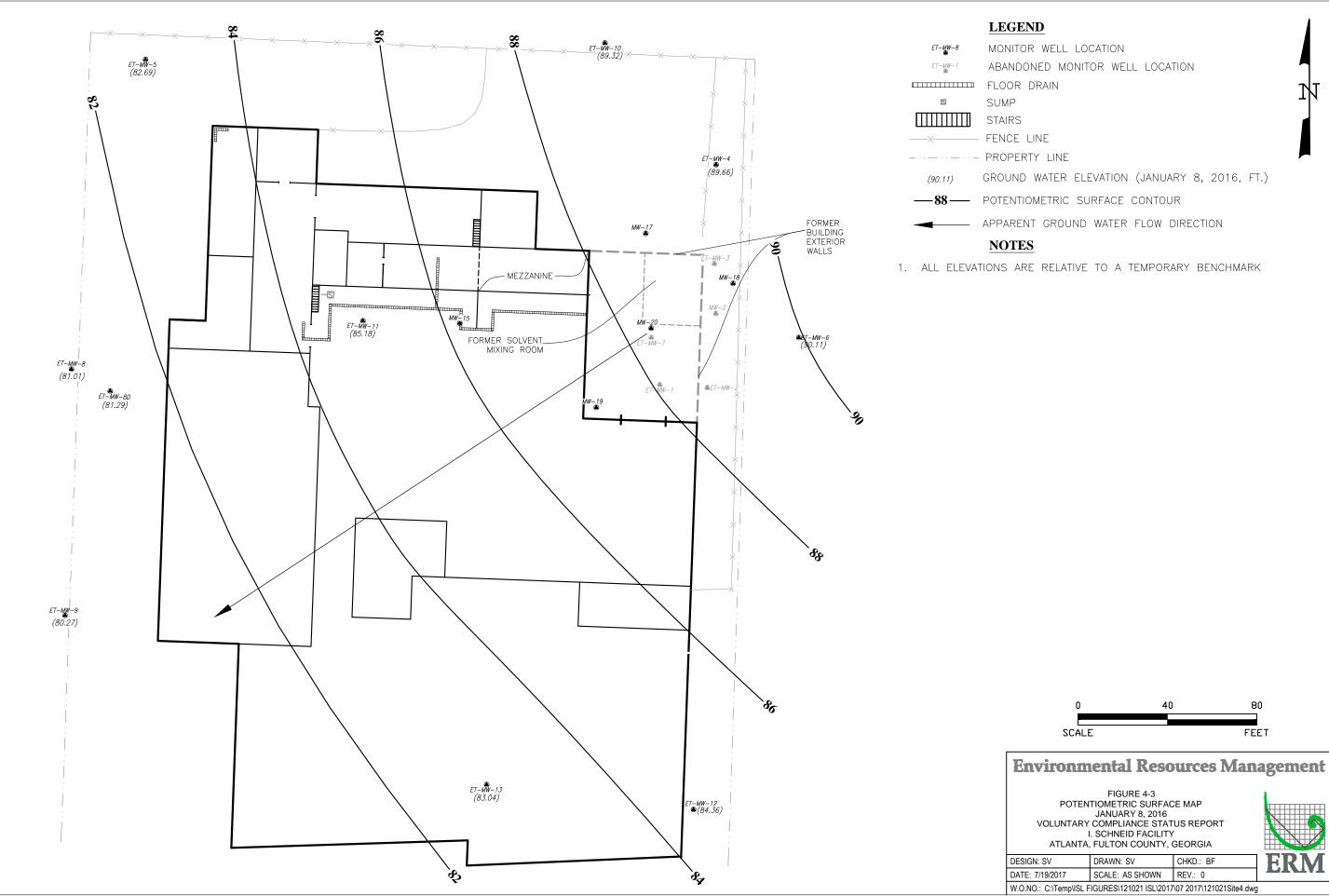
HIGHLIGHTED DATA EXCEEDS RRS

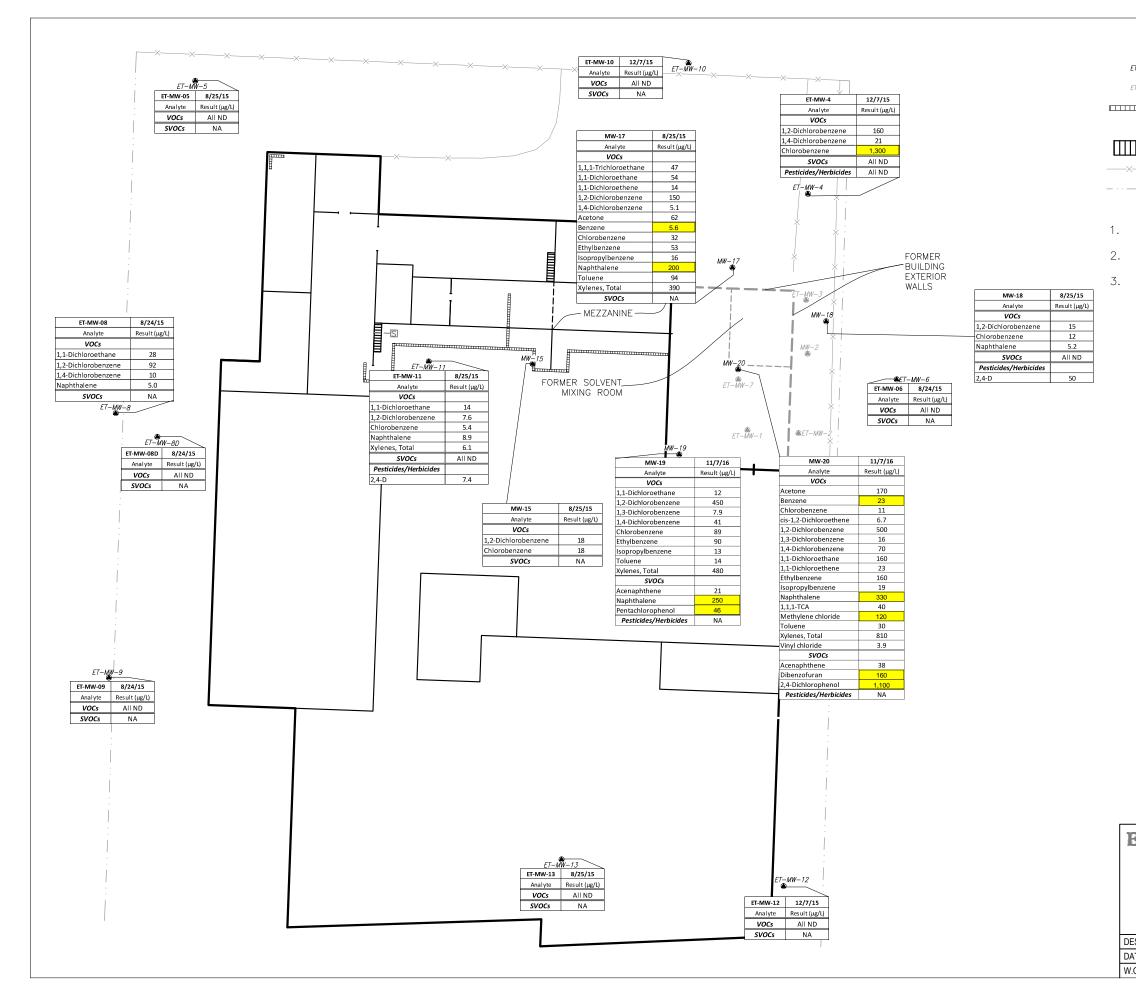

NOTES:

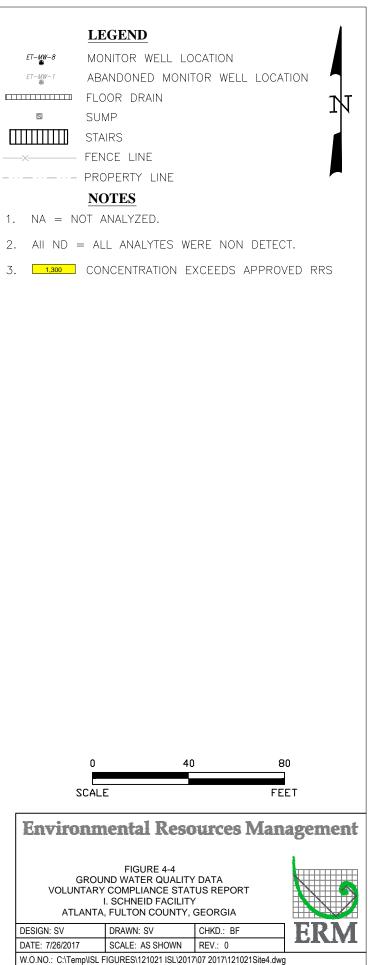
- ALL CONCENTRATIONS IN mg/Kg
- NR = NOT REPORTED
- NS = NOT SAMPLED
- NA = NOT ANALYZED

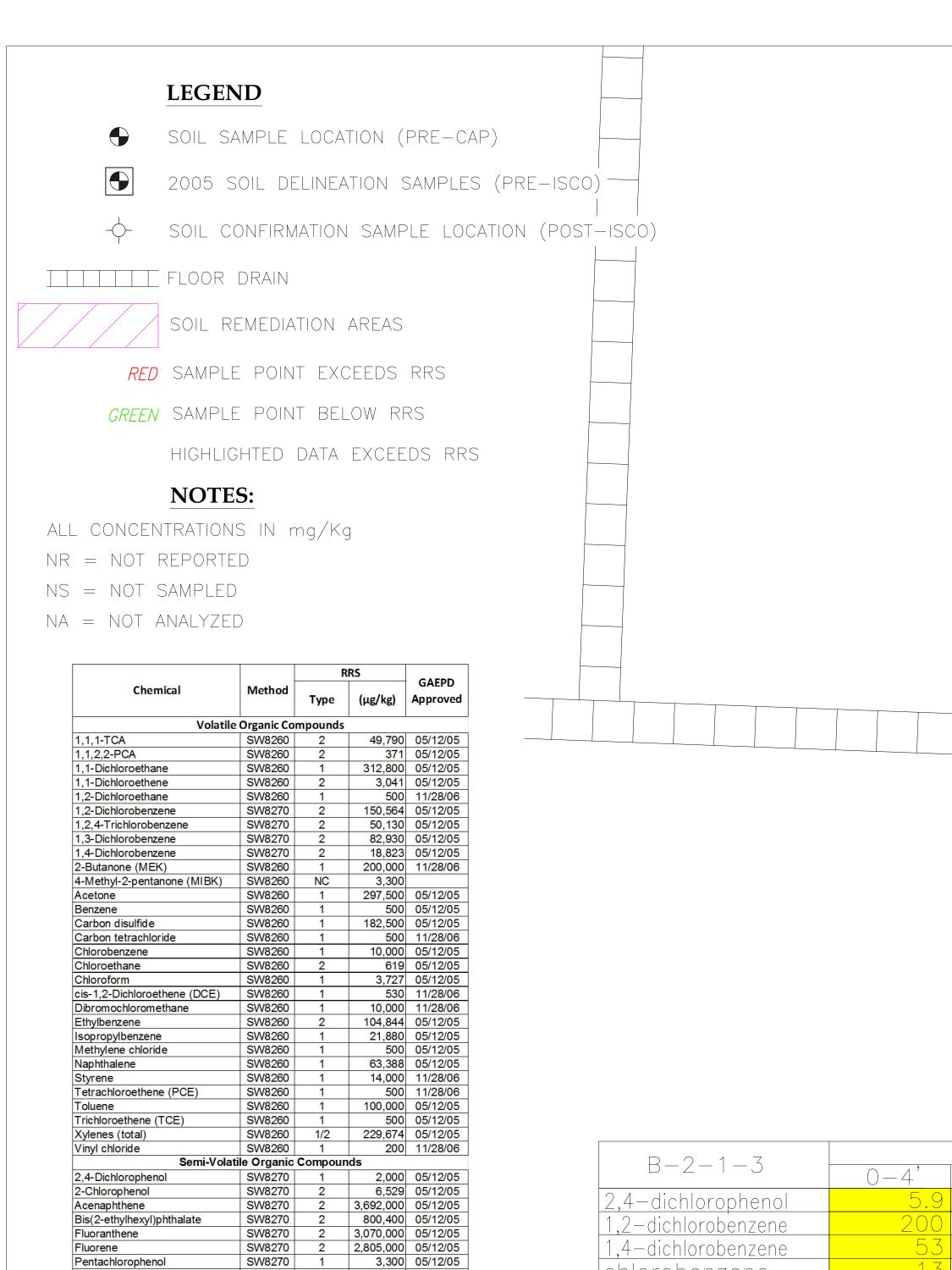
		R	RS	C 4 5 5 5
Chemical	Method	Туре	(µg/kg)	GAEPD Approved
Volatile	Organic Co	mpounds		
1,1,1-TCA	SW8260	2	49,790	05/12/05
1,1,2,2-PCA	SW8260	2	371	05/12/05
1,1-Dichloroethane	SW8260	1	312,800	05/12/05
1,1-Dichloroethene	SW8260	2	3,041	05/12/05
1,2-Dichloroethane	SW8260	1	500	11/28/06
1,2-Dichlorobenzene	SW8270	2	150,564	05/12/05
1,2,4-Trichlorobenzene	SW8270	2	50,130	05/12/05
1,3-Dichlorobenzene	SW8270	2	82,930	05/12/05
1,4-Dichlorobenzene	SW8270	2	18,823	05/12/05
2-Butanone (MEK)	SW8260	1	200,000	11/28/06
4-Methyl-2-pentanone (MIBK)	SW8260	NC	3,300	
Acetone	SW8260	1	297,500	05/12/05
Benzene	SW8260	1	500	05/12/05
Carbon disulfide	SW8260	1	182,500	05/12/05
Carbon tetrachloride	SW8260	1	500	11/28/06
Chlorobenzene	SW8260	1	10,000	05/12/05
Chloroethane	SW8260	2	619	05/12/05
Chloroform	SW8260	1	3,727	05/12/05
cis-1,2-Dichloroethene (DCE)	SW8260	1	530	11/28/06
Dibromochloromethane	SW8260	1	10,000	11/28/06
Ethylbenzene	SW8260	2	104,844	05/12/05
Isopropylbenzene	SW8260	1	21,880	05/12/05
Methylene chloride	SW8260	1	500	05/12/05
Naphthalene	SW8260	1	63,388	05/12/05
Styrene	SW8260	1	14,000	11/28/06
Tetrachloroethene (PCE)	SW8260	1	500	11/28/06
Toluene	SW8260	1	100,000	05/12/05
Trichloroethene (TCE)	SW8260	1	500	05/12/05
	SW8260	1/2	229,674	05/12/05
Xylenes (total)			,	
Vinyl chloride Semi-Volati	SW8260		200 de	11/28/06
2,4-Dichlorophenol	SW8270	1	2,000	05/12/05
	SW8270	2	6,529	05/12/05
2-Chlorophenol		2		
Acenaphthene	SW8270		3,692,000	05/12/05
Bis(2-ethylhexyl)phthalate	SW8270	2	800,400	05/12/05
Fluoranthene	SW8270		3,070,000	05/12/05
Fluorene	SW8270	2	2,805,000	05/12/05
Pentachlorophenol	SW8270	1	3,300	05/12/05
Phenanthrene	SW8270	2	3,042,000	05/12/05
2,4-Dimethylphenol	SW8270	1	70,000	11/28/06
2,6-Dinitrotoluene	SW8270	1	760	11/28/06
2-Methylphenol	SW8270	NC*	3,800	
4-Methylphenol	SW8270	NC	3,800	
N-Nitrosodi-n-propylamine	SW8270	1	1,700	11/28/06
Phenol	SW8270	1	400,000	11/28/06
m&p-Methylphenol	SW8270		0	
	Metals			
Arsenic	SW6010	1	20,000	11/28/06
Barium	SW6010	1	1,000,000	11/28/06
Cadmium	SW6010	1	2,000	11/28/06
Chromium	SW6010	1	100,000	11/28/06
Lead	SW6010	1	75,000	11/28/06
Mercury	SW6010	1	500	11/28/06
Selenium	SW6010	1	2,000	11/28/06
	inated Her	bicides		
2,4,5-TP (Silvex)	SW8151	1	10,000	05/12/05
Chlordane	SW8151	2	25,490	05/12/05
2,4-D	SW8151	1	7,000	05/12/05
	inated Pes		.,	
4,4-DDE	SW8081	NC	660	
4,4-DDT	SW8081	NC	660	
Heptachlor Epoxide	SW8081	1	1,600	11/28/06
Notes:	0110001	1	1,000	
NC: Notification Concentration				


NC: Notification Concentration


SL								
21	NO.	DATE	APPR.	REVISION	NO.	DATE	APPR.	REVISION
1210	1	11/15/06	ТН	ADDED INJECTION WELLS B-4, B-4A, B-4B, L-3, L-3A				
RES	2	1/11/07	JDR	REVISE DATA FOR EPD LETTERS 10/3/06 & 11/8/06				
FIGUR	3	1/31/07	JDR	ADD 1/3/07 DATA				
SL								
dm								
C:\Te								
-								




MONITOR WELL LOCATION ABANDONED MONITOR WELL LOCATION



: 7/19/2017	SCALE: AS SHOWN	REV.: 0	
NO.: C:\Temp\ISL F	IGURES\121021 ISL\2017	\07 2017\121021Site4.dwg	

3,042,000 05/12/05

3,800

3,800

70,00011/28/0676011/28/06

1,700 11/28/06

400,000 11/28/06

20,000 11/28/06

1,000,000 11/28/06

2,000 11/28/06

100,000 11/28/06

75,00011/28/0650011/28/062,00011/28/06

10,00005/12/0525,49005/12/057,00005/12/05

660 660

1,600 11/28/06

SW8270

SW8270

SW8270

SW8270

SW8270

SW8270

SW8270 Metals SW6010

SW6010

SW6010

SW6010

SW6010

SW6010

Chlorinated Herbicides

SW8151

SW8151

SW8151

Chlorinated Pesticides

SW8081

SW8081

SW8081 NC

SW6010 1

SW8270 NC*

2

1

1

NC

1

1

1

1

1

1

1

1

1

1

NC

1

		$B-1-1-3$ $1/3/07$ 0.10^{2}
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $
		SVOCs < RRS < RRS < RRS
ST-ISCO)		$GP-12$ $\frac{4/8/03}{6.8}$ $\frac{5/18/05}{4.8}$
		GF-FZ 6-8' 0-4' 4-8' 8-12' 1,2-dichlorobenzene 81.2 < RRS < RRS < RRS
		1,4-dichlorobenzene < 5.79 < RRS < RRS < RRS
		$\int \int \frac{dP}{dP} = \frac{12}{2}$
		B-2-1-5
		GP - 58 $- 6P - 59$
	1/3/07	
B-2-1-3	0-4' 4-8'	8-12'
2,4-dichlorophenol 1,2-dichlorobenzene	5.9 6.4 200 140	<u>2.6</u> 8.3
1,4-dichlorobenzene	53 44	$\frac{8.3}{1.3}GP - 61$
chlorobenzene pentachlorophenol	13 6.1 3.2 4	0.073 < 2.1
GP-58	2/23/06	$0, 10^{\circ}$
2,4-dichlorophenol	0-4' 4-8' 3.9 2.5	8-12'
I		
GP-61	2/23/06	$\overline{)}$
VOCs	0-4' 4-8' < RRS < RRS	<u>8-12'</u> < RRS
SVOCs	< RRS < RRS	< RRS

	B-1-1-3 1/3/07 0-4' 4-8' 8-12' VOCs < RRS < RRS < RRS SVOCs < RRS < RRS < RRS
	GP-12 4/8/03 5/18/05 6-8' 0-4' 4-8' 8-12' 1,2-dichlorobenzene 81.2 < RRS
	-5B-1-
	B-2-1-3 B-2-1-3 -5-6P-59
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{2.6}{3.3}}{\frac{1.3}{73}}$
GP-58 - dichlorophenol GP-58 0-4' 3.9 2.5 3.9 2.5 3.9 2.5 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9	2' 64
GP-61 2/23/06 0-4' 4-8' 8-12 VOCs < RRS < RRS < R SVOCs < RRS < RRS < R	RS

NO. DATE APPR. REVISION NO. DATE APPR. REVISION	ARY COMPLIANCE STATUS REPORT
Name Nam Name Name Name	TY ATLANTA, FULTON COUNTY, GEORGIA
Image: Second state Image: Second st	S. THOMPSON FROJECT MANAGER

 (\mathbf{N})

Phenanthrene

2,4-Dimethylphenol

2,6-Dinitrotoluene

2-Methylphenol

4-Methylphenol

m&p-Methylphenol

Phenol

Arsenic

Barium

Lead

Mercury

Selenium

Chlordane

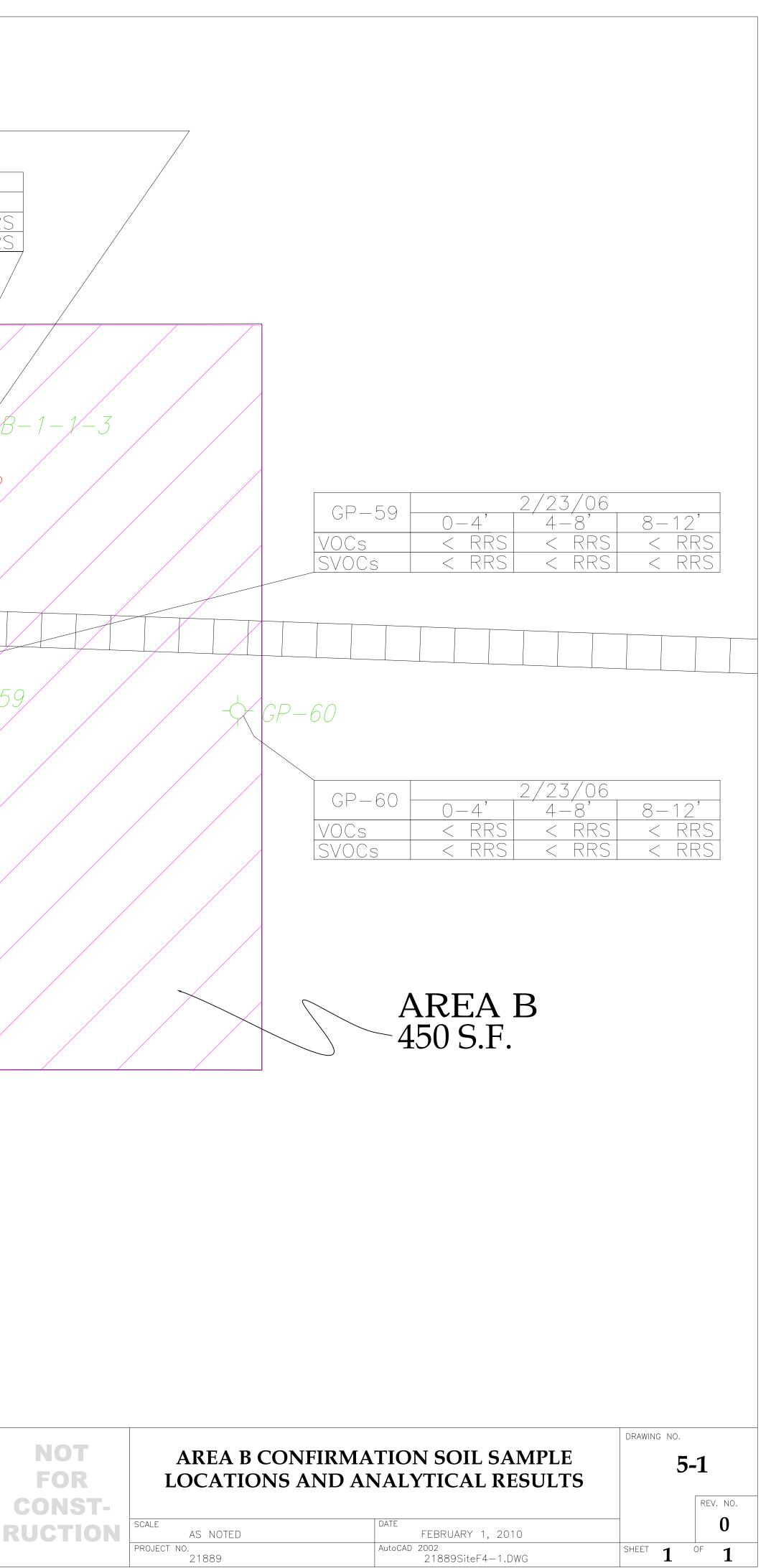
2,**4-D**

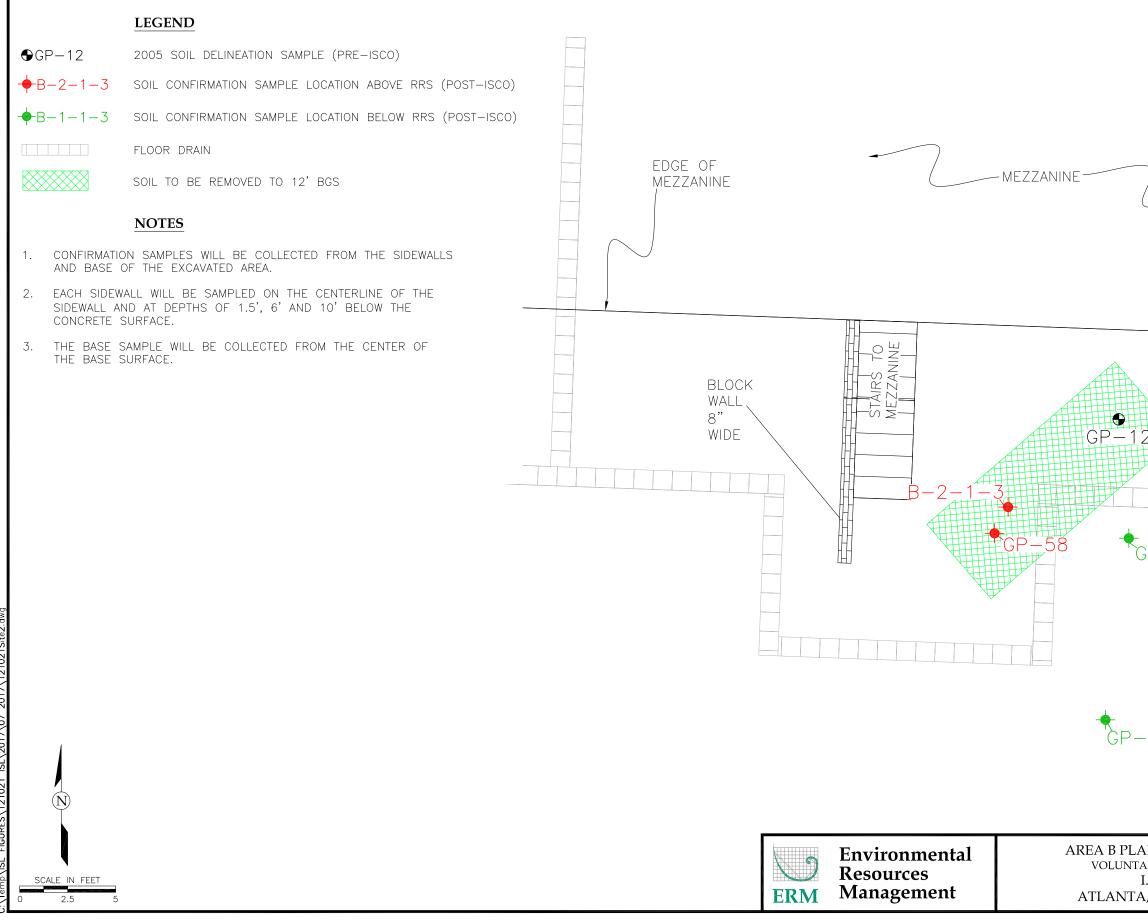
4,4-DDE

4,4-DDT

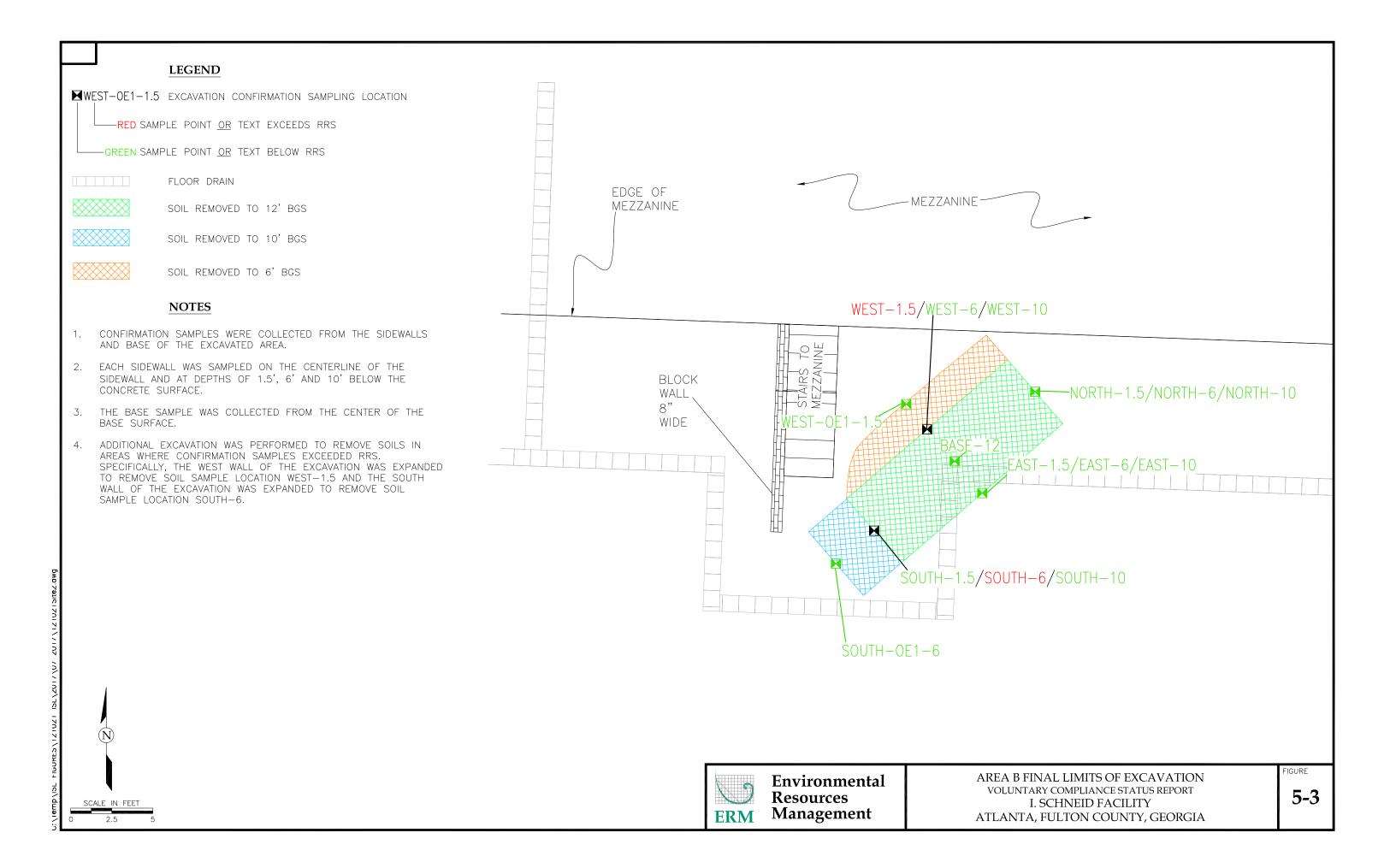
Notes:

2,4,5-TP (Silvex)


Heptachlor Epoxide


NC: Notification Concentration

Cadmium


Chromium

N-Nitrosodi-n-propylamine

-61		
ANNED LIMITS OF EXCAVATION	– 6 1 ANNED LIMITS OF EXCAVATION TARY COMPLIANCE STATUS REPORT	FIGURE

LEGEND

SOIL SAMPLE LOCATION (PRE-CAP)

2005 SOIL DELINEATION SAMPLES (PRE-ISCO)

 $-\varphi$ - soil confirmation sample location (post-isco)

FLOOR DRAIN

SOIL REMEDIATION AREAS

RED SAMPLE POINT EXCEEDS RRS

S SUMP STAIRS

Green sample point below rrs

HIGHLIGHTED DATA EXCEEDS RRS

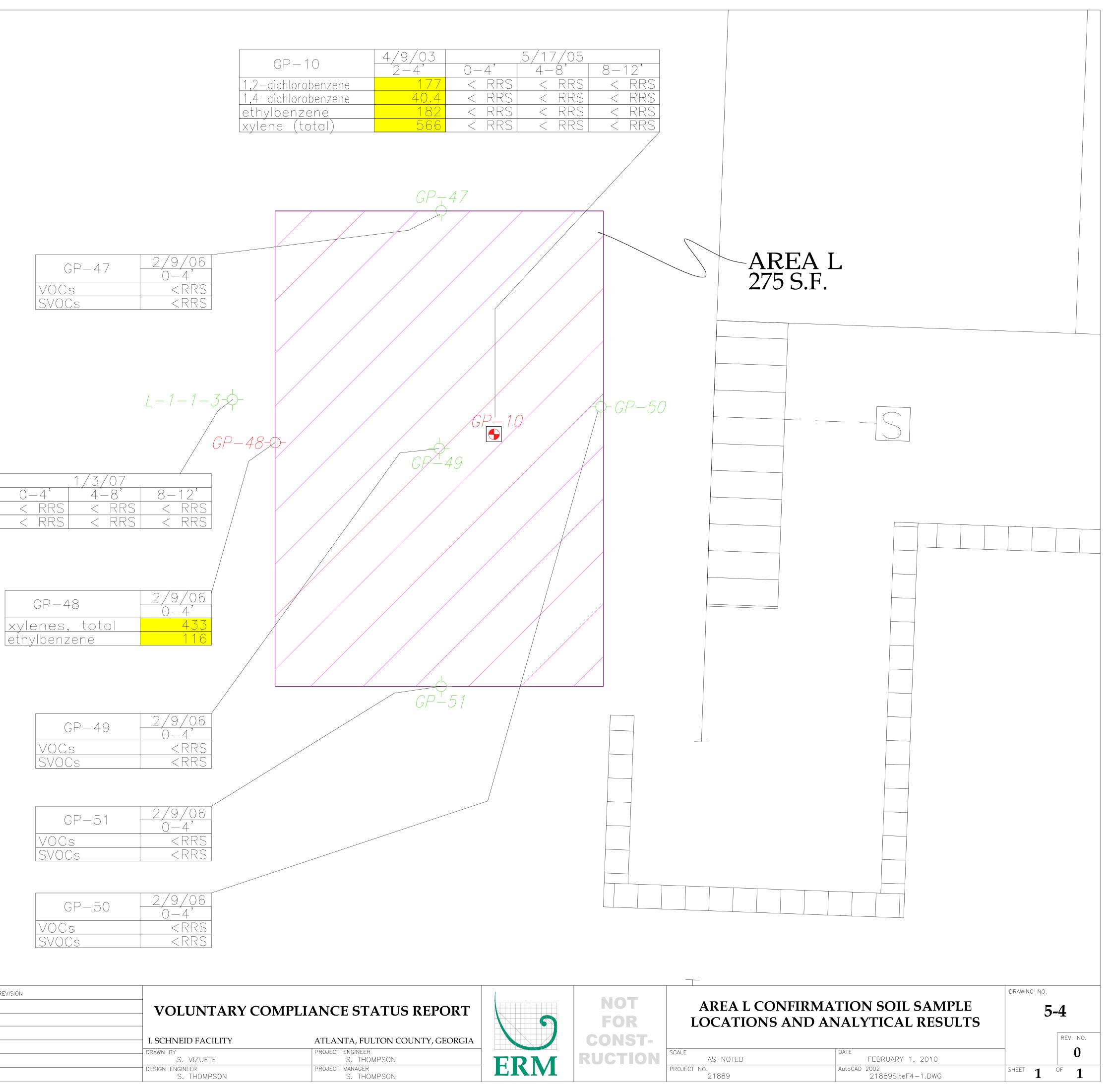
NOTES:

ALL CONCENTRATIONS IN mg/Kg

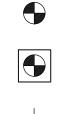
NR = NOT REPORTED

NS = NOT SAMPLED

NA = NOT ANALYZED


	RRS GAEP						
Chemical	Method	Туре	(µg/kg)	Approved			
Volatile Organic Compounds							
1,1,1-TCA	SW8260	2	49,790	05/12/05			
1,1,2,2-PCA	SW8260	2	371	05/12/05			
1,1-Dichloroethane	SW8260	1	312,800	05/12/05			
1,1-Dichloroethene	SW8260	2	3,041	05/12/05			
1,2-Dichloroethane	SW8260	1	500	11/28/06			
1,2-Dichlorobenzene	SW8270	2	150,564	05/12/05			
1,2,4-Trichlorobenzene	SW8270	2	50,130	05/12/05			
1,3-Dichlorobenzene	SW8270	2	82,930	05/12/05			
1,4-Dichlorobenzene	SW8270	2	18,823	05/12/05			
2-Butanone (MEK)	SW8260	1	200,000	11/28/06			
4-Methyl-2-pentanone (MIBK)	SW8260	NC	3,300				
Acetone	SW8260	1	297,500	05/12/05			
Benzene	SW8260	1	500	05/12/05			
Carbon disulfide	SW8260	1	182,500	05/12/05			
Carbon tetrachloride	SW8260	1	500	11/28/06			
Chlorobenzene	SW8260	1	10,000				
Chloroethane	SW8260	2	619	05/12/05			
Chloroform	SW8260	1	3,727	05/12/05			
cis-1,2-Dichloroethene (DCE)	SW8260	1	530	11/28/06			
Dibromochloromethane	SW8260	1	10,000	11/28/06			
Ethylbenzene	SW8260	2	104,844	05/12/05			
sopropylbenzene	SW8260	1	21,880	05/12/05			
Methylene chloride	SW8260	1	500	05/12/05			
Naphthalene	SW8260	1	63,388	05/12/05			
Styrene	SW8260	1	14,000	11/28/06			
Tetrachloroethene (PCE)	SW8260	1	500	11/28/06			
Toluene	SW8260	1	100,000	05/12/05			
Trichloroethene (TCE)	SW8260	1	500	05/12/05			
Xylenes (total)	SW8260	1/2	229,674	05/12/05			
Vinyl chloride	SW8260	1	200	11/28/06			
	atile Organic						
2,4-Dichlorophenol	SW8270	1	2,000	05/12/05			
2-Chlorophenol	SW8270	2	6,529	05/12/05			
Acenaphthene	SW8270	2	3,692,000				
Bis(2-ethylhexyl)phthalate	SW8270	2	800,400	05/12/05			
Fluoranthene	SW8270	2	3,070,000	05/12/05			
Fluorene	SW8270	2	2,805,000	05/12/05			
Pentachlorophenol	SW8270	1	3,300	05/12/05			
Phenanthrene	SW8270	2	3,042,000	05/12/05			
2,4-Dimethylphenol	SW8270	1	70,000	11/28/06			
2,6-Dinitrotoluene	SW8270	1	760	11/28/06			
2-Methylphenol	SW8270	NC*	3,800				
4-Methylphenol	SW8270	NC	3,800				
N-Nitrosodi-n-propylamine	SW8270	1	1,700	11/28/06			
Phenol	SW8270	1	400,000	11/28/06			
m&p-Methylphenol	SW8270		0				
	Metals						
Arsenic	SW6010	1	20,000				
Barium	SW6010	1	1,000,000				
Cadmium	SW6010	1	2,000				
Chromium	SW6010	1	100,000				
Lead	SW6010	1	75,000				
Mercury	SW6010	1	500	11/28/06			
Selenium	SW6010	1	2,000	11/28/06			
	orinated Her						
2,4,5-TP (Silvex)	SW8151	1	10,000				
Chlordane	SW8151	2	25,490	05/12/05			
2,4-D	SW8151	1	7,000	05/12/05			
Chl	orinated Pes		1				
Sc.199541-9	C14/0004	NC	660				
4,4-DDE	SW8081						
4,4-DDE 4,4-DDT	SW8081	NC	660				
4,4-DDE			660 1,600	11/28/06			

-1 - 13	
	0 -
VOCs	<
SVOCs	<


\121021Site6.d	
2017	
ISL\2017\07	
ISL/	
121021	
GURES	
FIGUE	
ISL	
emp	

REVISION	NO. DATE APPR.	REVISION		
			- VOLUNTARY CO	MPLIANCE STATUS REPORT
			I. SCHNEID FACILITY	ATLANTA, FULTON COUNTY, GEORGIA
			DRAWN BY S. VIZUETE	PROJECT ENGINEER S. THOMPSON
			DESIGN ENGINEER S. THOMPSON	PROJECT MANAGER S. THOMPSON

	4/9/03		5/17/05	
GP-IU	2-4'	0-4'	4-8'	8-12
1,2-dichlorobenzene	177	< RRS	< RRS	< R
	40.4	< RRS	< RRS	< R
	182	< RRS	< RRS	< F
xyléne (total)	566	< RRS	< RRS	< F
	GP-10 1,2-dichlorobenzene 1,4-dichlorobenzene ethylbenzene xylene (total)	1,2-dichlorobenzene2-41,4-dichlorobenzene1771,4-dichlorobenzene40.4	1,2-dichlorobenzene2-40-41,4-dichlorobenzene177< RRS1,4-dichlorobenzene40.4< RRS	1,2-dichlorobenzene2-40-44-81,4-dichlorobenzene177< RRS< RRS1,4-dichlorobenzene40.4< RRS< RRS

LEGEND

SOIL SAMPLE LOCATION (PRE-CAP)

2005 SOIL DELINEATION SAMPLES (PRE-ISCO)

-- SOIL CONFIRMATION SAMPLE LOCATION (POST-ISCO)

SOIL REMEDIATION AREAS

red sample point exceeds rrs

green sample point below rrs

Method

HIGHLIGHTED DATA EXCEEDS RRS

RRS

Type

GAEPD

(µg/kg) Approved

NOTES:

ALL	CONCENTRATIONS	IN	mg/Kg
-----	----------------	----	-------

NR	=	NOT	REPORTE

NS = NOT SAMPLED

NA = NOT ANALYZED

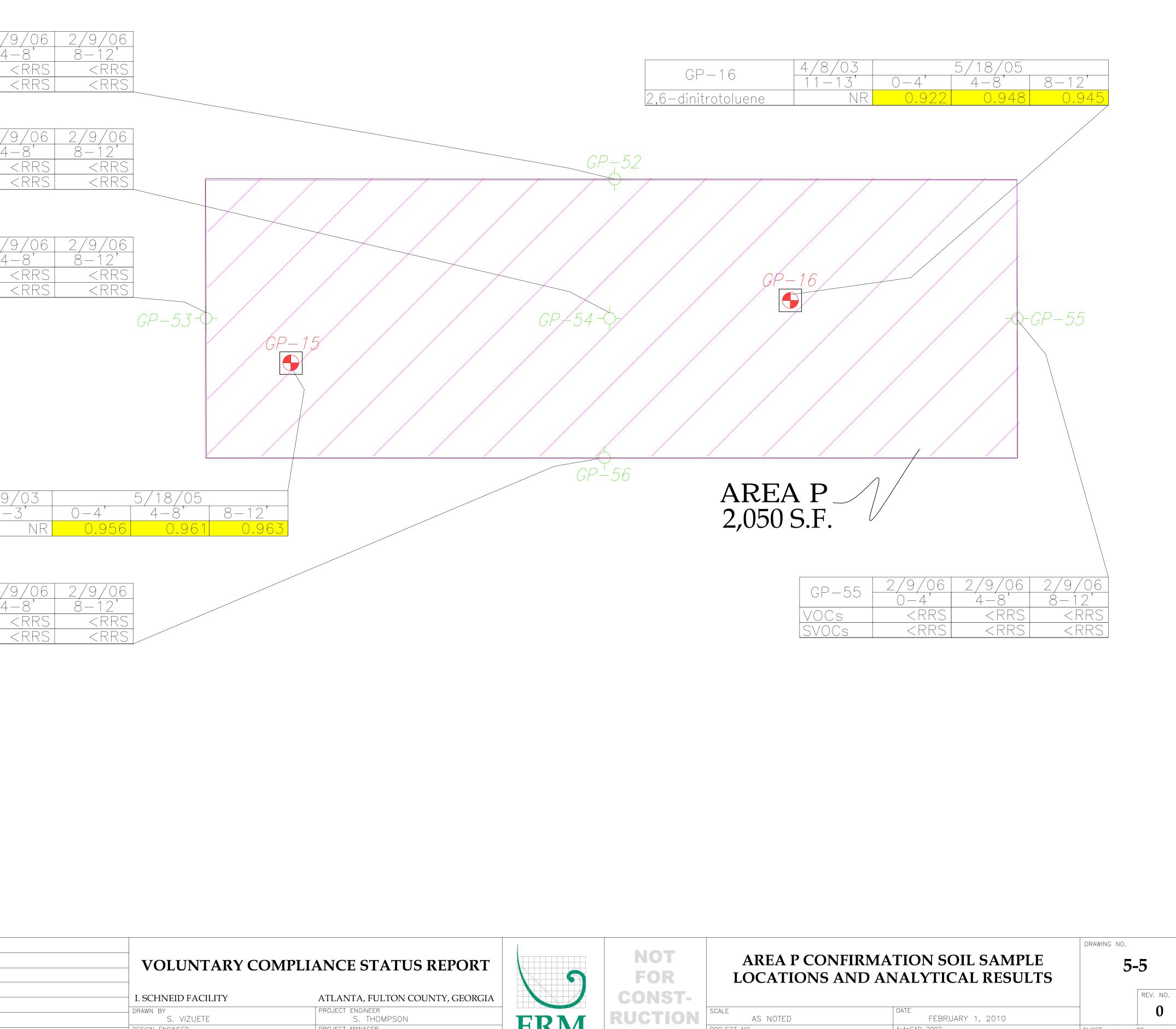
Chemical

	2/9/06	2
GP-52	0-4'	
VOCs	<rrs< th=""><th></th></rrs<>	
SVOCs	<rrs< td=""><td></td></rrs<>	
u		

GP-54	2/9/06	2
Gr = J4	0 - 4'	
VOCs	<rrs< th=""><th></th></rrs<>	
SVOCs	<rrs< th=""><th></th></rrs<>	

GP-53	2/9/06	2,
GF = 55	0 - 4'	
VOCs	<rrs< td=""><td></td></rrs<>	
SVOCs	<rrs< td=""><td></td></rrs<>	

GP-15	4/9
2,6-dinitrotoluene	

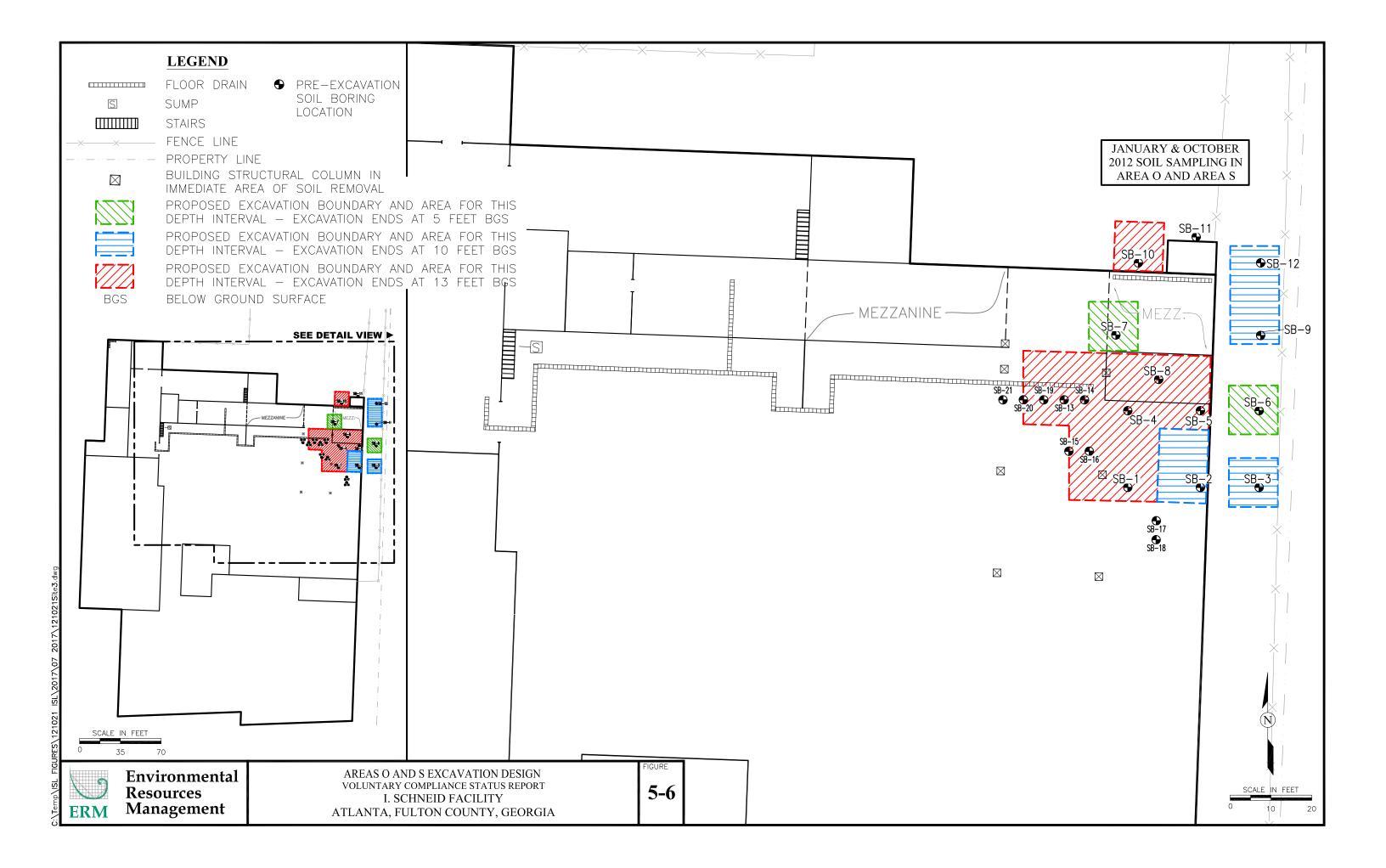

GP-56	2/9/06	2,
GF = 50	0-4'	2
VOCs	<rrs< td=""><td></td></rrs<>	
SVOCs	<rrs< td=""><td></td></rrs<>	

