November 20, 2013

Mr. David Brownlee Response and Remediation Program 2 Martin Luther King, Jr. Drive, S.E. Suite 1462, East Tower Atlanta, GA 30334-9000 Environmental Resources Management

3200 Windy Hill Road, SE Suite 1500W Atlanta, GA 30339 (678) 486-2700 (404) 745-0103 (fax)

Subject: Submittal of the Voluntary Remediation Program Compliance

Status Report (VCSR)

Former Coats & Clark, Inc. Plant 1 - Toccoa, Georgia

HSI Site No. 10630

Dear Mr. Brownlee:

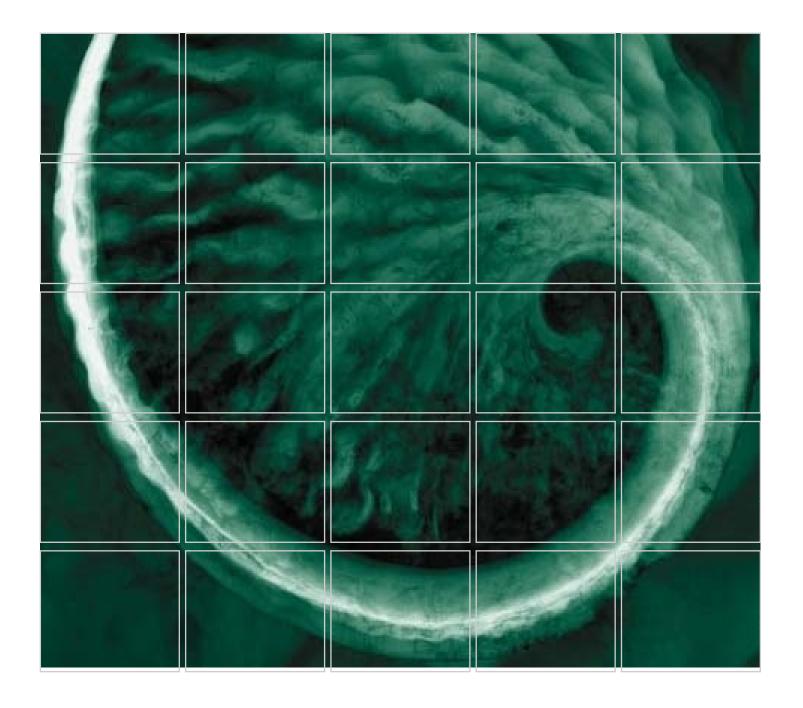
This letter and accompanying report have been prepared by Environmental Resources Management (ERM) on behalf of Coats & Clark, Inc. (Coats) for the above referenced property. Enclosed are an original and two (2) CD-ROM copies of the Voluntary Remediation Program Compliance Status Report (VCSR). The VCSR is being submitted for this Site in accordance with the discussions held during the June 20, 2013 meeting with EPD, and EPD's follow-up letter dated June 24, 2013. The Site was accepted into the Georgia Voluntary Remediation Program (VRP) on May 20, 2011.

The VCSR includes updated Site data from the October 2013 comprehensive ground water sampling event and results from the updated groundwater modeling. The VCSR also includes a discussion of proposed institutional controls and documents the Site's compliance with the VRP Act. A notice will be sent to the Mayor of Toccoa and Chairman of the Stephens County Commission. A public notice will be published in the Toccoa Record.

If you have any questions or would like to discuss these topics in further detail, please contact Amy Hickman at 678-486-2700.

Sincerely,

Amy G. Hickman, E.I.T.


Derrick Williams, GAEPD

Project Manager

Jeffrey N. Bilkert *Principal*

Jun Bilkut

cc: Mike Bell, Coats & Clark, Inc.; Doug Cloud, Kazmarek Mowrey Cloud Laseter LLP

Voluntary Compliance Status Report (VCSR)

Submitted under Georgia's Voluntary Remediation Program (VRP) Act

Former Coats & Clark Inc. Plant 1 Toccoa, Georgia HSI Site No. 10630

November 20, 2013

TABLE OF CONTENTS

STAT	EMENT OF FIN	DINGS	iii					
CERT	IFICATION OF	COMPLIANCE WITH RISK-BASED RISK						
_	ICTION STANE		iv					
KLD			10					
GRO	IND WATER SO	CIENTIST STATEMENT	v					
1.0	INTRODUCT	ION	1-1					
	1.1 OVER	VIEW .	1-1					
	1.2 PURPO	OSE	1-1					
	1.3 SITE D	ESCRIPTION	1-1					
	1.4 SITE U	SE AND OWNERSHIP HISTORY	1-1					
2.0	SITE SETTING	7	2-1					
	2.1 TOPO	GRAPHY AND GEOLOGY	2-1					
	2.2 HYDR	OGEOLOGY	2-1					
3.0	SITE ENVIRO	NMENTAL BACKGROUND	3-1					
	3.1 HISTO	RICAL INVESTIGATIONS AND REPORTS	3-1					
	3.2 VRP IN	NVESTIGATIONS AND REPORTS	3-3					
	3.3 POTEN	NTIAL SOURCES	3-4					
4.0	CURRENT GROUND WATER CONDITIONS							
	4.1 POTEN	NTIOMETRIC SURFACE	4-1					
	4.2 GROU	ND WATER SAMPLING METHODS	4-1					
	4.3 GROU	ND WATER ANALYTICAL RESULTS	4-1					
	4.4 GROU	ND WATER DELINEATION	4-2					
5.0	CURRENT SU	RFACE WATER CONDITIONS	5-1					
6.0	CONTAMINA	NT TRANSPORT MODELING FOR TRICHLOROETHENE	6-1					
		AMINANT TRANSPORT MODELING FOR GROUND WATER ECTION	6-1					
	_	AMINANT TRANSPORT MODELING FOR SURFACE WATER	0-1					
		ECTION	6-5					
7.0		C CLEANUP STANDARDS FOR CARBON TETRACHLORIDE	7-1					
7.0			/-1					
	7.1 SITE-SPECIFIC CLEANUP STANDARDS FOR GROUND WATER PROTECTION 7							
		PECIFIC CLEANUP STANDARDS FOR SURFACE WATER	7-1					
	PROTECTION		7-2					
8.0		EXPOSURE PATHWAYS AND RECEPTORS	7-2 8-1					
0.0	_	N HEALTH AND ECOLOGICAL RECEPTORS	8-1					
		N HEALTH AND ECOLOGICAL RECEPTORS ND WATER EXPOSURE PATHWAY	8-1 8-1					
		CE WATER EXPOSURE PATHWAY	8-1 8-1					
		R INTRUSION PATHWAY	8-1 8-1					
9.0		VAL CONTROLS	8-1 9-1					
9.0 10.0		E WITH SITE-SPECIFIC CLEANUP STANDARDS	9-1 10-1					
	SOURCES CIT		10-1 11 - 1					
11.0			1					

LIST OF TABLES

- 1 Monitoring Well Construction Details
- 2 Ground Water Elevation Data
- 3 Ground Water Field Parameters September 2013
- 4 Ground Water Analytical Data
- 5 Surface Water Analytical Data
- 6 Time Step Results

LIST OF FIGURES

- 1 Site Location
- 2 Site Layout Map
- 3 Site Layout Map (with aerial)
- 4 Potential Source Areas
- 5 Ground Water Potentiometric Surface Map September 2013
- 6 Ground Water and Surface Water Quality Map September 2013
- 7 BIOCHLOR Model Calibration Data
- 8 Tax Parcels within Delineation Boundary

LIST OF APPENDICES

- A Summary of Hours for Professional Engineer
- B Ground Water Sampling and Stream Flow Measurement Log Forms
- C Ground Water and Surface Water Analytical Laboratory Reports
- D BIOCHLOR Modeling Electronic Files (on Compact Disc)
- E BIOCHLOR Modeling Screenshots
- F Proposed Uniform Environmental Covenant

STATEMENT OF FINDINGS

This Voluntary Compliance Status Report (VCSR) has been prepared by Environmental Resources Management (ERM) on behalf of Coats & Clark, Inc. (Coats). The VCSR is for the former Coats & Clark Inc. Plant 1 facility (the Site), which was listed on the Georgia Hazardous Site Inventory (HSI #10630) in August 2000. The Site was accepted into Georgia's Voluntary Remediation Program (VRP) on May 20, 2011.

This VCSR is intended to provide an overview of historical Site investigation and remediation activities conducted at the Site, provide an overview of Site investigation activities and ground water modeling results conducted since the Site entered the VRP, and certify ground water compliance with Site-specific cleanup standards.

The Site is a former textile finishing facility which has been closed and essentially vacant since May 1997. Key operations throughout the history of the Site included dyeing, bleaching, and mercerizing from the late-1930s to the mid-1950s.

Soil investigation and remediation was completed between 1998 and 2005. Georgia Environmental Protection Division (GA EPD) issued a letter in March 2006 concurring that the soils at the Site are in compliance with the applicable RRS. Ground water investigation has been ongoing at the Site since 1998, and TCE has been identified as the primary chemical of interest. Additional volatile organic compounds (VOCs) have periodically been detected in some Site monitoring wells. However, they have been at low concentrations and at a limited number (two or less) of wells. On-Site and off-Site monitoring wells have been installed and sampled to achieve horizontal and vertical delineation of ground water conditions associated with the Site. Contaminants were delineated to Type 1 RRS. Site-specific cleanup standards were developed for TCE through the use of computer-based contaminant transport modeling. This modeling was performed to simulate the concentration of TCE that could remain on Site without exceeding the standards protective of human health and the environment at the selected down gradient points of exposure. Contaminant transport modeling was conducted to determine Site-specific cleanup standards that would not cause an exceedance of the Type 1 RRS at a hypothetical well located 1,000 feet down gradient of the down gradient edge of the existing plume. Contaminant transport modeling and stream mixing calculations were completed to determine the Site-specific cleanup standards that would be protective of the instream water quality standard for surface water within the on-site stream. These Site-specific cleanup standards were developed for the source area and monitoring points (points of demonstration) located nearest to the points of exposure. Based on the most recent sampling data from September 2013, source area and point of demonstration monitoring wells at the Site are in compliance with the Site-specific cleanup standards.

CERTIFICATION OF COMPLIANCE

I certify under penalty of law that this report and all attachments were prepared under my direction in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Based on my review of the findings in this report with respect to the available cleanup standards of the Georgia Voluntary Remediation Program Act, I have determined that the Site (Tax Parcel ID No. T10 005) is in compliance with the Voluntary Remediation Program Act through the use of institutional controls for a non-residential scenario.

Certified By:

ohn Laurie

Secretary

Coats & Clark

GROUND WATER SCIENTIST STATEMENT

I certify that I am a qualified ground water scientist who has received a baccalaureate or post-graduate degree in the natural sciences or engineering, and have sufficient training and experience in ground water hydrology and related fields, as demonstrated by state registration and completion of accredited university courses, that enable me to make sound professional judgments regarding ground water monitoring and contaminant fate and transport. I further certify that this Voluntary Compliance Status Report for Hazardous Site Inventory Site No. 10630 was prepared by me and appropriate qualified subordinates working under my direction. A summary of the hours spent by the Professional Engineer's firm is provided in Appendix A, in order to comply with Voluntary Remediation Plan Act.

Jennifer G. Byrd, P.E.

Georgia License No. PE035426

11 19 13 Date

1.0 INTRODUCTION

1.1 OVERVIEW

Environmental Resources Management (ERM) has prepared this Voluntary Compliance Status Report (VCSR) on behalf of Coats & Clark, Inc. (Coats). The VCSR is for the former Coats & Clark Inc. Plant 1 facility (the Site), which was listed on the Georgia Hazardous Site Inventory (HSI #10630) in August 2000. The Site was accepted into Georgia's Voluntary Remediation Program (VRP) on May 20, 2011.

This VCSR is being submitted in accordance with discussions held during the June 20, 2013 meeting with Georgia Environmental Protection Division (GA EPD), and GA EPD's subsequent letter correspondence dated June 24, 2013. This VCSR is being submitted in lieu of a semi-annual progress report for the Site.

1.2 PURPOSE

The purpose of this document is as follows:

- Provide an overview of Site investigation activities conducted at the Site as far back as 1999.
- Provide an overview of remediation activities focused on a small area of soils that were identified as not being in compliance with applicable Risk Reduction Standards (RRS).
- Provide an overview of Site investigation activities and ground water modeling results conducted since the Site entered the VRP.
- Certify ground water compliance with Site-specific cleanup standards and requirements of the VRP Act.

1.3 SITE DESCRIPTION

The Site is a former textile facility located at 506 West Doyle Street in Toccoa, Stephens County, Georgia. A Site location map is shown on Figure 1. The Site includes 41.99 acres. Approximately seven acres of the Site are developed. The remainder of the Site is wooded with steep slopes. Development at the Site includes several former textile-related buildings located at the southeast corner of the property. As shown on Figure 2, five buildings occupy the Site. Building 1 was the primary production facility at the Site. The smaller buildings served various support functions. The remainder of the Site was wooded at the time Coats owned the property. Subsequent to being sold by Coats in 2004, the new owner of the Site had the timber clear cut. The property boundaries are shown on an aerial photograph provided in Figure 3.

1.4 SITE USE AND OWNERSHIP HISTORY

The Site is a former textile finishing facility which has been closed and essentially vacant since May 1997. Key operations throughout the history of the Site included dyeing, bleaching, and mercerizing from the late-1930s to the mid-1950s. These processes primarily used water-based materials and chlorine bleach. Metalizing was performed in the northwest portion of the lower level of Building 1 from 1971 to 1977. The metalizing process produced lacquer coated plastic spools with vaporized aluminum particles embedded in the lacquer. The metalizing process

included the use of two spray machines, and minor solvent use was associated with the metalizing operations. Thread polishing was performed in the northeast portion of the lower level of Building 1 until the late 1980s using a mixture of potato starch, wax lubricant, castor oil, and a defoamer to coat the thread. In the late 1980s, this process was replaced by a method using a mixture of polyvinyl-alcohol, wax lubricant, and defoamer to coat thread. This later process was relocated to the northwest portion of the basement of Building 1 and continued until the plant closed in 1997. A thread bonding and curing process operated in the western portion of the lower level of Building 1, previously occupied by the metalizing process until the early 1980s. While the primary solvent for bonding was methanol, there was some use of 1,1,1-trichloroethane to clean wax buildup beneath certain winding machines used in the operation.

Building 1 was originally constructed in the early 1900s, and Capps Manufacturing (cotton thread) occupied the Site from at least 1923 until 1939. The facility was purchased by North Georgia Processing, a predecessor of Coats in 1939. Coats sold the Site in 2004 to Toccoa Country Club, Inc., and they sold the Site in 2005 to Toccoa Renaissance. The current property owner's name, address, and telephone number are as follows:

Toccoa Renaissance, LLP Mr. James VanderWoude, Partner 1281 Georgia Road Franklin, NC 28734 (828) 369-6341

2.1 TOPOGRAPHY AND GEOLOGY

The Site is located within the Gainesville Ridges District of the Piedmont Physiographic Province of Georgia at elevations ranging from 960 feet to 1,040 feet National Geodetic Vertical Datum (NGVD). The Gainesville Ridges District is characterized by a series of northeast-trending, low, linear, parallel ridges separated by narrow valleys. The ridges are composed of quartzite and gneiss, while the valleys are underlain by phyllonite and schist. These ridges vary in elevation from 1,500 to 1,600 feet in the northeast and decrease gradually to 700 feet in the southwest. Relief varies from 100 to 200 feet in the northeast to 70 to 100 feet in the southwest. A perennial creek flows through the Site from south to north.

Soils in the Piedmont are typically silt and clay-rich that formed from the in-place weathering of the underlying crystalline bedrock. The specific character of soils in the Piedmont depends on the nature of the rock from which they weathered. The percentage of sand-sized particles comprising the soils, however, typically tends to increase with depth. While silt and clay-sized materials are predominant at shallow depths, sand-sized materials are predominant at greater depths. Soils at the Site are primarily saprolitic sands ranging from fine to coarse-grained with some silt and clay content. The bedrock appears to be granitic gneiss.

2.2 HYDROGEOLOGY

Ground water in the Piedmont Physiographic Province is found within two interconnected zones. These include a shallow water-bearing zone located in the saprolite, and a deeper water-bearing zone located in the bedrock. Ground water movement in the shallow water-bearing zone typically approximates ground surface topography, with the direction of ground water movement being from upland areas to nearby drainage features. Ground water in the bedrock is located within fractures and other structural features of the rock. As such, the direction of ground water movement in the bedrock is more difficult to predict. It tends, however, to be towards more major streams.

Twenty-five (25) ground water monitoring wells have been installed at the Site. The locations of the wells are shown on Figure 2. They include two wells, MW-11 and MW-19, which were completed in the bedrock. The other wells were completed in the saprolite. The depth to water was greater than 50 feet in some wells on Site. It should also be noted that well MW-8 was completed to the top of bedrock and has remained dry since it was installed in October 2000. This shows that at the higher elevations at the Site, the shallow water-bearing zone may not be present in some areas.

Ground water and surface water elevation monitoring has been conducted on numerous occasions at the Site, primarily during ground water sampling events. The data from the most recent ground water elevation monitoring event, conducted on September 16, 2013, are discussed in Section 4.1. Generally the direction of ground water movement at the portion of the Site east of the creek is towards the northwest. West of the creek, the direction of ground water movement is towards the northeast. This suggests that the creek is a ground water flow divide and discharge point.

A review of the geologic logs for the monitoring wells installed at the Site indicates that the water-bearing materials encountered during the drilling are saprolite that is dominated by fine to medium sand. The hydraulic conductivity of these materials is estimated to range from 0.28 feet per day (10-4 centimeters-per-second) to 28 feet per day (10-2 centimeters-per-second) (Freeze and Cherry, 1979). Hydraulic gradients at the Site are estimated to be between 0.046 and 0.056. These estimates were made using the data for wells MW-13 and MW-22 from March 2012, October 2012, and September 2013. Using these gradients, the estimated range of hydraulic conductivity values discussed above, and assuming an effective porosity of 30 percent, it is estimated that the rate of ground water movement at the Site is between 0.043 feet-per-day and 5.2 feet-per-day.

Two well clusters are located at the Site. Each cluster consists of a well completed into the shallow water-bearing zone and one well completed into the bedrock. Wells MW-3 and MW-11 comprise one cluster. Wells MW-10 and well MW-19 comprise the second cluster. Wells MW-3 and MW-10 are completed in the shallow water-bearing zone. Wells MW-11 and MW-19 are completed in the bedrock.

3.1 HISTORICAL INVESTIGATIONS AND REPORTS

Detailed descriptions of Site investigation history have been provided in reports and correspondence submitted to GA EPD over the past 12+ years. A summary of the content of relevant historical reports and correspondence pre-dating acceptance into the VRP is provided below:

Phase I Environmental Site Assessment, July 1998, prepared by ERM

• Four areas of concern (AOCs) were identified including a former burn pit and solid waste disposal area, a former wastewater holding pond, a former coal storage area, and a flammable chemicals storage building. These AOCs are shown as potential source areas in Figure 4.

Compliance Status Report, July 1, 2002, prepared by ERM

- Field investigations were performed to investigate AOCs between August 1999 and April 2002.
- An additional potential source area was identified by a former long-term employee of the
 facility; this potential source area was located near the southwest corner of the main
 building where degreasing activities were reportedly conducted periodically. A soil
 sample was also collected from this area and analyzed for VOCs; however, no VOCs were
 detected in this sample.
- Results of a TCLP analysis indicated that the test pit material collected in the former burn
 pit and solid waste disposal area was not characteristically toxic as defined under the
 Resource Conservation and Recovery Act (RCRA, 40 CFR Part 261.24).
- Several metals were present in soil samples collected near the former flammable chemicals storage building and adjacent to the former location of the coal pile, but did not exceed their respective Notification Concentration (NC).
- Three semi-volatile organic compounds (SVOCS) were detected in a soil sample collected near the former wastewater holding pond; however, none of the SVOCs exceeded their respective NC.
- No VOCs were detected in any of the soil samples collected during this investigation.
- Seventeen ground water monitoring wells (MW-1 through MW-17) were installed at the Site. No SVOCs were reported in the ground water samples. Low concentrations of metals including beryllium, chromium, copper, and zinc were detected in ground water. These metals were all less than their respective maximum contaminant level (MCL) and/or their respective Type 1 RRS, and are therefore believed to occur naturally in ground water and are not considered representative of a release. VOCs were detected in ground water, including carbon tetrachloride, chloroform, 1,1,1-trichloroethane (1,1,1-TCA), and trichloroethene (TCE).

- A release notification was submitted to GA EPD on March 30, 2000 for the aforementioned VOCs in ground water.
- Surface water samples were also collected from the unnamed creek running through the Site and analyzed for metals and VOCs. Low concentrations of VOCs (carbon disulfide and trichloroethene) were detected in surface water at levels below Georgia's In-Stream Water Quality Standards (ISWQS).

Revised Compliance Status Report, April 2, 2004, prepared by ERM

- A Revised Compliance Status Report (RCSR) was submitted to GA EPD to address comments raised by way of GA EPD correspondence dated February 21, 2003 and August 18, 2003 regarding additional soil and ground water sampling to more fully delineate the extent of regulated substances in soil, ground water, and solid wastes.
- Eighteen test pits (see Figure 3-1 of the *Revised Compliance Status Report*) were excavated in the former burn pit and solid waste disposal area. No VOCs were detected in any of the samples. Metals were detected in samples collected from several of the test pits, and SVOCS were present in the sample of roofing tar from one test pit, and at low concentrations in other test pits.
- Additional soil samples were collected in proximity to the former burn pit area, former wastewater pond, beneath the floor of the metalizing area, former degreasing area, and two trash piles along Clark Street. Background soil samples were also collected at the Site to estimate background levels for the metals in soil. The following metals were detected in soils at the Site: arsenic, barium, beryllium, cadmium, chromium, copper, lead, nickel, antimony, silver, selenium, and zinc. SVOCs including bis(2-ethylhexyl) phthalate, fluoranthene, and phenanthrene were detected in two soil samples collected at the Site, and TCE was the only VOC detected at the Site. TCE was only detected in one boring location.
- Three additional ground water monitoring wells were installed at the Site, including a
 second bedrock well (MW-19). Samples collected from these wells indicated that TCE
 was the only VOC that had been consistently detected in several wells at the Site.
- The 2004 RCSR concluded that the former burn pit and solid waste disposal area was the only location where soils had concentrations of regulates substances that exceeded Type 1 through 4 RRS. The exceedances of the RRS were limited to select metals.
- Additionally, the 2004 RCSR concluded that concentration of carbon tetrachloride and TCE in the ground water were not in compliance with any RRS.

Corrective Action Completion Report for Soils, February 15, 2006, prepared by ERM

- A Corrective Action Plan dated April 8, 2005 proposed excavation and off-Site disposal
 activities for the soils at the Site. This CAP was approved by GA EPD by way of
 correspondence dated September 26, 2005.
- Approximately 35.5 tons of soils and solid waste was excavated at the former burn pit and solid waste disposal are and taken off-Site for disposal.

• Analyses of confirmation samples collected from the excavated area indicated all metal concentrations in soil were below Type 3 or 4 RRS.

Letter Correspondence re: Coats & Clark Correction Action Report - Soils, March 6, 2006, prepared by GA EPD

• The Corrective Action Completion Report for Soils was approved by GA EPD by way of correspondence dated March 6, 2006, and GA EPD concurred that the soils at the Site are in compliance with the applicable RRS. GA EPD also stated in the letter that the CSR for the Site was complete.

3.2 VRP INVESTIGATIONS AND REPORTS

A detailed account of Site investigations completed under the VRP has been provided in semiannual progress reports previously submitted to GA EPD. As such, a brief summary of the content of these semi-annual reports is provided below:

First Semi-Annual Progress Report, November 18, 2011

- Three monitoring wells, MW-21, MW-22, and MW-23, were installed and sampled in October 2011 to demonstrate horizontal delineation.
- TCE was detected above delineation criteria in all three monitoring wells, and was detected at its highest concentration (420 μg/L) on-Site at MW-22.
- Surface water samples were collected at five locations, and all VOCs were below ISWQS.
- Five soil vapor sampling points were installed and sampled to assess the vapor intrusion pathway at the Site (see Section 8.4 for further discussion of the vapor intrusion pathway evaluation).

Second Semi-Annual Progress Report, May 18, 2012

- Ground water samples were collected from eighteen monitoring wells in March 2012.
- All VOC concentrations at MW-21 were below detection limits suggesting this well would complete the eastern delineation boundary.
- Surface water samples were collected at five locations, and all VOCs were below ISWQS.
- Two additional soil vapor sampling points (VP-6 and VP-7) were installed to assess the vapor intrusion pathway at 133 Clark Street (see Section 8.4 for further discussion of the vapor intrusion pathway evaluation).

Third Semi-Annual Progress Report, November 19, 2012

- Ground water samples were collected from nineteen monitoring wells in October 2012.
- TCE was detected above its delineation concentration at MW-21, and recommendations were made to redevelop this well due to reoccurring turbidity issues.
- Surface water samples were collected in four locations, and all VOCs were below ISWQS.
- Additional assessment of the vapor intrusion pathway was completed by collecting soil vapor samples from VP-3, VP-6, and VP-7, and collecting indoor and outdoor ambient air samples at 133 Clark Street for VOCs (see Section 8.4 for further discussion of the vapor intrusion pathway evaluation).

Fourth Semi-Annual Progress Report, May 20, 2013

- MW-21 was redeveloped and sampled, but TCE concentration remained above delineation criteria.
- Two monitoring wells, MW-24 and MW-25, were installed and sampled for the purpose of establishing the eastern delineation boundary. All VOCs were below detection limits at these two wells.

3.3 POTENTIAL SOURCES

Extensive work was conducted to identify the source of regulated substances in ground water. This work included:

- A review of historical records concerning the Site, including aerial photographs, fire insurance maps, and facility engineering records.
- Interviews with long-time employees of the facility.

Based on this work, several possible sources of VOCs in ground water were identified. They include:

- A former wastewater holding pond.
- A former flammable chemicals storage building.
- An outside area reportedly used by facility personnel for degreasing equipment.
- Wooded areas located north of the developed portion of the Site where unauthorized trash dumping had taken place.
- An area inside the main building (Building 1) at the Site where small amounts of solvent were used for spot cleaning and for cleaning paint equipment associated with metalizing operations.

Each of these possible source areas has been investigated. None were confirmed as being the source of the VOCs in ground water at the Site. The locations of these potential source areas are shown on Figure 4. Based on this and the extent of other investigation activities at the Site, it was concluded that a specific, significant source of the VOCs in ground water is not present.

4.0 CURRENT GROUND WATER CONDITIONS

ERM collected potentiometric surface data from available wells and collected ground water samples for laboratory analysis of VOC concentrations in September 2013. Monitoring well locations are shown in Figure 2. Construction details for the monitoring wells are provided in Table 1.

4.1 POTENTIOMETRIC SURFACE

Ground water levels were measured at all of the monitoring wells on September 16, 2013 with the exception of MW-6 which was measured on September 19, 2013. MW-6 could not be located on September 16th, but was located at a later time during the sampling event through the use of a metal detector. These measurements were converted to elevations for the purpose of creating a potentiometric surface map. Ground water elevation data from September 2013 is shown on Figure 5 and summarized in Table 2. Ground water flow is generally toward the north and toward the confluence of two streams, with some local influence to the west caused by the stream that drains across the property from south to north.

4.2 GROUND WATER SAMPLING METHODS

Ground water samples were collected from 24 monitoring wells (MW-1 through MW-7 and MW-9 through MW-25) on September 16 through 19, 2013 for laboratory analysis of VOC concentrations via EPA Method 8260B. Ground water samples were collected utilizing low flow/low volume techniques in accordance with the SESDPROC-301-R2 sampling protocol. During the low flow/low volume purging period the temperature, specific conductance, pH, and turbidity of the ground water were measured in the field as the samples were collected.

The ground water samples and associated trip blanks were analyzed for VOCs by EPA Method 8260B. Field parameter measurements collected during the ground water sampling event are summarized in Table 3. The ground water sampling log forms are located in Appendix B.

4.3 GROUND WATER ANALYTICAL RESULTS

Four VOCs were detected in ground water during the September 2013 sampling event. The ground water analytical laboratory reports are provided in Appendix C, and analytical data is summarized in Table 4. Analytical results are also shown on Figure 6.

The four VOCs that were detected in ground water in September 2013 have been detected at this Site previously, and include:

- Tricholorethene (TCE) was detected at eight wells (MW-1, MW-3, MW-10, MW-13, MW-15, MW-18, MW-22, and MW-23) at concentrations above RRS;
- Chloroform was detected at three wells (MW-3, MW-11, and MW-22) at concentrations below the Type 1 RRS;

- Carbon tetrachloride was detected at two wells (MW-3 and MW-4) at concentrations above RRS; and
- 1,1,1-Trichloroethane was detected at MW-4 at concentrations below the Type 1 RRS.

The highlighted values in Table 4 are the chemical concentrations that exceed the delineation standards set in the Voluntary Investigation and Remediation Plan (VIRP); carbon tetrachloride and TCE were the only VOCs detected above the delineation standards.

4.4 GROUND WATER DELINEATION

The Fourth Semi-Annual Progress report (ERM, 2013) stated that horizontal delineation had been achieved at the Site in all directions. The recently installed delineation wells to the east, MW-24 and MW-25, were resampled in September 2013 to evaluate any seasonal variations in concentrations. The analytical results collected during the sampling event were used to prepare an updated ground water quality and delineation map for the Site (Figure 6)

All VOCs in samples collected from MW-24 and MW-25 were below detection limits in ground water during the September 2013 sampling event. Based on the results from MW-24 and MW-25, ground water conditions have been delineated horizontally both on- and off-Site to the delineation standards set in the Voluntary Investigation and Remediation Plan (VIRP) and summarized in Table 4.

5.0 CURRENT SURFACE WATER CONDITIONS

Surface water samples were collected at five locations during the September 2013 sampling event for laboratory analysis of VOC concentrations via EPA Method 8260B. The surface water sampling locations are shown on Figure 2. Efforts were made to ensure that samples from the creek were collected during periods of base flow. As such, the sampling was timed to avoid periods of precipitation and shortly thereafter.

The analytical results from the surface water sampling event were compiled and compared to ISWQS. The analytical report is provided in Appendix C, and a summary table of the data is provided in Table 5.

No VOCs were detected above laboratory detection limits in surface water samples collected during the September 2013 sampling event.

6.0 CONTAMINANT TRANSPORT MODELING FOR TRICHLOROETHENE

Contaminant transport modeling was conducted to simulate the concentration of contaminants that could remain on Site without exceeding the standards protective of human health and the environment at the selected down gradient points of exposure. Such standards are referred to herein as Site-specific cleanup standards. Modeling results were first submitted to GA EPD in the Third Semi-Annual Progress Report submitted under the VRP Act on November 19, 2012 (ERM, 2012). In a correspondence dated January 28, 2013, GA EPD approved the use of BIOCHLOR for contaminant transport modeling at the Site.

ERM met with GA EPD on June 20, 2013 to discuss the data set utilized during the modeling effort and reviewed the assumptions and Site conceptual model used to define the modeling boundary conditions and input parameters. The modeling effort presented below incorporates the Site conceptual model discussed during the June 20, 2013 meeting. Following the meeting, in a letter dated June 24, 2013 GA EPD requested the updated modeling results be submitted as part of this final VCSR.

The following two scenarios were modeled:

Protection of ground water – Contaminant transport modeling was conducted to determine the Site-specific cleanup standard that would not cause an exceedance of the Type 1 RRS at a hypothetical well located 1,000 feet down gradient of the down gradient edge of the existing plume.

Protection of surface water – Contaminant transport modeling and stream mixing calculations were completed to determine the Site-specific cleanup standard that would be protective of the ISWQS for surface water within the on-Site stream.

Modeling was completed for TCE only, as this is the only contaminant that consistently exceeds the Type 1 RRS in more than two wells at the Site. As mentioned in Section 4.3, carbon tetrachloride was also detected at concentrations above RRS at two wells during the September 2013 sampling event. A discussion of contaminant transport modeling related to carbon tetrachloride is included in Section 7.0.

6.1 CONTAMINANT TRANSPORT MODELING FOR GROUND WATER PROTECTION

The Site-specific cleanup standards were calculated to be protective at the hypothetical point of exposure 1,000 feet down gradient of the edge of the plume (this boundary is defined as the non-detect line shown on Figure 6). The Site-specific cleanup standards were calculated using the BIOCHLOR model.

BIOCHLOR is a screening model intended for the simulation of remediation of dissolved solvents at chlorinated solvent release sites by natural attenuation. It is based on the Domenico analytical solute transport model and has the ability to simulate one-dimensional advection, three-dimensional dispersion, linear adsorption, and biotransformation via the reductive dechlorination process. BIOCHLOR (version 1.0) was co-published in January 2000 by the U.S.

EPA and U.S. Air Force (USEPA 2000). It was subsequently revised in March 2002 (version 2.2). The revised version allows source decay to be used in the simulation and has a module to derive site-specific biodegradation rates based on field data (USEPA 2002a).

BIOCHLOR was used to model TCE transport at the Site. The bioremediation aspect of the BIOCHLOR model is intended for use with chlorinated ethene and ethanes in an anaerobic environment. Ground water at the Site is a mix of aerobic and anaerobic conditions. In order to use BIOCHLOR to model TCE transport in an aerobic aquifer the biodegradation constants in the BIOCHLOR model were set to zero. When the biodegradation parameter meant to represent reductive dechlorination is set to zero, BIOCHLOR becomes a basic contaminant transport model.

An electronic version of the BIOCHLOR files for this Site is included in Appendix D on the compact disc version of this report. Images for the input and output screens of each modeled scenario are included in Appendix E.

6.1.1 Calibration and Validation of the Model

The BIOCHLOR model for the Site was calibrated with data from the October 2011 data set and validated with data from the March 2012, October 2012, and September 2013 data sets. Input parameters for the calibration runs are presented below. The model was calibrated with data from monitoring wells MW-22, MW-15, and MW-13, located along the centerline of the plume. BIOCHLOR files for both the calibration and validation runs are included in Appendix D on the compact disc version of this report. Images for the input and output screens of each modeled scenario are also included in Appendix E.

Parameter	Calibration Input Values	Validation Input Values	Units	Source
Data set utilized	Oct-11	Mar-12, Oct- 12, Sept-13		The historic high TCE concentration was used for the September 2013 validation run for MW-22 (see Section 6.1.3)
Hydraulic Conductivity	1.30E-04	1.30E-04	cm/sec	Slug test data presented in the 2005 Corrective Action Plan (CAP)
Hydraulic Gradient	0.046	0.047 (March 2012), 0.046 (October 2012), and 0.056 (Sept 2013)	ft./ft.	Data from MW-15 and MW-13 for October 2011 (MW-22 had not yet been surveyed) and data from MW-22 and MW-13 for March 2012, October 2012, and September 2013
Effective Porosity	0.3	0.3		Standard value
Dispersion (alpha x)	50	50	ft.	Based on 0.1 x plume length

ERM 6-2 HSI #10630

Parameter	Calibration Input Values	Validation Input Values	Units	Source		
Soil Bulk Density	1.7	1.7	kg/L	Standard value		
Fraction of Organic Carbon	0.002	0.002		Standard value		
TCE Partitioning Coefficient	130	130	L/kg	Standard value		
Biotransformation 1st Order Decay Coefficients	0	0	1/yr.	Set to zero due to aerobic conditions in aquifer		
Simulation Time	60	60	yrs.	Estimated based on Site history		
Modeled Area Width	400	400	ft.	Width of TCE plume within the non-detect boundary (Figure 6)		
Modeled Area Length	500	500	ft.	Length of TCE plume within the non-detect boundary (Figure 6)		
Source Thickness in Saturated Zone*	25	25	ft.	Estimated based on site hydrogeology		
Source Width in Saturated Zone*	40	40	ft.	Estimated based on site hydrogeology		

^{*}Source in this case as defined by Biochlor

The BIOCHLOR model output concentration versus distance graphs for the calibration and validation runs are presented in Figure 7.

Based on the BIOCHLOR model output graphs presented in Figure 7, the contaminant transport equations utilized by BIOCHLOR accurately calculate the current Site specific concentrations observed on Site for both the calibration run (October 2011) and the validation runs (March 2012, October 2012, and September 2013).

6.1.2 Site-Specific Cleanup Standards for Protection of Ground Water

Input values for the validated BIOCHLOR model were utilized to predict the Site specific source area TCE concentration that could remain on Site without resulting in an exceedance of the Type 1 RRS for TCE (5 μ g/L) at the Point of Exposure (POE), defined as the hypothetical well located 1,000 feet down gradient of the down gradient edge of the existing plume. In order to model the hypothetical scenario, the following changes were made in input parameter values:

• The simulation time was extended from 60 years to 1,000 years in order to simulate steady state conditions.

- The plume length was increased from 500 feet to 1,500 feet to allow contaminant transport calculation through the POE.
- To estimate the corresponding plume width, the dispersion (alpha x) was increased from 50 feet to 150 feet based on the estimated value of 0.1 x plume length, which was increased from 500 feet to 1,500 feet.

The BIOCHLOR file used to calculate the Site-specific cleanup standard for protection of ground water is included in Appendix D on the compact disc version of this report. Images for the input and output screens of each modeled scenario are also included in Appendix E. Ground water modeling results for the three evaluation points within the plume are summarized below.

Evaluation Point	Location at Site	Site-Specific Cleanup Standards for TCE*		
Source Area	MW-22	550 μg/L		
Point of Demonstration	MW-17	7 μg/L		
Point of Exposure	Hypothetical well located 1,000 feet down gradient of down gradient plume boundary (1,500 ft. from source area)	5 μg/L		

^{*}Calculated standard is based on the principle of protecting the POE from exceeding 5 µg/L TCE.

TCE concentrations observed in ground water during the September 2013 sampling event are less than the Site-specific cleanup standards for TCE that will be protective of ground water at both the source area and the Point of Demonstration (POD), MW-17. In addition, the TCE concentration measured in MW-22 (source area well) and MW-17 (POD well) have never exceeded the calculated Site-specific cleanup standards for TCE.

As requested in the January 28, 2013 GA EPD comment letter, the simulation time for the protection of ground water modeling was increased in 5 year intervals between 60 and 120 years. In addition, the simulation time was set to 1,000 years to simulate steady state conditions. The results are shown in Table 6. The TCE concentration at the POE never exceeds 5 ug/L throughout the simulation time of 120 years or at steady state conditions represented with a simulation time of 1,000 years.

6.1.3 Conservative Assumptions Built into the Protection of Ground Water Modeling Effort

The following conservative assumptions were incorporated into the protection of ground water modeling effort:

1. *Distance to the POE* A surface water body oriented perpendicular to the ground water flow direction is located directly north of monitoring well MW-17, approximately 1,200 feet from the source area. Although the POE was set to be a hypothetical well located 1,500 feet downgradient of the source area, in reality ground water down gradient of the

source area reaches a discharge point at approximately 1,200 feet downgradient of the source area. Using the surface water body as the POE rather than the hypothetical well 1,500 feet downgradient of the source area would increase the Site-specific cleanup standards. In order to remain conservative, the POE was left at the hypothetical well located 1,500 feet downgradient of the source and the lower, more conservative Site-specific cleanup standard for TCE is proposed.

2. Source Area TCE Concentration for September 2013 Validation Run The TCE concentration in the source area well (MW-22) decreased from 320 ug/L measured in October 2012 to 80 ug/L measured in September 2013. In order to retain the conservative nature of the modeling effort, the historic high TCE concentration for MW-22 (420 ug/L observed in October 2011) was used for the September 2013 validation run.

6.2 CONTAMINANT TRANSPORT MODELING FOR SURFACE WATER PROTECTION

Due to the presence of the stream on-Site, Site-specific cleanup standards for TCE that will be protective of the surface water body (i.e. ground water concentrations that will not result in an exceedance of the ISWQS) have been calculated in addition to the contaminant transport modeling completed for protection of ground water (Section 6.1). The calculations for protection of surface water standards include the following two segments:

Point of Demonstration Calculation – The TCE concentration that can be observed immediately adjacent to the stream that will not result in an exceedance of the ISWQS for TCE (30 μ g/L) was calculated using a mass balance equation. This concentration was used to measure compliance in the two surface water protection point of demonstration wells (MW-10 and MW-13) located adjacent to the stream.

Source Area Concentration Calculation – The contaminant transport equation embedded in the BIOCHLOR model was used to calculate the concentration of TCE that could remain in the source area and not exceed the TCE concentration in ground water that is protective of surface water at the surface water protection POD wells (MW-10 and MW-13). This concentration was used to evaluate compliance in the source area monitoring point (MW-22) as well as other points between MW-22 and the surface water POD wells (MW-10 and MW-13).

The protection of surface water modeling results are presented in the following sections.

6.2.1 Stream Flow Measurement

Flow in the on-Site surface water body was measured during the October 2012 stream sampling event. The flow rate was measured at the four accessible stream gauge locations. The flow velocity at each location was measured with a Flo-Mate 2000 velocity meter. Stream flow was calculated through the following steps:

• A clear section of stream free of angles and debris was identified near each stream gauge location.

- A tagline was setup across established cross section noting the left edge and right edge of water. A tagline is a cloth measuring tape used to determine the width and sections of a stream.
- The cross section was divided into 25 transects or the width of the meter making sure that 10% of the flow was not included in one subsection.
- At each transect, a wading rod with grades on it was used determine the depth. If the water depth was less than 1.5 feet the meter was set at 6/10 the depth. If the depth was greater than 1.5 feet measurements were collected at 2/10 and 8/10 and an average of the two numbers was utilized. The area was calculated with these width and depth measurements.
- Velocity measurements were collected at the correct depth with a Flo-Mate 2000 velocity meter. The velocity measurements (given in feet per second) were multiplied by the measured area of the transect (in square feet) to produce the flow rate of the stream (in cubic feet per second).

Field forms including flow rate calculations for each of the stream gauge locations are included in Appendix B. A summary of the stream flow measurement results is provided below.

	Measured Flow Rate
Stream Gauge	(cfs)
SW-2	0.090
SW-3	0.12
SW-4	0.14
SW-5	0.09
Average	0.11

The average flow rate measured in the on-Site surface water body is 0.11 cubic feet per second.

6.2.2 Mass Balance Equation for Calculating Surface Water POD Compliance Concentration

The following mass balance equation was used to calculate the concentration of TCE that could remain in ground water at the POD wells (MW-10 and MW-13) and be protective of surface water quality (i.e. the concentration of TCE that would not result in an exceedance of the ISWQS of $30 \,\mu\text{g/L}$).

$$Csw = Cgs[Qgw/(Qgw+Qsw)]$$
 (USEPA 2010)

Input Variable	Description	Units	Value	Comment			
Csw	surface water contaminant concentration (µg/L)	μg/L	30	Set to ISWQS for TCE			
Cgs	ground water contaminant concentration at discharge	μg/L		Calculated by equation			
Qsw	surface water flow rate	ft3/sec	0.11	Field measurement			
Qgw	ground water discharge flow rate	ft3/sec	0.02	Calculated based on Qgw = V x 1 x h			
V	ground water velocity	ft/yr.	20.7	Calculated by BIOCHLOR modeling (March 2012 validation run) using site specific gradient and hydraulic conductivity data			
1	Plume length at discharge point	ft	675	Based on March 2012 TCE plume			
h	Plume thickness at discharge point	ft	45	Based on site specific hydrogeology data			

Based on the mass balance equation and input parameters listed above, a concentration of 195 μ g/L of TCE can remain in the ground water immediately adjacent to the stream and not result in an exceedance of the ISWQS for TCE.

6.2.3 Site-Specific Cleanup Standards for Protection of Surface Water

The contaminant transport equation in the BIOCHLOR model was used to calculate the TCE concentration that could remain in the source area without exceeding 195 μ g/L at the POD wells MW-10 and MW-13, located adjacent to the surface water body. The same input parameters as the validated BIOCHLOR model presented in Section 6.1.1 were utilized with the following conservative exceptions:

- The simulation time was extended from 60 years to 1,000 years in order to simulate steady state conditions,
- The plume length was decreased from 500 feet to 240 feet to simulate the shortest distance between the source area and the surface water body, and
- The dispersion (alpha x) was decreased from 50 feet to 24 feet based on the estimated value of 0.1 x plume length, which was decreased from 500 feet to 240 feet.

The BIOCHLOR file used to calculate the source area Site-specific cleanup standard for protection of surface water is included in Appendix D on the compact disc version of this report. Images for the input and output screens of each modeled scenario are also included in Appendix E. Based on the modeling results, a concentration of $625 \,\mu\text{g/L}$ TCE can remain in the

source area (MW-22) without exceeding the POD compliance value of 195 μ g/L at the edge of the on-Site surface water body. As discussed in Section 6.2.2, a TCE concentration of 195 μ g/L can remain in the ground water immediately adjacent to the stream and not result in an exceedance of the ISWQS for TCE.

6.2.4 Protection of the Surface Water Modeling Summary

Based on the modeling results presented in the previous sections, the following compliance points and values will be utilized for protection of surface water.

Evaluation Point	Location at Site	Site-Specific Cleanup Standards for TCE		
Source Area	MW-22	625 μg/L		
Point of Demonstration	MW-10 and MW-13	195 μg/L		
Point of Exposure	Surface water samples	30 μg/L		

TCE concentrations observed in ground water during the September 2013 sampling event are less than the Site-specific cleanup standards for TCE that will be protective of surface water.

As requested in the January 28, 2013 GA EPD comment letter, the simulation time for the protection of surface modeling was increased in 5 year intervals between 60 and 120 years. In addition, the simulation time was set to 1,000 years to simulate steady state conditions. The results are shown in Table 6. The TCE concentration at the POD never exceeds the calculated standard for protection of the surface water body, 195 ug/L, throughout the simulation time of 120 years or at steady state conditions represented with a simulation time of 1,000 years.

6.2.5 Conservative Assumptions Built Into the Protection of Surface Water Modeling Effort

The following conservative assumptions were incorporated into the protection of surface water modeling effort:

- 1. Distance between the source area and the surface water body The shortest distance between the source area (i.e. MW-22) and the surface water body was used in the contaminant transport model for calculation of the protection of surface water standards. The actual flow path of ground water between the source and the surface water body likely follows the contaminant contours and runs parallel to the surface water body prior to discharging into the creek. In order to account for the unlikely but potential worst case scenario, a direct path perpendicular to the ground water flow direction shown in Figure 5 was assumed and used for calculation of the protection of surface water standards.
- 2. *Plume length at discharge point* The entire length of the TCE plume was assumed as a potential discharge point into the surface water body when calculating the TCE concentration that can remain in ground water without exceeding the surface water

standard. Said another way, the calculations were run so that the point of demonstration standard for TCE (195 ug/L) is assumed to discharge to the surface water body over the entire length of the plume, i.e. the distance between the source area and monitoring well MW-14, 675 feet, without exceeding surface water standards. The actual discharge length into the stream is unknown, but would not exceed the distance that the TCE plume runs parallel to the surface water body (roughly 300 feet between MW-10 and MW-13).

7.0 SITE-SPECIFIC CLEANUP STANDARDS FOR CARBON TETRACHLORIDE

Carbon tetrachloride has been consistently detected in monitoring well MW-3 at concentrations ranging between 11 μ g/L and 41 μ g/L since investigation activities began in 2000. The Type 1 RRS for carbon tetrachloride is 5 μ g/L. Carbon tetrachloride has been detected intermittently at very low concentrations in one other monitoring well (MW-4) on only three occasions in the well's 13 year sampling history. The highest concentration of carbon tetrachloride detected in MW-4 was 7 μ g/L in April 2006. Carbon tetrachloride has never been identified at detectable concentrations in any other monitoring wells at the Site, or in any of the surface water samples collected from the on-Site surface water body since 2000.

7.1 SITE-SPECIFIC CLEANUP STANDARDS FOR GROUND WATER PROTECTION

Because carbon tetrachloride has been consistently detected in only one monitoring well at the Site, a contaminant transport model cannot be calibrated and validated to calculate a Site-specific standard. However, the methodology used to calculate the Site-specific cleanup standards for TCE is based on several conservative assumptions that are relevant when considering an appropriate Site-specific cleanup standard for carbon tetrachloride.

The contaminant transport model utilized to calculate the Site-specific cleanup standard for TCE was calibrated and validated with several rounds of Site-specific data. The boundary conditions of the TCE model were established to ensure that the Type 1 RRS for TCE of 5 ug/L will never be exceeded at a hypothetical well located 1,500 feet down gradient of the source area. The Type 1 RRS standard for carbon tetrachloride is the same as the Type 1 RRS for TCE (i.e. 5 μ g/L). It stands to reason, therefore, that the Site-specific cleanup standard established for TCE for protection of ground water would also be appropriate for carbon tetrachloride. Said another way, because the Type 1 RRS for TCE and carbon tetrachloride are the same, the Site-specific cleanup standard determined for TCE using the modeling discussed in Section 6.1.3 can also be applied to carbon tetrachloride in the source area and be protective of the Type 1 RRS at the hypothetical well. In addition to the inherent conservative assumptions incorporated into the TCE contaminant transport model (Section 6.1.3), the following additional conservative elements apply when considering carbon tetrachloride:

- TCE is the primary contaminant of concern at the Site and has historically been detected at concentrations an order of magnitude higher than the concentration of carbon tetrachloride detected at the Site.
- Carbon tetrachloride has been consistently detected in only one monitoring well at the Site (MW-3), which is located 470 feet up gradient of the TCE source area monitoring well MW-22. As such, the distance between the carbon tetrachloride source area well, MW-3, and the POE is 1,970 feet compared to 1,500 feet between the TCE source area well, MW-22, and the POE. This added distance would allow for additional reduction in carbon tetrachloride concentrations by dilution and dispersion before reaching the POE.
- There is no carbon tetrachloride plume at the Site. Carbon tetrachloride has only been consistently detected in one monitoring well. Consequently, the measurements of the TCE plume built into the contaminant transport model for TCE (i.e. 400 feet wide by 500

feet long, see Section 6.1.1) would greatly overestimate the volume of ground water impacted by carbon tetrachloride.

Based on the information provided above, the Site-specific TCE source area standard for protection of groundwater, 550 μ g/L, has been adopted for carbon tetrachloride. The highest concentration of carbon tetrachloride ever detected at the Site (41 μ g/L detected at MW-3 in April 2006) is an order of magnitude less than the adopted standard.

7.2 SITE-SPECIFIC CLEANUP STANDARDS FOR SURFACE WATER PROTECTION

Due to the presence of the on-Site surface water body, consideration must also be given to an appropriate carbon tetrachloride standard for the protection of surface water. The calculation of the Site-specific cleanup standard for carbon tetrachloride that is protective of the surface water body is based on the mass balance equation first presented in Section 6.2.2 and shown again below for reference.

$$Csw = Cgs[Qgw/(Qgw+Qsw)]$$
 (USEPA 2010)

Input Variable	Description	Value	Comment			
Csw	surface water contaminant concentration (µg/L)	μg/L	1.6	Set to ISWQS standard for carbon tetrachloride		
Cgs	ground water contaminant concentration at discharge	μg/L		Calculated by equation		
Qsw	surface water flow rate	ft3/sec	0.11	Field measurement		
Qgw	ground water discharge flow rate	ft3/sec	0.003	Calculated based on Qgw = V x l x h		
V	ground water velocity	ft/yr.	20.7	Same as the TCE modeling data		
1	Plume length at discharge point	ft	100	Estimated		
h	Plume thickness at discharge point	ft	45	Based on Site-specific hydrogeology data		

Based on the mass balance equation and input parameters listed above, a concentration of 61 $\mu g/L$ of carbon tetrachloride could remain in the ground water immediately adjacent to the stream and not result in an exceedance of the ISWQS for carbon tetrachloride, 1.6 $\mu g/L$. In the absence of a contaminant transport model for carbon tetrachloride and to remain conservative in the modeling assumptions, 61 $\mu g/L$ will be applied as a Site-specific cleanup standard for carbon tetrachloride for the protection of surface water.

8.1 HUMAN HEALTH AND ECOLOGICAL RECEPTORS

The Site is mostly undeveloped. Timber on the Site was clear cut in 2004. Most of the Site is currently covered with thick vegetation that has regenerated naturally since the clear cutting. The facility and surrounding area are served by a public water supply system operated by the City of Toccoa. Accordingly, ground water is not being used at the Site for any purpose.

Potential ecological receptors are believed to be limited to animals common to the northeast Georgia area such as chipmunks, opossum, and raccoons. Game species are also common to the area including whitetail deer, gray squirrels, bobcat, and red and gray foxes. No endangered species are known to be found at the Site. There is no evidence to suggest that humans or ecological receptors are exposed to the VOCs in ground water.

8.2 GROUND WATER EXPOSURE PATHWAY

The Site and surrounding area are served by a municipal water supply system operated by the City of Toccoa, Georgia. As such, ground water in this area is not used as a drinking water source. The closest water supply well known to be located in the vicinity of the Site is operated by Toccoa Falls College. This well is located approximately 4,000 feet northwest of the Site. Toccoa Falls College personnel reported that the well has been disconnected from the potable water system and is now used strictly for irrigating baseball and soccer fields. Several ground water discharge points in the form of creeks are located in between the Site and this well. Based on this information and the extent of the contaminant plume, the ground water exposure pathway is not complete.

8.3 SURFACE WATER EXPOSURE PATHWAY

As discussed previously, the unnamed creek that flows south to north across the Site is a discharge point for shallow ground water. Surface water sampling has been conducted at the Site for 13 years. TCE has been detected at low concentrations periodically in surface water samples, but never at concentrations exceeding the ISWQS. Based on modeling predictions discussed in Section 6.2.4, the TCE concentration at the POD wells will never exceed the calculated standard for protection of the surface water body of 195 ug/L throughout the simulation time of 120 years or at steady state conditions represented with a simulation time of 1,000 years.

8.4 VAPOR INTRUSION PATHWAY

The vapor intrusion pathway was evaluated per OSWER Draft Guidance for Evaluating Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (USEPA, 2002b). As summarized in the First Semi-Annual Report for the VRP (ERM, 2011), Tier 1 and Tier 2 assessments were completed for the Site. Based on the screening results of the Tier 1 and Tier 2 assessments, the Site-Specific Pathway Assessment (Tier 3) was conducted.

Five soil gas samples were collected within and adjacent to the most concentrated portion of the ground water plume in August 2011. Results from the vapor sampling effort indicated that two locations (VP-3 and VP-5) had VOC soil gas concentrations greater than the Target Shallow Soil Gas Concentration Corresponding to Target Indoor Air Concentration Where the Soil Gas to Indoor Air Attenuation Factor – 0.1 presented in USEPA, 2002b. As such, the Johnson and Ettinger (J&E, 1991) soil-gas model was used to assess the potential risk from the vapor intrusion pathway. Results from the J&E soil gas model indicated that an unacceptable risk was not present.

Per comments received by GA EPD in a letter correspondence dated March 1, 2012, additional vapor intrusion evaluation was completed in May 2012. Two additional vapor intrusion points (VP-6 and VP-7) were installed and sampled. VP-6 was installed near MW-22, and VP-7 was installed within the crawl space of the nearest residence to MW-22 (133 Clark Street). VP-3, which historically had the highest concentrations of VOCs in soil vapor, was also resampled during this time. Indoor and outdoor ambient air samples at the 133 Clark Street residence were collected concurrently with the soil vapor sampling. The TCE vapor concentration at VP-3 exceeded the Target Shallow Soil Gas Concentration Corresponding to Target Indoor Air Concentration Where the Soil Gas to Indoor Air Attenuation Factor = 0.1 of 22 μ g/m³ (USEPA, 2002b). As such, the J&E soil-gas model was updated to assess the potential risk from the vapor intrusion pathway. ERM's Third Semi-Annual Progress Report for the VRP provides a detailed discussion of the updated vapor intrusion analysis (ERM, 2012). Based on the results of the updated J&E model and the soil vapor and indoor/outdoor air sampling results, it was concluded that the vapor intrusion pathway does not cause an unacceptable level of risk.

9.0 INSTITUTIONAL CONTROLS

A restrictive covenant, that is consistent with the requirements of the Georgia Universal Environmental Covenants Act, is proposed for the following properties that are located within the Site delineation boundary, depicted in Figure 8:

- Tax Parcel ID No. T10 005 (Subject Site, owned by Toccoa Renaissance);
- Tax Parcel ID No. T10 123 (owned by City of Toccoa);
- Tax Parcel ID No. T10 006 (residential);
- Tax Parcel ID No. T10 007 (residential);
- Tax Parcel ID No. T10 010 (residential);
- Tax Parcel ID No. T10 053 (residential);
- Tax Parcel ID No. T10 055 (residential);
- Tax Parcel ID No. T10 057 (residential);
- Tax Parcel ID No. T10 058 (residential);
- Tax Parcel ID No. T10 061 (residential).

The Environmental Covenant will place a restriction on the use or extraction of ground water beneath these properties for drinking water purposes. A copy of the covenant is provided in Appendix F. ERM and Coats have contacted all of the property owners of the above-listed parcels, and to date, have received verbal or written concurrence from all ten property owners (including the Subject Site owner and City of Toccoa) that they are amenable to an environmental covenant restricting the use of ground water for drinking purposes.

With respect to the following three properties that are located within the Site delineation boundary, the property owners have currently indicated that they are not amenable to an environmental covenant on their property.

- Tax Parcel ID No. T10 008 (residential);
- Tax Parcel ID No. T10 009 (residential);
- Tax Parcel ID No. T10 056 (residential).

A contact for the property owner of Tax Parcel ID No. T10 052 (residential) has not yet been identified. The property is unoccupied and may become subject to a tax lien. We will be requesting a meeting with GA EPD to discuss appropriate next steps.

10.0 COMPLIANCE WITH SITE-SPECIFIC CLEANUP STANDARDS

Site-specific cleanup standards were developed for TCE in the source area and each POD well as discussed in Section 6.0. The Site-specific cleanup standards are protective of downgradient points of exposure including surface water and a hypothetical drinking water well located 1,000 feet downgradient from the delineation boundary. The source area well, MW-22, is in compliance with the Site-specific cleanup standard of 550 μ g/L for TCE. The POD well for ground water protection, MW-17, is in compliance with its Site-specific cleanup standard of 7 μ g/L for TCE. The POD wells for surface water protection, MW-10 and MW-13, are in compliance with the Site-specific cleanup standard of 195 μ g/L for TCE.

Site-specific cleanup standards were also developed for carbon tetrachloride. The TCE Site-specific cleanup standard for ground water protection (550 $\mu g/L$) was adopted for carbon tetrachloride as discussed in Section 7.1. For the protection of surface water, a conservative Site-specific cleanup standard of 61 $\mu g/L$ was calculated (see Section 7.2). The highest concentration of carbon tetrachloride detected on-Site since investigation activities began in 2000 was 41 ug/L at MW-3. As such, ground water at the Site is also in compliance with the Site-specific cleanup standards for carbon tetrachloride. Based on the data presented in this report, it is concluded that the Site is in compliance with the requirements of the VRP Act. A certification statement to this effect is provided at the front of this VCSR.

11.0 SOURCES CITED

- ERM. "Fourth Semi-Annual Progress Report for VRP dated May 20, 2013." 2013.
- ERM. "Third Semi-Annual Progress Report for VRP dated November 19, 2012." 2012.
- ERM. "First Semi-Annual Progress Report for VRP dated November 18, 2011." 2011.
- Johnson, P.C., and R.A. Ettinger. "Heuristic model for predicting the intrusion rate of contaminant vapors in buildings." *Environ. Sci. Technol.* 25: 1445-1452. 1991.
- USEPA. *NPDES Permit Writer's Manual*. September 2010. http://www.epa.gov/npdes/pubs/pwm_2010.pdf.
- USEPA, National Risk Management Laboratory. *BIOCHLOR User's Manual Addendum, version* 2.2. Ada, Oklahoma, 2002. (USEPA 2002a)
- USEPA. OSWER Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (Subsurface Vapor Intrusion Guidance). EPA530-D-02-004, November 2002. (USEPA 2002b)
- USEPA, Office of Research and Development. *BIOCHLOR User's Manual, version 1.0.* Cincinnati, OH 45268: EPA/600/R-00/008, 2000.

Table 1 Monitoring Well Construction Details Coats Doyle Street - Toccoa, GA HSI Site No. 10630

Well/Stream Gauge	Aquifer	Ground Elevation (ft. NGVD)	TOC Elevation (ft NGVD)	Casing Stickup (ft AG)	Total Boring Depth (ft BG)	Total Well Depth (ft BG)	Well Casing Length (ft)	Well Screen Length (ft)	Well Screen Interval (ft. BG)	Screen Slot Size (in)	Well Casing/Screen Material	Well Casign Diameter (in)	Date Completed	Easting	Northing
MW- 1	Overburden	996.85	999.44	2.59	30.00	30	22.6	10	20-30	0.010	Schedule 40 PVC	2	2/2/00	8708.08530	10334.77901
MW- 2	Overburden	988.05	990.40	2.35	14.00	14	6.4	10	4-14	0.010	Schedule 40 PVC	2	2/2/00	8246.82945	9994.04790
MW- 3	Overburden	1032.18	1031.91	Flush Mount	58.00	58	48	10	48-58	0.010	Schedule 40 PVC	2	2/3/00	8792.99136	10112.96494
MW- 4	Overburden	1034.96	1034.71	Flush Mount	59.60	59.6	49.6	10	49.6-59.6	0.010	Schedule 40 PVC	2	2/3/00	8819.98870	10005.00725
MW- 5	Overburden	963.05	971.07	3.02	12.00	12	5	10	2-12	0.010	Schedule 40 PVC	2	3/1/00	8342.71453	10397.13438
MW-6	Overburden	1028.83	1028.18	Flush Mount	48.00	48	38	10	38-48	0.010	Schedule 40 PVC	2	10/25/00	9037.55353	10260.99956
MW- 7	Overburden	1039.14	1038.70	Flush Mount	54.00	54	44	10	44-54	0.010	Schedule 40 PVC	2	10/30/00	8978.29337	9977.77517
MW-8	Overburden	1029.77	1029.28	Flush Mount	25.00	25	15	10	15-25	0.010	Schedule 40 PVC	2	10/31/00	8858.35805	10365.73256
MW- 9	Overburden	953.37	955.37	2.00	15.00	15	7	10	5-15	0.010	Schedule 40 PVC	2	10/24/00	8394.19363	10627.65222
MW-10	Overburden	951.86	953.83	1.97	16.00	16	10	10	6-16	0.010	Schedule 40 PVC	2	10/24/00	8475.19823	10716.98943
MW-11	Bedrock	1032.55	1032.23	Flush Mount	85.00	79.5	71	NA	Open Hole	NA	Schedule 40 PVC	4	10/27/00	8788.07879	10103.92163
MW-12	Overburden	1000.51	1002.24	1.73	27.00	25	19.2	10	15-25	0.010	Schedule 40 PVC	2	5/17/01	8196.26802	10086.11163
MW-13	Overburden	942.75	944.68	1.93	20.00	20	14.9	10	10-20	0.010	Schedule 40 PVC	2	5/16/01	8533.73336	11016.19115
MW-14	Overburden	930.27	930.19	Flush Mount	10.00	9	4	5	4-9	0.010	Schedule 40 PVC	1	11/15/01	8589.35100	11163.12662
MW-15	Overburden	997.39	999.34	1.95	58.50	58.5	50.5	10	48.5-58.5	0.010	Schedule 40 PVC	2	11/15/01	8669.14106	10681.17814
MW-16	Overburden	935.83	935.48	Flush Mount	27.00	25	15	10	15-25	0.010	Schedule 40 PVC	2	3/4/02	8908.78256	11524.86957
MW-17	Overburden	916.82	919.13	2.31	18.50	18.5	17.3	10	8.5-18.5	0.010	Schedule 40 PVC	2	3/4/02	8708.08565	11701.35867
MW-18	Overburden	1006.89	1009.68	2.79	64.50	64.50	56.79	10	54-64	0.010	Schedule 40 PVC	2	10/9/03	8883.14172	10882.95311
MW-19	Bedrock	950.76	953.95	3.19	55.40	55.40	47.19	NA	Open Hole	NA	Schedule 40 PVC	4	10/16/03	8470.54161	10725.84446
MW-20	Overburden	991.6	994.63	3.03	57.00	57.00	49.03	10	46-56	0.010	Schedule 40 PVC	2	10/16/03	8300.17683	11065.89749
MW-21	Overburden	997.42	1000.13	2.71	59.00	58.70	51.41	10.00	48.7 - 58.7	0.010	Schedule 40 PVC	2	10/21/11	8938.87860	10872.33083
MW-22	Overburden	989.26	991.86	2.60	42.00	41.70	34.30	10.00	31.7 - 41.7	0.010	Schedule 40 PVC	2	10/19/11	8652.28699	10598.11401
MW-23	Overburden	1000.26	1002.71	2.45	31.00	30.70	23.15	10.00	20.7 - 30.7	0.010	Schedule 40 PVC	2	10/20/11	8766.46467	10335.94958
MW-24	Overburden	960.09	962.93	2.84	35.00	35.00	27.70	10.00	24.7-34.7	0.010	Schedule 40 PVC	2	4/1/13	9060.16273	11059.56704
MW-25	Overburden	987.46	990.44	2.98	25.50	24.00	16.90	10.00	13.7-23.7	0.010	Schedule 40 PVC	2	5/2/13	9025.00333	10550.96741

Table 2
Ground Water Elevation Data
Coats Doyle Street - Toccoa, GA
HSI Site No. 10630

Well ID	Date	Reference Point Elevation (feet)	Depth to Water (feet)	Ground Water / Surface Water Elevation (feet)
MW- 1	16-Sep-13	999.44	23.12	976.32
MW- 1	1-Oct-12	999.44	26.01	973.43
MW- 1	12-Mar-12	999.44	26.05	973.39
MW- 1	17-Oct-11	999.44	26.00	973.44
MW- 2	17-Sep-13	990.40	6.48	983.92
MW- 2	1-Oct-12	990.40	7.60	982.80
MW- 2	12-Mar-12	990.40	7.33	983.07
MW- 2	17-Oct-11	990.40	NM	
MW- 3	19-Sep-13	1031.91	49.76	982.15
MW- 3	1-Oct-12	1031.91	51.62	980.29
MW- 3	12-Mar-12	1031.91	51.76	980.15
MW- 3	17-Oct-11	1031.91	51.52	980.39
MW- 4	16-Sep-13	1034.71	47.81	986.90
MW- 4 ¹	2-Oct-12	1034.71	50.70	984.01
MW- 4	12-Mar-12	1034.71	50.83	983.88
MW- 4	17-Oct-11	1034.71	50.56	984.15
MW- 5	16-Sep-13	971.07	8.58	962.49
MW- 5	1-Oct-12	971.07	NM	
MW- 5	12-Mar-12	971.07	9.58	961.49
MW- 5	17-Oct-11	971.07	NM	
MW- 6	19-Sep-13	1028.18	38.65	989.53
MW- 6	1-Oct-12	1028.18	NM	
MW- 6	12-Mar-12	1028.18	42.30	985.88
MW- 6	17-Oct-11	1028.18	41.76	986.42
MW- 7	16-Sep-13	1038.70	44.25	994.45
MW- 7	1-Oct-12	1038.70	48.60	990.10
MW- 7	12-Mar-12	1038.70	48.73	989.97
MW- 7	17-Oct-11	1038.70	47.87	990.83
MW-8	16-Sep-13	1029.28	DRY	
MW-8	1-Oct-12	1029.28	DRY	
MW-8	12-Mar-12	1029.28	DRY	
MW-8	17-Oct-11	1029.28	DRY	
MW- 9	16-Sep-13	955.37	6.47	948.90
MW- 9	1-Oct-12	955.37	NM	
MW- 9	12-Mar-12	955.37	6.60	948.77

Table 2
Ground Water Elevation Data
Coats Doyle Street - Toccoa, GA
HSI Site No. 10630

				Ground Water /
Well ID	Date	Reference Point	Depth to Water	Surface Water
Well ID	Date	Elevation (feet)	(feet)	Elevation (feet)
MW- 9	17-Oct-11	955.37	6.82	948.55
MW-10	16-Sep-13	953.83	7.99	945.84
MW-10	1-Oct-12	953.83	9.30	944.53
MW-10	12-Mar-12	953.83	8.72	945.11
MW-10	17-Oct-11	953.83	9.19	944.64
MW-11	16-Sep-13	1032.23	45.13	987.10
MW-11	1-Oct-12	1032.23	40.91	991.32
MW-11	12-Mar-12	1032.23	48.21	984.02
MW-11	17-Oct-11	1032.23	47.73	984.50
MW-12	16-Sep-13	1002.24	17.18	985.06
MW-12	1-Oct-12	1002.24	20.74	981.50
MW-12	12-Mar-12	1002.24	20.23	982.01
MW-12	17-Oct-11	1002.24	NM	
MW-13	16-Sep-13	944.68	11.38	933.30
MW-13	1-Oct-12	944.68	11.80	932.88
MW-13	12-Mar-12	944.68	11.46	933.22
MW-13	17-Oct-11	944.68	11.73	932.95
MW-14	16-Sep-13	930.19	5.19	925.00
MW-14	1-Oct-12	930.19	5.25	924.94
MW-14	12-Mar-12	930.19	5.07	925.12
MW-14	17-Oct-11	930.19	5.30	924.89
MW-15	16-Sep-13	999.34	46.58	952.76
MW-15	1-Oct-12	999.34	50.78	948.56
MW-15	12-Mar-12	999.34	49.95	949.39
MW-15	17-Oct-11	999.34	49.67	949.67
MW-16	16-Sep-13	935.48	16.43	919.05
MW-16	1-Oct-12	935.48	17.35	918.13
MW-16	12-Mar-12	935.48	16.71	918.77
MW-16	17-Oct-11	935.48	NM	
MW-17	16-Sep-13	919.13	12.79	906.34
MW-17	1-Oct-12	919.13	12.68	906.45
MW-17	12-Mar-12	919.13	12.56	906.57
MW-17	17-Oct-11	919.13	NM	
MW-18	16-Sep-13	1009.68	60.00	949.68
MW-18	1-Oct-12	1009.68	DRY	

Table 2
Ground Water Elevation Data
Coats Doyle Street - Toccoa, GA
HSI Site No. 10630

Well ID	Date	Reference Point Elevation (feet)	Depth to Water (feet)	Ground Water / Surface Water Elevation (feet)
MW-18	12-Mar-12	1009.68	65.88	943.80
MW-18	17-Oct-11	1009.68	64.61	945.07
MW-19	16-Sep-13	953.95	9.52	944.43
MW-19	1-Oct-12	953.95	10.07	943.88
MW-19	12-Mar-12	953.95	9.73	944.22
MW-19	17-Oct-11	953.95	9.91	944.04
MW-20	16-Sep-13	994.63	48.61	946.02
MW-20	1-Oct-12	994.63	51.50	943.13
MW-20	12-Mar-12	994.63	50.33	944.30
MW-20	17-Oct-11	994.63	NM	
MW-21	16-Sep-13	1000.13	49.12	951.01
MW-21	1-Oct-12	1000.13	57.70	942.43
MW-21	12-Mar-12	1000.13	57.13	943.00
MW-22	16-Sep-13	991.86	33.23	958.63
MW-22	1-Oct-12	991.86	38.12	953.74
MW-22	12-Mar-12	991.86	37.50	954.36
MW-23	16-Sep-13	1002.71	21.83	980.88
MW-23	1-Oct-12	1002.71	25.47	977.24
MW-23	12-Mar-12	1002.71	25.72	976.99
MW-24	16-Sep-13	962.93	23.42	939.51
MW-25	16-Sep-13	990.44	11.97	978.47

NM = Not Measured

 $^{^{1}}$ MW-4 water level collected on 10/1/12 believed to be erroneous; water level collected prior to sampling MW-4 on 10/2/12 reported.

Table 3
Ground Water Field Parameters - September 2013
Coats Doyle Street - Toccoa, GA
HSI Site No. 10630

Well ID	Sample Date	Temperature (°C)	Specific Conductance (mS/cm)	DO (mg/L)	pH (SU)	ORP (mV)	Turbidty (NTU)
MW-1	9/18/2013	15.18	0.42	6.61	6.41	-7.4	3
MW-2	9/17/2013	17.19	0.091	2.12	5.34	133.7	0.68
MW-3 ¹	9/18/2013	19.63	0.197	5.68	5.81	153.9	31.8
MW-4	9/18/2013	18.65	0.131	8.24	4.19	228.6	5.34
MW-5 ¹	9/17/2013	15.71	0.06	4.32	4.85	19	21
MW-6	9/19/2013	18.40	0.074	7.14	4.97	197.1	8.62
MW-7 ¹	9/19/2013	19.29	0.12	6.85	4.74	14.0	12
MW-9	9/17/2013	14.69	0.108	6.70	5.21	71	7
MW-10	9/18/2013	15.25	0.176	1.15	5.63	0.3	8
MW-11	9/18/2013	20.58	0.109	7.56	5.42	144.6	6.74
MW-12	9/17/2013	16.85	0.069	8.71	5.00	162.3	1.09
MW-13	9/18/2013	15.23	0.137	4.8	5.65	7	6
MW-14 ¹	9/17/2013	15.56	0.144	1.82	6.05	-88	13
MW-15	9/18/2013	14.57	0.079	7.82	5.46	15	8
MW-16	9/17/2013	14.05	0.090	2.58	5.15	26	6
MW-17	9/17/2013	14.08	0.109	3.63	5.42	25.0	3.5
MW-18 ¹	9/19/2013	16.30	0.113	8.35	5.72	0.8	123
MW-19	9/17/2013	17.91	0.196	4.12	7.58	111.9	0.75
MW-20 ¹	9/19/2013	15.94	0.042	7.10	5.26	15	37
MW-21	9/18/2013	16.31	0.106	10.07	5.27	156.5	6.85
MW-22 ¹	9/18/2013	14.09	0.126	8.80	5.59	17	11
MW-23	9/18/2013	16.53	0.165	6.27	5.73	-13	3
MW-24	9/17/2013	17.60	0.106	8.63	4.96	131.9	1.98
MW-25	9/17/2013	18.00	0.102	8.22	5.25	131.6	1.07

NM = Not Measured

¹ Turbidity stabilized within 10%

Table 4
Ground Water Analytical Data
Former Coats & Clark Plant 1
HSI Site No. 10630

					VOCs (mg/L)			
Well ¹	Date Sampled	Carbon Disulfide	Carbon Tetrachloride	Chloroform	cis-1,2-Dichloroethene	Tetrachloroethene	1,1,1-Trichloroethane	Trichloroethene
HSRA Type	e 1 RRS	4.000	0.005	0.080	0.070	0.005	0.200	0.005
MW-1	9/18/2013	< .01	< .005	< .005	< .005	< .005	< .005	0.022
MW-1	10/5/2012	< .01	< .005	< .005	< .005	< .005	< .005	0.026
MW-1	3/15/2012	< .01	< .005	< .005	< .005	< .005	< .005	0.017
MW-1	10/13/2011	< .01	< .005	< .005	< .005	< .005	< .005	0.022
MW-1	4/23/2010	< .01	< .005	< .005	< .005	< .005	< .005	0.042
MW- 1	4/7/2008	< .01	< .005	< .005	< .005	< .005	< .005	0.009
MW- 1	10/3/2007	< .01	< .002	0.018	< .002	< .002	< .002	0.020
MW- 1	4/26/2007	< .01	< .005	< .005	< .005	< .005	< .005	0.015
MW- 1	10/4/2006	< .01	< .005	0.007	< .005	< .005	< .005	0.025
MW- 1	4/6/2006	< .01	< .005	0.006	< .005	< .005	< .005	0.024
MW- 1	7/1/2004	< .01	< .005	0.007	< .005	< .005	< .005	0.032
MW- 1	2/6/2003	< .1	< .005	< .005	< .005	< .005	< .005	0.096
MW- 1	4/24/2002	< .01	< .005	< .005	< .005	< .005	< .005	0.053
MW-111 ²	4/24/2002	< .01	< .005	< .005	< .005	< .005	< .005	0.042
MW-1	7/17/2001	< .01	< .005	< .005	< .005	< .005	< .005	< .005
MW- 1	1/23/2001	< .01	< .005	< .005	< .005	< .005	< .005	0.084
MW- 1	2/8/2000	< .01	< .005	< .005	< .005	< .005	< .005	0.081
MW-2	9/17/2013	< .01	< .005	< .005	< .005	< .005	< .005	< .005
MW- 2	10/2/2012	< .01	< .005	< .005	< .005	< .005	< .005	< .005
MW- 2	4/5/2006	< .01	< .005	< .005	< .005	< .005	< .005	< .005
MW- 2	11/25/2003	< .01	< .002	< .002	< .002	< .002	< .002	< .002
MW- 2	4/22/2002	< .01	< .005	< .005	< .005	< .005	< .005	< .005
MW- 2	1/24/2001	< .01	< .005	< .005	< .005	< .005	< .005	< .005
MW- 2	2/8/2000	< .01	< .005	< .005	< .005	< .005	< .005	< .005
MW-3	9/18/2013	< .01	0.038	0.052	< .005	< .005	< .005	0.028
MW-3	10/3/2012	< .01	< .005	0.066	0.007	< .005	< .005	0.013
MW-3	3/15/2012	< .01	0.015	0.024	< .005	< .005	< .005	< .005
MW-3	10/13/2011	< .01	0.033	0.042	0.006	< .005	< .005	0.010
MW-3	4/21/2010	< .01	0.033	0.055	0.006	< .005	< .005	0.037
MW-3	4/7/2008	< .01	0.014	0.033	< .005	< .005	< .005	0.007
MW- 3	10/3/2007	< .01	0.027	0.045	0.005	< .002	< .002	0.011
MW-3	4/26/2007	< .01	0.029	0.030	< .005	< .005	< .005	0.033
MW-3	10/4/2006	< .01	0.022	0.039	0.005	< .005	< .005	0.007
MW-3	4/6/2006	< .01	0.041	0.034	0.005	< .005	< .005	0.029
MW- 3	7/1/2004	< .01	0.033	0.081	0.008	< .005	< .005	0.039
MW-3	2/6/2003	< .1	0.019	0.100	0.007	< .005	< .005	0.150
MW- 3	4/22/2002	< .01	0.011	0.059	< .005	< .005	< .005	0.030
MW- 3	7/17/2001	< .01	0.020	0.110	0.007	< .005	< .005	0.063
MW- 3	1/23/2001	0.015	0.013	0.060	< .005	0.034	< .005	< .005
MW- 3	2/8/2000	< .01	0.011	0.055	< .005	< .005	< .005	0.027

Table 4
Ground Water Analytical Data
Former Coats & Clark Plant 1
HSI Site No. 10630

		VOCs (mg/L)											
Well ¹	Date Sampled	Carbon Disulfide	Carbon Tetrachloride	Chloroform	cis-1,2-Dichloroethene	Tetrachloroethene	1,1,1-Trichloroethane	Trichloroethene					
MW-4	9/18/2013	< .01	0.005	< .005	< .005	< .005	0.007	< .005					
MW- 4	10/2/2012	< .01	< .005	< .005	< .005	< .005	< .005	< .005					
MW-4	3/13/2012	< .01	< .005	< .005	< .005	< .005	< .005	< .005					
MW-4	10/13/2011	< .01	< .005	< .005	< .005	< .005	< .005	< .005					
MW-4	4/21/2010	< .01	< .005	< .005	< .005	< .005	0.009	< .005					
Dup-2	4/21/2010	< .01	< .005	< .005	< .005	< .005	0.010	< .005					
MW- 4	4/7/2008	< .01	< .005	< .005	< .005	< .005	< .005	< .005					
MW- 4	10/3/2007	< .01	0.002	< .002	< .002	< .002	< .002	< .002					
MW- 4	4/26/2007	< .01	< .005	< .005	< .005	< .005	< .005	< .005					
MW- 4	10/4/2006	< .01	< .005	< .005	< .005	< .005	< .005	< .005					
MW- 4	4/6/2006	< .01	0.007	0.005	< .005	< .005	0.013	< .005					
MW- 4	7/2/2004	< .01	< .005	< .005	< .005	< .005	< .005	< .005					
MW- 4	4/22/2002	< .01	< .005	< .005	< .005	< .005	< .005	< .005					
MW- 4	1/23/2001	0.024	< .005	< .005	< .005	< .005	< .005	< .005					
MW- 4	2/8/2000	< .01	< .005	< .005	< .005	< .005	0.006	< .005					
MW-5	9/17/2013	< .01	< .005	< .005	< .005	< .005	< .005	< .005					
MW- 5	3/14/2012	< .01	< .005	< .005	< .005	< .005	< .005	< .005					
MW-5	4/20/2010	< .01	< .005	< .005	< .005	< .005	< .005	< .005					
MW- 5	4/7/2008	< .01	< .005	< .005	< .005	< .005	< .005	< .005					
MW- 5	4/25/2007	< .01	< .005	< .005	< .005	< .005	< .005	< .005					
MW- 5	4/6/2006	< .01	< .005	< .005	< .005	< .005	< .005	< .005					
MW- 5	2/6/2003	< .1	< .005	< .005	< .005	< .005	< .005	< .005					
MW- 5	4/23/2002	< .01	< .005	< .005	< .005	< .005	< .005	< .005					
MW- 5	7/17/2001	< .01	NA ³	NA	NA	NA	NA	NA					
MW- 5	1/24/2001	0.012	< .005	< .005	< .005	< .005	< .005	< .005					
MW-6	9/19/2013	< .01	< .005	< .005	< .005	< .005	< .005	< .005					
MW-6	3/13/2012	< .01	< .005	< .005	< .005	< .005	< .005	< .005					
MW-6	10/12/2011	< .01	< .005	< .005	< .005	< .005	< .005	< .005					
MW-6	4/20/2010	< .01	< .005	< .005	< .005	< .005	< .005	< .005					
Dup-1	4/20/2010	< .01	< .005	< .005	< .005	< .005	< .005	< .005					
MW-6	4/7/2008	< .01	< .005	0.018	< .005	< .005	< .005	< .005					
MW- 6	4/26/2007	< .01	< .005	0.028	< .005	< .005	< .005	< .005					
MW-6	4/4/2006	< .01	< .005	< .005	< .005	< .005	< .005	< .005					
MW-6	4/22/2002	< .01	< .005	< .005	< .005	< .005	< .005	< .005					
MW-6	1/24/2001	< .01	< .005	< .005	< .005	< .005	< .005	< .005					
MW-7	9/19/2013	< .01	< .005	< .005	< .005	< .005	< .005	< .005					
MW-7	10/3/2012	< .01	< .005	< .005	< .005	< .005	< .005	< .005					
Dup-1	10/3/2012	< .01	< .005	< .005	< .005	< .005	< .005	< .005					
MW-7	3/13/2012	< .01	< .005	< .005	< .005	< .005	< .005	< .005					
MW-7	10/12/2011	< .01	< .005	< .005	< .005	< .005	< .005	< .005					
MW-7	4/21/2010	< .01	< .005	< .005	< .005	< .005	< .005	< .005					