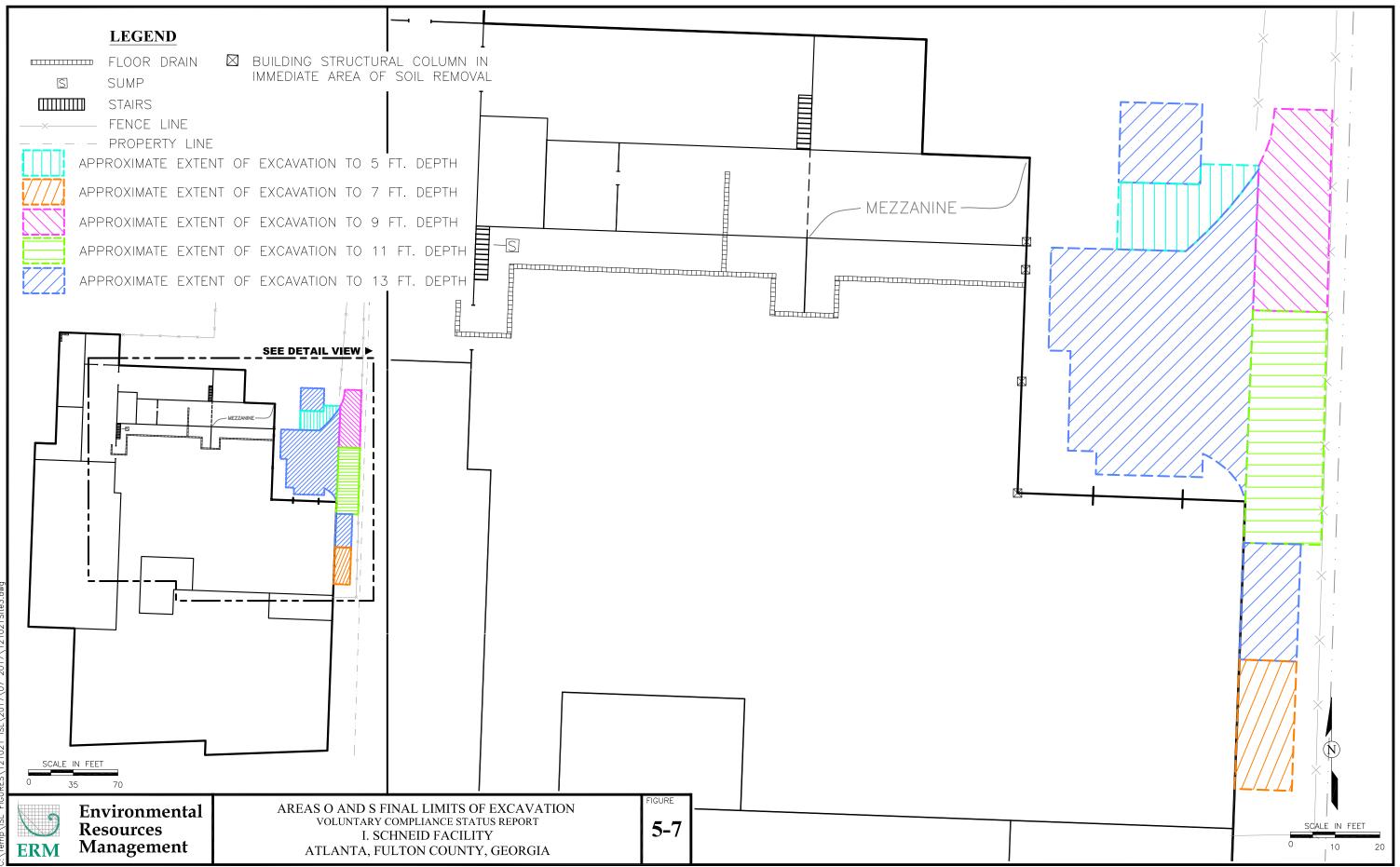
			1	
Volatil	e Organic Cor	mpounds		
1,1,1-TCA	SW8260	2	49,790	05/12/05
1,1,2,2-PCA	SW8260	2	371	05/12/05
1,1-Dichloroethane	SW8260	1	312,800	05/12/05
1,1-Dichloroethene	SW8260	2	3,041	05/12/05
1,2-Dichloroethane	SW8260	1	500	11/28/06
1,2-Dichlorobenzene	SW8270	2	150,564	05/12/05
1,2,4-Trichlorobenzene	SW8270	2	50,130	05/12/05
1,3-Dichlorobenzene	SW8270	2	82,930	05/12/05
1,4-Dichlorobenzene	SW8270	2	18,823	05/12/05
2-Butanone (MEK)	SW8260	1	200,000	11/28/06
4-Methyl-2-pentanone (MIBK)	SW8260	NC	3,300	
Acetone	SW8260	1	297,500	05/12/05
Benzene	SW8260	1	500	05/12/05
Carbon disulfide	SW8260	1	182,500	05/12/05
Carbon tetrachloride	SW8260	1	500	11/28/06
Chlorobenzene	SW8260	1	10,000	05/12/05
Chloroethane	SW8260	2	619	05/12/05
Chloroform	SW8260	1	3,727	05/12/05
cis-1,2-Dichloroethene (DCE)	SW8260	1	530	11/28/06
Dibromochloromethane	SW8260	1	10,000	11/28/06
Ethylbenzene	SW8260	2	104,844	05/12/05
Isopropylbenzene	SW8260	1	21,880	05/12/05
Methylene chloride	SW8260	1	500	05/12/05
Naphthalene	SW8260	1	63,388	05/12/05
Styrene	SW8260	1	14,000	11/28/06
Tetrachloroethene (PCE)	SW8260	1	500	11/28/06
Toluene	SW8260	1	100,000	05/12/05
Trichloroethene (TCE)	SW8260	1	500	05/12/05
Xylenes (total)	SW8260	1/2	229,674	05/12/05
Vinyl chloride	SW8260	1	200	11/28/06
2,4-Dichlorophenol	tile Organic SW8270	Compour 1	2,000	05/12/05
2-Chlorophenol	SW8270	2	6,529	05/12/05
Acenaphthene	SW8270	2	3,692,000	05/12/05
Bis(2-ethylhexyl)phthalate	SW8270	2	800,400	05/12/05
	000210			00/12/00
Filloranthene	S\N/8270	2	3 070 000	05/12/05
	SW8270	2	3,070,000	
Fluorene	SW8270	2	2,805,000	05/12/05 05/12/05 05/12/05
Fluorene Pentachlorophenol	SW8270 SW8270	2 1	2,805,000 3,300	05/12/05 05/12/05
Fluorene Pentachlorophenol Phenanthrene	SW8270 SW8270 SW8270	2 1 2	2,805,000 3,300 3,042,000	05/12/05 05/12/05 05/12/05
Fluorene Pentachlorophenol Phenanthrene 2,4-Dimethylphenol	SW8270 SW8270 SW8270 SW8270	2 1 2 1	2,805,000 3,300 3,042,000 70,000	05/12/05 05/12/05 05/12/05 11/28/06
Fluorene Pentachlorophenol Phenanthrene 2,4-Dimethylphenol 2,6-Dinitrotoluene	SW8270 SW8270 SW8270 SW8270 SW8270 SW8270	2 1 2 1 1	2,805,000 3,300 3,042,000 70,000 760	05/12/05 05/12/05 05/12/05 11/28/06
Fluorene Pentachlorophenol Phenanthrene 2,4-Dimethylphenol 2,6-Dinitrotoluene 2-Methylphenol	SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 SW8270	2 1 2 1 1 NC*	2,805,000 3,300 3,042,000 70,000 760 3,800	05/12/05 05/12/05 05/12/05 11/28/06
Fluorene Pentachlorophenol Phenanthrene 2,4-Dimethylphenol 2,6-Dinitrotoluene 2-Methylphenol 4-Methylphenol	SW8270	2 1 2 1 1 NC* NC	2,805,000 3,300 3,042,000 70,000 760 3,800 3,800	05/12/05 05/12/05 05/12/05 11/28/06 11/28/06
Fluorene Pentachlorophenol Phenanthrene 2,4-Dimethylphenol 2,6-Dinitrotoluene 2-Methylphenol 4-Methylphenol N-Nitrosodi-n-propylamine	SW8270	2 1 2 1 1 NC* NC 1	2,805,000 3,300 3,042,000 70,000 760 3,800 3,800 1,700	05/12/05 05/12/05 05/12/05 11/28/06 11/28/06
Fluorene Pentachlorophenol Phenanthrene 2,4-Dimethylphenol 2,6-Dinitrotoluene 2-Methylphenol 4-Methylphenol N-Nitrosodi-n-propylamine Phenol	SW8270	2 1 2 1 1 NC* NC	2,805,000 3,300 3,042,000 70,000 760 3,800 3,800 1,700 400,000	05/12/05 05/12/05 05/12/05 11/28/06 11/28/06
Fluorene Pentachlorophenol Phenanthrene 2,4-Dimethylphenol 2,6-Dinitrotoluene 2-Methylphenol 4-Methylphenol N-Nitrosodi-n-propylamine Phenol	SW8270	2 1 2 1 1 NC* NC 1	2,805,000 3,300 3,042,000 70,000 760 3,800 3,800 1,700	05/12/05 05/12/05 05/12/05 11/28/06 11/28/06
Fluorene Pentachlorophenol Phenanthrene 2,4-Dimethylphenol 2,6-Dinitrotoluene 2-Methylphenol 4-Methylphenol N-Nitrosodi-n-propylamine Phenol m&p-Methylphenol	SW8270	2 1 2 1 NC* NC 1 1	2,805,000 3,300 3,042,000 70,000 760 3,800 3,800 1,700 400,000 0	05/12/05 05/12/05 05/12/05 11/28/06 11/28/06 11/28/06
Fluorene Pentachlorophenol Phenanthrene 2,4-Dimethylphenol 2,6-Dinitrotoluene 2-Methylphenol 4-Methylphenol N-Nitrosodi-n-propylamine Phenol m&p-Methylphenol Arsenic	SW8270	2 1 2 1 NC* NC 1 1 1	2,805,000 3,300 3,042,000 70,000 760 3,800 3,800 1,700 400,000 0	05/12/05 05/12/05 05/12/05 11/28/06 11/28/06 11/28/06 11/28/06
Fluorene Pentachlorophenol Phenanthrene 2,4-Dimethylphenol 2,6-Dinitrotoluene 2-Methylphenol 4-Methylphenol N-Nitrosodi-n-propylamine Phenol m&p-Methylphenol Arsenic Barium	SW8270 SW8010 SW6010	2 1 2 1 1 NC* NC 1 1 1 1	2,805,000 3,300 3,042,000 70,000 760 3,800 3,800 1,700 400,000 0 20,000 1,000,000	05/12/05 05/12/05 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06
Fluorene Pentachlorophenol Phenanthrene 2,4-Dimethylphenol 2,6-Dinitrotoluene 2-Methylphenol 4-Methylphenol N-Nitrosodi-n-propylamine Phenol m&p-Methylphenol Arsenic Barium Cadmium	SW8270 SW8010 SW6010 SW6010	2 1 2 1 1 NC* NC 1 1 1 1 1	2,805,000 3,300 3,042,000 70,000 760 3,800 3,800 1,700 400,000 0 20,000 1,000,000 2,000	05/12/05 05/12/05 05/12/05 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06
Fluorene Pentachlorophenol Phenanthrene 2,4-Dimethylphenol 2,6-Dinitrotoluene 2-Methylphenol 4-Methylphenol N-Nitrosodi-n-propylamine Phenol m&p-Methylphenol Arsenic Barium Cadmium Chromium	SW8270 SW8010 SW6010 SW6010 SW6010 SW6010	2 1 2 1 1 NC* NC 1 1 1 1 1 1 1	2,805,000 3,300 3,042,000 70,000 760 3,800 3,800 3,800 1,700 400,000 0 20,000 1,000,000 2,000 100,000	05/12/05 05/12/05 05/12/05 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06
Fluorene Pentachlorophenol Phenanthrene 2,4-Dimethylphenol 2,6-Dinitrotoluene 2-Methylphenol 4-Methylphenol N-Nitrosodi-n-propylamine Phenol m&p-Methylphenol Arsenic Barium Cadmium Chromium Lead	SW8270 SW8010 SW6010 SW6010 SW6010 SW6010	2 1 2 1 NC* NC 1 1 1 1 1 1 1 1 1	2,805,000 3,300 3,042,000 70,000 760 3,800 3,800 1,700 400,000 0 20,000 1,000,000 2,000 100,000 75,000	05/12/05 05/12/05 05/12/05 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06
Fluorene Pentachlorophenol Phenanthrene 2,4-Dimethylphenol 2,6-Dinitrotoluene 2-Methylphenol 4-Methylphenol N-Nitrosodi-n-propylamine Phenol m&p-Methylphenol Arsenic Barium Cadmium Chromium Lead Mercury	SW8270 SW8010 SW6010 SW6010 SW6010 SW6010 SW6010	2 1 2 1 NC* NC 1 1 1 1 1 1 1 1 1 1 1	2,805,000 3,300 3,042,000 70,000 760 3,800 3,800 1,700 400,000 0 20,000 1,000,000 2,000 100,000 75,000 500	05/12/05 05/12/05 05/12/05 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06
Fluorene Pentachlorophenol Phenanthrene 2,4-Dimethylphenol 2,6-Dinitrotoluene 2-Methylphenol 4-Methylphenol N-Nitrosodi-n-propylamine Phenol m&p-Methylphenol Arsenic Barium Cadmium Chromium Lead Mercury Selenium	SW8270 SW8010 SW6010 SW6010 SW6010 SW6010 SW6010 SW6010	2 1 2 1 1 NC* NC 1 1 1 1 1 1 1 1 1 1 1 1 1	2,805,000 3,300 3,042,000 70,000 760 3,800 3,800 1,700 400,000 0 20,000 1,000,000 2,000 100,000 75,000	05/12/05 05/12/05 05/12/05 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06
Fluorene Pentachlorophenol Phenanthrene 2,4-Dimethylphenol 2,6-Dinitrotoluene 2-Methylphenol 4-Methylphenol N-Nitrosodi-n-propylamine Phenol m&p-Methylphenol Arsenic Barium Cadmium Chromium Lead Mercury Selenium Chlo	SW8270 SW8010 SW6010 SW6010 SW6010 SW6010 SW6010 SW6010 SW6010 SW6010	2 1 2 1 1 1 NC* NC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2,805,000 3,300 3,042,000 70,000 760 3,800 3,800 3,800 1,700 400,000 0 20,000 1,000,000 2,000 100,000 75,000 500 2,000	05/12/05 05/12/05 05/12/05 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06
Fluorene Pentachlorophenol Phenanthrene 2,4-Dimethylphenol 2,6-Dinitrotoluene 2-Methylphenol 4-Methylphenol N-Nitrosodi-n-propylamine Phenol m&p-Methylphenol Arsenic Barium Cadmium Chromium Lead Mercury Selenium Chlo	SW8270 SW8010 SW6010 SW8101	2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2,805,000 3,300 3,042,000 70,000 760 3,800 3,800 1,700 400,000 0 20,000 1,000,000 2,000 100,000 75,000 500 2,000	05/12/05 05/12/05 05/12/05 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06
Fluorene Pentachlorophenol Phenanthrene 2,4-Dimethylphenol 2,6-Dinitrotoluene 2-Methylphenol 4-Methylphenol N-Nitrosodi-n-propylamine Phenol m&p-Methylphenol Arsenic Barium Cadmium Chromium Lead Mercury Selenium C1,4,5-TP (Silvex) Chlordane	SW8270 SW8010 SW6010 SW6010 SW6010 SW6010 SW6010 SW6010 SW6010 SW8151 SW8151	2 1 2 1 NC* NC 1 1 1 1 1 1 1 1 1 1 1 1 1	2,805,000 3,300 3,042,000 70,000 760 3,800 3,800 1,700 400,000 0 20,000 1,000,000 2,000 100,000 75,000 500 2,000	05/12/05 05/12/05 05/12/05 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 05/12/05 05/12/05
Fluorene Pentachlorophenol Phenanthrene 2,4-Dimethylphenol 2,6-Dinitrotoluene 2-Methylphenol 4-Methylphenol N-Nitrosodi-n-propylamine Phenol m&p-Methylphenol Arsenic Barium Cadmium Chromium Lead Mercury Selenium Chlordane 2,4-D	SW8270 SW8010 SW6010 SW6010 SW6010 SW6010 SW6010 SW6010 SW6010 SW6010 SW8151 SW8151 SW8151	2 1 2 1 NC* NC 1 1 1 1 1 1 1 1 1 1 1 1 1	2,805,000 3,300 3,042,000 70,000 760 3,800 3,800 1,700 400,000 0 20,000 1,000,000 2,000 100,000 75,000 500 2,000	05/12/05 05/12/05 05/12/05 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 05/12/05 05/12/05
Fluorene Pentachlorophenol Phenanthrene 2,4-Dimethylphenol 2,6-Dinitrotoluene 2-Methylphenol 4-Methylphenol N-Nitrosodi-n-propylamine Phenol m&p-Methylphenol Arsenic Barium Cadmium Chromium Lead Mercury Selenium Chlordane 2,4-D Chlo	SW8270 SW8010 SW6010 SW6010 SW6010 SW6010 SW6010 SW6010 SW6010 SW8101 SW8151 SW8151 SW8151 SW8151	2 1 2 1 NC* NC 1 1 1 1 1 1 1 1 1 1 1 1 0icides 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2,805,000 3,300 3,042,000 70,000 760 3,800 3,800 1,700 400,000 0 20,000 1,000,000 2,000 100,000 75,000 500 2,000 100,000 75,000 2,000	05/12/05 05/12/05 05/12/05 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 05/12/05 05/12/05
2,4,5-TP (Silvex) Chlordane 2,4-D Chl o 4,4-DDE	SW8270 SW8010 SW6010 SW6010 SW6010 SW6010 SW6010 SW6010 SW8101 SW8151 SW8151 SW8151 SW8151 SW8081	2 1 2 1 NC* NC 1 1 1 1 1 1 1 1 1 1 1 1 1	2,805,000 3,300 3,042,000 70,000 760 3,800 3,800 1,700 400,000 0 20,000 1,000,000 2,000 100,000 75,000 500 2,000 10,000 75,000 500 2,000	
Fluorene Pentachlorophenol Phenanthrene 2,4-Dimethylphenol 2,6-Dinitrotoluene 2-Methylphenol 4-Methylphenol N-Nitrosodi-n-propylamine Phenol m&p-Methylphenol Arsenic Barium Cadmium Chromium Lead Mercury Selenium Chlordane 2,4-D Chlo	SW8270 SW8010 SW6010 SW6010 SW6010 SW6010 SW6010 SW6010 SW6010 SW8101 SW8151 SW8151 SW8151 SW8151	2 1 2 1 NC* NC 1 1 1 1 1 1 1 1 1 1 1 1 1	2,805,000 3,300 3,042,000 70,000 760 3,800 3,800 1,700 400,000 0 20,000 1,000,000 2,000 100,000 75,000 500 2,000 100,000 75,000 2,000	05/12/05 05/12/05 05/12/05 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 11/28/06 05/12/05 05/12/05

	SCALE	IN	FEET
5		0	

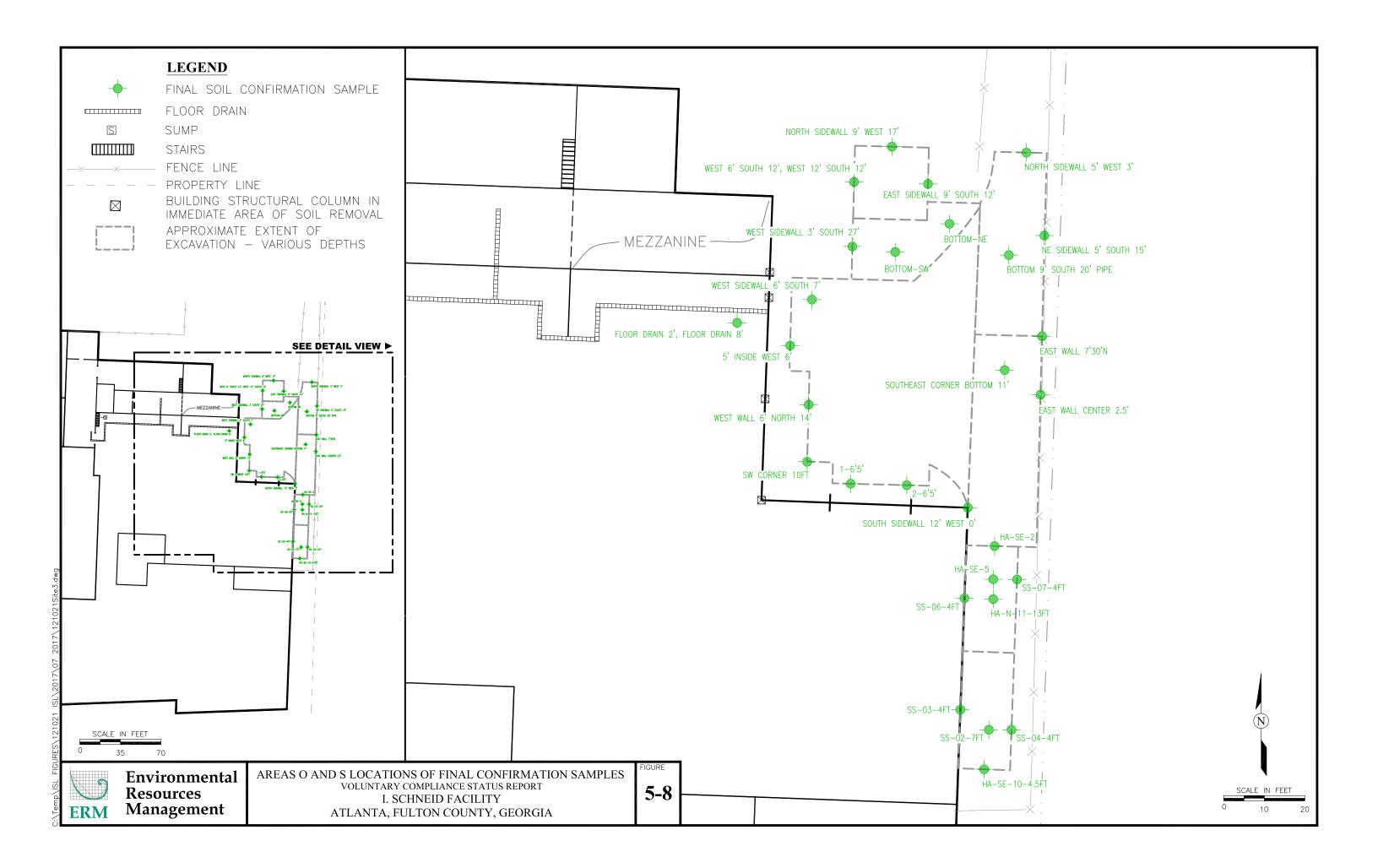
NO. DATE	APPR.	REVISION	NO. DATE	APPR.	REVISION	
					VOLUNTAL	RY COMPLIANCE STATUS REPORT
					VOLUNIAI	AT COMILIANCE STATUS KEI OKT
					I. SCHNEID FACILITY	ATLANTA, FULTON COUNTY, GEORGIA
					DRAWN BY	PROJECT ENGINEER
					S. VIZUETE	S. THOMPSON
					DESIGN ENGINEER S. THOMPSON	PROJECT MANAGER S. THOMPSON

N



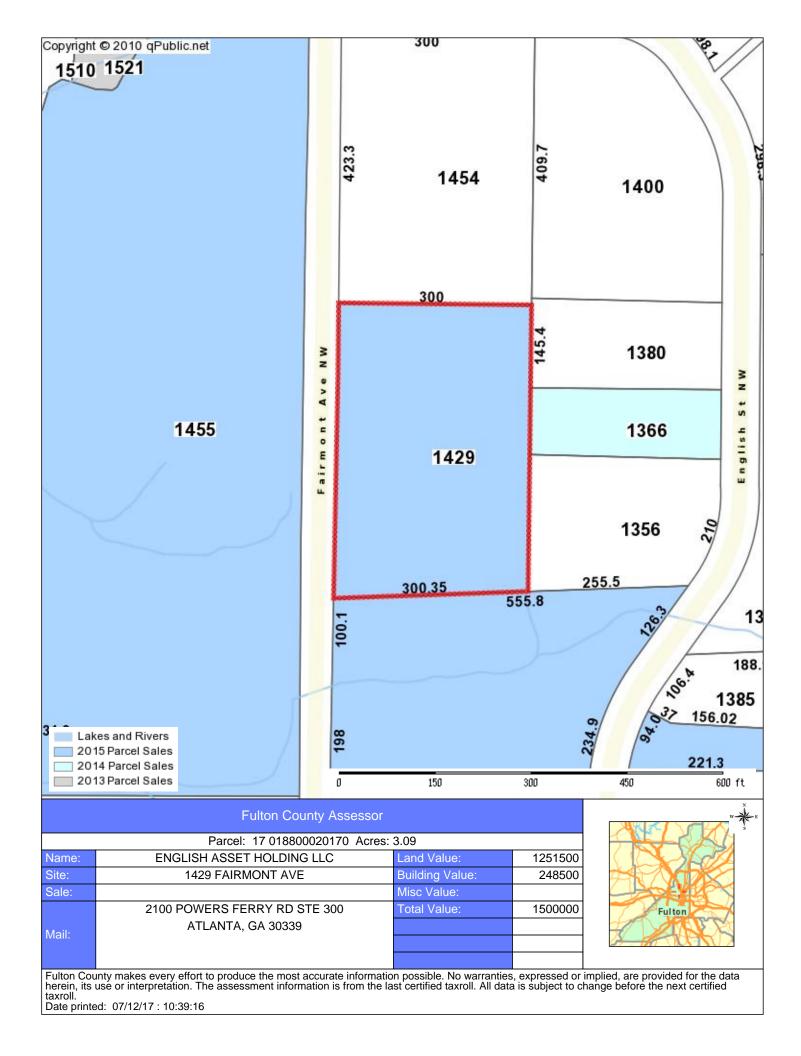

PROJECT NO.

21889


AutoCAD 2002 21889SiteF4-1.DWG

SHEET 1 OF 1

:\Temp\\SL FIGURES\121021 ISL\2017\07 2017\121021Site3.dwg


Tax Parcel Map and Legal Description for the Site *Appendix A*

July 27, 2017 Project No. 0121021 Former I. Schneid Facility

Legal Description for Tax Parcel ID Number 17-0188-0002-017-0

Commencing at a 1/2" iron pin and plastic cap placed at the intersection of the north right-of-way line of Culpepper Street (having a 50 foot right-of-way) with the east right-of-way line of Fairmont Avenue (having a 50 foot right-of-way), thence running along the east right-of-way line of Fairmont Avenue North 00°37'27" East, a distance of 125.56 feet to a point and the **POINT OF BEGINNING**; thence running along said right-of-way line of Fairmont Avenue, North 00°37'27" East, a distance of 627.61 feet to 1/2" rebar found bent; thence leaving said rightof-way line and running along the south property line of property now or formerly owned by Jonathan M. Bryant, South 89°28'22" East, a distance of 299.90 feet to a 1/2" rebar found; thence running along the west property lines of property now or formerly owned by William S. Whitmire, Jr., 1366 Real Estate Group, LLC. and Weiss Real Estate Investments, L.P., South 00°41'53" West, a distance of 442.77 feet to a $\frac{1}{2}$ " iron pin and cap placed; thence running along the south property line of property now or formerly owned by Weiss Real Estate Investments, L.P., North 88°10'22" East, a distance of 255.50 feet to a 1/2" iron pin and cap placed on the westerly right-of-way line of English Street (having a 60 foot right-of-way); thence running along said right-of-way line of English Street, South 36°07'17" West, a distance of 107.88 feet to a point; thence leaving said right-of-way line of English Street the following courses and distances: South 77°49'35" West, a distance of 56.31 feet; South 68°53'49" West, a distance of 36.43 feet; South 62°02'56" West, a distance of 51.14 feet; South 65°06'34" West, a distance of 26.63 feet; South 79°19'28" West, a distance of 41.82 feet; South 86°59'24" West, a distance of 34.27 feet; South 86°07'56" West, a distance of 49.24 feet; South 78°52'12" West, a distance of 61.51 feet; South 78°50'41" West, a distance of 43.02 feet; South 80°20'15" West, a distance of 58.51 feet; South 89°58'06" West, a distance of 50.06 feet to a point and the **POINT OF BEGINNING**.

The above described property contains 4.750 acres (206,619 sq. ft.) and being Parcel 2 as depicted on that ALTA/ACSM Land Title and Topographic Survey, dated December 31 2015, prepared by Metro Engineering and Surveying Company, Inc. of McDonough, Georgia, James R. Green, G.R.L.S. #2543 (Job No. 13767).

Free Product Monitoring/Recovery and Surface Water Protection Report *Appendix B*

July 27, 2017 Project No. 0121021 Former I. Schneid Facility

Environmental Resources Management

3200 Windy Hill Road, SE Suite 1500W Atlanta, GA 30339 678.486.2700 404.745.0103 (fax)

February 9, 2017 0121021

Mr. David Brownlee Mr. Barrett Fischer Response and Remediation Program Georgia Environmental Protection Division 2 Martin Luther King, Jr. Drive, SE Suite 1054, East Tower Atlanta, Georgia 30334-9000

Subject: Former I. Schneid, Atlanta, Georgia, HSI Site No. 10753

Dear Messrs. Brownlee and Fischer:

This letter is being submitted on behalf of I. S. Liquidation, LLC (I. Schneid) for the referenced property (Site). It is intended to update you concerning activities completed at the Site since the submittal of the First Semi-Annual Progress Report in September 2016. Since that time, we have completed the following work:

- Continued to conduct free phase product monitoring at wells MW-19 and MW-20, which are located in the former source area (see Figure 1).
- Continued to recover free phase product in the former source area. This has been done using absorbent socks and by means of a high vacuum extraction (HVE) event.
- Conducted ground water quality monitoring at wells MW-19 and MW-20 subsequent to the HVE event.

This work has been conducted as part of our efforts regarding two issues that GAEPD has stated need to be addressed while the Site is in the Voluntary Remediation Program prior to delisting from the Hazardous Sties Inventory (HSI). The first of these issues is the presence of free phase product in the former source area. The second concerns how dissolved phase contaminant concentrations in ground water at the Site might affect Woodall Creek.

Environmental Resources Management

FREE PHASE MONITORING AND RECOVERY

Free phase product has been detected on top of the water table at the Site in monitoring wells MW-19 and MW-20 (Figure 1). These two wells are located at or in the immediate vicinity of the former source area, where significant remediation, including extensive soil excavation and off-Site disposal, has taken place.

A summary of the results of the free phase monitoring conducted at wells MW-19 and MW-20 from March 2015 through January 2017 is provided in Table 1. During this time period, two technologies were used to assess practicability of free phase product recovery. They included:

- Product absorbing socks; and
- High vacuum extraction (HVE).

Specifically, product absorbing socks were placed in MW-19 and MW-20 from approximately February 2016 to October 2016. The socks were periodically changed out during this time. The HVE event was conducted at these wells on October 19, 2016. A trace amount of free phase product was recovered by the absorbent socks, estimated at less than 0.25 gallons. The HVE event generated over 340 gallons of liquid, of which only an estimated 0.9-gallon was free phase product, which was described as "diesel like." A copy of the HVE report is provided in Attachment A.

The observed thickness of free phase product measured in a ground water monitoring well is dependent on the pressure and spatial distribution of product in the subsurface. As ground water levels decrease, free product trapped in pore spaces of soils that are typically saturated can drain into a well; therefore, the thickness of product measured in-well is typically exaggerated in comparison to the actual thickness present in the aquifer by an estimated factor of 2-10¹, with fine-grained soils such as those present at the Site producing more exaggeration than coarse-grained soils². The in-well measured thickness of product can be referred to as "apparent thickness," as it is not considered to be representative of the true thickness present in the aquifer.

As shown in Table 1, the apparent thickness of free phase product at wells MW-19 and MW-20 during the monitoring period ranged from 0 to 0.22 feet and from 0 to 0.11 feet, respectively, with the highest measured apparent thicknesses occurring when ground

¹ Mercer, J.W., and R. M. Cohen, 1990. "A Review of Immiscible Fluids in the Subsurface: Properties, Models, Characterization and Remediation." Journal of Contaminant Hydrology 6: 107-63.

² U.S. EPA, 1996. "How to Effectively Recover Free Product at Leaking Underground Storage Tank Sites: A Guide for State Regulators". EPA 510-R-96-001.

Environmental Resources Management

water levels were lowest (September – November 2016). The average apparent thickness of free phase product at the wells during the monitoring period was 0.05 feet and 0.01 feet, respectively. A representative photograph of the free phase product taken at MW-19 is shown below.

The following observations and conclusions concerning free phase product at the Site are made based on the results of the monitoring and recovery conducted at MW-19 and MW-20 discussed above:

- The monitoring results indicate that the presence and apparent thickness of free product at MW-19 and MW-20 are dependent on ground water levels. This indicates that the product is residual in nature (i.e., non-mobile product entrained in soil pore space) rather than a lense of mobile free phase product.
- Free product transmissivity is considered a better indicator of the feasibility of product recoverability than apparent thickness³; however, the amount of product observed at MW-19 and MW-20 is considered insufficient to conduct a bail-down test to estimate transmissivity. Further, any transmissivity test results would be obfuscated by the observed correlation between water table fluctuations at the Site and apparent thickness.
- The extent of residual product at the Site appears localized to the former source area and conditions are not indicative of a migrating body.
- The average apparent thickness of free product remaining in the source area measured over a nearly 2-year period is less than 0.05 ft and, due to the nature of product with a density less then water and as noted

³ ITRC (Interstate Technology & Regulatory Council), 2009. Evaluating LNAPL Remedial Technologies for Achieving Project Goals. LNAPL-2. <u>http://www.itrcweb.org/GuidanceDocuments/LNAPL-2.pdf</u>

above, this thickness may exaggerate the true thickness in the aquifer by a factor of 2-10.

- The use of absorbent socks resulted in minimal free product recovery as the remaining product is primarily trapped in soil pore spaces as immobile residue, with minimal accumulation in the well occurring primarily as the result of drainage from pore spaces during periods of low ground water levels.
- The HVE event resulted in minimal free product recovery as the product is primarily trapped in soil pore spaces as immobile residue and appears to be limited in extent, as evidenced by the low ratio of product to ground water recovered during the event (i.e., < 0.3% of recovered liquid was identified as diesel-like product).

SURFACE WATER PROTECTION

Ground water quality data for the Site are summarized in Table 2. Monitoring well locations are shown on Figure 1. Based on a review of the most recent data for each well, seven regulated substances have been identified in ground water at concentrations that exceed the approved Risk Reduction Standards (RRS) for the Site. The exceedances are limited to four wells, MW-17, MW-19, MW-20 and ET-MW-4, and are summarized in the following table. All of these wells are located in the immediate vicinity of the former location of the solvent mixing room, which was the primary source area at the Site.

Well ID	Date	Benzene	Chlorobenzene	Naphthalene	Methylene Chloride	Pentachlorophenol	2,4-Dichlorophenol	Vinyl Chloride
	GW RRS	5.5	100	20	55	1	20	2
GA In-Stream Water Qu Region 4 Surface Water Screen Hazardou	•	51	1,600	NE* 21	590	3	290	2.4
MW-20	11/7/2016	23	-	330	120	160	1,100	3.9
MW-19	11/7/2016	-	-	250	-	46	-	-
MW-17	8/15/2015	5.6	-	200	-	-	-	-
ET-MW-4	12/7/2015	-	1,300	-	-	-	-	-

Notes:

* NE - Not Established.

**EPA Region 4 Ecological Risk Assessment Supplemental Interim Guidance Draft, September 2015.

Environmental Resources Management

Ground water from the following monitoring wells, located downgradient of the source area between the source area and Woodall Creek, has not had exceedances of RRS for any regulated substance over the last 10 years of monitoring:

ET-MW-5	ET-MW-9
ET-MW-8	ET-MW-13
ET-MW-8D	ET-MW-12

In addition, with the exception of ET-MW-8, these wells have not had any detections of any regulated compound above the laboratory reporting limit over the last 10 years.

Georgia in-stream water quality standards established by Rule 391-3-6-.03 are also provided in the table shown above. A Georgia in-stream water quality standard has not been established for naphthalene, so the USEPA Region 4 surface water screening value is shown in the table. Of the contaminants that exceed their ground water RRS, only pentachlorophenol, 2,4-dichlorophenol, and vinyl chloride are present in the source area at concentrations that exceed their Georgia in-stream water quality standard. The concentrations of naphthalene at MW-17, MW-18, and MW-19 exceed the Region 4 surface water screening value.

Surface Water Protection - Contaminant Transport Modeling

Extensive remediation of both unsaturated soil and ground water has been conducted at the Site and reported previously to GAEPD in the form of Corrective Action Progress Reports. The remediation activities have directly affected contaminant concentrations in the majority of the monitoring well network. The remediation history for the Site is summarized in the following table.

Date	Remediation Activity
2005	Soils in Area P remediated using a combination of heat-catalyzed
	persulfate injections.
2005 - 2006	Soils in Area B remediated using a combination of heat-catalyzed
	persulfate injections and excavation.
	Soils in Area L remediated using a combination of heat-catalyzed
	persulfate injections.
2005 - 2014	Soils in Area O and S were remediated using a combination of heat-
	catalyzed persulfate injections, soil vapor extraction and excavation.
2006 - 2012	Ground water in source area remediated using air sparge/soil vapor
	extraction.

Environmental Resources Management

Because of the extensive remediation history, the Site ground water data would not properly fit, validate, and calibrate to a simplified contaminant transport equation model such as BioChlor, as would typically be recommended to evaluate surface water protection requirements. As an alternative to utilizing a contaminant transport equation model, ERM utilized a more conservative mass balance approach to evaluating how source area ground water concentrations might affect surface water quality.

Surface Water Protection - Mass Balance Approach

Ground water elevation monitoring has shown that the direction of ground water movement at the Site is generally southwest. Based on a review of USGS topographic map information (USGS 7.5 Minute Topographic Quadrangle, Northwest Atlanta, Georgia, 1993) and Google Earth imagery, Woodall Creek is located approximately 1,000 feet southwest of the source area at the Site. In order to determine if the concentration of contaminants that exceed ground water RRS in the source area could result in exceedances of in-stream water quality standards in Woodall Creek, the potential impacts to Woodall Creek were evaluated using a mass balance equation that assumes the concentrations of contaminants in the source area are directly discharging to the creek. This is a conservative approach, as the creek is approximately 1,000 feet southwest of the source area and the additional factors of dilution, dispersion, advection, and attenuation, which serve to reduce contaminant concentrations downgradient of the source, are not factored into the calculations. As such, the mass balance approach is significantly more conservative than traditional contaminant transport modeling approaches.

The mass balance equation shown below was used to calculate the concentration of naphthalene, pentachlorophenol, 2,4-dichlorophenol, and vinyl chloride that could remain in the source area ground water and be protective of surface water quality (i.e. the concentrations of naphthalene, pentachlorophenol, 2,4-dichlorophenol, and vinyl chloride that would not result in an exceedance of the in-stream surface water quality standard).

Mass Balance Equation: $Csw = Cgs[Qgw/(Qgw+Qsw)]^4$

Input Variable	Description	Units	Value	Comment
Csw	surface water contaminant concentration (µg/L)	μg/L	Variable	Set to GA in-stream surface water quality standard for PCP, 2,4- dimethylphenol, and vinyl chloride and to Region 4 screening value for naphthalene
Cgs	ground water contaminant concentration at discharge	μg/L		Calculated by equation
Qsw	surface water flow rate	ft3/sec	0.46	USGS Stream Gauge data from Woodall Creek – lowest documented flow rate*
Qgw	ground water discharge flow rate	ft3/sec	0.0025	Calculated based on Qgw = V x l x h
V	ground water velocity	ft/day	0.11	Calculated using Site specific gradient and hydraulic conductivity data (see Attachment B)
1	Plume width at discharge point	ft	100	Assumed plume width at Woodall Creek
h	Plume thickness at discharge point	ft	20	Conservative estimate of the thickness of the shallow aquifer at Woodall Creek

*https://waterdata.usgs.gov/usa/nwis/dvstat/?site_no=02336313&por_02336 313_36628=862176,00060,36628

Similar calculations for benzene, chlorobenzene, and methylene chloride were not made because their source area concentrations in ground water are less than their respective Georgia in-stream water quality standard. Based on the mass balance equation and input parameters listed above, contaminant concentrations that can remain in ground water immediately adjacent to the stream and not result in an exceedance of the surface water quality standard are shown in the table below. For comparison sake, maximum concentrations in the source area are also shown in the table.

⁴ USEPA. *NPDES Permit Writer's Manual*. September 2010. <u>http://www.epa.gov/npdes/pubs/pwm_2010.pdf</u>.

Contaminant	Surface Water Quality Standard (μg/L)	Concentrations Protective of Surface Water Quality Standard (µg/L)	Maximum Concentrations in Source Area (µg/L)
Naphthalene	21	3,855	330
Pentachlorophenol	3	555	160
2,4-Dichlorophenol	290	53,650	1,100
Vinyl chloride	2.4	444	3.9

Based on the results of the mass balance calculations, surface water quality standards in the Woodall Creek will not be exceeded by the contaminant concentrations present in the source area, even if the source area concentrations were directly discharged into the creek. Again, the source area is approximately 1,000 feet from Woodall Creek and natural attenuation mechanisms will decrease the contaminant concentrations as ground water migrates away from the source area. Additionally, the RRS for ground water have not been exceeded in any of the monitoring wells located downgradient of the source area in the past 10 years, indicating that contaminant concentrations are attenuating to concentrations below the RRS as ground water migrates from the source area. Furthermore, with the exception of ET-MW-8, no regulated substances have been identified in any of the downgradient wells above the laboratory detection limits in the past 10 years. Substantial remediation efforts have been conducted to remove the source area and reduce contaminant concentrations. Because the source area has effectively been removed, dissolved phase contaminant concentrations should continue to decrease over time. Based on this information, it is concluded that regulated substances in the ground water at the source area of the Site will not adversely impact Woodall Creek.

SUMMARY AND RECOMMENDATIONS

Based on the information discussed above, we believe that residual free phase product and surface water quality have been adequately addressed at the Site. Because of this and the fact that previous work showed that the vapor intrusion pathway is not complete, we recommend that it is now time to move to delist the Site from the HSI. To this end, we would like to request a meeting with you to discuss the details of a final report that GAEPD may feel is necessary prior to delisting.

Environmental Resources Management

We look forward to meeting with you at your earliest convenience. In the interim, please contact us with any questions or comments you may have concerning the information presented herein.

Sincerely,

adri 2 lein

Adria L. Reimer, P.G. #2004 GA Professional Geologist

Juffing M. Billant

Jeffrey N. Bilkert *Principal*

cc: Steve Chapman

Attachments Tables 1 and 2 Figure 1 A – HVE Report B – Hydraulic Conductivity and Ground Water Flow Velocity Calculations

Tables

Table 1Free Product Monitoring Results for Wells MW-19 and MW-20Former I. Schneid FacilityHSI Site No. 10753Atlanta, Fulton County, Georgia

Well	Dete	Screened Interval Depth (feet	Depth to Free Product	Depth to Groundwater	Free Product Thickness
MW-19	Date	BTOC) 12-22	(feet BTOC) NP	(feet BTOC) 14.19	(feet)
10100-19	3/20/2015		NP	14.19	0
	8/24/2015	12-22			-
	12/7/2015	12-22	13.51	13.52	0.01
	12/18/2015	12-22	13.74	13.77	0.03
	12/23/2015	12-22	13.42	13.43	0.01
	12/28/2015	12-22	13.20	13.21	0.01
	1/8/2016	12-22	13.05	13.06	0.01
	2/26/2016	12-22	13.01	13.14	0.13
	3/16/2016	12-22	NP	12.73	0
	6/7/2016	12-22	12.58	12.60	0.02
	6/24/2016	12-22	NP	12.77	0
	8/31/2016	12-22	13.63	13.72	0.09
	9/16/2016	12-22	14.17	14.36	0.19
	10/3/2016	12-22	14.03	14.18	0.15
	10/19/2016	12-22	14.33	14.55	0.22
	11/17/2016	12-22	15.33	15.35	0.02
	12/1/2016	12-22	15.235	15.24	0.005
	12/16/2016	12-22	15.035	15.04	0.005
	1/12/2017	12-22	14.72	14.79	0.07
MW-20	12/7/2015	9-24	NP	12.94	0
	12/18/2015	9-24	NP	12.98	0
	12/23/2015	9-24	12.49	12.50	0.01
	12/28/2015	9-24	12.54	12.55	0.01
	1/8/2016	9-24	NP	12.38	0
	2/26/2016	9-24	trace	12.01	trace
	3/16/2016	9-24	NP	12.02	0
	6/7/2016	9-24	NP	12.75	0
	6/24/2016	9-24	NP	13.23	0
	8/31/2016	9-24	14.23	14.25	0.02
	9/16/2016	9-24	NP	14.68	0
	10/3/2016	9-24	NP	15.52	0
	10/19/2016	9-24	14.92	15.03	0.11
	11/17/2016	9-24	15.47	15.49	0.02
	12/1/2016	9-24	NP	14.96	0.00
	12/16/2016	9-24	14.83	14.83	0.002
	1/12/2017	9-24	NP	14.34	0

Notes:

1. BTOC = Below Top of Casing.

2. NP = Not Present.

Table 2

Ground Water Quality Data (μg/L) Former I. Schneid Facility HSI Site 10753 Atlanta, Fulton County, Georgia

Atlanta, F	uiton	County,	Georgia

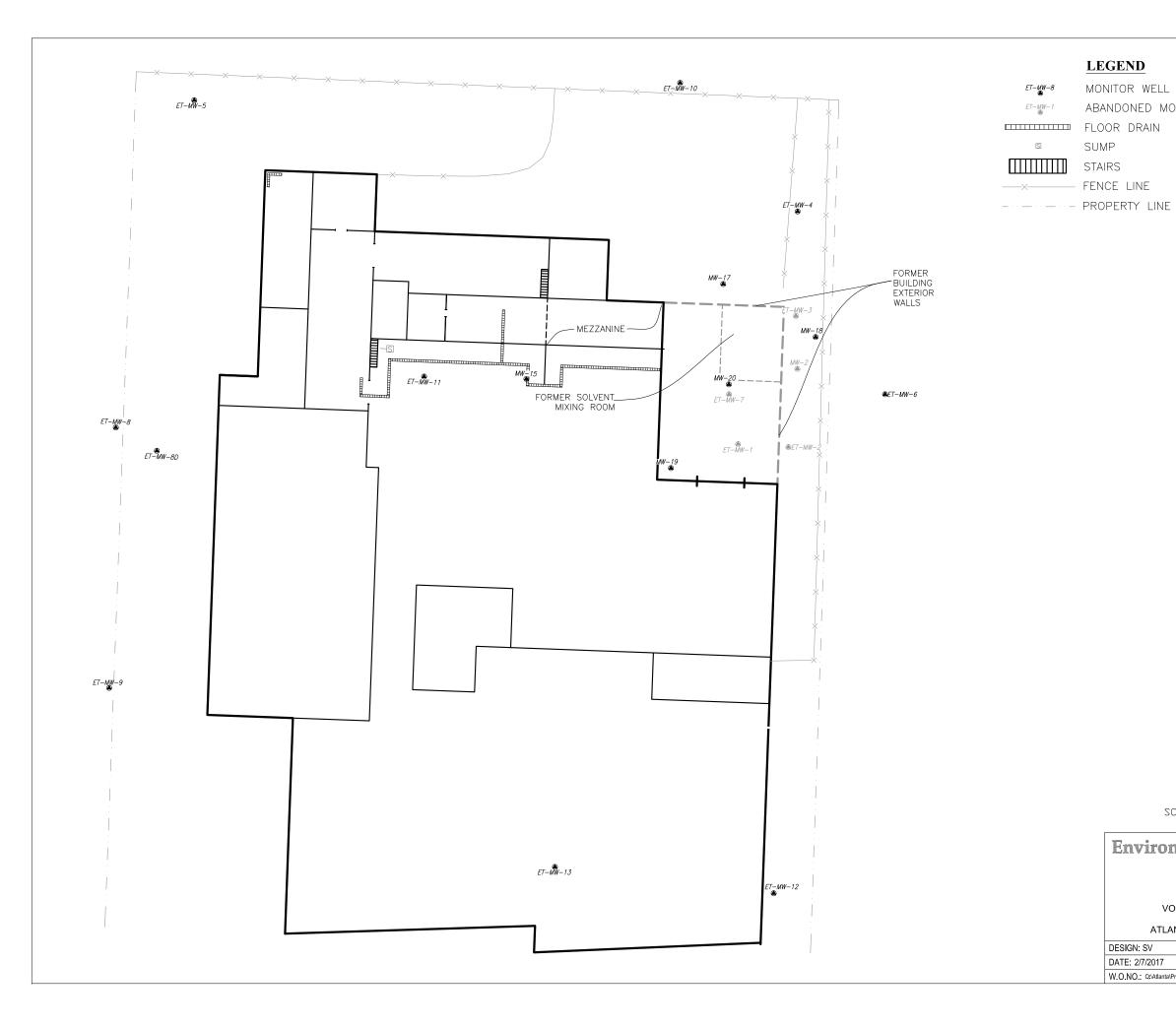
	-unon Col		giu												Compounds	Detected (µg/	'L)											
Well ID	Date Installed	Date Sampled	Acetone	Benzene	Chlorobenzene	cis-1,2-Dichloroethene	1,4-Dichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,1-Dichloroethane	1,1-Dichloroethene	1,4 Dioxane	Ethylbenzene	lsopropylbenzene	Naphthalene	1,1,1-Trichloroethane	Trichloroethene	Tetrachloroethene	Methyl tert -butyl ether	Methylene Chloride	Toluene	Xylenes	Vinyl Choride	2,4-D	Acenaphthene	Dibenzofuran	Pentachlorophenol	2,4-Dichlorophenol
	I	RRS (Type)	1	2	1	2	1	1	1	1	2	1	1	2	1	2	1	1	1	2	1	1	1	1	1		2	1
	Appl	licable RRS	4,000	5.50	100	31	75	600	600	4,000	103	0	700	200	20	1,011	5	5	0	55	1,000	10,000	2	70	2,000		1	20
		Jun-05 Mar-07	<25	25.60 < 5	10,100 < 5	< 1	142 < 10	341 < 10	11.6	< 1	< 1 < 5	NA NA	21 NA	6.6 < 5	12.5 NS	< 1 < 5	<1 NA	<1 NA	NA	<2.5	5.3	10.7		<25 NA	<10	<10	<10 NA	<10 NA
		Nov-08	NS	< 5 NS	< 5 NS	NS	NS	NS	NS	< 5 NS	NS	NS	NS	NS	NS	NS	NA	NS	NS	NS	NS	NS		NS	NS	NS	NA	NS
		Mar-09 Jun-09	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}		NS ^{DRY}																				
		Sep-09	NS ^{DRY}	NS	NS ^{DRY}	NS	NS ^{DRY}	NS ^{DRY}	NS	NS		NS	NS ^{DRY}	NS ^{DRY}	NSDRY	NS ^{DRY}												
ET-MW-4	5/2/2002	Dec-09 Dec-10	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}		NS ^{DRY}																				
21 1017 4	0/2/2002	Jul-11	NS	NS	NS	NS		NS	NS	NS	NS	NS																
		Jul-12 May-14	NS <50	NS < 5	NS 1200	NS NA	NS 16	NS 180	NS <5	NS < 5	NS < 5	NS NA	NS < 5	NS NA	NS NA	NS <5	NS <5	NS <5		NS NA	NS <10	NS NA	NS <25	NS <10				
		Oct-14	NSDRY	NSDRY	NS ^{DRY}	NSDRY	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY		NSDRY	NSDRY	NSDRY	NSDRY	NSDRY								
		Mar-15 Aug-15	NS NS	NS NS	NS NS	NS NS		NS NS	NS NS	NS NS	NS NS	NS NS																
		Dec-15	<50	<5	1300	<5	21	160	<5	<5	<5	NA	<5	<5	<10	<5	<5	<5	<5	<5	<5	<5		<2	<10	<10	<25	<25
		Jun-05 Mar-07	<25	< 1 < 5	< 1 < 5	< 1	<1 < 5	<1 < 5	<1	< 1 < 5	< 1 < 5	NA NA	<1 NA	< 1 < 5	<5 NA	< 1 < 5	<1 NA	<1 NA	NA	<2.5	<1	<1		<5 NA	<11.1	<11.1	<11.1 NA	<11.1 NA
		Nov-08	NS	NS	NS	NS		NS	NS	NS	NS	NS																
		Mar-09 Jun-09	<50 NS	< 5 NS	<5 NS	9.7 NS	< 5 NS	NA NS	<5 NS	< 5 NS	<5 NS	< 5 NS	<5 NS	<5 NS	NA NS	<5 NS	<5 NS	<5 NS		NA NS	NA NS	NA NS	NA NS	NA				
		Sep-09	NS	NS	NS	NS		NS	NS	NS	NS	NS																
ET-MW-5	5/2/2002	Dec-09	<50	< 5	< 5	< 5	< 5	< 5	<5	< 5	< 5	<150	<5	< 5	NA	< 5	< 5	< 5	< 5	< 5	< 5	< 5		NA	NA	NA	NA	NA
		Dec-10 Jul-11	<50 <50	< 5 < 5	<5 <5	< 5 < 5	< 5 < 5	<150 < 150	<5 < 5	< 5 < 5	<5 < 5	< 5 < 5	< 5 < 5	< 5 < 5	< 5 <5	< 5 <5	< 5 <5	< 5 <5		NA NA	NA NA	NA NA	NA NA	NA				
		Jul-12	<50	< 5	< 5	< 5	< 5	< 5	<5	< 5	< 5	< 150	< 5	< 5	< 5	< 5	< 5	< 5	<5	<5	<5	<5		NA	NA	NA	NA	NA
		May-14 Oct-14	NS NS	NS NS	NS NS	NS NS		NS NS	NS NS	NS NS	NS NS	NS NS																
		Mar-15	NS	NS	NS	NS		NS	NS	NS	NS	NS																
		Aug-15 Jun-05	<50 <25	< 5 < 1	< 5	< 5	< 5 <1	< 5 <1	<5 <1	< 5 < 1	< 5	< 150 NA	< 5 <1	< 5 < 1	< 5 <5	< 5	< 5 <1	< 5 <1	< 5 NA	<5 <2.5	<5 <1	<5 <1		NA <5	NA <10	NA <10	NA <10	NA <10
		Mar-07		< 5	< 5	< 5	< 5	< 5		< 5	< 5	NA	NA	< 5	NA	< 5	NA	NA	NA					NA			NA	NA
		Nov-08 Mar-09	NS NS ^{DRY}	NS NS ^{DRY}	NS NS ^{DRY}	NS NS ^{DRY}		NS NS ^{DRY}																				
		Jun-09	NS	NS	NS	NS		NS	NS	NS	NS	NS																
		Sep-09 Dec-09	NS <50	NS < 5	NS <5	NS < 5	NS < 5	NS <150	NS <5	NS < 5	NS NA	NS < 5	NS < 5	NS < 5	NS < 5	NS < 5	NS < 5	NS < 5		NS NA	NS NA	NS NA	NS NA	NS NA				
ET-MW-6	10/28/2002	Dec-10	<50	< 5	< 5	< 5	< 5	< 5	<5	< 5	< 5	<150	<5	< 5	<5	< 5	< 5	< 5	< 5	< 5	< 5	< 5		NA	NA	NA	NA	NA
		Jul-11 Jul-12	<50 <50	< 5	< 5	< 5	< 5	< 5	<5 <5	< 5	< 5	< 150	< 5	< 5	< 5	< 5	< 5	< 5	<5	<5	<5	<5 <5		NA	NA	NA	NA NA	NA
		May-14	NS	NS	NS	NS		NS	NS	NS	NS	NS																
		Oct-14 Mar-15	NS <50	NS < 5	NS 33	NS NA	NS < 5	NS 17	NS <5	NS < 5	NS < 5	NS NA	NS < 5	NS < 5	NS 9.3	NS < 5	NS < 5	NS NA	NS NA	NS <5	NS <5	NS <5		NS NA	NS <10	NS NA	NS < 25	NS < 10
		Aug-15	<50	< 5	< 5	< 5	< 5	< 5	<5	< 5	< 5	< 150	< 5	< 5	< 5	< 5	< 5	< 5	< 5	<5	<5	<5		NA	NA	NA	NA	NA
		Jun-05 Mar-07	<25	63 38	2 < 5	3 < 5	6 < 5	57 29	1	38 36	13 7	NA NA	21 NA	16 7	167 NA	< 1 < 5	4 NA	<1 NA	NA NA	<2.5	4	30		<100 NA	11	<10	<10 NA	<10 NA
		Nov-08	<50		< 5	< 5	< 5	29	<5	100	25	NA	<5	6	<5	< 5	<5	<5	NA	<5	<5	<5		NA	NA	NA	NA	NA
1		Mar-09	<50	< 5	< 5	< 5	< 5	7	<5	130	19	NA 150	<5	< 5	<5	< 5	<5	<5	NA	<5	<5	<5		NA	NA	NA	NA	NA
		Jun-09 Sep-09	<50 <50	< 5 7	< 5 < 5	< 5 < 5	< 5 8	11 55	<5 <5	54 130	< 5 14	<150 <150	<5 <5	< 5 < 5	NA NA	< 5 < 5	< 5 < 5	< 5 < 5	< 5 < 5	< 5 < 5	< 5 < 5	<10 < 5		NA NA	NA NA	NA NA	NA NA	NA
ET-MW-8	10/24/2002	Dec-09	NS	NS	NS	NS		NS	NS	NS	NS	NS																
		Dec-10 Jul-11	<50 <50	< 5 < 5	< 5 < 5	< 5 < 5	7 < 5	54 18	<5 <5	78 39	< 5 < 5	<150 <150	<5 <5	< 5 < 5	5 <5	< 5 < 5	< 5 <5	< 5 <5	< 5 <5	< 5 <5	< 5 <5	< 5 <5		NA	NA NA	NA	NA	NA
1		Jul-12	<50	< 5	< 5	< 5	13	86	<5	70	< 5	<150	<5	< 5	<5	< 5	< 5	< 5	< 5	< 5	< 5	< 5		NA	NA	NA	NA	NA
1		May-14 Oct-14	<50 <50	< 5 <5	< 5 <5	NA NA	9 <5	78 39	<5 <5	35 19	< 5 <5	NA NA	<5 <5	< 5 <5	<5 <5	< 5 <5	<5 <5	NA	NA	<5 <5	<5 <5	<5 <5		NA	<10 <10	NA	<25 <25	<10 <10
		Mar-15	NS	NS	NS	NS		NS	NS	NS	NS	NS																
		Aug-15	<50	<5	<5	<5	10	92	<5	28	<5	<150	<5.0	<5.0	5	<5.0	<5.0	<5.0	<5.0	<5	<5	<5		NA	NA	NA	NA	NA

Table 2

Ground Water Quality Data (μg/L) Former I. Schneid Facility HSI Site 10753 Atlanta, Fulton County, Georgia