Table 4
Ground Water Analytical Data
Former Coats & Clark Plant 1
HSI Site No. 10630

			VOCs (mg/L)										
Well ¹	Date Sampled	Carbon Disulfide	Carbon Tetrachloride	Chloroform	cis-1,2-Dichloroethene	Tetrachloroethene	1,1,1-Trichloroethane	Trichloroethene					
MW- 7	4/4/2006	< .01	< .005	< .005	< .005	< .005	< .005	< .005					
MW- 7	2/6/2003	< .1	< .005	< .005	< .005	< .005	< .005	< .005					
MW- 7	4/22/2002	< .01	< .005	< .005	< .005	< .005	< .005	< .005					
MW- 7	7/17/2001	< .01	NA	NA	NA	NA	NA	NA					
MW- 7	1/24/2001	0.011	< .005	< .005	< .005	< .005	< .005	< .005					
MW-9	9/17/2013	< .01	< .005	< .005	< .005	< .005	< .005	< .005					
MW-9	3/14/2012	< .01	< .005	< .005	< .005	< .005	< .005	< .005					
MW-9	10/12/2011	< .01	< .005	< .005	< .005	< .005	< .005	< .005					
MW-9	4/20/2010	< .01	< .005	< .005	< .005	< .005	< .005	< .005					
MW- 9	4/5/2006	< .01	< .005	< .005	< .005	< .005	< .005	< .005					
MW- 9	4/22/2002	< .01	< .005	< .005	< .005	< .005	< .005	< .005					
MW- 9	7/17/2001	< .01	NA	NA	NA	NA	NA	NA					
MW- 9	1/24/2001	0.031	< .005	< .005	< .005	< .005	< .005	< .005					
MW-10	9/18/2013	< .01	< .005	< .005	< .005	< .005	< .005	0.030					
MW-10	10/2/2012	< .01	< .005	< .005	< .005	< .005	< .005	0.027					
MW-10	3/13/2012	< .01	< .005	< .005	< .005	< .005	< .005	0.130					
MW-10	10/12/2011	< .01	< .005	< .005	< .005	< .005	< .005	0.140					
MW-10	4/20/2010	< .01	< .005	< .005	< .005	< .005	< .005	0.018					
MW- 10	4/7/2008	< .01	< .005	< .005	< .005	< .005	< .005	0.081					
MW-10	10/3/2007	< .01	< .002	0.002	0.003	< .002	< .002	0.170					
MW-10	4/25/2007	< .01	< .005	< .005	< .005	< .005	< .005	0.140					
MW-10	10/4/2006	< .01	< .005	< .005	< .005	< .005	< .005	0.240					
MW-10	4/5/2006	< .01	< .005	< .005	< .005	< .005	< .005	0.130					
MW-10	2/6/2003	< .1	< .005	< .005	< .005	< .005	< .005	0.021					
MW-10	4/22/2002	< .01	< .005	< .005	< .005	< .005	< .005	0.018					
MW-10	7/17/2001	< .01	< .005	< .005	< .005	0.005	< .005	0.022					
MW-10	1/24/2001	< .01	< .005	< .005	< .005	< .005	< .005	0.040					
MW-11	9/18/2013	< .01	< .005	0.014	< .005	< .005	< .005	< .005					
MW-11	10/3/2012	< .01	< .005	0.011	< .005	< .005	< .005	< .005					
MW-11	3/15/2012	< .01	< .005	0.011	< .005	< .005	< .005	< .005					
MW-11	10/13/2011	< .01	< .005	0.006	< .005	< .005	< .005	< .005					
MW-11	4/21/2010	< .01	< .005	0.020	< .005	< .005	< .005	< .005					
MW- 11	4/7/2008	< .01	< .005	0.006	< .005	< .005	< .005	< .005					
MW-11	10/3/2007	< .01	< .002	0.020	< .002	< .002	< .002	< .002					
MW-11	4/26/2007	< .01	< .005	0.006	< .005	< .005	< .005	< .005					
MW-11	10/4/2006	< .01	< .005	0.008	< .005	< .005	< .005	< .005					
MW-11	4/4/2006	< .01	< .005	0.008	< .005	< .005	< .005	< .005					
MW-11	4/22/2002	< .01	< .005	0.021	< .005	< .005	< .005	< .005					
MW-11	1/24/2001	< .01	< .005	0.025	< .005	< .005	< .005	< .005					
MW-12	9/17/2013	< .01	< .005	< .005	< .005	< .005	< .005	< .005					
MW-12	10/2/2012	< .01	< .005	< .005	< .005	< .005	< .005	< .005					

Table 4
Ground Water Analytical Data
Former Coats & Clark Plant 1
HSI Site No. 10630

					VOCs (mg/L)			
Well ¹	Date Sampled	Carbon Disulfide	Carbon Tetrachloride	Chloroform	cis-1,2-Dichloroethene	Tetrachloroethene	1,1,1-Trichloroethane	Trichloroethene
MW-12	4/5/2006	< .01	< .005	< .005	< .005	< .005	< .005	< .005
MW-13	9/18/2013	< .01	< .005	< .005	< .005	< .005	< .005	0.052
MW-13	10/3/2012	< .01	< .005	< .005	< .005	< .005	< .005	0.028
MW-13	3/13/2012	< .01	< .005	< .005	< .005	< .005	< .005	0.028
MW-13	10/12/2011	< .01	< .005	< .005	< .005	< .005	< .005	0.029
MW-13	4/20/2010	< .01	< .005	< .005	< .005	< .005	< .005	0.037
MW- 13	4/7/2008	< .01	< .005	< .005	< .005	< .005	< .005	0.037
MW-13	10/3/2007	< .01	< .002	< .002	< .002	< .002	< .002	0.045
MW-13	4/25/2007	< .01	< .005	< .005	< .005	< .005	< .005	0.046
MW-13	10/4/2006	< .01	< .005	< .005	< .005	< .005	< .005	0.072
MW-13	4/5/2006	< .01	< .005	< .005	< .005	< .005	< .005	0.110
MW-13	7/2/2004	< .01	< .005	< .005	< .005	< .005	< .005	0.064
MW-13	2/6/2003	< .1	< .005	< .005	< .005	< .005	< .005	0.078
MW-13	4/23/2002	< .01	< .005	< .005	< .005	< .005	< .005	0.056
MW-13	7/17/2001	< .01	< .005	< .005	< .005	< .005	< .005	0.078
MW-14	9/17/2013	< .01	< .005	< .005	< .005	< .005	< .005	< .005
MW-14	10/3/2012	< .01	< .005	< .005	< .005	< .005	< .005	< .005
MW-14	3/14/2012	< .01	< .005	< .005	< .005	< .005	< .005	< .005
MW-14	4/21/2010	< .01	< .005	< .005	< .005	< .005	< .005	< .005
MW- 14	4/7/2008	< .01	< .005	< .005	< .005	< .005	< .005	< .005
MW-14	10/3/2007	< .01	< .002	< .002	< .002	< .002	< .002	0.005
MW-14	4/25/2007	< .01	< .005	< .005	< .005	< .005	< .005	0.006
MW-14	10/4/2006	< .01	< .005	< .005	< .005	< .005	< .005	0.009
MW-14	4/6/2006	< .01	< .005	< .005	< .005	< .005	< .005	< .005
MW-14	2/6/2003	< .1	< .005	< .005	< .005	< .005	< .005	0.005
MW-14	4/23/2002	< .01	< .005	< .005	< .005	< .005	< .005	< .005
MW-14	11/26/2001	< .01	< .005	< .005	< .005	< .005	< .005	0.013
MW-15	9/18/2013	< .01	< .005	< .005	< .005	< .005	< .005	0.070
MW-15	10/4/2012	< .01	< .005	< .005	< .005	< .005	< .005	0.180
MW-15	3/14/2012	< .01	< .005	< .005	< .005	< .005	< .005	0.120
MW-15	10/13/2011	< .01	< .005	< .005	< .005	< .005	< .005	0.110
MW-15	4/21/2010	< .01	< .005	< .005	< .005	< .005	< .005	0.120
MW- 15	4/7/2008	< .01	< .005	< .005	< .005	< .005	< .005	0.120
MW-15	10/3/2007	< .01	< .002	< .002	< .002	< .002	< .002	0.087
MW-15	4/25/2007	< .01	< .005	< .005	< .005	< .005	< .005	0.068
MW-15	10/4/2006	< .01	< .005	< .005	< .005	< .005	< .005	0.038
MW-15	4/5/2006	< .01	< .005	< .005	< .005	< .005	< .005	0.087
MW-15	7/2/2004	< .01	< .005	< .005	< .005	< .005	< .005	0.130
MW-15	2/6/2003	< .1	< .005	< .005	< .005	< .005	< .005	0.320
MW-15	4/22/2002	< .01	< .005	< .005	< .005	< .005	< .005	0.320
MW-15	11/26/2001	< .01	< .005	< .005	< .005	< .005	< .005	0.210

Table 4
Ground Water Analytical Data
Former Coats & Clark Plant 1
HSI Site No. 10630

		VOCs (mg/L)										
Well ¹	Date Sampled	Carbon Disulfide	Carbon Tetrachloride	Chloroform	cis-1,2-Dichloroethene	Tetrachloroethene	1,1,1-Trichloroethane	Trichloroethene				
MW-16	9/17/2013	< .01	< .005	< .005	< .005	< .005	< .005	< .005				
MW- 16	10/5/2012	< .01	< .005	0.014	< .005	< .005	< .005	< .005				
MW- 16	4/7/2008	< .01	< .005	0.014	< .005	< .005	< .005	< .005				
MW-16	4/27/2007	< .01	< .005	0.009	< .005	< .005	< .005	< .005				
MW-16	4/5/2006	< .01	< .005	< .005	< .005	< .005	< .005	< .005				
MW-16	4/23/2002	< .01	< .005	< .005	< .005	< .005	< .005	< .005				
MW-16	3/6/2002	< .01	< .005	< .005	< .005	< .005	< .005	< .005				
MW-17	9/17/2013	< .01	< .005	< .005	< .005	< .005	< .005	< .005				
MW- 17	10/5/2012	< .01	< .005	< .005	< .005	< .005	< .005	< .005				
MW- 17	3/14/2012	< .01	< .005	< .005	< .005	< .005	< .005	< .005				
MW- 17	4/7/2008	< .01	< .005	< .005	< .005	< .005	< .005	< .005				
MW-17	4/26/2007	< .01	< .005	< .005	< .005	< .005	< .005	< .005				
MW-17	4/5/2006	< .01	< .005	< .005	< .005	< .005	< .005	< .005				
MW-17	4/23/2002	< .01	< .005	< .005	< .005	< .005	< .005	< .005				
MW-17	3/6/2002	< .01	< .005	< .005	< .005	< .005	< .005	< .005				
MW-18	9/19/2013	< .01	< .005	< .005	< .005	< .005	< .005	0.014				
MW-18	3/15/2012	< .01	< .005	< .005	< .005	< .005	< .005	0.008				
MW-18	10/12/2011	< .01	< .005	< .005	< .005	< .005	< .005	0.011				
MW-18	4/20/2010	< .01	< .005	< .005	< .005	< .005	< .005	< .005				
MW- 18	4/7/2008	< .01	< .005	< .005	< .005	< .005	< .005	0.016				
MW-18	4/26/2007	< .01	< .005	< .005	< .005	< .005	< .005	0.012				
MW-18	4/4/2006	< .01	< .005	< .005	< .005	< .005	< .005	< .005				
MW-18	10/22/2003	< .01	< .005	< .005	< .005	< .005	< .005	< .005				
MW-19	9/17/2013	< .01	< .005	< .005	< .005	< .005	< .005	< .005				
MW-19	10/2/2012	< .01	< .005	< .005	< .005	< .005	< .005	< .005				
MW-19	3/14/2012	< .01	< .005	< .005	< .005	< .005	< .005	< .005				
MW-19	10/12/2011	< .01	< .005	< .005	< .005	< .005	< .005	< .005				
MW-19	4/23/2010	< .01	< .005	< .005	< .005	< .005	< .005	< .005				
MW-19	4/5/2006	< .01	< .005	< .005	< .005	< .005	< .005	< .005				
MW-19	10/21/2003	< .01	< .005	0.018	< .005	< .005	< .005	< .005				
MW-20	9/19/2013	< .01	< .005	< .005	< .005	< .005	< .005	< .005				
MW-20	10/5/2012	< .01	< .005	< .005	< .005	< .005	< .005	< .005				
MW-20	4/18/2012	< .01	< .005	< .005	< .005	< .005	< .005	< .005				
MW- 20	4/7/2008	< .01	< .005	< .005	< .005	< .005	< .005	< .005				
MW-20	4/25/2007	< .01	< .005	< .005	< .005	< .005	< .005	< .005				
MW-20	4/6/2006	< .01	< .005	< .005	< .005	< .005	< .005	< .005				
MW-20	10/21/2003	< .01	< .005	< .005	< .005	< .005	< .005	< .005				
MW-21	9/18/2013	< .01	< .005	< .005	< .005	< .005	< .005	< .005				
MW-21	12/20/2012	< .01	< .005	< .005	< .005	< .005	< .005	0.023				
MW-21	10/4/2012	< .01	< .005	< .005	< .005	< .005	< .005	0.023				
MW-21	3/15/2012	< .01	< .005	< .005	< .005	< .005	< .005	< .005				

Table 4
Ground Water Analytical Data
Former Coats & Clark Plant 1
HSI Site No. 10630

			VOCs (mg/L)									
Well ¹	Date Sampled	Carbon Disulfide	Carbon Tetrachloride	Chloroform	cis-1,2-Dichloroethene	Tetrachloroethene	1,1,1-Trichloroethane	Trichloroethene				
MW-21	10/24/2011	< .01	< .005	< .005	< .005	< .005	< .005	0.011				
MW-22	9/18/2013	< .01	< .005	0.006	< .005	< .005	< .005	0.086				
MW-22	10/4/2012	< .01	< .005	< .005	< .005	< .005	< .005	0.320				
MW-22	3/14/2012	< .01	< .005	< .005	< .005	< .005	< .005	0.360				
MW-22	10/26/2011	< .01	< .005	< .005	< .005	< .005	< .005	0.420				
MW-23	9/18/2013	< .01	< .005	< .005	< .005	< .005	< .005	0.072				
MW-23	10/5/2012	< .01	< .005	< .005	< .005	< .005	< .005	0.054				
Dup-2	10/5/2012	< .01	< .005	< .005	< .005	< .005	< .005	0.049				
MW-23	3/15/2012	< .01	< .005	< .005	< .005	< .005	< .005	0.033				
MW-23	10/26/2011	< .01	< .005	< .005	< .005	< .005	< .005	0.006				
MW-24	9/17/2013	< .01	< .005	< .005	< .005	< .005	< .005	< .005				
MW-24	5/2/2013	< .01	< .005	< .005	< .005	< .005	< .005	< .005				
MW-25	9/17/2013	< .01	< .005	< .005	< .005	< .005	< .005	< .005				
MW-25	5/2/2013	< .01	< .005	< .005	< .005	< .005	< .005	< .005				

- 1. Well MW-8 has been dry since it was installed in October 2000. MW-12 had not been sampled for VOCs prior to April 5, 2006.
- 2. MW-111 was a blind duplicate of MW-1.
- 3. Dup-1 and Dup-2 collected on 4/20-21/10 were duplicates of MW-6 and MW-4, respectively.
- 4. NA = Not Analyzed.
- 5. Highlighted Data Exceeds the HSRA Type 1 RRS. Type 1 RRS are not necessarily the cleanup standards for the site, but this highlighting is shown for informational purposes.

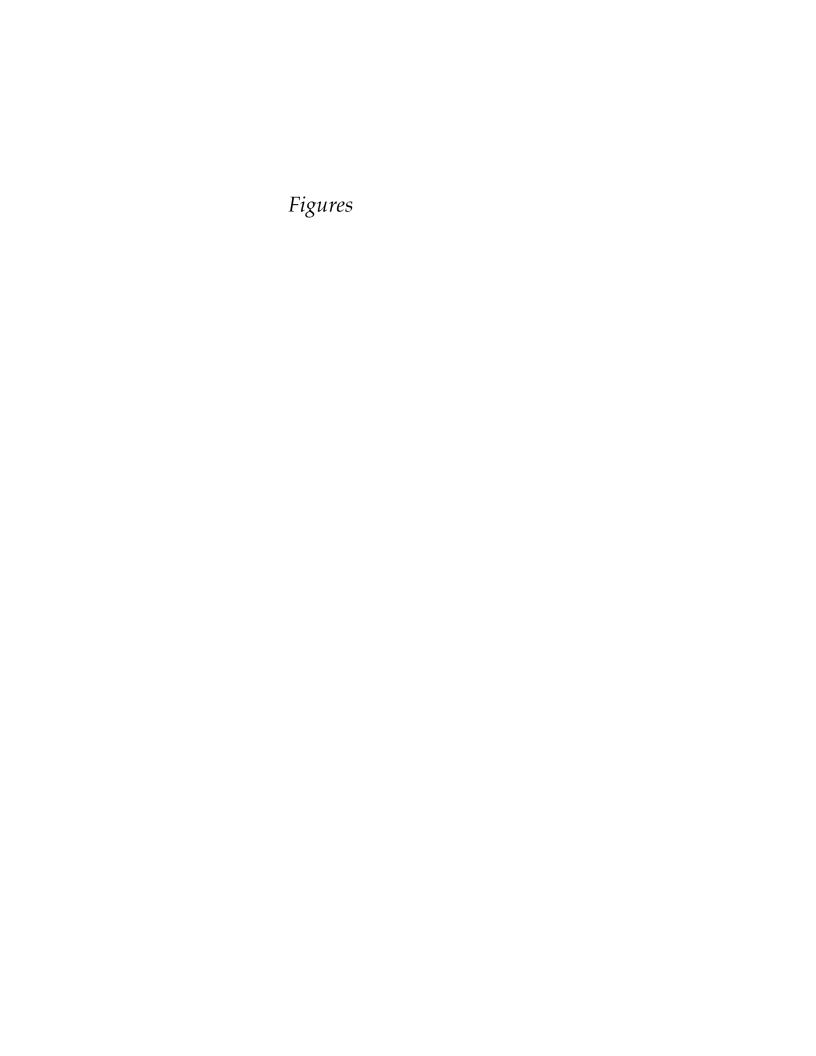
Table 5
Surface Water Analytical Data
Coats Doyle Street - Toccoa, GA
HSI Site No. 10630

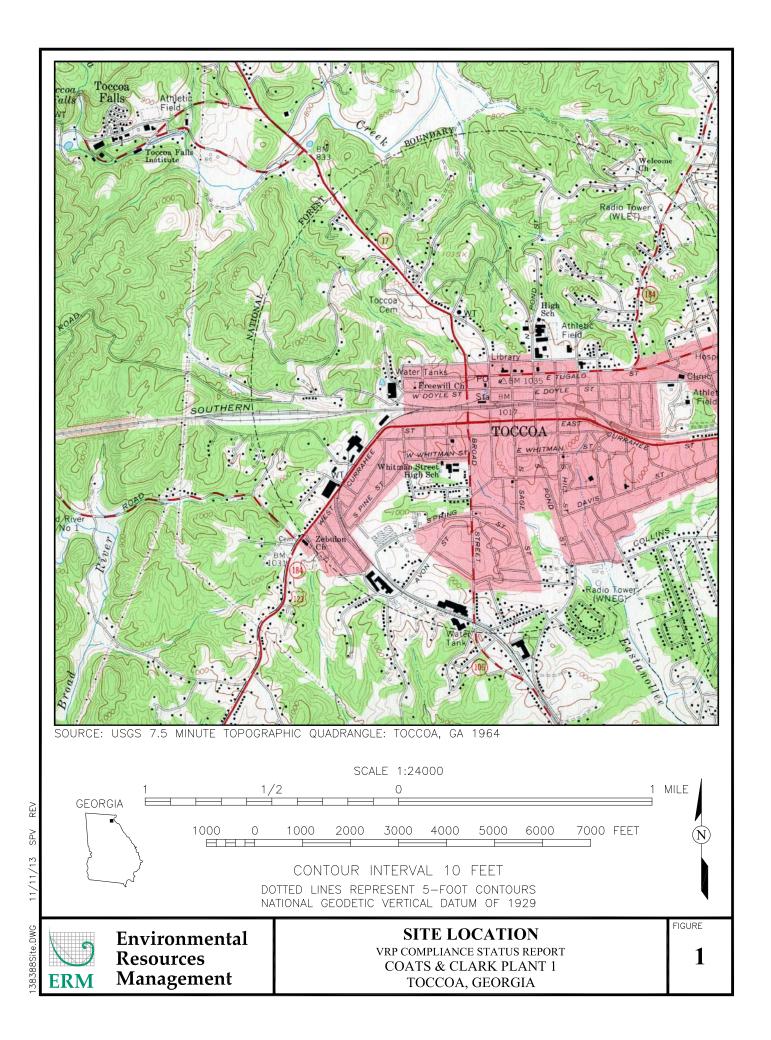
					Analysis Results	(ug/L)			
_	Well ID	Carbon Disulfide	Carbon Tetrachloride	Chloroform	cis-1,2-Dichloroethene	Tetrachloroethene	1,1,1-Trichloroethane	Trichloroethene	Toluene
	SW-1	<10	<5	<5	<5	<5	<5	<5	<5
	SW-2	<10	<5	<5	<5	<5	<5	<5	<5
Aug-11	SW-3	<10	<5	<5	<5	<5	<5	<5	5.1
	SW-4	<10	<5	<5	<5	<5	<5	<5	<5
	SW-5	<10	<5	<5	<5	<5	<5	<5	<5
	SW-1	<10	<5	<5	<5	<5	<5	<5	<5
	SW-2	<10	<5	<5	<5	<5	<5	<5	<5
Oct-11	SW-3	<10	<5	<5	<5	<5	<5	<5	<5
	SW-4	<10	<5	<5	<5	<5	<5	<5	<5
	SW-5	<10	<5	<5	<5	<5	<5	<5	<5
	SW-1	<10	<5	<5	<5	<5	<5	<5	<5
	SW-2	<10	<5	<5	<5	<5	<5	<5	<5
Feb-12	SW-3	<10	<5	<5	<5	<5	<5	<5	<5
	SW-4	<10	< 5	<5	<5	<5	<5	7.0	<5
	SW-5	<10	<5	<5	<5	<5	<5	<5	<5
	SW-1	<10	<5	<5	<5	<5	<5	<5	<5
	SW-2	<10	<5	<5	<5	<5	<5	<5	<5
Apr-12	SW-3	<10	< 5	<5	<5	<5	<5	<5	<5
	SW-4	<10	< 5	<5	<5	<5	<5	<5	<5
	SW-5	<10	<5	<5	<5	<5	<5	<5	<5
	SW-1	NS	NS	NS	NS	NS	NS	NS	NS
	SW-2	<10	< 5	<5	<5	<5	<5	15.0	<5
Oct-12	SW-3	<10	<5	<5	<5	<5	<5	5.7	<5
	SW-4	<10	<5	<5	<5	<5	<5	<5	<5
	SW-5	<10	<5	<5	<5	<5	<5	<5	<5
	SW-1	<10	<5	<5	<5	<5	<5	<5	<5
	SW-2	<10	<5	<5	<5	<5	<5	<5	<5
Sep-13	SW-3	<10	<5	<5	<5	<5	<5	<5	<5
	SW-4	<10	<5	<5	<5	<5	<5	<5	<5
	SW-5	<10	<5	<5	<5	<5	<5	<5	<5

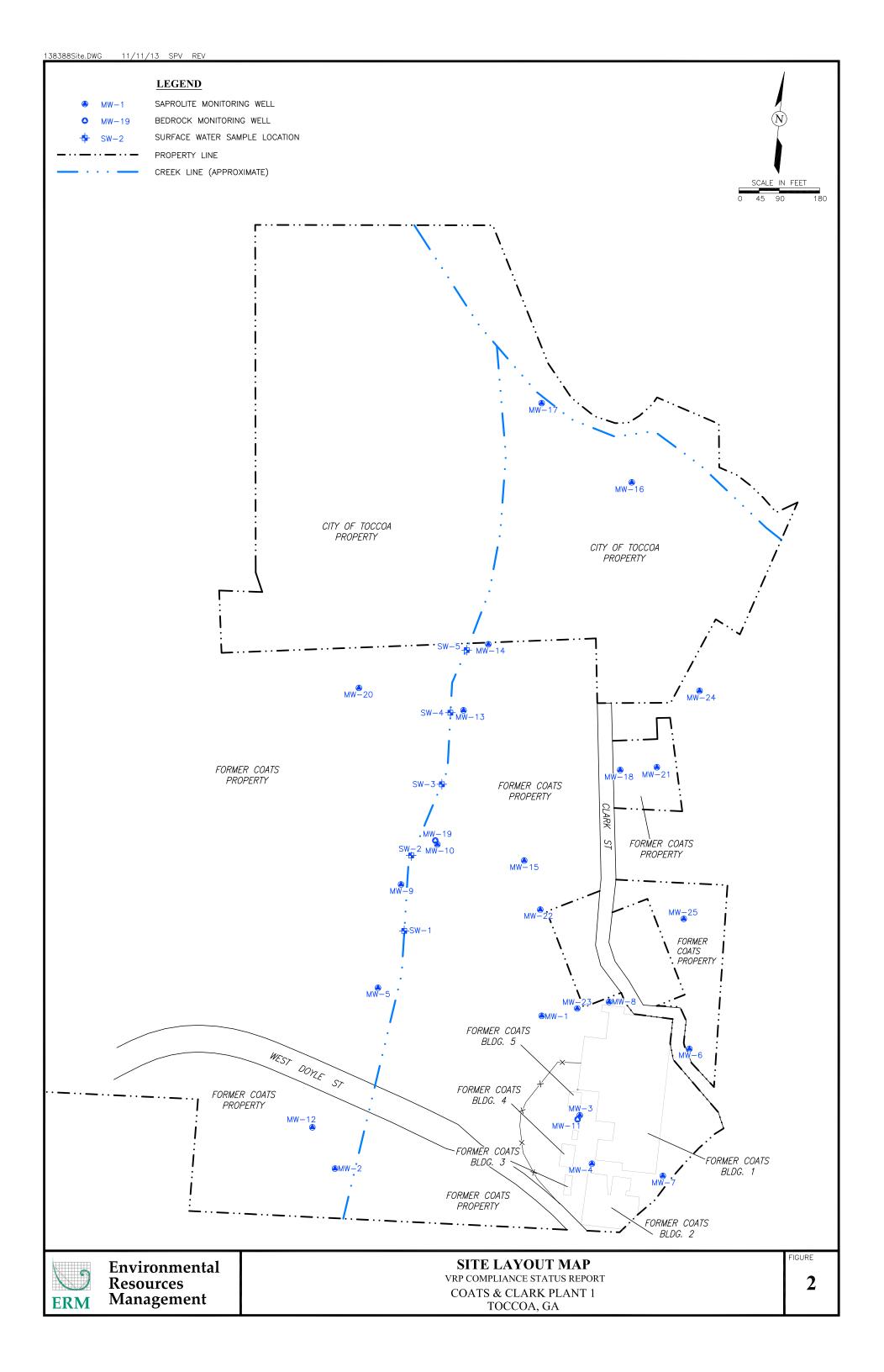
Bold data indicates a value above the detection limit NS = Not Sampled

Table 6 - Time Step Results Coats and Clark Plant 1 Toccoa, Georgia

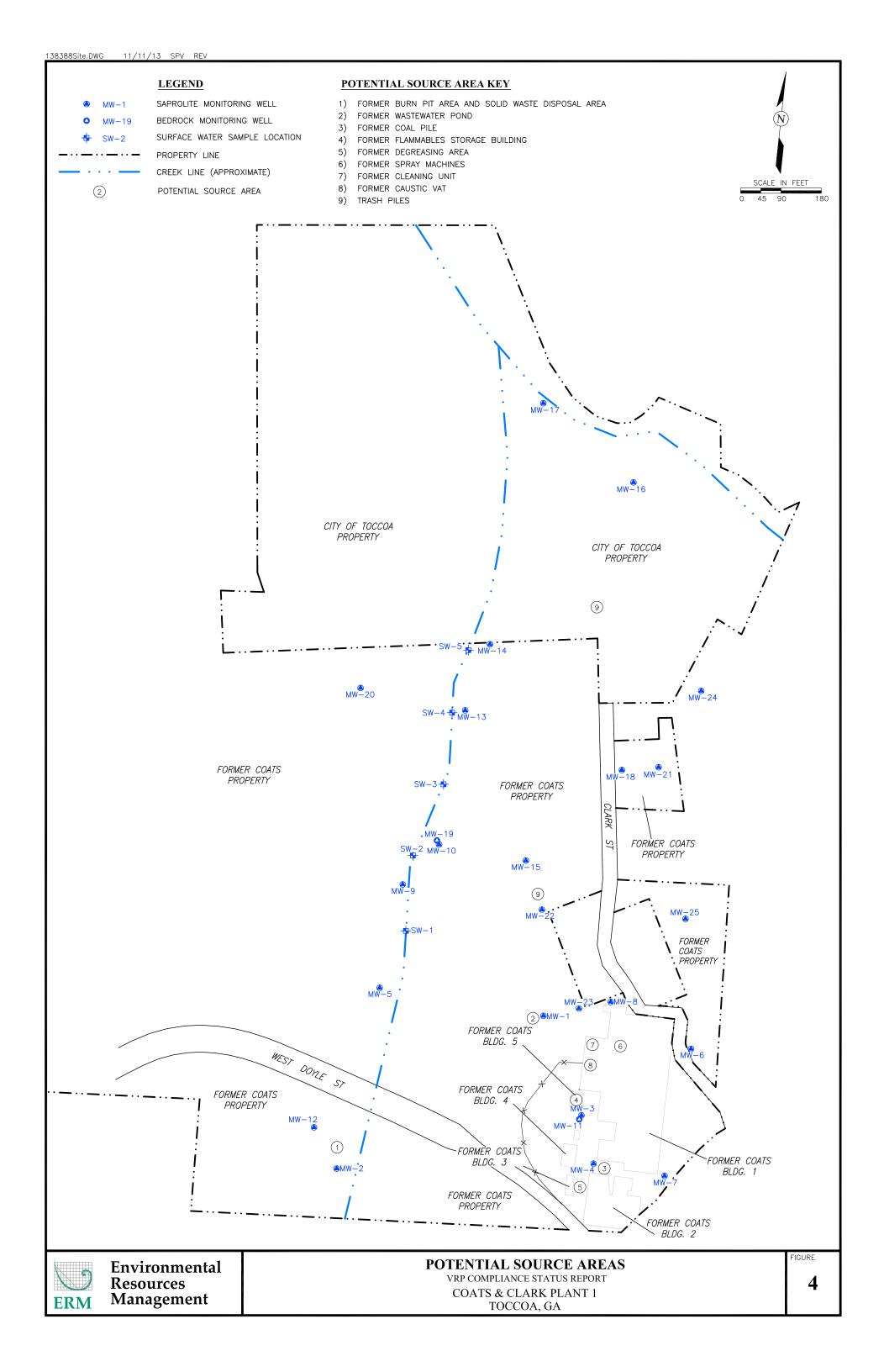
Protection of Groundwater Time Step Results

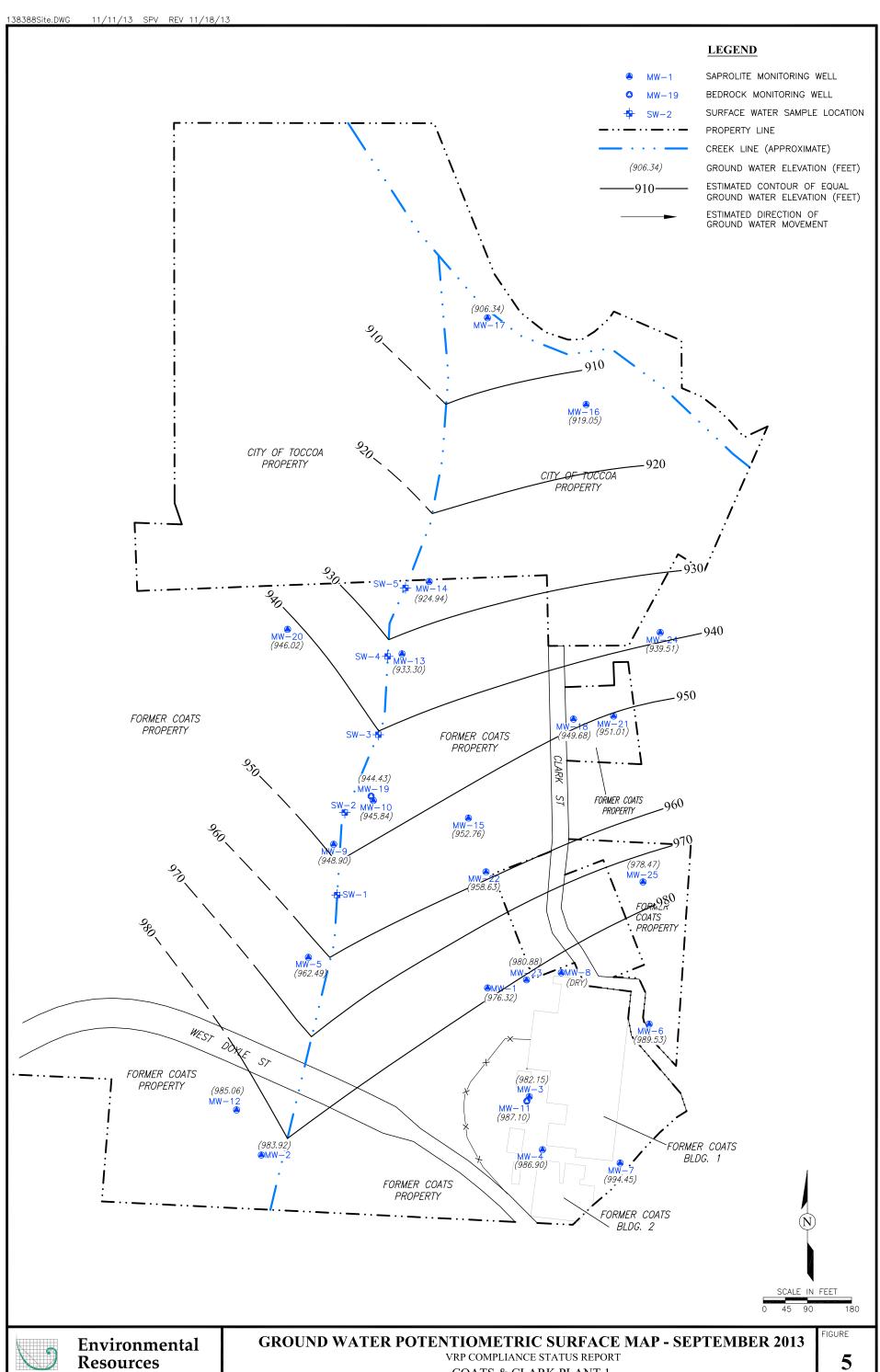

			<u>.</u>		TCE Co	ncentration	n in mg/L					
Simulation		Distance from Source Area										
Time									POD		POE	
	0	150	300	450	600	750	900	1050	1200	1350	1500	
60	0.550	0.050	0.025	0.015	0.010	0.006	0.004	0.002	0.001	0.001	0.000	
65	0.550	0.051	0.025	0.015	0.010	0.007	0.005	0.003	0.002	0.001	0.001	
70	0.550	0.051	0.025	0.016	0.011	0.007	0.005	0.003	0.002	0.001	0.001	
75	0.550	0.051	0.025	0.016	0.011	0.008	0.005	0.004	0.002	0.002	0.001	
80	0.550	0.051	0.026	0.016	0.011	0.008	0.006	0.004	0.003	0.002	0.001	
85	0.550	0.051	0.026	0.017	0.012	0.009	0.006	0.004	0.003	0.002	0.001	
90	0.550	0.051	0.026	0.017	0.012	0.009	0.007	0.005	0.003	0.002	0.002	
95	0.550	0.051	0.026	0.017	0.012	0.009	0.007	0.005	0.004	0.003	0.002	
100	0.550	0.051	0.026	0.017	0.012	0.009	0.007	0.005	0.004	0.003	0.002	
105	0.550	0.051	0.026	0.017	0.013	0.009	0.007	0.006	0.004	0.003	0.002	
110	0.550	0.052	0.026	0.017	0.013	0.010	0.008	0.006	0.005	0.003	0.003	
115	0.550	0.052	0.026	0.017	0.013	0.010	0.008	0.006	0.005	0.004	0.003	
120	0.550	0.052	0.026	0.017	0.013	0.010	0.008	0.006	0.005	0.004	0.003	
1000	0.550	0.052	0.027	0.018	0.014	0.011	0.009	0.008	0.007	0.006	0.005	