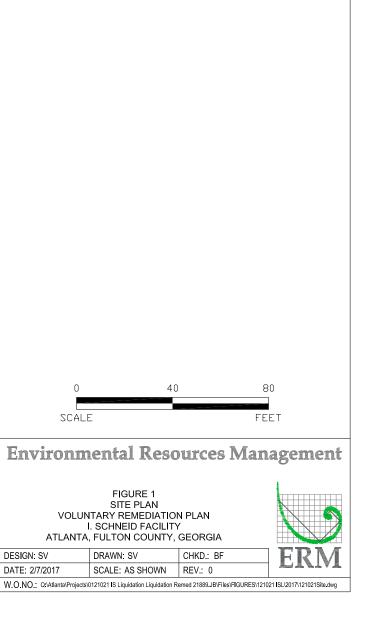
Allanta, I		,													Compounds	Detected (ug/	'L)											
Well ID	Date Installed	Date Sampled	Acetone	Berzene	Chlorobenzene	cis-1,2-Dichloroethene	1,4-Dichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,1-Dichloroethane	1,1-Dichloroethene	1,4 Dioxane	Ethylbenzene	lsopropylbenzene	Naphthalene	1,1,1-Trichloroethane	Trichloroethene	Tetrachloroethene	Methyl tert -butyl ether	Methylene Chloride	Toluene	Xylenes	Vinyl Choride	2,4-D	Acenaphthene	Dibenzofuran	Pentachlorophenol	2,4-Dichlorophenol
	F	RRS (Type)	1	2	1	2	1	1	1	1	2	1	1	2	1	2	1	1	1	2	1	1	1	1	1		2	1
	Appli	icable RRS	4,000	5.50	100	31	75	600	600	4,000	103	0	700	200	20	1,011	5	5	0	55	1,000	10,000	2	70	2,000		1	20
		Jun-05 Mar-07	<25	< 1 < 5	< 1	< 1 < 5	<1 < 5	<1	<1	< 1 < 5	< 1	NA NA	<1 NA	< 1	<5 NA	< 1 < 5	<1 NA	<1 NA	NA NA	<2.5	<1	<1		<5 NA	<11.1	<11.1	<11.1 NA	<11.1 NA
		Nov-08	NS	NS	< 5 NS	NS	< 5 NS	NS	NS	NS	NS	NS	NA	NS	NA	NS	NA	NS	NA	NS	NS	NS		NS	NS	NS	NA	NS
		Mar-09 Jun-09	<50 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS	<5 NS	< 5 NS	< 5 NS	NA NS	<5 NS	< 5 NS	<5 NS	< 5 NS	< 5 NS	< 5 NS	NA NS	< 5 NS	< 5 NS	< 5 NS		NA NS	NA NS	NA NS	NA NS	NA NS
		Sep-09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		NS	NS	NS	NS	NS
ET-MW-8D	12/30/2002	Dec-09 Dec-10	<50 <50	< 5 < 5	< 5	< 5	< 5 < 5	< 5	<5 <5	< 5 < 5	< 5 < 5	<150 <150	<5 <5	< 5 < 5	NA <5	< 5 < 5	< 5 < 5	< 5 < 5	< 5	< 5	< 5	< 5 < 5		NA NA	NA	NA	NA NA	NA
		Jul-11	<50	< 5	< 5	< 5	< 5	< 5	<5	< 5	< 5	< 150	< 5	< 5	< 5	< 5	< 5	< 5	<5	<5	<5	<5		NA	NA	NA	NA	NA
		Jul-12 May-14	<50 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS	<5 NS	< 5 NS	< 5 NS	< 150 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS		NA NS	NA NS	NA NS	NA NS	NA NS
		Oct-14	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		NS	NS	NS	NS	NS
		Mar-15 Aug-15	NS <50	NS < 5	NS < 5	NS < 5	NS < 5	NS < 5	NS <5	NS < 5	NS < 5	NS < 150	NS < 5	NS < 5	NS < 5	NS < 5	NS < 5	NS < 5	NS < 5	NS <5	NS <5	NS <5		NS NA	NS NA	NS NA	NS NA	NS NA
		Jun-05	<25	< 1	< 1	< 1	<10	< 10	<1	< 1	< 1	NA	<1	< 1	<5	< 1	<1	<1	NA	<2.5	<1	<1		<5	<10	<10	<10	<10
		Mar-07 Nov-08	NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS	NS	< 5 NS	< 5 NS	NA NS	NA NS	< 5 NS	NA NS	< 5 NS	NA NS	NA NS	NA NS	NS	NS	NS		NA NS	NS	NS	NA NS	NA
		Mar-09	<50	< 5	< 5	< 5	< 5	< 5	<5	< 5	< 5	NA	<5	< 5	<5	< 5	<5	<5	NA	<5	<5	<5		NA	NA	NA	NA	NA
		Jun-09 Sep-09	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS		NS NS	NS NS	NS NS	NS NS	NS NS
ET-MW-9	10/24/2002	Dec-09	<50	< 5	< 5	< 5	< 5	< 5	<5	< 5	< 5	<150	<5	< 5	NA	< 5	< 5	< 5	< 5	< 5	< 5	< 5		NA	NA	NA	NA	NA
	10/24/2002	Dec-10 Jul-11	<50 <50	< 5 < 5	< 5 < 5	< 5 < 5	< 5 < 5	< 5	<5 <5	< 5 < 5	< 5 < 5	<150 < 150	<5 < 5	< 5 < 5	<5 < 5	< 5 < 5	< 5 <5	< 5 <5	< 5 <5	< 5 <5	< 5 <5	< 5 <5		NA NA	NA NA	NA NA	NA NA	NA
		Jul-12	<50	< 5	< 5	< 5	< 5	< 5	<5	< 5	< 5	< 150	< 5	< 5	< 5	< 5	<5	<5	<5	<5	<5	<5		NA	NA	NA	NA	NA
		May-14 Oct-14	<50 <50	< 5 <5	< 5 <5	NA	< 5 <5	< 5 <5	<5 <5	< 5 <5	< 5 <5	NA NA	< 5 <5	< 5 <5	< 5 <5	< 5 <5	<5 <5	NA	NA	<5 <5	<5 <5	<5 <5		NA NA	<10 <10	NA NA	<25 <25	<10 <10
		Mar-15	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		NS	NS	NS	NS	NS
		Aug-15 Jun-05	<50 <25	< 5 2.50	< 5	< 5 < 1	< 5 <1	< 5	<5 <1	< 5	< 5	< 150 NA	< 5 <1	< 5	< 5 <5	< 5 < 1	< 5 <1	< 5 <1	< 5 NA	<5 <2.5	<5 <1	<5 <1		NA <5	NA <10	NA <10	NA <10	NA <10
		Mar-07	<23	2.30 24.00	< 5	< 5	< 5	< 5		< 5	< 5	NA	NA	< 5	NA	< 5	NA	NA	NA	<2.5	<1			NA	<10	<10	NA	NA
		Nov-08 Mar-09	NS <50	NS < 5	NS < 5	NS < 5	NS < 5	NS < 5	NS <5	NS < 5	NS < 5	NS NA	NS <5	NS < 5	NS <5	NS < 5	NS <5	NS <5	NS NA	NS <5	NS <5	NS <5		NS NA	NS NA	NS NA	NS NA	NS NA
		Jun-09	<50 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS	<5 NS	< 5 NS	< 5 NS	NA	<5 NS	< 5 NS	<5 NS	< 5 NS	<5 NS	<5 NS	NA	<5 NS	<5 NS	<5 NS		NA	NA	NA	NA	NS
		Sep-09 Dec-09	NS <50	NS < 5	NS < 5	NS < 5	NS < 5	NS < 5	NS <5	NS < 5	NS < 5	NS <150	NS <5	NS < 5	NS NA	NS < 5	NS <5	NS <5	NS <5	NS <5	NS <5	NS <5		NS NA	NS NA	NS NA	NS NA	NS NA
ET-MW-10	12/23/2002	Dec-09 Dec-10	<50	< 5	< 5	< 5	< 5	< 5	<5	< 5	< 5	<150	<5	< 5	<5	< 5	< 5	< 5	< 5	< 5	< 5	< 5		NA	NA	NA	NA	NA
		Jul-11 Jul-12	<50 <50	< 5	< 5	< 5 < 5	< 5 < 5	< 5	<5 <5	< 5 < 5	< 5 < 5	< 150 < 150	< 5	< 5 < 5	< 5 < 5	< 5 < 5	< 5 < 5	< 5 < 5	<5 <5	<5 <5	<5 <5	<5		NA NA	NA NA	NA NA	NA NA	NA
		May-14		< 5 NS	NS	NS	NS	< 5 NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	<5 NS		NS	NS	NS	NS	NS
		Oct-14 Mar-15	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS		NS NS	NS NS	NS NS	NS NS	NS NS
		Aug-15		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		NS	NS	NS	NS	NS
		Dec-15		<5 46	<5 29	<5 3	<5	<5	<5 25	<5 47	<5 30	NA NA	<5 635	<5	NA 1,010	<5 77	<5	<5 <1	<5 NA	<5 17	<5	<5 2,670		NA <100	NA 51	NA	NA <10	NA <10
		Jun-05 Mar-07	<20	40 < 5	< 5	< 5	98 < 10	260 65	25	< 5	< 5	NA	NA	53 < 5	NA	< 5	10 NA	NA	NA	17	141	2,070		NA	51	22	NA	NA
		Nov-08	NS <50	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS 5	NS	NS	NS	NS	NS	NS	NS	NS <5	NS		NS	NS	NS	NS <1	NS <10
		Mar-09 Jun-09		< 5 < 5	< 5 < 5	< 5 < 5	< 10 < 5	< 10 < 5	<10 <5	< 5 < 5	< 5 < 5	NA <150	<5 <5	< 5 < 5	<10 NA	< 5 < 5	<5 >5	<5 <5	NA <5	<5 <5	<5 <5	<5 <10		<2 NA	<10 NA	<10 NA	<1 NA	<10 NA
		Sep-09			NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}		NS ^{DRY}				
ET-MW-11	12/27/2002	Dec-09 Dec-10		NS ^{DRY} < 5	NS ^{DRY} < 5	NS ^{DRY} < 5	NS ^{DRY} < 5	NS ^{DRY} 5	NS ^{DRY} <5	< 5	NS ^{DRY} < 5	NS ^{DRY} <150	NS ^{DRY} <5	< 5	NS ^{DRY} 6	NS ^{DRY} < 5	< 5	NS ^{DRY} < 5	NS ^{DRY} < 5	NS ^{DRY} < 5	NS ^{DRY} < 5	< 5		NS ^{DRY} NA				
		Jul-11	NS 150	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		NS 2	NS 10	NS 10	NS 25	NS 10
		Jul-12 May-14	<50 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS	<5 NS	< 5 NS	< 5 NS	< 150 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS	< 5 NS	<5 NS	<5 NS	<5 NS	<5 NS		<2 NS	<10 NS	<10 NS	<25 NS	<10 NS
		Oct-14	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY		NSDRY	NSDRY	NSDRY	NSDRY	NSDRY
		Mar-15 Aug-15		NS < 5	NS 5	NS < 5	NS < 5	NS 8	NS <5	NS 14	NS < 5	NS < 150	NS < 5	NS < 5	NS 9	NS < 5	NS < 5	NS < 5	NS < 5	NS <5	NS <5	NS 6		NS 7	NS <10	NS <10	NS < 25	NS < 10
I									~~		~ 0	100	~ 0		5			~ 0			~~		1	, ,	510	~10	~ 20	

Table 2


Ground Water Quality Data (µg/L) Former I. Schneid Facility HSI Site 10753 Atlanta, Fulton County, Georgia

Atlanta, r	uiton	County,	Georgia

Allanta, I		I	- g.u												Compounds	Detected (µg/	/L)											
Well ID	Date Installed	Date Sampled	Acetone	Benzene	Chlorobenzene	cis-1,2-Dichloroethene	1,4-Dichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,1-Dichloroethane	1,1-Dichloroethene	1,4 Dioxane	Ethylbenzene	lsopropylbenzene	Naphthalene	1,1,1-Trichloroethane	Trichloroethene	Tetrachloroethene	Methyl tert -butyl ether	Methylene Chloride	Toluene	Xylenes	Vinyl Choride	2,4-D	Acenaphthene	Dibenzofuran	Pentachlorophenol	2,4-Dichlorophenol
	F	RRS (Type)	1	2	1	2	1	1	1	1	2	1	1	2	1	2	1	1	1	2	1	1	1	1	1		2	1
	Appli	icable RRS	4,000	5.50	100	31	75	600	600	4,000	103	0	700	200	20	1,011	5	5	0	55	1,000	10,000	2	70	2,000		1	20
		Jun-05 Mar-07	<25	< 1	< 1	< 1	<1 < 5	<1	<1	< 1	< 1	NA NA	<1 NA	< 1	<5 NA	< 1	<1 NA	<1 NA	<2.5 NA	<1	<1	<1		<5 NA	<10	<10	<10 NA	<10 NA
		Nov-08	NS	< 5 NS	NS	< 5 NS	< 5 NS	NA	NA	< 5 NS	NA	< 5 NS	NA	NA	NA	NS	NS	NS		NA	NS	NS	NA	NS				
		Mar-09	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY	NSDRY		NSDRY	NSDRY	NSDRY	NSDRY	NSDRY
		Jun-09 Sep-09	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS		NS NS	NS NS	NS NS	NS NS	NS NS
		Dec-09	<50	< 5	< 5	< 5	< 5	< 5	<5	< 5	< 5	<150	<5	< 5	NA	< 5	< 5	< 5	< 5	< 5	< 5	< 5		NA	NA	NA	NA	NA
ET-MW-12	12/23/2002	Dec-10 Jul-11	NS ^{DRY} <50	NS ^{DRY} < 5	NS ^{DRY} <5	NS ^{DRY} < 5	NS ^{DRY} < 5	NS ^{DRY} < 150	NS ^{DRY} < 5		NS ^{DRY} NA	NS ^{DRY} NA	NS ^{DRY} NA	NS ^{DRY} NA	NS ^{DRY} NA													
		Jul-12	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		NS	NS	NS	NS	NS
		May-14	<50	< 5	< 5	NA	< 5	< 5	<5	< 5	< 5	NA	< 5	< 5	< 5	< 5	< 5	NA	NA	<5	<5	<5		NA	<10	NA	<25	<10
		Oct-14 Mar-15	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS		NS NS	NS NS	NS NS	NS NS	NS NS
		Aug-15	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		NS	NS	NS	NS	NS
		Dec-15 Jun-05	<50 <25	<5 < 1	<5 < 1	<5	<5 <1	<5	<5 <1	<5 < 1	<5	NA NA	<5 <1	<5	NA <5	<5	<5 <1	<5 <1	<5 NA	<5 <2.5	<5 <1	<5 <1		NA <5	NA <10	NA <10	NA <10	NA <10
		Mar-07	~25	< 5	< 5	< 5	< 5	< 5		< 5	< 5	NA	NA	< 5	NA	< 5	NA	NA	NA	<2.5	~1			NA	<10	<10	NA	NA
		Nov-08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		NS	NS	NS	NS	NS
		Mar-09 Jun-09	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}	NS ^{DRY} NS	NS ^{DRY}		NS ^{DRY}	NS ^{DRY} NS	NS ^{DRY}	NS ^{DRY}	NS ^{DRY}										
		Sep-09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		NS	NS	NS	NS	NS
ET-MW-13	12/27/2002	Dec-09	<50	< 5	< 5 NS ^{DRY}	< 5	< 5 NS ^{DRY}	< 5	<5 NS ^{DRY}	< 5	< 5 NS ^{DRY}	<150	<5	< 5 NS ^{DRY}	NA NS ^{DRY}	< 5 NS ^{DRY}	<5 NS ^{DRY}	<5 NS ^{DRY}	<5	<5 NS ^{DRY}	<5	<5 NS ^{DRY}		NA	NA NS ^{DRY}	NA NS ^{DRY}	NA NS ^{DRY}	NA NS ^{DRY}
		Dec-10 Jul-11	NS	NS ^{DRY}	NS	NS ^{DRY}	NS	NS ^{DRY}	NS	NS ^{DRY} NS	NS	NS ^{DRY}	NS ^{DRY}	NS	NS	NS	NS	NS	NS ^{DRY}	NS	NS ^{DRY}	NS		NS ^{DRY}	NS	NS	NS	NS
		Jul-12	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		NS	NS	NS	NS	NS
		May-14 Oct-14	<50	< 5 NS ^{DRY}	< 5 NS ^{DRY}	NA NS ^{DRY}	< 5 NS ^{DRY}	< 5 NS ^{DRY}	<5 NS ^{DRY}	< 5 NS ^{DRY}	< 5 NS ^{DRY}	NA NS ^{DRY}	< 5 NS ^{DRY}	< 5 NS ^{DRY}	< 5 NS ^{DRY}	< 5 NS ^{DRY}	< 5 NS ^{DRY}	NA NS ^{DRY}	NA NS ^{DRY}	<5 NS ^{DRY}	<5 NS ^{DRY}	<5 NS ^{DRY}		NA NS ^{DRY}	<10 NS ^{DRY}	NA NS ^{DRY}	<25 NS ^{DRY}	<10 NS ^{DRY}
		Mar-15	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		NS	NS	NS	NS	NS
		Aug-15	<50	< 5	< 5	< 5	< 5	< 5	<5	< 5	< 5	< 150 NA	< 5 2	< 5	< 5 17	< 5	< 5	< 5	< 5 NA	<5	<5	<5 7		NA	NA NA	NA	NA	NA
		Jun-05 Mar-07	<25 NS	< 1 NS	163 NS	< 1 NS	< 1 NS	11 NS	<1 NS	< 1 NS	< 1 NS	NA	NS	< 1 NS	NS	< 1 NS	<1 NS	<1 NS	NA	<2.5 NS	NS	NS		NA	NA	NA NS	NA NS	NS
		Nov-08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		NS	NS	NS	NS	NS
		Mar-09 Jun-09	<50 NS	5 NS	1,300 NS	< 5 NS	12 NS	29 NS	<5 NS	< 5 NS	< 5 NS	NA NS	<5 NS	< 5 NS	<5 NS	< 5 NS	< 5 NS	< 5 NS	NA NS	< 5 NS	<5 NS	<5 NS		NA NS	NA NS	NA NS	NA NS	NA NS
		Sep-09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		NS	NS	NS	NS	NS
MW-15	6/7/2005	Dec-09	<50	< 5	140	< 5	< 5	9	<5	< 5	< 5	<150	<5	< 5	NA	< 5	< 5	< 5	< 5	< 5	< 5	< 5		NA	NA	NA	NA	NA
		Dec-10 Jul-11	<50 <50	< 5 < 5	32 34	< 5 < 5	< 5 < 5	< 5 < 5	<5 <5	< 5 < 5	< 5 < 5	<150 < 150	<5 < 5	< 5 < 5	12 < 5	< 5 < 5	<5 < 5	<5 < 5	<5 <5	<5 <5	<5 <5	<5 <5		NA NA	NA NA	NA NA	NA NA	NA
		Jul-12		< 5	13	< 5	< 5	< 5	<5	23	< 5	< 150	< 5	< 5	< 5	< 5	< 5	< 5	<5	<5	<5	<5		NA	NA	NA	NA	NA
		May-14 Oct-14		< 5 <5	22 <5	NA NA	< 5 <5	11 <5	<5 <0.005	< 5 <5	< 5 <5	NA NA	< 5 <5	<5 <5	< 5 <5	< 5 <5	< 5 <5	NA NA	NA NA	<5 <0.005	<5 <0.005	<5 <0.005		NA NA	<10 <10	NA	<25 <25	<10 <10
		Mar-15		< 5	< 5	NA	< 5	< 5	<5	< 5	< 5	NA	< 5	< 5	< 5	< 5	< 5	NA	NA	<5	<5	<5		NA	<10	NA	< 25	< 10
		Aug-15		< 5	18	< 5	< 5	18	<5	< 5	< 5	< 150	< 5	< 5	< 5	< 5	< 5	< 5	< 5	<5	<5	<5		NA	NA	NA	NA	NA
MW-17	3/13/2015	Mar-15 Aug-15		5 5.6	19 32	NA < 5	< 5 5.1	66 150	<5 <5	67 54	11 14	NA < 150	36 53	13 16	130 200	25 47	< 5 < 5	NA < 5	NA < 5	6 <5	82 94	290 390		NA	<10 NA	NA	< 25 NA	< 10 NA
		Mar-15		< 5	9.6	NA	< 5	< 5	<5	< 5	< 5	NA	< 5	< 5	< 5	< 5	< 5	NA	NA	<5	<5	<5		NA	<10	NA	< 25	< 10
MW-18	3/13/2015	Aug-15	<50	< 5	12	< 5	< 5	15	<5	< 5	<5	< 150	< 5	< 5	5.2	< 5	< 5	< 5	< 5	<5	<5	<5		50	<10	<10	< 25	< 10
		Aug-15 DUP-01	<50	< 5	13	< 5	< 5	16	<5	< 5	< 5	< 150	< 5	< 5	5.3	< 5	< 5	< 5	< 5	<5	<5	<5		57	<10	<10	< 25	< 10
		Mar-15	<50	< 5	84	NA	19	140	<5	21	< 5	NA	59	7.7	180	< 5	< 5	NA	NA	<5	<5	330		NA	13	NA	26	< 10
MW-19	3/13/2015	Mar-15	<50	<5	85	NA	19	140	<5	21	<5	NA	60	8.1	180	<5	<5	NA	NA	<5	<5	340		NA	15	NA	28	<10
11144-13	5/15/2013	DUP-01 Aug-15		< 5	200	6.1	71	580	12	21	< 5	< 150	200	25	900	< 5	< 5	< 5	< 5	<5	23	1300		19	34	12	40	< 10
		Nov-16		<50	89	<5	41	450	7.9	12	<5	NA	90	13	250	<5	<5	<5	<5	<5	14	480	<2	na	21	<10	46	<10
MW-20	Highlighted Va	Nov-16		23	11	6.7	70	500	16	160	23	NA	160	19	330	40	<5	<5	<5	120	30	810	3.9	NA	38	13	160	1,100
	i ngi ngi ngi neu va	aiues ⊏xcee0	a une Appro	veu avv nno.																								


Highlighted Values Exceed the Approved GW RRS. NA = Not Analyzed. NS = Not Sampled.

Figures

MONITOR WELL LOCATION ABANDONED MONITOR WELL LOCATION

M

HVE Report

Attachment A

October 28, 2016

Mr. Jeff Bilkert ERM 3200 Windy Hill Road Suite 1500W Atlanta, Georgia 30339 jeff.bilkert@erm.com

Subject: Enhanced Fluid Recovery (EFR®) Results Event No. 2 Former I Schneid Liquidation 1429 Fairmont Ave NW Atlanta, Georgia

Dear Mr. Bilkert:

Please find attached the data summary for the second EFR[®] event conducted at the subject site on October 19, 2016. An initial EFR[®] event was conducted at this site on February 24, 2006. The following summarizes the results of EFR[®] at this site.

SUMMARY OF RESULTS

Separate-phase hydrocarbons (SPH) were detected in two gauged monitor wells (MW-19 – 0.22 feet and MW-20 – 0.11 feet) prior to this EFR° event. This EFR° event was conducted for eight hours at two extraction points consisting of MW-19 and MW-20. SPH was not detected upon completion of conducting this event.

A calculated total of 6.2 pounds of petroleum hydrocarbons (approximately 0.9 equivalent gallons of "diesel like" petroleum hydrocarbons) was recovered during this event. This recovery total is greater than the total attained during the initial event (3.3 pounds of petroleum hydrocarbons - approximately 0.5 equivalent gallons of hydrocarbons).

Hydrocarbon removal rates ranged from 0.3 to 1.5 pounds per hour throughout this event. These removal rates range higher than rates attained during the initial event (0.2 to 0.5 pound per hour).

A dual internal combustion engine (DICE) unit was utilized throughout the event to treat effluent vapor generated during extraction. Pretreatment vapor concentrations ranged from 240 to 1,200 parts per million by volume (PPM_V) during this EFR[®] event, as compared to concentrations of 120

765 Ash Street, Suite 100 - Canton, Georgia 30114 (770) 592-1001 <u>www.ecovacservices.com</u> Mr. Jeff Bilkert October 28, 2016 Page 2

to 360 PPM_V measured during the initial event. Vapor flow rates ranged from 57 to 61 actual cubic feet per minute (ACFM) during this EFR[®] event, as compared to flow rates of 60 to 97 ACFM measured during the initial event. The DICE released a calculated total of 0.06 pound of hydrocarbons to the atmosphere, a destruction efficiency of 99.07%.

In-well vacuum data collected at the extraction wellheads during this EFR[®] event are detailed in the EFR[®] Field Data Sheet and summarized below:

Extraction Well	In-Well Vacuum
MW-10	5 to 8 inches of mercury
MW-17	10 to 12 inches of mercury

Differential pressure data was collected during the event to assess vacuum influence generated by EFR[®] in the vadose zone. These data are detailed in the attached data table and summarized below:

Monitor Well	Maximum Change	Nearest Extraction Well (Approximate Distance)
MW-17	-1.39 inches of water	MW-20 (37 feet)

Groundwater levels were also measured during the event to evaluate drawdown of the aquifer. These data are detailed in the attached data table and summarized below:

Monitor Well	Maximum Change	Nearest Extraction Well (Approximate Distance)
MW-17	-0.11 feet	MW-20 (37 feet)

Approximately 341 gallons of liquid were removed during this EFR[®] event and transported to Environmental Remedies, LLC (Atlanta, Georgia) for disposal. SPH was not detected in the vacuum truck tank upon conclusion of EFR[®].

Thank you for this opportunity to team with ERM in serving the environmental needs of your clients. We look forward to working with you in the future to provide innovative and cost effective environmental solutions at this and other sites.

Sincerely,

EcoVac Services

Haid M. Dadrid

David M. Goodrich, P.G.

EFR[®] FIELD DATA SHEET

Client: ERM	ility Address: 1429 Fairmont Ave NW, A Extra								er I S	chneid Liquid	lation				Event #: 2		
Facility Address:	1429 Fair	mon	nt Av	e NV	V, Atlar	ita, G	A					Technician:	Winkler		Date: 10/21	/16	
				E	xtractio	n We	ell-				DICE	Inlet			DICE Exhaus	t	
Extraction Well(s)	Time hh:mm				head Va (in. I		n			Concen- tration	Flow Rate	Removal Rate	Interval Removal	Concen- tration	Emissions Rate	Interval Emissions	
Start Time:	7:45	Inlet	MW-19	MW-20						PPM	ACFM	LBS/HR	LBS	PPM	LBS/HR	LBS	
MW-19,20	8:00	25	5	10						1,200	60	1.5	0.4	6	0.007	0.002	
"	8:15	25	5	10						1,200	61	1.5	0.4	6	0.008	0.002	
п	8:30	25	7	10						1,200	59	1.5	0.4	6	0.007	0.002	
н	8:45	25	7	10						1,000	57	1.2	0.3	6	0.007	0.002	
п	9:15	25	7	10						900	57	1.1	0.5	6	0.007	0.004	
п	9:45	25	7	10						880	57	1.0	0.5	6	0.007	0.004	
п	10:45	25	8	12						720	59	0.9	0.9	6	0.007	0.007	
н	11:45	25	8	12						680	59	0.8	0.8	6	0.007	0.007	
н	12:45	25	8	12						520	59	0.6	0.6	6	0.007	0.007	
"	13.43 23 6 12									500	59	0.6	0.6	6	0.007	0.007	
п	" 14:45 25 8 12									440	57	0.5	0.5	6	0.007	0.007	
п										240	57	0.3	0.3	6	0.007	0.007	
Well Ga	uging Da	ta:				В	efore	EFR	® Ev€	ent	P	After EFR [®] Eve	nt	Corr. DTW	Breather	Stinger	
Well No.	Diam.	Т	D (fi	t)	DTS	(ft)	D	TW (ft)	SPH (ft)	DTS (ft)	DTW (ft)	SPH (ft)	Change (ft)	Port (ACFM)	Depth (ft)	
MW-17	2"				-		15.04			0.00	-	15.15	0.00	-0.11			
MW-19	2"	2	22.1	5	14.3	33		14.55	5	0.22	-	21.20	0.00	-6.82	0	15 - 20 - 22	
MW-20	2'	2	24.22	2	14.9	92		15.03	3	0.11	-	Dry	-	-	0	15 -20 - 24	
<u>Vacu</u>	um Truck	Info	orma	ation	1					Recovery	/Disposal In	formation					
Subcontractor:		Non	ie				Hyd	roca	rbor	ns Removed (vapor):	6.2	pounds		4		
Truck Operator:		C. Fi	ree				Hyd	roca	rbor	ns Removed (liquid):	0	gallons	_	5 5		
Truck No.:		149					Tota	al Hy	droc	arbons Remo	oved:	0.9	equiv. gal.	ECO	AC SER	VICES	
Vacuum Pumps:		Becl	ker				Mol	ecul	ar W	eight Used:		130	g/mole	ENVIRON	MENTAL	EDIATION	
Pump Type:		Twi	n LC-	-44s			Disp	osal	Fac	ility:		ERL		<u>www.</u>	ecovacservic	es.com	
Tank Capacity (gal.): 2,894							Tota	al Lio	luids	Removed:		341	gallons	((888) 4ECOVA	C	
Groundwater Recovery										<u>Offgas T</u>	reatment Inf	ormation		Su	pplemental F	uel	
Total Recovery:		34	41	g	allons		Atmospheric Exhaust: 0.06 pounds Type: Propane										
Average Flow Rate	e:	4	3	gal	llons/hr		Destruction Efficiency: 99.07% percent Gallons Used: 24										
<u>v</u>	'acuum F	ump	o Use	<u>9</u>			Not	<u>es:</u>									
Time:	7:45 to	o 15:	45				- In	crea	sed	stinger depth	5" at 10:00.						
# Pumps:	:	2					- In	crea	sed	stinger depth	to bottom a	t 12:45.					
RPM:	•																

<i>Environm</i> Remedie	ental NON-HAZARDOU	S WASTE	MANIFEST /	CERTIFIC	CATE OF	DISPOSAI Work Or		3143 N
	Formen I Schneid Lige 1428 Fairmant Ave Nal	udation		itact Phone				
Address City, State	Attanta, Gr INFORMATION: Alt Vac Services Ecourse Sc 105 Weatherstone Dr Sufte 610 Woodstock, GA - 30188 Mick Athens 770-842-8095	201053 Ash St 1, Ge 30114	Emergency Cor	FACILITY: Envi 460 Atla ntact	ronmenti Sawtell A nta, GA Paul Pc	sl Remedies, venue, SE owers 9-2783 x 304	LLC Zip 30	315
1st Trip De Arrival Start	Arriv Sta Departur Arriv	p Departure al art re		-	Date	HIS SECTION 10/21, 33332 39180 33560 5620		

Waste Description / DOT Shipping Name / Profile Number	Quantity	Units
Janarchive Action francisconductor 729: New - Haz Non - Rog	2 - 25001 341.80	gals
Nors - Wasz Non - Risg		
L-		
	· · · · · · · · · · · · · · · · · · ·	
Discrepancy Section:		
Generators Certification: This is to certify that the above-named materials are properly classified, descr condition for transportation according to the applicable regulations of the Department of Transportation.	ibed, packaged, marked and labeled, and are in pro	pper
GENERATOR (Print or Type) Signature	Date	
# 1.54 by Environment 1 Remedience Serveris as good of	Mag 10/21/16	
Transporter Certification: I hereby acknowledge the receipt of the above listed waste(s) and agree to tra	asport to the designated facility unless directed to d	0 50
by the generator. TRANSPORTER (Print or Type) Signature	Date	
ECONAC SERVICES PRESTORATE W FREE A	lfl jolachi	
Receiving Facility Certification: The above waste (s) were received by this facility, and will be processed	d, disposed of, or recycled in accordance with	
applicable regulations. FACILITY (Print or Type) Signature Environmental Remedies, LLC	Date 10/21/14	2

WHITE-T/S/D/F COPY PINK-T/S/D/F	COPY GOLD-INVOICE COP	Y GREEN-TRANSPOR	TER BLUE-GENERATOR
---------------------------------	-----------------------	------------------	--------------------

Hydraulic Conductivity and Ground Water Flow Velocity Calculations Attachment B

Attachment B Summary of Slug Test Results, March 2016 Former I.Schied Facility (HSI Site # 10753) Atlanta, Georgia

Well ID	Test Description	Analysis Method	Hydraulic Conductivity ¹ [K] (cm/sec)	Geometric Average Well Hydraulic Conductivity ² (cm/sec)
ET-MW-8 ³	Slug Out	Bouwer-Rice (1976)	7.56E-04	6.27E-04
E 1-1VI VV-0	Slug Out	bouwer-kice (1976)	5.20E-04	0.27 E-04
ET-MW-9 ³	Slug Out	Bouwer-Rice (1976)	5.63E-04	4.36E-04
E1-1VIVV-9	Slug Out	bouwer-kice (1976)	3.37E-04	4.36E-04
ET-MW-12 ³	Slug Out	Bouwer-Rice (1976)	5.16E-04	E 10E 04
E1-IVIVV-12	Slug Out		5.04E-04	5.10E-04
	Slug In	Bouwer-Rice (1976)	4.36E-04	3.07E-04
MW-17	Slug Out		1.85E-04	
IVIVV-17	Slug In		4.20E-04	
	Slug Out		2.62E-04	
MW-18	Slug Out	Bouwer-Rice (1976)	2.34E-04	2.34E-04
MW-19 ³	Slug Out	Bouwer-Rice (1976)	3.48E-04	7.34E-04
	Slug Out		1.55E-03	
MW-20 ³	Slug Out	Bouwer-Rice (1976)	3.29E-04	4.44E.04
	Slug Out		5.99E-04	4.44E-04
Geometric Mean of All Data			4.41E-04	
			(1.25 feet/day)	

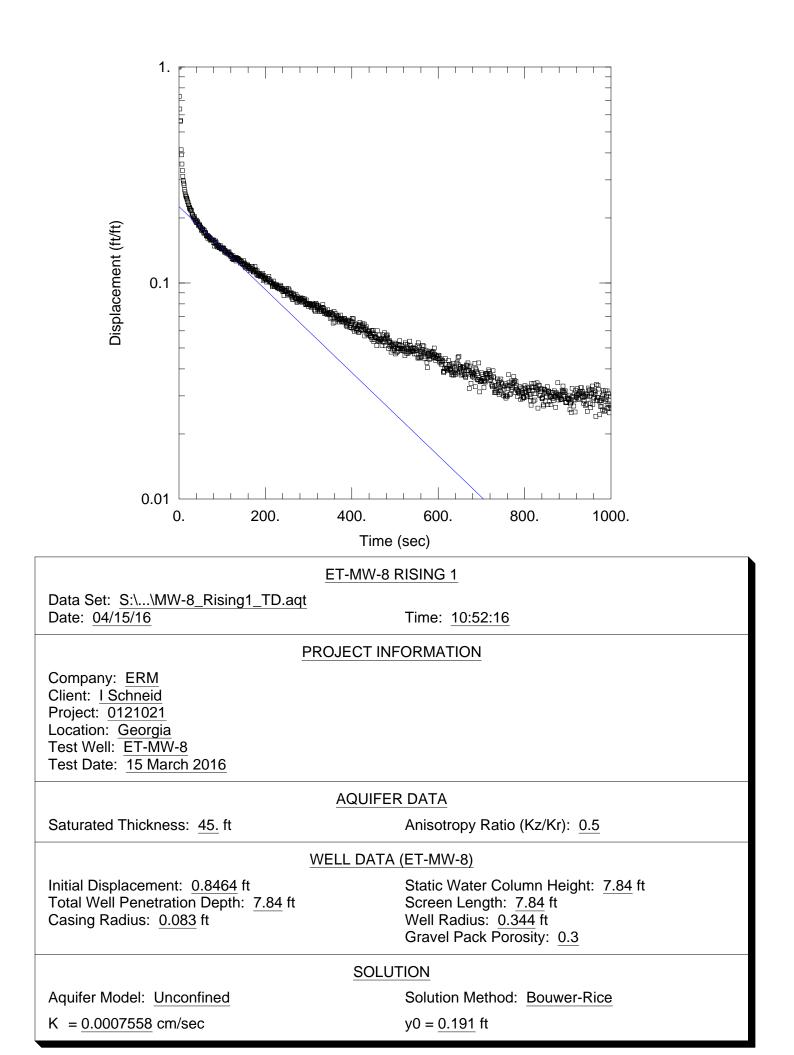
¹ Values of *Hydraulic Conductivity* were computed using AQTESOLV for Windows

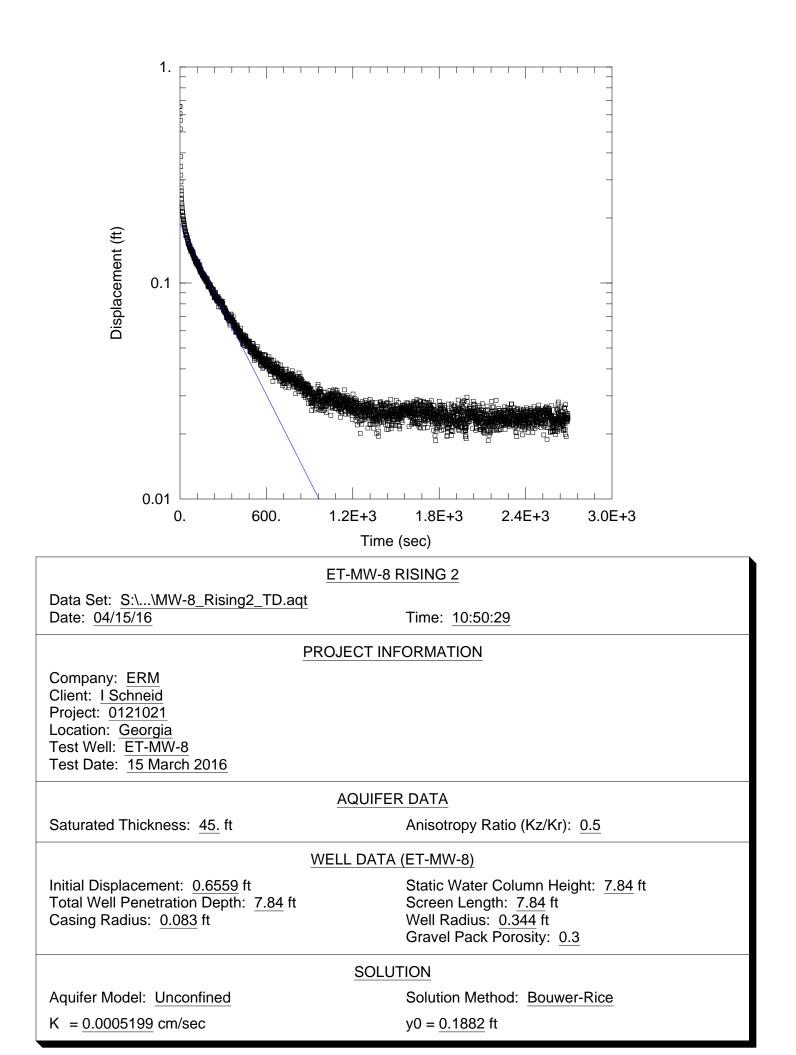
² Computed using a geometric mean

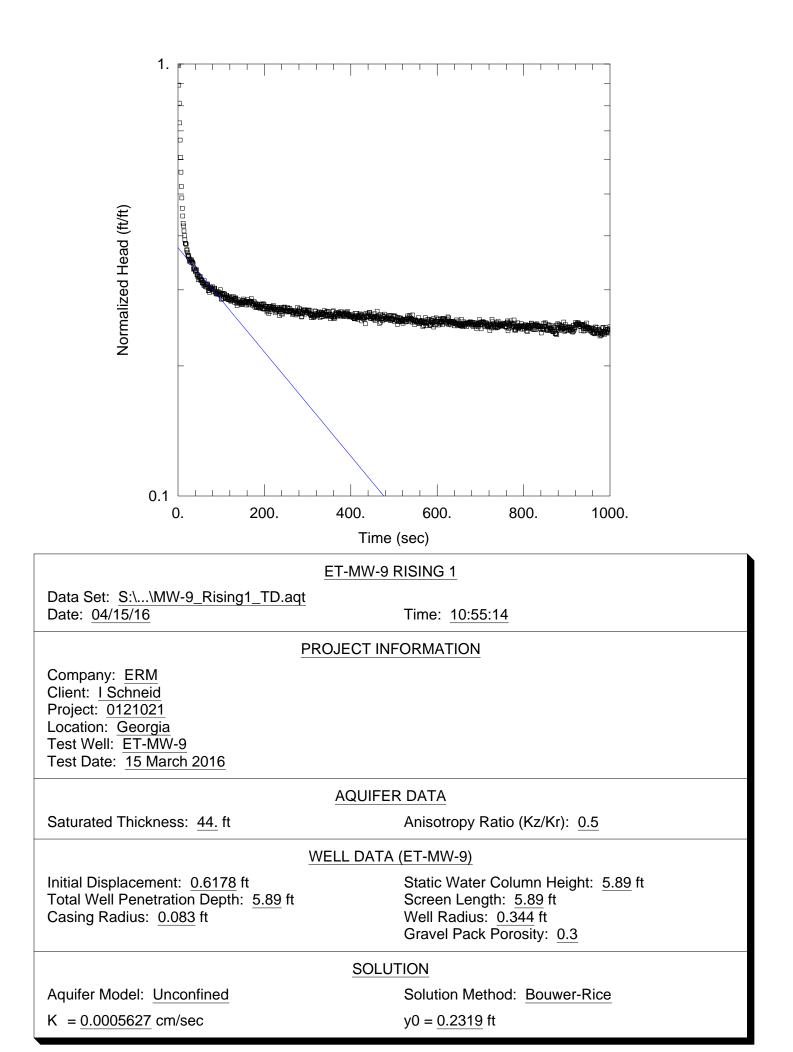
³Slug in test not used due to well screen partially submerged

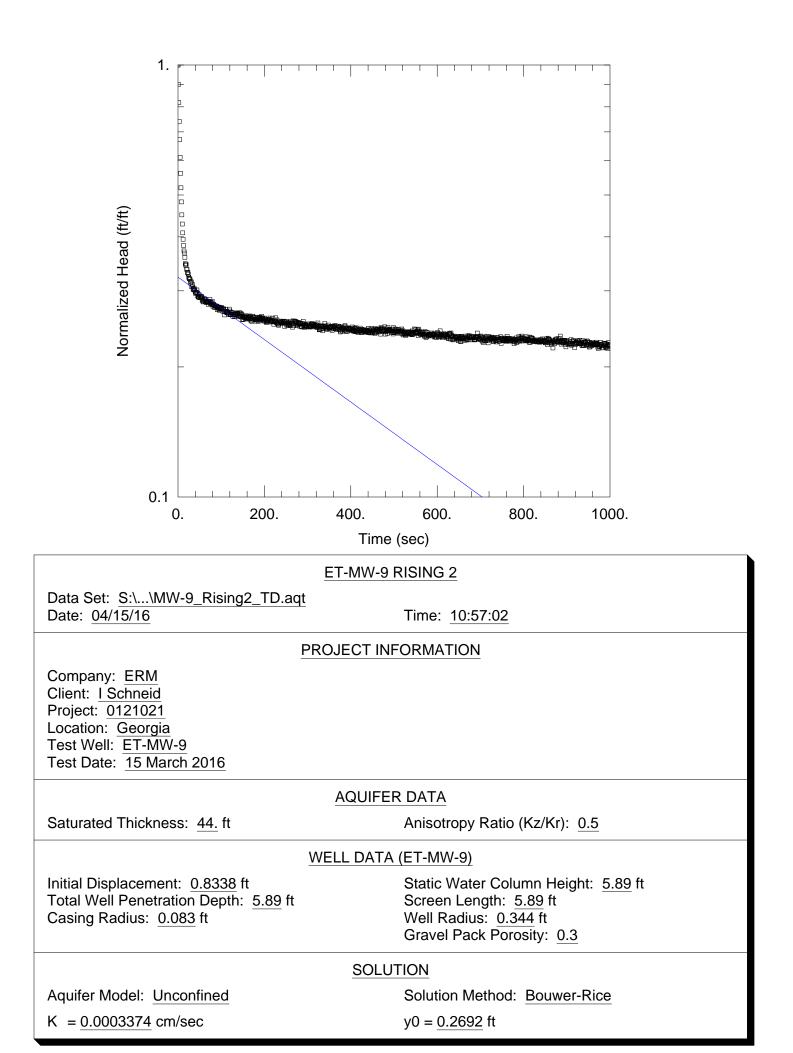
Notes:

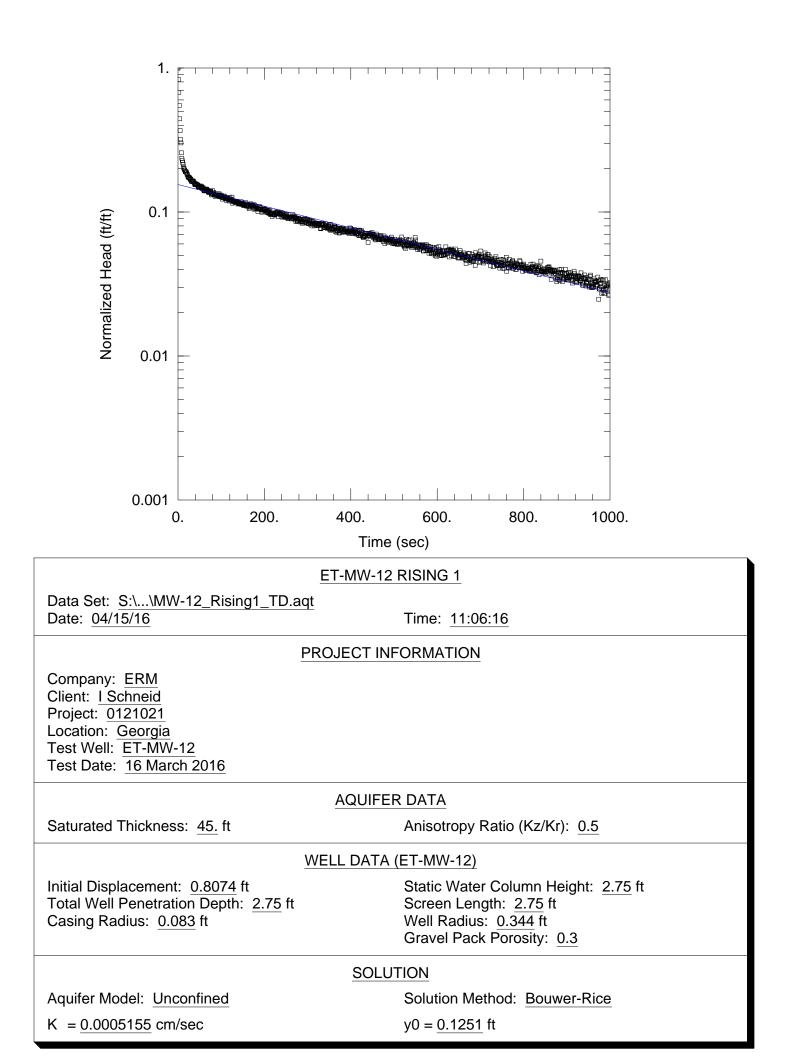
"Slug in" refers to a falling head test, creating an upward displacement of water. "Slug out" refers to a rising head test, creating a downward displacement of water.

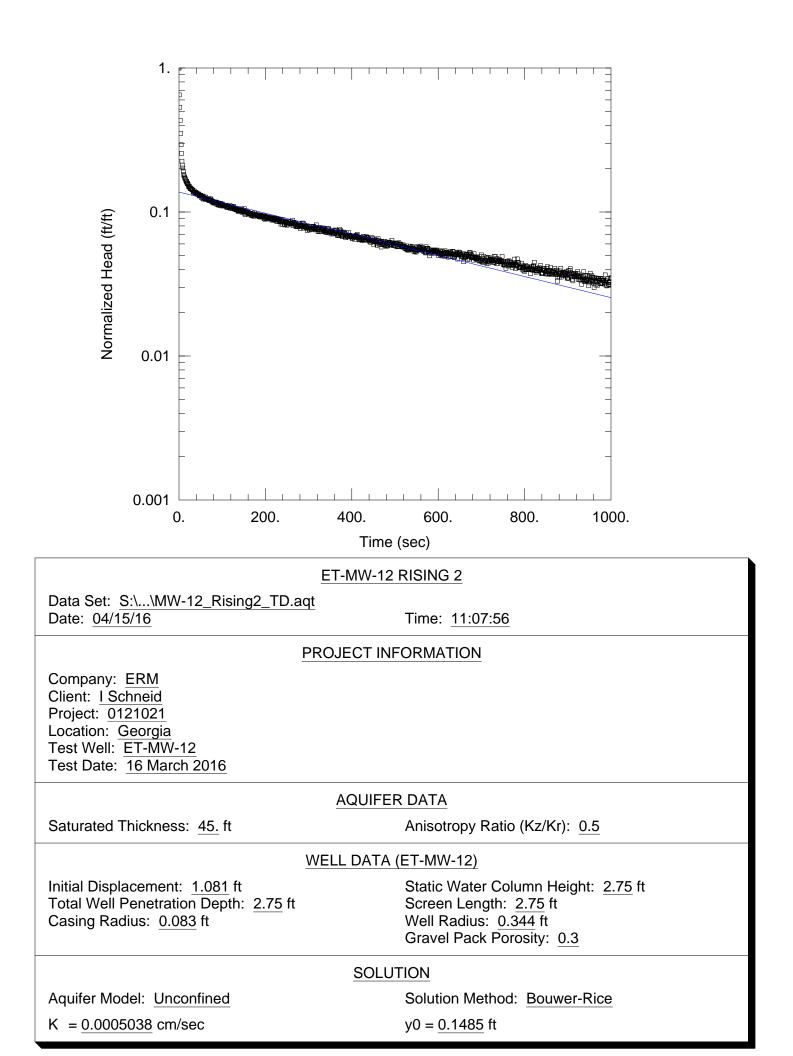

ERM

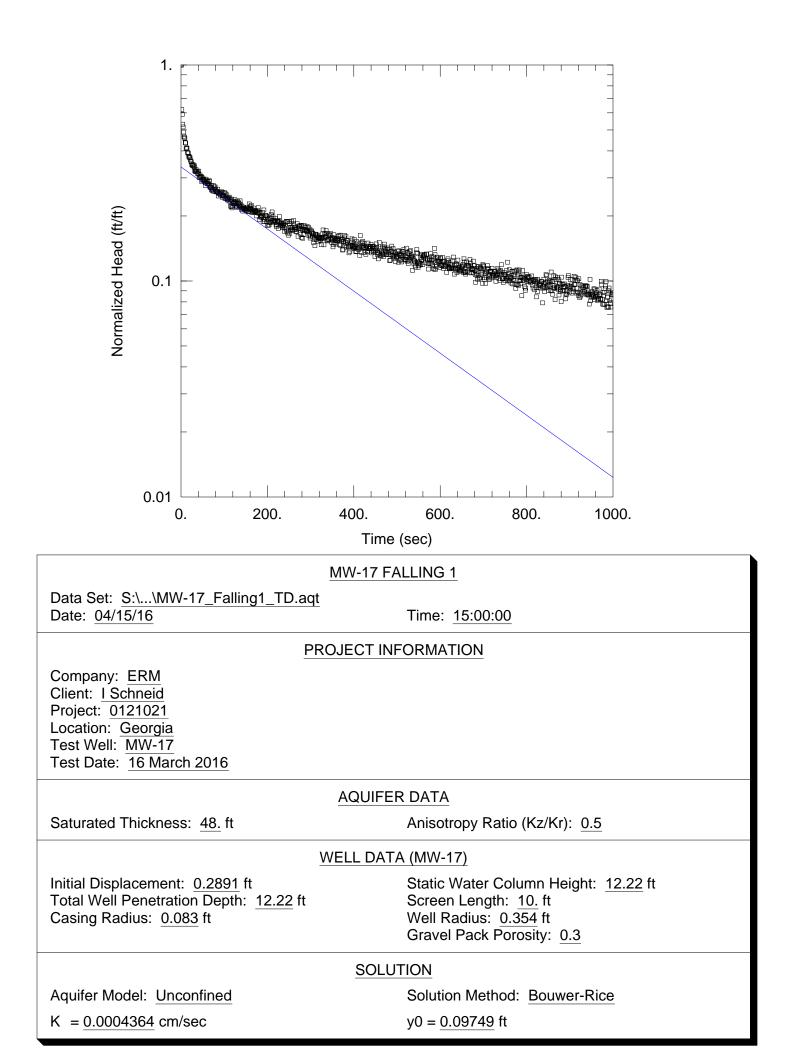

Attachment B Ground Water Flow Velocity Calculations Former I.Schied Facility (HSI Site # 10753) Atlanta, Georgia

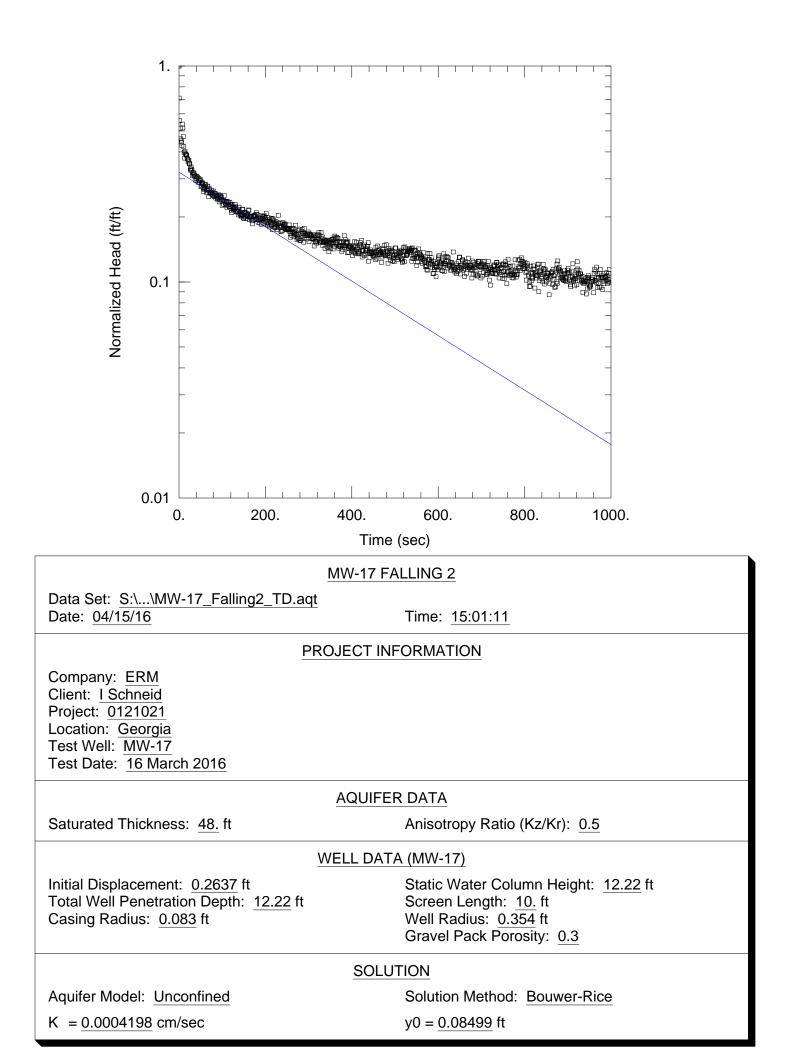

manna, ocorgia						
	UPGRADIENT	DOWNGRADIENT			AVERAGE LINEAR	AVERAGE LINEAR
MONITORING	ET-MW-4	ET-MW-9	HORIZONTAL	GROUNDWATER	VELOCITY OF	VELOCITY OF
EVENT DATE	GROUND WATER ELEVATION	GROUND WATER ELEVATION	DISTANCE	GRADIENT	GROUND WATER FLOW	GROUND WATER FLOW
	(feet)	(feet)	(feet)	(I)	(ft/day)*	(ft/year)
08-Jan-16	89.22	80.27	345	0.026	0.11 ft/day	39.54 ft/year

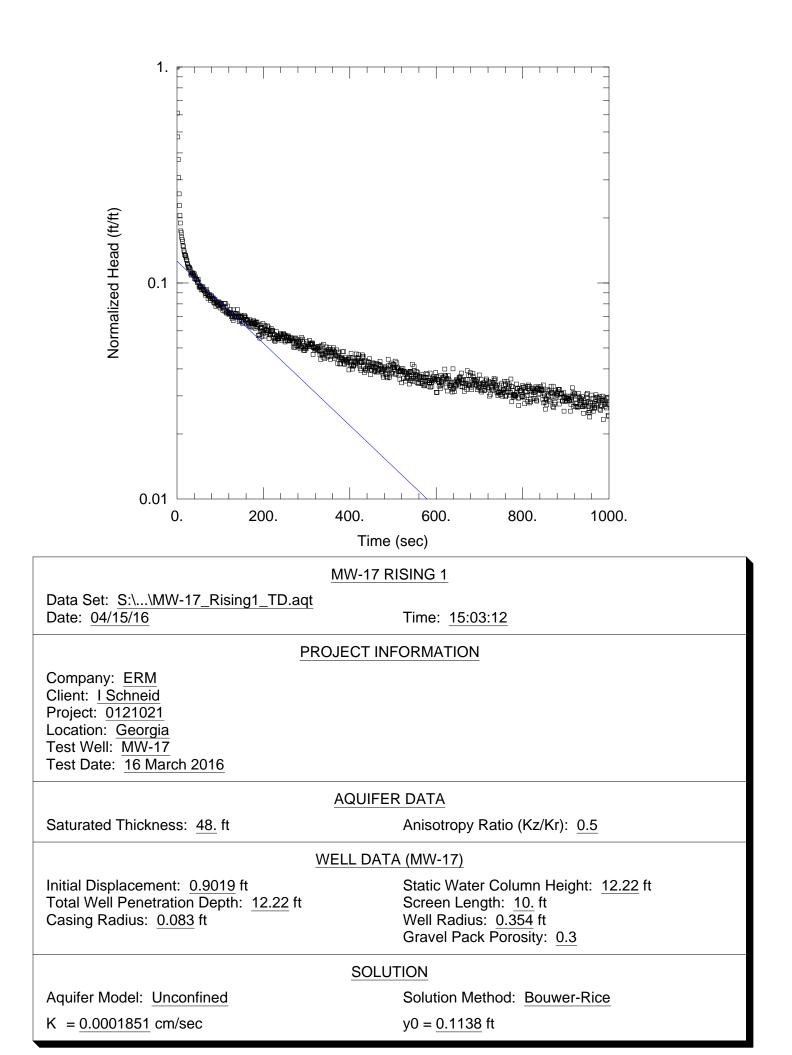

Note

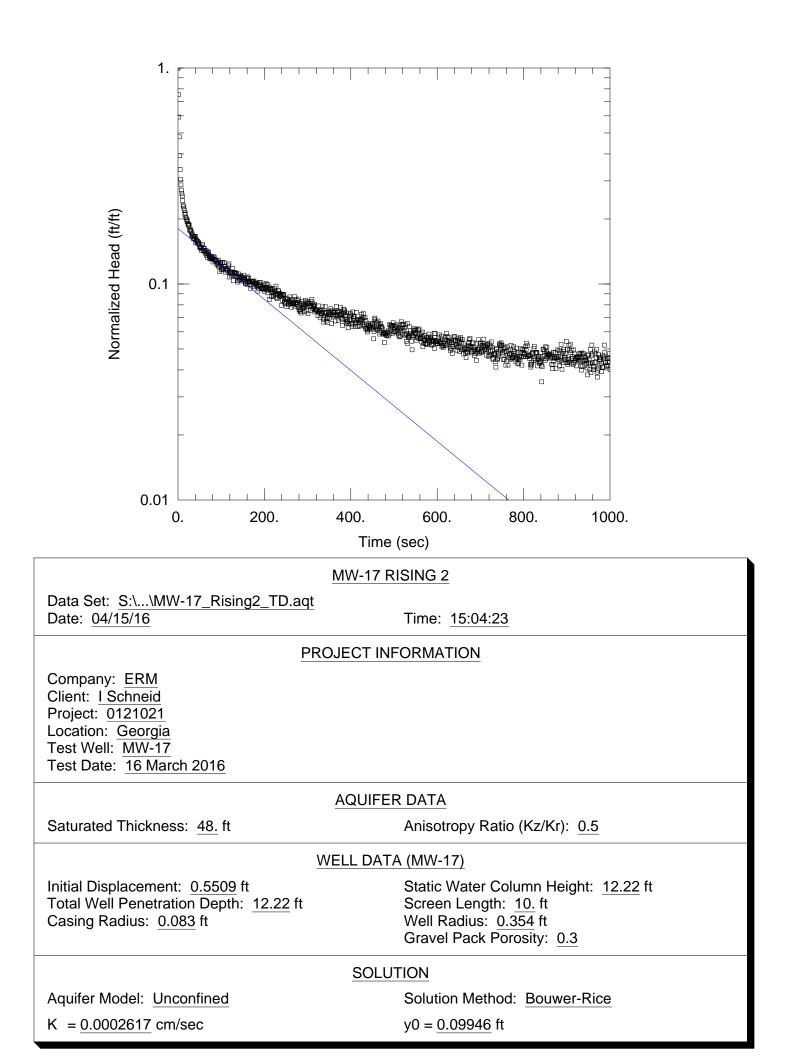

*: Average linear flow velocity calculated using, V = (K/ne) * I where: K = 1.25 feet/day ne = effective porosity (0.3) I = groundwater gradient calculated above.

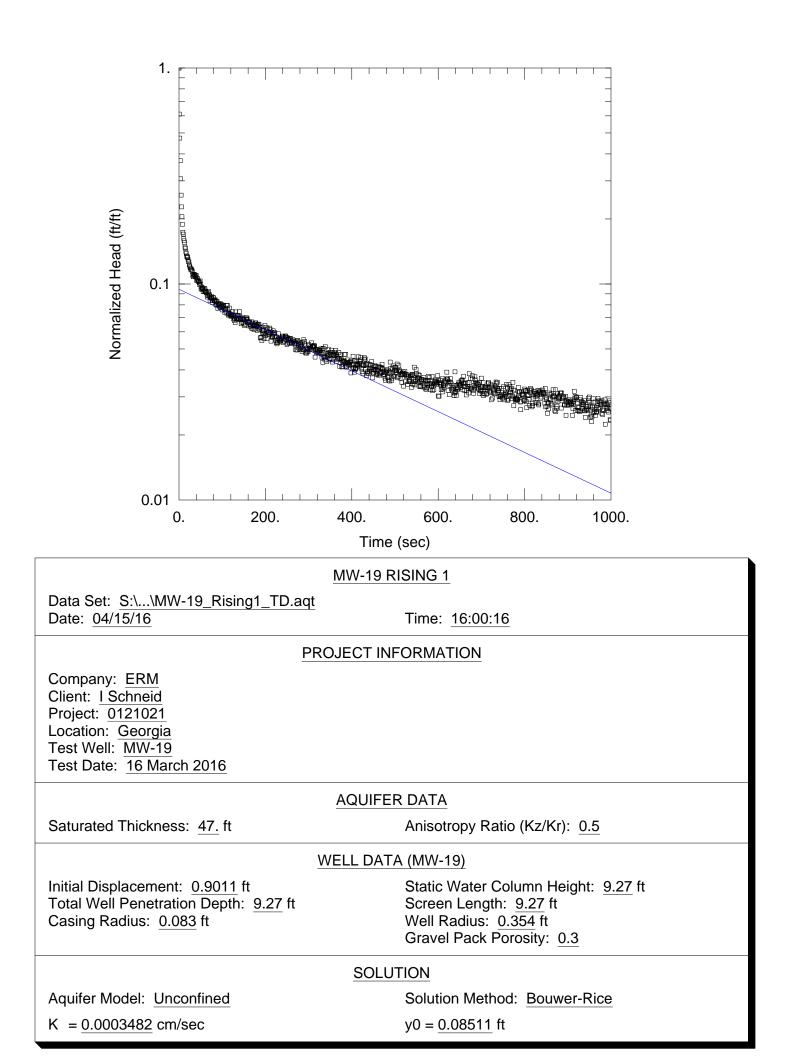


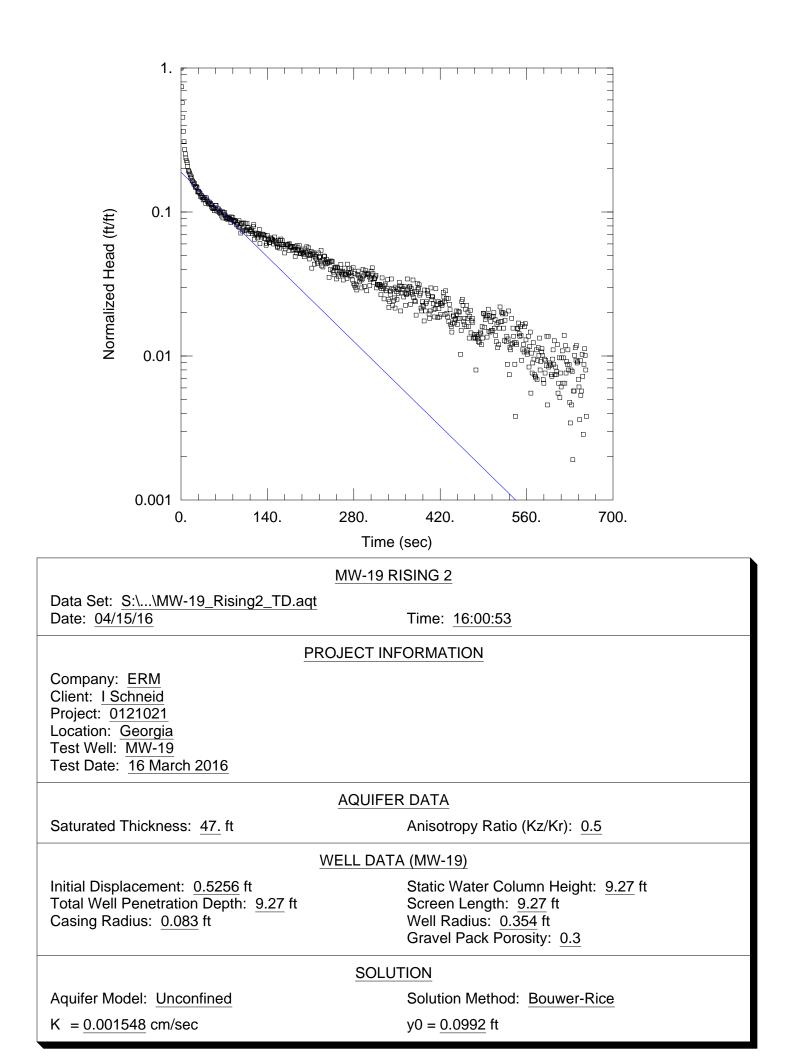


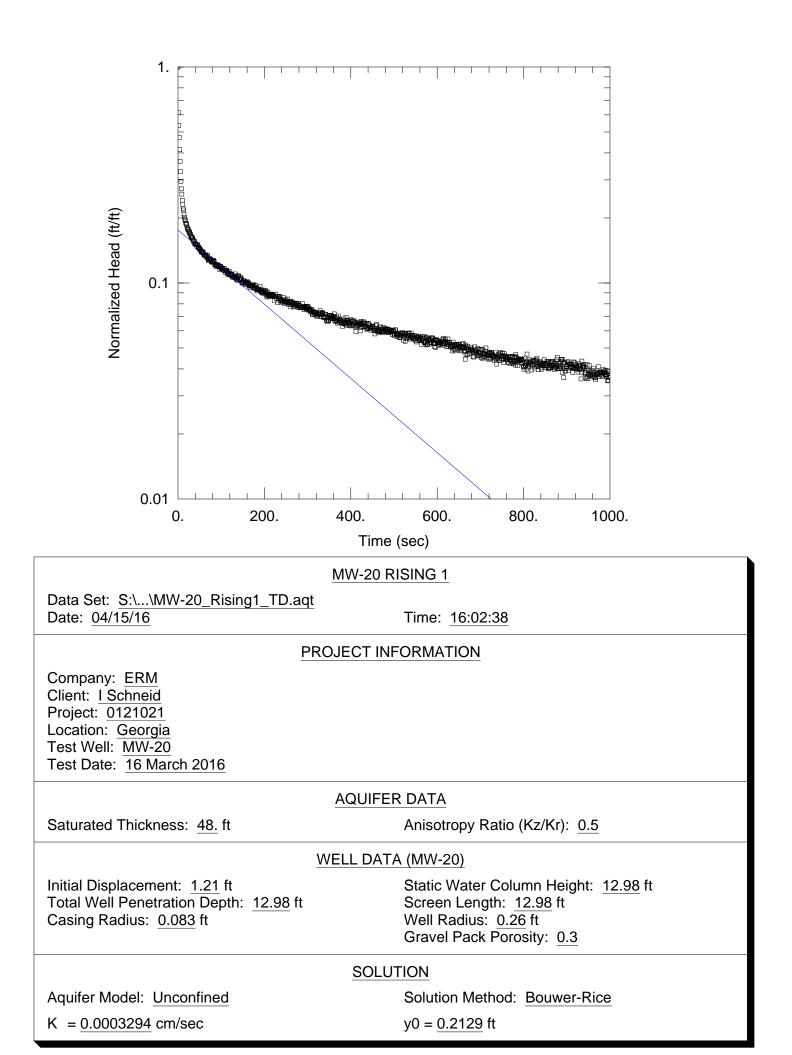


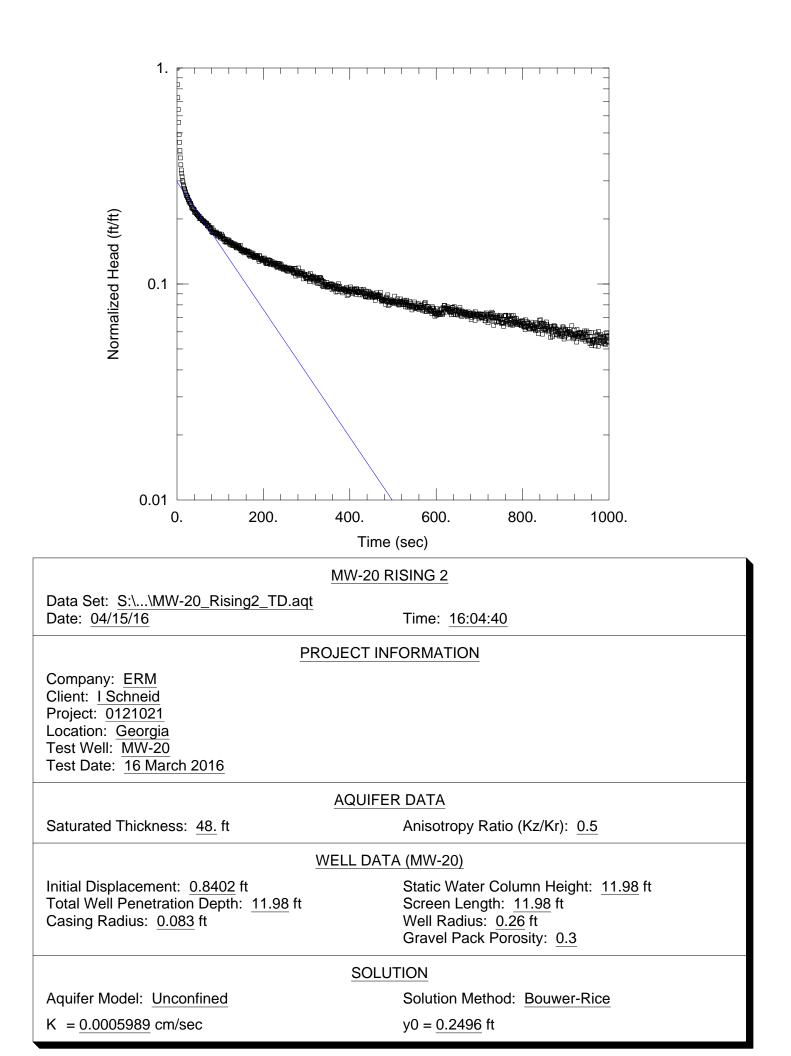












Vapor Intrusion Assessment Report (Electronic Copy Only) Appendix C

July 27, 2017 Project No. 0121021 Former I. Schneid Facility August 3, 2016

Mr. Barrett Fischer Georgia Environmental Protection Division Response and Remediation Program 2 Martin Luther King, Jr. Drive, Southeast Suite 1054 East Atlanta, Georgia 30334 Environmental Resources Management

The Towers at Wildwood 3200 Windy Hill Road SE Suite 1500W Atlanta, Georgia 30339 Phone (678) 486-2700 Fax (678) 745-0103

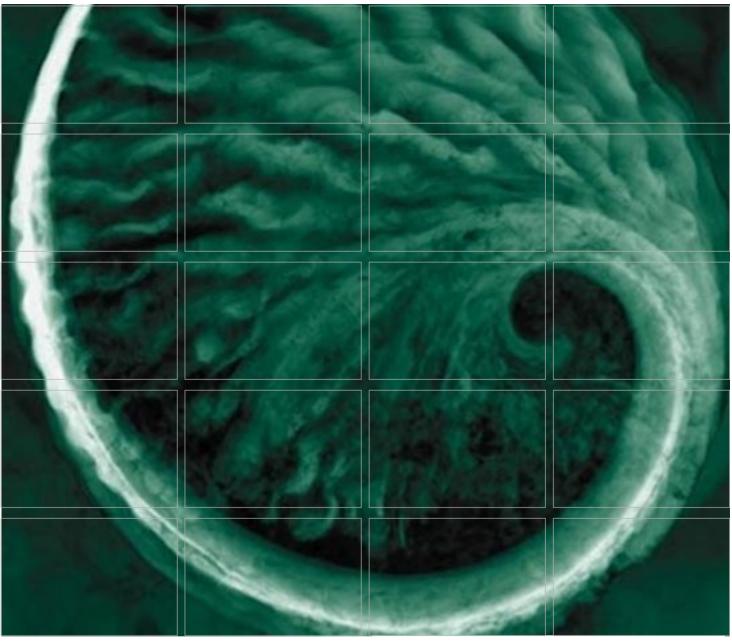
Subject: Vapor Intrusion Assessment Report Former I. Schneid Facility, HSI Site No. 10753 1429 Fairmount Avenue, N.W. Atlanta, Georgia

Dear Mr. Fischer:

Attached please find one hard copy and two CD Copies of the *Vapor Intrusion Assessment Report* for the former I-Schneid Facility Site located in Atlanta, Georgia.

Sincerely, Please contact us with questions or comments concerning this matter.

Sincerely,


2 feir

Adria Reimer. P.G. *Georgia P.G. No.* 2004

M. Bilkert

Jeffrey N. Bilkert *Principal*

cc: Mr. Stephen Chapman - I.S. Liquidation, LLC

VAPOR INTRUSION ASSESSMENT REPORT

Former I. Schneid Facility

I. Schneid Liquidation, LLC Atlanta, Georgia

ERM Project No.: 0121021

August 3, 2016

www.erm.com

TABLE OF CONTENTS

GRC	OUND	WATER S	SCIENTIST CERTIFICATION STATEMENT	1
1.0	INT	RODUCT	TION	2
	1.1	OBJEC	CTIVES	2
	1.2	REPOI	RT CONTENT AND ORGANIZATION	2
2.0	INV	ESTIGAT	TON PROCEDURES	4
	2.1	COMM	IERCIAL BUILDING SURVEY	4
	2.2	SUB-S	LAB SOIL VAPOR SAMPLING	4
	2.3	OUTD	OOR AIR SAMPLING	6
	2.4	INDO	OR AIR SAMPLING	5
	2.5	ANAL	YTICAL METHODS	7
3.0	RESULTS			8
	3.1	BUILD	DING SURVEY RESULTS	8
	3.2	DIFFE	RENTIAL PRESSURE READINGS	8
	3.3	ANAL	YTICAL RESULTS	9
		3.3.1	Screening Levels	9
		3.3.2	Sub-Slab	9
		3.3.3	Indoor Air	10
4.0	CON	ICLUSIO	DNS	11

LIST OF TABLES

1	Vapor Intrusion Assessment – Sub-Slab Results
2	Vapor Intrusion Assessment – Indoor Air Results

LIST OF FIGURES

1	Site Location Map
2	Sample Location Map
3	Sub-Slab Analytical Results – June 2016
4	Indoor Air Analytical Results – July 2016

APPENDICES

A	Vapor Intrusion Evaluation Work Plan
В	Sampling Location Photo-Log
С	Air Sampling Data Sheets
D	Laboratory Reports

GROUNDWATER SCIENTIST CERTIFICATION STATEMENT

I certify that I am a qualified ground-water scientist who has received a baccalaureate or post-graduate degree in the natural sciences or engineering, and have sufficient training and experience in groundwater hydrology and related fields, as demonstrated by state registration and completion of accredited university courses, that enable me to make sound professional judgments regarding groundwater monitoring and contaminant fate and transport. I further certify that this report was prepared by myself or by a subordinate working under my divertion.

Adria L. Reimer, PG#2004 RED PROFESSIO

August 3, 2016

1

1.0 INTRODUCTION

Environmental Resources Management (ERM) has prepared this Vapor Intrusion Assessment Report (VIAR) on behalf of I. Schneid Liquidation, LLC (I-Schneid). The report presents the results of a vapor intrusion (VI) assessment performed at the former I. Schneid facility located at 1420 Fairmont Avenue in Atlanta, Fulton County, Georgia (the "Site"). The Site is listed on Georgia's Hazardous Site Inventory (HS I) and is currently regulated under Georgia's Voluntary Remediation Act. The purpose of the assessment was to evaluate the potential for VI of volatile organic compounds (VOCs) into the building and evaluate whether there is an unacceptable VI risk to future workers within this building that warrants additional actions (i.e., assessment and/or mitigation of risk). The assessment was performed as part of the Voluntary Remediation Program (VRP) requirements and in cooperation with the current owners of the property. The assessment was conducted in accordance with ERM's May 25, 2016 Vapor Intrusion Evaluation Work Plan (Work Plan, copy included as Appendix A) approved by the Georgia Environmental Protection Division (GAEPD) by email on May 23, 2016.

The VI assessment described in this report included two sampling events: June 8, 2016 and July 5, 2016. The June 2016 event included three sub-slab soil gas samples and two sub-slab multi-depth soil gas samples. The July 2016 sampling event included five indoor air samples and one outdoor air sample at the Site. The June 2016 sampling event was completed to evaluate concentrations of VOCs in soil gas and to evaluate if indoor air sampling was warranted. The July 2016 sampling was completed to evaluate potential impacts to indoor air. The procedures, results and conclusions of the VI assessment are presented in this VIAR.

1.1 OBJECTIVES

The primary objective of the VI assessment was to evaluate whether there is an unacceptable VI risk to future workers in the commercial building due to VOCs or naphthalene in groundwater at the Site that may warrant further action to assess or mitigate.

1.2 REPORT CONTENT AND ORGANIZATION

The remaining sections of this VIAR and a summary of their content are as follows:

Section 2 – provides a description of the procedures used in the assessment;

Section 3 – presents the results of the assessment including the screening levels used for each media and their rationale, and the analytical results of the collected samples; and

Section 4 – provides conclusions derived from the assessment and recommended path forward concerning VI at the former I-Schneid Facility.

2.0 INVESTIGATION PROCEDURES

This section of the VIAR describes the procedures employed during the assessment for conducting Site surveys, sub-slab soil gas sampling and indoor/outdoor ambient air sampling. The procedures were conducted in accordance with the GAEPD-approved *Vapor Intrusion Evaluation Work Plan* unless otherwise indicated in this section of the report.

The location of the former I. Schneid facility is shown on Figure 1.

In summary, the VI assessment consisted of the following:

- Visually surveyed the building to identify and assess sampling locations and building interior conditions to identify potential underground utilities, potential preferential pathways, and materials that could potentially contribute VOCs to indoor air.
- Collected a total of four sub-slab soil vapor samples (three locations and one duplicate sample) and three samples each from two sub-slab multi-depth soil gas sampling locations at the Site to assess VOCs in sub-slab soil vapor.
- Collect a total of five indoor air samples to evaluate VOCs inside the building. An outdoor, ambient air sample was also collected.
- Compared analytical results to applicable screening levels to evaluate whether additional assessment and/or other action is required.

2.1 COMMERCIAL BUILDING SURVEY

Prior to initiation of the field sampling program, ERM completed a building survey to evaluate property-specific conditions that may affect the design and/or results of the sampling program. The building survey included an evaluation of the foundation type and condition, and identification of potential preferential pathways.

2.2 SUB-SLAB SOIL VAPOR SAMPLING

Three sub-slab soil vapor sampling points and two multi-depth soil gas probes [3, 7, and 11 feet below ground surface (ft bgs)] were installed inside the building. The locations of these points and probes are shown on Figure 2. They were selected to be in proximity to groundwater with

4

the highest level of impact by VOCs and naphthalene. In general, all were located in proximity for former source areas identified previously at the Site. These included the former solvent mixing room, floor drain and sump.

Sub-surface clearance activities were conducted prior to installation activities. Georgia 811 was contacted in accordance with local regulations. Additionally, ERM retained a private utility locator to conduct geophysical surveys utilizing ground penetrating radar (GPR) and cable avoidance tools (CAT) to evaluate potential subsurface utilities in the areas where sub-slab soil vapor sampling points/probes were to be installed. Sample locations were moved as necessary to avoid potential underground utilities.

The June 2016 soil gas sampling event was completed on June 7 and 8, 2016 in accordance with the approved Work Plan. A photo-log of the sampling locations is included in Appendix B. Following sampling point installation, leak checks were performed as described in the approved Work Plan (i.e., water dam and shut-in test). No leaks were observed in the nine sub-slab sampling locations. Prior to sub-slab sampling, a GEM 2000 was used to purge the equivalent volume of the tubing and sand pack to remove any atmospheric air entrained during installation and to obtain soil gas readings for oxygen, CO₂, and methane. Sub-slab soil vapor samples were collected approximately 24 hours after installation of each sampling point. Sampling information, including quality control information, was recorded on the air sampling data sheet (Appendix C). This information included starting and ending vacuum reading of each canister.

Prior to and following collection of sub-slab soil vapor samples, differential pressure measurements were collected. A digital micromanometer was used at each location to take instantaneous differential pressure readings at each location. Differential pressure readings (i.e., sub-slab pressure relative to indoor air pressure) are included in the results (Section 3.0).

Upon completion of soil vapor sample collection, sub-slab sampling points were capped and left in place.

2.3 INDOOR AIR SAMPLING

The July 2016 sampling event was conducted on July 5, 2016, and included indoor air samples collected at five sampling locations. Approximate

sampling locations are shown on Figure 2. Three samples were co-located at the three sub-slab soil vapor locations in the building and two additional sampling locations were completed in areas of the building further downgradient from the former source area. Indoor air samples were collected concurrently with an outdoor air sample (see Section 2.4). A photo-log of the sampling locations is included in Appendix B. At the time of the indoor air sampling, the building was essentially vacant and had been closed up over the July 4th holiday weekend. No operational HVAC system was present in the building at the time leading up to and during the sampling.

Indoor air samples were collected with 2.7-liter Summa[®] canisters equipped with 8-hour flow regulators. The canisters and flow regulators were batch certified clean by the laboratory prior to use. The indoor air samples were collected away from exterior windows and doors to the extent possible to avoid potential influence from air exchanges with outdoor air. They were collected at a breathing zone height of approximately 3 to 5 feet above the floor surface.

ERM personnel periodically checked on the Summa[®] canisters over the 8hour sampling period to monitor changes in vacuum. Sampling information, including vacuum readings, was recorded on the air sampling data sheet and is included in Appendix C.

2.4 OUTDOOR AIR SAMPLING

The July 2016 sampling event included outdoor ambient air sampling in addition to the indoor air sampling described in Section 2.3. One outdoor ambient air sample was collected on July 5, 2016. The wind on the day of the sampling was estimated to be blowing from the southwest, so the sample was collected on the southwest side of the building approximately 10 feet away from the building wall. The outdoor ambient air sample location is shown on Figure 2 and a photo-log of the sampling location is included in Appendix A.

The outdoor ambient air sample collection was completed in accordance with the Work Plan. The outdoor ambient air sample was collected over an 8-hour period to reflect a commercial exposure scenario. Sample collection procedures were as describe in Section 2.3. The air intake of the Summa[®] canister was positioned facing downward to protect against rainwater. ERM personnel periodically checked on the Summa[®] canister over the 8-hour sampling period to monitor changes in vacuum and note activity in the vicinity of the sample location. Sampling information, including vacuum readings, was recorded on the air sampling data sheet and is included in Appendix C.

2.5 ANALYTICAL METHODS

Samples were analyzed by Alpha Analytical Laboratory of Mansfield, Massachusetts, which is approved by Georgia through the National Environmental Laboratory Accreditation Program (NELAP). Sub-slab soil vapor samples were analyzed for VOCs using USEPA TO-15 Full Scan. Indoor and outdoor air samples were analyzed for VOCs using USEPA TO-15 selective ion monitoring (SIM). Analytical results were reported for a Site-specific list of VOCs, including naphthalene, as detailed in the Work Plan.

3.0 RESULTS

This section of the VIAR summarizes the results of the building survey, and sub-slab soil vapor, indoor and outdoor ambient air sampling. Laboratory analytical results from June 2016 sub-slab sampling event are summarized in Table 1 and Figure 3. Laboratory analytical results from July 2016 indoor air sampling event are summarized in Table 2 and Figure 4. Laboratory analytical reports for both events are provided in Appendix D.

3.1 BUILDING SURVEY RESULTS

A visual survey of the former I-Schneid facility building was conducted prior to the June 2016 sampling event. Building survey information was primarily used to facilitate evaluation of indoor air data. The following summarizes the observations from the survey:

- the building is vacant;
- numerous cracks, drains, groundwater monitoring wells are located within the building's concrete floor creating potential vapor intrusion preferential pathways; and
- drums filled with soil from environmental investigations were staged inside the building. Drum covers were in place, however.

3.2 DIFFERENTIAL PRESSURE READINGS

Differential pressure readings (i.e., sub-slab pressure relative to indoor air pressure) were collected both before each sub-slab soil vapor sample was collected. Readings at each sub-slab sample location were as follows:

June 2016

- SG-1-3' = +0.008 inches water column (inWC),
- SG-1-7′ = +0.003 inWC,
- SG-1-11′ = -0.007 inWC,
- SG-2-3′ = -0.002 inWC,
- SG-2-7′ = +0.002 inWC,
- SG-2-11' = +0.006 inWC,

- SSV-1 = +0.002 inWC,
- SSV-2 = -0.001 inWC, and
- SSV-3 = +0.001 inWC.

Differential pressure measurements recorded little to no positive pressure in the sub-surface as compared to indoor air. Advective air flow moves from areas of higher pressure to areas of lower pressure. The data in the building support the indication that there is not a significant preference for air to flow from the subsurface to the indoor air.

3.3 ANALYTICAL RESULTS

3.3.1 Screening Levels

Analytical results for sub-slab soil vapor and indoor air were compared to USEPA Vapor Intrusion Screening Levels. Screening levels for the subslab assessment were derived using the USEPA VISL Calculator Version 3.4 dated June 2015. Screening levels for the indoor air assessment were derived using the USEPA VISL Calculator Version 3.5.1 dated May 2016. A commercial exposure scenario was selected within the VISL calculator. A 1x10⁻⁵ target risk for carcinogens was selected and a target hazard quotient of 1.0 was used for non-carcinogens. The derived values for the VISLs for each Site-specific VOC and sample media are included in their respective analytical results tables (Table 1 and Table 2).

3.3.2 Sub-Slab

The June 2016 sub-slab soil vapor analytical results are presented in Table 1. Also shown in Table 1 are the commercial and residential VISL for subslab soil gas calculated as described in Section 3.3.1. A summary of the results is as follows:

- 1,4-Dichlorobenzene (1,4-DCB), ethylbenzene, naphthalene, oxylene, and m/p xylene were detected in sub-slab and multi-depth soil gas samples at concentrations higher than their respective residential VISL.
- To a greater extent, 1,4-DCB, ethylbenzene, naphthalene, o-xylene, and m/p xylene were detected in sub-slab and multi-depth soil gas samples at concentrations higher than their respective commercial VISL.

• Chlorobenzene was detected on one multi-depth soil gas sample (SG-1, 11 ft bgs) at a concentration higher than its residential VISL.

These results indicated that additional assessment activities were required to obtain analytical data for indoor air samples to evaluate whether subslab VOC concentrations in soil gas were affecting indoor air quality and to determine if there is an unacceptable VI risk to future building occupants. This additional sampling in the building was performed in July 2016 and the results are presented below in Section 3.3.3.

3.3.3 Indoor Air

Results of the July 2016 indoor/outdoor ambient air analytical results are presented in Table 2. Also shown in Table 2 are the commercial and residential VISL for indoor air calculated as described in Section 3.3.1. A summary of the results is as follows:

- No exceedences of residential or commercial VISLs;
- Chorobenzene was not detected in any of the samples collected.
- Concentrations of ethylbenzene and xylenes were higher in the outdoor air than in indoor air indicating that the indoor air concentration were likely attributable to upwind sources ; and
- The Target Risk for Carcinogens (R) associated with the highest detected concentrations of 1,4-DCE and naphthalene were at least 1.5 orders of magnitude below commercial VISLs ($R = 1 \times 10^{-5}$) at a calculated $R = 8.8 \times 10^{-6}$ and $R = 5.3 \times 10^{-6}$, respectively.

These results indicate that VOCs detected in the sub-slab soil vapor samples do not currently present an unacceptable VI risk to future occupants of the I. Schneid facility building. Consequently, no further action is related to VI is warranted. Nevertheless, ERM understands that the concrete floor slab will be repaired/patched, and all trench drains and sumps will be filled with concrete as part future building renovations. Furthermore, a new HVAC system will be installed in the building. These renovations will serve to further decrease the potential for vapor intrusion. Sub-slab soil vapor sampling and analyses were conducted at the former I. Schneid facility in June 2016. The results of the sampling/analyses indicated that further VI assessment was warranted. This conclusion was based on the reported concentrations of 1,4-DCE, ethylbenzene, naphthalene, and xylenes exceeding their respective commercial VISLs for sub-slab soil gas.

Although there are sub-slab VISL exceedances, the results of the July 2016 indoor air sampling/analyses indicate that VOCs detected in the sub-slab soil vapor samples do not present a VI risk to future building occupants. This conclusion is based on the following:

- None of the VOCs detected in sub-slab soil gas at concentrations above their respective soil vapor VISLs were detected in indoor air samples above their indoor air VISL; and
- Only two VOCs were detected in indoor air samples at concentrations above outdoor air concentrations, and the calculated R associated with the highest detected concentrations for each were at least 1.5 orders of magnitude below commercial VISLs.

The results of the VI assessment indicate that no further assessment at the former I. Schneid facility building is warranted. Future building renovations, including improvements to the concrete floor slab and installation of a new HVAC system will further decrease any VI risk.

Tables

August 2016 Project No. 0121021 I. Schneid Liquidation Atlanta, GA

Table 1 Vapor Intrusion Assessment - Soil Gas Results Former I. Schnied Facility

Atlanta, Georgia

	Soil	Mu	lti-Depth Soil	l Gas ID, Dep	th (ft bgs), an	d Sampling I	Date	Sub-Slab Soil Gas ID and Sampling Date			
Site-Specific VOCs	EPA VISLs Sub-Slab R=10 ⁻⁵ , HI=1.0	EPA VISLs Sub-Slab R=10 ⁻⁵ , HI=1.0		SG-1			SG-2				
	Residential	Commercial	11'	7'	3'	11'	7'	3'	SSV-1	SSV-2	SSV-3
	[µg/m ³]	[µg/m ³]	8-Jun-16	8-Jun-16	8-Jun-16	8-Jun-16	8-Jun-16	8-Jun-16	8-Jun-16	8-Jun-16	8-Jun-16
Chlorobenzene	1,700	7,300	2,650	< 89.3	< 228	636	295	310	5.43	< 4.61	0.539
1,4-Dichlorobenzene	85	370	16,800	35,200	95 <i>,</i> 600	848	536	372	66.1	127	52.2
Naphthalene	28	120	3,160	13,500	19,500	241	417	126	58.7	128	81.8
Ethylbenzene	370	1,600	9,340	15,800	64,700	1,380	116	109	24.8	32.3	4.56
o-Xylene	3,500	15,000	19,000	23,500	85,100	3,680	1,720	2,660	40.1	72.1	13.6
p/m-Xylene	3,500	15,000	37,900	73,400	82,100	6,250	1,250	2,000	133	170	28.7

Notes:

EPA Screening Levels calculated using EPA's Vapor Intrusion Screening Level Calculator Version 3.4 June 2015.

Bold and highlighted - exceeds Commercial screening level.

Bold and highlighted - exceeds Residential screening level.

Soil gas results reporting in $\mu g/m^{3}$.

 $\mu g/m^3$ = micrograms per cubic meter.

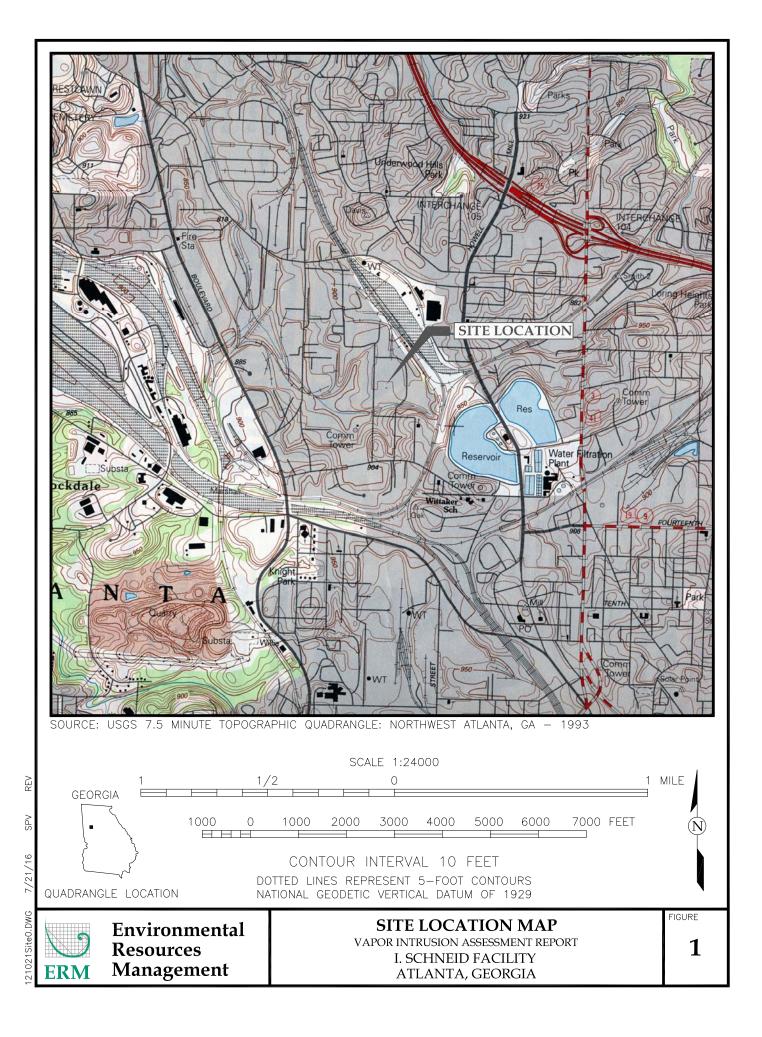
Table 2 Vapor Intrusion Assessment - Indoor Air Results Former I-Schnied Facility

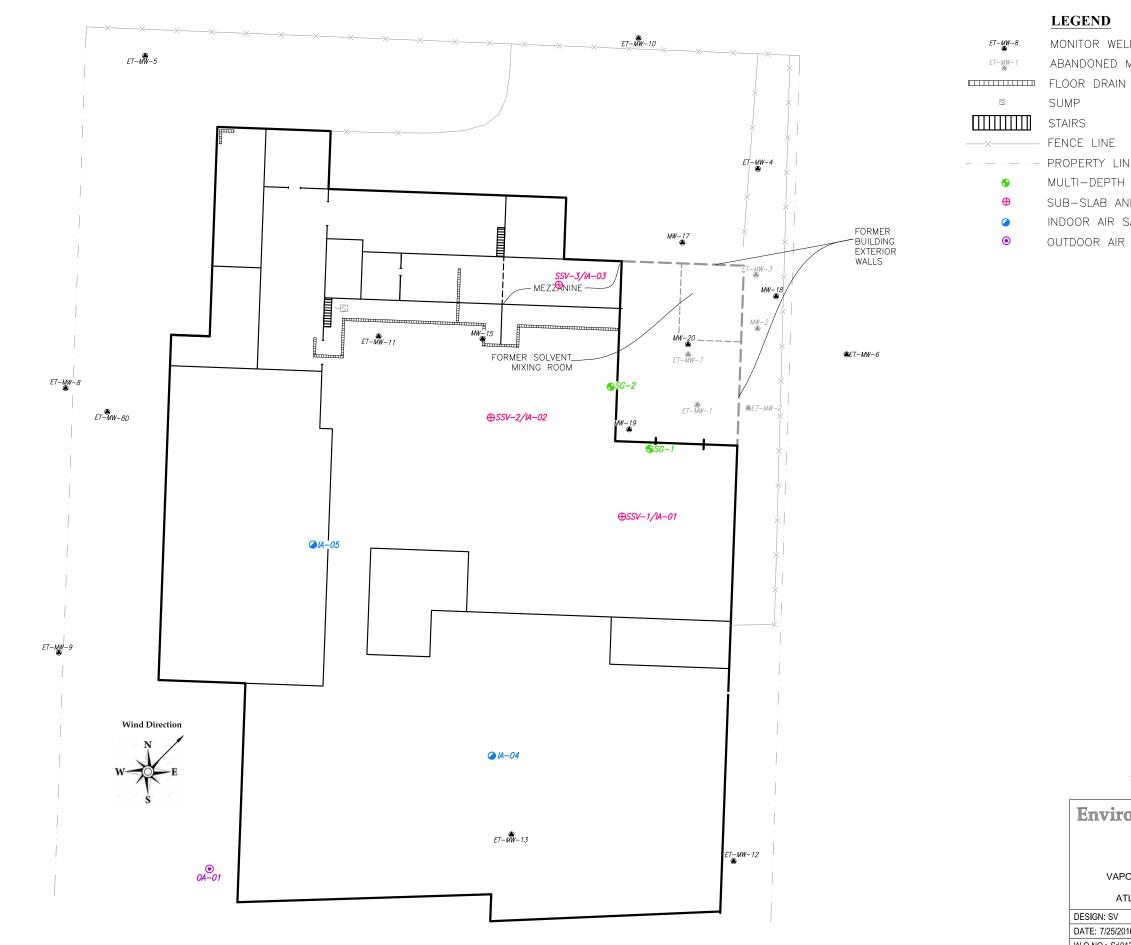
Atlanta, Georgia

Site-Specific VOCs	Indoor Air EPA VISLs R=10 ⁻⁵ , HI=1.0	Indoor Air EPA VISLs R=10 ⁻⁵ , HI=1.0		Indoor Air Sample ID and Sampling Date				Outdoor Ambient Air Sample ID and Sampling Date	VI Carcinogenic Risk	VI Hazard
	Residential	Commercial	IA-01	IA-02	IA-03	IA-04	IA-05	OA-01	Carcinogenic	Hazard
	[µg/m3]	[µg/m3]	5-Jul-16	5-Jul-16	5-Jul-16	5-Jul-16	5-Jul-16	5-Jul-16	Risk	Quotient
Chlorobenzene	52	220	< 0.461	< 0.461	< 0.461	< 0.461	< 0.461	< 0.461	NA	NA
1,4-Dichlorobenzene	2.6	11	0.475	0.559	0.343	2.25	0.709	< 0.120	8.8E-06	2.7E-03
Naphthalene	0.83	3.6	0.304	< 0.262	0.346	0.440	< 0.262	< 0.262	5.3E-06	1.4E-01
Ethylbenzene	11	49	0.143	0.126	0.143	0.265	0.204	0.764	NA	NA
o-Xylene	100	440	0.182	0.161	0.182	0.291	0.235	0.595	NA	NA
p/m-Xylene	100	440	0.430	0.391	0.473	0.856	0.647	2.1	NA	NA

Notes:

EPA Screening Levels calculated using EPA's Vapor Intrusion Screening Level Calculator Version 3.5.1 May 2016.

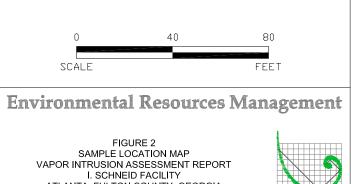

Indoor/Outdoor air results reporting in $\mu g/m^{3}$.


 $\mu g/m^3$ = micrograms per cubic meter.

NA - not applicable - indoor air concentrations were either below detection limits or below outdoor air concentrations.

Figures

August 2016 Project No. 0121021 I. Schneid Liquidation Atlanta, GA


DE DA W.(

LEGEND

MONITOR WELL LOCATION ABANDONED MONITOR WELL LOCATION

FENCE LINE PROPERTY LINE MULTI-DEPTH SAMPLE LOCATION SUB-SLAB AND INDOOR AIR SAMPLE LOCATION INDOOR AIR SAMPLE LOCATION OUTDOOR AIR SAMPLE LOCATION

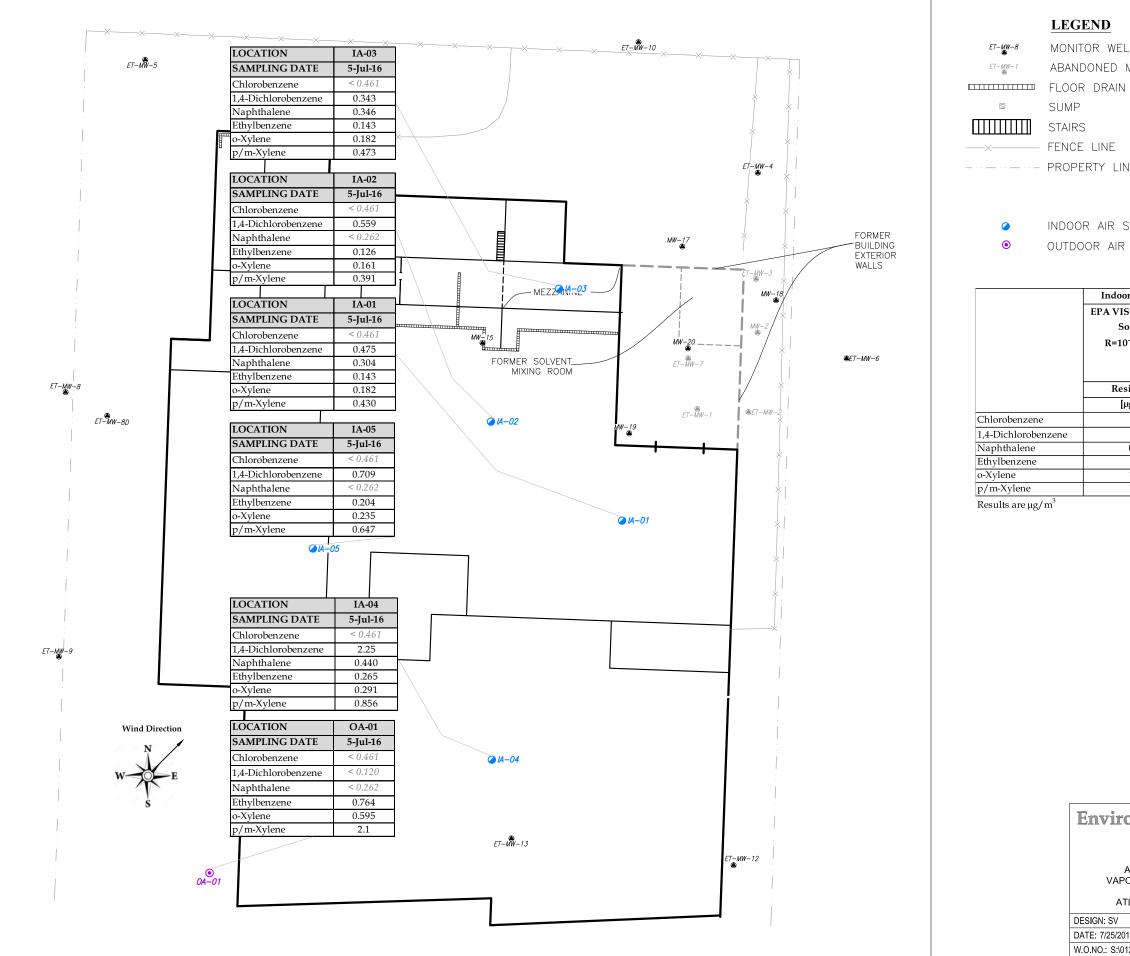
M

ATLANTA							
ESIGN: SV	DRAWN: SV	CHKD.: NV	ERM				
ATE: 7/25/2016	SCALE: AS SHOWN	REV.: 0	LIXIVI				
V.O.NO.: S:\0121021 - I Schneid\Files\FIGURES\121021 ISL\2016\07 2016\121021Site.dwg							


MONITOR WELL LOCATION ABANDONED MONITOR WELL LOCATION

PROPERTY LINE MULTI-DEPTH SAMPLE LOCATION SUB-SLAB SAMPLE LOCATION

> RESIDENTIAL VISL, < COMMERCIAL VISL (BLUE TEXT) > COMMERCIAL VISL (ORANGE TEXT)


M

	Soil Ga	s VISL
	EPA VISLs Sub-Slab	EPA VISLs Sub-Slab
	R=10 ⁻⁵ , HI=1.0	R=10 ⁻⁵ , HI=1.0
	Residential	Commercial
	[µg/m³]	[µg/m ³]
	1,700	7,300
;	85	370
	28	120
	370	1,600
	3,500	15,000
	3,500	15.000

Environmental Resources Management FIGURE 3 SUB-SLAB SOIL GAS ANALYTICAL RESULTS - JUNE 2016 VAPOR INTRUSION ASSESSMENT REPORT I. SCHN ł ATLANTA, FULTC / DRAWN DESIGN: SV

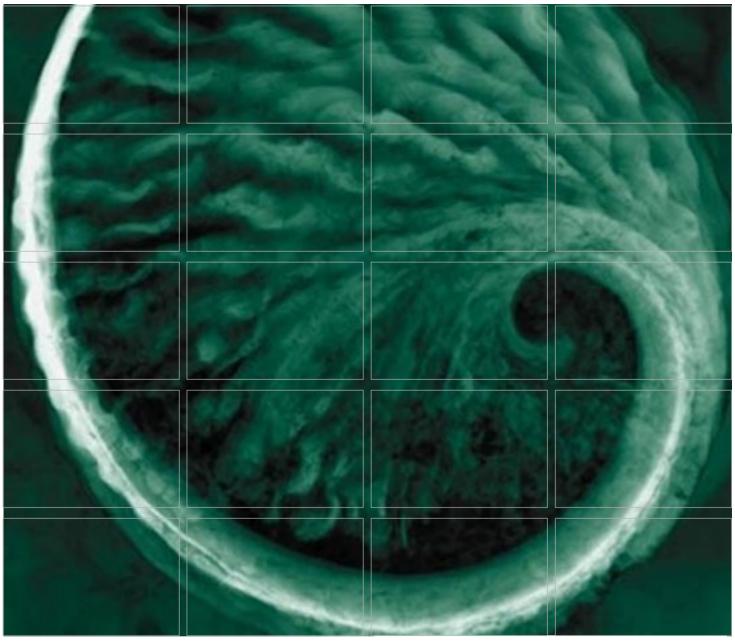
ATLANTA							
DESIGN: SV	DESIGN: SV DRAWN: SV CHKD.: NV						
DATE: 7/25/2016							
W.O.NO.: S:\0121021 - I Schneid\Files\FIGURES\121021 ISL\2016\07 2016\1210							

MONITOR WELL LOCATION ABANDONED MONITOR WELL LOCATION

PROPERTY LINE

INDOOR AIR SAMPLE LOCATION OUTDOOR AIR SAMPLE LOCATION

Indoor Air VISL	Indoor Air VISL
EPA VISLs Sub-Slab	EPA VISLs Sub-Slab
Soil Gas	Soil Gas
R=10 ⁻⁵ , HI=1.0	R=10 ⁻⁵ , HI=1.0
Residential	Commercial
[µg/m3]	[µg/m3]
52	220
2.6	11
0.83	3.6
11	49
100	440



Environmental Resources Management FIGURE 4 INDOOR AND OUTDOOR AIR ANALYTICAL RESULTS - JUNE 2016 VAPOR INTRUSION ASSESSMENT REPORT I. SCHNEID FACILITY ATLANTA, FULTON COUNTY, GEORGIA DESIGN: SV DRAWN: SV CHKD .: NV EKIV DATE: 7/25/2016 SCALE: AS SHOWN REV.: 0 W.O.NO.: S:\0121021 - I Schneid\Files\FIGURES\121021 ISL\2016\07 2016\121021Site.dwg

Vapor Intrusion Evaluation Work Plan *Appendix A*

August 2016 Project No. 0121021 I. Schneid Liquidation Atlanta, GA

VAPOR INTRUSION EVALUATION WORK PLAN

Former I-Schneid Facility HSI #10753 in Atlanta, Fulton County, Georgia ERM Project No.: 0121021

May 25, 2016

www.erm.com

The world's leading sustainability consultancy

TABLE OF CONTENTS

1.0	PUR	POSE AN	ID SCOPE	1			
	1.1	VAPOF	R INTRUSION EVALUATION OVERVIEW	1			
2.0	SAM	SAMPLE COLLECTION PROCEDURES					
	2.1	2.1 SUB-SLAB SOIL GAS					
		2.1.1	Sub-Surface Clearance	2			
		2.1.2	Sub-Slab Soil Gas Point Installation	3			
		2.1.3	Leak Check and Shut-in Test	3			
		2.1.4	Sub-Slab Soil Gas Sample Collection	4			
	2.2	SUB-SI	AB MULTI-DEPTH SOIL GAS PROBE INSTALLATION	4			
		2.2.1	Leak Check and Shut-in Test	5			
		2.2.2	Multi-Depth Soil Gas Probe Sampling	6			
	2.3	ANALY	TICAL	6			

TABLE OF CONTENTS Cont.

FIGURES

1 PROPOSED VI SAMPLING LOCATION MAP

APPENDICES

- A AIR SAMPLING DATA SHEET
- **B** GROUNDWATER VISL CALCULATOR SCREENING RESULTS

1.0 PURPOSE AND SCOPE

The purpose of this Vapor Intrusion Evaluation Work Plan ("Work Plan") is to document the field procedures that will be used collect/analyze samples to evaluate the potential for vapor intrusion (VI) at the former I-Schneid Facility located at 1420 Fairmont Avenue in Atlanta, Fulton County, Georgia (Site).

1.1 VAPOR INTRUSION EVALUATION OVERVIEW

The Georgia Environmental Protection Division (EPD) has not developed guidance regarding implementation of VI investigations; therefore, ERM has relied on the following documents to prepare this Work Plan in a manner consistent with the current state of the practice:

- Interstate Technical Regulatory Council's (ITRC's) *Vapor Intrusion Pathway: A Practical Guideline,* dated January 2007.
- United States Environmental Protection Agency (US EPA) Office of Solid Waste and Emergency Response (OSWER) *Technical Guide for Assessing and Mitigating the Vapor Intrusion Pathway from Subsurface Vapor Sources to Indoor Air,* June 2015.
- Generally accepted best management practices.

The Work Plan describes the following activities:

- implementation of sampling activities, including the following:
 - o sub-slab soil gas sampling (indoors); and
 - o sub-slab multi-depth soil gas sampling (indoors).

The general locations and number of planned samples are shown on Figure 1. Locations may be adjusted upon completion of site surveys conducted prior to sample collection (i.e., utility locate surveys). Details regarding sampling methodology and analysis are included in the following sections.

1

2.0 SAMPLE COLLECTION PROCEDURES

The following sections describe the procedures for sub-slab soil gas and sub-slab multi-depth soil gas sample collection. In addition, field documentation, analytical needs, and sample identification methods are outlined. Sample collection scheduling will take into consideration weather conditions at the time of sampling. Sampling will not occur during or immediately following (i.e., within 24 hours) a high wind/rain/storm event. Sampling events may need to be postponed or rescheduled to accommodate these weather conditions. Efforts will be made to complete the sampling before major renovations to the building commence (i.e., within the next four to six weeks).

2.1 SUB-SLAB SOIL GAS

Sub-slab soil gas samples will be collected from beneath the foundation slab as the building is a slab on grade structure. Samples will be collected from the approximate locations shown on Figure 1. Sub-slab sample locations have been selected so as to be in general proximity to former source areas. Sample locations will generally be located away from building edges. Locations may be modified based on access/building plans, equipment locations and utilities. Locations may need to be modified to avoid sub-surface utilities, cracks in the floor slab or other features that may limit the reliability of the sampling results.

2.1.1 Sub-Surface Clearance

Sub-surface clearance activities will be conducted prior to installation of sampling points. Geophysical surveys (ground penetrating radar (GPR), radio frequency line location or similar) will be conducted at the Site in an effort to locate potential subsurface utilities. As-built drawings of the building will be reviewed, if available, and utilities will be marked prior to sampling point installation. Georgia 811 will also be contacted in accordance with local regulations.

2.1.2 Sub-Slab Soil Gas Point Installation

Prior to sub-slab sampling, a PID will be used as a general check for the presence of potential sources of VOC vapors in the vicinity of the sampling location (e.g., paints, adhesives, etc.). If VOC-containing products are observed at the time of sampling, they will be documented with a photograph and on the air sample data sheet (Appendix A).

Sub-slab sampling points will be installed as follows:

- a 5/8-inch diameter hole will be drilled through the thickness of the slab and approximately 1-inch into the sub-slab material to form a void;
- the hole will be cleaned of concrete cuttings and dust using a pipe brush;
- a Vapor Pin[™] with a silicone sleeve will be placed over the hole and tapped into place using a dead blow hammer (the silicone sleeve will form a water and air tight seal with the concrete);
- a syringe will be used to conduct a purge check of the sample point (soil gas should be relatively easy to extract without generation of a significant vacuum); and
- sub-slab sampling points will be left in place for ~2 hours to allow for re-equilibration with the surrounding soil prior to quality assurance checks and soil gas sampling.

2.1.3 Leak Check and Shut-in Test

After installation of the sampling point, a water dam will be placed around the point and filled with water. The water will be monitored for 5 minutes to check for leaks in the seal between the concrete and the Vapor PinTM. If leaks are observed based on water draining into the sampling point, the sampling point will be extracted and reset. The water dam will be used until the seal is determined to be adequate.

Nylon (or Teflon) tubing will be attached from the sampling point to a 2.7liter Summa® canister. A shut-in test will be completed to determine the security of the sampling train between the sampling point and the sampling canister. The shut-in test is performed by generating a vacuum inside the sample tubing while keeping the sampling point and the sampling canister closed. A vacuum of approximately 100 inches of water is generated using a plastic syringe and the vacuum is monitored for 1 minute. If vacuum is maintained for the observed period, then the sampling train is deemed adequate and sampling can begin.