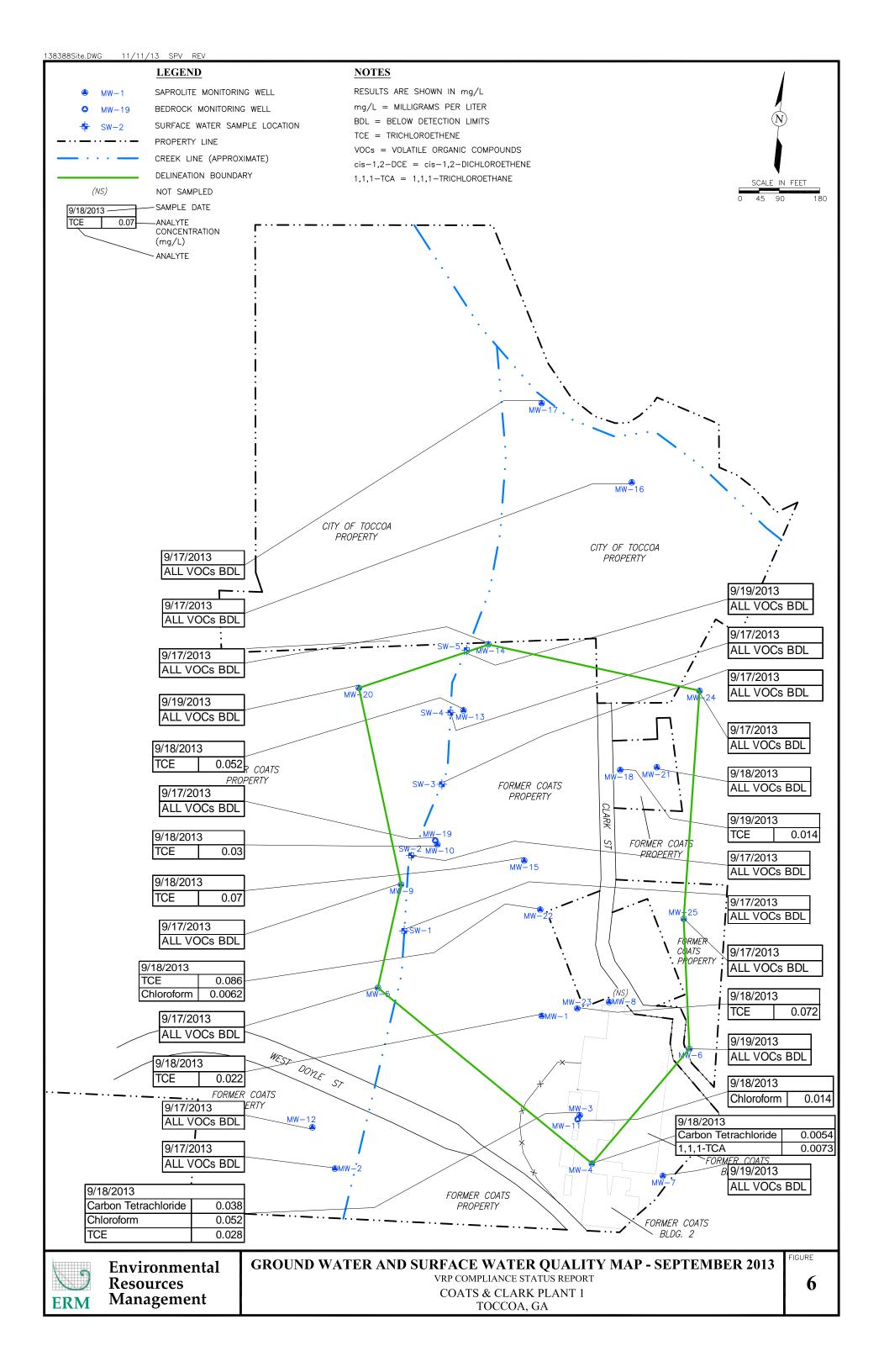

^{*}Based on setting the source area concentration to the protection of groundwater source area standard of 550 ppb

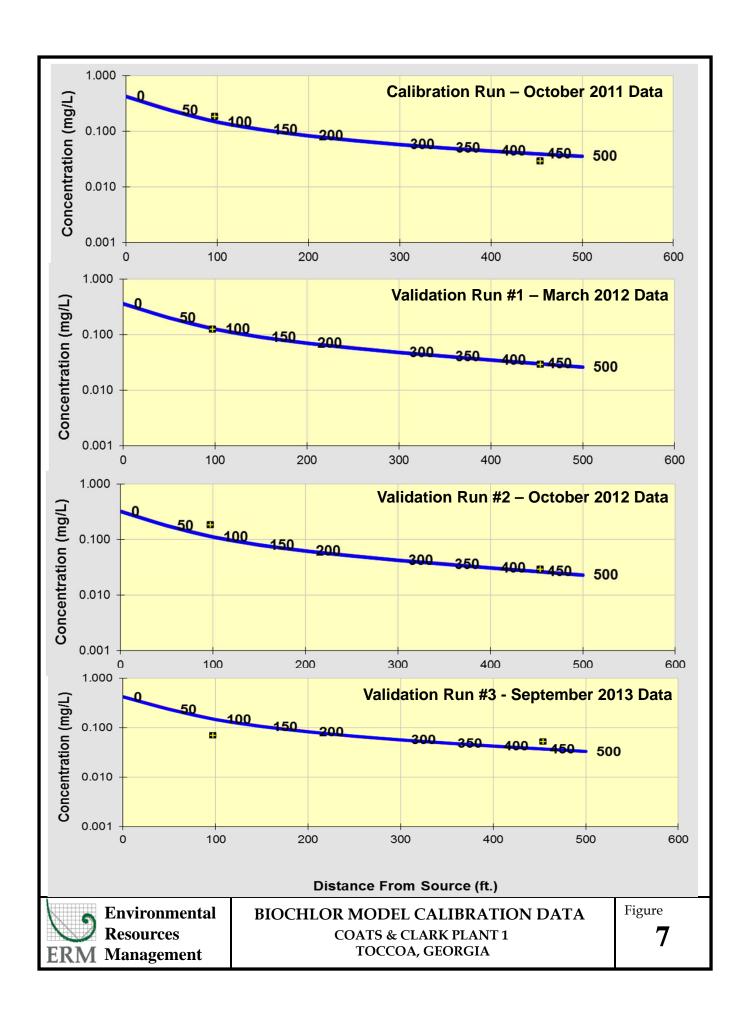

Protection of Surface Water Time Step Results

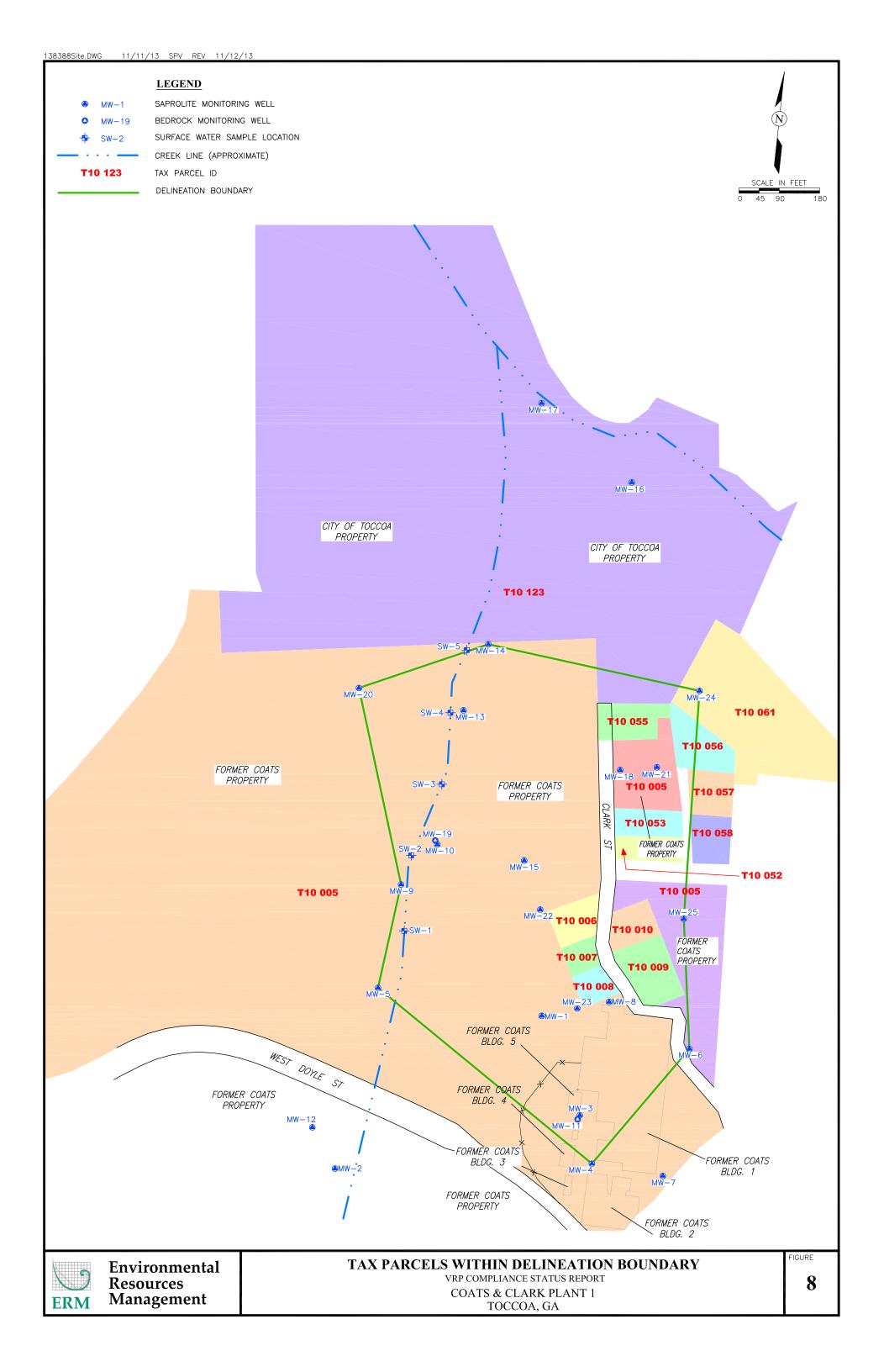
					TCE Co	ncentration	in mg/L				
Simulation					Distanc	ce from Sou	rce Area				
Time											POD
	0	24	48	72	96	120	144	168	192	216	240
60	0.625	0.585	0.498	0.423	0.365	0.320	0.284	0.255	0.231	0.211	0.195
65	0.625	0.585	0.498	0.423	0.365	0.320	0.284	0.255	0.231	0.212	0.195
70	0.625	0.585	0.498	0.423	0.365	0.320	0.284	0.255	0.231	0.212	0.195
75	0.625	0.585	0.498	0.423	0.365	0.320	0.284	0.255	0.231	0.212	0.195
80	0.625	0.585	0.498	0.423	0.365	0.320	0.284	0.255	0.231	0.212	0.195
85	0.625	0.585	0.498	0.423	0.365	0.320	0.284	0.255	0.231	0.212	0.195
90	0.625	0.585	0.498	0.423	0.365	0.320	0.284	0.255	0.231	0.212	0.195
95	0.625	0.585	0.498	0.423	0.365	0.320	0.284	0.255	0.231	0.212	0.195
100	0.625	0.585	0.498	0.423	0.365	0.320	0.284	0.255	0.231	0.212	0.195
105	0.625	0.585	0.498	0.423	0.365	0.320	0.284	0.255	0.231	0.212	0.195
110	0.625	0.585	0.498	0.423	0.365	0.320	0.284	0.255	0.231	0.212	0.195
115	0.625	0.585	0.498	0.423	0.365	0.320	0.284	0.255	0.231	0.212	0.195
120	0.625	0.585	0.498	0.423	0.365	0.320	0.284	0.255	0.231	0.212	0.195
1000	0.625	0.585	0.498	0.423	0.365	0.320	0.284	0.255	0.231	0.212	0.195


^{*}Based on setting the source area concentration to the protection of surface water standard of 625









Appendix A Summary of Hours for Professional Engineer Appendix A Summary of Hours for Professional Engineer Coats Doyle Street - Toccoa, GA HSI Site No. 10630

Month	Number of Hours Invoiced by Jennifer Byrd, P.E.	Activities Performed by Jennifer Byrd P.E. Since the Previous Submittal
May-13	0.0 hours	No hours invoiced
Jun-13	22.0 hours	Preparation for and meeting with GA EPD. Ground water modeling.
Jul-13	0.0 hours	No hours invoiced
Aug-13	0.0 hours	No hours invoiced
Sep-13	0.0 hours	No hours invoiced
Oct-13	4.0 hours	Ground water modeling.

Appendix B Ground Water Sampling and Stream Flow Measurement Log Forms

WATER LEVEL MEASUREMENT DATA SHEET

Client: Coats, Toccoa, GA	Date: 16-Sep-13

Site/Location: Toccoa, GA

Sampler's Name: Ryan McJilton/Tommy Fisher

Well LD.	Date	Time	Well Diameter (inches)	Depth to Water (Feet BTOC)	Total Depth (Feet BTOC)	Notes (Odox, stelltated pump present, note if lock/cap need replacment etc.)
MW-2	9/19			CNL		
MW-4		MID		4741		
MW-5		1340		454		
MW-6	9/14/13	0100		CHL ?	4.65	
MW-7	31. 1.	1425		44.25		
MW-8		1430		DR+		
MW-9		1335		6.47		
MW-11		1400	411	45.13		
MW-12	,	1120	2"	17:14		
MW-14		1330		5419		
MW-16		1235		16.43		
MW-17		1730	:	12.71		
MW-19		1350	411	152		
MW-20	1	1325		466		
MW-21		1705		49.12		
MW-24		1130	211	23,42		
MW-25		1140		11.17		
MW-3*		14119		49-76		
MW-18*		715		60.00		
MW-1*		1305		23,12		Meds ac 1005
MW-13*		1320		11.34	,	V 11/
MW-23*		1300		71.43		
MW-15*		1310		4654		
MW-10*		1315		779		
MW-22*		1250	_	33.23	>	Needs local
						,

*Measure these water levels LAST...since there is a chance they may have residual permanganate (which could interfere with water level meter). Also make note in the log book if you see residual permanganate coloring (purple/pink) in any wells.

K			6	1
3-1	1	7	Ì.	ğ

	Site/Location:	Toccoa, GA					A.:	· · · · · · · · · · · · · · · · · · ·	Sampling Date: 4/17/2013 Sampler's Name: R. McJilton
	Well ID:	SW-1		Pur	np Type/Model:	A CONTRACTOR OF THE PARTY OF TH			Sample Collection Time: 09/5
Т					ubing Material:		1		Sample Purge Rate (L/min) ⁹ :
					itake Depth (ft):			Sample ID: $SW-1$	
We	ell Diameter (in):			Start/St	op Purge Time:			QA/QC Collected?	
Vell Volume (gal) = 0.041d ² h:			Purg	e Rate (L/min)²:			Madagada William Comment	QA/QC Collected?
ell diameter (i	nches) h = lengt	n of water column			rge Volume (L):				Laboratory Analyses:
reli Condition: _ urge Method: _			-	ing Method (chec	k all that apply):	soda straw (\ Bladder pum		□ vacuum jug rge (all analytes)	
Time	Temp. (°C)	Spec. Cond. (mS/cm)	DO (mg/L)	pH (SU)	ORP (mV)	Turbidity (NTUs)	Purge Volume (L)	H ₂ O Depth (ff)	Notes (Purge method, water clarity, odor, purge rate, issues with pump/well/weather/etc.)
10910	15.03	:120	24.06	772	-27.9				
	· · · · · · · · · · · · · · · · · · ·								
									11111
					_,			.	
						·			
						:			
	,					:			
						:			

						:		·	
				<u> </u>					
			<u> </u>			:			
						:			
		,	+/- 10% (see note	+/-	+J- 10 mV (see note	+/- 10% or <10 NTUs	(see note	(see note	
Stabilizing	+/-	1 1/-			helow) ⁸		below)4	below)6	

	į.		
F	R	N	/Ī

RM	Client:	Coats			·	Project No.:	138388		Sampling Date: 9/17/2013
	Site/Location:	Toccoa, GA		,,,,		:			Sampler's Name: R. McJilton
	•					:			2011 1
	Well ID:	5W-2		. Pur	mp Type/Model:-	7	. <u></u>		Sample Collection Time: <u>2940</u>
Т	otal Depth (ft) ¹ :				Fubing Material:				Sample Purge Rate (L/min) ³ : Sample ID: 5 12 - 2
Dep	th to Water (ft):			Pump Ir	ntake Depth (ft):	-	1		
We	II Diameter (in):		<u></u>			`			QA/QC Collected?
Well Volume (gaí) = 0.041d ² h:			Purg	e Rate (L/min)²:			The Party of the P	QA/QC I.D.
well diameter (i	nches) h = lengt	h of water column	(feet)	Total Pu	rge Volume (L):				Laboratory Analyses:
Vell Condition:		·	Sampl	ing Method (chec	k all that apply):	☐ soda straw (\	OCs)	☐ vacuum jug (
						☐ Bladder pump	= pump discha	rge (all analytes)	☐ Bailer (only used if necessary)
Time	Temp.	Spec. Cond.	DO	pН	ORP	Turbidity	Purge Volume	H ₂ O Depth	Notes (Purge method, water clarity, odor, purge rate, issues with
11111	(°C)	(mS/cm)	(mg/L)	(SU)	(mV)	(NTUs)	(L)	(ft)	pump/well/weather/etc.)
435	14.49	,122	11.30	6.64	14.1	****	Arthys.	Newspan	
					<u></u>			,,	
						:			
						:			
		"-				:			
									
				<u> </u>					
-									,
					, i				
Stabilizing	y -	+/-	+/- 10% (see note	+/-	+/+ 10 mV (see note below) ⁸	+/- 10% or <10 NTUs	(see note below) ^s	(see note below) ⁶	
Purge rate to be 0.5 Sampling rate to be Field parameter mu	lpm or less. 0,25 lpm or less. assurements to be recu	39/6 mill after purging and st orded every 3 to 5 minute recent consecutive measure to be 0.3 ft or less, P	es,		y be restling on the wa	il bottom. : :		- 1	

RM	Client:	Coats					roject No.: _	138388		Sampling Date: 9/17/2013
	Site/Location:	Toccoa, GA								Sampler's Name: R. McJilton
	•	., .,,				:				i a a f
	Well ID:	5W-3		Pur	np Type/Model:		Statement of the last of the l			Sample Collection Time: 1000
T	otal Depth (ft) [†] : [Pump Intake Depth (ft):						Sample Purge Rate (L/min) ³ :
	h to Water (ft):									Sample ID: 400 - 3
We	l Diameter (in):						.,,			QA/QC Collected?
Well Volume (g	(al) = $0.041d^2h$:		Maria Ma	Purg	e Rate (L/min)²:					QA/QC I.D.
well diameter (in	iches) h = lengti	h of water column	(feet)	Total Pu	rge Volume (L):		****		The second second	Laboratory Analyses:
Well Condition:			Sampl	ling Method (chec	k all that apply):	□ s	oda straw (\	VOCs)	vacuum jug	(SVOCs)
Purge Method:						_ □ B	ladder pum	p = pump discha	rge (all analytes)	☐ Bailer (only used if necessary)
					CPP	Lecono	urbidity	Purge Volume	H₂O Depth	Notes (Purge method, water clarity, odor, purge rate, issues with
Time	Temp. (°C)	Spec. Cond. (mS/cm)	DO (mg/L)	pH (SU)	ORP (mV)		NTUs)	ringe volume (L)	n₂O Depin (ft)	pump/well/weather/etc.)
W66	4.45	:117	4.55	1.47	4.4	(2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	**************************************	Phresion.	- Julyanna	
1-1/	1777	# 1 4	1.77	- 1 · (€			_			
		.,								
						1				
						1		.,,		
						-				
			ļ			-		***		
						1				
						+-				
						+ -				
						1				
						 				
								<u> </u>		
-										
Stabilizing	7)-	+/-	+/- 10% (see note	+/-	+/- 10 mV (see note		- 10% or	(see note	(see note	
Criteria ⁵ - Do not measure dept	1°C h to bottom of well u	3% intil after purging and sa	below)	0.1 unit repending fines that ma	below) ⁶ y be resting on the w	eli bollor	n NTUs	below)*	below)"	
- Purge rate to be 0.5 f - Sampling rate to be f	pm or less. 1.25 lpm or less.									
- Field parameter mea	surements to bu reco.	rded every 3 to 5 minute recent consecutive meas	arements.	. In housead so necession	or to keen drawdown	helow 0	.3 ft.			
 Monitor DTW every 	5 mln. Well drawdo	wn to be 0.3 ft or less. P	" SESD Slandard Oper	s be lowered as necessar alling Procedure. erating Procedure.	y to Auch diametrien	. JOIOW U	41,			

RM	Client:	Coats				Project No.:	138388		Sampling Date: 7/17/7613			
	Site/Location:	Toccoa, GA						··	Sampler's Name: R. McJilton			
						:			1116			
	Well ID:	5W-4		- Pu	mp Type/Model	COLUMN TO SERVICE STATE OF THE			Sample Collection Time: 1015			
Total Depth (ft) ¹				-	Tubing Material:				Sample Purge Rate (L/min) ³ :			
Dep	pth to Water (ft):		The state of the s	Pump I	ntake Depth (ft):	·			Sample ID:			
We	ell Diameter (in):		The state of the s	Start/S	top Purge Time:				QA/QC Collected?			
Well Volume ((gal) = 0.041d ² h:			Purg	e Rate (L/mln)²:			No. of Street, or other Parks	QA/QC I.D.			
vell diameter (i	inches) h = lengt	h of water column	(feet)	Total Pu	ırge Volume (L):				Laboratory Analyses:			
Vell Condition:			Samp	ling Method (chec	k all that apply):	☐ soda straw (VOCs)	🗆 vacuum jug	(SVOCs) pump head discharge (Inorganics including cyanide)			
urge Method:						☐ Bladder pum	p = pump discha	rge (all analytes)	Bailer (only used if necessary)			
			DO	pli	ORP	Turbidity	Purge Volume	H₂O Depth	Notes (Purge method, water clarity, odor, purge rate, issues with			
Time	Temp. (°C)	Spec. Cond. (mS/cm)	(mg/L)	(SU)	(mV)	(NTUs)	(L)	(ft)	pump/weil/weather/etc.).			
10	14.46	114	9.54	6.90	14.3	paterior.	*None	Name .				
, ,	1 1 / 0	÷ {	1		! X/							
								"				
	<u> </u>											
			-									
•												
				<u> </u>			1.00					
	-			 								
				 								
				 								
				<u> </u>								
			 	 -	<u> </u>	<u> </u>		_				
	-	-		-	-	 						
		-	-	-		 		 				
	ļ		-	<u> </u>		 		 				
		<u> </u>		-	-			-				
	ton a petition of	esservice of the	To the state of the		-7-40 -T							
Jayres - Jayres	化化工场银矿化工		+/- 10% (see note	+/-	+/- 10 mV (see note	+/- 10% or	(see note	(see note				
Stabilizing	+/-	+/-	(occ more			<10 NTUs	below)4	below)6				

ERM Client: Coats						Project No.:	138388		Sampling Date: <u>1/14/20, 3</u>				
	Site/Location:	Toccoa, GA		• ***					Sampler's Name: R. McJilton				
		Ch 1-5		_					Sample Collection Time: 1305				
	Well ID:	210 2		_ Pu	ımp Type/Moateli: Tubing Material:	. 1		•	Sample Collection Time: 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9				
	note to Water (#):		****	– Pumn l	Intake Depth (ft):				Sample ID: SW-5				
Site/Location: Toccoa, GA Well ID: 5W - 5 Pump Type/Mo Total Depth (ft): Tubing Mate Depth to Water (ft): Pump Intake Depth Well Diameter (in): Start/Stop Purge Ti									QA/QC Collected? YES				
Well Volume (gal) = 0.041d²h: Purge Rate (L/min)²:									QAYQCID. DUP-03				
d = well diameter	(inches) h = lengt	h of water column	(feet)	Total Pi	urge Volume (L):			Management	Laboratory Analyses: VOC3 8760				
Well Condition	n:		Samp	oling Method (ched	ck all that apply):			uacuum jug					
Purge Method	d:					Bladder pun	np = pump discha	irge (all analytes)					
Time	Temp. (°C)	Spec. Cond. (mS/cm)	DO (mg/L)	pH (SU)	ORP (mV)	Turbidity (NTUs)	Purge Volume (L)	H ₂ O Depth (ft)	Notes (Purge method, water clarity, odor, purge rate, issues with pump/well/weather/etc.)				
1300	14.89	.112	9.57	6.65	166								
•						:							
,							`						
				<u> </u>									
				<u> </u>									
						<u> </u>							
								<u></u>					
						· · · · ·							
						:							
				.r-\-									
				<u> </u>				,,					
				 		_							
			-										
		<u> </u>											
					233-200-200-200-200-200-200-200-200-200-	- In a Virginia con .							
Stabilizing Criteria ⁵	+/- 1°C	+/- 3%	+/- 10% (see note below) ²	+/- 0.1 unit	+/- 10 mV (see note below) ^s	+/- 10% or <10 NTUs	(see note below) ⁴	(see note below) ⁶					

- Criteria? 1°C 3% below: U.1 unit 50000 (1) Detow: S10.1N.

 (1) Du not measure depth to bettom of well until after purging and sampling to reduce resuspending fines that may be realing on the well bottom.

 (2) Purge rate to be 0.5 pm or less.

 (3) Sampling rate to be 0.25 pm or less.

 (3) Sampling rate to be 0.25 pm or less.

 (5) Stabilization criteria based on three most recorded every 3 to 5 minutes.

 (6) Measuled t ITM very 5 min. Well drawdown to be 0.3 R or less. Purge/sampling rate to be lowered as necessary to keep drawdown below 0.3 rt.

 (7) DO is not a stabilization criterion for the "Croundwater sampling" SF3D Standard Operating Procedure.

 (8) ORP is not a stabilization criterion for the "Croundwater sampling" SF3D Standard Operating Procedure.

要	ľ		.
盐			1
5-1	K	١	Л

ERM						Project No.:	138388		. Sampling Date:	9/18/13
ELECTIVE.	Client:					Floject No	150500		Sampler's Name: 1	. Fisher
	Site/Location:				<u>, -</u> !	0 -11	1. 10.		_	1005
	Well ID:	MW-	· 1	•	mp Type/Model:	Perista	-7	pump	Sample Collection Time: Sample Purge Rate (L/min) ³ :	soda straw
7	Fotal Depth (ft) ¹ :	30		•	Tubing Material:	<u>1et(6</u> 28			Sample Purge Rate (Limin):	mw-1
Dep	oth to Water (ft):	23,21		•	ntake Depth (ft):	934			QA/QC Collected?	None
	ell Diameter (in):	11		-	top Purge Time:	100mH	min		QA/QC I.D.	
	gal) = 0.041d ² h:	<u> </u>		-	e Rate (L/min) ² :	4 1	red o w		Laboratory Analyses:	VOC
	inches) h = lengtl Cood	h of water column	(feet)	rotal Pt ling Method (chec	irge Volume (L):			vacuum jug (scharge (Inorganics including cyanide)
Well Condition:	Low	flow	. Samp	ing memba (anec				rge (all analytes)	☐ Bailer (only u	sed if necessary)
Purge Method:	<u> </u>	איני אי								water clarity, odor, purge rate, issues with
Time	Temp. (°C)	Spec. Cond. (mS/cm)	DO (mg/L)	pH (SU)	ORP (mV)	Turbidity (NTUs)	Purge Volume (L)	H ₂ O Depth (ft)	Notes (Purge metilou, pu	mp/well/weather/etc.)
(min)	15,45	0.417	,	6,39	4	5۵	0.5	23.23		
-6-	15.33	0.418	6.51	6,37	0.4	15	1.0	23,23		
10	15.61	0.420	6.51	6.42	-5,6	9	1.5	23.23		
15	5.40	0.421	6.28	6.45	-6.9	5,	2.0	23,23		
20	5.24	0,420	6.45	6.41	-6.2	4	2.5	23.23		
25	15, 18	0.420	6,61	6,41	-7.4	3	3,0	23.23		
				<u> </u>			1			
					. <u> </u>	-				
				ļ		:				
	ļ		 	<u> </u>				<u>.</u>		
					<u> </u>					
· · · · · · · · · · · · · · · · · · ·		<u> </u>		 						
						 	<u> </u>			
	<u> </u>									
					<u> </u>					
	 			†						
	 									
	-								<u></u>	
Stabilizīng Criteria ⁵	#/- 1°C	+/- 3%	+/- 10% (see note below) ⁷	+/- 0.1 unit	+/- 10 mV (see note below) ⁸	+/- 10% or <10 NTUs	(see note below) ⁴	(see note below) ⁶		

Criteria : L'C 3% Delow) G.1 unit | Delow). (30 N)

(1) - Do not measure depth to bottom of well until after purging and enropling to reduce resuspending faces that may be resting on the well bottom.

2) - Purge rate to be 0.5 from or less.

3) - Sumpling rate to be 0.25 from or less.

4) - Field parameter measurements to be recorded every 3 to 5 individes.

5) - Subblization criteria bused on three most recent consecutive measurements.

6) - Monitor TTW every 5 min. Well drawdown to be 0.3 ft or isses. Purge/sampling rate to be lowered as nocessary to keep drawdown below 0.3 ft.

7) - DO is not a stabilization criterion for the "Groundwater sampling" SESI) Standard Operating Procedure.

(3) - ORP is not a stabilization criterion for the "Groundwater sampling" SESI) Standard Operating Procedure.

ERM	Client					Project No.:	138388		Sampling Date: 7/17/22/3
	Site/Location:							<u>.</u>	•
	Well ID:	MH1-2		Pu	mp Type/Model:	GEORVE	MP /PZ	PHIAL	Sample Collection Time: 1400 Sample Purge Rate (L/min) ³ : 1400
	Total Depth (ft)1:	IH /4-	14)	•	Tubing Material:	117X11	4 72-1	DIE	Sample Purge Rate (L/min) ³ : ////////
-	Depth to Water (ft):	6.43		- Pump li	ntake Depth (ft): top Purge Time:	1196			Sample ID: MW - Z
	Well Diameter (in):	711		- Start/S	top Purge Time:	18251	1355		QA/QC Collected? <u>NV</u>
Well Volum	e (gal) = 0.041d ² h:	1.7/2A/ 1	4.7611	- Purc	e Rate (L/min)²:	ilalm	12		garge I.D. 1/A
	r (inches) h = lengt	F		Total Pu	e Rate (L/min)²: irge Volume (L):	30			Laboratory Analyses: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	n: /2007	TO HALO COMMIN		ling Method (ched	k all that apply):	soda straw	(VOCs)	vacuum jug	
Purge Metho	d: Law Fi	im/Len						ırge (all analytes)	
Time	Temp. (°C)	Spec. Cond. (mS/cm)	DO (mg/L)	pH (SU)	ORP (mV)	Turbidity (NTUs)	Purge Volume (L)	(ft)	Notes (Purge method, water clarity, odor, purge rate, issues with pump/well/weather/etc.)
1330	17,66	,094	1800	5,74	100.0	2.40	15	6.59	
1335	17,44	,092	4.45	5.24	131.5	3.76	10	6.60	
1340	17,29	,012	2.59	5.27	134.2	,49	1.5	660	
1345	17,22	1292	2.25	5.30	135.5	1960	20	600	
1350	17,21	.091	2.13	5.33	134.2	76	2.5	661	
1355	17.19	1091	2.12	5.34	139.7	163	3.8	6.61	
1400	PARAM	NERRY	5	AB1412	20 5	MPLE	3 106	LEZIZI	P ₁
								<u> </u>	
	<u> </u>								
								<u> </u>	
				ļ			ļ. <u></u> .	-	
						ļ		-	
							 		
			1	-					
			ļ			 			
				a managan banga		i Jago Policia como m			
Stabilizing Criteria	+/- 1°C	+/- 3%	+/- 10% (see note below) ⁷	+/- 0,1 unit	+/- 10 mV (see note below) ⁸	+/- 10% or <10 NTUs	(see note below) ⁴	(see note below) ⁶	

Criteria 17C 3% below) 9.1 unit below) 510 N

(1) - Do not measure depth to bottom of well until after purging and sampling to reduce resuspending fines that may be resting on the well bottom.

(2) - Purper ratio be 0.5 from or less.

(3) - Sampling rate to be 0.25 from or less.

(4) - Field parameter measurements to be recorded every 3 to 5 minutes.

(3) - Hold filtration criteria based on three most record every 3 to 5 minutes.

(6) - Mosalter UTW every 5 min. Well drawdown to be 0.3 ft or less. Purper/sampling rate to be lowered as necessary to keep drawdown below 0.3 ft.

(7) - NO is not a stabilization criterion for the "Croundwater sampling" SHO Standard Operating Procedure.

(8) ORP is not a stabilization criterion for the "Croundwater sampling" SHO Standard Operating Procedure.

ERM	

	*				GROUN	ID WATER SA	MPLING LOG	SHEET	
N#70									
ERM	Client: (Canta				Project No.:	138388		Sampling Date: 9/13/2013
	Site/Location:								Sampler's Name: R. McJilton
	Site/Location.	Toccoa, GA	.,,			022			1557
	Well ID:	MW-3				BLADDE			Sample Collection Time: 1750
7	Total Depth (ft)1:	536 43	<u> (-58)</u>			17x14	74 Pai	· M	Sample Purge Rate (L/min) ³ : 1 th f And 1 for
Dej	oth to Water (ft):	49.75			take Depth (ft):				Sample ID: MW = 3
We	ell Diameter (in):	7		Start/St	op Purge Time:	1420/1	525		QA/QC Collected? A/C
Well Volume (gal) = 0.041d ² h: _a	1.4/696/	5.24112	705 Purge	Rate (L/min)²:	11-11	11/4		avacid. NIA
d = well diameter (i				Total Pu	rge Volume (L):	6.561	72W5		Laboratory Analyses: VOLS 8260
Well Condition:	6000		Sampli	na Methad (check	all that apply):	☐ soda straw (\	/OCs)	uacuum jug (
Purge Method:	60m J	tions les	100 VOG 6	ME D	14/3/12	Bladder pum	o = pump dischar	ge (all analytes)	☐ Bailer (only used if necessary)
			DO	pli	ORP		Purge Volume		Notes (Purge method, water clarity, odor, purge rate, issues with
Time	Temp. (°C)	Spec. Cond. (mS/cm)	(mg/L)	(SU)	(mV)	(NTUs)	(L)	(ft)	pump/well/weather/etc.)
1425	21.76	.216	9.09	5.40	154.5	670	. 5	49.31	·
1430	20-91	12/9	3.56	5.4)	1544	H6	1.0	49.81	
1435	19-37	,214	6.90	543	71.5	59.9	1.5	49.84	
1440	19.34	214	6.48	5.70	134.2	572	2.0	49.84	
1445	17.55	1717	6.22	5 77	157.9	349		47-34	
1450	19.96	201	6-07	5.74	154.8	30.4		41.84	
1455	11.39	1116	519	5.60	1532	276	3.5	49.54	
1500	20.24	114	567	5.86	150.9	27.7	4-0	49.54	
1505	70-45	1192	5 59	5.94	1426	749		49.94	
1510	70.16	.193	5.71	5.90	144.9	30.6		49.34	
1815	19.95	195	5.76	5.33	150-1	31.7	5-5	47.34	
1520	19.71	.147	5.76	5.84	1534	32-1	60	49.64	
1525	1963	197	5.68	5.91	153.9	318	6.5	49.84	
1 11	1								

(see note

below)6

 1					_				
162/	PORRINI	JER5	52A B1	121220	[TV 20	1DIT4	14 1	BOUE	
1 / / /	4 1.4 2 8 1 5		14. BI						
		GAMP	143 6	02627	ZD				
		- 							

+/- 10 mV

(see note

+/- 10% or

(see note

below)4

below) <10 NTUs below) 0.1 unit 1°C Criteria⁵ Do not measure depth to bettern of well until after purging and sampling to reduce resuspending fines that may be resting on the well bottom.
 Purge rate to be 0.5 lpm or less.
 Sampling rate to be 0.25 lpm or less.

Stabilizing

+/-

(3) - Sampling rate to be 0.25 Igan or Jess.

(4) - Field parameter measurements to be recorded every 3 to 5 minutes.

(5) - Field parameter measurements to be recorded every 3 to 5 minutes.

(6) - Monitor DTM every 5 min. Well drawdown to be 0.2 ft or less. Purps/ sampling rate to be lowered as necessary to keep drawdown below 0.3 ft.

(7) - DO is not a stabilization criterion for the "Groundwater sampling" SESD Standard Operating Procedure.

(8) - ORP is not a stabilization criterion for the "Groundwater sampling" SESD Standard Operating Procedure.

+/- 10%

(see note

ERM Client: Coats	Project No.: 138388	Sampling Date: 4/3/2013
Site/Location: Toccoa, GA		Sampler's Name: R. McJilton
Well 10: MW - 4	Pump Type/Model: 547DD472	Sample Collection Time: 1135
Total Depth (ft): 59.6 (41.6-59.4	Tubing Material: 17 X1/4 TL - LDD &	Sample Purge Rate (Umin)3: 16/M1V
Depth to Water (ft): 47-35	Pump Intake Depth (ft): 546	Sample ID: MW 4
Well Diameter (in):	Start/Stop Purge Time: 1045 / 1130	QA/QC Collected? NO
Well Volume (gal) = 0.041d2h: 1.46A4 7.36172	Purge Rate (L/min) ² : / L/M/V	_ QA/QC I.D. <u>///A</u>
d = well diameter (inches) h = length of water column (feet)	Total Purge Volume (L): 4.5 L172PS	Laboratory Analyses: <u>VOC4 4260</u>
Well Condition: 6000 Sampli	ng Method (check all that apply): 🗌 soda straw (VOCs) 🔲 vacuum ju	
Purge Method: Law Frau / Law Valu	ME . 11/MM Bladder pump = pump discharge (all analyte	es) 🔲 Bailer (only used if necessary)
The Control DO	OFP Turbidity Purve Valume H.O Deuth	Notes (Purge method, water clarity, odor, purge rate, issues with

Time	Temp. (°C)	Spec. Cond. (mS/cm)	DO (mg/L)	pH (SU)	ORP (mV)	Turbidity (NTUs)	Purge Volume (L)	H₂O Depth (ft)	Notes (Purge method, water clarity, odor, purge rate, issues with pump/well/weather/etc.)
1050	19,13	.125	9.02	4.19	2111	104	:5'	43.95	
1055	19.00	.125	4.44	4.13	212.1	39.4	10	47.95	
1100	14.77	.126	4.77	4.14	270.2	522	1.5	47.95	
1105	19,64	1127	9.43	4113	273.7	15.4	20	47.95	
1110	1553	.125	350	416	223.9	186	2.5	47.99	
1115	18.52	1/29	8.37	407	224.3	17.4	30	47.45	
1120	1857	130	3.32	4.14	276.3	762	3.5	47.44	
1125	1861	./30	3.29	4.19	227.2	6.54	4.0	4794	
1130	14.65	-131	924	4.14	128.0	5.34	4.5	47.94	
1135	DARAM	ETERG	APT	67 KG14	(22D)	SAMPL	E\$ 10	LLEZRO	
					,				·
Stabilizing Criteria ⁵	#- 1°C	+/- 3%	+/- 10% (see note below) ⁷	+/- 0.1 unit	+/- 10 mV (sec note below) ⁵	+/- 10% or <10 NTUs	(see note below) ^a	(see note below)*	

- Criteria 19 19 346 Below) 0.1 unit below) 410 N.1

 (1) Do not measure depth to bottom of well until after purging and sampling to reduce resuspending fines that may be resting on the well bottom.

 (2) Purge rate to be 0.5 pun or less.

 (3) Sampling rate to be 0.25 pun or less.

 (4) Fadd parameter measurements to be recorded every 3 to 5 minutes.

 (5) Stabilization criteria based on three most recent consecutive measurements.

 (6) Menitur DTW every 3 min. Well drawdown to be 0.3 for less. Purges / Fampling, rate to be lowered as necessary to keep drawdown below 0.3 ft.

 (7) DO is not a stabilization criterion for the "Croundwater sampling" SESD Standard Operating Procedure.

 (8) ORP is not a stabilization criterion for the "Croundwater sampling" SESD Standard Operating Procedure.