2.1.4 Sub-Slab Soil Gas Sample Collection

After completion of quality control activities, the sampling point will be opened and access to the plastic syringe will be closed. The Summa® canister will be equipped with a flow controller limiting flow to approximately 200 milliliters/minute (i.e., approximately a 13.5 minute sampling time into a 2.7-liter sampling canister). The canister will be opened and the vacuum in the canister will be monitored during sampling collection. Sampling will be complete when vacuum measurements indicate approximately no vacuum in the canister (approximately 13.5 minutes). Residual vacuum is not required in the 2.7-liter sampling canisters because the full sampling period (i.e., 13.5 minutes) will be actively monitored by field personnel (i.e., a witnessed sample). If residual vacuum remains in the 2.7-liter sampling canisters, it cannot exceed 15 inches of mercury (in Hg) or laboratory reporting limits will be affected. Residual vacuum, if any, will be confirmed and recorded by the laboratory after receipt of the canisters.

The Summa® canisters and flow regulators will be batched-certified clean by the laboratory prior to use. Sampling information will be recorded on the appropriate air sampling data sheet including starting and ending vacuum reading of each canister. A copy of a template air sampling data sheet is included in Appendix A.

2.2 SUB-SLAB MULTI-DEPTH SOIL GAS PROBE INSTALLATION

Two multi-depth soil gas probes will be installed immediately inside the building walls at the northeastern portion of the building (Figure 1). These locations are in proximity to the area where a significant volume of contaminated soil was removed in 2014 and 2015. Each multi-depth probe will collect soil gas at approximately 13 feet, 8 feet and 3 feet below ground surface. Depths of the soil gas probe may be adjusted depending on depth to groundwater and subsurface conditions at the time of the sampling. The three sampling depths of the multi-depth probe will be installed either as a nested soil gas point (SGP) in one borehole or each

SGP depth will be installed inside separate and boreholes. Boreholes will be completed using a Geoprobe punch point or hand auger. SGPs will consist of ¹/₄-inch Nylaflow[®] or Teflon[®] tubing connected via a barb fitting to a 6-inch-long, ¹/₄-inch-diameter stainless steel sampling screen. A sand filter pack will be placed in the annulus to a height of 6 inches above the screen. Three inches of granular or chip bentonite will be placed above the sand filter pack on top of which 3 inches of a thick slurry of powered bentonite and water will be placed. After approximately 15 minutes, thick slurry of powdered bentonite and water will be added to seal the remainder of the borehole annulus to the ground surface. The SGPs will be fitted at the ground surface with valves to maintain an airtight seal between installation and sampling. The SGPs will be left in place for 24 hours to allow for subsurface equilibration prior to sampling. After installation of the SGPs, a plastic syringe will be used to conduct a purge check of each sample point. The syringe plunger should be relatively easy to pull back indicating that soil gas can be extracted without generation of a significant vacuum. If the plunger is not easy to pull back or it retracts after it is released, the soil may be too "tight" and there is likely too little permeability to collect an uncompromised sample. If this is the case, additional evaluation of the use of SGPs may be necessary.

Prior to sampling, the SPGs will be purged the equivalent volume of the tubing and sand pack with a 5-gas meter or GEM 3000 to remove any atmospheric air entrained during installation. During purging the readings on the meter will be monitored until stabilized.

2.2.1 Leak Check and Shut-in Test

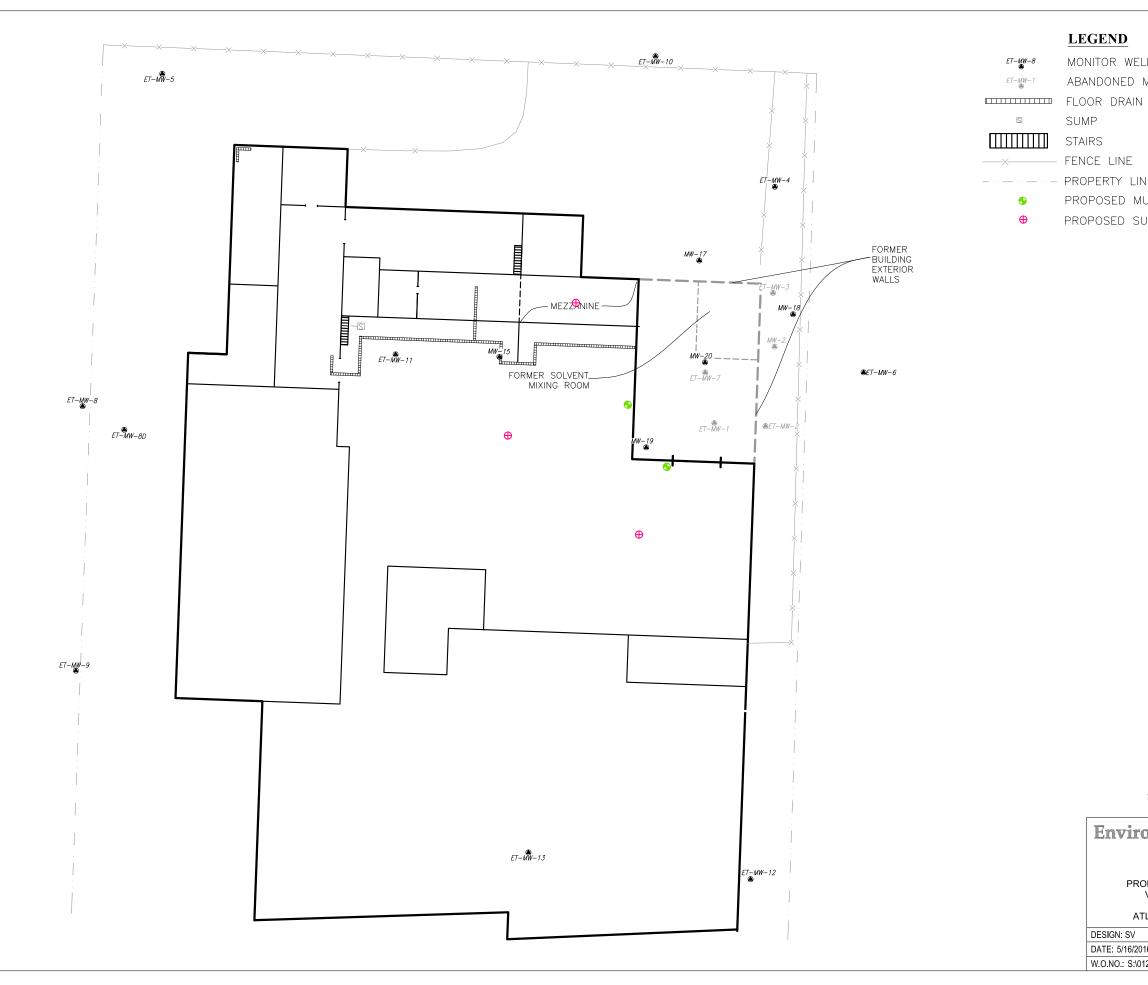
Helium will be used as a tracer gas during the leak checks to evaluate if significant amounts of atmospheric air are entering the soil gas sample. During the purging and field screening processes, a shroud will be placed over each SGP and helium will be injected into the shroud. The concentration of helium in the shroud will be maintained at a minimum of 10% helium. A portable helium detector (MDG-2202 or similar) will be connected to the SGP port to monitor helium concentrations in the subsurface. If helium concentrations in the purged volumes are less than 5% of the minimum concentration in the shroud, the SGP will be considered satisfactory and indicative of no significant leakage in the sample train.

A shut-in test will also be completed on the above ground portion of the sample train. The shut-in test will be conducted using the same procedures as the sub-slab soil gas shut-in test (Section 3.1.3).

2.2.2 Multi-Depth Soil Gas Probe Sampling

After completion of quality control activities, access to the plastic syringe will be closed. Sampling will then be conducted using Summa® canisters as described in Section 3.1.4. The canisters and flow regulators will be batched-certified clean by the laboratory prior to use. Sampling information will be recorded on the appropriate air sampling data sheet including starting and ending vacuum reading of each canister. A copy of a template air sampling data sheet is included in Appendix A.

Upon completion of sample collection, SGPs will remain in place until the investigation has been completed unless the property owner requests that they be removed.

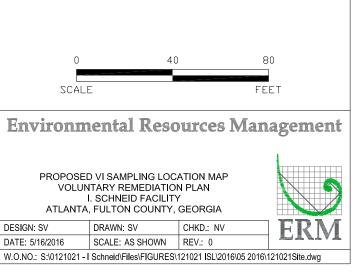

2.3 ANALYTICAL

Sub-slab and multi-depth soil gas samples will be analyzed by USEPA Method TO-15 Selective Ion Monitoring (SIM). The TO-15 SIM analysis is used to achieve lower laboratory reporting limits necessary for residential vapor intrusion screening levels (VISLs). Samples will be submitted to Alpha Analytical Laboratory of Mansfield, Massachusetts which is Georgia approved via the National Environmental Laboratory Accreditation Program (NELAP).

Analytical results for sub-slab soil gas and sub-slab multi-depth soil gas samples will be reported for the five analytes (naphthalene, ethylbenzene, xylenes, chlorobenzene, and 1,4-dichlorobenzene) that have had a concentration in the last five years that have exceeded residential groundwater screening levels using the USEPA Vapor Intrusion Screening Level (VISL) calculator (see Appendix B). The analytical results will be compared to target screening levels calculated for residential and commercial sub-slab soil gas and exterior soil gas, using the USEPA VISL calculator as an initial assessment of the data.

Figure 1

May 2016 Project No. 0121021



LEGEND

MONITOR WELL LOCATION ABANDONED MONITOR WELL LOCATION

- FENCE LINE
- PROPERTY LINE
- PROPOSED MULTI-DEPTH SAMPLE LOCATION PROPOSED SUB-SLAB SAMPLE LOCATION

M

Air Sampling Data Sheet Appendix A

May 2016 *Project No.* 0121021

ERM	Environmental Resources Management The Towers at Wildwood Plaza 3200 Windy Hill Road, SE Atlanta, Geogia 30339 Phone: (678) 486-2700				Project #: Project Name: Location: Project Manager:	
Sample Location:					Collector(s):	
Address:						
PID Meter Used:					Date:	
(Model, Serial #) Sample ID:					5410.	
Sample ID: Duplicate Sample? (Y/I	N)		Duplicate Sa	mple ID:		
Type of sample (circle		INDOOR AIR	•	AMBIENT AIR		SOIL GAS
Photograph descriptio	n:					
Summa® Information						
Canister Serial Number:				Flow Controller Number:		
Start Date/Time:				Stop Date/Time:		
Start Pressure: (inches I	Hg) ¹			Stop Pressure: (inches H	łg) ²	
Other Sampling Inform	nation:					
Story/Level		Ground Surface (pavement, flooring)			Depth of Vapor Probe (if applicable)	
Room		Slab thickness (if			Distance from	
Indoor Air Temp (°F)		applicable) Potential Vapor			Building (if applicable) Distance to nearest	
Intake Height Above		Pathways Observed? Noticeable Odor?			Roadway (ft.) Weather	
Ground Level (ft.)						
Barometric Pressure Initial ("Hg or mb)		Barometric Pressure Final ("Hg or mb)			Wind Speed (mph)	
Interim Monitoring						
Initial Sample Purge (soil gas only):	PID Reading (ppm):			Noticeable Odor? (Y/N)		
Reading #1:	Time:	Summa Vacuum ("Hg):		Noticeable Odor? (Y/N)		
Reading #2:	Time:	Summa Vacuum ("Hg):		Noticeable Odor? (Y/N)		
Reading #3:	Time:	Summa Vacuum ("Hg):		Noticeable Odor? (Y/N)		
Reading #4: Reading #5:	Time:	Summa Vacuum ("Hg):		Noticeable Odor? (Y/N)		
Reading #5: Sketch of Sample Loca	Time:	Summa Vacuum ("Hg):		Noticeable Odor? (Y/N)		
Comments:	ot dogrado potional lufaces lut	oroton/ romated using				
	ot decrease noticeably from lab					
2 - If final pressure does determine the final press	not change much from initial proving and contact the ERM coord	ressure, send the sample linator for further instructi	to the laborat on.	ory and indicate "HOLD" of	on the chain-of-custody.	Also request that the laboratory

Groundwater VISL Calculator Screening Results *Appendix B*

May 2016 *Project No.* 0121021

OSWER VAPOR INTRUSION ASSESSMENT

Groundwater Concentration to Indoor Air Concentration (GWC-IAC) Calculator Version 3.45, November 2015 RSLs

Parameter	Symbol	Value	Instructions
Exposure Scenario	Scenario	Commercial	Select residential or commercial scenario from pull down list
Target Risk for Carcinogens	TCR	1.00E-05	Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F)
Target Hazard Quotient for Non-Carcinogens	THQ	1	Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G)
Average Groundwater Temperature (°C)	Tgw	20	Enter average of the stabilized groundwater temperature to correct Henry's Law Constant for groundwater target concentrations

			Site	Calculated	VI	
			Groundwater	Indoor Air	Carcinogenic	VI Hazard
			Concentration	Concentration	Risk	
			Cgw	Cia	CR	HQ
	CAS	Chemical Name	(ug/L)	(ug/m ³)	CR	ΠQ
х	67-64-1	Acetone	1.5E+02	1.73E-01	No IUR	1.3E-06
х	71-43-2	Benzene	5.6E+00	1.01E+00	6.4E-07	7.7E-03
х	108-90-7	Chlorobenzene	1.3E+03	1.25E+02	No IUR	5.7E-01
х	98-82-8	Cumene	2.5E+01	8.20E+00	No IUR	4.7E-03
х	95-50-1	Dichlorobenzene, 1,2-	5.8E+02	3.26E+01	No IUR	3.7E-02
х	106-46-7	Dichlorobenzene, 1,4-	7.1E+01	5.08E+00	4.6E-06	1.4E-03
х	75-34-3	Dichloroethane, 1,1-	6.7E+01	1.25E+01	1.6E-06	No RfC
х	75-35-4	Dichloroethylene, 1,1-	1.4E+01	1.24E+01	No IUR	1.4E-02
х	100-41-4	Ethylbenzene	2.0E+02	4.82E+01	9.8E-06	1.1E-02
х	75-09-2	Methylene Chloride	6.0E+00	6.53E-01	5.3E-10	2.5E-04
х	91-20-3	Naphthalene	9.0E+02	1.12E+01	3.1E-05	8.5E-01
х	108-88-3	Toluene	9.4E+01	1.97E+01	No IUR	9.0E-04
х	71-55-6	Trichloroethane, 1,1,1-	4.7E+01	2.64E+01	No IUR	1.2E-03
х	1330-20-7	Xylenes	1.3E+03	2.63E+02	No IUR	6.0E-01

Inhalation Unit Risk	IUR Source*	Reference Concentration	RFC Source*	Mutagenic Indicator
IUR	Source	RfC	Source	
(ug/m ³) ⁻¹		(mg/m ³)		i
		3.10E+01	Α	
7.80E-06	_	3.00E-02		
		5.00E-02	P	
		4.00E-01		
		2.00E-01	Н	
1.10E-05	CA	8.00E-01		
1.60E-06	CA			
		2.00E-01		
2.50E-06	CA	1.00E+00	-	
1.00E-08	1	6.00E-01		Mut
3.40E-05	CA	3.00E-03		
		5.00E+00		
		5.00E+00		
		1.00E-01		

Notes:

(1)	Inhalation Pathway Exposure Parameters (RME): Units		Reside	ntial	Commercial			Selected (based on scenario)		
	Exposure Scenario		Symbol	Value	Symbol	Value	Symb	ol	Value	
	Averaging time for carcinogens	(yrs)	ATC R GW	70	ATc C GW	70	ATc G	W	70	
	Averaging time for non-carcinogens	(yrs)	ATnc R GW	26	ATnc C GW	25	Atnc C	iW	25	
	Exposure duration	(yrs)	ED R GW	26	ED C GW	25	ED G	W	25	
	Exposure frequency	(days/yr)	EF R GW	350	EF C GW	250	EF G	N	250	
	Exposure time	(hr/day)	ET_R_GW	24	ET_C_GW	8	ET_G	Ν	8	
(2)	Generic Attenuation Factors:		Reside	ntial	Commerc	cial		Selected (based or scenario)		
	Source Medium of Vapors		Symbol	Value	Symbol	Value	Symb	ol	Value	
	Groundwater	(-)	AFgw_R_GW	0.001	AFgw_C_GW	0.001	AFgw_0	θW	0.001	
	Sub-Slab and Exterior Soil Gas	(-)	AFss_R_GW	0.03	AFss_C_GW	0.03	AFss_0	W	0.03	

(3) Formulas

Cia, target = MIN(Cia,c; Cia,nc) Cia,c (ug/m3) = TCR x ATc x (365 days/yr) x (24 hrs/day) / (ED x EF x ET x IUR) Cia,nc (ug/m3) = THQ x ATnc x (365 days/yr) x (24 hrs/day) x RfC x (1000 ug/mg) / (ED x EF x ET)

(4)	Special Case Chemicals	Residential Commerc			cial	Selected (based on scenario)
	Trichloroethylene	Symbol	Value	Symbol	Value	Symbol Value
		mIURTCE R GW	1.00E-06	IURTCE C GW	0.00E+00	mIURTCE_GW 0.00E+00
		IURTCE_R_GW	3.10E-06	IURTCE_C_GW	4.10E-06	IURTCE_GW 4.10E-06

Mutagenic Chemicals

The exposure durations and age-dependent adjustment factors for mutagenic-mode-of-action are listed in the table below:

Note: This section applies to trichloroethylene and other mutagenic	Age Cohort	Exposure Duration	Age-dependent adjustment factor	
chemicals, but not to vinyl chloride.	0 - 2 years	2	10	
	2 - 6 years	4	3	
	6 - 16 years	10	3	
	16 - 26 years	10	1	
Mutagenic-mode-of-	action (MMOA) ad	justment factor	25	This factor is used in the equations for mutagenic chemicals.
Vinyl Chloride See the Navigation	nloride.			

Notation:

I = IRIS: EPA Integrated Risk Information System (IRIS). Available online at: P = PPRTV. EPA Provisional Peer Reviewed Toxicity Values (PPRTVs). Available online at:

http://www.epa.gov/iris/subst/index.html http://hhpprtv.ornl.gov/pprtv.shtml

OSWER VAPOR INTRUSION ASSESSMENT

Groundwater Concentration to Indoor Air Concentration (GWC-IAC) Calculator Version 3.45, November 2015 RSLs

Parameter	Symbol	Value	Instructions
Exposure Scenario	Scenario	Residential	Select residential or commercial scenario from pull down list
Target Risk for Carcinogens	TCR	1.00E-05	Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F)
Target Hazard Quotient for Non-Carcinogens	THQ	1	Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G)
Average Groundwater Temperature (°C)	Tgw	20	Enter average of the stabilized groundwater temperature to correct Henry's Law Constant for groundwater target concentrations

			Site	Calculated	VI	
			Groundwater	Indoor Air	Carcinogenic	VI Hazard
			Concentration	Concentration	Risk	
			Cgw	Cia	0.0	110
	CAS	Chemical Name	(ug/L)	(ug/m ³)	CR	HQ
х	67-64-1	Acetone	1.5E+02	1.73E-01	No IUR	5.4E-06
х	71-43-2	Benzene	5.6E+00	1.01E+00	2.8E-06	3.2E-02
х	108-90-7	Chlorobenzene	1.3E+03	1.25E+02	No IUR	2.4E+00
х	98-82-8	Cumene	2.5E+01	8.20E+00	No IUR	2.0E-02
х	95-50-1	Dichlorobenzene, 1,2-	5.8E+02	3.26E+01	No IUR	1.6E-01
х	106-46-7	Dichlorobenzene, 1,4-	7.1E+01	5.08E+00	2.0E-05	6.1E-03
х	75-34-3	Dichloroethane, 1,1-	6.7E+01	1.25E+01	7.1E-06	No RfC
х	75-35-4	Dichloroethylene, 1,1-	1.4E+01	1.24E+01	No IUR	6.0E-02
х	100-41-4	Ethylbenzene	2.0E+02	4.82E+01	4.3E-05	4.6E-02
х	75-09-2	Methylene Chloride	6.0E+00	6.53E-01	6.4E-09	1.0E-03
х	91-20-3	Naphthalene	9.0E+02	1.12E+01	1.4E-04	3.6E+00
х	108-88-3	Toluene	9.4E+01	1.97E+01	No IUR	3.8E-03
х	71-55-6	Trichloroethane, 1,1,1-	4.7E+01	2.64E+01	No IUR	5.1E-03
х	1330-20-7	Xylenes	1.3E+03	2.63E+02	No IUR	2.5E+00

Inhalation Unit Risk	IUR Source*	Reference Concentration	RFC Source*	Mutagenic Indicator	
IUR	Source	RfC	Source		
(ug/m ³) ⁻¹		(mg/m ³)		i	
		3.10E+01	Α		
7.80E-06		3.00E-02			
		5.00E-02	P		
		4.00E-01			
		2.00E-01	Н		
1.10E-05	CA	8.00E-01			
1.60E-06	CA				
		2.00E-01	-		
2.50E-06	CA	1.00E+00			
1.00E-08	1	6.00E-01		Mut	
3.40E-05	CA	3.00E-03			
		5.00E+00			
		5.00E+00			
		1.00E-01			

Notes:

(1)	Inhalation Pathway Exposure Parameters (RME):	Units	Residential		sidential Commercial		Sel	Selected (based on scenario)	
	Exposure Scenario		Symbol	Value	Symbol	Value	Sy	mbol	Value
	Averaging time for carcinogens	(yrs)	ATc_R_GW	70	ATc_C_GW	70	ATo	c_GW	70
	Averaging time for non-carcinogens	(yrs)	ATnc_R_GW	26	ATnc_C_GW	25	Atn	c_GW	26
	Exposure duration	(yrs)	ED_R_GW	26	ED_C_GW	25	ED	_GW	26
	Exposure frequency	(days/yr)	EF R GW	350	EF C GW	250	EF	GW	350
	Exposure time	(hr/day)	ET_R_GW	24	ET_C_GW	8	ET	_GW	24
(2)	Generic Attenuation Factors:		Reside	ntial	Commer	cial	Sel	ected (ba scenari	
	Source Medium of Vapors		Symbol	Value	Symbol	Value	Sy	mbol	Value
	Groundwater	(-)	AFgw_R_GW	0.001	AFgw_C_GW	0.001	AFg	w_GW	0.001
	Sub-Slab and Exterior Soil Gas	(-)	AFss_R_GW	0.03	AFss_C_GW	0.03	AFs	is_GW	0.03

(3) Formulas

Cia, target = MIN(Cia,c; Cia,nc) Cia, crgqet = MIN(Cia,c; Cia,nc) Cia,c (ug/m3) = TCR x ATc x (365 days/yr) x (24 hrs/day) / (ED x EF x ET x IUR) Cia,nc (ug/m3) = THQ x ATnc x (365 days/yr) x (24 hrs/day) x RfC x (1000 ug/mg) / (ED x EF x ET)

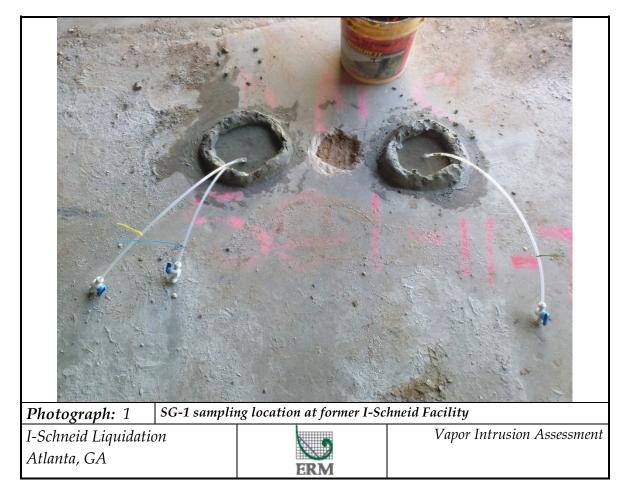
(4)	Special Case Chemicals	Residential		Residential		Residential		Commer	cial	Selected (based on scenario)
	Trichloroethylene	Symbol	Value	Symbol	Value	Symbol Value				
		mIURTCE R GW	1.00E-06	IURTCE C GW	0.00E+00	mIURTCE_GW 1.00E-06				
		IURTCE_R_GW	3.10E-06	IURTCE_C_GW	4.10E-06	IURTCE_GW 3.10E-06				

Mutagenic Chemicals

The exposure durations and age-dependent adjustment factors for mutagenic-mode-of-action are listed in the table below:

No	te: This section applies to trichloroethylene and other mutagenic	Age Cohort	Exposure Duration	Age-dependent adjustment factor	
che	emicals, but not to vinyl chloride.	0 - 2 years	2	10	
		2 - 6 years	4	3	
		6 - 16 years	10	3	
		16 - 26 years	10	1	
	Mutagenic-mode-of-	action (MMOA) adj	justment factor	72	This factor is used in the equations for mutagenic chemicals.
Vinyl Chl	oride See the Navigation	nloride.			

Notation:


I = IRIS: EPA Integrated Risk Information System (IRIS). Available online at: P = PPRTV. EPA Provisional Peer Reviewed Toxicity Values (PPRTVs). Available online at:

http://www.epa.gov/iris/subst/index.html http://hhpprtv.ornl.gov/pprtv.shtml

Sampling Location Photo-Log

Appendix B

August 2016 Project No. 0121021 I. Schneid Liquidation Atlanta, GA

Photograph: 2	SG-2 sampling location at former I-Schneid Facility
---------------	---

I-Schneid Liquidation Atlanta, GA

Vapor Intrusion Assessment

i notogruph. 5	Dum test perj	ormen to test for teaks in	i sent to sub stud
I-Schneid Liquidatio	m		Vapor Intrusion Assessment
Atlanta, GA			
		ERM	

Photograph: 4SSV-1 and DUP-1 sampling location at former I-Schneid Facility

I-Schneid Liquidation Atlanta, GA

Vapor Intrusion Assessment

Photograph: 5	SSV-02 sampl	ling location at former I-	Schneid Facility
I-Schneid Liquidatic Atlanta, GA		ERM	Vapor Intrusion Assessment

Atlanta, GA

ERN

Vapor Intrusion Assessment

Photograph: 9		IP-01 sampling location (at former I-Schneid Facility
I-Schneid Liquidatio Atlanta, GA	อท	ERM	Vapor Intrusion Assessment

Photograph: 10	IA-02-201607	05-01 sampling location	at former I-Schneid Facility
I-Schneid Liquidatio Atlanta, GA	on	ERM	Vapor Intrusion Assessment

Photograph: 11	IA-03 samplin	ng location at former I-So	chneid Facility
I-Schneider, USA Atlanta		ERM	Vapor Intrusion Assessment

Photograph: 12	IA-04 samplin	ng location at former I-Sch	neid Facility
I-Schneider, USA Atlanta		ERM	Vapor Intrusion Assessment

Photograph: 13	IA-05-sampli	ng location at former I-S	
I-Schneider, USA Atlanta		ERM	Vapor Intrusion Assessment

Air Sampling Data Sheets

Appendix C

August 2016 Project No. 0121021 I. Schneid Liquidation Atlanta, GA

Environmental Resources Management 3200 Windy Hill Rd. Suite 1500W Atlanta, GA 30339 (678) 486-2700

	Environmental Resou	roos Managament			Drojoot #	0121021
THEFT					Project #:	
	The Towers at Wildwo				Project Name:	ISL
	3200 Windy Hill Road,				Location:	1420 Fairmont Avenue
	Atlanta, Geogia 30339					Atlanta, Fulton County, GA
IFRM	Phone: (678) 486-2700				Project Manager:	J. Bilkert
LIZ CIVE						
Sample Location:				· · · · · · · · · · · · · · · · · · ·	Collector(s):	
Address:	SG-1-3' Former I-Schneid					C. Brooks
Address.	1420 Fairmont Ave, Atlanta,	GA				A. Reimer
PID Meter Used:				-	Date:	
(Model, Serial #) Sample ID:		SG-1-3'				6/8/2016
Duplicate Sample? (Y/	N)	N	Duplicate Sa	mple ID:		
Type of sample (circle		INDOOR AIR	Dupnoute ou	AMBIENT AIR		SOIL GAS
		in boon with		7000121117101		Contraction (Contraction)
Photograph descriptio	on:					
Summa® Information						
Canister Serial Number:	1411			Flow Controller	. 67)	
	141 Batch c	leanine L16157	57-02	Sector Sector Sector	e 50	н. С
Start Date/Time:	1 lance	leaning 116157		Stop Date/Time:		to all som
	114 0905	Y		61811		EO 09/20 09:20
Start Pressure: (inches	Hg) -28.98			Stop Pressure: (inches	$(Hg)^2 - Or$	6.6
Other Sampling Inform		1			- 01	66
Story/Level	Ground	Ground Surface	Concrete		Depth of Vapor Probe	3' bos
Story/Level	Giouna	(pavement, flooring)	Concrete		(if applicable)	5 bys
Room		Slab thickness (if	~ 2.5"		Distance from	
	1	applicable)			Building (if applicable)	· · · · · · · · · · · · · · · · · · ·
Indoor Air Temp (°F)	~600	Potential Vapor Pathways Observed?	& crac	tos no concrete	Distance to nearest Roadway (ft.)	
Intake Height Above Ground Level (ft.)	NA	Noticeable Odor?	No		Weather	Warm dear, ~68°
Barometric Pressure	aa 11.	Barometric Pressure	20		Wind Speed (mph)	suraly
Initial ("Hg or mb)	29.07 "Hg	Final ("Hg or mb)	29.1	OLMAS		
Interim Monitoring				0		
Initial Sample Purge (soil gas only):	PID Reading (ppm):			Noticeable Odor? (Y/N)		
Reading #1:	Time: 0969	Summa Vacuum ("Hg)	: 72 .1.7	Noticeable Odor? (YR)	×	
Reading #2:	Time: () 9 13	Summa Vacuum ("Hg)	17 21	Noticeable Odor? (YO)		
Reading #3:	Time: 0917	Summa Vacuum ("Hg)	:-4. 10	Noticeable Odor? (Y/W)		
Reading #4:	Time: 0919	Summa Vacuum ("Hg)	1. 2 -1	Noticeable Odor? (Y(N)		
Reading #5:	Time:	Summa Vacuum ("Hg)		Noticeable Odor? (Y/N)	the second second second	
Sketch of Sample Loca	1440415.025	ounna raoann (119)		1.02000000 0 00011 (111)		J
Cheten of Cample Loci		1	1			
		treed				
		F aser			n.	
		00			T $($	
	19	d				
$\langle \rangle \langle \rangle \langle \rangle$	mw	o shear			•	
	a 10"					
	Hitchted	and the second designed to be a second				
		1. 7				
	SG-1.7 SG-1	-3.	1250			
	SG-1-11'	Bar	burg			
	1 1					
1 200		• / /				
				N N		
Comments:						
1 - Verify pressure did n	ot decrease noticeably from la	aboratory reported value.				
2 - If final pressure does	s not change much from initial	pressure, send the samp	le to the labora	tory and indicate "HOLD"	on the chain-of-custody	Also request that the laboratory
	sure and contact the ERM con			No. Mar I and	in the second of	
					-	

	Environmental Resour	Contraction of the second second second second			Project #:	0121021
	The Towers at Wildwo				Project Name:	ISL
N D	3200 Windy Hill Road,	SE			Location:	1420 Fairmont Avenue
	Atlanta, Geogia 30339				Designt Managar	Atlanta, Fulton County, GA J. Bilkert
ERM	Phone: (678) 486-2700				Project Manager:	J. Blikert
			and starting		D. H. darlah	
ample Location:	SG-1-7'				Collector(s):	C. Brooks
ddress:	Former I-Schneid 1420 Fairmont Ave, Atlanta,	GA				A. Reimer
ID Meter Used:					Date:	6/8/20
Model, Serial #) ample ID:	- increases	SG-1-7'				0/0/20
uplicate Sample? (Y/I		Ν	Duplicate Sar			SOIL GAS
ype of sample (circle	one):	INDOOR AIR		AMBIENT AIR		SOIL GAS
hotograph descriptio	n:				· · · · · · · · · · · · · · · · · · ·	
umma® Information					* Terre 11-	
anister Serial Number:	502	300 MA		Flow Controller Number:	051)	
start Date/Time:	· A			Stop Date/Time:	1	1
61	8/16 / 0	930			6.18/11	, 10945
Start Pressure: (inches I	Hg) 1 - 78.80	,		Stop Pressure: (inches I	Hg) ² - 0	.33
ther Sampling Inform						
itory/Level	Ground	Ground Surface (pavement, flooring)	Concrete		Depth of Vapor Probe (if applicable)	6.8' bgs
Room		Slab thickness (if applicable)	~ 2.5"		Distance from Building (if applicable)	
ndoor Air Temp (°F)	N65°	Potential Vapor Pathways Observed?	consta	in slab	Distance to nearest Roadway (ft.)	
ntake Height Above Ground Level (ff.)	NA	Noticeable Odor?	No		Weather	wern, dear,
Barometric Pressure	29.0	Barometric Pressure	29.	D	Wind Speed (mph)	
nitial ("Hg or mb) nterim Monitoring	0-1.4	Final ("Hg or mb)	au	V	1	
nitial Sample Purge	PID Reading (ppm):			Noticeable Odor? (Y/N)		
soil gas only):	, in the second second				JU	
Reading #1:	Time: 0931	Summa Vacuum ("Hg	+25.98	Noticeable Odor? (YAN)		
Reading #2:	Time: 0934	Summa Vacuum ("Hg		Noticeable Odor? (YAU)),	
Reading #3:	Time: () 936	Summa Vacuum ("Hg	1):-13.61	Noticeable Odor? (YO		and the second sec
Reading #4:	Time: 19939	Summa Vacuum ("Hg	1):~6-61	Noticeable Odor? (Y/()		
Reading #5:	Time: 0944	Summa Vacuum ("Hg	1):-1.25	Noticeable Odor? (Y/0)		
ketch of Sample Loc						
					500	SG-1-3' sketch
					file	
						sketch
Comments:						
- Verify pressure did r	not decrease noticeably from I	aboratory reported value.				A STATE OF A STATE OF A
2 - If final pressure doe	s not change much from initia ssure and contact the ERM co	pressure, send the sam	ple to the labora	tory and indicate "HOLD'	on the chain-of-custod	y. Also request that the laboratory
retermine the mai pres	soure and contact the ERM CO					
						· · · · ·

			10.0			
THEFT	Environmental Resour	and the second se			Project #:	0121021 ISL
	The Towers at Wildwood Plaza			Project Name: Location:	1420 Fairmont Avenue	
	3200 Windy Hill Road,	9E			Location.	Atlanta, Fulton County, GA
	Atlanta, Geogia 30339				Project Manager:	J. Bilkert
ERM	Phone: (678) 486-2700				Project Manager.	J. Dilken
ample Location:			and all in		Collector(s):	
	SG-1-11'					C. Brooks
ddress:	Former I-Schneid 1420 Fairmont Ave, Atlanta, GA			2		A. Reimer
ID Meter Used: Model, Serial #)			5	£	Date:	6/8/20
ample ID:		SG-1-11'				
uplicate Sample? (Y/	N)	Ν	Duplicate Sa			
ype of sample (circle	one):	INDOOR AIR		AMBIENT AIR		(SOIL GAS)
hotograph descriptio	n:					
umma® Information						
anister Serial Number:				Flow Controller	01	
	1 804			Number:	0602	1
tart Date/Time:	<u>els/16</u> H9)1 -29.7	19:39		Stop Date/Time:	6/8/110	09551
itart Pressure: (inches I	Hg) ¹ -79	22		Stop Pressure: (inches	s Hg) ² - O _v (39
)ther Sampling Inform						/ d
Story/Level	Ground	Ground Surface	Concrete	2	Depth of Vapor Probe	11' bgs
		(pavement, flooring) Slab thickness (if	~ 2.5"		(if applicable) Distance from	
Room		applicable)	~ 2.5		Building (if applicable)	
ndoor Air Temp (°F)	~650	Potential Vapor Pathways Observed?	inarti	in slab	Distance to nearest Roadway (ft.)	
ntake Height Above	NA	Noticeable Odor?	No	s in state	Weather	clear, sunny
Ground Level (ft.)		Barometric Pressure			Wind Speed (mph)	~72
Barometric Pressure nitial ("Hg or mb)	29.0	Final ("Hg or mb)	29.1	2	Wind Opeed (inph)	
nterim Monitoring					<i>d</i>	
nitial Sample Purge soil gas only):	PID Reading (ppm):			Noticeable Odor? (Y/	4)	
Reading #1:	Time: 0941	Summa Vacuum ("Hg	1)-2488	Noticeable Odor? (Y/	D	
Reading #2:	Time: 0946	Summa Vacuum ("Hg		Noticeable Odor? (Y/	D.	
Reading #3:	Time: (9 9 52)	Summa Vacuum ("Hg		Noticeable Odor? (Ye		
Reading #4:	Time: 0952	Summa Vacuum ("Hg	1): -4.93	Noticeable Odor? (Y/I	N)	
Reading #5:	Time: 0994	Summa Vacuum ("Hg	1): - 1.01	Noticeable Odor? (Y/I	V)	
Sketch of Sample Loc	ation:			,		
					<	See SG-1-3° sketch
						Sketch
	•					
Comments:						
	not decrease noticeably from	aboratory reported value.				
2 - If final pressure doe	s not change much from initia	I pressure, send the same	ple to the labora	tory and indicate "HOL	D" on the chain-of-custod	ly. Also request that the laboratory
letermine the final pres	sure and contact the ERM co	ordinator for further instru	uction.			
	-	and the second				
				×	е	1

	Environmental Resource	es Management			Project #:	0121021
	The Towers at Wildwoo	The second s			Project Name:	ISL
						1420 Fairmont Avenue
	3200 Windy Hill Road, S	5E			Location:	A REAL PROPERTY AND A REAL
	Atlanta, Geogia 30339					Atlanta, Fulton County, GA
ERM	Phone: (678) 486-2700				Project Manager:	J. Bilkert
St. Step 1						
Sample Location:	SG-2-3'				Collector(s):	C. Brooks
Address:	Former I-Schneid 1420 Fairmont Ave, Atlanta, C	3A				A. Reimer
PID Meter Used:					Date:	6/8/2016
(Model, Serial #) Sample ID:		SG-2-3'				0/8/2016
Duplicate Sample? (Y/		N	Duplicate Sar			
Type of sample (circle	one):	INDOOR AIR		AMBIENT AIR		(SOIL GAS)
Photograph description	on:				1	
Summa® Information						÷
Canister Serial Number			×	Flow Controller Number:	18	
Start Date/Time:	446		9	Stop Date/Time:/	/	
	6/8/10 10:			6/8/16		545
Start Pressure: (inches	Hg) -29.3:	3		Stop Pressure: (inches	^{Hg)[−] ~ ()}	. 69
Other Sampling Inform	- 1					
Story/Level	Ground	Ground Surface (pavement, flooring)	Concrete		Depth of Vapor Probe (if applicable)	e 3 bgs
Room		Slab thickness (if applicable)	~ 2.5"		Distance from Building (if applicable	a)
Indoor Air Temp (°F)	v-30,	Potential Vapor Pathways Observed?	crack	s n slab	Distance to nearest Roadway (ft.)	
Intake Height Above Ground Level (ft.)	NA	Noticeable Odor?	No		Weather	worm, clear, ~800
Barometric Pressure	28.78	Barometric Pressure	2.8.9	B	Wind Speed (mph)	
Initial ("Hg or mb) Interim Monitoring	0-0.18	Final ("Hg or mb)	0-0-1	U		
	PID Reading (ppm):			Noticeable Odor? (Y/N)	
Initial Sample Purge (soil gas only):	The reading (ppin).				,	4.
Reading #1:	Time: / 0 30	Summa Vacuum ("Hg		Noticeable Odor? (YI		
Reading #2:	Time: 6039	Summa Vacuum ("Hg	1): 8.9.4	Noticeable Odor? (Y/		5
Reading #3:	Time: 1041	Summa Vacuum ("Hg	1)-41-7	Noticeable Odor? (Y/		
Reading #4:	Time: (0-f3	Summa Vacuum ("Hg	1): 1 13	Noticeable Odor? (Y/N		
Reading #4.		Summa Vacuum ("Hg	1): 20 01	Noticeable Odor? (Y/N		
Reading #5: Sketch of Sample Loc			1O, ? (4			
	1	Ν				
		el		-		
12109	1.2.	grou ve		1	` N]	
1 W C	223	1 00			N	
LW	2-11 2 1	\cup $$		1		
N	56-2-11 000			(
			low			
	1- 2A	Jours				
1.1	50-2	rig over				
	on	E				
•						
Comments:		8				
	not decrease noticeably from la	aboratory reported value.			194	
2 - If final pressure doe	es not change much from initial ssure and contact the ERM coo	pressure, send the samp	ple to the labora	atory and indicate "HOLD)" on the chain-of-custo	dy. Also request that the laboratory
actornance are and pre						

Environmental Resources Management The Towers at Wildwood Plaza 3200 Windy Hill Road, SE					Project #: Project Name: Location:	0121021 ISL 1420 Fairmont Avenue
ERM	Atlanta, Geogia 3033 Phone: (678) 486-270	9			Project Manager:	Atlanta, Fulton County, GA J. Bilkert
Sample Location:					Collector(s):	
Address:	SG-2-7' Former I-Schneid	l.			-	C. Brooks
PID Meter Used:	1420 Fairmont Ave, Atlanta	a, GA			Date:	A. Reimer
(Model, Serial #)		00 4 7				6/8/201
Sample ID: Duplicate Sample? (Y	/N)	SG-2-7' N	Duplicate Sa	mple ID:		
Type of sample (circle		INDOOR AIR		AMBIENT AIR		(SOIL GAS)
Photograph description	on:					
Summa® Information					а 4	
Canister Serial Number	r			Flow Controller Number:	0689	
Start Date/Time:	<u> </u>			Stop Date/Time: 1	,	
	6/8/16 10	26		6/8/1	6 110	l
Start Pressure: (inches	Hg) - 28.88			Stop Pressure: (inches	Hg) ² -0.21	
Other Sampling Inform						
Story/Level	Ground	Ground Surface (pavement, flooring)	Concrete		Depth of Vapor Probe (if applicable)	7' bgs
Room		Slab thickness (if	~ 2.5"		Distance from	
Indoor Air Temp (°F)	0	applicable) Potential Vapor			Building (if applicable) Distance to nearest	
	~70°	Pathways Observed?	cracks	n sleep	Roadway (ft.)	
Intake Height Above Ground Level (ft.)	NA	Noticeable Odor?	No		Weather	worm, clicer, ~ 800
Barometric Pressure Initial ("Hg or mb)	28,98	Barometric Pressure Final ("Hg or mb)	28.9	18	Wind Speed (mph)	r.
Interim Monitoring			i		1	
Initial Sample Purge (soll gas only):	PID Reading (ppm):			Noticeable Odor? (Y/N)		
Reading #1:	Time: 1050	Summa Vacuum ("Hg)	1773	Noticeable Odor? (Yky)		
Reading #2:	Time: 1054	Summa Vacuum ("Hg)	1: -761	Noticeable Odor? (Y())		
Reading #3:	Time: LOS7	Summa Vacuum ("Hg)): -3.11	Noticeable Odor? (YN) Noticeable Odor? (Y/N)		
Reading #4:	Time: (0.5%	Summa Vacuum ("Hg)		Noticeable Odor? (Y/N) Noticeable Odor? (Y/N)		
Reading #5: Sketch of Sample Loo		Summa Vacuum ("Hg)	1:-0.75	Induceable Oddi 7 (1714)		
Comments: 1 - Verify pressure did	not decrease noticeably from	a laboratory reported value.				
			le to the labor	atory and indicate "HOLD"	on the chain-of-custod	y. Also request that the laboratory
determine the final pre	ssure and contact the ERM of	coordinator for further instruc	ction.			
		995 999999 - FRANK BERNELLE CALLES ^{(****} ********************************				

	Environmental Reso	urces Management			Project #:	0121021
	The Towers at Wildy				Project Name:	ISL
	3200 Windy Hill Roa				Location:	1420 Fairmont Avenue
	Atlanta, Geogia 3033					Atlanta, Fulton County, GA
EDM	Phone: (678) 486-270				Project Manager:	J. Bilkert
CINIVI						
Sample Location:	T.				Collector(s):	
	SG-2-11'			×	_	C. Brooks
Address:	Former I-Schneid 1420 Fairmont Ave, Atlan	ta, GA				A. Reimer
PID Meter Used: (Model, Serial #) Sample ID:		<u> </u>			Date:	6/8/201
		SG-2-11'	D			
Duplicate Sample? (Y		N INDOOR AIR	Duplicate Sa	MBIENT AIR		SOIL GAS
Type of sample (circle		INDOOR AIR		AMBIENTAR		SUL GAS
Photograph description						
Summa® Information				Flow Controller		
Canister Serial Number	391			Number:	0686	
Start Date/Time:	6/8/16	10:55		Stop Date/Time:	18/11	1(09
Start Pressure: (inches		V		Stop Pressure: (inches	Hg) ²	
	- 20-9	7			Ψ	
Other Sampling Inform Story/Level	mation: Ground	Ground Surface	Concrete		Depth of Vapor Probe	11' bgs
		(pavement, flooring)			(if applicable)	
Room	8	Slab thickness (if applicable)	~ 2.5"		Distance from Building (if applicable)	
Indoor Air Temp (°F)	~ 70°	Potential Vapor Pathways Observed?	CORE	is in slad	Distance to nearest Roadway (ft.)	
Intake Height Above Ground Level (ft.)	NA	Noticeable Odor?	No		Weather	warm chern
Barometric Pressure	18 40	Barometric Pressure	000) @	Wind Speed (mph)	
Initial ("Hg or mb)	28.98	Final ("Hg or mb)	280	0		
Interim Monitoring				Nationachia Oriano Oria	n	
Initial Sample Purge (soil gas only):	PID Reading (ppm):			Noticeable Odor? (Y/N	<i>i</i> ,	
Reading #1:	Time: 1057	Summa Vacuum ("Hg): 21.09	Noticeable Odor? (Y/	₽	
Reading #2:	Time: 2200	Summa Vacuum ("Hg):-13.42	Noticeable Odor? (Y		
Reading #3:	Time: 104	Summa Vacuum ("Hg				
Reading #4:		Summa Vacuum ("Hg):-) [.[.	Noticeable Odor? (Y/N		
Reading #5:	Time: 107	Summa Vacuum ("Hg): 15	Noticeable Odor? (Y/N		
Sketch of Sample Loo		Continue Caodani (119	, (j)			
cherton of outliple LOC		· · · · · · · · · · · · · · · · · · ·				
						,
Comments:				•		
1 - Verify pressure did	not decrease noticeably fro	m laboratory reported value.				
2 - If final pressure doe	es not change much from in	itial pressure, send the samp coordinator for further instru	ole to the labora	atory and indicate "HOLD	D" on the chain-of-custod	y. Also request that the laboratory
determine the final pre						
						•
		an a				

	Environmental Resou	rces Management			Project #:	0121021
	The Towers at Wildwood Plaza			Project Name:	ISL	
	3200 Windy Hill Road	, SE			Location:	1420 Fairmont Avenue
	Atlanta, Geogia 30339					Atlanta, Fulton County, GA
FRM	Phone: (678) 486-2700			Project Manager:	J. Bilkert	
Sample Location:					Collector(s):	0. Decele
A -1 -1	SSV-1 Former I-Schneid	-			-	C. Brooks
Address:	1420 Fairmont Ave, Atlanta	, GA			,	A. Reimer
PID Meter Used: (Model, Serial #)					Date:	6/8/201
Sample ID:		SSV-1	1			
Duplicate Sample?	N)		Duplicate Sa	mple ID: ロッターじし		
Type of sample (circle		INDOOR AIR		AMBIENT AIR		SOIL GAS
Photograph descriptio	on:		×			
Summa® Information			6			
Canister Serial Number	0.10	1	100	Flow Controller	all	1 - 6-91
Salaris Antoine (1997) (1997) (1997) (1997)	212	lare :	527	Number: 06		1 BUD 0596
Start Date/Time:	8/16 1133	3 1618	116 1147	Stop Date/Time:	18/16/147	展 1203
Start Pressure: (inches	Hall	-28.		Stop Pressure: (inches	H_{0} ²	-0.14
Other Sampling Inform	-29-03	1 - 20.1			-0-28 /	
Story/Level	Ground	Ground Surface	Concrete		Depth of Vapor Probe	sub-slab
		(pavement, flooring)			(if applicable)	
Room		Slab thickness (if applicable)	~ 2.5"		Distance from Building (if applicable)	
Indoor Air Temp (°F)	170°	Potential Vapor		1	Distance to nearest	
Intake Height Above	NA	Pathways Observed? Noticeable Odor?	No	s m slab	Roadway (ft.) Weather	werm clear - 800
Ground Level (ft.)						10110,200
Barometric Pressure Initial ("Hg or mb)	28.98	Barometric Pressure Final ("Hg or mb)	28.	28	Wind Speed (mph)	
Interim Monitoring						
Initial Sample Purge (soil gas only):	PID Reading (ppm):	· · · · · · · · · · · · · · · · · · ·		Noticeable Odor? (YA		
Reading #1:	Time: //37	Summa Vacuum ("Hg	:-18 4	Noticeable Odor? (Y/	9	
Reading #2:	Time: 1141	Summa Vacuum ("Hg		Noticeable Odor? (Y/N		
Reading #3:	Time: 1145	Summa Vacuum ("Hg	1:258	Noticeable Odor? (Y/N	0	
Reading #4:	Time: 1146	Summa Vacuum ("Hg	1:-020	Noticeable Odor? (YUN		
Reading #5:	Time:	Summa Vacuum ("Hg		Noticeable Odor? (Y/N		
Sketch of Sample Loc		ounnu vuodini (119	<i>.</i>	, i i i i i i i i i i i i i i i i i i i		
0.00	0 -1	7 442 @ -2	8.81			
	P-01 57217-1					
	The: 1151	= - 19.71	-Hg			
	11ml: 1157	, Lia	-			
	TThe 1200	-6,18 1	May			
		- 2.90	"Ha			
	Time: 1201	-6480 -2.96 -1.75	"Ha			
	7)me= 1203		-24			- <u></u>
	,,		101			
Comments:			ه المؤلفاتين هو ماريز براز اللسوي			
	not decrease noticeably from	a laboratory reported value.	Chine and			
2 - If final pressure doe	es not change much from initi	al pressure, send the same	ble to the labora	atory and indicate "HOLD	" on the chain-of-custod	y. Also request that the laboratory
determine the final pre-	ssure and contact the ERM of	coordinator for further instru	ction.		A Contained	
		£				an an an tao amin' ao amin' ao amin' ao amin'

Sample Locator: Save 2 Address: Former 15chned Former 15ch	ERM	Environmental Resources Management The Towers at Wildwood Plaza 3200 Windy Hill Road, SE Atlanta, Geogia 30339 Phone: (678) 486-2700				Project #: Project Name: Location: Project Manager:	0121021 ISL 1420 Fairmont Avenue Atlanta, Fulton County, GA J. Bilkert
Address: If ower Schneid Aretimer PIO Mater Used: Oate: Retimer Sample D: SSV-2 Duplicate Sample (Crick one): NOOR AIR AMELENT AIR SOIL CAS Photograph description: INDOOR AIR AMELENT AIR SOIL CAS SOIL CAS Photograph description: INDOOR AIR AMELENT AIR SOIL CAS Start Date/Time: SU/2 Soil Cass Soil Cass Start Date/Time: SU/2 Start Date/Time: Soil Cass Start Date/Time: Start Date/Time: Start Date/Time: Start Date/Time: Start Date/Time: Start Date/Time: Start Date/Time: Start Date/Time: Start Date/Time: Start Date/Time: Start Date/Time: Start Date/Time: Start Date/Time: Start Date/Time: Start Date/Time: Start Date/Time: Start Date/Time: Start Date/Time: Start Date/Time: Start Date/Time: Start Date/Time: Start Date/Time: Start Date/Time: Start Date/Time: Start Date/Time: Start Date/Time: Start Date/Time: Start Date/Time: Start Date/Time: Start Date/Time: Biod Alv Tomp (Ff) <td>Sample Location:</td> <td>SSV-2</td> <td>4</td> <td></td> <td></td> <td>Collector(s):</td> <td>C. Brooks</td>	Sample Location:	SSV-2	4			Collector(s):	C. Brooks
Indext. Series if any latence is sample (Incloance) SSV-2 Duplicate Sample (Incloance): INDOOR AIR AMBIENT AIR SOLL GAS Proforgand description: Stat Data (Time: O 707 Stat Data (Time: O 707 Stat Data (Time: O 707 Stat Data (Time: G_IS_///G_12.2.1 Stop Data (Time: O 707 Stop Data (Time: O 707 Stop Data (Time: O 707 Stat Data (Time: G_IS_///G_12.2.1 Stop Data (Time: O 707 Stop Data (Time: O 707 Stop Data (Time: O 707 Stat Data (Time: G_IS_///G_12.2.1 Stop Data (Time: O 707 Stop Data (Time: O 707 Stop Data (Time: O 707 Stat Data (Time: G_IS_///G_12.2.5 Stop Pressure: (Incluse Ha)* O 707 Stop (Stop Probue: Stop Pressure: (Incluse Ha)* O 707 Story/Level Ground Ground Stafese (gavement, footing) Concords (Time: Gavement, footing) Depth of Vapor Probe sub-slab Root Applicable) Good (Time) (D) Stop Pressure: (Incluse to main: Statu) Bailing (Fapicable) Initial France (FP) APOP Proteinal Vapor Proteinal Vapor Bailing (Fapicable) Bailing (Fapicable) Initial France (FP) APOP Proteinal Vapor Querks or KLAS Rood (m) Rood (m) Rood (m) Rood (m) Rood (m) Rood (m)	Address:	Former I-Schneid	a, GA				A. Reimer
Doplicate Sample (7:6) Duplicate Sample (D: Type of sample (drice) one): DOOR AIR AMBIENT AIR SOIL GAS Protograph description: Soil (GAS) NDOOR AIR AMBIENT AIR Soil (GAS) Summa® Information Canditer Serial Number: 574.6 Number: 0.700.7 Start Date/Time: (GAS) Flow Controller Number: 0.700.7 Start Date/Time: (GAS) (Gasement, flooring) Concrete (Inclust Hig) - 0.71.7 Other Sampling Information: Stort Date/Time: 0.700.75 Stort Date/Time: 0.700.7 Stort Date/Time: (Inclust High How Noticeable Odor) Concrete Interpretation: 0.700.17 Other Sampling Information: Ground Ground Stripticable Concrete Interpretation: 0.700.45 Stort Paleware: 0.700.45 Room Stort Date/Time: (Inclust High How Noticeable Odor)? No Building of Paleware: 0.700.45 Stort Stort Stripticable Stort Stort Stripticable Room Stort Date/Time: (Inclust High How Noticeable Odor? (Vite) Noticeable Odor? (Vite) Noticeable Odor? (Vite)	(Model, Serial #)					Date:	6/8/201
Type of sample (drcle one): INDOOR AIR AMBIENT AIR SOIL GAS Photograph description:		ሴ	SSV-2	Dunlicate Sa	mple ID:		
Photograph description: Summaß Information Canister Serial Number: 546 Start Data/Time: 6.185 (b) 185 7.28.65 Stop Data/Time: 0.907.1236 Stop Tobale/Time: 0.907.1236 Stop Caller Series Htg) -2.8.65 Stop Tension: Stop Pressure: (inches Htg) -2.8.65 Stop Pressure: (inches Htg) Other Sampling Information: Concrete Stop/Level Ground (ground stratum) Concrete (ground stratum) Concrete (ground stratum) Concrete (ground stratum) Descent on nexter Room Step Pressure: (inches Htg) -2.5' Building (ground stratum) Index Height Above NA Noticeable Odor? No Barrowski's Pressure 2.8.9.9.9 Initial Trans (PT) -2.2.4 Summa Vacuum (Hg): -19.7.4 Noticeable Odor? (Yd) Reading #1: Time: 1.2.4 Summa Vacuum (Hg): -2.0.4 Noticeable Odor? (Yd) Reading #2: Time: 1.2.4 Summa Vacuum (Hg): -2.0.4 </td <td></td> <td></td> <td>INDOOR AIR</td> <td>Duplicate oa</td> <td></td> <td></td> <td>SOIL GAS</td>			INDOOR AIR	Duplicate oa			SOIL GAS
Canister Serial Number: 546 If our Controller Number: 0.707 Start Date/Time: (a 8 // L6 / 12.7.1 Stop Date/Time: 0.707 Start Pressure: (nches Hg) -2.8.6.5 Stop Pressure: 0.707 Other Sampling Information: Ground Ground Startae (grayment, fooring) Defended for Vapor Probe Building (# applicable) Defended for Vapor Probe Building (# applicable) Room Stab bitkness (f) -2.9° Defended Vapor Pathways Observed? Defended Vapor Pathways Observed Vapor Pathways Observed?							
Start Date/Time: 6.18.1/16.1221 Stop Date/Time: 0.70.7 Start Pressure: (inches Hu) 1.236 Stop Date/Time: 0.17.1 Start Pressure: (inches Hu) 1.236 Stop Pressure: (inches Hu) -0.17.1 Other Sampling Information: Stop Pressure: (inches Hu) -0.17.1 Stop Covel Ground Ground Surface Depth of Vapor Probe surb stab (indox Air Temp (F) 0.70.7 Pathwaya Observed? Indox Air Temp (F) Noticeable Odor? Indate Height Abov NA Noticeable Odor? No Weather Wind Speed (mph) Intate Height Abov NA Noticeable Odor? No Weather Wind Speed (mph) Intate Height Abov NA Noticeable Odor? No Weather Wind Speed (mph) Intate Height Abov NA Noticeable Odor? No Weather Wind Speed (mph) Intate Height Abov NA Noticeable Odor? No Weather No No Reading #2: Time: +12.2.4 Summa Vacuum ('Hg): -12.1/2 Noticeable Odor? (YM) Reading #3 No Reading #3 N	Summa® Information						
Start Date/Time: (a) 8 ///a 1224 Stop Date/Time: (a) 8 ///a 1236 Start Pressure: (inclusted inclusted inclast inclusted inclast inclusted inclusted inclusted inclusted inc	Canister Serial Number	546				1702	
Start Pressure: (inchés Hg) - 28.65 Stop Prešsure: (inchés Hg) - 0.17 Other Sampling Information: Ground & Ground Surface (gavement, flooring) Concrete Depth of Vapor Probe (if applicable) sub-slab Room Stab thickness (if applicable) - 2.5" Distance from Building (rapplicable) Distance to nearest Roodway (t). Indoor Air Temp (F) NPOP Potential Vapor Pathway Observed? No Weather Worm , Elecc- N SO' Barometric Pressure (initial Crigo rm) 28.999 Barometric Pressure Final (Hg or m) No Weather Worm , Elecc- N SO' Barometric Pressure (initial Sample Purge (soil gas ont); Inne: 12.4 Summa Vacuum (Hg): -19.78 Noliceable Odor? (Mp) Reading #1: Time: 12.4 Summa Vacuum (Hg): -10.78 Noliceable Odor? (Mp) Reading Ma Reading Ma: Time: 12.4 Summa Vacuum (Hg): -10.78 Noliceable Odor? (Mp) Reading Ma Reading Ma: Time: 13.5 Summa Vacuum (Hg): -10.78 Noliceable Odor? (Mp) Reading Ma Reading Ma: Time: 13.5 Summa Vacuum (Hg): Noliceable Odor? (Mp) Reading Ma Reading Ma Stetch of Sample Location: Summa Vacuum (Hg): Noliceable Odor? (Mp) Reading Ma 1 - Verify pressure did nol d			2 1		Stop Date/Time:		
Other Sampling Information: Ground Ground Surfaces Concrete Diptin of Vapor Probe (if applicable) Brown Slab tilckness (if -2.5" Diptin of Vapor Probe (if applicable) Building (if applicable) Indoor Air Temp (°F) Drove Potential Vapor Probe Pathways Observed? Diptin of Vapor Probe (if applicable) Indoor Air Temp (°F) Drove Potential Vapor Pathways Observed? Croacks we stake wave (if) Reading (If applicable) No Weather Weather Ground Level (I) No Weather Weather Barometric Pressure (if a construction of the construction	the second se			7		11-> 2	
Story/Level Ground Ground Surface (pavement, flooring) Depth of Vapor Probe sub-stab (flooring) Depth of Vapor Probe sub-stab (flooring) Room Stab thickness (flooring) -2.5" Building (flooring) Intake Height Above Ground Level (fl.) Potenfail Vapor Pathways Observed? Crounds on values Distance to nearest Roadway (fl.) Intake Height Above Ground Level (fl.) NA Noticeable Odor? No Weather Barometric Pressure Interfm Monitoring 28.99.9 Wind Speed (mph) Wind Speed (mph) Interfm Monitoring Interfm Monitoring Noticeable Odor? (Yfl) Reading #1: Reading #2: Time: r12.2 Summa Vacuum ('Hg): -19.7.4 Noticeable Odor? (Yfl) Reading #4: Reading #3: Time: r12.3 Summa Vacuum ('Hg): -10.7.4 Noticeable Odor? (Yfl) Reading #4: Reading #5: Time: Summa Vacuum ('Hg): -0.14.7.8 Noticeable Odor? (Yfl) Reading #4: Reading #6:: Time: Summa Vacuum ('Hg): Noticeable Odor? (Yfl) Reading #6: Roadway ('H) Reading #6:: Time: Summa Vacuum ('Hg): Noticeable Odor? (Yfl) Reading #6: Roadway ('H) Sketch of Sample Loccation: 2.14 Final pressure dod		- 28.6	.>.			-01+	
Room (payement, flooring) (if applicable) Room Slab thickness (if applicable) -2.5" Bilding (if applicable) Distance form Building (if applicable) Index Height Above Potential Vapor (payeks nu s (ab) Ground Level (it) No Weather Weather Barometric Pressure 2.8 - 9.9 Barometric Pressure D.8 - 9.9 Initial city orms) 2.8 - 9.9 Barometric Pressure D.8 - 9.9 Initial Sample Purge (payeks nu s (ab) No Weather Wearn , %) (e.g., no %) Initial Sample Furge PID Reading (pm): Noliceable Odor? (YM) Reading #1: Time: 12.2 & Summa Vacuum ('Hg): -12.1 (c) Noliceable Odor? (YM) Reading #2: Time: n2.3 Summa Vacuum ('Hg): -0.4 S Noliceable Odor? (YM) Reading #3: Time: n2.3 S Summa Vacuum ('Hg): -0.4 S Noliceable Odor? (YM) Reading #4: Time: n2.3 S Summa Vacuum ('Hg): -0.4 S Noliceable Odor? (YM) Reading #5: Time: s Summa Vacuum ('Hg): Noliceable Odor? (YM) Reading #5: Time: S Summa Vacuum ('Hg): Noliceable Odor? (YM) Reading #5: Time: S Summa Vacuum ('Hg): Noliceable Odor? (YM) Reading #5: Time: S Summa Vacuum ('Hg): Noliceable Odor? (YM) Reading #5: Time: S Summa Vacuum ('Hg): Noliceable Odor? (YM) Reading #5: Ste			Ground Surface	Concrete		Depth of Vapor Probe	sub-slab
Comments: applicable) Building (rapplicable) Indoor Air Temp (*F) $\mathcal{M} \mathcal{H} \mathcal{H}$ Potential Vapor Pathway Observed? Cracks ws (c.k.) Intake Height Above Ground Level (r) NA Noliceable Odor? No Barometric Pressure (solid gas only): 2 & 9 9 Barometric Pressure Barometric Pressure 2 & 9 9 Interim Monitoring Interim Monitoring Noliceable Odor? (YM) Seeding #1: Interim Monitoring Noliceable Odor? (YM) Reading #1: Reading #1: Time: 12.2.8 Summa Vacuum ('Hg): -19.7.8 Noliceable Odor? (YM) Reading #1: Time: 12.2.8 Summa Vacuum ('Hg): Noliceable Odor? (YM) Reading #1: Reading #1: Time: 12.2.8 Summa Vacuum ('Hg): Noliceable Odor? (YM) Reading #1: Reading #1: Time: 12.3.5 Summa Vacuum ('Hg): Noliceable Odor? (YM) Reading #1: Reading #2: Time: 12.3.5 Summa Vacuum ('Hg): Noliceable Odor? (YM) Reading #3: Reading #3: Time: 12.3.5 Summa Vacuum ('Hg): Noliceable Odor? (YM) Reading #3: Sketch of Sample Location: Summa Vacuum ('Hg): Noliceable Odor? (YM) Sketch of Sample Location: 1 - Verify pressure dees not change much from initial	otory/Level	Ground	(pavement, flooring)			(if applicable)	
Indoor Air Temp (*) 1700 Potential Vapor Pathways Observed? Creacks on stake Distance to nearest Roadway (ft.) Intake Height Above Ground Level (ft.) NA No Weather Weather Barromteric Pressure Initial sample Purge (soll gas only): 28-99 Barromteric Pressure Final ("Hg or mb) Wind Speed (mph) Interim Monitoring Initial sample Purge (soll gas only): PID Reading (ppm): Noticeable Odor? (Ykg) Reading #1: Time: 12-24 Summa Vacuum ("Hg): -12, 1/4 Noticeable Odor? (Ykg) Reading #3: Time: 12-35 Summa Vacuum ("Hg): -0, 1/3 Noticeable Odor? (Ykg) Reading #4: Time: Summa Vacuum ("Hg): Noticeable Odor? (Ykg) Reading #3: Time: Summa Vacuum ("Hg): Noticeable Odor? (Ykg) Reading #4: Time: Summa Vacuum ("Hg): Noticeable Odor? (Ykg) Sketch of Sample Location: Summa Vacuum ("Hg): Noticeable Odor? (Ykg) Sketch of Sample Location:	Room			~ 2.5"			
Intake Height Above Ground Level (it) NA Noticeable Odor? No Weather Wearn , Ever, , 280' Barometric Pressure Initial (Fig or mb) 28-99 Barometric Pressure Final (Hig or mb) Q.S.99 Wind Speed (mph) Interim Monitoring Initial Sample Purge (soli gas only): PID Reading (ppm): Noticeable Odor? (Y(t)) Noticeable Odor? (Y(t)) Reading #1: Time: 12.24 Summa Vacuum ('Hg): -12.1(L) Noticeable Odor? (Y(t)) Reading #2: Reading #3: Time: 12.35 Summa Vacuum ('Hg): Noticeable Odor? (Y(t)) Reading #4: Time: 12.35 Summa Vacuum ('Hg): Reading #4: Time: Summa Vacuum ('Hg): Noticeable Odor? (Y(N)) Reading #5: Time: Summa Vacuum ('Hg): Noticeable Odor? (Y(N)) Reading #5: Time: Summa Vacuum ('Hg): Noticeable Odor? (Y(N)) Reading #5: Time: Summa Vacuum ('Hg): Noticeable Odor? (Y(N)) Reading #5: Summa Vacuum ('Hg): Noticeable Odor? (Y(N)) Summa Vacuum ('Hg): Noticeable Odor? (Y(N)) Summa Vacuum ('Hg): Notice	Indoor Air Temp (°F)	1.700	Potential Vapor	inark	s a slad	Distance to nearest	
Barometric Pressure Initial (risp or mb) 28.99 Wind Speed (mph) Interim Monitoring Initial Sample Purge (soli gas only): PID Reading (ppm): (soli gas only): Noticeable Odor? (VM) Reading #1: Reading #1: Time: 12.2.8 Summa Vacuum ("Hg): -19.3.8 Noticeable Odor? (VM) Noticeable Odor? (VM) Reading #3: Time: 12.3.5 Summa Vacuum ("Hg): -19.3.8 Noticeable Odor? (VM) Noticeable Odor? (VM) Reading #4: Time: 12.3.5 Summa Vacuum ("Hg): Noticeable Odor? (VM) Noticeable Odor? (VM) Reading #4: Time: Summa Vacuum ("Hg): Noticeable Odor? (VM) Noticeable Odor? (VM) Reading #5: Time: Summa Vacuum ("Hg): Noticeable Odor? (VM) Noticeable Odor? (VM) Reading #5: Time: Summa Vacuum ("Hg): Noticeable Odor? (VM) Noticeable Odor? (VM) Sketch of Sample Location: Summa Vacuum ("Hg): Noticeable Odor? (VM) Noticeable Odor? (VM) 2.1 YM Noticeable Odor? (VM) Noticeable Odor? (VM) 2.1 Summa Vacuum ("Hg): Noticeable Odor? (VM) Noticeable Odor? (VM) Reading #5: Time: Summa Vacuum ("Hg): Noticeable Odor? (VM) Noticeable Odor? (VM) Sketch of Sample Location: Summa Vacuum ("Hg): Noticeable Odor? (VM) Noticeable Odor? (VM) 2.1 Image: Noticeable Odor? (VM) Noticeable Odor? (VM) Noticeable Odor? (VM) <td< td=""><td></td><td>NA</td><td></td><td></td><td>o yu ruus</td><td></td><td>warm, selear</td></td<>		NA			o yu ruus		warm, selear
Interim Monitoring Initial Sample Purge PID Reading (ppm): Noticeable Odor? (Y(k)) Reading #1: Time: + 2.2.4 Summa Vacuum ("Hg): -1.9.7.8 Noticeable Odor? (Y(k)) Reading #2: Time: + 1.2.2.5 Summa Vacuum ("Hg): -0.1.4.3 Noticeable Odor? (Y(k)) Reading #3: Time: + 1.2.3.5 Summa Vacuum ("Hg): -0.1.4.3 Noticeable Odor? (Y(k)) Reading #4: Time: Summa Vacuum ("Hg): Noticeable Odor? (Y(k)) Reading #4: Time: Summa Vacuum ("Hg): Noticeable Odor? (Y(k)) Reading #4: Time: Summa Vacuum ("Hg): Noticeable Odor? (Y(k)) Reading #5: Time: Summa Vacuum ("Hg): Noticeable Odor? (Y(k)) Sketch of Sample Location: Summa Vacuum ("Hg): Noticeable Odor? (Y(k)) Sketch of Sample Location: Summa Vacuum ("Hg): Noticeable Odor? (Y(k)) Sketch of Sample Location: Summa Vacuum ("Hg): Noticeable Odor? (Y(k)) Sketch of Sample Location: Summa Vacuum ("Hg): Noticeable Odor? (Y(k)) Sketch of Sample Location: Summa Vacuum ("Hg): Noticeable Odor? (Y(k)) Sketch of Sample Location: Summa Vacuum ("Hg): Noticeable Odor? (Y(k)) S	Barometric Pressure	28.99		2,8	3,99	Wind Speed (mph)	
(soll gas only): Reading #1: Time: 12.24 Summa Vacuum ("Hg): -19.78 Noticeable Odor? (YM) Reading #2: Time: 12.25 Summa Vacuum ("Hg): -0,13 Noticeable Odor? (YM) Reading #3: Reading #3: Time: 12.35 Summa Vacuum ("Hg): -0,13 Noticeable Odor? (YM) Reading #4: Reading #4: Time: Summa Vacuum ("Hg): Noticeable Odor? (YM) Reading #5: Reading #5: Time: Summa Vacuum ("Hg): Noticeable Odor? (YM) Reading #5: Reading #5: Time: Summa Vacuum ("Hg): Noticeable Odor? (YM) Reading #5: Sketch of Sample Location: Summa Vacuum ("Hg): Noticeable Odor? (YM) Reading #5: Comments: 1 -Verify pressure did not decrease noticeably from laboratory reported Value. 2 If final pressure does not change much from initial pressure, send the sample to the laboratory and indicate "HOLD" on the chain-of-custody. Also request that the laboratory				~ ~			
Reading #2: Time: 12.22 Summa Vacuum ("Hg): ~12.12 Noticeable Odor? (Y/N) Reading #3: Time: Summa Vacuum ("Hg): ~0.43 Noticeable Odor? (Y/N) Reading #4: Time: Summa Vacuum ("Hg): Noticeable Odor? (Y/N) Reading #5: Time: Summa Vacuum ("Hg): Noticeable Odor? (Y/N) Reading #5: Time: Summa Vacuum ("Hg): Noticeable Odor? (Y/N) Sketch of Sample Location: Summa Vacuum ("Hg): Noticeable Odor? (Y/N) Sketch of Sample Location: Summa Vacuum ("Hg): Noticeable Odor? (Y/N) Sketch of Sample Location: Summa Vacuum ("Hg): Noticeable Odor? (Y/N) Sketch of Sample Location: Summa Vacuum ("Hg): Noticeable Odor? (Y/N) Sketch of Sample Location: Summa Vacuum ("Hg): Noticeable Odor? (Y/N) Sketch of Sample Location: Summa Vacuum ("Hg): Noticeable Odor? (Y/N) Sketch of Sample Location: Summa Vacuum ("Hg): Noticeable Odor? (Y/N) Sketch of Sample Location: Summa Vacuum ("Hg): Noticeable Odor? (Y/N) Sketch of Sample Location: Summa Vacuum ("Hg): Noticeable Odor? (Y/N) Sketch of Sample Location: Summa Vacuum (Hg): <td< td=""><td></td><td>PID Reading (ppm):</td><td></td><td></td><td>Noticeable Odor? (Y/N)</td><td></td><td></td></td<>		PID Reading (ppm):			Noticeable Odor? (Y/N)		
Reading #2: Time: 12.2 Summa Vacuum ("Hg): Noticeable Odor? (Y/N) Reading #3: Time: Summa Vacuum ("Hg): Noticeable Odor? (Y/N) Reading #4: Time: Summa Vacuum ("Hg): Noticeable Odor? (Y/N) Reading #5: Time: Summa Vacuum ("Hg): Noticeable Odor? (Y/N) Reading #5: Time: Summa Vacuum ("Hg): Noticeable Odor? (Y/N) Sketch of Sample Location: Summa Vacuum ("Hg): Noticeable Odor? (Y/N) Sketch of Sample Location: Summa Vacuum ("Hg): Noticeable Odor? (Y/N) Sketch of Sample Location: Summa Vacuum ("Hg): Noticeable Odor? (Y/N) 2. If final pressure did not decrease noticeably from laboratory reported value. Year of the chain-of-custody. Also request that the laboratory and indicate "HOLD" on the chain-of-custody. Also request that the laboratory and indicate "HOLD" on the chain-of-custody. Also request that the laboratory of the chain-of-custody. Also request that the laboratory and indicate "HOLD" on the chain-of-custody. Also request that the laboratory and indicate "HOLD" on the chain-of-custody. Also request that the laboratory and indicate "HOLD" on the chain-of-custody. Also request that the laboratory and indicate "HoLD" on the chain-of-custody. Also request that the laboratory and indicate "HoLD" on the chain-of-custody. Also request that the laboratory and indicate "HoLD" on the chain-of-custody.	Reading #1:	Time: 1724	Summa Vacuum ("Hg): -19.78	Noticeable Odor? (YAN)		
Reading #4: Time: Summa Vacuum ("Hg): Noticeable Odor? (V/N) Reading #5: Time: Summa Vacuum ("Hg): Noticeable Odor? (Y/N) Sketch of Sample Location: Sketch of Sample Location: Sketch of Sample Location: Comments: 1 - Verify pressure did not decrease noticeably from laboratory reported value. 2 - If final pressure does not change much from initial pressure, send the sample to the laboratory and indicate "HOLD" on the chain-of-custody. Also request that the laboratory			Summa Vacuum ("Hg	1: -12.16			
Reading #5: Time: Summa Vacuum ("Hg): Noticeable Odor? (Y/N) Sketch of Sample Location:							
Sketch of Sample Location: Comments: 1 - Verify pressure did not decrease noticeably from laboratory reported value. 2 - If final pressure does not change much from initial pressure, send the sample to the laboratory and indicate "HOLD" on the chain-of-custody. Also request that the laboratory	Reading #4:	Time:	Summa Vacuum ("Hg):			
Comments: 1 - Verify pressure did not decrease noticeably from laboratory reported value. 2 - If final pressure does not change much from initial pressure, send the sample to the laboratory and indicate "HOLD" on the chain-of-custody. Also request that the laboratory			Summa Vacuum ("Hg):	Noticeable Odor? (Y/N)		
 Verify pressure did not decrease noticeably from laboratory reported value. If final pressure does not change much from initial pressure, send the sample to the laboratory and indicate "HOLD" on the chain-of-custody. Also request that the laboratory 	Sketch of Sample Loo	cation:			· · · · · · · · · · · · · · · · · · ·		
 Verify pressure did not decrease noticeably from laboratory reported value. If final pressure does not change much from initial pressure, send the sample to the laboratory and indicate "HOLD" on the chain-of-custody. Also request that the laboratory 							
 Verify pressure did not decrease noticeably from laboratory reported value. If final pressure does not change much from initial pressure, send the sample to the laboratory and indicate "HOLD" on the chain-of-custody. Also request that the laboratory 							
 Verify pressure did not decrease noticeably from laboratory reported value. If final pressure does not change much from initial pressure, send the sample to the laboratory and indicate "HOLD" on the chain-of-custody. Also request that the laboratory 							
1 - Verify pressure did not decrease noticeably from laboratory reported value. 2 - If final pressure does not change much from initial pressure, send the sample to the laboratory and indicate "HOLD" on the chain-of-custody. Also request that the laboratory							
1 - Verify pressure did not decrease noticeably from laboratory reported value. 2 - If final pressure does not change much from initial pressure, send the sample to the laboratory and indicate "HOLD" on the chain-of-custody. Also request that the laboratory							
1 - Verify pressure did not decrease noticeably from laboratory reported value. 2 - If final pressure does not change much from initial pressure, send the sample to the laboratory and indicate "HOLD" on the chain-of-custody. Also request that the laboratory							
1 - Verify pressure did not decrease noticeably from laboratory reported value. 2 - If final pressure does not change much from initial pressure, send the sample to the laboratory and indicate "HOLD" on the chain-of-custody. Also request that the laboratory							
1 - Verify pressure did not decrease noticeably from laboratory reported value. 2 - If final pressure does not change much from initial pressure, send the sample to the laboratory and indicate "HOLD" on the chain-of-custody. Also request that the laboratory		4					
1 - Verify pressure did not decrease noticeably from laboratory reported value. 2 - If final pressure does not change much from initial pressure, send the sample to the laboratory and indicate "HOLD" on the chain-of-custody. Also request that the laboratory	Commente:						
2 - If final pressure does not change much from initial pressure, send the sample to the laboratory and indicate "HOLD" on the chain-of-custody. Also request that the laboratory determine the final pressure and contact the ERM coordinator for further instruction.		not decrease noticeably from	m laboratory reported value.				
	2 - If final pressure doe	es not change much from ini	tial pressure, send the samp	ole to the labora	tory and indicate "HOLD	on the chain-of-custody	y. Also request that the laboratory
	determine the final pre	ssure and contact the ERM				A CARLER AND A CARLE	
		Υ.					
						-	

	Environmental Resou	rces Management	Stating		Project #:	0121021	A MARY
	The Towers at Wildwo				Project Name:	ISL	
	3200 Windy Hill Road				Location:	1420 Fairmo	ont Avenue
	Atlanta, Geogia 30339					Atlanta, Fult	on County, GA
FRM	Phone: (678) 486-2700				Project Manager:	J. Bilkert	
							San Maria Ma
Sample Location:	SSV-3		-		Collector(s):	C. Brooks	
Address:	Former I-Schneid						
	1420 Fairmont Ave, Atlanta	I, GA				A. Reimer	
PID Meter Used: Model, Serial #)					Date:		6/8/201
Sample ID:	5	SSV-3					
Duplicate Sample? (Y)	N)		Duplicate San	mple ID:			
Type of sample (circle	one):	INDOOR AIR		AMBIENT AIR		SOIL	GAS
Photograph descriptio	n:						
Summa® Information	. · · · ·						
Canister Serial Number: Flow Controller			520		4		
	352	1			520		
Start Date/Time:	()(.	1701		Stop Date/Time:	1	305	
. (0	8/16	1250				305	
Start Pressure: (inches	-27.34			Stop Pressure: (inches I	ч у) -	-0.82	>
Other Sampling Inform			0		Donth of Verse D	Irobo loub clab	
Story/Level	Ground	Ground Surface (pavement, flooring)	Concrete		Depth of Vapor P (if applicable)	TODE SUD-SIAD	
Room		Slab thickness (if	~ 2.5"		Distance from		
		applicable)			Building (if applic		
Indoor Air Temp (°F)	~70°	Potential Vapor Pathways Observed?	C ION	ts u slap	Distance to neare Roadway (ft.)	est	
Intake Height Above	NA	Noticeable Odor?	No	m in slop	Weather	1190000	nclear, 80
Ground Level (ft.)							
Barometric Pressure	28.97	Barometric Pressure Final ("Hg or mb)			Wind Speed (mp	h)	
Initial ("Hg or mb) Interim Monitoring	00.17	r mar (ng or mo)					
Initial Sample Purge (soil gas only):	PID Reading (ppm):		2	Noticeable Odor? (Y			
Reading #1:	Time: 1253	Summa Vacuum ("Hg	1900	Noticeable Odor? (YIN)	-		
Reading #2:	Time: /301	Summa Vacuum ("Hg		Noticeable Odor? (Y/N)			
Reading #3:	Time: 1304	Summa Vacuum ("Hg		Noticeable Odor? (Y/N)			
Reading #4:	Time:	Summa Vacuum ("Hg):	Noticeable Odor? (Y/N)			
Reading #5:	Time:	Summa Vacuum ("Hg):	Noticeable Odor? (Y/N)			
Sketch of Sample Loc	ation:						
:	· ·						
			80°				
•							
Comments:		a*					•
	not decrease noticeably from	a laboratory reported value.					
2 - If final pressure doe	es not change much from initi	ial pressure, send the samp	ole to the labora	atory and indicate "HOLD'	on the chain-of-cu	ustody. Also reque	st that the laboratory
determine the final pres	ssure and contact the ERM c	coordinator for further instru	iction.				
						1	

ERM	Environmental Resour The Towers at Wildwor 3200 Windy Hill Road, Atlanta, Geogia 30339 Phone: (678) 486-2700	od Plaza			Project # Project Name Location Project Manager:	0121021 ESchneid
Sample Location:					Collector(s):	Kevin Spevicek
Address:						
PID Meter Used: (Model, Serial #)	>1-20160+05-0			•	Date:	7/5/16
Duplicate Sample 2	N)	2	Duplicate Sar	nple ID: DUr-01-	2-160 405-	
Type of sample (circle	one):	INDOOR AIR		AMBIENT AIR		SOIL GAS
Photograph descriptio	on:					
Summa® Information						3
Canister Serial Number	Z197	2203		Flow Controller Number:	0155	0915
Start Date/Time:	7/5/14 1000,	••••••••••••••••••••••••••••••••••••••		Stop Date/Time: 7/5//	6	
Start Pressure: (inches		2895		Stop Pressure: (inches		n*
Other Sampling Inform				<u> </u>		
Story/Level		Ground Surface	1040	iete sko	Depth of Vapor Probe (if applicable)	
Room	1	(pavement, flooring) Slab thickness (if	00	1 2 11	Distance from	,
Indoor Air Temp (°F)		applicable) Potential Vapor		<u>†. ></u>	Building (if applicable) Distance to nearest	
Intake Height Above	~ 85	Pathways Observed? Noticeable Odor?		· · · · ·	Roadway (fl.) Weather	a the of the court
Ground Level (ft.) Barometric Pressure	2'10'	Barometric Pressure		Vo	Wind Speed (mph)	partly cloudy 81-85
Initial ("Hg or mb)		Final (Hg or mb)				10 mph the SA
Interim Monitoring	PID Reading (ppm):			Noticeable Odor? (Y/N)	}	,
(soil gas only):		-2	6.63		f	
Reading #1:	Time: 101	Summa Vacuum ("Hg):	1-20.3	Noticeable Odor? (Y()		
Reading #2:	Time: 200	Summa Vacuum ("Hg)!	23.73 /-24	Noticeable Odor? (YO)		
Reading #3:	Time: 3 0()	Summa Vacuum ("Hg);	20.78 -21.5	Noticeable Odor? (Y/())		
Reading #4:	Time: 1400			Noticeable Odor? (Y/N)		
Reading #5:	Time: 50 0	Summa Vacuum ("Hg):		Noticeable Odor? (Y/N)		·
Sketch of Sample Loca			ii	· 82		
	1600		2.20/-14			
	1700	- 9.	17/-1	.62		
	1800	- 6.0	41-8.	97		
	1000			രവ	. 1	
	(830	· · · · · · · · · · · · · · · · · · ·	16/-7,	01 - Shapl	e complete	
				Value	rl sol	
			•			
Comments:	iot decrease noticeably from la	horatory reported value		-		
2 - If final pressure does determine the final pres	s not change much from Initial sure and contact the ERM coo	pressure, send the sampl rdinator for further instruc	e to the labora tion	tory and indicate "HOLD'	on the chain-of-custody	/ Also request that the laboratory
	a a nega anta eta da esta este en en en este en presente en esta de la fabrica y					
<u> </u>				<u></u>		

•••

1

на страна и служа ст При служа страна и слу При служа страна и слу

!

	Environmental Resc The Towers at Wild 3200 Windy Hill Roa Atlanta, Geogia 303	wood Plaza d, SE 39			Project# Project Name Location	0121021 I-Schneid		
ERM	Phone: (678) 486-270	00			Project Manager:	Jeff Bilkert		
Sample Location: Address:				•	Collector(s): 	Kevin Spevench		
PID Meter Used: (Model, Serial #)		· · · ·			Date: 7/5//6			
Sample ID: IA - C Duplicate Sample? (Y Type of sample (circle		INDOOR AIR	Dupilcate Sa	mple ID: んん AMBIENT AIR		SOIL GAS		
Photograph description								
Summa® Information								
Canister Serial Numbe	r 196				lumber: USS T			
Start Date/Time: 7/5	5/16 1005			Stop Date/Time: 7/5//6				
Start Pressure: (inches	H9) ¹ - 29(,73			Stop Pressure: (inches	Hg) ²			
Other Sampling Inform				<u>I</u>				
Story/Level	1	Ground Surface (pavement, flooring)	100	cieta	Depth of Vapor Probe (if applicable)			
Room	-	Slab thickness (if applicable)	~ 4.5		Distance from Building (if applicable)			
Indoor Air Temp (°F)	~ 85'	Potential Vapor Pathways Observed?			Distance to nearest Roadway (fl.)			
Intake Height Above Ground Level (ft.)	2'10''	Noticeable Odor?	No		Weather	Partly clardy		
Barometric Pressure Initial ("Hg or mb)		Barometric Pressure Final (2Hg or mb)			Wind Speed (mph)	10 mph 105 5 E		
Interim Monitoring						······		
Initial Sample Purge (soil gas only):	PID Reading (ppm):			Noticeable Odor? (Y/N)	ł			
Reading #1:	Time: 1109	Summa Vacuum ("Hg):	-25.35	Noticeable Odor? (Y/N)				
Reading #2:	Time: 12.05	Summa Vacuum ("Hg): Summa Vacuum ("Hg):		Noticeable Odor? (Y/N) Noticeable Odor? (Y/N)				
Reading #3:	Time: r 30	Summa Vacuum ("Hg);		Noticeable Odor? (Y/N)				
Reading #4:	Time: 109	Summa Vacuum ("Hg);		Noticeable Odor? (Y/N)				
Reading #5: Sketch of Sample Loc	Time: SO S	Summa vacuum (rig).	1,7 4	Nonceptic oddir (nn)				
Skeich of Sample Loc			-5,21					
	1605 1640		3.86	- Sumple complete vave Ciosed				
				vaive				
,								
			-					
Comments: 1 - Vérify pressure did i	not decrease noticeably from	n laboratory reported value:			• And the second			
2 - If final pressure doe	is not change much from Init	lial pressure, send the sampl	e to the labora	tory and indicate "HOLD	on the chain-of-custody	Also request that the laboratory		
determine the final pres	ssure and contact the ERM	coordinator for further instruc	xuon.					
L			****					

A PROVINCE OF THE REAL PROVINC					Harris and Andrews	0101031		
ि सम्बन्धन	Environmental Resource					0121021 I-Schneid		
	3200 Windy Hill Road, S	TO A CONSTRUCTION OF CONSTRUCTION OF CONSTRUCTION OF CONSTRUCTION OF CONSTRUCTION OF CONSTRUCT OF CONST			Location:			
	Atlanta, Geogia 30339					Jeff Bilkert		
ERM	Phone: (678) 486-2700				Project Manager.			
Sample Location:					Collector(s):	Kenn Sperenek		
Address:								
PID Meter Used:		·			Date:	7/6/16		
(Model, Serial #)	3-20160705-01	<u>`````````````````````````````````````</u>						
Duplicate Sample? (Y	۶. M	1	Duplicate Sa	nple ID: N.A.		0011 04.0		
Type of sample (circle	one):	INDOOR AIR		AMBIENT AIR		SOIL GAS		
Photograph descriptio	n:							
Summa® Information					·····			
Canister Serial Number:					Flow Controller Number: 0764			
Start Date/Time:	dagu 1017	λαγοποιοτικα μ ^α ι Γα^τα Γιατικουαι στο του του του του του του του του του τ		Stop Date/Time: 7/5/2016				
Start Pressure: (inches	2015 E/2016 1010 Han' -29,28			Stop Pressure: (inches I				
Other Sampling Inform Story/Level	nation:	Ground Surface	(Depth of Vapor Probe			
Sloty/Level	1	(pavement, flooring)	LOACK		(if applicable)			
Room		Slab thickness (if applicable)	~ 4.	51	Distarice from Building (if applicable)			
Indoor Air Temp (°F)	- 85	Potential Vapor			Distance to nearest			
Intake Height Above	* 0>	Pathways Observed? Noticeable Odor?	8 5		Roadway (ft.) Weather	and the other		
Ground Level (ft.)		-	No		Mind Snood (mph)	putty clusty 81-85" 10 mgL Costy SE		
Barometric Pressure Initial ("Hg or mb)		Barometric Pressure Final ("Hg or mb)			Wind Speed (mph)	10 m/L DE		
Interim Monitoring				Null sector Oder OVIN		r		
Initial Sample Purge (soil gas only):	PID Reading (ppm):			Noticeable Odor? (Y/N)				
Reading #1:	Time: 1/10	Summa Vacuum ("Hg)		Noticeable Odor? (Y/N)				
Reading #2:		Summa Vacuum ("Hg)		Noticeable Odor? (Y/()) Noticeable Odor? (Y/(N)		·		
Reading #3:	Time: JD	Summa Vacuum ("Hg) Summa Vacuum ("Hg)		Noticeable Odor? (Y(N)				
Reading #4: Reading #5:	Time: 1410 Time: 1510	Summa Vacuum ("Hg)		Noticeable Odor? (Y/N)				
Sketch of Sample Loca								
	1610	-	-10,60					
			-1-1					
	1710		7, 17					
	1810	-4	4.18 - 2	Sample Cample Value 01034	le			
				value dinsel	(
•								
Comments:		and the second	The State of Long Conversion	New York Control of Co		• ann an		
1 - Verify pressure did n	ot decrease noticeably from fal	boratory reported value.				an ang tan		
2 - If final pressure does	a not change much from initial p	pressure, send the samp	le to the labora	tory and indicate "HOLD	on the chain-of-custody	/ Also request that the laboratory		
determine the final pres	sure and contact the ERM coor	rdinator for further instru	ction.					
		······································						
L.,								

· · · · · ·

1

ł

•

ERM Sample Location:	Environmental Resourc The Towers at Wildwoo 3200 Windy Hill Road, 5 Atlanta, Geogia 30339 Phone: (678) 486-2700	d Plaza				0121021 ESchneid Jeff Bilkert
Address:						<u> </u>
PID Meter Used: (Model, Serial #)					Date:	7/5/11
	one):	INDOOR AIR	Duplicate Sa	npie ID: NA AMBIENT AIR		SOIL GAS
Summa® Information						
Flow Controller					752	
Start Date/Time:	7/5/11 1015			Stop Date/Time:	7/5/16	
Start Pressure: (inches	Hg) ¹ -7 X S I			Stop Pressure: (inches I	tt	
Other Sampling Inform	nation:			I		
Story/Level	1	Ground Surface (pavement, flooring)	Conc	rete	Depth of Vapor Probe (if applicable)	/
Room	Warehouse	Slab thickness (if applicable)	-4.	*****	Distance from Building (if applicable)	/
Indoor Air Temp (°F)	~ 85"	Potential Vapor Pathways Observed?			Distance to nearest Roadway (ft.)	
Intake Height Above	4'01/	Noticeable Odor?	U.		Weather	partly doudy \$1-85°
Ground Level (ft.) Barometric Pressure	1	Barometric Pressure Final ("Hg or mb)		~	Wind Speed (mph)	10 mil SE
Initial ("Hg or mb) Interim Monitoring			I			
Initial Sample Purge (soll gas only):	PID Reading (ppm):			Noticeable Odor? (Y/N)		
Reading #1:	Time: 11-S	Summa Vacuum ("Hg)		Noticeable Odor? (Y/9) Noticeable Odor? (Y/9)		
Reading #2:	Time: 1215	Summa Vacuum ("Hg) Summa Vacuum ("Hg)		Noticeable Odor? (Y/)		
Reading #3: Reading #4:	Time: 1315	Summa Vacuum ("Hg)		Noticeable Odor? (Y/N)		
Reading #5:	Time: 1515	Summa Vacuum ("Hg)		Noticeable Odor? (YD)		
Sketch of Sample Loc		J	1.			
	1615	•	10.61		. ·	
	1715		7,56 1.14			
	1812		(· · [,	-sample G Value clise.	mpletz	
2 - If final pressure does	iot decrease noticeably from lat s not change much from initial p soure and contact the ERM coor	ressure, send the samp	le to the labora	tory and indicate "HOLD"	on the chain-of-cusiod	/: Also request that the Jaboratory
I						

. . 1

	Environmental Resour	ces Management			Project#	0121021
	The Towers at Wildwo	od Plaza			Project Name:	I-Schneid
	3200 Windy Hill Road, Atlanta, Geogia 30339	SE			Location	
FRM	Phone: (678) 486-2700				Project Manager,	Jeff Bilkert
[[<u></u>						
Sample Location:	<u>1</u>				Collector(s):	Ver C 1
						Kevin spewick
Address:						
PID Meter Used: (Model, Serial #)					Date:	7/5/10
Sample ID: TA-	05-20160705-0	l	Duplicate Sar			
Duplicate Sample?`(Y(Type of sample (circle		INDOOR AIR	Dublicate Sat	AMBIENT AIR		SOIL GAS
Photograph descriptio		1				
		-				
Summa® Information				Flow Controller		
Canister Serial Number	508			Number:	0236	
Start Date/Time: 7/5	5/16 1020	· · · · · · · · · · · · · · · · · · ·		Stop Date/Time: 7/5/14		
Start Pressure: (inches				Stop Pressure: (inches	Hg) ²	
Other Sampling Inform Story/Level		Ground Surface			Depth of Vapor Probe	/
-		(pavement, flooring)	60.	nerete	(if applicable) Distance from	
Room		Slab thickness (if applicable)	.~ .	4.5"	Building (if applicable)	
Indoor Air Temp (°F)	6	Potential Vapor		<u></u>	Distance to nearest	
Intake Height Above	~ 3>	Pathways Observed? Noticeable Odor?			Roadway (ft.) Weather	1 1 1 5 5 2
Ground Level (ft.)	4011		<u>ا</u>	<u>lo</u>	·	puily cloudy 81.85
Barometric Pressure Initial ("Hg or mb)		Barometric Pressure Final ('Hg or mb)		/	Wind Speed (mph)	10 Mph ESE
Interim Monitoring	1	1				······································
Initial Sample Purge (soll gas only):	PID Reading (ppm):	and a second	.*	Noticeable Odor? (Y	Ň	
Reading #1:	Time: 1,20	Summa Vacuum ("Hg)		Noticeable Odor? (Y/N		
Reading #2:	Time: 1220	Summa Vacuum ("Hg)		Noticeable Odor? (Y		
Reading #3:	Time: 1326	Summa Vacuum ("Hg) Summa Vacuum ("Hg)		Noticeable Odor? (VA) Noticeable Odor? (VA)		
Reading #4: Reading #5:	Time: 1920	Summa Vacuum ("Hg)		Noticeable Odor? (V/N		
Sketch of Sample Loca				······································	,,	
	1120		-12.61			
	1720		9.57			
	1820		16.21			
	1040	· · ·	>21	Sample Con Value 1	rate	
	1840	- 7	. 16		stasel	·
				Value (
				ı.		
Comments:			an a			• Malana sana sa
1 - Verity pressure dia n	iot decrease noticeably from la	coratory reported value.				
2 - If final pressure does	s not change much from initial	pressure, send the samp	le to the laboral	ory and indicate "HOLE	" on the chain-of-custody	Also request that the laboratory
determine the final pres	sure and contact the ERM coo	rdinator for further instruc	лол.			
		Martin			······································	
	<u> </u>	• .				
L						

.

					and the state of the	ana any amin'ny fisiana amin'ny fanitr'o amin'ny fanitr'i Angele angele ana ana amin'ny fanitr'i Angele angele
<u>anti sette di sette d</u>	Environmental Reso	urces Management			A STATE OF CONTRACT OF CONT	0121021
	The Towers at Wildy 3200 Windy Hill Road	vood Plaza			Project Name: Location:	I-Schneid
	Atlanta, Geogia 3033	9				(creating at
ERM	Phone: (678) 486-270	0			Project Manager:	Jeff Bilkert
					Collector(s):	
Sample Location:					Collector(s):	Kevin Sperrach
Address:						
PID Meter Used: Model, Serial #)					Date:	7/5/14
ample ID: OA-C	01-20160705-0) (Duplicate Sar	nnie ID:	•	
Ouplicate Sample? (Y ype of sample (circle		INDOOR AIR		AMBIENT AIR		SOIL GAS
hotograph description				hand a second		
umma® Information	1				×	
Operator Coriol Numbo				Flow Controller Number:	0702	
Start Date/Time: 4	221 15/16 0955			Stop Date/Time:		
				7/5/16 Stop Pressure: (inches I		
Start Pressure: (inches	s Hg) 1 - 29.19			iolop Pressure: (Inchés I	ny)	
Other Sampling Infor		Ground Surface	A !	, 1	Depth of Vapor Probe	
Story/Level	outdoors	(pavement, flooring)	Aspha		(if applicable) Distance from	
loom	outdoors	Slab thickness (if applicable)		/	Building (if applicable)	10.2
ndoor Air Temp (°F)	KAA /	Potential Vapor Pathways Observed?		/	Roadway (fl.)	75:0-
Intake Height Above Ground Level (ft.)	3.0	Noticeable Odor?		Jo	Weather	partly cloudy \$1.85°
Barometric Pressure	1.	Barometric Pressure Final ('Hg or mb)		/	Wind Speed (mph)	10 mil States SE
nitial ("Hg or mb) nterim Monitoring			1			j.
nitial Sample Purge soil gas only):	PID Reading (ppm):			Noticeable Odor? (Y/N)		A STATE
Reading #1:	Time: 1055	Summa Vacuum ("Hg)	-17,08	Noticeable Odor? (Y/)	1	
Reading #2:	Time: 15'5	Summa Vacuum ("Hg)		Noticeable Odor? (Y/) Noticeable Odor? (Y/)		
Reading #3: Reading #4:	Time: 1.355	Summa Vacuum ("Hg)		Noticeable Odor? (Y/N)		
Reading #5: Sketch of Sample Loc	Time: 1-155	Summa Vacuum ("Hg)	-19.10	Noticeable Odor? (Y/N)		
	1555		-16.75	<u>.</u>		
	1655		-14.37			
	1755	- ·	11.72			
		-4	E.			
	I CHE S	-10	5.1 8	Samale 1	condite	
	181-	1-	· · · · ·	sample l value c	(ent	
	· •				トタコピム	
					- ,	
'ommente						
	not decrease hoticeably from				- ,	
Verify pressure did	es not change much from ini	n laboratory reported value: tial pressure, send the samp	le to the labora			Also request that the laboratory
Verify pressure did If final pressure doe		n laboratory reported value: tial pressure, send the samp	le to the labora			Also request that the laboratory
Verify pressure did If final pressure doe	es not change much from ini	n laboratory reported value: tial pressure, send the samp	le to the labora			Also request that the laboratory
Verify pressure did	es not change much from ini	n laboratory reported value: tial pressure, send the samp	le to the labora			Also request that the laboratory
1 - Verify pressure did	es not change much from ini	n laboratory reported value: tial pressure, send the samp	le to the labora			Also request that the laboratory
2 - If final pressure doe	es not change much from ini	n laboratory reported value: tial pressure, send the samp	le to the labora		on the chain-of-custody	Also request that the laboratory
Verify pressure did	es not change much from ini	n laboratory reported value: tial pressure, send the samp	le to the labora		on the chain-of-custody	Also request that the laboratory
. Verify pressure did	es not change much from ini	n laboratory reported value: tial pressure, send the samp	le to the labora		on the chain-of-custody	Also request that the laboratory

Laboratory Reports

Appendix D

August 2016 Project No. 0121021 I. Schneid Liquidation Atlanta, GA

Environmental Resources Management 3200 Windy Hill Rd. Suite 1500W Atlanta, GA 30339 (678) 486-2700

ANALYTICAL REPORT

Lab Number:	L1617940
Client:	ERM, Inc.
	3200 Windy Hill Road, SE
	Suite 1500W
	Atlanta, GA 30339
ATTN:	Nicolas Vrey
Phone:	(678) 486-2762
Project Name:	I-SCHNEID
Project Number:	0121021
Report Date:	06/17/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: NY (11627), CT (PH-0141), NH (2206), NJ NELAP (MA015), RI (LAO00299), ME (MA00030), PA (68-02089), VA (460194), LA NELAP (03090), FL (E87814), TX (T104704419), WA (C954), USFWS (Permit #LE2069641), USDA (Permit #P330-11-00109), US Army Corps of Engineers.

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Serial_No:06171615:37

Project Name:I-SCHNEIDProject Number:0121021

 Lab Number:
 L1617940

 Report Date:
 06/17/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1617940-01	SG-1-3'	SOIL_VAPOR	ATLANTA, GA	06/08/16 09:20	06/10/16
L1617940-02	SG-1-7'	SOIL_VAPOR	ATLANTA, GA	06/08/16 09:45	06/10/16
L1617940-03	SG-1-11'	SOIL_VAPOR	ATLANTA, GA	06/08/16 09:55	06/10/16
L1617940-04	SG-2-3'	SOIL_VAPOR	ATLANTA, GA	06/08/16 10:45	06/10/16
L1617940-05	SG-2-7'	SOIL_VAPOR	ATLANTA, GA	06/08/16 11:01	06/10/16
L1617940-06	SG-2-11'	SOIL_VAPOR	ATLANTA, GA	06/08/16 11:09	06/10/16
L1617940-07	SSV-1	SOIL_VAPOR	ATLANTA, GA	06/08/16 11:47	06/10/16
L1617940-08	SSV-2	SOIL_VAPOR	ATLANTA, GA	06/08/16 12:36	06/10/16
L1617940-09	SSV-3	SOIL_VAPOR	ATLANTA, GA	06/08/16 13:05	06/10/16
L1617940-10	DUP-01	SOIL_VAPOR	ATLANTA, GA	06/08/16 00:00	06/10/16
L1617940-11	UNUSED CAN#472	SOIL_VAPOR	ATLANTA, GA		06/10/16

Project Name:I-SCHNEIDProject Number:0121021

Lab Number: L1617940 Report Date: 06/17/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:I-SCHNEIDProject Number:0121021

 Lab Number:
 L1617940

 Report Date:
 06/17/16

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on June 3, 2016. The canister certification results are provided as an addendum.

Samples L1617940-01, -02, -03, and -06: The samples have elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the sample.

Sample L1617940-01: The sample was diluted and re-analyzed to quantify the results within the calibration range. The result(s) should be considered estimated, and are qualified with an E flag, for any compound(s) that exceeded the calibration range in the initial analysis. The re-analysis was performed only for the compound(s) that exceeded the calibration range.

Samples L1617940-04, -05, -07, -08, and -10: The samples have elevated detection limits due to the dilution required by the elevated concentrations of non-target compounds in the samples.