					GROU	NU WATER 5	AMPLING LOG	SHEET			
ERM	Olivati	Danta				Project No.	; 138388		Sampling Date	9/17/13	•
	Client: Site/Location:					- Project No.	, 130388		Sampler's Name		
	Onercocation.		8000			201	((, /,	****	•		
	Well ID:	mw-	5	. Pu	mp Type/Model:	101 15ta	ttic/Ge	grung	Sample Collection Time		
7	Total Depth (ft) ¹ :	12		•	Tubing Material:	<u>letti</u>	<u> </u>		Sample Purge Rate (L/min) ³		ani
Dep	oth to Water (ft):	8,62	<u> </u>	•	ntake Depth (ft):	12.4			Sample ID		
We	ell Diameter (in):	_2_	·····		top Purge Time:		1/		QA/QC Collected ^a		
·	gal) = 0.041d ² h:	0.5			re Rate (L/min) ² :		7	1	QA/QC I.D	1/04	
d = well diameter (i	/~ N	L			ırge Volume (L):				Laboratory Analyses		uding gyppide\
Well Condition:	(560C	Ci	Sampl	ing Method (ched	k all that apply);			□ vacuum jug (- , , ,	discharge (Inorganics inch	uding cyanide)
Purge Method:	Low	tion				∟ Bladder pur -	mp = pump discha	erge (all analytes)	☐ Baller (only	used if necessary)	
Time	Temp. (°C)	Spec. Cond. (mS/cm)	DÖ (mg/L)	pH (SU)	ORP (mV)	Turbidity (NTUs)	Purge Volume (L)	H ₂ O Depth (fi)		l, water clarity, odor, purg pump/weII/weather/etc.)	ge rate, issues with
0	15.66	0.139		5.68	-46	43_	0.5	8.69	anerobic	adov wat	er seems
5	15.52	0,112	4.37	5.64	~36	17	1.0	8,68	to be d	ttracting -	flies.
10	15.63	0.088	4.15	5.37	- 19	21	1.5	8,68			
15	15,74	0,077	4.17	5,19	12	29	2,0	8,68			· .
20	15,81	0,070	4.17	5:10	14	31	2,5	8,68			
25	15.81	0.066	4,17	4,93	22	27	3,0	8.60		******	
30	15,81	0.061	4.23	4,91		23	3,5	8,68			
35	15.79	0.061	4.24	4.88	18	22	4.0	8.68			
40	15.71	0,060	4,32	4.85	19	21	4,5	8,68			
·						:					
							-			118/4	
										./mv	
			···-								

Stabilizing

Criteria⁵

+/-

1°C

+/- 10%

(see note

below)7

+/-

0.1 unit

+/- 10 mV (see note

below)8

+/- 10% or

<10 NTUs

(see note

below)4

(see note

below)6

3%

ERM Clients Coate		Sampling Date: 1/19 2013
Client: Coats	Project No.: 138388	
Site/Location: Toccoa, GA		Sampler's Name: R. McJilton
Well LD: MW-6	Pump Type/Model: BLADDEC	Sample Collection Time: 1025
Well ID: MW-6 Total Depth (#) 14 (34-44)	Tubing Material: 17X1/4 TL - LD 0E	Sample Purge Rate (L/min) ³ : //L/M/N
Depth to Water (ft): 3869	ump Intake Depth (ft): 43ft	Sample ID: MW-6
Well Diameter (in): 2 11	tart/Stop Purge Time: <u>0910 102 0</u>	QA/QC Collected? N D
15 hail 6/1785	Purge Rate (L/min)2: 6 / L/m /	QA/QC I.D. AVA
d = well diameter (inches) h = length of water column (feet)	otal Purge Volume (L): 7-0 L177285	Laboratory Analyses: VOL3 4766
Well Condition: 600 V Sampling Method	(check all that apply):	jug (SVOCs)
Purge Method: LOW FLOW JLIN YOLVME C		ytes) Bailer (only used if necessary)

Time	Temp. (°C)	Spec. Cond. (mS/cm)	DO (mg/L)	pH (SU)	ORP (mV)	Turbidity (NTUs)	Purge Volume (L)	H ₂ O Depth (ft)	Notes (Purge method, water clarity, odur, purge rate, issues with pump/well/weather/etc.)
315	17.51	. 076	7.4Z	5.23	174.6	76.1	15	38.58	
11.7 17.2)	1765	.098	7.16	5.23	141.4	80-4	1.0	3458	
75	17.98	.075	4.69	5.21	143.7	78.5	1.5	34.58	
130	17.40	.073	8.35	417	148.2	141	2-0	3858	
35	17.89	074	8.01	4.46	188.7	82.7	2.5	38-58	
u h	17,47	.074	7.74	4.94	148.0	54.4	3.0	34.58	
145	14.04	1094	7.65	4.79	189.4	421	3.5	38.58	
50	18.09	.075	7.5%	4.49	190.6	34.9	40	38.58	
155	1517	1075	746	4-99	191).)	30.7	4.5	3454	
000	18.23	:075	7.37	4.99	191.4	12-3	5.0	3858	
05	14.30	.075	7.75	4.94	113.6	15.5	5.5	34.54	
	14.31	,094	7.40	4.47	194.0	11.5	6-0	34.58	
<u>910 </u>	14:34	1074	7.10	4.97	115.6	9.31	6.5	36,58	
020	16.40	1074	7.14	4.47	197.1	862	70	38.58	
000	100	-	, ,		· -				
725	PARAN	ETZES	STABL	1350,	SAMP	1E5 10	2627	\mathcal{P}_{i}	
	1 , 11 1 ,		7,7,1,2,0						
			-						
	 		-						
				<u> </u>					
					<u> </u>				
	 			· ·	-				
			+/- 10%	7	+/- 10 mV				
itabilizing Criteria ⁵	+/- 1°C	+/- 3%	(see note	+/- 0.1 unit	(see note below) ⁸	+/- 10% or <10 NTUs	(see note below)*	(see note below) ⁶	
Do not measure de Purge rate to be 0.9 Sumpling rate to b Field parameter in Subilization criter	upth to bottom of west 5 hm or less. 16 (1,25 hpm or less. 16 hased on three most 16 hased on three most	until after purging and a orded every 3 to 5 minu recent consecutive mes nym to be 0.3 ft or less. "Groundwater samplin	sampling to reduce resides.	uspending fixes that n		:		 	

		7
-	RA	7

										alialia
ERM	Cllent:	Coats				Project No.:	138388		Sampling Date:	4/17/19
	Site/Location:	Toccoa, GA				.			Sampler's Name:	T. Fisher
		Malal-	-7	D.	mp Type/Model:	Bladder	/ QED	ŀ	Sample Collection Time:	1120
	Well ID:	<u>- 11-</u>		- Pui	mp Type/Modes: Tubing Material:	Tefler	/		Sample Purge Rate (L/min) ³ :	100 ml Juin
	Fotal Depth (ft)1:	1512 2	· ~7	•	ntake Depth (ft):	10			Sample ID:	mn-7
	oth to Water (ft):	57	/	•	top Purge Time:	1876	-	··	QA/QC Collected?	YES .
	ell Diameter (in):	. ,	····	•	e Rate (L/min)2:	4 (2) =	11.	1.00	QA/QC I.D.	Dup-02
	gal) = 0.041d ² h:	100	/fact)	-	ırge Valume (L):		200	 "	Laboratory Analyses:	Vér
d = well diameter (Well Condition:	inches) n = lengi	th of water column		ling Method (chec				☐ vacuum jug	•	discharge (Inorganics including cyanide)
Purge Method:	Low	1				1.0		arge (all analytes)) 🔲 Bailer (only o	used if necessary)
raige wealou.		7 70 00				·				, water clarity, odor, purge rate, issues with
Time (M)	Temp. (°C)	Spec. Cond. (mS/cm)	DO (mg/L)	pH (SU)	ORP (mV)	Turbidity (NTUs)	Purge Volume (L)	H ₂ O Depth (ff)	Polies (1 inge mental p	ump/well/weather/etc.)
P	20.97	0.123	7.65	5.12	-8	220	0.5	44.32		
<u> </u>	19.90	0.123	7.10	4,90	3	200	1,0	44.33		
10	19.64	0,122	7.04	4,79	7	133	1.5	44,34		
15	19,45	0,123	6.96	4,75	11	78	2.0	44,35		
20	19.40	0.123	6.97	4,73	12	33	2,5	44.35		
25	19,28	0,123	6,98	4.72	/3	14	3.0	44,35		<u> </u>
30	19.29	0.121	6,89	4,74	14	13	3:5	44.36		
35	19.29	0.120	6.85	4,74	14	12	4.0	44.36		
							<u> </u>			
							ļ			
				ļ <u>.</u>	ļ					
								<u> </u>	<u> </u>	
				<u> </u>	·			<u> </u>		
				-		<u> </u>		<u> </u>		
			<u> </u>	-	<u></u>					
	<u></u>	-								
				<u> </u>						
			<u> </u>							
			<u></u>				-			
			+/- 10%		+/- 10 mV	12.400	(see note	(see note		
Stabilizing Criteria ⁵	+/- 1°C	+/- 3%	(see note below) ⁷	+/- 0.1 unit	(see note below) ⁸	+/- 10% or <10 NTUs	below)4	below) ⁶		
(2) - Purge rate to be 0.5 (3) - Sampling rate to be (4) - Field parameter m (5) - Stabilization criteri	i Ipm or less, e 0.25 Ipm or less, easurements to be rec ia based on three mos	until after purging and so corded every 3 to 5 minute I recent consecutive meas own to be 0.3 ft or less. If	es. grements.	o ha languared se nacessus						
		e "Groundwater sampling "Groundwater sampling "Groundwater sampling			. ,					

)
FRN	

ERM	Client:	Coats		,,,,, <u>,,,,,</u>		Project No.:	138388		Sampling Date: <u>9/17/13</u>		
	Site/Location:	Toccoa, GA		<u></u>					Sampler's Name: T. Fisher		
Dep We	Well ID: Total Depth (ft) ¹ : with to Water (ft): all Diameter (in): gal) = 0.041d ² h: nches) h = lengti	MW- 15 6.41 2		Pump b Start/S Purg Total Pu	Tubing Material: ntake Depth (ft): top Purge Time: e Rate (L/min) ² : urge Volume (L):	1405 100 ml see V	/min	vacuum jug (all analytes)	Bailer (only used if necessary)		
Time	Temp.	Spec. Cond.	DO	p11	ORP	Turbidity (NTUs)	Purge Volume (L)	H ₂ O Depth (ft)	Notes (Purge method, water clarity, odor, purge rate, issues with pump/well/weather/etc.)		
(min)	(°C)	(mS/cm)	(mg/L)	(SU)	(mV)			/ 110	a last		
0	14.93	0,112		5,53	60	28 20	0.5	6,41	Sample ciecus/		
	15.07	0,112	7.14	5.38	73		1.0	6,47			
10	14,91	0.111	6,93	5.23	79	13	1.5	6,50			
15	14.79	0.110	6.84	5.17	29	8		6.50	,		
20	14/72	D-108	6.71	5.19	74	8	2.5	6.51			
25	14.69	0./08	6.70	5,21	71	7	3,0	6,51			
						<u> </u>					
							,				
1							40.4	.,,			
-											

<u> </u>				1							
			i								
1			 				·				

(see note

below)4

(see note

below)6

+/- 10%

(see note

+/-

+/- 10 mV

(see note

Stabilizing

^{+/- 10%} or <10 NTUs below)8 below)7 Criteria

Criteria TC 376 DELOW:

(1) - Do not measure depth to bottom of well until after purging and sampling to reduce resuspending fines that may be resting on the well bottom.

(2) - Purge rate to be 0.5 ipm or less.

(3) - Sampling rate to be 0.25 ipm or less.

(3) - Simpling rate to be 0.25 ipm or less.

(3) - Shabilization criteria based on three most recent connecutive measurements.

(5) - Shabilization criteria based on three most recent connecutive measurements.

(6) - Monther TDW every 5 min. Well drawdown to be 0.3 ft or less. Purge/sampling rate to be lowered us necessary to keep drawdown below 0.3 ft.

(7) - DO is not a stabilization criterion for the "Groundwater sampling" SEED Standard Operating Procedure.

(8) - ORP is not a stabilization criterion for the "Croundwater sampling" SEED Standard Operating Procedure.

ERM	Client: Site/Location:	Toccoa, GA				Project No.:	. 11	·	Sampling Date: _ Sampler's Name: _	
	Well ID: MW~10 Total Depth (ft) ¹ : 6			· ·	mp Type/Model; Tubing Material;	Perista Tellan 14	7	gung	Sample Collection Time: Sample Purge Rate (L/min) ³ :	910 Soda Stran MW-10
We	Depth to Water (ft): 2 Well Diameter (in): 2 Well Volume (gal) = 0.041d²h: 1,3			Start/Si	ntake Depth (ft); top Purge Time: e Rate (L/min) ² ;	00-1	1min	714	Sample ID: _ QA/QC Collected? _ QA/QC I.D.	None
	I = well diameter (inches) h = length of water column (feet) Well Condition: GOOD Same			Total Pu	rge Volume (L): k all that apply);	520 Alsoda straw	below	□ vacuum jug (VDC scharge (Inorganics including cyanide) sed if necessary)
Time (Muk)	Lovi Temp.	Spec. Cond. (mS/cm)	DO (ing/L)	pH (SU)	ORP (mV)	Turbidity (NTUs)	Purge Volume (L)	H ₂ O Depth	Notes (Purge method,	water clarity, odor, purge rate, issues with mp/well/weather/etc.)
0 5	15.32	0,190	— 2.63	6.07 5.78	-32 -2	43 31	0.5	8.16		
10	15.08 15.05	0.186	1,55	5.70 5.63	-7 2	28 13	1.5	8,15		
20 25	15.14	0,180	1.32	5.57 5.58	-4 -4	9	2.5 3.0	8.15		
30	15.25	0,176	1.15	5.63	0,3_	8	3,5	8,15		
									Large Market	
	·									
Stabilizing Criteria ⁵	#/- 1°C	+/- 3%	+/- 10% (see note below) ⁷	+/- 01 unit	+/- 10 mV (see note below) ⁸	+/- 10% or <10 NTUs	(see note below) ⁴	(see note betow)*		

- Criteria 1. 3% Selow) Selow) Selow) Selow) Selow) Selow) Selow)

 (1) Do not measure depth to bottom of well until after purging and sampling to reduce resuspending fines that may be realing on the well bottom.

 (2) Purger rate to be 0.5 ipm or less.

 (3) Sampling rate to be 0.25 ipm or less.

 (4) Field prameter measurements to be recorded every 3 to 5 minutes.

 (5) Subdification criteria hased on three most accord consecutive measurements.

 (6) Mentior OTW every 5 min. Well drawdown to be 0.3 (nor less. Purgee) sampling rate to be lowered as necessary to keep drawdown below 0.3 ft.

 (7) FOI is not a stabilization criterion for the "Groundwater sampling" SED Standard Operating Procedure.

 (8) ONP is not a stabilization criterion for the "Croundwater sampling" SED Standard Operating Procedure.

C 2/									
ERM	Client:	Coats				Project No.:	138388		Sampling Date: 4/13/2013
	Site/Location:	Toccoa, GA							Sampler's Name: R. McJilton
	Well ID:	MW-11		Pur	mp Type/Model:	BLADDE	12	·	Sample Collection Time: 1350
1	Total Depth (ft) ¹ :	715 0	PEN HAL	LÆ -	Tubing Material: <u>s</u>	17x1/4	PEFELLY LI	uco fully	Sample Purge Rate (L/min)3: 2 / 4 / 1/
	oth to Water (ft):			Pump li	ntake Depth (ft):	7612			Sample ID: MW-//
		4"		Start/S	Stop Purge Time:	1300/1	1345		QA/QC Collected? N 3
		23 644/) 与 Purg	e Rate (L/min)²: ِ ،	, IL/MIN	*		QAYQC I.B. NA
		h of water column (-		urge Volume (L):				Laboratory Analyses: Vac 5
Well Condition:	6000			ing Method (chec	ck all that apply):	☐ soda straw ((VOCs)	☐ vacuum jug (S	SVOCs)
Purge Method:	12W F	ern/10n	i Vacum	E Q.141.	M.M	Bladder pum	mp ≂ pump dischai	rge (all analytes)	☐ Bailer (only used if necessary)
Time	Temp. (°C)	Spec. Cond. (m5/cm)	DO (mg/L)	pH (SU)	ORP (mV)	Turbidity (NTUs)	Purge Volume (L)	H₂O Depth (ft)	Notes (Purge method, water clarity, odor, purge rate, issues with pump/well/weather/etc.)
1205	70.44	,104	10.12	5.19	149.4	63.4	.5	45.15	
1310	70.03	1109	7.34	5 14	152.7	41.1	1 /	45.13	
13/5	20.73	109	4.26	5/4	1533	31.1	1.5	45.18	
	19.91	1103	918	512	166 6	25.Z	2-0	45.18	- May

Stabilizing Criteria ⁵	+/- 1°C	+/- 3%	+/- 10% (see note below) ⁷	+/- 0:1 unit	+/-10 mV (see note below) ^a	+/- 10% or <10 NTUs	(see note below)*	(see note below) ⁵	
			-						
1350	PARAM	eters.	57A612	17th, 5	EAMPLES	6042	ETTED		
1345	20.58	.109	7.56	5.42	1446	6.741	4.5	15.18	
1340	20.56	100	7.61	5.41	1500	502	40	45.14	
1332 1335	19.91	109	7.90 7.75	523 539	1535	136	30	45.13	
132 <u>0</u> 1325	19.31	109	318	5.12 5.20	166-61	19-7	2-0 2-5	45.13 45.113	
1315	20.75	109	4.26	5/4	153.3	31.1 25.2	1.5	45.14	
1305_ 130	70.44	109	10.12	5.19 5.14	149.4 15 Z. 7	63.4	10	4513 4513	

- Criteria 1°C 3%6 below U.1 (Int.) Delow) 4.1 (Int.) Delow) 5.0.N.

 (1) Dut not measure depth to bettom of well until ofter purpling and sampling for reduce resuspending fines that may be resting on the well bettom.

 (2) Purper rate to be 0.5 ipm or less.

 (3) Sampling rate to be 0.25 ipm or less.

 (4) Field parameter measurements to be recorded every 3 to 5 minutes.

 (5) Stabilization criteria based on three most recent consactive measurements.

 (6) Monitor DTW every 5 min. Well drawdown to be 0.3 ft or less. Purpey sampling rate to be lowered as necessary to keep drawdown below 0.3 ft.

 (7) DO is not a stabilization criterion for the "Croundwater sampling" SED Standard Operating Procedure.

 (3) ORP is not a stabilization criterion for the "Croundwater sampling" SED Standard Operating Procedure.

umuu.					GROUN	D WATER	SAMPLING LOG	SHEET	
<u>100</u>									Sampling Date: 4/17/2013
ERM	Client:	Coats				Project N	lo.: 138388		
	Site/Location:	Toccoa, GA		Sampler's Name: R. McJilton					
	107-11-175-	1161-12	,	Pur	nn Tyne/Model:	GEON	UMP (PEX	1371271C)	Sample Collection Time: 1450
	Well IU:	MW-12 75 (15-	25 1		Tubing Material:	1771	474-10	15	Sample Purge Rate (L/min) ³ : / L/M / N
n	enth to Water (ff):	17,14							Sample ID: MW-12
\	Mell Diameter (in)	71		Start/St	top Purge Time:	14/15	11445		QA/QC Collected? Net
Weil Volume	e (gal) = 0.041d ² h:	13694	5 LITER	∮ Purg	e Rate (L/min) ² :	.16/1	VIIV	·	QA/QC I.D. AV/A
		h of water column		Total Pu	ırge Volume (L):	302	NIN IRPS		Laboratory Analyses: VOC3 4260
Well Condition	1. 6. 100 to		Sampli	ng Method (chec	k all that apply):	□ soda str	aw (VOCs)	vacuum jug	(SVOCs) pump head discharge (Inorganics including cyanide)
Purge Method	1:/on/	Fraulton	V NECO	14 E (1	16/191N	☐ Bladder	pump = pump discha	irge (all analytes)	Bailer (only used if necessary)
Time	Temp.	Spec. Cond.	DO	p H	ORP	Turbidit	y Purge Volume	H₂O Depth	Notes (Purge method, water clarify, odor, purge rate, issues with pump/well/weather/etc.)
Time	(°C)	(m5/cm)	(mg/L)	(SU)	(mV)	TRIÚS)		(ft)	gunpwenwence,
1420	17,41	1067	11.28	5.44	135.1	afaring I	.5	17.21	
1475	17.05	:009	9.20	5.02	15.4.7	1.13	10	17.21	
1430	17.01	1069	9.95	4.97	163.7	1.04	1.5	17.71	
1435	16.91	1069	362	5.03	1607	1.13	20	17.21	
1440	16.34	,069	3 74	5.01	162-1	1.26	7.5	17.21	
1445	16.85	.069	571	500	1623	109	30	14.61	
			<u> </u>					 	
1450	PARAM	ETERS	5T/16/1	172D.	SAMILE.	160	LLETRA	-	
	<u> </u>		<u> </u>						
					 			<u> </u>	
		<u> </u>						 	
		<u> </u>		<u> </u>			_		
			 -	-	-			 	
		<u> </u>	<u> </u>					 	
		-	 		-				

(see note

below)4

(see note

below)6

+/- 10% or <10 NTUs below)8 Criteria⁵ below) 0.1 unit (1) - Do not measure depth to bottom of well until after purging and sampling to reduce resuspending fines that may be restling on the well bottom.

(2) - Purge rate to be 0.25 ipm or less.

(3) - Sampling rate to be 0.25 ipm or less.

Stabilizing

(3) - Sampling rate to be 0.25 fpm or less.

(4) - Field parameter measurements to be recorded every 8 to 5 minutes.

(5) - Subdillarition culteria based on three most recent consecutive measurements.

(6) - Montitor DTW every 5 min. Well drawdown to be 0.3 ft or less. Puggs/ampling rate to be lowered as increasing the temporary of the contractive for the "Coroundwater sampling" STSD Standard Operating Procedure.

(8) - ORP is not a slabilization criterion for the "Groundwater sampling" STSD Standard Operating Procedure.

+/- 10%

(see note

+/- 10 mV

(see note

1			
F	R	N	/

										01.8/.0
ERM	Client	: Coats				Project No.:	138388	<u> </u>	Sampling Date:	9/18/13
	Site/Location:	: Toccoa, GA				:			Sampler's Name:	T. Flsher
		30.5	17			Dil	11:10			ro an
	Well ID:	- NIW-	10	Pu ⁻	ımp Type/Model:	18/15/W	ITIC / 66	20pmp	Sample Collection Time:	1200
	Total Depth (ft)1:	20		- · . -	Tubing Material:	<u>Tetho</u>	י יעל .		Sample Purge Rate (L/min)3:	Sada straw
De	pth to Water (ft):		<u> </u>	_ Pump Ir	Intake Depth (ft):	<u> 1773 </u>	16		Sample ID:	mu-13
We	ell Diameter (in):			_ Start/\$	Stop Purge Time:				QA/QC Collected?	None
Weil Volume ((gal) = 0.041d ² h:	: <u>/,3</u>) !	_ Purg	ge Rate (L/min)²:	100 ml	/min		QA/QC I.D.	
d = well diameter (ith of water column			urge Volume (L):	***	below		Laboratory Analyses:	VOC
Well Condition:	_ O000	<u> </u>	Samp	oling Method (chec	k ali that apply):	soda straw ((VOCs)	uacuum jug ((SVOCs)	lischarge (Inorganics including cyanide)
Purge Method:	<u>Lon</u>	u Flow	i			☐ Bladder pum	np = pump discha	arge (all analytes)	☐ Bailer (only u	sed if necessary)
Time	Temp.	Spec. Cond.	DO	pН	ORP	Turbidity	Purge Volume	H₂O Depth	Notes (Purge method,	water clarity, odor, purge rate, issues with
(min)	(°C)	(mS/cm)	(mg/L)	(SU)	(mV)	(NTUs)	(L)	(ft)	рі	imp/weII/weather/etc.)
<u> </u>	15.37	0.137	6.41	5.88	-8	23	0.5	11.45		
5	15.40	0.137	5,34	5.62	5	12	1.0	11.44	,,,,,	
10	15.39	0,136	4,89	5,58	8	9	1,5	11,44		
15	15.35	0,136	5.21	5.62	7	8	2.0	11.44		10 May 1
20	15.35	0.137	4.81	5.64	7	8	2.5	11:44		
25	15.23	0.137	4.80	5.65	6 7	6	3.0	11,94		

									Min	
					1			1		
										
		87888888	+/- 10%	3.55555555	+/- 10 mV					

(see note

below)6

(see note below)4

(see note

0.1 unit

(see note

+/- 10% or

<10 NTUs

Stabilizing

Criteria⁵ Criteria 1. C. 376 Pelow U.1 until pelowy 5.10. N

(1) - Do not insource depth to bottom of well until after purping and sampling to reduce resuspending flues that may be resting on the well bottom

(2) - Purgo rate to be 0.5 fpm or less.

(3) - Sampling rate to be 0.5 fpm or less.

(4) - Field parameter measurements to be recorded every 3 to 5 minutes.

(5) - Hobitation criteria based on three most resent consecutive measurements.

(6) - Monitor DTW every 5 min. Well drawdown to be 0.3 ft or less. Purge/sampling rate to be inverted as teacessary to keep drawdown below 0.1 ft.

(7) - FIG is not a stabilization criteria for the "Groundwater sampling" STSD Standard Operating Procedure.

(8) - ORP is not a stabilization criterion for the "Groundwater sampling" STSD Standard Operating Procedure.

FRV	Ţ

Client: Coats				Project No.: 138388 Pump Type/Model: Peristatic / Cseopun Tubing Material: Tellon Pump Intake Depth (ft): 7.5 Start/Stop Purge Time: /325 Purge Rate (L/min) ² : /00 mL/min Total Purge Volume (L): See below					Sampling Date: Sampler's Name: Sample Collection Time: Sample Purge Rate (L/min) ³ : Sample ID: QA/QC Collected? QA/QC I.D. Laboratory Analyses:	9/17/13 T. Fisher 1355 Soda straw mw-14 None -
Well Condition: Purge Method:	Good Low F			ing Method (chec		⊅ soda straw (VOCs) np = pump discha	vacuum jug	☐ Bailer (only u	ischarge (Inorganics including cyanide) sed if necessary)
(Min)	Temp.	Spec. Cond. (mS/cm)	DO (mg/L)	pH (SU)	ORP (mV)	Turbidity (NTUs)	Purge Volume (L)	H _z O Depth (ft)	Notes (Purge method, pu	water clarity, odor, purge rate, issues with mp/well/weather/etc.)
0	15.48	0.150	2.84	6,11	-98	23	0,5	-	car not	anique DTW because
0	15.42	0.130	2,18	6.08	-96	20	1.0		water level	probe will not
10	15.51	0,144	1,90	6,07	-94	17	1.5		f.f along	w/ tubing in the
15	15.52	0.144	1,84	6,06	-93	15	2.0		well.	,
20	15.54	0.144	1.84	6.05	-91	14	2.5			
25	15,56	0.144	182	6.05	-88	13	3.0		1	·
	-									
									,	<u></u>
						_				
								,,		
			1			_				,
							-			
		-								
	<u> </u>									
		-	~		-					
						 		.,		
					 					
Stabilizing Criteria ⁵	+/- 1°C	+/- 3%	+/- 10% (see note below) ⁷	+/- 0.1 unit	+/- 10 mV (see note below) ⁸	+/- 10% or <10 NTUs	(see note below)*	(see note below) ⁶		

Criteria* 3*C 5% below} 0.1 unit | below} 3 SUN (1) - Do not recustre depth to bottom of well until after purging and sampling to reduce resuspending fines that may be reating on the well bottom. (2) - Purge rate to be 0.5 ipm or less.
(3) - Sunpling rate to be 0.5 ipm or less.
(4) - Field parameter measurements to be recorded every 3 to 3 minutes.
(5) - Stabilization criteria based on three most record every 3 to 5 minutes.
(6) - Monitor DTW every 5 min. Well drawdown to be 0.3 ft or kss. Purgey sampling rate to be inversed as necessary in keep drawdown below 0.3 ft.
(7) - NO is not a stabilization criterion for the "Groundwater sampling" SED Standard Operating Procedure.
(8) - ORP is not a slabilization criterion for the "Groundwater sampling" SESD Standard Operating Procedure.

ERM	Client:	Coats				Project No.:	138388		Sampling Date: <u>9/18/13</u>
Sit	e/Location:	Toccoa, GA			447	:			Sampler's Name: T. Fisher
	Well ID:	MW-	15	Pie	mn Tyne/Madel:	Bladde	// aE	D	Sample Collection Time: 1530
Total	Depth (ft)1:	38.5			Tubing Material:	(Tall.	1 / CC		Sample Purge Rate (L/min) ³ : 100 mL/min
	Water (ft):	46,58	3	Pump li	ntake Depth (ft):		·		Sample ID: MW - 15
Well Dia	ameter (in):	2	,,,	Start/S	top Purge Time:	-	1/ -	MRC -	QA/QC Collected?
Well Volume (gal)	= 0.041d ² h:	ho		•	e Rate (L/min)²:		' 	١	QA/QC I.D.
= well diameter (inche	s) h = length	g		Total Puing Method (chec	rge Volume (L):		<u>ساه س</u>	☐ vacuum jug	. Laboratory Analyses: VCC. (SVOCs) pump head discharge (inorganics including cyanide)
Well Condition:	1000	a	. Sampi	IIIg Method (chec				arge (all analytes)	
	Temp.	Spec. Cond.	DO	рН	ORP	Turbidity	Purge Volume	H₂O Depth	Notes (Purge method, water clarity, odor, purge rate, issues with
(min)	(°C)	(mS/cm)	(mg/L)	(SU)	(mV)	(NTUs)	(L)	(ft)	puntp/weil/weather/etc.)
0 1	5112	0.015	7.80	5.42	13	15	0,5	46,77	
5 1	1.46	0.07/	7.77	0.45	13	9	1,0	4080	
15 15	1/5	0.0	7.89	5,47	74	8	1.5	44.43	Slowed bladder owns discharge ship
20 12	1.59	0,080	7.80	5.47	14	7	2.5	Hoc 18	() () () () () () () () () ()
25 14	,57	0,079	7,82	5.46	15	8	3,0	46.76	
							-		
					**-				
				-		<u> </u>			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
.,		,			•	:			
				-		:			
					4,7,24	:			
			17 4067		+/- 10 mV				
Stabilizing	+/-	*	+/- 10% (see note	+/-	(see note	+/- 10% or	(see note	(see note	
- Do not measure depth to b	ottom of well ur	5% til after purging and sa	npling to reduce resu	p. v.1 unit spending fines that may			4 TOTAL STATE	1 PEION)	
Stabilizing Criteria (1) - Do not measure depth to b (2) - Purga rate to be 0.5 lpm or (3) - Sampling rate to be 0.25 lpm (4) - Field parameter measurem (5) - Monitor OTW every 5 inth (7) - DO is not a stabilization or (8) - ORP is not a stabilization or	1°C oftom of well ur fess, an or less, ands to be record on three most re . Well drawdow iterion for the "C	3% fil after purging and sar led every 3 to 5 minutes cont consecutive measus it to be 0.3 ft or less. Pur count water sampling	(see note below) suppling to reduce results suppling rate to specification of the second se	0.1 unit spending fines that may be lowered as accessar time Procedure.	(see note below) ⁵ y be resting on the wel	<10 NTUs	(see note beluw) ⁴	(see note below) ⁶	

X		4	Ę	
F	Ţ.	2	N.	1

De _l	Site/Location: Well ID: Total Depth (ft) ¹ : pth to Water (ft): ell Diameter (in): (gal) = 0.041d ² h: inches) h = lengt	MW 1 27 15 15 2 1.7 th of water column	(feet)	Pump li Start/S Purg	Tubing Material: ntake Depth (ft): top Purge Time: le Rate (L/min) ² : urge Volume (L):	soda straw (oelow vocs)	Ovacuum jug (
Time	Temp.	Spec. Cond.	DO	pH (SU)	ORP (m)()	Turbidity (NTUs)	Purge Volume (L)	H₂O Depth (ft)	Notes (Purge method, water clarity, odor, purge rate, issues with pump/well/weather/etc.)
(min)	(°C)	(mS/cm)	(mg/L)	5.18	22	26	0.5	16,55	· · · · · · · · · · · · · · · · · · ·
<u>0</u> 5	14,75	0.091	3.79	5,19	76	15	1.0	16,57	
10	14.12	0.089	2,78	5,15	79	10	1.5	16.58	
15	14.02	0.089	2.80	5.10	22	8	2.0	16.59	
20	13.99	0.089	2,61	5.09	26	6	2.5	16.59	
25	14.05	0,090	2,58	5,15	26	6	3.0	16.60	
								<u> </u>	
-			<u></u>	<u> </u>					
		<u></u>							
	-		~-						
						:			
	-		·						
		- Arraman	4		s		4 2000 1000 1000 2000 2000 2000 2000 200		
Stabilizing	+/- 190	+/- 39/a	+/- 10% (see note helow) ⁷	+/- 0.1 unit	+/- 10 mV (see note below)*	+/- 10% or <10 NTUs	(see note below) ⁴	(see note below) ⁶	

below) _Criteria 5 0.1 unit

- Criteria TC 5% Delow) Q.1 mint Delow) CRON.

 (1) Do not measure depth to bottom of well until after purging and sampling to reduce resuspending fines that may be reading on the well bottom.

 (2) Purge rate to be 0.5 ipm or less.

 (3) Sampling rate to be 0.25 ipm or less.

 (4) Field parameter measurements to be recorded every 3 to 5 influites.

 (5) Subdification criteria based on three most record consocutive measurements.

 (6) Monitor UTW every 5 min. Well drawdown to be 0.3 ft or less. Purge/sampling rate to be fowered as precessary to keep drawdown below 0.3 ft.

 (7) DO is not a stabilization criterion for the "Groundwater sampling" SEED Standard Operating Procedure.

 (8) ORP is not a stabilization criterion for the "Groundwater sampling" SEED Standard Operating Procedure.

VES					GROU	ND WATER SA	AMPLING LO	G SHEET	
ERM	Client:	Coats		,		Project No.;	13838	8	Sampling Date: 9/17/13
	Site/Location:	Toccoa, GA							Sampler's Name: T. Fisher
	Well ID:	mw	1-17	-	ımp Type/Model:	·	1tig/ &	epunp	Sample Collection Time: 1205
,	Total Depth (ft)1:	18.5	, O ₂	_	Tubing Material:	Jetto.	~		Sample Purge Rate (L/min) ⁸ : Scaa Straw method
De	pth to Water (ft):		1	Pump I	Intake Depth (ft):				Sample ID: MW-/7
W	'ell Diameter (in):	_2		_ Start/S	Stop Purge Time:	1110/1	265	ca val l	QA/QC Collected?
Well Volume	(gal) = 0.041d ² h:	0.9		- Purg	ge Rate (L∕mìn)²:	500 ml/	min 27	10 7 min	QA/QC I.D.
I = well diameter ((inches) h = lengt	th of water column				te w			Laboratory Analyses: VOC
Well Condition:	Good		Samp	ling Method (ched	ck all that apply):	soda straw ((VOCs)	uacuum jug	(SVOCs)
Purge Method:	Low f	-6w				Bladder pum	np = pump disch	narge (all analytes)) Ealler (only used if necessary)
Time fmin)	Temp. (°C)	Spec. Cond. (m5/cm)	DO (mg/L)	pH (SU)	ORP (mV)	Turbidity (NTUs)	Purge Volum (L)	H ₂ O Depth (ft)	Notes (Purge method, water clarity, odor, purge rate, issues with pump/well/weather/etc.)
0.	14,09	0.108	Name	5,76	2	3.5	0.5	13.13	slow recharge/started pumping to last
Smin	13.85	0.108	3,52	5,26	38	3.2	4.0	13.35	500 ml/min / Vol.
16 min	13,91	0,106	3.69	5,30	32	2.9	8,0	13,75	scemilmin 2 vol
24	13.99	0.108	3,50	5.39	29	3.3	12.0	13.88	500 ml/min 3 vol
29	14.04	0.108	3.53	5.46	29 28	3.4	12.5	13.88	this flow. I 100 inclining
34	14.09	0.109	3.80	5,43	26	3.2	13.0	13.90	,
39	14,08	0,109	3.63	5.42	25	3,5	13.5	13.91	
						:			
						:*			
						:			
	-								·
									, , , , , , , , , , , , , , , , , , , ,
						1:			

(see note

below)6

(see note

below)4

Stabilizing

+/- 10%

(see note

below)⁷

+/-

0.1 unit

+/- 10 mV

(see note

below)8

^{+/- 10%} or <10 NTUs

Criteria 1: C 9% below) 1. Until 1 below) 1. Criteria

(1) - Do not measure duplis to bottom of well until after purging and sampling for reduce resuspending flues that ray be resting on the well bottom.

(2) - Durge rate to be 0.25 pm or less.

(3) - Sampling rate to be 0.25 pm or less.

(4) - Field parameter measurements to be recorded every 3 to 5 minutes.

(5) - Sabilization criteria beard on three more recent consecutive measurements.

(6) - Manifor DTW every 5 min. Well drawdown to be 0.3 ft or less. Purge/sampling minutes.

(7) - DX is not us stabilization refreshor for the "Groundwater sampling" 550 Standard Operating Procedure.

(8) - ORP is not a stabilization criterion for the "Groundwater sampling" 550 Standard Operating Procedure.

W S	
FRM	

ERM	Client	Coats				Project No.:	138388		Sampling Date: 9/69/13
	Site/Location:							-	Sampler's Name: T. Fisher
	Well ID:	MAL	- 18	Pu	mp Type/Model:	Bladder	/QED	>	Sample Collection Time:
	Total Depth (ft)1:	64.	50	•	Tubing Material:	Teffor	n		Sample Purge Rate (L/min) ³ : / DO m// msh
	epth to Water (ft):	600	3	•	ntake Depth (ft):	63			Sample ID: <u>MW-18</u>
	Vell Diameter (in):			Start/S	itop Purge Time:			-	QA/QC Collected?
	$(gal) = 0.041d^2h$		~	Purg	ge Rate (L/min)²:	100.	refine	4	QA/QC I.D.
= well diameter	(inches) h = leng	th of water column	(feet)	Total Pu	urge Volume (L):	_500_	below	J	Laboratory Analyses: VOC
Well Condition:	<u> 6000</u>	<u> </u>	Sampl	ing Method (chec	ck all that apply):	☐ soda straw	(VOCs)	☐ vacuum jug ((SVOCs)
Purge Method:	· Low	Flow		.,,,		∄Bladder pu⊓	np = pump discha	arge (all analytes)	
Time (Min)	Temp.	Spec. Cond. (mS/cm)	DO (mg/L)	pH (SU)	ORP (mV)	Turbidity (NTUs)	Purge Volume (L)	H ₂ O Depth (ft)	Notes (Purge method, water clarity, odor, purge rate, issues with pump/well/weather/etc.)
O	16.25	0.125		5.66	-15	123	0.5	60.05	
.5	16.04	0.116	8.95	5.64	-10	120	1.0	60.05	
10	15.99	0.114	8,70	5.63	-3	119	1.5	60.05	
15	16117	0.112	8,46	5.64	0,1	125	2.0	60-05	
20_	16014	6.113	8.40	5.67	1.0	120	2.5	60.05	
25	16.30	0.1/3	8,35	5,72	0.8	12-3	3.0	60.05	
									
	-	-				-			
	 						<u> </u>		
	-								
	-						<u> </u>		
	+								
		-					<u> </u>		
						:			
								.,	
			3						
Stabilizing Criteria ^s	+/- 1°C	+/- 3%	+/- 10% (see note below) ⁷	+/- 0.1 unit	+/- 10 mV (see note below) ⁸	+/- 10% or <10 NTUs	(see note below)4	(see note below) ⁶	
Do not measure de Furge rate to be 0. Sumpling rate to be Field parameter m Subdividual criter Manufact DTM non-	epth to bottom of well- 5 lpm or less, se 0.25 lpm or less, neasurements to be received most ria based on three most	until after purping and so orded every 3 to 5 minute recent consecutive meas own to be 0.3 ft or less. P "Groundwater sampling	es. surements. Purce/sampling rate to	ix: lowered as necessar		:			

					GROU	ND WATER SA	MPLING LOG	SHEET	
ERM	Client:	Coats				Project No.;	138388		Sampling Date: <u>9// 9/20/3</u>
	Site/Location:								Sampler's Name: R. McJilton
	Mall ID	1111-14		Pur	no Tvoe/Model:	6+010	MO RL	NOUER	Sample Collection Time: 1545
	Total Depth (ft) ¹ :	55 40 1	POPEN HO	ue) .		1/74/4			Sample Purge Rate (L/min) ³ : 1 1 / / / / / / / / / / / / / / / / /
F	Depth to Water (ft):	1.54		Pump Ir	ntake Denth (ft):	5096			Sample ID: MW 19
	Well Diameter (in):	41.		Ştart/Si	top Purge Time:	1510 /	1540		QA/QC Collected? 1/0
Well Volum	e (gal) = 0.041d ² h:	30616/	114 618	25 Purg	e Rate (L/min)²:	1/4/1/1	N		avac i.d. N/A
	r (inches) h = lengti	- /		Total Pu	rge Volume (L):	30411	2123		Laboratory Analyses: VDC3 8260
	n: 6000	,	Sampli	ing Method (chec				☐ vacuum jug (
Purge Metho	d: <u>LOW</u>	Fron 1 L	on 10	LUME GE	16/MIN	☐ Bladder pum	np = pump discha	rge (all analytes)	☐ Bailer (only used if necessary)
Time	Temp.	Spec. Cond. (mS/cm)	DO (mg/L)	pH (SU)	ORP (mV)	Turbidity (NTUs)	Purge Volume (L)	H₂O Depth (ft)	Notes (Purge method, water clarity, odor, purge rate, issues with pump/well/weather/etc.)
1515	14 75	.194	844	7.05	109.0	234	,5	9.62	
1520_	19.35	1147	4.94	7.34	124.7	1.03	10	1.63	
1525	18.22	1147	4.71	7.40	122.2	1.05	1.5	9.63	
1530	13.05	1196	4.21	7.49	119.5	.64	2.0	964	
1535	17145	.194	4.14	7.53	115.1	, 40	2.5	9.64	
1540	17,41	1A6	4.12	7.54	111.9	175	3.0	9.64	
1545	PARAME	7272.5	67AB1412	ZD , 54/	10463	602 66	アピン.		
1212	8 / 2 C · // 3 ···		7. 2						
			<u> </u>	<u> </u>					

·						:	,		

		-	 			1:			
			-						
		-	<u> </u>			1			
			 -	 		<u> </u>			

(see note

below)4

(see note

below)*

+/- 10%

(see note

+/-

+/- 10 mV

(see note

Stabilizing

^{+/- 10%} or <10 NTUs below)ª below) 0.1 unit Criteria 1 TC 376 Delow) 4.1 unit below) \$10 N.

(1) - Do not inconstruction to bottom of well until after purging and compling to reduce resuspending frees that may be resting on the well bottom.

2) - Purge are those be 1.5 from or less.

3) - Sumpling rate to be 0.25 from or less.

4) - Finde parameter measurements to be recorded every 3 to 5 mimutes.

(3) - Sublikutation criteria hased on three most record consecutive measurements.

(3) - Sublikutation criteria hased on three most record consecutive measurements.

(6) - Monitor DTW every 5 rata. Well drawdown to be 0.3 for less. Purge-y-mampling rate to be lowered as necessary to keep drawdown below 0.3 ft.

(7) - DO is not a sublikitation criterion for the "Croundwater sampling" SiSD Standard Operating Procedure.

(8) - ORP is not a stabilization criterion for the "Croundwater sampling" SiSD Standard Operating Procedure. Criteria⁵ 1°C

					0/10/13
ERM Client: Coats		Project No.:	138388	Sampling Date: _	9/19/12
Site/Location: Toccoa, GA		:		Sampler's Name: I	R. McJilton
Well ID:	Pump Type/Model: _	Bladdes/	/ QED	Sample Collection Time: _	1250
Total Depth (ft) ¹ : 57 (46-56)	Tubing Material: _			Sample Purge Rate (L/min) ³ : ₂	
Depth to Water (ft): 48.65	Pump intake Depth (ft): _			Sample ID:	mw-20
Well Diameter (in):	Start/Stop Purge Time: _	1155		QA/QC Collected?	gyer
Well Volume (gal) = 0.041d ² h: 1.4641/5.21170	Purge Rate (L/min) ² : _			QA/QC1.D	
d = well diameter (inches) h = length of water column (feet)	Total Purge Volume (L): _	see be	low	Laboratory Analyses:	Voc
	Method (check all that apply):				discharge (Inorganics including cyanide)
Purge Method: Low Plow			= pump discharge (all analyte	.es) 🔲 Baller (only ບ	used if necessary)
	CDD.			The state of the s	, water clarity, odor, purge rate, issues with
Time	pH ORP (SU) (mV)	Turbidity Pu (NTUs)	urge Volume H ₂ O Depth (L) (ft)		ump/well/weather/etc.)
0 17,45 0.047 8,49	5.87 -22	7999	0,5 48.67	1 >999 inc	licates "out of range"
7 1/ 28 0 000 7.75	611 12	Laga	1 1 10 10)	

/Min	Temp. (°C)	Spec. Cond. (mS/cm)	DQ (mg/L)	pH (SU)	ORP (mV)	Turbidity (NTUs)	Purge Volume (L)	H ₂ O Depth (ft)	Notes (Purge method, water clarity, odor, purge rate, issues with pump/weil/weather/etc.)
()K(K)/	17 45	0047	8.49	5.87	-22	7999	0.5	48.67	7999 indicates "out of range
5	16.28	0.044	7,75	6.14	12	>99a	1.0	40,60	
10	15.93	0.043	7.51	5.02	24	7999	1.5	49.69	
16	15.82	0.643	2 (2	5,10	22	399A	a.o	4867	
20	15.79	0.042	7.42	5.16	22	799	2.5	48,60	
25	15 25	0.042	7.28	5.23	18	7999	3.0	48.68	
30	15 87	0.042	2.36	5.27	15	80	3.5	48 69	
35	15.72	0042	2.42	5.28	15	71	4,0	48.66	
40	15.81	0.041	742	5.26	15	38	4.5	48.67	-
45	15.88	6,041	7.11	5.25	18	39	5.0	48.68	
50	15.94	0.042	7.10	5.26	15	37	5.5	48.67	
70	11/1	, , , ,		<u> </u>					
	:		·			1			
		<u> </u>			****				
			· .						
		<u> </u>	<u> </u>				********		
						1:			
						1:			
						 			
						 			
Stabilizing	4-	+/-	+/- 10% (see note	+/-	+/- 10 mV (see note	+/- 10% or	(see note	(see note	
Critorio ⁵	1°C	3% ntil after purging and sar	below)7	0.1 unit	below) ⁸	<10 NTUs	below)4	below)*	
 Purge rate to be 0.5 Sampling rate to be Field parameter me Statell sation criteria 	lpm or less. 0,25 lpm or less. asurements to be reco	rded every 3 to 5 minutes	rements.					7	<u>/</u>

		•			
ERM Client: Coats		Project No.:	138388		Sampling Date: <u>4/14/2013</u>
Site/Location: Toccoa, GA					Sampler's Name: R. McJilton
Well ID: MW ~ Z1	Pump Type/Model:	ELADDE	17		Sample Collection Time: 0445
Total Depth (ft)1: 537 (46-54)	Tubing Material;	17×1/4	7L-60	9E"	Sample Purge Rate (L/min) ⁹ : + / L/M 1M
Depth to Water (ft): <u>44</u> .22	Pump Intake Depth (ft):	52 FE	·		Sample ID: M bv - 2/
Well Diameter (in):	Start/Stop Purge Time:	0840/6	1140		QA/QC Collected? NO
Well Volume (gal) = 0.041d²h: 1.6.491.16.04	Purge Rate (L/min)²:	114/MI	V		QAQCIB.
d = well diameter (inches) h = length of water column (feet)	Total Purge Volume (L):	10041	Z195		Laboratory Analyses: VOCS 4260
Well Condition: 6207 Samp	oling Method (check all that apply):	□ soda straw	(VOCs)	uacuum jug (SVOCs)
Purge Method: LON FLOW LOW VOL	LA E	Bladder pun	np = pump discha	irge (all analytes)	☐ Bailer (only used if necessary)
Time Temp. Spec. Cond. DO ("C) ("MS/cm) (mg/L)	pH ORP (SU) (mV)	Turbidity (NTUs)	Purge Volume (L)	H ₂ O, Depth (ft)	Notes (Purge method, water clarity, odor, purge rate, issues with pump/well/weather/etc.)
0449 16.48 ,110 11.72	5.68 123.9	OVF	15	49.31	
0450 16.97 .109 11.39	5.62 125 \$	795	10	44.31	·

Time	Temp. (°C)	Spec. Cond. (mS/cm)	DO (mg/L)	pH (SU)	ORP (mV)	Turbidity (NTUs)	Purge Volume (L)	H ₂ O Depth (ft)	Notes (Purge method, water clarity, odor, purge rate, issues with pump/well/weather/etr.)
0449	16.44	. 110	11.72	5.08	123.7	OVF	15	44.31	
0450	16.97	.109	11.39	5.42	125 \$	795	10	44.31	
1455	17.12	.109	11.12	5.58	1275	696	1.5	44.31	
2400	17.19	103	11.05	554	124-6	417	2.0	49,31	127
1405	1662	103	10.92	5.27	144.4	442	2.5	49.31	
11/0	16.52	:104	10.54	5.17	1520	144	30	41.31	
M15	16.25	104	10-24	5/18	1551	95.2	12 ; G	49.31	
1920	16.36	.107	10.03	521	154.5	69,5	41.0	49.31	
0925	16.30	,107	10-11	5.22	1541	32.9	4.5	41.31	
0430	16.40	.107	10.06	5.23	1547	10.09	5.0	47.31	
0135	16.37	.106	10.10	5.24	155.7	7.51	5.5	49.31	
0940	16.31	1186	10.07	5.27	1565	6.45	60	44.31	
0945	PARAM	LIZER S	67AB	4/220,	SAMI	163 1	PLLECTE	Ð.	
						· ·			
						-			
Stabilizing Criteria ⁵	#- 1°C	+/- 3%	+/- 10% (see note below) ⁷	+/- 0.1 unit	+/- 10 mV (see note below) ^a	+/- 10% or <10 NTUs	(see note below) ⁴	(see note below) ⁶	
 Purge rate to be 0.5 Sampling rate to be Field parameter me Stabilization criteria Monitor DTW every 	Ipm or less. 0.25 Ipm or less. asurements to be recor i based on three most r r 5 min. Welf drawdos ation criterion for the "C	atil after purging and sa 25 ded every 3 to 5 minute event consecutive measur vn to be 0.3 ft or less. Pr Groundwater sampling	s. grements. gree/sampling rate to SESD Standard Oper.	be lowered as necessa-					

X		6	
F	2	N.	1

					GROU	ND WATER SA	MPLING LOG	SHEET	
ERM	0114	O a a ta				Project No.:	138388		Sampling Date: 9 \ 18 (3
	Client: Site/Location:								Sampler's Name: T. Fisher
			22_			Bladde	IDES	,	Sample Collection Time: 1400
4	Well ID: Fotal Depth (ft) ¹ :	1/1				Teflon			Sample Purge Rate (L/min) ³ : 100 ml/min
	oth to Water (ft):	222			take Depth (ft):		<u> </u>		Sample ID: MW-22
	ell Diameter (in):			Start/St	op Purge Time:	1320	,		QA/QC Collected?
	gal) = 0.041d ² h:	- 1 d				100ml			QA/QC I.D.
		h of water column (rge Volume (L):		below		Laboratory Analyses: VDC
Well Condition:	<u>G000</u>		Sampli	ng Method (chec				vacuum jug (S	•
Purge Method:	LOW f	low_			·	Bladder pun	np = pump discha	rge (all analytes)	☐ Bailer (only used if necessary)
Time /	Temp. (°C)	Spec. Cond. (mS/cm)	DO (mg/L)	pH (SU)	ORP (mV)	Turbidity (NIUs)	Purge Volume (L)	H ₂ O Depth (ft)	Notes (Purge method, water clarity, odor, purge rate, issues with pump/well/weather/etc.)
0	14.60	0.127	9.15	5,84	-8	73	0.5	33.12	Pump in well adjusted water
5	14,19	0,125	9.02	5.40	21	37	1.0	33,41	level up.
10	14,19	0:125	9,03	5.44	22	22	1-5	33.35°	YSI-556 - parameters
15	14,18	0,126	9,04	5.54	19	17	2.0	33.38	Hach 21000 turbidity
20	14.11	0.126	9,05	5.58	17_	16	2.5	33.36	
25	14.12	0.126	8.88	5.60	17_	12	3.0	33.35	
30	14.08	0.126	8,85	5.60	17	12_	3,5	33.36	
20 25 30 35	14.69	0,126	8,80	5,59	17	//	4,0	33,35	
						<u> </u>			
				<u> </u>					
							-		
	ļ			-					
				<u> </u>					
		-			···	 			

Stabilizing

Criteria

1°C

+/- 10%

(see note

below)7

+/- 10 mV

(see note

below)5

+/-

0.1 unit

+/- 10% or <10 NTUs

(see note

below)4

(see note

below)6

Criteria" 4.°C 39% below 0.1 unit below 310 N.

(1) - Du not measure depth to bottom of well until after purging and sampling to reduce resuspending fines that may be resting on the well buttom.

(2) - Purge rate to be 0.5 jun or less.
(3) - Sampling rate to be 0.25 jun or less.
(4) - Field prunneler measurements to be recorded overy 3 to 5 minutes.
(5) - Stabilization criteria based on three most recent consociative measurements.
(6) - Mentilor JTW away 5 min. Well drawdown to be 0.3 ft or less. Porps/campling rate to be towered as necessary to keep drawdown below 0.3 ft.
(7) - DO is not a stabilization criterion for the "Croundwater sampling" SESD Standard Operating Procedure.

(8) - ORP is not a stabilization criterion for the "Croundwater sampling" SESD Standard Operating Procedure.

ERM	0" .					Project No.:	138388		Sampling Date: 9/18/(3
		Coats				Project No	730300		Sampler's Name: T. Fisher
	Site/Location:	Toccoa, GA	-2-0,00			7	<u> </u>	-	
	Well ID:	MW	23	Pu	mp Type/Model:	gerista	Hic/G	eopump	Sample Collection Time: 1055
	Total Depth (ft)1:	30		_	Tubing Material:	Teflor	<u> </u>		Sample Purge Rate (L/min)3: Soda Straw
De	pth to Water (ft):	21,87	}	Pump i	ntake Depth (ft):	20 2	5		Sample ID: MW-23
W	ell Diameter (in):	J		Start/S	top Purge Time:	1015			QA/QC Collected?
	(gal) = 0.041d²h:		,,	Purg	ge Rate (L/min)²:	100 m	L/min		qa/qc i.d. $D \circ p \circ D = D \circ D$
d = well diameter ((feet)	- Total Po	urge Volume (L):	5ce	below		Laboratory Analyses: VOC
Well Condition:	$I = I_A \cdot A$	L .	Sampl			Soda straw (VOCs)	uacuum jug (S	SVOCs)
Purge Method:	Lou	Flow	_			□ Bladder pum	p = pump discha	ırge (all analytes)	☐ Bailer (only used if necessary)
	100		T bö	- constitution and the	ORP	Turbidity	Purge Volume	H ₂ O Depth	Notes (Purge method, water clarity, odor, purge rate, issues with
(MIN)	Temp. (°C)	Spec. Cond. (mS/cm)	DO (mg/L)	pH (SU)	(mV)	(NTUs)	(L)	(ft)	pump/weil/weather/etc.)
0	16,37	0,172	6.86	6.01	-9	3	0,5	21,95	
5	16.74	0.165	6.39	5.77	-2	3	1,0	21,96	
10	16.43	0,163	6.47	5.61	-10	3	1,5	21.96	
15	1659	0.163	6.43	5.66	-17	3	2.0	21.96	•
20	16.66	0.163	640	5.68	~13	3	2.5	21.96	
25	16.53	0,165	6,27	5,73	-13	3	3.0	21.96	
	1010								
			·						
						D10=			
								-	

				i ·					
						:			
					<u> </u>				
,									
				1					
		1							
J. 1800			+/-10%		+/- 10 mV				
Stabilizing Criteria ⁵	+/- 1°C	+/- 3%	(see note below) ⁷	+/- 0.1 unit	(see note below) ⁸	+/- 10% or <10 NTUs	(see note below) ⁴	(see note below) ⁶	
(I) - Do not measure de (2) - Purge rate to be 0.5	pth to boltom of well u						A STATE OF THE PARTY OF THE PAR	en e	
(3) - Sampling rate to be (4) - Field parameter me	0,25 lpm or less. asurements to be reco	rded every 3 to 5 minute	s,						
(6) - Stabilization criteria (6) - Monitor DTW ever (7) - DO is not a stabiliza	v 5 min. Well drawdo	our to be 0.3 ft or less. P	urce/sampling rate to	bu lowered as necessaring Procedure,	ry to keep drawdown	below 0,3 ft			
(8) - ORP is not a stabili	zation criterion for the	"Groundwater sampling	SESD Standard Oper	rating Procedure.					

U 9					GROU	ND WATER SA	AMPLING LOG	SHEET	
ERM	Client:	Coats				Project No.:	138388		Sampling Date: <u>9/17/2013</u>
	Site/Location:	Toccoa, GA							Sampler's Name: R. McJilton
	 Well ID: ₍	MW-24	1	_ P	ump Type/Model:				Sample Collection Time: 1125
	Total Depth (ft)1:	3544 (2	<u> 5-35)</u>	_	Tubing Material:		72-60	PE	Sample Purge Rate (L/min) ³ :
	Depth to Water (ft):	23.45		Pump	Intake Depth (ft):	301±			Sample ID: MW - Z4
	Well Diameter (in):	211		Start/	Stop Purge Time:	1050 /	1120		QA/QC Collected? NO
Well Volum	Well Diameter (in): e (gal) = 0.041d ² h:	1.9694	7.241	≧P/> Pui	rge Rate (L/min) ² : ² urge Volume (L):	: 14/M	<u> </u>		QAQCID. M/A
(= well diamete	r (inches) h = lengt	in of water column	(feet)	Total F	Purge Volume (L):	3.06			Laboratory Analyses: VOG BZ60
Well Conditio	n: 6000		Samp		eck all that apply):			☐ vacuum jug ((SVOCs)
Purge Metho	d: LON FO	10w/10	W VOL	IME B	1.L/mir	☐ Bladder pun	np = pump discha	arge (all analytes)	
Time	Temp. (°C)	Spec. Cond. (mS/cm)	DO (mg/L)	рН (SU)	ORP (mV)	Turbidity (NTUs)	Purge Volume (L)	H ₂ O Depth (ft)	Notes (Purge method, water clarity, odor, purge rate, issues with pump/well/weather/etc.)
i055"	13.24	120	10.35	5.56	139	336	,5	73.45	
1100	17.49	.116	7.47	5.15	107.5	220	10	2349	
1105	1774	.114	4.44	4.35	128.4	11.3	1.5	23.45	
1110	17.65	110	572	4.55	1327	3.33	20	23.45	
1115	17.71	1109	3.73	4.91	130.4	213	2.5	23,48	
1120	17.60	106	9.63	4.96	13/19	1.13	30	23.43	
1125	PARAM	TZ43	STABIL	17±0, 5	ANPL 63	0000	EETED.		
									3

(see note

below)4

(see note

below)6

below)⁷ Criteria⁵ (1) - Do not measure doubt to bottom of well until after purging and sampling to reduce resuspending lines that may be resting in the well bottom.
(2) - Purgi rate to be 0.5 ipm or less.

Stabilizing

+/-

1°C

(3) - Purportate to be 0.0 ipm of less.

(3) - Sampling rate to be 0.5 ipm of less.

(4) - Held parameter measurements to be accorded every 3 to 5 minutes.

(5) - Subdilization criteria isseed on three usest occurs on security measurements.

(6) - Monitor DTW meany 5 min. Well drawdown to be 0.3 ft or less. Purge/sampling rate to be lowered as necessary to keep drawdown below 0.3 ft.

(7) - DN is not a slabilization criteria for the "Groundwater sampling" SESD Standard Operating Procedure.

(8) - ORP is not a stabilization criterion for the "Groundwater sampling" SESD Standard Operating (Procedure.

+/-10%

(see note

+/-

0.1 unit

+/- 10 mV

(see note

below)8

+/- 10% or

<10 NTUs

+/-

ERM		: Coats				_ Project No.:	: 138388		Sampling Date: 9/17/243		
Well ID: MW-25 Pump Type/Model:						117x11/1 1992 1140/ 1140/ 301 Boda straw	(VOCs)	□ vacuum jug (Sample Collection Time: 1215 Sample Purge Rate (L/min) ³ : 1 L/M1 ^A Sample ID: 1 L/M - 25 QA/QC Collected? 100 QA/QC I.D. 11A Laboratory Analyses: 1260 (SVOCs) □ pump head discharge (Inorganics including cyanide)		
Time	Тетр. (°С)	Spec. Cond. (mS/cm)	DO (mg/L)	pH (SU)	ORP (mV)	Turbidity (NTUs)	Purge Volume (L)	H ₂ O Depth (ft)	Notes (Purge method, water clarity, odor, purge rate, issues with pump/well/weather/etc.)		
1145	18.59	105	1.77	5.45	119.4	300	.5	12.06			
1150	18.36	104	3.44	5.19	135.5	5,77	1.0	1200			
1155	13.04	1104	4.25	5.10	137.5	1.54	15	1200			
1200	14.03	103	9.34	5,23	130.2	1.33	2-0 Z-5	1206			
1205	1300	1103	4.22	5.26	1274	1.12	25	1204			
1710	13100	0102	4.22	5.25	1310	107	30	17.06			
1215	00000	pro-ph-13 /	2.10	. 22.3	1000						
1412	PARAM	E 1507	274010	1821),	SAMPL	7 626	166612	<i>V</i> -			
,											
			ļ <u>.</u>								
	-								The second secon		
				:							
						:					
						:					
						:					
									, , , , , , , , , , , , , , , , , , ,		
Stabilizing	*/-	+/-	+/- 10% (see note	+/-	+/- 10 mV (see note	+/- 10% or	(see note	(see note	, in the second		

Criteria⁵

below)7

0.1 unit

below)*

<10 NTUs

below)4

Criteria 2. C. 2. Delow) U.1 Unit Delows. Delows Delow 2. Au-ny (1) - Do not measure depth to bottom of well until after purping and sampling to reduce resuspending fines that may be resting on the well bottom (2) - Purge rate to be 0.5 pm or less.

3) - Sampling rate to be 0.5 pm or less.

3) - Sampling rate to be 0.5 pm or less.

5) - Fishellization criteria based on three most accord consecutive measurements.

5) - Sabellization criteria based on three most accord consecutive measurements.

6) - Mentilor DTW every 5 min. Well drawdown to be 0.3 ft or less. Purge/sampling rate to be lowered as necessary in keep drawdown below 0.3 ft.

7) - DO is not a stabilization criterion for the "Groundwater sampling" SESD Standard Operating Procedure.

8) - ORP is not a stabilization criterion for the "Groundwater sampling" SESD Standard Operating Procedure.

9-275	-G
(Rev.	10-81

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

Meas. No
Comp. by. Dog.

		þ	WA	TER RI	ESOURC	ES DIVISION			
Sta. No.	S W	-1	DISCI	HARGE	MEASUF	REMENT NOTES Checked by			
						5.b			
	Width Area Vel G. H Disch								
						in hrs. Susp			
						Susp. coef Meter No			
						Tag checked			
						efore meas after			
Meas. pl					ting. Le	vels obtained			
	1	GE RE		1		WATER QUALITY MEASUREMENT			
Time		<u>Inside</u>	<u>ADR</u>	Graphic	Outside	No Yes Time			
						Samples Collected			
		[']				No Yes Time			
	 					Method Used			
. ,						EDIEWI Other			
	 					SEDIMENT SAMPLES			
						No Yes Time			
	 	ļ <i>.</i>				Method Used			
<u> </u>	<u>l</u>	<u></u>			<u> </u>	EDI EWI Other			
Weighted	M.G.H.					BIOLOGICAL SAMPLES			
G. H. co	rrection					Yes Time			
Correct I	M.G.H	<i>.</i>		<i></i>		No			
						hanged to at			
Wading	cable.	ice. boat	. upstr.	. downsti	r., side b	ridge feet, mile, above, below gage			
), poor (over 8%); based on the following cond			
Gage of	perating	Alc				Weather . C.l.E.O.M			
Intake/	Orifice	cleaned		. Air	°C	@ Water °C@			
						: Max Min			
						Bbl rate per mir			
						ck reading			
Remark	cs divi	e 70	thick	t born	13. I.C	outside, in we			

Sheet No. of sheets

G.H. of zero flow ft.

9-275-G (Rev. 10-81)

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

WATER RESOURCES DIVISION

Sta. No. DISCHARGE MEASU	REMENT NOTES Checked by							
Inats NECOA								
D. 10 4 3012 Party D.D.								
Wild 3 7 Aron XI Vel	THE HINLANDISCH. AVOIT 1915							
Method + Oh M. No. secs G. H. change	in hrs. Susp							
Method coef Hor, angle coef	Susp. coef Meter No							
Type of meter from both Full. Date rated								
Meter ft. above bottom of wt. Spin before meas after								
Meas. plots % diff. from rating. Le	vels obtained							
GAGE READINGS	WATER QUALITY MEASUREMENTS							
Time Inside ADR Graphic Outside								
	Samples Collected							
	No Yes Time 12.65.							
	Method Used							
	EDI EWI Other							
	SEDIMENT SAMPLES							
	No Yes Time							
<u></u>								
Weighted M.G.H.								
G. H. correction								
Correct M.G.H	No Type							
Check bar. chain found	changed to at							
Wading, cable, ice, boat, upstr., downstr., side	oridge feet, mile, above, below gage.							
Measurement rated excellent (2%), good (5%), fair (8%)	6), poor (over 8%); based on the following cond:							
Flow								
Cross section REW 200' LEW	F ₄ 7							
Control Seeth								
Gage operating	Weather							
Intake/Orifice cleaned Air °	C@ Water °C@							
Record removed Extreme Indicato	r: Max Min							
Manometer N ₂ Pressure Tank Feed	Bbl rate per min.							
CSG checked Si	tick reading							
Observer	,							
HWM	outside, in well							
Remarks								
	,							
G.H. of zero flow ft. Shee	t No of sheets							

.10 .50 River at— SW −2 VELOCITY Adjusted for hor. angle or Dist. from initial point Time in sec-onds Mean in ver-tical Width Depth Area At point 5 0.19 :38 0/ 48 104 0.24 105 ·40 1003 103 25 0.50 106 0,40 6 10.0E .05 .04

.

.10

.40

.60

.70

.75

9-27	5-H
(Rev.	4-94)

Correct M.G.H....

Check-bar, chain found

UNITED STATES DEPARTMENT OF THE INTERIOR

GEOLOGICAL SURVEY

Meas.	No.	ا
		Den

	A		. 1	WATER RES	OURCES	DIVISION	N.	Con	ıp. by 🚜	9.4
ta. No S	W			IGE ME					cked by	
Con	ts 70	1000	Ä	82	yl	Anne	at.	1300) 	
ate 🤾);:.Y	19	1012.	Party	D. G.	<u> </u>				17 .
idthً ا	F(-Q	Area ().		. Vel. 0.	1.1.1.1.1	/.># G .	H	D)isch. <u>. ∺</u>	()
				G.H. cl						
				ef						
- 61				Da						
				of wt. Sp						
ieas. plo	ts	% di	ff. from		. rating.	Wading	g∕cable, i	ce, boat, u	pstr., dow	nstr., sid
bridge .			feet, m	ile, above	, below	gage. L	evels obta	ained		
	BASE GAGE READINGS AUX. GAGE READINGS									
Time		Recorder	Inside	Outside		Time		Recorder	Inside	Outside
Time		Recorder	Inside	Outside		Time	.,,,,,,	Recorder	Inside	Outside
Time						Time				Outside
Time										
Fime	·									
Fime	``									
	``									
	·······									
ghted M	G.H.									

changed toatat	changed to	
Measurement rated excellent (2%), good (5%),		
conditions: Cross section		
Flow	Weather Hew.	gurny
Other	Air	°F@
Gage		°F@
Record removed		
Observer		
Control		
Remarks 82/200 (300)		
Remarks 5.2699. M 1.19.9		

Correct M.G.H.

Check-bar, chain found

.0	.10	.20	.30		.40	J	50	.60		.70	.75	
•••						River	at—					
Angle coef- ficient	Dist. from initial point	Width	Depth	Observa- tion depth	Rev- olu- tions	Time in sec- onds	VELO At point	Mean in ver- tical	Adjusted for hor. angle or	Area	Discharge	.80
⋖	0	b	ð									
	15	15	, 27	i (b)			0.2	R2411	, }	0.135	0.0297	.85
	1+6	5	.21	ول			0,4	8		0,135	0,064	8
	1.5	1 60	130	16			18.	19		0.1	0.019	.90
	NG	,5	;15	, 6			0,0	5	ļ	0.075	(1,0037	5
	2,35	.5	012	3 7	7		0.	07		0.06	0. 004 Z	.92
	3.0	16	10	16		ļ	0	10				.94
	3.6	15	.10	16		-	0	0				.96
	4,0	15	U_	**haza	in Country or	-	National Control of the Control of t		-	0.5184	10,12cfs	.97
	 	 -	ļ	-	<u> </u>	 			 	(U. 7)(a)	2120	- /98
			-	+	 					 	The same of the sa	.99
	-		 	\vdash		+	†	 	 			-
	-	-	 	+		+	1		 			-
<u> </u>			 	+	1	<u> </u>						1.00
	<u> </u>	-		+-	1							_
_				-								
	1											. 99
										<u> </u>	ļ	98
										_		97
				_	_							.96
												94
				1				-			-	_
_				\downarrow	-		_	 				.92 —
							_	-				.90
_				-	 						<u> </u>	_
_						-	-		_	-		 ac
_		-		+	-					-		
_				+	-	+-			-			
_	 -		-	+	-	_;;d		_	+			
	-			+	+	+		1				
	1	1	1	- 1	1	1	II.	1	i			

.75

.70

.60

9-275-H (Rev. 4-94)

UNITED STATES-DEPARTMENT OF THE INTERIOR

Meas. No.

Comp. by

Sta. No.S	101.4	D	ISCHAR	GE ME	ASUR	EMENT	' NOTES	Chec	cked by	•				
Width	₹. ©	Area .4.	Yuft.	Vel. ()	.20	O fr/sg.	н	D	isch. <u>()</u> 1	<u>i4ds</u>				
Method co	oef,	Ног	r. angle co	ef	. Sus	p. coef		Meter	No					
Type of m	eter. £ 🖔	melle.		Da	ate rate	ed			for re	od, other.				
Meter		ft. abo	ve bottom	of wt. Sp	in bef	ore meas.		aft	er					
Method No. secs. G.H. change in hrs. Susp. Method coef. Hor. angle coef. Susp. coef. Meter No. Type of meter. The many coef. Susp. coef. Meter No. Type of meter. It was a part of the meter of the meter. Susp. Date rated for rod, other. Meter fl. above bottom of wt. Spin before meas. after Meas. plots , diff. from rating. Wading, cable, ice, boat, upstr., downstr., side bridge. feet, mile, above, below gage. Levels obtained. BASE GAGE READINGS Time Recorder Inside Outside Weighted M.G.H. Recorder Inside Outside Weighted M.G.H. G.H. correction. G.H. correction. Correct M.G.H. Correction. Correct M.G.H														
	Time Recorder Inside Outside Time Recorder Inside Outside													
Time		Recorder	Inside	Outside		Time		Recorder	Inside	Outside				
				,			,							
								,,						
			,											
	Party DGD Fidth Area Fidth Vel. Disch. Disch													
Date 10 4 Party DGO Width Area (1441 Vel. D201 G.H. Disch. 1144 S.Method No. secs. G.H. change in hrs. Susp. Method No. secs. G.H. change in hrs. Susp. Method coef. Hor. angle coef. Susp. coef. Meter No. Type of meter. 10 Meter No. Type of meter in above bottom of wt. Spin before meas. after Meas. plots "6ct, mile, above, below gage. Levels obtained BASE GAGE READINGS Time Recorder Inside Outside BASE GAGE READINGS Time Recorder Inside Outside Weighted M.G.H. G.H. Correction. G.H. Correct M.G.H. Correct M.														
	Note that the party DGO width 3 care a fulfit vel. () 20 ft GH. Disch. () 14 ft Selected on the party DGO width 3 care a fulfit vel. () 20 ft GH. Disch. () 14 ft Selected on the party DGO width 3 care a fulfit vel. () 12 ft SGH. Disch. () 14 ft Susp. Method coef. Hor. angle coef. Susp. coef. Meter No. Date rated for rod. other. Meter No. Sype of meter. It is not the party of the													
							in hrs. Susp. coef. Meter No. 1 for rod, other. re meas. after Wading, cable, ice, boat, upstr., downstr., side gage. Levels obtained AUX. GAGE READINGS Time Recorder Inside Outside Weighted M.G.H. G.H. correction Correct M.G.H. Check-bar, chain found hanged to at poor (over 8%), based on following her Air °F@ Intake flushed L.							
	te 26 2 2 2 2 2 3 2 3 4 4 4 4 4 4 4 4 4													
						Weighted I	MGH							
•		j				·								
		i	1											
Date														
	·													
Gage						Water.		···· F(a						
							`							
Remarks														
Date Party														
						6 CL	act No			cheets				

.75 .10 River at— Adjusted for hor. angle or VELOCITY Dist. from initial point Observa-tion depth Time in sec-onds Rev-olu-tions Mean in ver-tical Area Discharge Width Depth 15 0 1 2 O, I 0.034 25 12 0 34 13 8.15 0.07/ 1.0 .5 0 ,5 0.05 5 1.0 .5 0,28 25 0.04 - (3 5 Ó 0,20 ft/s 1.00 0

.40

.50

.60

.75

.70

- .

.0

.10

.20

.30

9-275-G (Rev. 10-81)

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

WATER RESOURCES DIVISION

	Area O 54 Kel. A 14 Kel. A		
ta. No. Start S DISCHARGE MEASUI	REMENT NOTES Checked by		
Cours Tolley W Sangle	Q 1940		
Oate . [. 0. 74 , 219] 2 Party . 20 Vidth 3 S Area. 0.54 FeVel. 0.19	TG. H. Disch. ORB		
Time Inside ADR Graphic Outside No Yes Time Samples Collected No Yes Time Method Used EDI EWI Other. SEDIMENT SAMPLES No Yes Time Method Used EDI EWI Other. SEDIMENT SAMPLES No Yes Time Method Used EDI EWI Other. SEDIMENT SAMPLES No Yes Time Method Used EDI EWI Other. SEDIMENT SAMPLES NO Yes Time Method Used EDI EWI Other. SH. correction Orrect M.G.H. No Type			
Method coef Hor. angle coef	Susp. coef Meter No		
Type of meter HOMME Date rated			
Meas. plots % diff. from rating. Le	vels obtained		
	Area D. Farty D. G.M. No. secs. G. H. change in hrs. Susp. Hor. angle coef. Susp. coef. Meter No. How Date rated Tag checked ft. above bottom of wt. Spin before meas. A diff. from rating. Levels obtained. AGE READINGS Inside ADR Graphic Outside No Yes. Time Samples Collected No Yes. Time Sediment SAMPLES No Yes. Time BIOLOGICAL SAMPLES No Yes. Time Method Used EDI EWI Other. BIOLOGICAL SAMPLES Yes Time No Type and found changed to at the changed to at the companion of the		
Time Inside ADR Graphic Outside	Area C. 54 Evel D. 14 Evels obtained. No. secs. G. H. change in hrs. Susp. Hor. angle coef. Susp. coef. Meter No. Flower Date rated Tag checked ft. above bottom of wt. Spin before meas. after % diff. from rating. Levels obtained. AGE READINGS WATER QUALITY MEASUREMENTS Inside ADR Graphic Outside No Yes. Time Samples Collected No Yes. Time Method Used EDI EWI Other. SEDIMENT SAMPLES No Yes. Time Method Used EDI EWI Other. SEDIMENT SAMPLES No Yes. Time Method Used EDI EWI Other. SEDIMENT SAMPLES No Yes. Time Method Used EDI EWI Other. SINDING SAMPLES Time No Type ain found changed to at the ch		
	No Yes Time		
	Method Used		
	EDIEWI Other		
	SEDIMENT SAMPLES		
	No Yes Time		
	Party DSD Area DSUFFEL AUGUS, H. Disch. ORE No. secs. G. H. change in hrs. Susp. Hor. angle coef. Susp. coef. Meter No. Thomas Date rated Tag checked ft. above bottom of wt. Spin before meas. after Mills from rating. Levels obtained AGE READINGS Inside ADR Graphic Outside No Yes. Time Samples Collected No Yes. Time Method Used EDI EWI Other. BEDI EWI Other. H. BIOLOGICAL SAMPLES Yes. Time No Type Time No Type Time No Type The Method Used EDI EWI Other. H. BIOLOGICAL SAMPLES Yes. Time No Type Time No Type The Method Used EDI EWI Other. Water Cleaned Air Sce Water Sce Section Section of the following cond: Weather Section of the following cond: Weather Section of the following cond: Stick reading Outside, in well Section of the file of the following cond: Section of the file of the following cond: Section of the file o		
	EDI EWI Other		
Weighted M.G.H.	Area. 2.34 EVEL. Area. 3.34 EVEL. Area. 4.34 E		
G. H. correction	A TOUR W. 1997 2. Party DSD. 3.2 S Area. 2 ST FWel. 0.144 G. H. Disch. 0 G. R. 1. No. secs. G. H. change. in hrs. Susp. 1. doef. Hor. angle coef. Susp. coef. Meter No. 1. f meter 10 MM. Date rated Tag checked 1. above bottom of wt. Spin before meas. after plots. % diff. from. rating. Levels obtained. GAGE READINGS Inside ADR Graphic Outside		
th 3.5 Area 0.34 Feel 0.44 G.H. Disch. 96 Feel 1.4 1.4 1.5 1.5 1.4 1.5 1.5 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5			
Check bar, chain found	hanged to at		
Wading, cable, ice, boat, upstr., downstr., side b	ridge feet, mile, above, below gage.		
Measurement rated excellent (2%), good (5%), fair (8%), poor (over 8%); based on the following cond:		
Cross section Labbles, Send			
Gage operating	Weather		
Intake/Orifice cleaned Air °C	C@ Water °C@		
Record removed Extreme Indicator	: Max Min		
Manometer No Pressure Tank Feed	Bbl rate per min.		
CSG checked Sti	ck reading		
UMA	outside, in well		
Remarks & 260 saule collected	91440		
	No. of sheets		

.0	.10	.20	.30	1	.40		50	.60		.70	.75	i
		ì				River		OCITY	T 4 1: 1	T T	 	
Angle cost- ficient	Dist. from initial point	Width	Depth	Observa- tion depth	Rev- olu- tions	Time in sec- onds	At point	Mean in ver- tical	Adjusted for hor. angle or	Area`	Discharge	.80
	0	.5	0					9		0		-
	.5	: 6	30	6			0.	176	15	.09	0153	.85
	LO	16	0.78	,6			0,	30 f	+15	109	,027	
	1.5	.6	0,18	n 6			U,	23P	1/5	109	×000	7 .90
	20	15	1,28	,6				124	5,	0.14	,0168	
	30	15	122	S.	-		0.	06P	<u>K</u>	0.11	.006	.92
	30	1.5	.10	, (p			Ø	-1/-	74 5	0.05	0.0055	94
	3.5	1,5	0					9		'V	0 -01	_
	-			$\left - \right $	-				.01.	Or.in	0,04ct	≥" ?!
								0,1	40×13°	V.54f		.96
												-
						į.						.99
												-
0												1.00
												-
					·							- .99
												-
												. 98
												.97 .96
												-
	<u>.</u>											.94
												.92
												.90
		·									· · · · · · · · · · · · · · · · · · ·	
								-				
												.85
			• .									- 90
												. 80
.0	.10	.20	.30		,40	.5	0	.60		.70	.75	

.0

Appendix C Ground Water and Surface Water Analytical Lab Reports

ASI

ANALYTICAL SERVICES, INC.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Laboratory Report

Prepared For:

ERM
3200 Windy Hill Road, Suite 1500W
Atlanta, GA 30339

Attention: Ms. Adria Reimer

Report Number: AWI0583 September 26, 2013

Project: Coats - Toccoa

Project #:0138388

We appreciate the opportunity to provide the analytical support for your project. The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Approved:

Project Manager

This report may not be reproduced, except in full, without written approval from Analytical Services, Inc. Analytical Services, Inc. certifies that the following analytical results meet all requirements of the National Environmental Laboratory Accreditation Conference(NELAC).