WG904730-5: The internal standard (IS) response for Chlorobenzene-d5 (143%) was above the acceptance criteria; since the response for the target compounds are within duplicate criteria, no other action was taken. Since the IS response was above method criteria, all associated compounds are considered to have a potentially low bias

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Christopher J. Anderson

Authorized Signature:

Title: Technical Director/Representative

Date: 06/17/16

AIR

Project Name: I-SCHNEID

Project Number: 0121021

Lab ID:	L1617940-01 D	Date Collected:	06/08/16 09:20
Client ID:	SG-1-3'	Date Received:	06/10/16
Sample Location:	ATLANTA, GA	Field Prep:	Not Specified
Matrix: Anaytical Method: Analytical Date: Analyst:	Soil_Vapor 48,TO-15-SIM 06/17/16 07:29 RY		

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Chlorobenzene	ND	49.4		ND	228			493.7
Ethylbenzene	14900	9.87		64700	42.9			493.7
p/m-Xylene	70300	19.7		305000	85.6		E	493.7
o-Xylene	19600	9.87		85100	42.9			493.7
1,4-Dichlorobenzene	15900	9.87		95600	59.3			493.7
Naphthalene	3710	24.7		19500	130			493.7

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	110		60-140
bromochloromethane	104		60-140
chlorobenzene-d5	116		60-140

Project Name: I-SCHNEID

Project Number: 0121021

Lab ID:	L1617940-01 D2	Date Collected:	06/08/16 09:20
Client ID:	SG-1-3'	Date Received:	06/10/16
Sample Location: Matrix: Anaytical Method: Analytical Date: Analyst:	ATLANTA, GA Soil_Vapor 48,TO-15-SIM 06/17/16 08:09 RY	Field Prep:	Not Specified

		ppbV Results RL MDL		ug/m3				Dilution
Parameter	Results			Results RL		MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
p/m-Xylene	82100	39.5		357000	172			987.4
Xylenes, Total	103000	19.7		447000	85.6			987.4

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	109		60-140
bromochloromethane	101		60-140
chlorobenzene-d5	112		60-140

06/08/16 09:45 06/10/16 Not Specified

 Lab Number:
 L1617940

 Report Date:
 06/17/16

Project Name: I-SCHNEID

Project Number: 0121021

Lab ID:	L1617940-02	D	Date Collected:	(
Client ID:	SG-1-7'		Date Received:	(
Sample Location:	ATLANTA, GA		Field Prep:	1
Matrix: Anaytical Method: Analytical Date: Analyst:	Soil_Vapor 48,TO-15-SIM 06/16/16 21:28 RY			

Parameter Results RL MDL Results RL MDL Qual Volatile Organics in Air by SIM - Mansfield Lab ND 19.4 ND 89.3 Chlorobenzene ND 19.4 ND 89.3 Ethylbenzene 3640 3.87 15800 16.8 p/m-Xylene 16900 7.74 73400 33.6 o-Xylene 5420 3.87 35200 23.3	Dilution
ND 19.4 ND 89.3 Ethylbenzene 3640 3.87 15800 16.8 p/m-Xylene 16900 7.74 73400 33.6 o-Xylene 5420 3.87 23500 16.8	fier Factor
Ethylbenzene 3640 3.87 15800 16.8 p/m-Xylene 16900 7.74 73400 33.6 o-Xylene 5420 3.87 23500 16.8	
p/m-Xylene 16900 7.74 73400 33.6 o-Xylene 5420 3.87 23500 16.8	193.6
o-Xylene 5420 3.87 23500 16.8	193.6
	193.6
1.4-Dichlorobenzene 5000 2.97 25200 22.2	193.6
1,4-Dichlorobenzene 5860 3.87 35200 23.3	193.6
Naphthalene 2580 9.68 13500 50.8	193.6
Xylenes, Total 22300 3.87 96900 16.8	193.6

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	135		60-140
bromochloromethane	126		60-140
chlorobenzene-d5	139		60-140

Project Name: I-SCHNEID

Project Number: 0121021

Lab ID:	L1617940-03 D	Date Collected:	06/08/16 09:55
Client ID:	SG-1-11'	Date Received:	06/10/16
Sample Location:	ATLANTA, GA	Field Prep:	Not Specified
Matrix:	Soil_Vapor		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	06/16/16 22:00		
Analyst:	RY		

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	VI - Mansfield Lab							
Chlorobenzene	576	20.2		2650	93.0			201.9
Ethylbenzene	2150	4.04		9340	17.5			201.9
p/m-Xylene	8720	8.08		37900	35.1			201.9
o-Xylene	4380	4.04		19000	17.5			201.9
1,4-Dichlorobenzene	2790	4.04		16800	24.3			201.9
Naphthalene	603	10.1		3160	53.0			201.9
Xylenes, Total	13100	4.04		56900	17.5			201.9

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	125		60-140
bromochloromethane	117		60-140
chlorobenzene-d5	125		60-140

Lab ID:	L1617940-04	D	Date Collected:	06/08/16 10:45
Client ID:	SG-2-3'		Date Received:	06/10/16
Sample Location:	ATLANTA, GA		Field Prep:	Not Specified
Matrix:	Soil_Vapor			
Anaytical Method:	48,TO-15-SIM			
Analytical Date:	06/16/16 16:40			
Analyst:	RY			

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	RL MDL		Factor
Volatile Organics in Air by SIM - M	lansfield Lab							
Chlorobenzene	67.4	2.01		310	9.26			20.07
Ethylbenzene	25.2	0.401		109	1.74			20.07
p/m-Xylene	461	0.803		2000	3.49			20.07
o-Xylene	612	0.401		2660	1.74			20.07
1,4-Dichlorobenzene	61.8	0.401		372	2.41			20.07
Naphthalene	24.0	1.00		126	5.24			20.07
Xylenes, Total	1070	0.401		4650	1.74			20.07

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	98		60-140
bromochloromethane	100		60-140
chlorobenzene-d5	118		60-140

Project Name: I-SCHNEID

Project Number: 0121021

Lab ID:	L1617940-05 D	
Client ID:	SG-2-7'	
Sample Location:	ATLANTA, GA	
Matrix:	Soil_Vapor	
Anaytical Method:	48,TO-15-SIM	
Analytical Date:	06/16/16 17:11	
Analyst:	RY	

Date Collected:	06/08/16 11:01
Date Received:	06/10/16
Field Prep:	Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SI	M - Mansfield Lab							
Chlorobenzene	64.1	2.01		295	9.26			20.07
Ethylbenzene	26.7	0.401		116	1.74			20.07
p/m-Xylene	288	0.803		1250	3.49			20.07
o-Xylene	396	0.401		1720	1.74			20.07
1,4-Dichlorobenzene	89.1	0.401		536	2.41			20.07
Naphthalene	79.6	1.00		417	5.24			20.07
Xylenes, Total	684	0.401		2970	1.74			20.07

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	114		60-140
bromochloromethane	108		60-140
chlorobenzene-d5	133		60-140

Project Name: I-SCHNEID

Project Number: 0121021

Lab ID:	L1617940-06 D	Date Collected:	06/08/16 11:09
Client ID:	SG-2-11'	Date Received:	06/10/16
Sample Location:	ATLANTA, GA	Field Prep:	Not Specified
Matrix:	Soil_Vapor		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	06/17/16 06:57		
Analyst:	RY		

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	N - Mansfield Lab							
Chlorobenzene	138	2.01		636	9.26			20.07
Ethylbenzene	317	0.401		1380	1.74			20.07
p/m-Xylene	1440	0.803		6250	3.49			20.07
o-Xylene	848	0.401		3680	1.74			20.07
1,4-Dichlorobenzene	141	0.401		848	2.41			20.07
Naphthalene	45.9	1.00		241	5.24			20.07
Xylenes, Total	2290	0.401		9950	1.74			20.07

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	107		60-140
bromochloromethane	103		60-140
chlorobenzene-d5	116		60-140

Project Name: I-SCHNEID

Project Number: 0121021

Lab ID:	L1617940-07 D
Client ID:	SSV-1
Sample Location:	ATLANTA, GA
Matrix:	Soil_Vapor
Anaytical Method:	48,TO-15-SIM
Analytical Date:	06/16/16 18:45
Analyst:	RY

Date Collected:	06/08/16 11:47
Date Received:	06/10/16
Field Prep:	Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SI	M - Mansfield Lab							
Chlorobenzene	1.18	0.500		5.43	2.30			5
Ethylbenzene	5.70	0.100		24.8	0.434			5
p/m-Xylene	30.6	0.200		133	0.869			5
o-Xylene	9.24	0.100		40.1	0.434			5
1,4-Dichlorobenzene	11.0	0.100		66.1	0.601			5
Naphthalene	11.2	0.250		58.7	1.31			5
Xylenes, Total	39.8	0.100		173	0.434			5

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	130		60-140
bromochloromethane	123		60-140
chlorobenzene-d5	131		60-140

Project Name: I-SCHNEID

Project Number: 0121021

Lab ID:	L1617940-08 D	Date Collected:	06/08/16 12:36
Client ID:	SSV-2	Date Received:	06/10/16
Sample Location:	ATLANTA, GA	Field Prep:	Not Specified
Matrix: Anaytical Method: Analytical Date: Analyst:	Soil_Vapor 48,TO-15-SIM 06/16/16 19:16 RY		

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by S	SIM - Mansfield Lab							
Chlorobenzene	ND	1.00		ND	4.61			10
Ethylbenzene	7.44	0.200		32.3	0.869			10
p/m-Xylene	39.1	0.400		170	1.74			10
o-Xylene	16.6	0.200		72.1	0.869			10
1,4-Dichlorobenzene	21.1	0.200		127	1.20			10
Naphthalene	24.4	0.500		128	2.62			10
Xylenes, Total	55.7	0.200		242	0.869			10

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	123		60-140
bromochloromethane	118		60-140
chlorobenzene-d5	126		60-140

 Lab Number:
 L1617940

 Report Date:
 06/17/16

Project Name: I-SCHNEID

Project Number: 0121021

Lab ID:	L1617940-09
Client ID:	SSV-3
Sample Location:	ATLANTA, GA
Matrix:	Soil_Vapor
Anaytical Method:	48,TO-15-SIM
Analytical Date:	06/16/16 19:51
Analyst:	RY

Date Collected:	06/08/16 13:05
Date Received:	06/10/16
Field Prep:	Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	1 - Mansfield Lab							
Chlorobenzene	0.117	0.100		0.539	0.461			1
Ethylbenzene	1.05	0.020		4.56	0.087			1
p/m-Xylene	6.60	0.040		28.7	0.174			1
o-Xylene	3.12	0.020		13.6	0.087			1
1,4-Dichlorobenzene	8.68	0.020		52.2	0.120			1
Naphthalene	15.6	0.050		81.8	0.262			1
Xylenes, Total	9.71	0.020		42.2	0.087			1

% Recovery	Qualifier	Acceptance Criteria
127		60-140
117		60-140
128		60-140
	127 117	127 117

Project Name: I-SCHNEID

Project Number: 0121021

Lab ID:	L1617940-10 D
Client ID:	DUP-01
Sample Location:	ATLANTA, GA
Matrix:	Soil_Vapor
Anaytical Method:	48,TO-15-SIM
Analytical Date:	06/16/16 20:23
Analyst:	RY

Date Collected:	06/08/16 00:00
Date Received:	06/10/16
Field Prep:	Not Specified

		ppbV		ug/m3			Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by S	SIM - Mansfield Lab							
Chlorobenzene	ND	0.500		ND	2.30			5
Ethylbenzene	5.09	0.100		22.1	0.434			5
p/m-Xylene	26.2	0.200		114	0.869			5
o-Xylene	8.90	0.100		38.7	0.434			5
1,4-Dichlorobenzene	9.99	0.100		60.1	0.601			5
Naphthalene	6.02	0.250		31.6	1.31			5
Xylenes, Total	35.1	0.100		152	0.434			5

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	127		60-140
bromochloromethane	120		60-140
chlorobenzene-d5	126		60-140

Report Date: 06/17/16

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 06/16/16 15:44

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab for	or sample	(s): 01-10) Batch: W	G904730	-4		
Xylenes, Total	ND	0.020		ND	0.087			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
o-Xylene	ND	0.020		ND	0.087			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
Naphthalene	ND	0.050		ND	0.262			1

Lab Control Sample Analysis Batch Quality Control

Lab Number: L1617940 06/17/16

Report Date:

Parameter	LCS %Recovery	Qual 🖇	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics in Air by SIM - Mansfield L	ab Associated sa	ample(s): 01-10	Batch: WG	904730-3					
Propylene	88		-		70-130	-		25	
Dichlorodifluoromethane	77		-		70-130	-		25	
Chloromethane	86		-		70-130	-		25	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	84		-		70-130	-		25	
Vinyl chloride	85		-		70-130	-		25	
1,3-Butadiene	91		-		70-130	-		25	
Bromomethane	86		-		70-130	-		25	
Chloroethane	85		-		70-130	-		25	
Ethyl Alcohol	96		-		70-130	-		25	
Vinyl bromide	80		-		70-130	-		25	
Acetone	90		-		70-130	-		25	
Trichlorofluoromethane	84		-		70-130	-		25	
iso-Propyl Alcohol	89		-		70-130	-		25	
Acrylonitrile	85		-		70-130	-		25	
1,1-Dichloroethene	84		-		70-130	-		25	
Methylene chloride	93		-		70-130	-		25	
3-Chloropropene	86		-		70-130	-		25	
Carbon disulfide	77		-		70-130	-		25	
1,1,2-Trichloro-1,2,2-Trifluoroethane	79		-		70-130	-		25	
Halothane	79		-		70-130	-		25	
trans-1,2-Dichloroethene	68	Q	-		70-130	-		25	

Lab Control Sample Analysis Batch Quality Control

Lab Number: L1617940 06/17/16

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics in Air by SIM - Mansfield La	ab Associated sa	ample(s):	01-10 Batch: WG	904730-3					
1,1-Dichloroethane	91		-		70-130	-		25	
Methyl tert butyl ether	83		-		70-130	-		25	
Vinyl acetate	29	Q	-		70-130	-		25	
2-Butanone	94		-		70-130	-		25	
cis-1,2-Dichloroethene	93		-		70-130	-		25	
Ethyl Acetate	96		-		70-130	-		25	
Chloroform	93		-		70-130	-		25	
Tetrahydrofuran	96		-		70-130	-		25	
1,2-Dichloroethane	92		-		70-130	-		25	
n-Hexane	102		-		70-130	-		25	
1,1,1-Trichloroethane	111		-		70-130	-		25	
Benzene	101		-		70-130	-		25	
Carbon tetrachloride	113		-		70-130	-		25	
Cyclohexane	100		-		70-130	-		25	
1,2-Dichloropropane	109		-		70-130	-		25	
Bromodichloromethane	113		-		70-130	-		25	
1,4-Dioxane	104		-		70-130	-		25	
Trichloroethene	103		-		70-130	-		25	
2,2,4-Trimethylpentane	114		-		70-130	-		25	
cis-1,3-Dichloropropene	100		-		70-130	-		25	
4-Methyl-2-pentanone	119		-		70-130	-		25	

Lab Control Sample Analysis

Batch Quality Control

 Lab Number:
 L1617940

 Report Date:
 06/17/16

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Qual Limits Parameter Qual Qual Volatile Organics in Air by SIM - Mansfield Lab Associated sample(s): 01-10 Batch: WG904730-3 trans-1,3-Dichloropropene 93 70-130 25 --1,1,2-Trichloroethane 109 70-130 25 --Toluene 97 70-130 25 --25 122 70-130 2-Hexanone --Dibromochloromethane 107 70-130 25 --1,2-Dibromoethane 70-130 25 101 --25 Tetrachloroethene 96 70-130 --1,1,1,2-Tetrachloroethane 99 70-130 25 --Chlorobenzene 70-130 25 99 _ -Ethylbenzene 70-130 25 99 -p/m-Xylene 108 70-130 25 --Bromoform 107 70-130 25 --Styrene 104 70-130 25 --1.1.2.2-Tetrachloroethane 105 70-130 25 -o-Xylene 108 70-130 25 --Isopropylbenzene 102 70-130 25 --4-Ethyltoluene 112 70-130 25 --1,3,5-Trimethylbenzene 70-130 25 107 --1,2,4-Trimethylbenzene 70-130 25 115 --Benzyl chloride 70-130 25 115 --1.3-Dichlorobenzene 111 70-130 25 --

Lab Control Sample Analysis

Batch Quality Control

 Lab Number:
 L1617940

 Report Date:
 06/17/16

LCS LCSD %Recovery RPD %Recovery Parameter %Recovery Qual Limits RPD Qual Limits Qual Volatile Organics in Air by SIM - Mansfield Lab Associated sample(s): 01-10 Batch: WG904730-3 70-130 1,4-Dichlorobenzene 101 25 --70-130 25 sec-Butylbenzene 109 -p-Isopropyltoluene 97 70-130 25 --1,2-Dichlorobenzene 107 70-130 25 -n-Butylbenzene 114 70-130 25 --1,2,4-Trichlorobenzene 101 70-130 25 --70-130 25 Naphthalene 104 --1,2,3-Trichlorobenzene 102 70-130 25 --Hexachlorobutadiene 108 70-130 25 _ -

Lab Duplicate Analysis Batch Quality Control

Project Name:I-SCHNEIDProject Number:0121021

Lab Number:

 Lab Number:
 L1617940

 Report Date:
 06/17/16

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits	
olatile Organics in Air by SIM - Mansfield Lab	Associated sample(s): 01-10	QC Batch ID: WG904	4730-5 QC	Sample: L161	7940-05 Client ID: SC	6-2-7'
Chlorobenzene	64.1	62.1	ppbV	3	25	
Ethylbenzene	26.7	26.4	ppbV	1	25	
p/m-Xylene	288	282	ppbV	2	25	
o-Xylene	396	380	ppbV	4	25	
1,4-Dichlorobenzene	89.1	84.6	ppbV	5	25	
Naphthalene	79.6	79.8	ppbV	0	25	
Xylenes, Total	684	662	ppbV	3	25	

Project Name: I-SCHNEID

Project Number: 0121021

Serial_No:06171615:37 Lab Number: L1617940

Report Date: 06/17/16

Canister and Flow Controller Information

			Media Type	Date	Bottle	Cleaning	Can Leak			Flow Controler Leak Chk	Flow Out		
Samplenum L1617940-01	Client ID SG-1-3'	Media ID 0650	SV200	Prepared 06/03/16	Order 222919	Batch ID	Check	(in. Hg) -	(in. Hg) -	Pass	210	mL/min	3
L1617940-01	SG-1-3'	141	2.7L Can	06/03/16	222919	L1615757-02	Pass	-30.0	-1.5	-	-	-	-
L1617940-02	SG-1-7'	0511	SV200	06/03/16	222919		-	-	-	Pass	218	204	7
L1617940-02	SG-1-7'	502	2.7L Can	06/03/16	222919	L1615757-02	Pass	-30.0	-1.1	-	-	-	-
L1617940-03	SG-1-11'	0602	SV200	06/03/16	222919		-	-	-	Pass	210	203	3
L1617940-03	SG-1-11'	1804	2.7L Can	06/03/16	222919	L1615757-02	Pass	-29.5	-2.1	-	-	-	-
L1617940-04	SG-2-3'	0658	SV200	06/03/16	222919		-	-	-	Pass	222	208	7
L1617940-04	SG-2-3'	446	2.7L Can	06/03/16	222919	L1615757-02	Pass	-30.0	-0.9	-	-	-	-
L1617940-05	SG-2-7'	0689	SV200	06/03/16	222919		-	-	-	Pass	217	206	5
L1617940-05	SG-2-7'	151B	2.7L Can	06/03/16	222919	L1615757-02	Pass	-30.0	-1.1	-	-	-	-
L1617940-06	SG-2-11'	0686	SV200	06/03/16	222919		-	-	-	Pass	210	201	4
L1617940-06	SG-2-11'	391	2.7L Can	06/03/16	222919	L1615757-02	Pass	-30.0	-1.1	-	-	-	-
L1617940-07	SSV-1	0604	SV200	06/03/16	222919		-	-	-	Pass	210	203	3
L1617940-07	SSV-1	212	2.7L Can	06/03/16	222919	L1615757-02	Pass	-30.0	-1.4	-	-	-	-
L1617940-08	SSV-2	0707	SV200	06/03/16	222919		-	-	-	Pass	213	205	4

Project Name: I-SCHNEID

Project Number: 0121021

Serial_No:06171615:37 Lab Number: L1617940

Report Date: 06/17/16

Canister and Flow Controller Information

								Initial	Pressure	Flow			
Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check		on Receipt (in. Hg)	Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPD
L1617940-08	SSV-2	546	2.7L Can	06/03/16	222919	L1615757-02	Pass	-30.0	-1.2	-	-	-	-
L1617940-09	SSV-3	0520	SV200	06/03/16	222919		-	-	-	Pass	210	204	3
L1617940-09	SSV-3	352	2.7L Can	06/03/16	222919	L1615757-02	Pass	-30.0	-1.5	-	-	-	-
L1617940-10	DUP-01	0596	SV200	06/03/16	222919		-	-	-	Pass	213	203	5
L1617940-10	DUP-01	527	2.7L Can	06/03/16	222919	L1615757-02	Pass	-30.0	-1.3	-	-	-	-
L1617940-11	UNUSED CAN#472	0688	SV200	06/03/16	222919		-	-	-	Pass	220	200	10
L1617940-11	UNUSED CAN#472	472	2.7L Can	06/03/16	222919	L1615757-02	Pass	-30.0	-29.4	-	-	-	-

		Serial_No:06	6171615:37
Project Name:	BATCH CANISTER CERTIFICATION	Lab Number:	L1615757
Project Number:	CANISTER QC BAT	Report Date:	06/17/16
	Air Canister Certification Results		

Lab ID:	L1615757-02	Date Collected:	05/24/16 16:00
Client ID:	CAN 1727 SHELF 13	Date Received:	05/25/16
Sample Location:		Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15		
Analytical Date:	05/25/16 17:21		
Analyst:	RY		

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
I,1-Dichloroethene	ND	0.200		ND	0.793			1
Fertiary butyl Alcohol	ND	0.500		ND	1.52			1

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

Lab Number: L1615757 Report Date: 06/17/16

Air Canister Certification Results

ppbV ug/m3 Parameter Results RL MDL RRS RL MDL RRS RL MDL RRS RRS </th <th>: 05/24/16 16:0 : 05/25/16 Not Specifiec Dilution</th>	: 05/24/16 16:0 : 05/25/16 Not Specifiec Dilution
Methylene chloride ND 0.500 ND 1.74 3-Chloropropene ND 0.200 ND 0.626 Carbon disulfide ND 0.200 ND 0.623 Freon-113 ND 0.200 ND 0.793 trans-1,2-Dichloroethene ND 0.200 ND 0.793 1,1-Dichloroethane ND 0.200 ND 0.809 Methyl tert butyl ether ND 0.200 ND 0.721 2-Butanone ND 0.200 ND 0.721 cis-1,2-Dichloroethene ND 0.500 ND 0.793 Ethyl Acetate ND 0.500 ND 0.977 Chloroform ND 0.200 ND 0.977 Tetrahydrofuran ND	Qualifier Factor
3-Chloropropene ND 0.200 ND 0.626 Carbon disulfide ND 0.200 ND 0.623 Freon-113 ND 0.200 ND 1.53 trans-1,2-Dichloroethene ND 0.200 ND 0.793 1,1-Dichloroethane ND 0.200 ND 0.809 Methyl tert butyl ether ND 0.200 ND 0.721 Vinyl acetate ND 1.00 ND 3.52 2-Butanone ND 0.500 ND 0.793 Ethyl Acetate ND 0.500 ND 0.793 Chloroform ND 0.200 ND 0.977 Ethyl Acetate ND 0.200 ND 0.924 2.2-Dichloropropane ND 0.200	
Carbon disulfide ND 0.200 ND 0.623 Freon-113 ND 0.200 ND 1.53 trans-1,2-Dichloroethene ND 0.200 ND 0.793 1,1-Dichloroethane ND 0.200 ND 0.809 Methyl tert butyl ether ND 0.200 ND 0.721 Vinyl acetate ND 1.00 ND 3.52 2-Butanone ND 0.500 ND 0.793 Chloroform ND 0.500 ND 0.793 Ethyl Acetate ND 0.200 ND 0.793 Chloroform ND 0.200 ND 0.793 Ethyl Acetate ND 0.200 ND 0.977 1.2-Dichloroethane ND 0.200	1
Freen-113 ND 0.200 ND 1.53 trans-1,2-Dichloroethene ND 0.200 ND 0.793 1,1-Dichloroethane ND 0.200 ND 0.809 Methyl tert butyl ether ND 0.200 ND 0.721 Vinyl acetate ND 1.00 ND 0.721 2-Butanone ND 0.500 ND 1.47 cis-1,2-Dichloroethene ND 0.500 ND 0.793 Ethyl Acetate ND 0.500 ND 1.47 - Chloroform ND 0.500 ND 0.977 Tetrahydrofuran ND 0.200 ND 0.924 1,2-Dichloroethane ND 0.200 ND 0.809 n-Hexane ND 0.200	1
Item ND 0.200 ND 0.793 1,1-Dichloroethane ND 0.200 ND 0.809 Methyl tert butyl ether ND 0.200 ND 0.721 Vinyl acetate ND 1.00 ND 0.721 2-Butanone ND 0.500 ND 1.47 2-Butanone ND 0.500 ND 0.793 Ethyl Acetate ND 0.200 ND 0.793 Ethyl Acetate ND 0.200 ND 0.977 Chloroform ND 0.200 ND 0.977 1.2-Dichloropropane ND 0.200 ND 0.924 1.2-Dichloropropane ND 0.200 ND 0.809 n-Hexane ND 0.200 ND 0.836 Diisopropyl ether ND 0.200 <	1
Inc ND 0.200 ND 0.809 Methyl tert butyl ether ND 0.200 ND 0.721 Vinyl acetate ND 1.00 ND 0.721 2-Butanone ND 0.500 ND 1.47 2-Butanone ND 0.500 ND 0.793 Ethyl Acetate ND 0.500 ND 0.793 Ethyl Acetate ND 0.500 ND 0.793 Chloroform ND 0.200 ND 0.793 Ethyl Acetate ND 0.200 ND 0.977 1,2-Dichloropropane ND 0.200 ND 0.924 1,2-Dichloropethane ND 0.200 ND 0.836 Diisopropyl ether ND 0.200	1
Methyl tert butyl ether ND 0.200 ND 0.721 Vinyl acetate ND 1.00 ND 3.52 2-Butanone ND 0.500 ND 1.47 2-Butanone ND 0.500 ND 0.793 2-Butanone ND 0.500 ND 0.793 2-Butanone ND 0.200 ND 0.793 Ethyl Acetate ND 0.200 ND 0.977 Chloroform ND 0.200 ND 0.977 1,2-Dichloropropane ND 0.200 ND 0.924 1,2-Dichloroethane ND 0.200 ND 0.809 1,2-Dichloroethane ND 0.200 ND 0.836 Diisopropyl ether ND 0.200 -	1
Vinyl acetate ND 1.00 ND 3.52 2-Butanone ND 0.500 ND 1.47 cis-1,2-Dichloroethene ND 0.200 ND 0.793 Ethyl Acetate ND 0.500 ND 1.80 Chloroform ND 0.500 ND 0.977 Tetrahydrofuran ND 0.500 ND 0.977 1,2-Dichloroptopane ND 0.200 ND 0.977 1,2-Dichloroptopane ND 0.200 ND 0.924 1,2-Dichloropthane ND 0.200 ND 0.809 n-Hexane ND 0.200 ND 0.836 Diisopropyl ether ND 0.200 ND 0.836 1,1,1-Trichloroethane ND 0.200	1
2-Butanone ND 0.500 ND 1.47 cis-1,2-Dichloroethene ND 0.200 ND 0.793 Ethyl Acetate ND 0.500 ND 1.80 Chloroethene ND 0.500 ND 1.80 Ethyl Acetate ND 0.200 ND 0.977 Chloroform ND 0.200 ND 0.977 Tetrahydrofuran ND 0.200 ND 0.977 1,2-Dichloropropane ND 0.200 ND 0.924 1,2-Dichloroethane ND 0.200 ND 0.809 n-Hexane ND 0.200 ND 0.836 Diisopropyl ether ND 0.200 ND 0.836 1,1,1-Trichloroethane ND 0.200 ND 0.908 1,1-Dichloropropene ND <td< td=""><td>1</td></td<>	1
Itel Otocol Itel	1
Ethyl Acetate ND 0.100 ND 1.80 Chloroform ND 0.200 ND 0.977 Tetrahydrofuran ND 0.500 ND 1.47 2,2-Dichloropropane ND 0.200 ND 0.924 1,2-Dichloropthane ND 0.200 ND 0.809 n-Hexane ND 0.200 ND 0.809 Dilsopropyl ether ND 0.200 ND 0.836 1,1,1-Trichloroethane ND 0.200 ND 0.836 1,1,1-Trichloropropane ND 0.200 ND 0.836 1,1-Dichloropropane ND 0.200 ND 0.908 1,1-Dichloropropane ND 0.200 ND 0.908	1
Chloroform ND 0.200 ND 0.977 Tetrahydrofuran ND 0.500 ND 1.47 2,2-Dichloropropane ND 0.200 ND 0.924 1,2-Dichloroethane ND 0.200 ND 0.809 n-Hexane ND 0.200 ND 0.809 Diisopropyl ether ND 0.200 ND 0.836 1,1,1-Trichloroethane ND 0.200 ND 0.836 1,1,1-Trichloroptopene ND 0.200 ND 0.836 1,1-Dichloropropene ND 0.200 ND 0.908	1
Tetrahydrofuran ND 0.500 ND 1.47 2,2-Dichloropropane ND 0.200 ND 0.924 1,2-Dichloroethane ND 0.200 ND 0.809 n-Hexane ND 0.200 ND 0.705 Diisopropyl ether ND 0.200 ND 0.836 1,1,1-Trichloroethane ND 0.200 ND 0.836 1,1-Dichloropropene ND 0.200 ND 0.836 1,1-Dichloropropene ND 0.200 ND 0.836 1,1-Dichloropropene ND 0.200 ND 0.908 Benzene ND 0.200 ND 0.639	1
2,2-Dichloropropane ND 0.200 ND 0.924 1,2-Dichloroethane ND 0.200 ND 0.809 n-Hexane ND 0.200 ND 0.705 Diisopropyl ether ND 0.200 ND 0.836 tert-Butyl Ethyl Ether ND 0.200 ND 0.836 1,1,1-Trichloroethane ND 0.200 ND 0.908 1,1-Dichloropropene ND 0.200 ND 0.908 Benzene ND 0.200 ND 0.639	1
1,2-Dichloroethane ND 0.200 ND 0.809 n-Hexane ND 0.200 ND 0.705 Diisopropyl ether ND 0.200 ND 0.836 tert-Butyl Ethyl Ether ND 0.200 ND 0.836 1,1,1-Trichloroethane ND 0.200 ND 1.09 1,1-Dichloropropene ND 0.200 ND 0.908 Benzene ND 0.200 ND 0.639	1
n-Hexane ND 0.200 ND 0.705 Diisopropyl ether ND 0.200 ND 0.836 tert-Butyl Ethyl Ether ND 0.200 ND 0.836 1,1,1-Trichloroethane ND 0.200 ND 1.09 1,1-Dichloropropene ND 0.200 ND 0.908 Benzene ND 0.200 ND 0.639	1
Disopropyl ether ND 0.200 ND 0.836 tert-Butyl Ethyl Ether ND 0.200 ND 0.836 1,1,1-Trichloroethane ND 0.200 ND 1.09 1,1-Dichloropropene ND 0.200 ND 0.908 Benzene ND 0.200 ND 0.639	1
tert-Butyl Ethyl Ether ND 0.200 ND 0.836 1,1,1-Trichloroethane ND 0.200 ND 1.09 1,1-Dichloropropene ND 0.200 ND 0.908 Benzene ND 0.200 ND 0.639	1
1,1,1-Trichloroethane ND 0.200 ND 1.09 1,1-Dichloropropene ND 0.200 ND 0.908 Benzene ND 0.200 ND 0.639	1
International and the state of the	1
Benzene ND 0.200 ND 0.639	1
	1
Carbon tetrachloride ND 0.200 ND 1.26	1
	1
Cyclohexane ND 0.200 ND 0.688	1
tert-Amyl Methyl Ether ND 0.200 ND 0.836	1
Dibromomethane ND 0.200 ND 1.42	1
1,2-Dichloropropane ND 0.200 ND 0.924	1
Bromodichloromethane ND 0.200 ND 1.34	1
1,4-Dioxane ND 0.200 ND 0.721	1

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

Lab Number: L1615757 Report Date: 06/17/16

Air Canister Certification Results

Lab ID: Client ID: Sample Location:	L1615757-02 Can 1727 She	ELF 13				Date Field	Collecte Receive Prep:		05/24/16 16:0 05/25/16 Not Specified
Parameter		Results	ppbV RL	MDL	Results	ug/m3 RL	MDL	Qualifie	Dilution Factor
Volatile Organics in A	Air - Mansfield Lab			MDL					
Trichloroethene		ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane		ND	0.200		ND	0.934			1
Methyl Methacrylate		ND	0.500		ND	2.05			1
Heptane		ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene		ND	0.200		ND	0.908			1
4-Methyl-2-pentanone		ND	0.500		ND	2.05			1
trans-1,3-Dichloropropen	e	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane		ND	0.200		ND	1.09			1
Toluene		ND	0.200		ND	0.754			1
1,3-Dichloropropane		ND	0.200		ND	0.924			1
2-Hexanone		ND	0.200		ND	0.820			1
Dibromochloromethane		ND	0.200		ND	1.70			1
1,2-Dibromoethane		ND	0.200		ND	1.54			1
Butyl acetate		ND	0.500		ND	2.38			1
Octane		ND	0.200		ND	0.934			1
Tetrachloroethene		ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethan	e	ND	0.200		ND	1.37			1
Chlorobenzene		ND	0.200		ND	0.921			1
Ethylbenzene		ND	0.200		ND	0.869			1
p/m-Xylene		ND	0.400		ND	1.74			1
Bromoform		ND	0.200		ND	2.07			1
Styrene		ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethan	e	ND	0.200		ND	1.37			1
o-Xylene		ND	0.200		ND	0.869			1
1,2,3-Trichloropropane		ND	0.200		ND	1.21			1
Nonane		ND	0.200		ND	1.05			1
Isopropylbenzene		ND	0.200		ND	0.983			1
Bromobenzene		ND	0.200		ND	0.793			1

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

Lab Number: L1615757 Report Date: 06/17/16

Air Canister Certification Results

Lab ID: Client ID: Sample Location:	L1615757-02 CAN 1727 SHE	ELF 13					Collecte Receive Prep:		05/24/16 16:00 05/25/16 Not Specified
_			ppbV			ug/m3		• •••	Dilution Factor
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	r
Volatile Organics in	Air - Mansfield Lab								
2-Chlorotoluene		ND	0.200		ND	1.04			1
n-Propylbenzene		ND	0.200		ND	0.983			1
4-Chlorotoluene		ND	0.200		ND	1.04			1
4-Ethyltoluene		ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene		ND	0.200		ND	0.983			1
tert-Butylbenzene		ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene		ND	0.200		ND	0.983			1
Decane		ND	0.200		ND	1.16			1
Benzyl chloride		ND	0.200		ND	1.04			1
1,3-Dichlorobenzene		ND	0.200		ND	1.20			1
1,4-Dichlorobenzene		ND	0.200		ND	1.20			1
sec-Butylbenzene		ND	0.200		ND	1.10			1
p-Isopropyltoluene		ND	0.200		ND	1.10			1
1,2-Dichlorobenzene		ND	0.200		ND	1.20			1
n-Butylbenzene		ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropro	opane	ND	0.200		ND	1.93			1
Undecane		ND	0.200		ND	1.28			1
Dodecane		ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene		ND	0.200		ND	1.48			1
Naphthalene		ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene		ND	0.200		ND	1.48			1
Hexachlorobutadiene		ND	0.200		ND	2.13			1

	Results	Qualifier	Units	RDL	Dilution Factor
Tentatively Identified Compounds					

No Tentatively Identified Compounds

							Serial_	_No:0617	1615:37
Project Name:	BATCH CANIST	ER CERT	IFICATION	I		Lat	Num	ber: L	.1615757
Project Number:	CANISTER QC E	BAT				Re	port Da	ate: 0	6/17/16
		Air Can	nister Ce	rtificatio	n Results				
Lab ID:	L1615757-02					Date C	ollecte	d:	05/24/16 16:00
Client ID:	CAN 1727 SHE	LF 13				Date R	eceive	d:	05/25/16
Sample Location:						Field P	rep:		Not Specified
			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Factor

Volatile Organics in Air - Mansfield Lab

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	89		60-140
Bromochloromethane	94		60-140
chlorobenzene-d5	85		60-140

		Serial_No:06	6171615:37
Project Name:	BATCH CANISTER CERTIFICATION	Lab Number:	L1615757
Project Number:	CANISTER QC BAT	Report Date:	06/17/16
	Air Canister Certification Results		

Lab ID:	L1615757-02	Date Collected:	05/24/16 16:00
Client ID:	CAN 1727 SHELF 13	Date Received:	05/25/16
Sample Location:		Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	05/25/16 17:21		
Analyst:	RY		

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - I	Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.020		ND	0.053			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1
Bromodichloromethane	ND	0.020		ND	0.134			1

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

Lab Number: L1615757 Report Date: 06/17/16

Air Canister Certification Results

Lab ID: Client ID: Sample Location:	L1615757-02 CAN 1727 SH	ELF 13	ppbV				Collecte Receive Prep:		05/24/16 16:0 05/25/16 Not Specified
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	Dilution Factor
Volatile Organics in A	ir by SIM - Mans	field Lab							
1,4-Dioxane		ND	0.100		ND	0.360			1
Trichloroethene		ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene		ND	0.020		ND	0.091			1
4-Methyl-2-pentanone		ND	0.500		ND	2.05			1
trans-1,3-Dichloropropen	e	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane		ND	0.020		ND	0.109			1
Toluene		ND	0.050		ND	0.188			1
Dibromochloromethane		ND	0.020		ND	0.170			1
1,2-Dibromoethane		ND	0.020		ND	0.154			1
Tetrachloroethene		ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethan	e	ND	0.020		ND	0.137			1
Chlorobenzene		ND	0.100		ND	0.461			1
Ethylbenzene		ND	0.020		ND	0.087			1
p/m-Xylene		ND	0.040		ND	0.174			1
Bromoform		ND	0.020		ND	0.207			1
Styrene		ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethan	e	ND	0.020		ND	0.137			1
o-Xylene		ND	0.020		ND	0.087			1
Isopropylbenzene		ND	0.200		ND	0.983			1
4-Ethyltoluene		ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene		ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene		ND	0.020		ND	0.098			1
Benzyl chloride		ND	0.200		ND	1.04			1
1,3-Dichlorobenzene		ND	0.020		ND	0.120			1
1,4-Dichlorobenzene		ND	0.020		ND	0.120			1
sec-Butylbenzene		ND	0.200		ND	1.10			1
p-Isopropyltoluene		ND	0.200		ND	1.10			1
1,2-Dichlorobenzene		ND	0.020		ND	0.120			1

Serial_No:06171615:37 Lab Number: L1615757

Report Date: 06/17/16

Air Canister Certification Results

Lab ID: Client ID: Sample Location:	L1615757-02 CAN 1727 SHE	:LF 13	ppbV				Collecte Receive Prep:		05/24/16 16:00 05/25/16 Not Specified Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Faster
Volatile Organics in A	ir by SIM - Mansf	ield Lab							
n-Butylbenzene		ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene		ND	0.050		ND	0.371			1
Naphthalene		ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene		ND	0.050		ND	0.371			1
Hexachlorobutadiene		ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	86		60-140
bromochloromethane	92		60-140
chlorobenzene-d5	86		60-140

Project Name: I-SCHNEID

Project Number: 0121021

Serial_No:06171615:37

Lab Number: L1617940 Report Date: 06/17/16

Sample Receipt and Container Information

YES

Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler N/A

Present/Intact

rmation			Temp			
Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
Canister - 2.7 Liter	N/A	N/A		Y	Absent	TO15-SIM(30)
Canister - 2.7 Liter	N/A	N/A		Y	Absent	TO15-SIM(30)
Canister - 2.7 Liter	N/A	N/A		Y	Absent	TO15-SIM(30)
Canister - 2.7 Liter	N/A	N/A		Y	Absent	TO15-SIM(30)
Canister - 2.7 Liter	N/A	N/A		Y	Absent	TO15-SIM(30)
Canister - 2.7 Liter	N/A	N/A		Y	Absent	TO15-SIM(30)
Canister - 2.7 Liter	N/A	N/A		Y	Absent	TO15-SIM(30)
Canister - 2.7 Liter	N/A	N/A		Y	Absent	TO15-SIM(30)
Canister - 2.7 Liter	N/A	N/A		Y	Absent	TO15-SIM(30)
Canister - 2.7 Liter	N/A	N/A		Y	Absent	TO15-SIM(30)
Canister - 2.7 Liter	N/A	N/A		Y	Absent	CLEAN-FEE()
	Container Type Canister - 2.7 Liter Canister - 2.7 Liter	Container TypeCoolerCanister - 2.7 LiterN/ACanister - 2.7 LiterN/A	Container TypeCoolerpHCanister - 2.7 LiterN/AN/ACanister - 2.7 LiterN/AN/A	Container TypeCoolerpHdeg CCanister - 2.7 LiterN/AN/ACanister - 2.7 LiterN/AN/A	Container TypeCoolerpHdeg CPresCanister - 2.7 LiterN/AN/AYCanister - 2.7 LiterN/AN/AY	Container TypeCoolerpHdeg CPresSealCanister - 2.7 LiterN/AN/AYAbsentCanister - 2.7 Lit

L1617940

Project Name: I-SCHNEID

Project Number: 0121021

Report

Report Date: 06/17/16

Lab Number:

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME). EPA - Environmental Protection Agency. LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes. LCSD - Laboratory Control Sample Duplicate: Refer to LCS. - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of LFB analytes or a material containing known and verified amounts of analytes. MDL. - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. MSD - Matrix Spike Sample Duplicate: Refer to MS. NA - Not Applicable. NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit. NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine. NI - Not Ignitable. NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil. RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable. RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report. SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

GLOSSARY

- STLP Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
- TIC Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the rep

Report Format: Data Usability Report

Project Name: I-SCHNEID

Project Number: 0121021

Lab Number: L1617940

Report Date: 06/17/16

Data Qualifiers

reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Project Name: I-SCHNEID Project Number: 0121021

 Lab Number:
 L1617940

 Report Date:
 06/17/16

REFERENCES

48 Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation: Westborough Facility EPA 524.2: 1,2-Dibromo-3-chloropropane, 1,2-Dibromoethane, m/p-xylene, o-xylene EPA 624: 2-Butanone (MEK), 1,4-Dioxane, tert-Amylmethyl Ether, tert-Butyl Alcohol, m/p-xylene, o-xylene EPA 625: Aniline, Benzoic Acid, Benzyl Alcohol, 4-Chloroaniline, 3-Methylphenol, 4-Methylphenol. EPA 1010A: NPW: Ignitability EPA 6010C: NPW: Strontium; SCM: Strontium EPA 8151A: NPW: 2,4-DB, Dicamba, Dichloroprop, MCPA, MCPP; SCM: 2,4-DB, Dichloroprop, MCPA, MCPP EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene, Isopropanol; SCM: Iodomethane (methyl iodide), Methyl methacrylate (soil); 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270D: NPW: Pentachloronitrobenzene, 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Pentachloronitrobenzene, 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine. EPA 9010: <u>NPW:</u> Amenable Cyanide Distillation, Total Cyanide Distillation EPA 9038: <u>NPW:</u> Sulfate EPA 9050A: NPW: Specific Conductance EPA 9056: NPW: Chloride, Nitrate, Sulfate EPA 9065: NPW: Phenols EPA 9251: NPW: Chloride SM3500: NPW: Ferrous Iron SM4500: <u>NPW</u>: Amenable Cyanide, Dissolved Oxygen; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3. SM5310C: DW: Dissolved Organic Carbon **Mansfield Facility** EPA 8270D: NPW: Biphenyl; SCM: Biphenyl, Caprolactam EPA 8270D-SIM Isotope Dilution: SCM: 1,4-Dioxane SM 2540D: TSS SM2540G: SCM: Percent Solids EPA 1631E: SCM: Mercury EPA 7474: SCM: Mercury EPA 8081B: NPW and SCM: Mirex, Hexachlorobenzene. EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA 8270-SIM: NPW and SCM: Alkylated PAHs. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene, n-Butylbenzene, n-Propylbenzene, sec-Butylbenzene, tert-Butylbenzene. Biological Tissue Matrix: 8270D-SIM; 3050B; 3051A; 7471B; 8081B; 8082A; 6020A: Lead; 8270D: bis(2-ethylhexyl)phthalate, Butylbenzylphthalate, Diethyl phthalate, Dimethyl phthalate, Di-n-butyl phthalate, Di-n-octyl phthalate, Fluoranthene, Pentachlorophenol. The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility: Drinking Water EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury; EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT. Non-Potable Water EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn; EPA 200.7: AI,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,TI,V,Zn; EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

· · · · · · · · · · · · · · · · · · ·		T	Serial_No:06171615:37
AIR A	NALYSIS PAGE_1_OF	Date Rec'd in Lab: (0/10/14	ALPHA JOB #: 4617940
ANALYTICAL	Project Information	Report Information - Data Deliverables	Billing Information
320 Forbes Blvd, Mansfield, MA 02048 TEL: 508-822-9300 FAX: 508-822-3288	Project Name: I Schneid		Same as Client info PO #:
Client Information	Project Location: Atlanta, GA	ADEx Criteria Checker:	· · · · · · · · · · · · · · · · · · ·
Client: ERM	Project #: 012102)	(Default based on Regulatory Criteria Indicated)	
Address: 3200 Windy Hill Rd		Other Formats:	Regulatory Requirements/Report Limits
Atlanta, GA 30339	ALPHA Quote #:	Additional Deliverables:	State/Fed Program Res / Comm
Phone: 678-486-2700	Turn-Around Time	Report to: (if different than Project Manager)	
Fax:		nic. vrey Cerm. com	
Email: jeff-bilkerteern.con	Standard RUSH (only confirmed if pre-approved!)		ANALYSIS
 These samples have been previously analyzed by Alpha 	Date Due: Time:		
Other Project Specific Requirements/Con		_ /	
Project-Specific Target Compound List:		/	Bennoeu
Ŷ			act work
	II Columns Below Must	Be Filled Out	2 2 2 2 W
ALPHA Lab ID (Lab Use Only) Sample ID	COLLECTION Initial Final End Date Start Time End Time Vacuum Vacuum	Sample Sampler's Can ID ID-Flow A	Wills Sample Comments (i.e. PID)
17940.01 SG-1-3'	6 8 16 0905 0920 -28.98 -0.66		
02 SG-1-7'	6)81160930 0945 -28.86-0.33	SV ALR/ 27 502 0511 W	
03 SCT-1-11	6816 0939 0955 -29.22 -0.89	SV ALRE 2,7 804 0602 K	
OP 5G-2-3	618/16 1028 1045 -29.33 -0.09	SV 20 27 4460658 a	
05 5G-2-7			
06 SG-2-11'		SV MLB 2.7 391 0686 2	
OF SSV-1	6/8/14 1133 447-29.03 -0.28	SV ALAYLE 2.7 212 0604 X	
8 SSV-2	6/8/16 1221 1236 -28.65-0.17	SV 10 2.7 546 0707 x	
09 554-3	618/16 1250 1305-29.34-0.82	SV 410/ 2.7352 0520 x	
10 DUP-01	6/8/16 -28.81 -0.14		Sample duration was 16 minutes
*SAMPLE MATRIX CODES	AA = Ambient Air (Indoor/Outdoor) SV = Soil Vapor/Landfill Gas/SVE Other = Please Specify	Container Type	Please print clearly, legibly and completely. Samples can not be logged in and turnaround time
A 1.00	Relinquished By: Date/Time		ate/Time: clock will not start until any ambi- guities are resolved. All samples
Alles	L Charlie Brooks 6/8/16 Reime Marchie Brode 6/8/16 FECEX	FedEx	submitted are subject to Alpha's Terms and Conditions.
ጅቌኯዸ፟ፙ3.ይነርቶ2 ዓይል። (25-Sep-15)	FPCEX	Kin Barb AR 6/10/	See reverse side.

ANALYTICAL REPORT

Lab Number:	L1621168
Client:	ERM, Inc.
	300 Chastain Center Boulevard
	Suite 375
	Kennesaw, GA 35144
ATTN:	Jeff Bilkert
Phone:	(770) 590-8383
Project Name:	I-SCHNEID
Project Number:	0121021
Report Date:	07/15/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: NY (11627), CT (PH-0141), NH (2206), NJ NELAP (MA015), RI (LAO00299), ME (MA00030), PA (68-02089), VA (460194), LA NELAP (03090), FL (E87814), TX (T104704419), WA (C954), USFWS (Permit #LE2069641), USDA (Permit #P330-11-00109), US Army Corps of Engineers.

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Serial_No:07151613:01

Project Name:I-SCHNEIDProject Number:0121021

 Lab Number:
 L1621168

 Report Date:
 07/15/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1621168-01	OA-01-20160705-01	AIR	ATLANTA, GA	07/05/16 18:45	07/11/16
L1621168-02	IA-01-20160705-01	AIR	ATLANTA, GA	07/05/16 18:30	07/11/16
L1621168-03	IA-02-20160705-01	AIR	ATLANTA, GA	07/05/16 16:40	07/08/16
L1621168-04	IA-03-20160705-01	AIR	ATLANTA, GA	07/05/16 18:10	07/08/16
L1621168-05	IA-04-20160705-01	AIR	ATLANTA, GA	07/05/16 18:15	07/08/16
L1621168-06	IA-05-20160705-01	AIR	ATLANTA, GA	07/05/16 18:40	07/11/16
L1621168-07	DUP-01-20160705-01	AIR	ATLANTA, GA	07/05/16 00:00	07/11/16
L1621168-08	UNUSED CAN#388	AIR	ATLANTA, GA		07/11/16

Project Name:I-SCHNEIDProject Number:0121021

Lab Number: L1621168 Report Date: 07/15/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:I-SCHNEIDProject Number:0121021

 Lab Number:
 L1621168

 Report Date:
 07/15/16

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on June 30, 2016. The canister certification results are provided as an addendum.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Christoph J Curdence Christopher J. Anderson

Authorized Signature:

Title: Technical Director/Representative

Date: 07/15/16

AIR

Project Name: I-SCHNEID

Project Number: 0121021

Lab ID:	L1621168-01	Date Collected:	07/05/16 18:45
Client ID:	OA-01-20160705-01	Date Received:	07/11/16
Sample Location:	ATLANTA, GA	Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	07/14/16 20:38		
Analyst:	MB		

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by S	IM - Mansfield Lab							
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	0.176	0.020		0.764	0.087			1
p/m-Xylene	0.484	0.040		2.10	0.174			1
o-Xylene	0.137	0.020		0.595	0.087			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
Naphthalene	ND	0.050		ND	0.262			1
Xylenes, Total	0.621	0.020		2.70	0.087			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	82		60-140
bromochloromethane	87		60-140
chlorobenzene-d5	85		60-140

Project Name: I-SCHNEID

Project Number: 0121021

Lab ID:	L1621168-02	Date Collected:	07/05/16 18:30
Client ID:	IA-01-20160705-01	Date Received:	07/11/16
Sample Location:	ATLANTA, GA	Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	07/14/16 21:09		
Analyst:	MB		

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by S	SIM - Mansfield Lab							
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	0.033	0.020		0.143	0.087			1
p/m-Xylene	0.099	0.040		0.430	0.174			1
o-Xylene	0.042	0.020		0.182	0.087			1
1,4-Dichlorobenzene	0.079	0.020		0.475	0.120			1
Naphthalene	0.058	0.050		0.304	0.262			1
Xylenes, Total	0.141	0.020		0.612	0.087			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	85		60-140
bromochloromethane	90		60-140
chlorobenzene-d5	87		60-140

Project Name: I-SCHNEID

Project Number: 0121021

Lab ID:	L1621168-03	Date Collected:	07/05/16 16:40
Client ID:	IA-02-20160705-01	Date Received:	07/08/16
Sample Location:	ATLANTA, GA	Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	07/14/16 21:41		
Analyst:	MB		

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by S	SIM - Mansfield Lab							
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	0.029	0.020		0.126	0.087			1
p/m-Xylene	0.090	0.040		0.391	0.174			1
o-Xylene	0.037	0.020		0.161	0.087			1
1,4-Dichlorobenzene	0.093	0.020		0.559	0.120			1
Naphthalene	ND	0.050		ND	0.262			1
Xylenes, Total	0.127	0.020		0.552	0.087			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	85		60-140
bromochloromethane	89		60-140
chlorobenzene-d5	88		60-140

Project Name: I-SCHNEID

Project Number: 0121021

Lab ID:	L1621168-04	Date Collected:	07/05/16 18:10
Client ID:	IA-03-20160705-01	Date Received:	07/08/16
Sample Location:	ATLANTA, GA	Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	07/14/16 22:12		
Analyst:	MB		

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by S	SIM - Mansfield Lab							
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	0.033	0.020		0.143	0.087			1
p/m-Xylene	0.109	0.040		0.473	0.174			1
o-Xylene	0.042	0.020		0.182	0.087			1
1,4-Dichlorobenzene	0.057	0.020		0.343	0.120			1
Naphthalene	0.066	0.050		0.346	0.262			1
Xylenes, Total	0.151	0.020		0.656	0.087			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	85		60-140
bromochloromethane	90		60-140
chlorobenzene-d5	87		60-140

Project Name: I-SCHNEID

Project Number: 0121021

Lab ID:	L1621168-05	Date Collected:	07/05/16 18:15
Client ID:	IA-04-20160705-01	Date Received:	07/08/16
Sample Location:	ATLANTA, GA	Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	07/14/16 22:44		
Analyst:	MB		

		ppbV		ug/m3			Dilution	
Parameter	Results	RL	MDL	Results	ts RL MDL Q	Qualifier	Factor	
Volatile Organics in Air by S	IM - Mansfield Lab							
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	0.061	0.020		0.265	0.087			1
p/m-Xylene	0.197	0.040		0.856	0.174			1
o-Xylene	0.067	0.020		0.291	0.087			1
1,4-Dichlorobenzene	0.375	0.020		2.25	0.120			1
Naphthalene	0.084	0.050		0.440	0.262			1
Xylenes, Total	0.264	0.020		1.15	0.087			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	85		60-140
bromochloromethane	90		60-140
chlorobenzene-d5	87		60-140

Project Name: I-SCHNEID

Project Number: 0121021

Lab ID:	L1621168-06	Date Collected:	07/05/16 18:40
Client ID:	IA-05-20160705-01	Date Received:	07/11/16
Sample Location:	ATLANTA, GA	Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	07/14/16 23:15		
Analyst:	MB		

		ppbV		ug/m3			Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by S	SIM - Mansfield Lab							
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	0.047	0.020		0.204	0.087			1
p/m-Xylene	0.149	0.040		0.647	0.174			1
o-Xylene	0.054	0.020		0.235	0.087			1
1,4-Dichlorobenzene	0.118	0.020		0.709	0.120			1
Naphthalene	ND	0.050		ND	0.262			1
Xylenes, Total	0.203	0.020		0.882	0.087			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	84		60-140
bromochloromethane	92		60-140
chlorobenzene-d5	86		60-140

 Lab Number:
 L1621168

 Report Date:
 07/15/16

Project Name: I-SCHNEID

Project Number: 0121021

SAMPLE RESULTS

Lab ID:	L1621168-07	Date Collected:	07/05/16 00:00
Client ID:	DUP-01-20160705-01	Date Received:	07/11/16
Sample Location:	ATLANTA, GA	Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	07/14/16 23:46		
Analyst:	MB		

		ppbV						Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air by S	SIM - Mansfield Lab								
Chlorobenzene	ND	0.100		ND	0.461			1	
Ethylbenzene	0.081	0.020		0.352	0.087			1	
p/m-Xylene	0.231	0.040		1.00	0.174			1	
o-Xylene	0.078	0.020		0.339	0.087			1	
1,4-Dichlorobenzene	0.080	0.020		0.481	0.120			1	
Naphthalene	0.052	0.050		0.273	0.262			1	
Xylenes, Total	0.309	0.020		1.34	0.087			1	

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	84		60-140
bromochloromethane	98		60-140
chlorobenzene-d5	89		60-140

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 07/14/16 14:50

		ppbV				Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab for	or sample	(s): 01-07	Batch: W	G913585	-4		
Xylenes, Total	ND	0.020		ND	0.087			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
o-Xylene	ND	0.020		ND	0.087			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
Naphthalene	ND	0.050		ND	0.262			1

Lab Control Sample Analysis Batch Quality Control

Lab Number: L1621168 07/15/16

Report Date:

Proylene 111 70-130 25 Dichlorodfluoromethane 96 70-130 25 Choromethane 95 70-130 25 12-Dichloro-1,1,2,2-tetrafluoroethane 98 70-130 25 13-Dichloro-1,1,2,2-tetrafluoroethane 98 70-130 25 14-Dichloro-1,1,2,2-tetrafluoroethane 94 70-130 25 15-Dichloro-1,1,2,2-tetrafluoroethane 94 70-130 25 14-Dichloro-1,2,2-tetrafluoroethane 94 70-130 25 14-Dichloromethane 94 70-130 25 16-Dichloromethane 94 70-130 25 14-Dichoromethane 94 70-130	Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
Dichorodifuoromethane 96 70-130 25 Chloromethane 95 70-130 25 1,2.2.bichloro-1,1,2,2.tettrafluoroethane 89 70-130 25 Vinyl chloride 94 70-130 25 1,3.Butadiene 102 70-130 25 Bromomethane 85 70-130 25 Chloroethane 84 70-130 25 Dichoroethane 84 70-130 25 Dichoroethane 84 70-130 25 Chloroethane 94 70-130 25 Vinyl bromide 87 70-130 25 Kotone 96 70-130 25 Not bromethane 90 70-130 25 Kotone 90 70-130 25 Kotone 90 70-130 25 Kotonethane 90 70-130 25 Kotonethane 90 70-130 25 Kotonethane 91 70-130 2	Volatile Organics in Air by SIM - Mansfield L	ab Associated sa	mple(s): 01-07 Batch: WG	913585-3			
Chioromethane 95 - 70-130 - 25 1,2-Dichloro-1,1,2,2-tetrafluoroethane 89 - 70-130 - 25 Viny chloride 94 - 70-130 - 25 1,3-Butadiene 102 - 70-130 - 25 Bromomethane 85 - 70-130 - 25 Chloroethane 94 - 70-130 - 25 Chloroethane 94 - 70-130 - 25 Korboel 87 - 70-130 - 25 Viny bromide 94 - 70-130 - 25 Acetone 94 - 70-130 - 25 Iso-Propyl Alcohol 93 - 70-130 - 25 Acytonitrie 93 - 70-130 - 25 Iso-Propyl Alcohol 93 - 70-130 - 25 Acytonistrife <t< td=""><td>Propylene</td><td>111</td><td>-</td><td>70-130</td><td>-</td><td>25</td><td></td></t<>	Propylene	111	-	70-130	-	25	
1.2-Dichloro-1,1.2.2-tetrafluoroethane 89 - 70-130 - 25 Vinyl chloride 94 - 70-130 - 25 1.3-Butadiene 102 - 70-130 - 25 Bromomethane 85 - 70-130 - 25 Chloroethane 94 - 70-130 - 25 Ethyl Alcohol 87 - 70-130 - 25 Vinyl bromide 94 - 70-130 - 25 Vinyl bromide 94 - 70-130 - 25 Acetone 95 - 70-130 - 25 Iso-Propyl Alcohol 93 - 70-130 - 25 Actylonitrile 99 - 70-130 - 25 Actylonitrile 99 - 70-130 - 25 Actylonitrile 99 - 70-130 - 25 Actylonitrile	Dichlorodifluoromethane	96	-	70-130	-	25	
Viny chloride 94 - 70-130 - 25 1,3-Butadiene 102 - 70-130 - 25 Bromonethane 85 - 70-130 - 25 Chloroethane 94 - 70-130 - 25 Ethyl Alcohol 87 - 70-130 - 25 Vinyl bromide 94 - 70-130 - 25 Actone 94 - 70-130 - 25 Inchoroftuoromethane 94 - 70-130 - 25 Iso-Propyl Alcohol 93 - 70-130 - 25 Acrylonitrile 99 - 70-130 - 25 I,1-Dichloroethene 914 - 70-130 - 25 Acrylonitrile 97 - 70-130 - 25 Acrylonitrile 97 - 70-130 - 25 Acrylonitrile 98 <td>Chloromethane</td> <td>95</td> <td>-</td> <td>70-130</td> <td>-</td> <td>25</td> <td></td>	Chloromethane	95	-	70-130	-	25	
1.3-Butadiene 102 70-130 25 Bromomethane 85 70-130 25 Chloroethane 94 70-130 25 Ethyl Alcohol 87 70-130 25 Vinyl bromide 94 70-130 25 Vinyl bromide 94 70-130 25 Vinyl bromide 94 70-130 25 Acotone 95 70-130 25 Frichlorofluoromethane 90 70-130 25 For Propyl Alcohol 93 70-130 25 Acrylonitrille 99 70-130 25 Acrylonitrille 99 70-130 25 Achorpoppene 104 70-130 25 Achorpoppene 91 70-130 25 Achorpoppene 103 70-130 25 Chloropopene 93 70-130 25 Achorpoppene 93 70-130 25 Achorpoppene 93 70-130 25 Alcohor disulfide 93 70-130 25	1,2-Dichloro-1,1,2,2-tetrafluoroethane	89	-	70-130	-	25	
Bromonethane86.70-13025Chloroethane9470-13025Ethyl Alcohol8770-13025Vinyl bromide9470-13025Acotone9570-13025Frichlorofluoromethane9070-13025Iso-Propyl Alcohol9370-13025Acrylonitrile9970-13025Acrylonitrile9970-13025Methylene chloride9770-13025Carbon disulfide9370-13025Intercentententente25.Alcohoropene25Intercententententente25Alcohorotrile25Alcohorotrile25Alcohorotrile25Alcohorotrile25Alcohorotrile25Alcohorotrile25Alcohorotrile25Alcohorotrile25Alcohorotrile<	Vinyl chloride	94	-	70-130	-	25	
Chloroethane94-70-130-25Ethyl Alcohol87-70-130-25Vinyl bromide94-70-130-25Acetone95-70-130-25Trichlorofluoromethane90-70-130-25iso-Propyl Alcohol93-70-130-25Acrylonitrile99-70-130-251,1-Dichloroethane90-70-130-251,1-Dichloroethane91-70-130-25Acrylonitrile99-70-130-25Achon disulfide97-70-130-25Achon disulfide93-70-130-25Achon disulfide93-70-130-25Halothane93-70-130-251,12-Trichloro-1,2,2-Trifluoroethane93-70-130-25Halothane93-70-130-251,12-Trichloro-1,2,2-Trifluoroethane93-70-130-25Halothane86-70-130-25	1,3-Butadiene	102	-	70-130	-	25	
Etyl Alcohol8770-13025Vinyl bromide94-70-13025Acetone95-70-130-25Trichlorofluoromethane90-70-130-25iso-Propyl Alcohol93-70-130-25Actylonitrile99-70-130-251,1-Dichloroethene104-70-130-25Methylene chloride97-70-130-253-Chloropropene103-70-130-251,1_2-Trichloro-1,2,2-Trifluoroethane93-70-130-25Halothane86-70-130-25	Bromomethane	85	-	70-130	-	25	
Viny bromide 94 70-130 25 Acetone 95 70-130 25 Trichlorofluoromethane 90 70-130 25 iso-Propyl Alcohol 93 70-130 25 Actylonitrile 99 70-130 25 Actylonopropene 104 70-130 25 3-Chloropropene 103 70-130 25 1,1,2-Trichloro-1,2,2-Trifluoroethane 93 70-130 25 Halothane 86 70-130 25 25	Chloroethane	94	-	70-130	-	25	
Acetone9570-13025Trichlorofluoromethane90-70-130-25iso-Propyl Alcohol93-70-130-25Acrylonitrile99-70-130-251,1-Dichloroethene104-70-130-25Methylene chloride97-70-130-253-Chloropropene103-70-130-251,1-Zririchloro-1,2,2-Trifluoroethane93-70-130-25Halothane86-70-130-25	Ethyl Alcohol	87	-	70-130	-	25	
Trichlorofluoromethane90-25iso-Propyl Alcohol93-70-130-25Acrylonitrile99-70-130-251,1-Dichloroethene104-70-130-25Methylene chloride97-70-130-253-Chloropropene103-70-130-25Carbon disulfide93-70-130-251,1,2-Trichloro-1,2,2-Trifluoroethane93-70-130-25Halothane86-70-130-25	Vinyl bromide	94	-	70-130	-	25	
iso-Propyl Alcohol 93 - 70-130 - 25 Acrylonitrile 99 - 70-130 - 25 1,1-Dichloroethene 104 - 70-130 - 25 Methylene chloride 97 - 70-130 - 25 3-Chloropropene 97 - 70-130 - 25 Carbon disulfide 93 - 70-130 - 25 1,1,2-Trichloro-1,2,2-Trifluoroethane 93 - 70-130 - 25 Halothane 86 - 70-130 - 25 25	Acetone	95	-	70-130	-	25	
Acrylonitrile99-70-130-251,1-Dichloroethene104-70-130-25Methylene chloride97-70-130-253-Chloropropene103-70-130-25Carbon disulfide93-70-130-251,1,2-Trichloro-1,2,2-Trifluoroethane93-70-130-25Halothane86-70-130-25	Trichlorofluoromethane	90	-	70-130	-	25	
Interpretende Interpre	iso-Propyl Alcohol	93	-	70-130	-	25	
Methylene chloride9770-130-253-Chloropropene103-70-130-25Carbon disulfide93-70-130-251,1,2-Trichloro-1,2,2-Trifluoroethane93-70-130-25Halothane86-70-130-25	Acrylonitrile	99	-	70-130	-	25	
3-Chloropropene 103 - 70-130 - 25 Carbon disulfide 93 - 70-130 - 25 1,1,2-Trichloro-1,2,2-Trifluoroethane 93 - 70-130 - 25 Halothane 86 - 70-130 - 25	1,1-Dichloroethene	104	-	70-130	-	25	
Carbon disulfide 93 - 25 1,1,2-Trichloro-1,2,2-Trifluoroethane 93 - 70-130 - 25 Halothane 86 - 70-130 - 25	Methylene chloride	97	-	70-130	-	25	
1,1,2-Trichloro-1,2,2-Trifluoroethane 93 - 70-130 - 25 Halothane 86 - 70-130 - 25	3-Chloropropene	103	-	70-130	-	25	
Halothane 86 - 70-130 - 25	Carbon disulfide	93	-	70-130	-	25	
	1,1,2-Trichloro-1,2,2-Trifluoroethane	93	-	70-130	-	25	
trans-1,2-Dichloroethene 77 - 70-130 - 25	Halothane	86	-	70-130	-	25	
	trans-1,2-Dichloroethene	77	-	70-130	-	25	