All test results relate only to the samples analyzed.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM 3200 Windy Hill Road, Suite 1500W

Attention: Ms. Adria Reimer

Atlanta GA, 30339

September 26, 2013

ANALYTICAL REPORT FOR SAMPLES

	ANALI IICAL REFOR		D	
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SW-1	AWI0583-01	Surface Water	09/17/13 09:15	09/20/13 10:25
SW-2	AWI0583-02	Surface Water	09/17/13 09:40	09/20/13 10:25
SW-3	AWI0583-03	Surface Water	09/17/13 10:00	09/20/13 10:25
SW-4	AWI0583-04	Surface Water	09/17/13 10:15	09/20/13 10:25
MW-24	AWI0583-05	Ground Water	09/17/13 11:25	09/20/13 10:25
MW-17	AWI0583-06	Ground Water	09/17/13 12:05	09/20/13 10:25
MW-25	AWI0583-07	Ground Water	09/17/13 12:15	09/20/13 10:25
MW-16	AWI0583-08	Ground Water	09/17/13 13:00	09/20/13 10:25
MW-14	AWI0583-09	Ground Water	09/17/13 13:55	09/20/13 10:25
MW-2	AWI0583-10	Ground Water	09/17/13 14:00	09/20/13 10:25
MW-9	AWI0583-11	Ground Water	09/17/13 14:30	09/20/13 10:25
MW-12	AWI0583-12	Ground Water	09/17/13 14:50	09/20/13 10:25
MW-5	AWI0583-13	Ground Water	09/17/13 15:30	09/20/13 10:25
MW-19	AWI0583-14	Ground Water	09/17/13 15:45	09/20/13 10:25
MW-10	AWI0583-15	Ground Water	09/18/13 09:10	09/20/13 10:25
MW-21	AWI0583-16	Ground Water	09/18/13 09:45	09/20/13 10:25
MW-1	AWI0583-17	Ground Water	09/18/13 10:05	09/20/13 10:25
MW-23	AWI0583-18	Ground Water	09/18/13 10:55	09/20/13 10:25
MW-4	AWI0583-19	Ground Water	09/18/13 11:35	09/20/13 10:25
MW-13	AWI0583-20	Ground Water	09/18/13 12:00	09/20/13 10:25
MW-11	AWI0583-21	Ground Water	09/18/13 13:50	09/20/13 10:25
MW-22	AWI0583-22	Ground Water	09/18/13 14:00	09/20/13 10:25
MW-3	AWI0583-23	Ground Water	09/18/13 15:30	09/20/13 10:25
MW-15	AWI0583-24	Ground Water	09/18/13 15:30	09/20/13 10:25
Duplicate-01	AWI0583-25	Ground Water	09/18/13 00:00	09/20/13 10:25
MW-18	AWI0583-26	Ground Water	09/19/13 10:00	09/20/13 10:25
MW-6	AWI0583-27	Ground Water	09/19/13 10:25	09/20/13 10:25
MW-20	AWI0583-28	Ground Water	09/19/13 12:50	09/20/13 10:25
MW-7	AWI0583-29	Ground Water	09/19/13 11:20	09/20/13 10:25
Duplicate-02	AWI0583-30	Ground Water	09/19/13 00:00	09/20/13 10:25
SW-5	AWI0583-31	Surface Water	09/19/13 13:05	09/20/13 10:25
Duplicate-03	AWI0583-32	Surface Water	09/19/13 00:00	09/20/13 10:25
Trip Blank	AWI0583-33	Water	09/17/13 08:00	09/20/13 10:25

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM 3200 Windy Hill Road, Suite 1500W Atlanta GA, 30339 Attention: Ms. Adria Reimer September 26, 2013

Case Narrative

Volatile Organic Compound Analysis by Method EPA 8260:

An unpreserved vial was not received for analysis; therefore 2-CEVE was analyzed using a HCL preserved vial.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: SW-1 Lab Number ID: AWI0583-01

Date/Time Sampled: 9/17/2013 9:15:00AM Date/Time Received: 9/20/2013 10:25:00AM

Matrix: Surface Water

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	8260									
Acetone	ND	100	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
Acrolein	ND	50	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
Acrylonitrile	ND	50	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
Benzene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
Bromobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
Bromochloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
Bromodichloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
Bromoform	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
Bromomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
n-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
sec-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
tert-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
Carbon Disulfide	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
Carbon Tetrachloride	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
Chlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
1-Chlorobutane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
Chloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
2-Chloroethyl Vinyl Ether	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
Chloroform	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
Chloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
2-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
4-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
Dibromochloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
1,2-Dibromo-3-chloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
1,2-Dibromoethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
Dibromomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
1,2-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
1,3-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
1,4-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
Dichlorodifluoromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
1,1-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
1,2-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
1,1-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
cis-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: SW-1 Lab Number ID: AWI0583-01

Date/Time Sampled: 9/17/2013 9:15:00AM Date/Time Received: 9/20/2013 10:25:00AM

Matrix: Surface Water

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	8260									
trans-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
1,2-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
1,3-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
1,1-Dichloropropene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
cis-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
trans-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
Ethylbenzene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
p-Isopropyltoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
Hexachloroethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
Iodomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
Methylene Chloride	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
Naphthalene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
Styrene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
Tetrachloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
Tetrahydrofuran	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
Toluene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
1,1,1-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
1,1,2-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH

September 26, 2013

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: SW-1 Lab Number ID: AWI0583-01

Date/Time Sampled: 9/17/2013 9:15:00AM Date/Time Received: 9/20/2013 10:25:00AM

Matrix: Surface Water

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	8260									
Trichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	СЈН
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
1,2,4-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
Vinyl Chloride	ND	2.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
m+p-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
o-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:09	3090463	CJH
Surrogate: Dibromofluoromethane	101 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 10:09	3090463	
Surrogate: 1,2-Dichloroethane-d4	109 %	78-	120	EPA 8260B			9/23/13 9:30	9/23/13 10:09	3090463	
Surrogate: Toluene-d8	99 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 10:09	3090463	
Surrogate: 4-Bromofluorobenzene	100 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 10:09	3090463	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: SW-2 Lab Number ID: AWI0583-02

Date/Time Sampled: 9/17/2013 9:40:00AM Date/Time Received: 9/20/2013 10:25:00AM

Matrix: Surface Water

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 82	60									
Acetone	ND	100	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
Acrolein	ND	50	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
Acrylonitrile	ND	50	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
Benzene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
Bromobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
Bromochloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
Bromodichloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
Bromoform	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
Bromomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
n-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
sec-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
tert-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
Carbon Disulfide	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
Carbon Tetrachloride	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
Chlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
1-Chlorobutane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
Chloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
2-Chloroethyl Vinyl Ether	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
Chloroform	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
Chloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
2-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
4-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
Dibromochloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
1,2-Dibromo-3-chloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
1,2-Dibromoethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
Dibromomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
1,2-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
1,3-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
1,4-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
Dichlorodifluoromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
1,1-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
1,2-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
1,1-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
cis-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH

September 26, 2013

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM 3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: SW-2 Lab Number ID: AWI0583-02

Date/Time Sampled: 9/17/2013 9:40:00AM Date/Time Received: 9/20/2013 10:25:00AM

Matrix: Surface Water

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 82	60									
trans-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	СЈН
1,2-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
1,3-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
1,1-Dichloropropene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
cis-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
trans-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
Ethylbenzene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
p-Isopropyltoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
Hexachloroethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
Iodomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
Methylene Chloride	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
Naphthalene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
Styrene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
Tetrachloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
Tetrahydrofuran	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
Toluene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	
1,1,1-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	
1,1,2-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	

September 26, 2013

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Client ID: SW-2

Date/Time Sampled: 9/17/2013 9:40:00AM

Matrix: Surface Water

Project: Coats - Toccoa

Lab Number ID: AWI0583-02

Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 8	3260									
Trichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
1,2,4-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
Vinyl Chloride	ND	2.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
m+p-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
o-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 10:37	3090463	CJH
Surrogate: Dibromofluoromethane	99 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 10:37	3090463	
Surrogate: 1,2-Dichloroethane-d4	110 %	78-	120	EPA 8260B			9/23/13 9:30	9/23/13 10:37	3090463	
Surrogate: Toluene-d8	98 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 10:37	3090463	
Surrogate: 4-Bromofluorobenzene	101 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 10:37	3090463	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: SW-3 Lab Number ID: AWI0583-03

Date/Time Sampled: 9/17/2013 10:00:00AM Date/Time Received: 9/20/2013 10:25:00AM

Matrix: Surface Water

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 826	0									
Acetone	ND	100	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	СЈН
Acrolein	ND	50	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
Acrylonitrile	ND	50	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
Benzene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
Bromobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
Bromochloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
Bromodichloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
Bromoform	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
Bromomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
n-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
sec-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
tert-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
Carbon Disulfide	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
Carbon Tetrachloride	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
Chlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
1-Chlorobutane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
Chloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
2-Chloroethyl Vinyl Ether	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
Chloroform	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
Chloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
2-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
4-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
Dibromochloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
1,2-Dibromo-3-chloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
1,2-Dibromoethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
Dibromomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
1,2-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
1,3-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
1,4-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
Dichlorodifluoromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
1,1-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
1,2-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
1,1-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
cis-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CIL

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: SW-3 Lab Number ID: AWI0583-03

Date/Time Sampled: 9/17/2013 10:00:00AM Date/Time Received: 9/20/2013 10:25:00AM

Matrix: Surface Water

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	8260									
trans-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
1,2-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
1,3-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
1,1-Dichloropropene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
cis-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
trans-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
Ethylbenzene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
p-Isopropyltoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
Hexachloroethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
lodomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
Methylene Chloride	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
Naphthalene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
Styrene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
Tetrachloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
Tetrahydrofuran	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
Toluene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
1,1,1-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
1,1,2-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Client ID: SW-3

Date/Time Sampled: 9/17/2013 10:00:00AM

Matrix: Surface Water

Project: Coats - Toccoa

Lab Number ID: AWI0583-03

Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 8	3260									
Trichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
1,2,4-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
Vinyl Chloride	ND	2.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
m+p-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
o-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:05	3090463	CJH
Surrogate: Dibromofluoromethane	101 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 11:05	3090463	
Surrogate: 1,2-Dichloroethane-d4	110 %	78-	120	EPA 8260B			9/23/13 9:30	9/23/13 11:05	3090463	
Surrogate: Toluene-d8	99 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 11:05	3090463	
Surrogate: 4-Bromofluorobenzene	100 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 11:05	3090463	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Client ID: SW-4

Date/Time Sampled: 9/17/2013 10:15:00AM

Matrix: Surface Water

Project: Coats - Toccoa

Lab Number ID: AWI0583-04

Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	8260									
Acetone	ND	100	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
Acrolein	ND	50	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
Acrylonitrile	ND	50	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
Benzene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
Bromobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
Bromochloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
Bromodichloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
Bromoform	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
Bromomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
n-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
sec-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
tert-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
Carbon Disulfide	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
Carbon Tetrachloride	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
Chlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
1-Chlorobutane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
Chloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
2-Chloroethyl Vinyl Ether	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
Chloroform	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
Chloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
2-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
4-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
Dibromochloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
1,2-Dibromo-3-chloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
1,2-Dibromoethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
Dibromomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
1,2-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
1,3-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
1,4-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
Dichlorodifluoromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
1,1-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
1,2-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
1,1-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
cis-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
			-							

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: SW-4 Lab Number ID: AWI0583-04

Date/Time Sampled: 9/17/2013 10:15:00AM Date/Time Received: 9/20/2013 10:25:00AM

Matrix: Surface Water

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 826	0									
trans-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
1,2-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
1,3-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
1,1-Dichloropropene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
cis-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
trans-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
Ethylbenzene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
p-Isopropyltoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
Hexachloroethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
Iodomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
Methylene Chloride	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
Naphthalene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
Styrene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
Tetrachloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
Tetrahydrofuran	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
Toluene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
1,1,1-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	
1,1,2-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Client ID: SW-4

Date/Time Sampled: 9/17/2013 10:15:00AM

Matrix: Surface Water

Project: Coats - Toccoa Lab Number ID: AWI0583-04

Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	3260									
Trichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
1,2,4-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
Vinyl Chloride	ND	2.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
m+p-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
o-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 11:33	3090463	CJH
Surrogate: Dibromofluoromethane	100 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 11:33	3090463	
Surrogate: 1,2-Dichloroethane-d4	111 %	78-	120	EPA 8260B			9/23/13 9:30	9/23/13 11:33	3090463	
Surrogate: Toluene-d8	99 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 11:33	3090463	
Surrogate: 4-Bromofluorobenzene	99 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 11:33	3090463	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

Atlanta GA, 30339

Attention: Ms. Adria Reimer

3200 Windy Hill Road, Suite 1500W

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-24 Lab Number ID: AWI0583-05

Date/Time Sampled: 9/17/2013 11:25:00AM Date/Time Received: 9/20/2013 10:25:00AM

Matrix: Ground Water

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 8260)									
Acetone	ND	100	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
Acrolein	ND	50	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
Acrylonitrile	ND	50	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
Benzene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
Bromobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
Bromochloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
Bromodichloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
Bromoform	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
Bromomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
n-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
sec-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
tert-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
Carbon Disulfide	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
Carbon Tetrachloride	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
Chlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
1-Chlorobutane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
Chloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
2-Chloroethyl Vinyl Ether	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
Chloroform	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
Chloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
2-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
4-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
Dibromochloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
1,2-Dibromo-3-chloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
1,2-Dibromoethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
Dibromomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
1,2-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
1,3-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
1,4-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	
Dichlorodifluoromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	
1,1-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
1,2-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	СЈН
1,1-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	
cis-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-24 Lab Number ID: AWI0583-05

Date/Time Sampled: 9/17/2013 11:25:00AM Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 826	0									
trans-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
1,2-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
1,3-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
1,1-Dichloropropene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
cis-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
trans-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
Ethylbenzene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
p-Isopropyltoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
Hexachloroethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
Iodomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
Methylene Chloride	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
Naphthalene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
Styrene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
Tetrachloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
Tetrahydrofuran	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
Toluene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
1,1,1-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
1,1,2-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-24 Lab Number ID: AWI0583-05

Date/Time Sampled: 9/17/2013 11:25:00AM Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	8260									
Trichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	СЈН
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
1,2,4-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
Vinyl Chloride	ND	2.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
m+p-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
o-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:01	3090463	CJH
Surrogate: Dibromofluoromethane	100 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 12:01	3090463	
Surrogate: 1,2-Dichloroethane-d4	112 %	78-	120	EPA 8260B			9/23/13 9:30	9/23/13 12:01	3090463	
Surrogate: Toluene-d8	98 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 12:01	3090463	
Surrogate: 4-Bromofluorobenzene	100 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 12:01	3090463	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-17 Lab Number ID: AWI0583-06

Date/Time Sampled: 9/17/2013 12:05:00PM Date/Time Received: 9/20/2013 10:25:00AM

Matrix: Ground Water

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	8260									
Acetone	ND	100	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
Acrolein	ND	50	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
Acrylonitrile	ND	50	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
Benzene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
Bromobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
Bromochloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
Bromodichloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
Bromoform	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
Bromomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
n-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
sec-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
tert-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
Carbon Disulfide	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
Carbon Tetrachloride	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
Chlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
1-Chlorobutane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
Chloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
2-Chloroethyl Vinyl Ether	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
Chloroform	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
Chloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
2-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
4-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
Dibromochloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
1,2-Dibromo-3-chloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
1,2-Dibromoethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
Dibromomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
1,2-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
1,3-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
1,4-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
Dichlorodifluoromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
1,1-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
1,2-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	
1,1-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	
cis-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	
			-							

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-17 Lab Number ID: AWI0583-06

Date/Time Sampled: 9/17/2013 12:05:00PM Date/Time Received: 9/20/2013 10:25:00AM

Matrix: Ground Water

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 826	60									
trans-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
1,2-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
1,3-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
1,1-Dichloropropene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
cis-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
trans-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
Ethylbenzene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
p-Isopropyltoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
Hexachloroethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
Iodomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
Methylene Chloride	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
Naphthalene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
Styrene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
Tetrachloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
Tetrahydrofuran	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
Toluene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
1,1,1-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
1,1,2-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-17 Lab Number ID: AWI0583-06

Date/Time Sampled: 9/17/2013 12:05:00PM Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	8260									
Trichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
1,2,4-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
Vinyl Chloride	ND	2.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
m+p-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
o-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:30	3090463	CJH
Surrogate: Dibromofluoromethane	101 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 12:30	3090463	
Surrogate: 1,2-Dichloroethane-d4	111 %	78-	120	EPA 8260B			9/23/13 9:30	9/23/13 12:30	3090463	
Surrogate: Toluene-d8	99 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 12:30	3090463	
Surrogate: 4-Bromofluorobenzene	101 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 12:30	3090463	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-25 Lab Number ID: AWI0583-07

Date/Time Sampled: 9/17/2013 12:15:00PM Date/Time Received: 9/20/2013 10:25:00AM

Matrix: Ground Water

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 820	60									
Acetone	ND	100	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
Acrolein	ND	50	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
Acrylonitrile	ND	50	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
Benzene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
Bromobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
Bromochloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
Bromodichloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
Bromoform	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
Bromomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
n-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
sec-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
tert-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
Carbon Disulfide	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
Carbon Tetrachloride	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
Chlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
1-Chlorobutane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
Chloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
2-Chloroethyl Vinyl Ether	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
Chloroform	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
Chloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
2-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
4-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
Dibromochloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
1,2-Dibromo-3-chloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
1,2-Dibromoethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
Dibromomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
1,2-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
1,3-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
1,4-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
Dichlorodifluoromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
1,1-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
1,2-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
1,1-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
cis-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM 3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-25 Lab Number ID: AWI0583-07

Date/Time Sampled: 9/17/2013 12:15:00PM Date/Time Received: 9/20/2013 10:25:00AM

Matrix: Ground Water

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 826	50									
trans-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	СЈН
1,2-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
1,3-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
1,1-Dichloropropene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
cis-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
trans-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
Ethylbenzene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
p-Isopropyltoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
Hexachloroethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
Iodomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
Methylene Chloride	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
Naphthalene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
Styrene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
Tetrachloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
Tetrahydrofuran	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
Toluene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	СЈН
1,1,1-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	
1,1,2-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Project: Coats - Toccoa

Lab Number ID: AWI0583-07

Date/Time Received: 9/20/2013 10:25:00AM

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Client ID: MW-25

Date/Time Sampled: 9/17/2013 12:15:00PM

Matrix. Ground Water										
Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 82	260									
Trichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
1,2,4-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
Vinyl Chloride	ND	2.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
m+p-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
o-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 12:58	3090463	CJH
Surrogate: Dibromofluoromethane	102 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 12:58	3090463	
Surrogate: 1,2-Dichloroethane-d4	112 %	78-	120	EPA 8260B			9/23/13 9:30	9/23/13 12:58	3090463	
Surrogate: Toluene-d8	99 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 12:58	3090463	
Surrogate: 4-Bromofluorobenzene	99 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 12:58	3090463	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

3200 Windy Hill Road, Suite 1500W Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-16 Lab Number ID: AWI0583-08

Date/Time Sampled: 9/17/2013 1:00:00PM Date/Time Received: 9/20/2013 10:25:00AM

Matrix: Ground Water

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	8260									
Acetone	ND	100	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	СЈН
Acrolein	ND	50	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
Acrylonitrile	ND	50	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
Benzene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
Bromobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
Bromochloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
Bromodichloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
Bromoform	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
Bromomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
n-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
sec-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
tert-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
Carbon Disulfide	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
Carbon Tetrachloride	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
Chlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
1-Chlorobutane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
Chloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
2-Chloroethyl Vinyl Ether	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
Chloroform	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
Chloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
2-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
4-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
Dibromochloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
1,2-Dibromo-3-chloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
1,2-Dibromoethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
Dibromomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
1,2-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
1,3-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
1,4-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
Dichlorodifluoromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
1,1-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
1,2-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
1,1-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	
cis-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-16 Lab Number ID: AWI0583-08

Date/Time Sampled: 9/17/2013 1:00:00PM Date/Time Received: 9/20/2013 10:25:00AM

Matrix: Ground Water

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	8260									
trans-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	СЈН
1,2-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
1,3-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
1,1-Dichloropropene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
cis-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
trans-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
Ethylbenzene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
p-Isopropyltoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
Hexachloroethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
lodomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
Methylene Chloride	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
Naphthalene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
Styrene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
Tetrachloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
Tetrahydrofuran	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
Toluene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
1,1,1-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
1,1,2-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-16 Lab Number ID: AWI0583-08

Date/Time Sampled: 9/17/2013 1:00:00PM Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	8260									
Trichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	СЈН
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
1,2,4-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
Vinyl Chloride	ND	2.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
m+p-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
o-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:26	3090463	CJH
Surrogate: Dibromofluoromethane	103 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 13:26	3090463	
Surrogate: 1,2-Dichloroethane-d4	113 %	78-	120	EPA 8260B			9/23/13 9:30	9/23/13 13:26	3090463	
Surrogate: Toluene-d8	97 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 13:26	3090463	
Surrogate: 4-Bromofluorobenzene	100 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 13:26	3090463	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-14 Lab Number ID: AWI0583-09

Date/Time Sampled: 9/17/2013 1:55:00PM Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	8260									
Acetone	ND	100	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
Acrolein	ND	50	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
Acrylonitrile	ND	50	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
Benzene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
Bromobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
Bromochloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
Bromodichloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
Bromoform	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
Bromomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
n-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
sec-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
tert-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
Carbon Disulfide	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
Carbon Tetrachloride	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
Chlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
1-Chlorobutane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
Chloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
2-Chloroethyl Vinyl Ether	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
Chloroform	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
Chloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
2-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
4-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
Dibromochloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
1,2-Dibromo-3-chloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
1,2-Dibromoethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
Dibromomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
1,2-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
1,3-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
1,4-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
Dichlorodifluoromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
1,1-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
1,2-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
1,1-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
cis-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-14 Lab Number ID: AWI0583-09

Date/Time Sampled: 9/17/2013 1:55:00PM Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 826	0									
trans-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
1,2-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
1,3-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
1,1-Dichloropropene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
cis-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
trans-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
Ethylbenzene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
p-Isopropyltoluene	12	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
Hexachloroethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
Iodomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
Methylene Chloride	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
Naphthalene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
Styrene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
Tetrachloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
Tetrahydrofuran	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
Toluene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
1,1,1-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
1,1,2-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-14 Lab Number ID: AWI0583-09

Date/Time Sampled: 9/17/2013 1:55:00PM Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	8260									
Trichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	СЈН
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
1,2,4-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
Vinyl Chloride	ND	2.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
m+p-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
o-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 13:53	3090463	CJH
Surrogate: Dibromofluoromethane	103 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 13:53	3090463	
Surrogate: 1,2-Dichloroethane-d4	113 %	78-	120	EPA 8260B			9/23/13 9:30	9/23/13 13:53	3090463	
Surrogate: Toluene-d8	98 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 13:53	3090463	
Surrogate: 4-Bromofluorobenzene	101 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 13:53	3090463	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-2 Lab Number ID: AWI0583-10

Date/Time Sampled: 9/17/2013 2:00:00PM Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	8260									
Acetone	ND	100	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
Acrolein	ND	50	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
Acrylonitrile	ND	50	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
Benzene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
Bromobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
Bromochloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
Bromodichloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
Bromoform	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
Bromomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
n-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
sec-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
tert-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
Carbon Disulfide	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
Carbon Tetrachloride	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
Chlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
1-Chlorobutane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
Chloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
2-Chloroethyl Vinyl Ether	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
Chloroform	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
Chloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
2-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
4-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
Dibromochloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
1,2-Dibromo-3-chloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
1,2-Dibromoethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
Dibromomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
1,2-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
1,3-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
1,4-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
Dichlorodifluoromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
1,1-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	
1,2-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	
1,1-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	
cis-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	
			-							

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-2 Lab Number ID: AWI0583-10

Date/Time Sampled: 9/17/2013 2:00:00PM Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	8260									
trans-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
1,2-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
1,3-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
1,1-Dichloropropene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
cis-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
trans-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
Ethylbenzene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
p-Isopropyltoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
Hexachloroethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
Iodomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
Methylene Chloride	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
Naphthalene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
Styrene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
Tetrachloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
Tetrahydrofuran	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
Toluene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
1,1,1-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
1,1,2-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Client ID: MW-2

Date/Time Sampled: 9/17/2013 2:00:00PM

Matrix: Ground Water

Project: Coats - Toccoa

Lab Number ID: AWI0583-10

Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 8	260									
Trichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
1,2,4-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
Vinyl Chloride	ND	2.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
m+p-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
o-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:21	3090463	CJH
Surrogate: Dibromofluoromethane	101 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 14:21	3090463	
Surrogate: 1,2-Dichloroethane-d4	114 %	78-	120	EPA 8260B			9/23/13 9:30	9/23/13 14:21	3090463	
Surrogate: Toluene-d8	98 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 14:21	3090463	
Surrogate: 4-Bromofluorobenzene	99 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 14:21	3090463	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-9 Lab Number ID: AWI0583-11

Date/Time Sampled: 9/17/2013 2:30:00PM Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	lnit.
Volatile Organic Compounds by EPA	8260									
Acetone	ND	100	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
Acrolein	ND	50	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
Acrylonitrile	ND	50	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
Benzene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
Bromobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
Bromochloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
Bromodichloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
Bromoform	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
Bromomethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
n-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
sec-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
tert-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
Carbon Disulfide	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
Carbon Tetrachloride	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
Chlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
1-Chlorobutane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
Chloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
2-Chloroethyl Vinyl Ether	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
Chloroform	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
Chloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
2-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
4-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
Dibromochloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
1,2-Dibromo-3-chloropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
1,2-Dibromoethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
Dibromomethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
1,2-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
1,3-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
1,4-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
Dichlorodifluoromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
1,1-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
1,2-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
1,1-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
cis-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-9 Lab Number ID: AWI0583-11

Date/Time Sampled: 9/17/2013 2:30:00PM Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 8260)									
trans-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
1,2-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
1,3-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
1,1-Dichloropropene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
cis-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
trans-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
Ethylbenzene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
p-Isopropyltoluene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
Hexachloroethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
Iodomethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
Methylene Chloride	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
Naphthalene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
Styrene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
Tetrachloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
Tetrahydrofuran	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
Toluene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
1,1,1-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
1,1,2-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

Atlanta GA, 30339

Attention: Ms. Adria Reimer

3200 Windy Hill Road, Suite 1500W

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-9 Lab Number ID: AWI0583-11

Date/Time Sampled: 9/17/2013 2:30:00PM Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	8260									
Trichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
1,2,4-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
Vinyl Chloride	ND	2.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
m+p-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
o-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:17	3090496	CJH
Surrogate: Dibromofluoromethane	102 %	80-	120	EPA 8260B			9/24/13 9:34	9/24/13 10:17	3090496	
Surrogate: 1,2-Dichloroethane-d4	117 %	78-	120	EPA 8260B			9/24/13 9:34	9/24/13 10:17	3090496	
Surrogate: Toluene-d8	98 %	80-	120	EPA 8260B			9/24/13 9:34	9/24/13 10:17	3090496	
Surrogate: 4-Bromofluorobenzene	102 %	80-	120	EPA 8260B			9/24/13 9:34	9/24/13 10:17	3090496	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-12 Lab Number ID: AWI0583-12

Date/Time Sampled: 9/17/2013 2:50:00PM Date/Time Received: 9/20/2013 10:25:00AM

Matrix: Ground Water

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	8260									
Acetone	ND	100	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
Acrolein	ND	50	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
Acrylonitrile	ND	50	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
Benzene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
Bromobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
Bromochloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
Bromodichloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
Bromoform	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
Bromomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
n-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
sec-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
tert-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
Carbon Disulfide	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
Carbon Tetrachloride	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
Chlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
1-Chlorobutane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
Chloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
2-Chloroethyl Vinyl Ether	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
Chloroform	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
Chloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
2-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
4-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
Dibromochloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
1,2-Dibromo-3-chloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
1,2-Dibromoethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
Dibromomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
1,2-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
1,3-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
1,4-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
Dichlorodifluoromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	
1,1-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
1,2-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
1,1-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
cis-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa Client ID: MW-12 Lab Number ID: AWI0583-12

Date/Time Sampled: 9/17/2013 2:50:00PM Date/Time Received: 9/20/2013 10:25:00AM

Matrix: Ground Water

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 82	260									
trans-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
1,2-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
1,3-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
1,1-Dichloropropene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
cis-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
trans-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
Ethylbenzene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
p-Isopropyltoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
Hexachloroethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
Iodomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
Methylene Chloride	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
Naphthalene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
Styrene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
Tetrachloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
Tetrahydrofuran	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
Toluene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
1,1,1-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH
1,1,2-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 14:49	3090463	CJH

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Project: Coats - Toccoa

Lab Number ID: AWI0583-12

Date/Time Received: 9/20/2013 10:25:00AM

9/23/13 9:30

9/23/13 9:30

9/23/13 9:30

ERM

September 26, 2013

3090463

3090463

3090463

9/23/13 14:49

9/23/13 14:49

9/23/13 14:49

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583
Client ID: MW-12

Date/Time Sampled: 9/17/2013 2:50:00PM

Matrix: Ground Water

Surrogate: 1,2-Dichloroethane-d4

Surrogate: 4-Bromofluorobenzene

Surrogate: Toluene-d8

114 %

98 %

100 %

78-120

80-120

80-120

Preparation Analytical Date Date **Analyte** Result RL Units Method Qual. DF **Batch** Init. Volatile Organic Compounds by EPA 8260 Trichloroethene ND ug/L **EPA 8260B** 3090463 CJH 5.0 1 9/23/13 9:30 9/23/13 14:49 ND ug/L Trichlorofluoromethane 10 **EPA 8260B** 1 9/23/13 9:30 9/23/13 14:49 3090463 CJH ND ug/L 1,2,3-Trichloropropane 10 **EPA 8260B** 1 9/23/13 9:30 9/23/13 14:49 3090463 CJH 1,2,4-Trimethylbenzene ND **EPA 8260B** 3090463 CJH 10 ug/L 9/23/13 9:30 9/23/13 14:49 1,3,5-Trimethylbenzene ND 10 ug/L **EPA 8260B** 3090463 CJH 9/23/13 9:30 9/23/13 14:49 Vinyl Acetate ND 10 ug/L **EPA 8260B** 1 9/23/13 9:30 9/23/13 14:49 3090463 CJH 3090463 CJH Vinyl Chloride ND 2.0 ug/L **EPA 8260B** 9/23/13 9:30 9/23/13 14:49 1 m+p-Xylene ND 5.0 ug/L **EPA 8260B** 1 9/23/13 9:30 9/23/13 14:49 3090463 CJH ND 5.0 ug/L EPA 8260B 9/23/13 9:30 9/23/13 14:49 3090463 CJH o-Xylene 1 Xylenes, total ND 5.0 ug/L **EPA 8260B** 9/23/13 9:30 9/23/13 14:49 3090463 CJH Surrogate: Dibromofluoromethane EPA 8260B 9/23/13 9:30 9/23/13 14:49 3090463 101 % 80-120

EPA 8260B

EPA 8260B

EPA 8260B

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-5 Lab Number ID: AWI0583-13

Date/Time Sampled: 9/17/2013 3:30:00PM Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	8260									
Acetone	ND	100	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
Acrolein	ND	50	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
Acrylonitrile	ND	50	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
Benzene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
Bromobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
Bromochloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
Bromodichloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
Bromoform	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
Bromomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
n-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
sec-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
tert-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
Carbon Disulfide	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
Carbon Tetrachloride	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
Chlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
1-Chlorobutane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
Chloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
2-Chloroethyl Vinyl Ether	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
Chloroform	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
Chloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
2-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
4-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
Dibromochloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
1,2-Dibromo-3-chloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
1,2-Dibromoethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
Dibromomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
1,2-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
1,3-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
1,4-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
Dichlorodifluoromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
1,1-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
1,2-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
1,1-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
cis-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-5 Lab Number ID: AWI0583-13

Date/Time Sampled: 9/17/2013 3:30:00PM Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 826	60									
trans-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
1,2-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
1,3-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
1,1-Dichloropropene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
cis-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
trans-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
Ethylbenzene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
p-Isopropyltoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
Hexachloroethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
Iodomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
Methylene Chloride	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
Naphthalene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
Styrene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
Tetrachloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
Tetrahydrofuran	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
Toluene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
1,1,1-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
1,1,2-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-5 Lab Number ID: AWI0583-13

Date/Time Sampled: 9/17/2013 3:30:00PM Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	8260									
Trichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	СЈН
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
1,2,4-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
Vinyl Chloride	ND	2.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
m+p-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
o-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:17	3090463	CJH
Surrogate: Dibromofluoromethane	103 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 15:17	3090463	
Surrogate: 1,2-Dichloroethane-d4	116 %	78-	120	EPA 8260B			9/23/13 9:30	9/23/13 15:17	3090463	
Surrogate: Toluene-d8	100 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 15:17	3090463	
Surrogate: 4-Bromofluorobenzene	99 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 15:17	3090463	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-19 Lab Number ID: AWI0583-14

Date/Time Sampled: 9/17/2013 3:45:00PM Date/Time Received: 9/20/2013 10:25:00AM

Matrix: Ground Water

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 82	60									
Acetone	ND	100	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
Acrolein	ND	50	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
Acrylonitrile	ND	50	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
Benzene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
Bromobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
Bromochloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
Bromodichloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
Bromoform	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
Bromomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
n-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
sec-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
tert-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
Carbon Disulfide	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
Carbon Tetrachloride	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
Chlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
1-Chlorobutane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
Chloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
2-Chloroethyl Vinyl Ether	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
Chloroform	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
Chloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
2-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
4-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
Dibromochloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
1,2-Dibromo-3-chloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
1,2-Dibromoethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
Dibromomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
1,2-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
1,3-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
1,4-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
Dichlorodifluoromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
1,1-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
1,2-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
1,1-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
cis-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-19 Lab Number ID: AWI0583-14

Date/Time Sampled: 9/17/2013 3:45:00PM Date/Time Received: 9/20/2013 10:25:00AM

Matrix: Ground Water

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 8260)									
trans-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
1,2-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
1,3-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
1,1-Dichloropropene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
cis-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
trans-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
Ethylbenzene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
p-Isopropyltoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
Hexachloroethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
Iodomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
Methylene Chloride	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
Naphthalene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
Styrene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
Tetrachloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
Tetrahydrofuran	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
Toluene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
1,1,1-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
1,1,2-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-19 Lab Number ID: AWI0583-14

Date/Time Sampled: 9/17/2013 3:45:00PM Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	8260									
Trichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	СЈН
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
1,2,4-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
Vinyl Chloride	ND	2.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
m+p-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
o-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 15:46	3090463	CJH
Surrogate: Dibromofluoromethane	102 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 15:46	3090463	
Surrogate: 1,2-Dichloroethane-d4	114 %	78-	120	EPA 8260B			9/23/13 9:30	9/23/13 15:46	3090463	
Surrogate: Toluene-d8	98 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 15:46	3090463	
Surrogate: 4-Bromofluorobenzene	99 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 15:46	3090463	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-10 Lab Number ID: AWI0583-15

Date/Time Sampled: 9/18/2013 9:10:00AM Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	8260									
Acetone	ND	100	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	СЈН
Acrolein	ND	50	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
Acrylonitrile	ND	50	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
Benzene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
Bromobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
Bromochloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
Bromodichloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
Bromoform	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
Bromomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
n-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
sec-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
tert-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
Carbon Disulfide	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
Carbon Tetrachloride	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
Chlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
1-Chlorobutane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
Chloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
2-Chloroethyl Vinyl Ether	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
Chloroform	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
Chloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
2-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
4-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
Dibromochloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
1,2-Dibromo-3-chloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
1,2-Dibromoethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
Dibromomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
1,2-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
1,3-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
1,4-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
Dichlorodifluoromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
1,1-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
1,2-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
1,1-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
cis-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa Client ID: MW-10 Lab Number ID: AWI0583-15

Date/Time Sampled: 9/18/2013 9:10:00AM Date/Time Received: 9/20/2013 10:25:00AM

Matrix: Ground Water

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	8260									
trans-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
1,2-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
1,3-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
1,1-Dichloropropene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
cis-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
trans-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
Ethylbenzene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
p-Isopropyltoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
Hexachloroethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
Iodomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
Methylene Chloride	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
Naphthalene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
Styrene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
Tetrachloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
Tetrahydrofuran	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
Toluene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
1,1,1-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
1,1,2-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-10 Lab Number ID: AWI0583-15

Date/Time Sampled: 9/18/2013 9:10:00AM Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	8260									
Trichloroethene	30	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	СЈН
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
1,2,4-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
Vinyl Chloride	ND	2.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
m+p-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
o-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:14	3090463	CJH
Surrogate: Dibromofluoromethane	102 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 16:14	3090463	
Surrogate: 1,2-Dichloroethane-d4	115 %	78-	120	EPA 8260B			9/23/13 9:30	9/23/13 16:14	3090463	
Surrogate: Toluene-d8	98 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 16:14	3090463	
Surrogate: 4-Bromofluorobenzene	100 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 16:14	3090463	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-21 Lab Number ID: AWI0583-16

Date/Time Sampled: 9/18/2013 9:45:00AM Date/Time Received: 9/20/2013 10:25:00AM

Matrix: Ground Water

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 82	260									
Acetone	ND	100	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	СЈН
Acrolein	ND	50	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
Acrylonitrile	ND	50	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
Benzene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
Bromobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
Bromochloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
Bromodichloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
Bromoform	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
Bromomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
n-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
sec-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
tert-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
Carbon Disulfide	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
Carbon Tetrachloride	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
Chlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
1-Chlorobutane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
Chloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
2-Chloroethyl Vinyl Ether	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
Chloroform	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
Chloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
2-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
4-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
Dibromochloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
1,2-Dibromo-3-chloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
1,2-Dibromoethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
Dibromomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
1,2-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
1,3-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
1,4-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
Dichlorodifluoromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	
1,1-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	
1,2-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	
1,1-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	
cis-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM 3200 Windy Hill Road, Suite 1500W September 26, 2013

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-21 Lab Number ID: AWI0583-16

Date/Time Sampled: 9/18/2013 9:45:00AM Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 826	60									
trans-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
1,2-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
1,3-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
1,1-Dichloropropene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
cis-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
trans-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
Ethylbenzene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
p-Isopropyltoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
Hexachloroethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
Iodomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
Methylene Chloride	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
Naphthalene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
Styrene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
Tetrachloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
Tetrahydrofuran	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
Toluene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
1,1,1-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
1,1,2-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-21 Lab Number ID: AWI0583-16

Date/Time Sampled: 9/18/2013 9:45:00AM Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	lnit.
Volatile Organic Compounds by EPA	8260									
Trichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	СЈН
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
1,2,4-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
Vinyl Chloride	ND	2.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
m+p-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
o-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 16:42	3090463	CJH
Surrogate: Dibromofluoromethane	102 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 16:42	3090463	
Surrogate: 1,2-Dichloroethane-d4	115 %	78-	120	EPA 8260B			9/23/13 9:30	9/23/13 16:42	3090463	
Surrogate: Toluene-d8	98 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 16:42	3090463	
Surrogate: 4-Bromofluorobenzene	99 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 16:42	3090463	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-1 Lab Number ID: AWI0583-17

Date/Time Sampled: 9/18/2013 10:05:00AM Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	8260									
Acetone	ND	100	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
Acrolein	ND	50	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
Acrylonitrile	ND	50	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
Benzene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
Bromobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
Bromochloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
Bromodichloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
Bromoform	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
Bromomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
n-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
sec-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
tert-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
Carbon Disulfide	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
Carbon Tetrachloride	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
Chlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
1-Chlorobutane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
Chloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
2-Chloroethyl Vinyl Ether	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
Chloroform	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
Chloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
2-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
4-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
Dibromochloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
1,2-Dibromo-3-chloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
1,2-Dibromoethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
Dibromomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
1,2-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
1,3-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
1,4-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
Dichlorodifluoromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
1,1-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
1,2-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	СЈН
1,1-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	СЈН
cis-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-1 Lab Number ID: AWI0583-17

Date/Time Sampled: 9/18/2013 10:05:00AM Date/Time Received: 9/20/2013 10:25:00AM

Matrix: Ground Water

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 826	0									
trans-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
1,2-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
1,3-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
1,1-Dichloropropene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
cis-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
trans-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
Ethylbenzene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
p-Isopropyltoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
Hexachloroethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
Iodomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
Methylene Chloride	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
Naphthalene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
Styrene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
Tetrachloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
Tetrahydrofuran	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
Toluene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
1,1,1-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
1,1,2-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Client ID: MW-1

Date/Time Sampled: 9/18/2013 10:05:00AM

Matrix: Ground Water

Project: Coats - Toccoa

Lab Number ID: AWI0583-17

Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 8	3260									
Trichloroethene	22	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
1,2,4-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
Vinyl Chloride	ND	2.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
m+p-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
o-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:10	3090463	CJH
Surrogate: Dibromofluoromethane	103 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 17:10	3090463	
Surrogate: 1,2-Dichloroethane-d4	117 %	78-	120	EPA 8260B			9/23/13 9:30	9/23/13 17:10	3090463	
Surrogate: Toluene-d8	99 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 17:10	3090463	
Surrogate: 4-Bromofluorobenzene	98 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 17:10	3090463	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-23 Lab Number ID: AWI0583-18

Date/Time Sampled: 9/18/2013 10:55:00AM Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 826	60									
Acetone	ND	100	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
Acrolein	ND	50	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
Acrylonitrile	ND	50	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
Benzene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
Bromobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
Bromochloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
Bromodichloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
Bromoform	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
Bromomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
n-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
sec-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
tert-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
Carbon Disulfide	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
Carbon Tetrachloride	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
Chlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
1-Chlorobutane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
Chloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
2-Chloroethyl Vinyl Ether	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
Chloroform	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
Chloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
2-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
4-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
Dibromochloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
1,2-Dibromo-3-chloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
1,2-Dibromoethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
Dibromomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
1,2-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
1,3-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
1,4-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
Dichlorodifluoromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
1,1-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
1,2-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
1,1-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
cis-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-23 Lab Number ID: AWI0583-18