Lab Control Sample Analysis Batch Quality Control

Lab Number: L1621168 07/15/16

Report Date:

Autile Organics in Air by SIM - Mansfield Lab Associated sample(s): 01-07 Batch: WG913585- 1.1-Dichlorcethane 84 - 70-130 - 25 Methy terbuly terber 82 - 70-130 - 25 2-Butanone 87 - 70-130 - 25 dis-12-Dichlorcethene 88 - 70-130 - 25 Ethyl Acetate 105 - 70-130 - 25 Ichoroform 98 - 70-130 - 25 Ichoroform 93 - 70-130 - 25 Ichoroform 98 - 70-130 - 25 Ichoroforpane 101 - 70-130 - 25 Ichoroforpane 103 -	Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
Methyl terhur 82 70-130 25 2-Butanone 87 70-130 25 dis-1,2-Dichloroethene 98 70-130 25 Ethyl Acetate 105 70-130 25 Chloroform 98 70-130 25 Tetrahydrofuran 119 70-130 25 1,2-Dichloroethane 95 70-130 25 1,2-Dichloroethane 93 70-130 25 1,11-Trichloroethane 101 70-130 25 1,11-Trichloroethane 101 70-130 25 Cyclohoxane 98 70-130 25 Cyclohoxane 103 70-130 25 Cyclohoxane 103 70-130 25 1,2-Dichloropopane 103 70-130 25 1,2-Dichloropopane 104 70-130 25 1,2-Dichloropopane 104 70-130 25 1,4-Dioxane 94 70-130 25 1,4-Dioxane 108	Volatile Organics in Air by SIM - Mansfield La	ab Associated s	ample(s): 01-07 Batch: V	VG913585-3			
2-Butanone 87 - 70-130 - 25 dis-12-Dichloroethene 98 - 70-130 - 25 Ethyl Acetate 105 - 70-130 - 25 Chloroform 98 - 70-130 - 25 Tartahydrofuran 919 - 70-130 - 25 1.2-Dichloroethane 98 - 70-130 - 25 1.2-Dichloroethane 98 - 70-130 - 25 1.2-Dichloroethane 98 - 70-130 - 25 1.1-Trichloroethane 98 - 70-130 - 25 Penzene 98 - 70-130 - 25 Cyclohexane 103 - 70-130 - 25 1.2-Dichloroethane 104 - 70-130 - 25 1.2-Dichloroethane 104 - 70-130 - 25 1.4-Dicxane <td>1,1-Dichloroethane</td> <td>84</td> <td>-</td> <td>70-130</td> <td>-</td> <td>25</td> <td></td>	1,1-Dichloroethane	84	-	70-130	-	25	
dis.1.2-Dichloroethene 98 70-130 25 Ethyl Acetate 105 70-130 25 Chloroform 98 70-130 25 Tetrahydrofuran 119 70-130 25 1.2-Dichloroethane 93 70-130 25 n-Hexane 93 70-130 25 1.1-Trichloroethane 910 70-130 25 I.1.1-Trichloroethane 910 70-130 25 Carbon tetrachloride 98 70-130 25 Cyclohexane 98 70-130 25 1.2-Dichloropropane 103 70-130 25 Stromodichloromethane 103 70-130 25 I.2-Dichloropropane 103 70-130 25 I.4-Dioxane 94 70-130 25 Trichloroethane 108 70-130 25 I.4-Dioxane 94 70-130 25 I.4-Dioxane 116 70-130 25 I.4-Dioxane 116<	Methyl tert butyl ether	82	-	70-130	-	25	
Ethyl Acetate 105 70-130 25 Chloroforn 98 - 70-130 - 25 Tetrahydrofuran 119 - 70-130 - 25 1.2-Dichloroethane 95 - 70-130 - 25 n-Hexane 93 - 70-130 - 25 1.1-Trichloroethane 93 - 70-130 - 25 1.1-Trichloroethane 93 - 70-130 - 25 Enzene 98 - 70-130 - 25 Cyclohexane 103 - 70-130 - 25 Lyclohloroopropane 103 - 70-130 - 25 I.4-Dioxane 104 - 70-130 - 25 Irchoroethene 108 - 70-130 - 25 I.4-Dioxane 104 - 70-130 - 25 I.4-Dioxane 108 - 70-130	2-Butanone	87	-	70-130	-	25	
Chioroform 98 70-130 25 Tetrahydroluran 119 70-130 25 1.2-Dichloroethane 95 70-130 25 n-Hexane 93 70-130 25 1.1.1-Trichloroethane 93 70-130 25 1.1.1-Trichloroethane 93 70-130 25 Benzene 98 70-130 25 Carbon tetrachloride 103 70-130 25 Cyclohexane 103 70-130 25 1.2-Dichloropropane 103 70-130 25 Sromodichloromethane 104 70-130 25 I-2-Dichloropropane 103 70-130 25 I-2-Dichloropropane 104 70-130 25 I-4-Dioxane 94 70-130 25 I-14-Dioxane 116 70-130 25 I-2.2-4-Tirmethylpentane 116 70-130 25 I-3.3-Dichloropropene 114 70-130 25	cis-1,2-Dichloroethene	98	-	70-130	-	25	
Tetrahydrofuran 119 - 70-130 - 25 1.2-Dichloroethane 95 - 70-130 - 25 n-Hexane 93 - 70-130 - 25 1.1.1-Trichloroethane 101 - 70-130 - 25 Benzene 98 - 70-130 - 25 Carbon tetrachloride 103 - 70-130 - 25 Cyclohexane 103 - 70-130 - 25 1.2-Dichloropropane 103 - 70-130 - 25 Frichloroethane 104 - 70-130 - 25 1.4-Dioxane 94 - 70-130 - 25 1.4-Dioxane 108 - 70-130 - 25 2.2.4-Trimethylpentane 108 - 70-130 - 25 2.2.4-Trimethylpentane 116 - 70-130 - 25 6is-1.3-Dichloropropene 114 - 70-130 - 25 4-Me	Ethyl Acetate	105	-	70-130	-	25	
1,2-Dichloroethane 95 - 70-130 - 25 n-Hexane 93 - 70-130 - 25 1,1,1-Trichloroethane 101 - 70-130 - 25 Benzene 98 - 70-130 - 25 Carbon tetrachloride 103 - 70-130 - 25 Cyclohexane 103 - 70-130 - 25 1,2-Dichloropropane 103 - 70-130 - 25 Bromodichloromethane 104 - 70-130 - 25 1,4-Dioxane 94 - 70-130 - 25 1,4-Dioxane 108 - 70-130 - 25 1,4-Dioxane 108 - 70-130 - 25 2,2,4-Trimethylpentane 116 - 70-130 - 25 1,3-Dichloropropene 114 - 70-130 - 25 4-Methyl-2-pentanone 114 - 70-130 - 25	Chloroform	98	-	70-130	-	25	
n-Hexane 93 - 70-130 - 25 1,1,1-Trichloroethane 101 - 70-130 - 25 Berzene 98 - 70-130 - 25 Carbon tetrachloride 103 - 70-130 - 25 Cyclohexane 103 - 70-130 - 25 1,2-Dichloropropane 103 - 70-130 - 25 Bromodichloromethane 104 - 70-130 - 25 1,4-Dioxane 94 - 70-130 - 25 1,4-Dioxane 94 - 70-130 - 25 1,4-Dioxane 108 - 70-130 - 25 2,2,4-Trimethylpentane 116 - 70-130 - 25 6:s-1,3-Dichloropropene 114 - 70-130 - 25 4-Methyl-2-pentanone 114 - 70-130 - 25	Tetrahydrofuran	119	-	70-130	-	25	
1,1,1-Trichloroethane101-70-130-25Benzene98-70-130-25Carbon tetrachloride103-70-130-25Cyclohexane103-70-130-251,2-Dichloropropane103-70-130-25Bromodichloromethane104-70-130-251,4-Dioxane94-70-130-252,2,4-Trimethylpentane116-70-130-25cis-1,3-Dichloropropene114-70-130-254-Methyl-2-pentanone114-70-130-25	1,2-Dichloroethane	95	-	70-130	-	25	
Benzene9870-13025Carbon tetrachloride103-70-130-25Cyclohexane103-70-130-251,2-Dichloropropane103-70-130-25Bromodichloromethane104-70-130-251,4-Dioxane94-70-130-25Trichloroethene108-70-130-252,2,4-Trimethylpentane116-70-130-25cis-1,3-Dichloropropene114-70-130-254-Methyl-2-pentanone114-70-130-25	n-Hexane	93	-	70-130	-	25	
Carbon tetrachloride103-25Cyclohexane103-70-130-251,2-Dichloropropane103-70-130-25Bromodichloromethane104-70-130-251,4-Dioxane94-70-130-25Trichloroethene108-70-130-252,2,4-Trimethylpentane116-70-130-25cis-1,3-Dichloropropene114-70-130-254-Methyl-2-pentanone114-70-130-25	1,1,1-Trichloroethane	101	-	70-130	-	25	
Cyclohexane103-70-130-251,2-Dichloropropane103-70-130-25Bromodichloromethane104-70-130-251,4-Dioxane94-70-130-25Trichloroethene108-70-130-252,2,4-Trimethylpentane116-70-130-25cis-1,3-Dichloropropene114-70-130-254-Methyl-2-pentanone114-70-130-25	Benzene	98	-	70-130	-	25	
1,2-Dichloropropane103-70-130-25Bromodichloromethane104-70-130-251,4-Dioxane94-70-130-25Trichloroethene108-70-130-252,2,4-Trimethylpentane116-70-130-25cis-1,3-Dichloropropene114-70-130-254-Methyl-2-pentanone114-70-130-25	Carbon tetrachloride	103	-	70-130	-	25	
Bromodichloromethane104-70-130-251,4-Dioxane94-70-130-25Trichloroethene108-70-130-252,2,4-Trimethylpentane116-70-130-25cis-1,3-Dichloropropene114-70-130-254-Methyl-2-pentanone114-70-130-25	Cyclohexane	103	-	70-130	-	25	
1,4-Dioxane94-70-130-25Trichloroethene108-70-130-252,2,4-Trimethylpentane116-70-130-25cis-1,3-Dichloropropene114-70-130-254-Methyl-2-pentanone114-70-130-25	1,2-Dichloropropane	103	-	70-130	-	25	
Trichloroethene108-70-130-252,2,4-Trimethylpentane116-70-130-25cis-1,3-Dichloropropene114-70-130-254-Methyl-2-pentanone114-70-130-25	Bromodichloromethane	104	-	70-130	-	25	
2,2,4-Trimethylpentane 116 70-130 - 25 cis-1,3-Dichloropropene 114 - 70-130 - 25 4-Methyl-2-pentanone 114 - 70-130 - 25	1,4-Dioxane	94	-	70-130	-	25	
cis-1,3-Dichloropropene 114 - 70-130 - 25 4-Methyl-2-pentanone 114 - 70-130 - 25	Trichloroethene	108	-	70-130	-	25	
4-Methyl-2-pentanone 114 - 70-130 - 25	2,2,4-Trimethylpentane	116	-	70-130	-	25	
	cis-1,3-Dichloropropene	114	-	70-130	-	25	
trans-1,3-Dichloropropene 99 - 70-130 - 25	4-Methyl-2-pentanone	114	-	70-130	-	25	
	trans-1,3-Dichloropropene	99	-	70-130	-	25	

Lab Control Sample Analysis Batch Quality Control

Lab Number: L1621168 07/15/16

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics in Air by SIM - Mansfield La	ab Associated s	ample(s): 01	-07 Batch: WO	913585-3					
1,1,2-Trichloroethane	91		-		70-130	-		25	
Toluene	92		-		70-130	-		25	
2-Hexanone	112		-		70-130	-		25	
Dibromochloromethane	101		-		70-130	-		25	
1,2-Dibromoethane	91		-		70-130	-		25	
Tetrachloroethene	91		-		70-130	-		25	
1,1,1,2-Tetrachloroethane	85		-		70-130	-		25	
Chlorobenzene	94		-		70-130	-		25	
Ethylbenzene	99		-		70-130	-		25	
p/m-Xylene	101		-		70-130	-		25	
Bromoform	107		-		70-130	-		25	
Styrene	104		-		70-130	-		25	
1,1,2,2-Tetrachloroethane	94		-		70-130	-		25	
o-Xylene	105		-		70-130	-		25	
Isopropylbenzene	97		-		70-130	-		25	
4-Ethyltoluene	103		-		70-130	-		25	
1,3,5-Trimethylbenzene	104		-		70-130	-		25	
1,2,4-Trimethylbenzene	109		-		70-130	-		25	
Benzyl chloride	110		-		70-130	-		25	
1,3-Dichlorobenzene	100		-		70-130	-		25	
1,4-Dichlorobenzene	99		-		70-130	-		25	

Lab Control Sample Analysis

Batch Quality Control

Project Name:I-SCHNEIDProject Number:0121021

Lab Number: L1621168 Report Date: 07/15/16

LCS LCSD %Recovery RPD %Recovery Parameter %Recovery Qual Limits RPD Qual Limits Qual Volatile Organics in Air by SIM - Mansfield Lab Associated sample(s): 01-07 Batch: WG913585-3 100 sec-Butylbenzene 70-130 25 -p-Isopropyltoluene 70-130 25 94 --1,2-Dichlorobenzene 97 70-130 25 --70-130 25 n-Butylbenzene 92 --1,2,4-Trichlorobenzene 99 70-130 25 --Naphthalene 93 70-130 25 --1,2,3-Trichlorobenzene 70-130 25 92 --Hexachlorobutadiene 98 70-130 25 --

Lab Duplicate Analysis Batch Quality Control

Project Name: I-SCHNEID Project Number: 0121021

Lab Number:

L1621168 07/15/16 Report Date:

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
olatile Organics in Air by SIM - Mansfield Lab ample	Associated sample(s): 01-07	QC Batch ID: WG91	3585-5 QC S	ample: L162	21095-02 Client ID: DUP
Propylene	ND	ND	ppbV	NC	25
Dichlorodifluoromethane	0.453	0.469	ppbV	3	25
Vinyl chloride	ND	ND	ppbV	NC	25
Acetone	3.99	3.82	ppbV	4	25
Trichlorofluoromethane	0.266	0.266	ppbV	0	25
iso-Propyl Alcohol	2.52	2.55	ppbV	1	25
1,1-Dichloroethene	1.14	1.13	ppbV	1	25
Carbon disulfide	ND	ND	ppbV	NC	25
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	ND	ppbV	NC	25
1,1-Dichloroethane	0.282	0.284	ppbV	1	25
2-Butanone	ND	ND	ppbV	NC	25
cis-1,2-Dichloroethene	0.651	0.669	ppbV	3	25
Chloroform	0.625	0.625	ppbV	0	25
1,1,1-Trichloroethane	2.33	2.34	ppbV	0	25
Carbon tetrachloride	0.064	0.064	ppbV	0	25
Trichloroethene	0.416	0.416	ppbV	0	25
4-Methyl-2-pentanone	ND	ND	ppbV	NC	25
Toluene	0.191	0.194	ppbV	2	25
Tetrachloroethene	ND	ND	ppbV	NC	25

Lab Duplicate Analysis	
Batch Quality Control	

Project Name:I-SCHNEIDProject Number:0121021

 Lab Number:
 L1621168

 Report Date:
 07/15/16

RPD Limits Parameter Native Sample Duplicate Sample Units RPD Volatile Organics in Air by SIM - Mansfield Lab Associated sample(s): 01-07 QC Batch ID: WG913585-5 QC Sample: L1621095-02 Client ID: DUP Sample ND Ethylbenzene ND ppbV NC 25 p/m-Xylene ND ND ppbV NC 25 o-Xylene ND ND NC 25 ppbV 1,2,4-Trimethylbenzene ND ppbV NC 25 ND

Project Name: I-SCHNEID

Project Number: 0121021

Serial_No:07151613:01 Lab Number: L1621168

Report Date: 07/15/16

Canister and Flow Controller Information

0		Madia ID	Media Type	Date	Bottle	Cleaning	Can Leak	Initial Pressure (in. Hg)		Flow Controler Leak Chk	Flow Out	Flow In	% RPD
Samplenum L1621168-01	Client ID OA-01-20160705-01	Media ID 0702	#16 AMB	Prepared 06/30/16	Order 224672	Batch ID	Check	(in. ng) -	(in. Hg) -	Pass	4.4	mL/min 4.0	10
L1621168-01	OA-01-20160705-01	221	2.7L Can	06/30/16	224672	L1619299-01	Pass	-29.4	-11.3				
										Dees		4.0	
L1621168-02	IA-01-20160705-01	0155	#16 AMB	06/30/16	224672		-	-	-	Pass	4.4	4.2	5
L1621168-02	IA-01-20160705-01	2197	2.7L Can	06/30/16	224672	L1619299-01	Pass	-29.7	-5.9	-	-	-	-
L1621168-03	IA-02-20160705-01	0387	#16 AMB	06/30/16	224672		-	-	-	Pass	4.5	4.0	12
L1621168-03	IA-02-20160705-01	196	2.7L Can	06/30/16	224672	L1619299-01	Pass	-29.7	-4.2	-	-	-	-
L1621168-04	IA-03-20160705-01	0264	#16 SV	06/30/16	224672		-	-	-	Pass	4.5	4.8	6
L1621168-04	IA-03-20160705-01	2015	2.7L Can	06/30/16	224672	L1619299-01	Pass	-29.7	-5.4	-	-	-	-
L1621168-05	IA-04-20160705-01	0952	#4 AMB	06/30/16	224672		-	-	-	Pass	4.5	4.5	0
L1621168-05	IA-04-20160705-01	506	2.7L Can	06/30/16	224672	L1619299-01	Pass	-29.3	-6.1	-	-	-	-
L1621168-06	IA-05-20160705-01	0236	#16 AMB	06/30/16	224672		-	-	-	Pass	4.4	5.2	17
L1621168-06	IA-05-20160705-01	508	2.7L Can	06/30/16	224672	L1619299-01	Pass	-29.7	-6.5	-	-	-	-
L1621168-07	DUP-01-20160705-01	0915	#4 amb	06/30/16	224672		-	-	-	Pass	4.5	4.9	9
L1621168-07	DUP-01-20160705-01	2203	2.7L Can	06/30/16	224672	L1619299-01	Pass	-29.7	-9.3	-	-	-	-
L1621168-08	UNUSED CAN#388	0017	#16 AMB	06/30/16	224672		-	-	-	Pass	4.5	4.2	7

Project Name: I-SCHNEID

Project Number: 0121021

Serial_No:07151613:01 Lab Number: L1621168

Report Date: 07/15/16

Canister and Flow Controller Information

	Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPD
L	_1621168-08	UNUSED CAN#388	388	2.7L Can	06/30/16	224672	L1619299-01	Pass	-29.7	-29.9	-	-	-	-

		Serial_No:07	7151613:01
Project Name:	BATCH CANISTER CERTIFICATION	Lab Number:	L1619299
Project Number:	CANISTER QC BAT	Report Date:	07/15/16
	Air Canister Certification Results		

Lab ID:	L1619299-01	Date Collected:	06/22/16 16:00
Client ID:	CAN 191B SHELF 8	Date Received:	06/23/16
Sample Location:		Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15		
Analytical Date:	06/23/16 20:15		
Analyst:	RY		

		ppbV				ug/m3		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1

Serial_No:07151613:01

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

Lab Number: L1619299 Report Date: 07/15/16

Air Canister Certification Results

Lab ID: Client ID: Sample Location:	L1619299-01 CAN 191B SHELF 8 cation: ppbV			Date Collected: Date Received: Field Prep: ug/m3			06/22/16 16:00 06/23/16 Not Specified Dilution		
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	_
Volatile Organics in A	Air - Mansfield Lab)							
Methylene chloride		ND	0.500		ND	1.74			1
3-Chloropropene		ND	0.200		ND	0.626			1
Carbon disulfide		ND	0.200		ND	0.623			1
Freon-113		ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	e	ND	0.200		ND	0.793			1
1,1-Dichloroethane		ND	0.200		ND	0.809			1
Methyl tert butyl ether		ND	0.200		ND	0.721			1
Vinyl acetate		ND	1.00		ND	3.52			1
2-Butanone		ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene		ND	0.200		ND	0.793			1
Ethyl Acetate		ND	0.500		ND	1.80			1
Chloroform		ND	0.200		ND	0.977			1
Tetrahydrofuran		ND	0.500		ND	1.47			1
2,2-Dichloropropane		ND	0.200		ND	0.924			1
1,2-Dichloroethane		ND	0.200		ND	0.809			1
n-Hexane		ND	0.200		ND	0.705			1
Diisopropyl ether		ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether		ND	0.200		ND	0.836			1
1,1,1-Trichloroethane		ND	0.200		ND	1.09			1
1,1-Dichloropropene		ND	0.200		ND	0.908			1
Benzene		ND	0.200		ND	0.639			1
Carbon tetrachloride		ND	0.200		ND	1.26			1
Cyclohexane		ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether		ND	0.200		ND	0.836			1
Dibromomethane		ND	0.200		ND	1.42			1
1,2-Dichloropropane		ND	0.200		ND	0.924			1
Bromodichloromethane		ND	0.200		ND	1.34			1
1,4-Dioxane		ND	0.200		ND	0.721			1

Serial_No:07151613:01 Lab Number: L1619299

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

Lab Number: L1619299 Report Date: 07/15/16

Air Canister Certification Results

Lab ID: Client ID: Sample Location:	L1619299-01 CAN 191B SHELF 8 ation: ppbV			Date Collected: Date Received: Field Prep: ug/m3			06/22/16 16:00 06/23/16 Not Specified Dilution		
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	F 4
Volatile Organics in A	vir - Mansfield Lab								
Trichloroethene		ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane		ND	0.200		ND	0.934			1
Methyl Methacrylate		ND	0.500		ND	2.05			1
Heptane		ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene		ND	0.200		ND	0.908			1
4-Methyl-2-pentanone		ND	0.500		ND	2.05			1
trans-1,3-Dichloropropen	е	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane		ND	0.200		ND	1.09			1
Toluene		ND	0.200		ND	0.754			1
1,3-Dichloropropane		ND	0.200		ND	0.924			1
2-Hexanone		ND	0.200		ND	0.820			1
Dibromochloromethane		ND	0.200		ND	1.70			1
1,2-Dibromoethane		ND	0.200		ND	1.54			1
Butyl acetate		ND	0.500		ND	2.38			1
Octane		ND	0.200		ND	0.934			1
Tetrachloroethene		ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethan	e	ND	0.200		ND	1.37			1
Chlorobenzene		ND	0.200		ND	0.921			1
Ethylbenzene		ND	0.200		ND	0.869			1
p/m-Xylene		ND	0.400		ND	1.74			1
Bromoform		ND	0.200		ND	2.07			1
Styrene		ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethan	e	ND	0.200		ND	1.37			1
o-Xylene		ND	0.200		ND	0.869			1
1,2,3-Trichloropropane		ND	0.200		ND	1.21			1
Nonane		ND	0.200		ND	1.05			1
Isopropylbenzene		ND	0.200		ND	0.983			1
Bromobenzene		ND	0.200		ND	0.793			1

Serial_No:07151613:01

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

Lab Number: L1619299 Report Date: 07/15/16

Air Canister Certification Results

Lab ID: Client ID: Sample Location:	L1619299-01 CAN 191B SHE	3 SHELF 8 Date Recei Field Prep:				Receive		06/22/16 16:00 06/23/16 Not Specified	
			ppbV		Desults	ug/m3		Qualifia	Dilution Factor
Parameter Volatile Organics in A	Air - Mansfield Lab	Results	RL	MDL	Results	RL	MDL	Qualifie	
-									
2-Chlorotoluene		ND	0.200		ND	1.04			1
n-Propylbenzene		ND	0.200		ND	0.983			1
4-Chlorotoluene		ND	0.200		ND	1.04			1
4-Ethyltoluene		ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene		ND	0.200		ND	0.983			1
tert-Butylbenzene		ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene		ND	0.200		ND	0.983			1
Decane		ND	0.200		ND	1.16			1
Benzyl chloride		ND	0.200		ND	1.04			1
1,3-Dichlorobenzene		ND	0.200		ND	1.20			1
1,4-Dichlorobenzene		ND	0.200		ND	1.20			1
sec-Butylbenzene		ND	0.200		ND	1.10			1
p-Isopropyltoluene		ND	0.200		ND	1.10			1
1,2-Dichlorobenzene		ND	0.200		ND	1.20			1
n-Butylbenzene		ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropro	opane	ND	0.200		ND	1.93			1
Undecane		ND	0.200		ND	1.28			1
Dodecane		ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene		ND	0.200		ND	1.48			1
Naphthalene		ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene		ND	0.200		ND	1.48			1
Hexachlorobutadiene		ND	0.200		ND	2.13			1

	Results	Qualifier	Units	RDL	Dilution Factor
Tentatively Identified Compounds					

No Tentatively Identified Compounds

							Serial	_No:071	151613:01
Project Name:	BATCH CANIST	ER CERT	FICATION	N		L	ab Num	ber:	L1619299
Project Number:	CANISTER QC	BAT				R	eport D	ate:	07/15/16
		Air Can	ister Ce	ertificatio	on Results	6			
Lab ID:	L1619299-01					Date	Collecte	ed:	06/22/16 16:00
Client ID: Sample Location:	CAN 191B SHE	ELF 8					Receive Prep:	ed:	06/23/16 Not Specified
			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	er Factor

Volatile Organics in Air - Mansfield Lab

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	89		60-140
Bromochloromethane	92		60-140
chlorobenzene-d5	85		60-140

		Serial_No:07	151613:01
Project Name:	BATCH CANISTER CERTIFICATION	Lab Number:	L1619299
roject Number:	CANISTER QC BAT	Report Date:	07/15/16

Air Canister Certification Results

Lab ID:	L1619299-01	Date Collected:	06/22/16 16:00
Client ID:	CAN 191B SHELF 8	Date Received:	06/23/16
Sample Location:		Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	06/23/16 20:15		
Analyst:	RY		

		ррьV				ug/m3		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.020		ND	0.053			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
Halothane	ND	0.050		ND	0.404			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
I,2-Dichloropropane	ND	0.020		ND	0.092			1

Project

Serial_No:07151613:01 Lab Number: L1619299

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

Lab Number: L1619299 Report Date: 07/15/16

Air Canister Certification Results

Lab ID: Client ID: Sample Location:	D: CAN 191B SHELF 8 e Location:			Date Collected: Date Received: Field Prep: ug/m3			06/22/16 16:00 06/23/16 Not Specified Dilution		
Parameter		Results	ppbV RL	MDL	Results	ug/m3 RL	MDL	Qualifier	F 1
Volatile Organics in A	Air by SIM - Mansf								
Bromodichloromethane		ND	0.020		ND	0.134			1
1,4-Dioxane		ND	0.100		ND	0.360			1
Trichloroethene		ND	0.020	<u> </u>	ND	0.107			1
cis-1,3-Dichloropropene		ND	0.020		ND	0.091			1
4-Methyl-2-pentanone		ND	0.500		ND	2.05			1
trans-1,3-Dichloropropen	IE	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane		ND	0.020		ND	0.109			1
Toluene		ND	0.050		ND	0.188			1
Dibromochloromethane		ND	0.020		ND	0.170			1
1,2-Dibromoethane		ND	0.020		ND	0.154			1
Tetrachloroethene		ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethan	e	ND	0.020		ND	0.137			1
Chlorobenzene		ND	0.100		ND	0.461			1
Ethylbenzene		ND	0.020		ND	0.087			1
p/m-Xylene		ND	0.040		ND	0.174			1
Bromoform		ND	0.020		ND	0.207			1
Styrene		ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethan	e	ND	0.020		ND	0.137			1
o-Xylene		ND	0.020		ND	0.087			1
Isopropylbenzene		ND	0.200		ND	0.983			1
4-Ethyltoluene		ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene		ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene		ND	0.020		ND	0.098			1
1,3-Dichlorobenzene		ND	0.020		ND	0.120			1
1,4-Dichlorobenzene		ND	0.020		ND	0.120			1
sec-Butylbenzene		ND	0.200		ND	1.10			1
p-Isopropyltoluene		ND	0.200		ND	1.10			1
1,2-Dichlorobenzene		ND	0.020		ND	0.120			1

Serial_No:07151613:01 Lab Number: L1619299

Report Date: 07/15/16

Air Canister Certification Results

Lab ID: Client ID: Sample Location:	ELF 8	ppbV				Collecte Receive Prep:		06/22/16 16:00 06/23/16 Not Specified Dilution	
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in A	Air by SIM - Mansf	eld Lab							
n-Butylbenzene		ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene		ND	0.050		ND	0.371			1
Naphthalene		ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene		ND	0.050		ND	0.371			1
Hexachlorobutadiene		ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	91		60-140
bromochloromethane	93		60-140
chlorobenzene-d5	89		60-140

Project Name: I-SCHNEID

Project Number: 0121021

Serial_No:07151613:01

Lab Number: L1621168 Report Date: 07/15/16

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Cooler Information Custody Seal

Cooler N/A

Present/Intact

Container Info	ormation	Temp					
Container ID	Container Type	Cooler	рΗ	deg Ċ Pr	res	Seal	Analysis(*)
L1621168-01A	Canister - 2.7 Liter	N/A	N/A		Y	Absent	TO15-SIM(30)
L1621168-02A	Canister - 2.7 Liter	N/A	N/A		Y	Absent	TO15-SIM(30)
L1621168-03A	Canister - 2.7 Liter	N/A	N/A		Y	Absent	TO15-SIM(30)
L1621168-04A	Canister - 2.7 Liter	N/A	N/A		Y	Absent	TO15-SIM(30)
L1621168-05A	Canister - 2.7 Liter	N/A	N/A		Y	Absent	TO15-SIM(30)
L1621168-06A	Canister - 2.7 Liter	N/A	N/A		Y	Absent	TO15-SIM(30)
L1621168-07A	Canister - 2.7 Liter	N/A	N/A		Y	Absent	TO15-SIM(30)
L1621168-08A	Canister - 2.7 Liter	N/A	N/A		Y	Absent	CLEAN-FEE()

Serial_No:07151613:01

Project Name: I-SCHNEID

Project Number: 0121021

Lab Number: L1621168

Report Date: 07/15/16

GLOSSARY

Acronyms

EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
m .a	

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NDD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte able was detected above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report

Serial_No:07151613:01

Project Name: I-SCHNEID

Project Number: 0121021

Lab Number: L1621168

Report Date: 07/15/16

Data Qualifiers

reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Project Name: I-SCHNEID Project Number: 0121021

 Lab Number:
 L1621168

 Report Date:
 07/15/16

REFERENCES

48 Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation: Westborough Facility EPA 524.2: 1,2-Dibromo-3-chloropropane, 1,2-Dibromoethane, m/p-xylene, o-xylene EPA 624: 2-Butanone (MEK), 1,4-Dioxane, tert-Amylmethyl Ether, tert-Butyl Alcohol, m/p-xylene, o-xylene EPA 625: Aniline, Benzoic Acid, Benzyl Alcohol, 4-Chloroaniline, 3-Methylphenol, 4-Methylphenol. EPA 1010A: NPW: Ignitability EPA 6010C: NPW: Strontium; SCM: Strontium EPA 8151A: NPW: 2,4-DB, Dicamba, Dichloroprop, MCPA, MCPP; SCM: 2,4-DB, Dichloroprop, MCPA, MCPP EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene, Isopropanol; SCM: Iodomethane (methyl iodide), Methyl methacrylate (soil); 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270D: NPW: Pentachloronitrobenzene, 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Pentachloronitrobenzene, 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine. EPA 9010: <u>NPW:</u> Amenable Cyanide Distillation, Total Cyanide Distillation EPA 9038: <u>NPW:</u> Sulfate EPA 9050A: NPW: Specific Conductance EPA 9056: NPW: Chloride, Nitrate, Sulfate EPA 9065: NPW: Phenols EPA 9251: NPW: Chloride SM3500: NPW: Ferrous Iron SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3. SM5310C: DW: Dissolved Organic Carbon **Mansfield Facility** EPA 8270D: NPW: Biphenyl; SCM: Biphenyl, Caprolactam EPA 8270D-SIM Isotope Dilution: SCM: 1,4-Dioxane SM 2540D: TSS SM2540G: SCM: Percent Solids EPA 1631E: SCM: Mercury EPA 7474: SCM: Mercury EPA 8081B: NPW and SCM: Mirex, Hexachlorobenzene. EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA 8270-SIM: NPW and SCM: Alkylated PAHs. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene, n-Butylbenzene, n-Propylbenzene, sec-Butylbenzene, tert-Butylbenzene. Biological Tissue Matrix: 8270D-SIM; 3050B; 3051A; 7471B; 8081B; 8082A; 6020A: Lead; 8270D: bis(2-ethylhexyl)phthalate, Butylbenzylphthalate, Diethyl phthalate, Dimethyl phthalate, Di-n-butyl phthalate, Di-n-octyl phthalate, Fluoranthene, Pentachlorophenol. The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility: Drinking Water EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury; EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT. Non-Potable Water EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn; EPA 200.7: AI,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,TI,V,Zn; EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial_No:07151613:01

	Al chain of cus		IALY	SIS	PA	GE	OF	Date F	Rec'd in La	b: ~	1/11/	16		AL	.PHA	Job	#: L162	1168
	<u>.</u>		-	Informatio				Repo	ort Informa	ation -	Data E	Delivera	bles	Bi	illing l	Inform	nation	
320 Forbes Blvd, M TEL: 508-822-9300) FAX: 508-822-3288		Project Na	ame: 1.	Sch	neid		D FA	x					শ্ব	Same a	is Clier	t info PO #:	. <u>.</u>
Client Informatio	Dn			cation: A)Ex Criteria Che	ecker [.]								
Client: ER	M		Project #:	O(1)	$\frac{1}{210}$	21		-	(Default base		latory Crit	eria Indicate	d)					· <u> </u>
Address: 22.0	0 Windy	14:1(R	Project M	anager: 🔨		Vrev			Other Form /AIL (standa	_	report)			Re	egulat	tory R	equirements	s/Report Limits
Suita ISODV	V ATL GA	3.339	ALPHA Q	uote #:)——	🗆 Ad	ditional Del	iverable	S:			Sta	ate/Fed		Program	Res / Comm
	486-2700			round Tim	e			Repo	rt to: (if different	than Projec	t Manager)							
Fax:					-	_		-			,							
	rey Oerm. con	10	Standa	d 🗖	RUSH (only c	confirmed if pre-ap	pproved!)								A	NALY	SIS	
	ve been previously analyzed	,	Date Due):		Time:									/ / [5 / /		
· · · · ·	pecific Requirement	• •	ents:					1							I HCS		š/ / /	
Project-Specific	Target Compound	List: 🗆											/		Petroleu	-undes & Mercaptans by T	/ / /	
							A							15/	Fixed Gases	Wercap		
ALPHA Lab ID				umns			viust				1		70,15	APH SIM		des &	/ /	
(Lab Use Only)	Sample ID		End Date	Start Time	LECTIO End Time	N Initial Vacuum	Final Vacuum	Sample Matrix*	Sampler's	Can Size	ID Can	I D - Flow Controller	/2/2	$\frac{3}{\sqrt{\sqrt{\pi}}}$			Sample Co	mments (i.e. PID)
21168.01	0A-01-20160	705-0	7/5/16	0955	1845	1		AA	KS	2.7 L	22)	0702						
,07	IA -01-201607	05-01		1000	1830	-29.83			FS		2197	0155			-	ļ		
,03 >	IA-02-201607	05-01		1005	1640	-24.23	- 3.86		¥S		196	0387						
.of ~	IA-03-2016070	05-01		1010	1810	-29.28	-4.18		ks		2015	0264						
	IA-04-2016070			21015	1815	-28.8)	-4.64		¥5		506	0952						
	IA-05-201607		Y	1020	-	-29.73	-5.36		KS		-	0236						
	Dup-01-2016070		\downarrow	.0-0			-7.84		KS			0915						
,01	Du1-01 2018070	///						-				- 11-					<u> </u>	
														+				<u>~</u>
														┼─┼				···-
															_			
*SAMPL	E MATRIX CODES	SV		t Air (Indoor or/Landfill G Specify					с	ontaine	r Type						completely. S	early, legibly and amples can not be turnaround time
		1	Relinqui	shed By:		Dat	e/Time			ved By:				Date/T	ime:		clock will not s	start until any ambi- olved. All samples
		A>		8		7/	6/16		Fe	dex								subject to Alpha's
Bage: 35-01-85(25	-Sep-15)	Ĥ		7		110	•		mlBe	sili.	_ AO	7	7/11	110	11::	25	See reverse s	
			Fiel 8	:X						my	F		4"+	_₩				·

Draft Uniform Environmental Covenant Appendix D

July 27, 2017 Project No. 0121021 Former I. Schneid Facility After Recording Return to:

<Grantor Contact Address>

CROSS-REFERENCE: Deed Book: Page:

Environmental Covenant

This instrument is an Environmental Covenant executed pursuant to the Georgia Uniform Environmental Covenants Act, OCGA § 44-16-1, *et seq.* This Environmental Covenant subjects the Property identified below to the activity and/or use limitations specified in this document. The effective date of this Environmental Covenant shall be the date upon which the fully executed Environmental Covenant has been recorded in accordance with OCGA § 44-16-8(a).

Fee Owner of Property/Grantor:	Fairmount Flats, LLC 1819 Peachtree Road, Suite 575 Atlanta, GA 30309
Grantee/Holder:	Fairmount Flats, LLC 1819 Peachtree Road, Suite 575 Atlanta, GA 30309
Grantee/Entity with express power to enforce:	State of Georgia Department of Natural Resources Environmental Protection Division 2 Martin Luther King Jr. Drive, SE Suite 1456 East Tower Atlanta, GA 30334

Parties with interest in the Property: None

Property:

The property subject to this Environmental Covenant is the former I. Schneid facility, located on 1429 Fairmont Avenue, NW in Atlanta, Fulton County, Georgia (hereinafter "Property"). This tract of land was conveyed on January 20, 2016 from English Asset Holding LLC to Fairmont Flats, LLC recorded in Deed Book 55793, Pages 326 and 331, Fulton County Records. The Property is located in Land Lot 188 of the 17th District of Fulton County, Georgia. The property includes 3.09 acres. A complete legal description of the Property is attached as Exhibit A and a map of the Property is attached as Exhibit B.

Tax Parcel Number(s):

17 018800020170 of Fulton County, Georgia

Name and Location of Administrative Records:

The corrective action at the Property that is the subject of this Environmental Covenant is described in the following document[s] (as same may be amended from time to time with written approval from EPD):

- First Annual Report on Effectiveness of Corrective Action, September 2006.
- Second Annual Report on Effectiveness of Corrective Action, October 2007.
- Third Annual Report on Effectiveness of Corrective Action, October 2008.
- Fourth Annual Report on Effectiveness of Corrective Action, February 2010.
- Fifth Annual Report on Effectiveness of Corrective Action, February 2011.
- Soil Corrective Action Completion and Certification Report, July 15, 2014.
- Final Compliance Status Report, July 2017.

These documents are available at the following locations in the files for HSI No. 10753:

Georgia Environmental Protection Division Response and Remediation Program 2 MLK Jr. Drive, SE, Suite 1054 East Tower Atlanta, GA 30334 M-F 8:00 AM to 4:30 PM excluding state holidays

Description of Contamination and Corrective Action:

Site investigation activities identified five areas where soils were not in compliance with the approved RRS for the Site. These areas were located in proximity to the solvent mixing room, floor drain, and sump. Contaminants in soil include volatile organic compounds, semi-volatile organic compounds, metals, pesticides and herbicides. These areas were remediated using a combination of heat-catalyzed persulfate, soil vapor extraction (SVE), and excavation/off-site disposal.

Ground water contamination by VOCs, SVOCs, and herbicides is also present. Ground water remediation has been conducted using air sparge/SVE. A small area of free-phase liquid product is present on top of the water table in proximity to the most significant area of soil excavation. This area is shown on the attached survey site drawing prepared by Metro Engineering & Surveying Company, Inc.

This Property has been listed on the state's hazardous site inventory and has been designated as needing corrective action due to the presence of hazardous wastes, hazardous constituents, or hazardous substances regulated under state law. Contact the property owner or the Georgia Environmental Protection Division for further information concerning this Property. This notice is provided in compliance with the Georgia Hazardous Site Response Act.

This Declaration of Covenant is made pursuant to the Georgia Uniform Environmental Covenants Act, O.C.G.A. § 44-16-1 *et seq.* by Fairmont Flats, LLC, its successors and assigns, I. S. Liquidation, LLC, and the State of Georgia, Department of Natural Resources, Environmental Protection Division (hereinafter "EPD"), its successors and assigns. This Environmental Covenant is required because a release of certain volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), and pesticides/herbicides occurred on the Property. Certain VOCs, SVOCs, and

pesticides/herbicides are "regulated substances" as defined under the Georgia Hazardous Site Response Act, O.C.G.A. § 12-8-90 *et seq.*, and the rules promulgated thereunder (hereinafter "HSRA" and "Rules", respectively). The Corrective Action consists of institutional controls (prohibiting the use of ground water for drinking water or for any other non-remedial purpose) to protect human health and the environment. Furthermore, ground disturbance in the area of the free-phase liquid product shall not be undertaken unless appropriate steps to protect worker health and safety are implemented.

Grantor, Fairmont Flats, LLC (hereinafter "Fairmont Flats"), hereby binds Grantor, its successors and assigns to the activity and use restriction(s) for the Property identified herein and grants such other rights under this Environmental Covenant in favor of Fairmont Flats and EPD. EPD shall have full right of enforcement of the rights conveyed under this Environmental Covenant pursuant to HSRA, O.C.G.A. § 12-8-90 *et seq.*, and the rules promulgated thereunder. Failure to timely enforce compliance with this Environmental Covenant or the use or activity limitations contained herein by any person shall not bar subsequent enforcement by such person and shall not be deemed a waiver of the person's right to take action to enforce any non-compliance. Nothing in this Environmental Covenant shall restrict EPD from exercising any authority under applicable law.

Fairmont Flats makes the following declaration as to limitations, restrictions, and uses to which the Property may be put and specifies that such declarations shall constitute covenants to run with the land, pursuant to O.C.G.A. § 44-16-5(a); is perpetual, unless modified or terminated pursuant to the terms of this Covenant pursuant to O.C.G.A. § 44-16-9 and 10; and shall be binding on all parties and all persons claiming under them, including all current and future owners of any portion of or interest in the Property (hereinafter "Owner"). Should a transfer or sale of the Property occur before such time as this Environmental Covenant has been amended or revoked then said Environmental Covenant shall be binding on the transferee(s) or purchaser(s).

The Environmental Covenant shall inure to the benefit of Fairmont Flats, EPD, and their respective successors and assigns and shall be enforceable by the Director or his agents or assigns, Fairmont Flats or its successors and assigns, and other party(ies) as provided for in O.C.G.A. § 44-16-11 in a court of competent jurisdiction.

Activity and/or Use Limitation(s)

- 1. <u>Registry.</u> Pursuant to O.C.G.A. § 44-16-12, this Environmental Covenant and any amendment or termination thereof, may be contained in EPD's registry for environmental covenants.
- 2. <u>Notice.</u> The Owner of the Property must give thirty (30) day advance written notice to EPD of the Owner's intent to convey any interest in the Property. No conveyance of title, easement, lease, or other interest in the Property shall be consummated by the Owner without adequate and complete provision for continued monitoring, operation, and maintenance of the Corrective Action. The Owner of the Property must also give thirty (30) day advance written notice to EPD of the Owner's intent to change the use of the Property, apply for building permit(s), or propose any site work that would affect the Property within the area of free-phase liquid product shown on Figure 1.
- 3. <u>Notice of Limitation in Future Conveyances.</u> Each instrument hereafter conveying an interest in the Property subject to this Environmental Covenant shall contain a notice of the activity and use limitations set forth in this Environmental Covenant and shall provide the recorded location of the Environmental Covenant.
- 4. Monitoring. None required.

- 5. <u>Periodic Reporting.</u> Annually, by no later than January 31 following the effective date of this Environmental Covenant, the Owner shall submit to EPD an Annual Certification Report stating whether or not the activity and use limitations in this Environmental Covenant are being abided by.
- 6. <u>Activity and Use Limitation(s)</u>. Ground disturbance (i.e., excavation, trenching, etc.) to depths greater than 10 feet below ground surface in the area of the property where free phase-liquid product is present on top of the water table shall be prohibited unless appropriate steps are taken to protect the health and safety of the workers involved in the disturbance.
- 7. <u>Ground Water Limitation</u>. The use or extraction of ground water beneath the Property for drinking water or for any other non-remedial purposes shall be prohibited.
- 8. Permanent Markers. Not required.
- 9. <u>Right of Access.</u> In addition to any rights already possessed by EPD and/or Fairmont Flats, the Owner shall allow authorized representatives of EPD and/or Fairmont Flats the right to enter the Property at reasonable times for the purpose of determining compliance with this Environmental Covenant.
- 10. <u>Recording of Environmental Covenant and Proof of Notification.</u> Within thirty (30) days after the date of the Director's signature, the Owner shall file this Environmental Covenant with the Recorders of Deeds for each County in which the Property is located, and send a file stamped copy of this Environmental Covenant to EPD within thirty (30) days of recording. Within that time period, the Owner shall also send a file-stamped copy to each of the following: (1) Fairmont Flats, (2) each person holding a recorded interest in the Property subject to the covenant, (3) each person in possession of the real property subject to the covenant, (4) each municipality, county, consolidated government, or other unit of local government in which real property subject to the covenant is located, and (5) each owner in fee simple whose property abuts the property subject to the Environmental Covenant.
- 11. <u>Termination or Modification</u>. The Environmental Covenant shall remain in full force and effect in accordance with O.C.G.A. § 44-16-1 *et seq.*, unless and until the Director determines that the Property is in compliance with the Type 1, 2, 3, or 4 Risk Reduction Standards, as defined in Georgia Rules of Hazardous Site Response (Rules) Section 391-3-19-.07, whereupon the Environmental Covenant may be amended or revoked in accordance with Section 391-3-19-08(7) of the Rules and O.C.G.A. § 44-16-1 *et seq.*
- 12. <u>Severability.</u> If any provision of this Environmental Covenant is found to be unenforceable in any respect, the validity, legality, and enforceability of the remaining provisions shall not in any way be affected or impaired.
- 13. <u>No EPD Interest in Property Created</u>. This Environmental Covenant does not in any way create any interest by EPD in the Property that is subject to the Environmental Covenant. Furthermore, the act of approving this Environmental Covenant does not in any way create any interest by EPD in the Property in accordance with O.C.G.A. § 44-16-3(b).

Representations and Warranties.

Grantor hereby represents and warrants to the other signatories hereto:

- a) That the Grantor has the power and authority to enter into this Environmental Covenant, to grant the rights and interests herein provided and to carry out all obligations hereunder;
- b) That the Grantor is the sole owner of the Property and holds fee simple title which is free, clear and unencumbered;

- c) That the Grantor has identified all other parties that hold any interest (e.g., encumbrance) in the Property and notified such parties of the Grantor's intention to enter into this Environmental Covenant;
- d) That this Environmental Covenant will not materially violate, contravene, or constitute a material default under any other agreement, document or instrument to which Grantor is a party, by which Grantor may be bound or affected;
- e) That the Grantor has served each of the people or entities referenced in Activity 10 above with an identical copy of this Environmental Covenant in accordance with O.C.G.A. § 44-16-4(d).
- f) That this Environmental Covenant will not materially violate or contravene any zoning law or other law regulating use of the Property; and
- g) That this Environmental Covenant does not authorize a use of the Property that is otherwise prohibited by a recorded instrument that has priority over the Environmental Covenant.

Notices.

Any document or communication required to be sent pursuant to the terms of this Environmental Covenant shall be sent to the following persons:

Georgia Environmental Protection Division Branch Chief Land Protection Branch 2 Martin Luther King Jr. Drive SE Suite 1054 East Tower Atlanta, GA 30334

Fairmount Flats, LLC 1819 Peachtree Road, Suite 575 Atlanta, GA 30309 Attn: Michael Thomas

Grantor has caused this Environmental	Covenant to be	executed pursuant to	o The Georgia Uniform
Environmental Covenants Act, on the	day of	, 20	

Signed, sealed, and delivered in the presence of:	For the Grantor:	
Unofficial Witness (Signature)	Name of Grantor (Print)	
		(Seal)
Unofficial Witness Name (Print)	Grantor's Authorized Representative (Signature)	
	Authorized Representative Name (Print)	_
Unofficial Witness Address (Print)		
	Title of Authorized Representative (Print)	
Notary Public (Signature)	Dated:	
	2 area	

My Commission Expires:_____

(NOTARY SEAL)

Signed, sealed, and delivered in the presence of:

For the State of Georgia Environmental Protection Division:

Unofficial Witness (Signature)

(Signature)

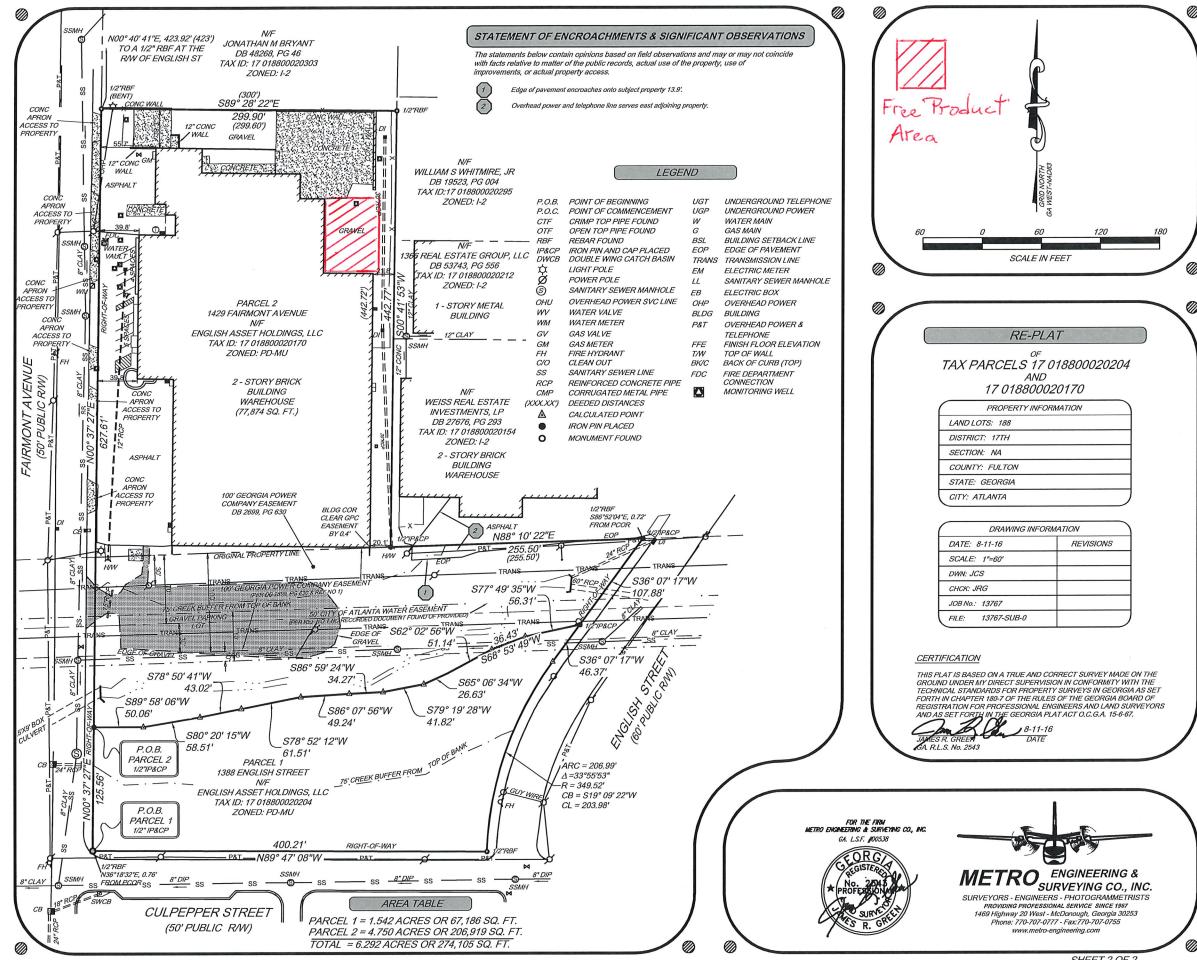
Unofficial Witness Name (Print)

Richard E. Dunn Director

Dated:

Unofficial Witness Address (Print)

(NOTARY SEAL)


Notary Public (Signature)

My Commission Expires:_____

<SIGNATURE BLOCK FOR HOLDER OR OTHER APPLICABLE PARTIES>

(Seal)

Exhibit A Legal Description

A	
Juct Burnes	120 180
0 00	
SCALE IN FE	
RE-PLA	<u> </u>
(PARCELS 17 0	18800020204
AND	
17 01880002	0170
PROPERTY INFORM	IATION
ID LOTS: 188	
TRICT: 17TH CTION: NA	
UNTY: FULTON	
TE: GEORGIA	
Y: ATLANTA	
DRAWING INFORM	VATION
TE: 8-11-16	REVISIONS
ALE: 1"=60'	
V: JCS	
CK: JRG	
No.: 13767	
: 13767-SUB-0	
TION	
DER MY DIRECT SUPERVISIO TANDARDS FOR PROPERTY APTER 180-7 OF THE RULES IN FOR PROFESSIONAL ENG	RRECT SURVEY MADE ON THE IN IN CONFORMITY WITH THE SURVEYS IN GEORGIA AS SET OF THE GEORGIA BOARD OF INEERS AND LAND SURVEYORS
FORTH IN THE GEORGIA PLA	1 ALI U.L.G.A. 10-0-07.
EEN DATE 2543	