Date/Time Sampled: 9/18/2013 10:55:00AM Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 8260)									
trans-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
1,2-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
1,3-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
1,1-Dichloropropene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
cis-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
trans-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
Ethylbenzene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
p-Isopropyltoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
Hexachloroethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
Iodomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
Methylene Chloride	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
Naphthalene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
Styrene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
Tetrachloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
Tetrahydrofuran	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
Toluene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
1,1,1-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
1,1,2-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-23 Lab Number ID: AWI0583-18

Date/Time Sampled: 9/18/2013 10:55:00AM Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	lnit.
Volatile Organic Compounds by EPA	8260									
Trichloroethene	72	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
1,2,4-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
Vinyl Chloride	ND	2.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
m+p-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
o-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 17:38	3090463	CJH
Surrogate: Dibromofluoromethane	103 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 17:38	3090463	
Surrogate: 1,2-Dichloroethane-d4	115 %	78-	120	EPA 8260B			9/23/13 9:30	9/23/13 17:38	3090463	
Surrogate: Toluene-d8	100 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 17:38	3090463	
Surrogate: 4-Bromofluorobenzene	98 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 17:38	3090463	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-4 Lab Number ID: AWI0583-19

Date/Time Sampled: 9/18/2013 11:35:00AM Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 82	60									
Acetone	ND	100	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
Acrolein	ND	50	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
Acrylonitrile	ND	50	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
Benzene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
Bromobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
Bromochloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
Bromodichloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
Bromoform	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
Bromomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
n-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
sec-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
tert-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
Carbon Disulfide	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
Carbon Tetrachloride	5.4	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
Chlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
1-Chlorobutane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
Chloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
2-Chloroethyl Vinyl Ether	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
Chloroform	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
Chloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
2-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
4-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
Dibromochloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
1,2-Dibromo-3-chloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
1,2-Dibromoethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
Dibromomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
1,2-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
1,3-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
1,4-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
Dichlorodifluoromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
1,1-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
1,2-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
1,1-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
cis-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-4 Lab Number ID: AWI0583-19

Date/Time Sampled: 9/18/2013 11:35:00AM Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 8260	0									
trans-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
1,2-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
1,3-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
1,1-Dichloropropene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
cis-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
trans-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
Ethylbenzene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
p-Isopropyltoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
Hexachloroethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
Iodomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
Methylene Chloride	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
Naphthalene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
Styrene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
Tetrachloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
Tetrahydrofuran	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
Toluene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	
1,1,1-Trichloroethane	7.3	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	
1,1,2-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Client ID: MW-4

Date/Time Sampled: 9/18/2013 11:35:00AM

Matrix: Ground Water

Project: Coats - Toccoa Lab Number ID: AWI0583-19

Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 8	260									
Trichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
1,2,4-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
Vinyl Chloride	ND	2.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
m+p-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
o-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:06	3090463	CJH
Surrogate: Dibromofluoromethane	104 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 18:06	3090463	
Surrogate: 1,2-Dichloroethane-d4	117 %	78-	120	EPA 8260B			9/23/13 9:30	9/23/13 18:06	3090463	
Surrogate: Toluene-d8	99 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 18:06	3090463	
Surrogate: 4-Bromofluorobenzene	101 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 18:06	3090463	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM 3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-13 Lab Number ID: AWI0583-20

Date/Time Sampled: 9/18/2013 12:00:00PM Date/Time Received: 9/20/2013 10:25:00AM

Matrix: Ground Water

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	8260									
Acetone	ND	100	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
Acrolein	ND	50	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
Acrylonitrile	ND	50	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
Benzene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
Bromobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
Bromochloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
Bromodichloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
Bromoform	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
Bromomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
n-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
sec-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
tert-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
Carbon Disulfide	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
Carbon Tetrachloride	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
Chlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
1-Chlorobutane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
Chloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
2-Chloroethyl Vinyl Ether	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
Chloroform	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
Chloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
2-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
4-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
Dibromochloromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
1,2-Dibromo-3-chloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
1,2-Dibromoethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
Dibromomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
1,2-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
1,3-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
1,4-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
Dichlorodifluoromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
1,1-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
1,2-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
1,1-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
cis-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-13 Lab Number ID: AWI0583-20

Date/Time Sampled: 9/18/2013 12:00:00PM Date/Time Received: 9/20/2013 10:25:00AM

Matrix: Ground Water

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	lnit.
Volatile Organic Compounds by EPA	8260									
trans-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
1,2-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
1,3-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
1,1-Dichloropropene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
cis-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
trans-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
Ethylbenzene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
p-Isopropyltoluene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
Hexachloroethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
Iodomethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
Methylene Chloride	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
Naphthalene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
Styrene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
Tetrachloroethene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
Tetrahydrofuran	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
Toluene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
1,1,1-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
1,1,2-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Client ID: MW-13

Date/Time Sampled: 9/18/2013 12:00:00PM

Matrix: Ground Water

Project: Coats - Toccoa

Lab Number ID: AWI0583-20

Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 8	260									
Trichloroethene	52	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
1,2,4-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
Vinyl Chloride	ND	2.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
m+p-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
o-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	9/23/13 9:30	9/23/13 18:34	3090463	CJH
Surrogate: Dibromofluoromethane	103 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 18:34	3090463	
Surrogate: 1,2-Dichloroethane-d4	116 %	78-	120	EPA 8260B			9/23/13 9:30	9/23/13 18:34	3090463	
Surrogate: Toluene-d8	99 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 18:34	3090463	
Surrogate: 4-Bromofluorobenzene	100 %	80-	120	EPA 8260B			9/23/13 9:30	9/23/13 18:34	3090463	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-11 Lab Number ID: AWI0583-21

Date/Time Sampled: 9/18/2013 1:50:00PM Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	8260									
Acetone	ND	100	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
Acrolein	ND	50	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
Acrylonitrile	ND	50	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
Benzene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
Bromobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
Bromochloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
Bromodichloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
Bromoform	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
Bromomethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
n-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
sec-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
tert-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
Carbon Disulfide	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
Carbon Tetrachloride	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
Chlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
1-Chlorobutane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
Chloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
2-Chloroethyl Vinyl Ether	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
Chloroform	14	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
Chloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
2-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
4-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
Dibromochloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
1,2-Dibromo-3-chloropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
1,2-Dibromoethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
Dibromomethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
1,2-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
1,3-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
1,4-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
Dichlorodifluoromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
1,1-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
1,2-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
1,1-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
cis-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-11 Lab Number ID: AWI0583-21

Date/Time Sampled: 9/18/2013 1:50:00PM Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	8260									
trans-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	СЈН
1,2-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
1,3-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
1,1-Dichloropropene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
cis-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
trans-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
Ethylbenzene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
p-Isopropyltoluene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
Hexachloroethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
Iodomethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
Methylene Chloride	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
Naphthalene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
Styrene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
Tetrachloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
Tetrahydrofuran	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
Toluene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
1,1,1-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
1,1,2-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-11 Lab Number ID: AWI0583-21

Date/Time Sampled: 9/18/2013 1:50:00PM Date/Time Received: 9/20/2013 10:25:00AM

Matrix: Ground Water

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	8260									
Trichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	СЈН
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
1,2,4-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
Vinyl Chloride	ND	2.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
m+p-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
o-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 10:45	3090496	CJH
Surrogate: Dibromofluoromethane	102 %	80-	120	EPA 8260B			9/24/13 9:34	9/24/13 10:45	3090496	
Surrogate: 1,2-Dichloroethane-d4	117 %	78-	120	EPA 8260B			9/24/13 9:34	9/24/13 10:45	3090496	
Surrogate: Toluene-d8	99 %	80-	120	EPA 8260B			9/24/13 9:34	9/24/13 10:45	3090496	
Surrogate: 4-Bromofluorobenzene	102 %	80-	120	EPA 8260B			9/24/13 9:34	9/24/13 10:45	3090496	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-22 Lab Number ID: AWI0583-22

Date/Time Sampled: 9/18/2013 2:00:00PM Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 82	60									
Acetone	ND	100	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	СЈН
Acrolein	ND	50	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
Acrylonitrile	ND	50	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
Benzene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
Bromobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
Bromochloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
Bromodichloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
Bromoform	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
Bromomethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
n-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
sec-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
tert-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
Carbon Disulfide	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
Carbon Tetrachloride	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
Chlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
1-Chlorobutane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
Chloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
2-Chloroethyl Vinyl Ether	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
Chloroform	6.2	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
Chloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
2-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
4-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
Dibromochloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
1,2-Dibromo-3-chloropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
1,2-Dibromoethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
Dibromomethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
1,2-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
1,3-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
1,4-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
Dichlorodifluoromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
1,1-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
1,2-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
1,1-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	
cis-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-22 Lab Number ID: AWI0583-22

Date/Time Sampled: 9/18/2013 2:00:00PM Date/Time Received: 9/20/2013 10:25:00AM

Matrix: Ground Water

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 826	0									
trans-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
1,2-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
1,3-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
1,1-Dichloropropene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
cis-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
trans-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
Ethylbenzene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
p-Isopropyltoluene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
Hexachloroethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
Iodomethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
Methylene Chloride	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
Naphthalene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
Styrene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
Tetrachloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
Tetrahydrofuran	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
Toluene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
1,1,1-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
1,1,2-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-22 Lab Number ID: AWI0583-22

Date/Time Sampled: 9/18/2013 2:00:00PM Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	8260									
Trichloroethene	86	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	СЈН
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
1,2,4-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
Vinyl Chloride	ND	2.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
m+p-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
o-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:48	3090496	CJH
Surrogate: Dibromofluoromethane	103 %	80-	120	EPA 8260B			9/24/13 9:34	9/24/13 16:48	3090496	
Surrogate: 1,2-Dichloroethane-d4	120 %	78-	120	EPA 8260B			9/24/13 9:34	9/24/13 16:48	3090496	
Surrogate: Toluene-d8	98 %	80-	120	EPA 8260B			9/24/13 9:34	9/24/13 16:48	3090496	
Surrogate: 4-Bromofluorobenzene	102 %	80-	120	EPA 8260B			9/24/13 9:34	9/24/13 16:48	3090496	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-3 Lab Number ID: AWI0583-23

Date/Time Sampled: 9/18/2013 3:30:00PM Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	8260									
Acetone	ND	100	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	СЈН
Acrolein	ND	50	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
Acrylonitrile	ND	50	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
Benzene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
Bromobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
Bromochloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
Bromodichloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
Bromoform	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
Bromomethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
n-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
sec-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
tert-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
Carbon Disulfide	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
Carbon Tetrachloride	38	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
Chlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
1-Chlorobutane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
Chloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
2-Chloroethyl Vinyl Ether	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
Chloroform	52	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
Chloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
2-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
4-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
Dibromochloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
1,2-Dibromo-3-chloropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
1,2-Dibromoethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
Dibromomethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
1,2-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
1,3-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
1,4-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
Dichlorodifluoromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	СЈН
1,1-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	СЈН
1,2-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
1,1-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
cis-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-3 Lab Number ID: AWI0583-23

Date/Time Sampled: 9/18/2013 3:30:00PM Date/Time Received: 9/20/2013 10:25:00AM

Matrix: Ground Water

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 82	260									
trans-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	СЈН
1,2-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
1,3-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
1,1-Dichloropropene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
cis-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
trans-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
Ethylbenzene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
p-Isopropyltoluene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
Hexachloroethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
Iodomethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
Methylene Chloride	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
Naphthalene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
Styrene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
Tetrachloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
Tetrahydrofuran	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
Toluene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	СЈН
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
1,1,1-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
1,1,2-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-3 Lab Number ID: AWI0583-23

Date/Time Sampled: 9/18/2013 3:30:00PM Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	8260									
Trichloroethene	28	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	СЈН
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
1,2,4-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
Vinyl Chloride	ND	2.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
m+p-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
o-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 11:41	3090496	CJH
Surrogate: Dibromofluoromethane	105 %	80-	120	EPA 8260B			9/24/13 9:34	9/24/13 11:41	3090496	
Surrogate: 1,2-Dichloroethane-d4	118 %	78-	120	EPA 8260B			9/24/13 9:34	9/24/13 11:41	3090496	
Surrogate: Toluene-d8	99 %	80-	120	EPA 8260B			9/24/13 9:34	9/24/13 11:41	3090496	
Surrogate: 4-Bromofluorobenzene	101 %	80-	120	EPA 8260B			9/24/13 9:34	9/24/13 11:41	3090496	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-15 Lab Number ID: AWI0583-24

Date/Time Sampled: 9/18/2013 3:30:00PM Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 826	60									
Acetone	ND	100	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	СЈН
Acrolein	ND	50	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
Acrylonitrile	ND	50	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
Benzene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
Bromobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
Bromochloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
Bromodichloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
Bromoform	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
Bromomethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
n-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
sec-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
tert-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
Carbon Disulfide	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
Carbon Tetrachloride	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
Chlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
1-Chlorobutane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
Chloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
2-Chloroethyl Vinyl Ether	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
Chloroform	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
Chloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
2-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
4-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
Dibromochloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
1,2-Dibromo-3-chloropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
1,2-Dibromoethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
Dibromomethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
1,2-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
1,3-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
1,4-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
Dichlorodifluoromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	
1,1-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
1,2-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	
1,1-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	
			_							

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-15 Lab Number ID: AWI0583-24

Date/Time Sampled: 9/18/2013 3:30:00PM Date/Time Received: 9/20/2013 10:25:00AM

Matrix: Ground Water

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 8260										
trans-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	СЈН
1,2-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
1,3-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
1,1-Dichloropropene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
cis-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
trans-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
Ethylbenzene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
p-Isopropyltoluene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
Hexachloroethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
Iodomethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
Methylene Chloride	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
Naphthalene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
Styrene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
Tetrachloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
Tetrahydrofuran	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
Toluene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
1,1,1-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
1,1,2-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Project: Coats - Toccoa

Lab Number ID: AWI0583-24

Date/Time Received: 9/20/2013 10:25:00AM

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Client ID: MW-15

Date/Time Sampled: 9/18/2013 3:30:00PM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	8260									
Trichloroethene	70	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
1,2,4-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
Vinyl Chloride	ND	2.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
m+p-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
o-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:16	3090496	CJH
Surrogate: Dibromofluoromethane	103 %	80-	120	EPA 8260B			9/24/13 9:34	9/24/13 17:16	3090496	-
Surrogate: 1,2-Dichloroethane-d4	120 %	78-	120	EPA 8260B			9/24/13 9:34	9/24/13 17:16	3090496	
Surrogate: Toluene-d8	99 %	80-	120	EPA 8260B			9/24/13 9:34	9/24/13 17:16	3090496	
Surrogate: 4-Bromofluorobenzene	101 %	80-	120	EPA 8260B			9/24/13 9:34	9/24/13 17:16	3090496	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: Duplicate-01 Lab Number ID: AWI0583-25

Date/Time Sampled: 9/18/2013 12:00:00AM Date/Time Received: 9/20/2013 10:25:00AM

Matrix: Ground Water

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	8260									
Acetone	ND	100	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	СЈН
Acrolein	ND	50	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
Acrylonitrile	ND	50	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
Benzene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
Bromobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
Bromochloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
Bromodichloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
Bromoform	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
Bromomethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
n-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
sec-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
tert-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
Carbon Disulfide	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
Carbon Tetrachloride	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
Chlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
1-Chlorobutane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
Chloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
2-Chloroethyl Vinyl Ether	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
Chloroform	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
Chloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
2-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
4-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
Dibromochloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
1,2-Dibromo-3-chloropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
1,2-Dibromoethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
Dibromomethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
1,2-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
1,3-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
1,4-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	СЈН
Dichlorodifluoromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	СЈН
1,1-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	СЈН
1,2-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
1,1-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	СЈН
cis-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	СЈН

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583
Client ID: Duplicate-01

Date/Time Sampled: 9/18/2013 12:00:00AM

Matrix: Ground Water

Project: Coats - Toccoa Lab Number ID: AWI0583-25

Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	8260									
trans-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
1,2-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
1,3-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
1,1-Dichloropropene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
cis-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
trans-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
Ethylbenzene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
p-Isopropyltoluene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
Hexachloroethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
Iodomethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
Methylene Chloride	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
Naphthalene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
Styrene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
Tetrachloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
Tetrahydrofuran	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
Toluene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
1,1,1-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	
1,1,2-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: Duplicate-01 Lab Number ID: AWI0583-25

Date/Time Sampled: 9/18/2013 12:00:00AM Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	8260									
Trichloroethene	72	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	СЈН
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
1,2,4-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
Vinyl Chloride	ND	2.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
m+p-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
o-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 12:37	3090496	CJH
Surrogate: Dibromofluoromethane	102 %	80-	120	EPA 8260B			9/24/13 9:34	9/24/13 12:37	3090496	
Surrogate: 1,2-Dichloroethane-d4	119 %	78-	120	EPA 8260B			9/24/13 9:34	9/24/13 12:37	3090496	
Surrogate: Toluene-d8	98 %	80-	120	EPA 8260B			9/24/13 9:34	9/24/13 12:37	3090496	
Surrogate: 4-Bromofluorobenzene	102 %	80-	120	EPA 8260B			9/24/13 9:34	9/24/13 12:37	3090496	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-18 Lab Number ID: AWI0583-26

Date/Time Sampled: 9/19/2013 10:00:00AM Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 820	60									
Acetone	ND	100	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
Acrolein	ND	50	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
Acrylonitrile	ND	50	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
Benzene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
Bromobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
Bromochloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
Bromodichloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
Bromoform	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
Bromomethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
n-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
sec-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
tert-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
Carbon Disulfide	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
Carbon Tetrachloride	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
Chlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
1-Chlorobutane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
Chloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
2-Chloroethyl Vinyl Ether	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
Chloroform	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
Chloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
2-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
4-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
Dibromochloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
1,2-Dibromo-3-chloropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
1,2-Dibromoethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
Dibromomethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
1,2-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
1,3-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
1,4-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
Dichlorodifluoromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
1,1-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
1,2-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
1,1-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
cis-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-18 Lab Number ID: AWI0583-26

Date/Time Sampled: 9/19/2013 10:00:00AM Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 826	0									
trans-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
1,2-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
1,3-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
1,1-Dichloropropene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
cis-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
trans-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
Ethylbenzene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
p-Isopropyltoluene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
Hexachloroethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
Iodomethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
Methylene Chloride	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
Naphthalene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
Styrene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
Tetrachloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
Tetrahydrofuran	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
Toluene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
1,1,1-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
1,1,2-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-18 Lab Number ID: AWI0583-26

Date/Time Sampled: 9/19/2013 10:00:00AM Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	8260									
Trichloroethene	14	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	СЈН
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
1,2,4-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
Vinyl Chloride	ND	2.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
m+p-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
o-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 17:44	3090496	CJH
Surrogate: Dibromofluoromethane	103 %	80-	120	EPA 8260B			9/24/13 9:34	9/24/13 17:44	3090496	
Surrogate: 1,2-Dichloroethane-d4	119 %	78-	120	EPA 8260B			9/24/13 9:34	9/24/13 17:44	3090496	
Surrogate: Toluene-d8	98 %	80-	120	EPA 8260B			9/24/13 9:34	9/24/13 17:44	3090496	
Surrogate: 4-Bromofluorobenzene	100 %	80-	120	EPA 8260B			9/24/13 9:34	9/24/13 17:44	3090496	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-6 Lab Number ID: AWI0583-27

Date/Time Sampled: 9/19/2013 10:25:00AM Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	8260									
Acetone	ND	100	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
Acrolein	ND	50	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
Acrylonitrile	ND	50	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
Benzene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
Bromobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
Bromochloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
Bromodichloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
Bromoform	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
Bromomethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
n-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
sec-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
tert-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
Carbon Disulfide	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
Carbon Tetrachloride	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
Chlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
1-Chlorobutane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
Chloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
2-Chloroethyl Vinyl Ether	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
Chloroform	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
Chloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
2-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
4-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
Dibromochloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
1,2-Dibromo-3-chloropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
1,2-Dibromoethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
Dibromomethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
1,2-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
1,3-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
1,4-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
Dichlorodifluoromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
1,1-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
1,2-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
1,1-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
cis-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
			~							

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-6 Lab Number ID: AWI0583-27

Date/Time Sampled: 9/19/2013 10:25:00AM Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 826	0									
trans-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
1,2-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
1,3-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
1,1-Dichloropropene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
cis-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
trans-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
Ethylbenzene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
p-Isopropyltoluene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
Hexachloroethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
Iodomethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
Methylene Chloride	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
Naphthalene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
Styrene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
Tetrachloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
Tetrahydrofuran	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
Toluene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
1,1,1-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
1,1,2-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-6 Lab Number ID: AWI0583-27

Date/Time Sampled: 9/19/2013 10:25:00AM Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	8260									
Trichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	СЈН
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
1,2,4-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
Vinyl Chloride	ND	2.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
m+p-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
o-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 13:33	3090496	CJH
Surrogate: Dibromofluoromethane	102 %	80-	120	EPA 8260B			9/24/13 9:34	9/24/13 13:33	3090496	
Surrogate: 1,2-Dichloroethane-d4	119 %	78-	120	EPA 8260B			9/24/13 9:34	9/24/13 13:33	3090496	
Surrogate: Toluene-d8	99 %	80-	120	EPA 8260B			9/24/13 9:34	9/24/13 13:33	3090496	
Surrogate: 4-Bromofluorobenzene	100 %	80-	120	EPA 8260B			9/24/13 9:34	9/24/13 13:33	3090496	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-20 Lab Number ID: AWI0583-28

Date/Time Sampled: 9/19/2013 12:50:00PM Date/Time Received: 9/20/2013 10:25:00AM

Matrix: Ground Water

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 82	260									
Acetone	ND	100	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
Acrolein	ND	50	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
Acrylonitrile	ND	50	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
Benzene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
Bromobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
Bromochloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
Bromodichloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
Bromoform	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
Bromomethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
n-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
sec-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
tert-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
Carbon Disulfide	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
Carbon Tetrachloride	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
Chlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
1-Chlorobutane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
Chloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
2-Chloroethyl Vinyl Ether	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
Chloroform	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
Chloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
2-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
4-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
Dibromochloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
1,2-Dibromo-3-chloropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
1,2-Dibromoethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
Dibromomethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
1,2-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
1,3-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
1,4-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
Dichlorodifluoromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
1,1-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
1,2-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
1,1-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
cis-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH

September 26, 2013

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-20 Lab Number ID: AWI0583-28

Date/Time Sampled: 9/19/2013 12:50:00PM Date/Time Received: 9/20/2013 10:25:00AM

Matrix: Ground Water

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	lnit.
Volatile Organic Compounds by EPA	8260									
trans-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	СЈН
1,2-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
1,3-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
1,1-Dichloropropene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
cis-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
trans-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
Ethylbenzene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
p-Isopropyltoluene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
Hexachloroethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
Iodomethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
Methylene Chloride	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
Naphthalene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
Styrene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
Tetrachloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
Tetrahydrofuran	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
Toluene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
1,1,1-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
1,1,2-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
									Dogo 96	-4440

September 26, 2013

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Project: Coats - Toccoa

Lab Number ID: AWI0583-28

Date/Time Received: 9/20/2013 10:25:00AM

9/24/13 9:34

9/24/13 9:34

9/24/13 14:00

9/24/13 14:00

3090496

3090496

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Client ID: MW-20

Date/Time Sampled: 9/19/2013 12:50:00PM

Matrix: Ground Water

Surrogate: Toluene-d8

Surrogate: 4-Bromofluorobenzene

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 8	3260									
Trichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	СЈН
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
1,2,4-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
Vinyl Chloride	ND	2.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
m+p-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
o-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:00	3090496	CJH
Surrogate: Dibromofluoromethane	102 %	80-	120	EPA 8260B			9/24/13 9:34	9/24/13 14:00	3090496	
Surrogate: 1,2-Dichloroethane-d4	119 %	78-	120	EPA 8260B			9/24/13 9:34	9/24/13 14:00	3090496	

EPA 8260B

EPA 8260B

99 %

102 %

80-120

80-120

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-7 Lab Number ID: AWI0583-29

Date/Time Sampled: 9/19/2013 11:20:00AM Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	lnit.
Volatile Organic Compounds by EPA	8260									
Acetone	ND	100	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
Acrolein	ND	50	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
Acrylonitrile	ND	50	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
Benzene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
Bromobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
Bromochloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
Bromodichloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
Bromoform	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
Bromomethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
n-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
sec-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
tert-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
Carbon Disulfide	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
Carbon Tetrachloride	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
Chlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
1-Chlorobutane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
Chloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
2-Chloroethyl Vinyl Ether	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
Chloroform	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
Chloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
2-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
4-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
Dibromochloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
1,2-Dibromo-3-chloropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
1,2-Dibromoethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
Dibromomethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
1,2-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
1,3-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
1,4-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
Dichlorodifluoromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
1,1-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
1,2-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
1,1-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
cis-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: MW-7 Lab Number ID: AWI0583-29

Date/Time Sampled: 9/19/2013 11:20:00AM Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 8260)									
trans-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
1,2-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
1,3-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
1,1-Dichloropropene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
cis-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
trans-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
Ethylbenzene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
p-Isopropyltoluene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
Hexachloroethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
Iodomethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
Methylene Chloride	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
Naphthalene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
Styrene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
Tetrachloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
Tetrahydrofuran	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
Toluene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
1,1,1-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
1,1,2-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Client ID: MW-7

Date/Time Sampled: 9/19/2013 11:20:00AM

Matrix: Ground Water

Project: Coats - Toccoa Lab Number ID: AWI0583-29

Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 8	3260									
Trichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
1,2,4-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
Vinyl Chloride	ND	2.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
m+p-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
o-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:28	3090496	CJH
Surrogate: Dibromofluoromethane	103 %	80-	120	EPA 8260B			9/24/13 9:34	9/24/13 14:28	3090496	
Surrogate: 1,2-Dichloroethane-d4	118 %	78-	120	EPA 8260B			9/24/13 9:34	9/24/13 14:28	3090496	
Surrogate: Toluene-d8	99 %	80-	120	EPA 8260B			9/24/13 9:34	9/24/13 14:28	3090496	
Surrogate: 4-Bromofluorobenzene	102 %	80-	120	EPA 8260B			9/24/13 9:34	9/24/13 14:28	3090496	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Project: Coats - Toccoa

Lab Number ID: AWI0583-30

Date/Time Received: 9/20/2013 10:25:00AM

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583
Client ID: Duplicate-02

Date/Time Sampled: 9/19/2013 12:00:00AM

Acrolein ND 50 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Acrylonitrile ND 50 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Acrylonitrile ND 50 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Acrylonitrile ND 50 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Acrylonitrile ND 50 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Acrylonitrile ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Acrylonitrile ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Acrylonitrile ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Acrylonitrile ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Acrylonitrile ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Acrylonitrile ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Acrylonitrile ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Acrylonitrile ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Acrylonitrile ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Acrylonitrile ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Acrylonitrile ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Acrylonitrile ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Acrylonitrile ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Acrylonitrile ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Acrylonitrile ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Acrylonitrile ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Acrylonitrile ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Acrylonitrile ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Acrylonitrile ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Acrylonitrile ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Acrylonitrile ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Acrylonitrile ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Acrylonitrile ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/2	Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Acrolein	Volatile Organic Compounds by EPA	8260									
Actylonitrile ND 60 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Ally Chloride (3-Chloropropylene) ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Bernace ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Bromocherace ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Bromochloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Bromochloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Bromochloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Bromochloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Bromochloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Bromochloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Bromochloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Bromochloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Bromochloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Bromochloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Bromochloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Bromochloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Bromochloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Bromochloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Bromochloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Bromochloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Bromochloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Bromochloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Bromochloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Bromochloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Bromochloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Bromochloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6	Acetone	ND	100	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
Alyl Chloride (3-Chloropropylene) ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1 Benzene ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1 Bromobenzene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1 Bromobliromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1 Bromochloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1 Bromochloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1 Bromochloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1 Bromochloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1 Bromochloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1 Bromochloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1 Bromochloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1 Bromochloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1 Bromochloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1 Bromochloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1 Bromochloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1 Bromochloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1 Bromochloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1 Bromochloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1 Bromochloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1 Bromochloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1 Bromochloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1 Bromochloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1 Bromochloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1 Bromochloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1 Bromochloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1 Bromochloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090	Acrolein	ND	50	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
Benzene ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Bromochenzene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 1 Bromochioromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 3 Bromochioromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 3 9/24/13 9:34 9/24/13 14:56 3090496 6 3 9/24/13 9:34 9/24/13 14:56 3090496 6 3 9/24/13 9:34 9/24/13 14:56 3090496 6 3 9/24/13 9:34 9/24/13 14:56 3090496 6 3 9/24/13 9:34 9/24/13 14:56 3090496 6 3 9/24/13 9:34 9/24/13 14:56 3090496 6 3 9/24/13 9:34 9/24/13 14:56 3090496 6 4 1 9/24/13 9:34	Acrylonitrile	ND	50	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
Bromobenzene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9:24/13 14:56 3090496 8 Bromochloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 8 Bromoform ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 8 Bromomethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 8 Bromomethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 9 Bromomethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 9 Bromodichloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 309	Allyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
Bromochloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 8 Bromodichloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 8 Bromoform ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 n-Butylbenzene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 sec-Butylbenzene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Carbon Disulfide ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Carbon Disulfide ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56	Benzene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
Bromodichloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 4:56 3090496 6 Bromoform ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 4:56 3090496 6 Bromomethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 4:56 3090496 6 sec-Butylbenzene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 4:56 3090496 6 sec-Butylbenzene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 4:56 3090496 6 Carbon Tetrachloride ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 4:36 3090496 6 Carbon Tetrachloride ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 4:34	Bromobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
Bromoform ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 9:0 Bromomethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 9:0 n-Butylbenzene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 9:0 sec-Butylbenzene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 9:0 Carbon Disulfide ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 9:0 2-0 2-0 2-0 1 9/24/13 9:34 9/24/13 14:56 3090496 9:0 2-0 2-0 1 9/24/13 9:34 9/24/13 14:56 3090496 9:0 2-0 2-0 2-0 1 9/24/13 9:34 9/24/13 14:56 3090496 9:0 1 9/24/13	Bromochloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
Bromomethane	Bromodichloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
n-Butylbenzene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 13:456 3090496 6 sec-Butylbenzene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 cerbon Disulfide ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Carbon Tetrachloride ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorobenzene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorobutane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorothane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorotothane ND 10	Bromoform	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
sec-Butylbenzene ND 10 ug/L EPA 8260B 1 9/24/13 9/24/13 9/34/1	Bromomethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
tert-Butylbenzene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Carbon Disulfide ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Carbon Tetrachloride ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorobenzene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 1-Chlorobutane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorotethane ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorotethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chloroform ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorotoduene ND	n-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
Carbon Disulfide ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 Carbon Tetrachloride ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorobenzene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chloroethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chloroethane ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 2-Chloroethyl Vinyl Ether ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chloroform ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496	sec-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
Carbon Tetrachloride ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 Chlorobenzene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 1-Chlorobutane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chloroethane ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chloroethyl Vinyl Ether ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chloroform ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chloroform ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorotoluene ND 10 <	tert-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
Chlorobenzene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1-Chlorobutane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chloroethane ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 2-Chloroethyl Vinyl Ether ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chloroform ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chloroformethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 4-Chlorotoluene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 1,2-Dibromochloromethane ND 10 <td>Carbon Disulfide</td> <td>ND</td> <td>10</td> <td>ug/L</td> <td>EPA 8260B</td> <td></td> <td>1</td> <td>9/24/13 9:34</td> <td>9/24/13 14:56</td> <td>3090496</td> <td>CJH</td>	Carbon Disulfide	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
1-Chlorobutane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chloroethane ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chloroethyl Vinyl Ether ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chloroform ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chloroform ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chloromethane ND 10 ug/L EPA 8260B 1 9/24	Carbon Tetrachloride	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
Chloroethane ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 2-Chloroethyl Vinyl Ether ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chloroform ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chloroform ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorotoluene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorotoluene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorotoluene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorotoluene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorotoluene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorotoluene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorotoluene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorotoluene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorotoluene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorotoluene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorotoluene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorotoluene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorotoluene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorotoluene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorotoluene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorotoluene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorotoluene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorotoluene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorotoluene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorotoluene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorotoluene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorotoluene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorotoluene ND 10 ug/L EPA 8260B 1 9/2	Chlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
2-Chloroethyl Vinyl Ether ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chloroform ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorotoluene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorotoluene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorotoluene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorotoluene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorotoluene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorotoluene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorotoluene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorotoluene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorotoluene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorotoluene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorotoluene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorotoluene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorotoluene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorotoluene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorotoliene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorotoliene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorotoliene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorotoliene ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorotoliene ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorotoliene ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorotoliene ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorotoliene ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chlorotoliene ND 5.0 ug/L EPA 826	1-Chlorobutane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
Chloroform ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 Chloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 2-Chlorotoluene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 2-Chlorotoluene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 2-Chlorotoluene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 2-Chlorotoluene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 2-Chlorotoluene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 1,2-Dibromo-3-chloropropane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 1,2-Dibromo-thane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 1,2-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 1,2-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 1,4-Dichlorobenzene ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 1,4-Dichlorobenzene ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 1,4-Dichlorobenzene ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 1,4-Dichlorobenzene ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 1,4-Dichlorobenzene ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 1,4-Dichlorobenzene ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:5	Chloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
Chloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 2-Chlorotoluene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 6 1 9/24/13 9:34 9/24/13 1	2-Chloroethyl Vinyl Ether	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
2-Chlorotoluene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 4-Chlorotoluene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 Dibromochloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1,2-Dibromo-3-chloropropane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1,2-Dibromoethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1,2-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1,1-Dic	Chloroform	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
4-Chlorotoluene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 1:56 3090496 Dibromochloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 9/24/13 9:34 9/24/13 14:56 3090496 9/24/13 9:34 9/24/13 14:56 3090496 9/24/13 9:34 9/24/13 14:56 3090496 9/24/13 9:34 9/24/13 14:56 3090496 9/24/13 9:34 9/24/13 14:56 3090496 9/24/13 9:34 9/24/13 14:56 3090496 9/24/13 9:34 9/24/13 14:56 3090496 9/24/13 9:34 9/24/13 14:56 3090496 9/24/13 9:34 9/24/13 14:56 3090496 9/24/13 9:34 9/24/13 14:56 3090496 9/24/13 9:34 9/24/13 14:56 3090496 9/24/13 9:34 9/24/13 14:56 3090496 9/24/13 9:34 9/24/13 14:56 3090496 9/24/13 9:34 9/24/13 14:56 3090496 9/24/13 9:34 9/24/1	Chloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
Dibromochloromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 9/24/13 9/24/13 9:34 9/24/13 14:56 3090496 9/24/13 9/24/13 9:34 9/24/13 14:56 3090496 9/24/13 9:34 9/24/13 14:56 3090496 9/24/13 9:34 9/24/13 14:56 3090496 9/24/13 9:34 9/24/13 14:56 3090496 9/24/13 9:34 9/24/13 14:56 3090496 9/24/13 9/24/13 9:34 9/24/13 14:56 3090496 9/24/13 9/24/13 9:34 9/24/13 14:56 3090496 9/24/13	2-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
1,2-Dibromo-3-chloropropane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1,2-Dibromoethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 Dibromomethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1,2-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 trans-1,4-Dichloro-2-butene ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 Dichlorodifluoromethane ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1,2-Dichloroethane	4-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
1,2-Dibromoethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 Dibromomethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 9/24/13 3090496 9/24/13 9:34 9/24/13 14:56 3090496 9/24/13 9/24/13 9:34 9/24/13 14:56 3090496 9/24/13 9/24/13 9:34 9/24/13 14:56 3090496 9/24/13 9/24/13 9:34 9/24/13 14:56 3090496 9/24/13 9/24/13 9:34 9/24/13 14:56 3090496 9/24/13 9/24/13 9:34 9/24/13 14:56 3090496 9/24/13 9/24/13 9:34 9/24/13 14:56 3090496 9/24/13 9/24/13 9:34 9/24/13 14:56 3090496 9/24/13 9/24/13 9:34 9/24/13 14:56 3090496 9/24/13 9/24/13 9/24/13 14:56 3090496 9/24/13 9/24/13 9/24/13 14:56 3090496 9/24/13 9/24/13 14:56 3090496 9/24/13 <td>Dibromochloromethane</td> <td>ND</td> <td>10</td> <td>ug/L</td> <td>EPA 8260B</td> <td></td> <td>1</td> <td>9/24/13 9:34</td> <td>9/24/13 14:56</td> <td>3090496</td> <td>CJH</td>	Dibromochloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
Dibromomethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1,2-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 trans-1,4-Dichloro-2-butene ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 Dichlorodifluoromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1,2-Dichloroethane ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1,1-Dichloroethane ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1,1-Dichloroeth	1,2-Dibromo-3-chloropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
1,2-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 9/24/13 9/24/13 9:34 9/24/13 14:56 3090496 9/24/13 9/24/13 9:34 9/24/13 14:56 3090496 9/24/13 9/24/13 9:34 9/24/13 14:56 3090496 9/24/13 9/24/13 9:34 9/24/13 14:56 3090496 9/24/13 9/24/13 9:34 9/24/13 14:56 3090496 9/24/13 9/24/13 9:34 9/24/13 14:56 3090496 9/24/13 9/24/13 9:34 9/24/13 14:56 3090496 9/24/13 9/24/13 9/24/13 14:56 3090496 9/24/13 9/24/13 9/24/13 14:56 3090496 9/24/13 9/24/13 9/24/13 14:56 3090496 9/24/13 9/24/13 14:56 3090496 9/24/13 9/24/13 14:56 3090496 9/24/13 9/24/13 14:56 3090496 9/24/13 9/24/13 14:56 3090496 9/24/13 9/24/13 14:56 3090496 9/24/13 9/24/13 9/24/13 14:56	1,2-Dibromoethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 trans-1,4-Dichloro-2-butene ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 Dichlorodifluoromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1,1-Dichloroethane ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1,2-Dichloroethane ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1,1-Dichloroethene ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496	Dibromomethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 trans-1,4-Dichloro-2-butene ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 Dichlorodifluoromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1,1-Dichloroethane ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1,2-Dichloroethane ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1,1-Dichloroethene ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496	1,2-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
trans-1,4-Dichloro-2-butene ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 0 Dichlorodifluoromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 0 1,1-Dichloroethane ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 0 1,2-Dichloroethane ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 0 1,1-Dichloroethane ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 0 1,1-Dichloroethane ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 0 1,1-Dichloroethane	1,3-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
trans-1,4-Dichloro-2-butene ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 0 Dichlorodifluoromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 0 1,1-Dichloroethane ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 0 1,2-Dichloroethane ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 0 1,1-Dichloroethane ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 0 1,1-Dichloroethane ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 0 1,1-Dichloroethane	1,4-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
Dichlorodifluoromethane ND 10 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1,1-Dichloroethane ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 0 1,2-Dichloroethane ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 0 1,1-Dichloroethane ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 0	trans-1,4-Dichloro-2-butene	ND	5.0		EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
1,1-Dichloroethane ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1,2-Dichloroethane ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1,1-Dichloroethene ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496	Dichlorodifluoromethane		10		EPA 8260B		1			3090496	CJH
1,2-Dichloroethane ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496 1,1-Dichloroethane ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496	1,1-Dichloroethane	ND	5.0	-			1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
1,1-Dichloroethene ND 5.0 ug/L EPA 8260B 1 9/24/13 9:34 9/24/13 14:56 3090496	1,2-Dichloroethane		5.0	•	EPA 8260B		1				
	•			•							
CIS-1,Z-DICHIOTOETHERE IND 5.0 Ug/L EPA 8260B T 9/24/T3 9:34 9/24/T3 14:56 3090496 (cis-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: Duplicate-02 Lab Number ID: AWI0583-30

Date/Time Sampled: 9/19/2013 12:00:00AM Date/Time Received: 9/20/2013 10:25:00AM

Matrix: Ground Water

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 82	260									
trans-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	СЈН
1,2-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
1,3-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
1,1-Dichloropropene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
cis-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
trans-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
Ethylbenzene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
p-Isopropyltoluene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
Hexachloroethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
Iodomethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
Methylene Chloride	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
Naphthalene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
Styrene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
Tetrachloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
Tetrahydrofuran	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
Toluene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
1,1,1-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
1,1,2-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH

September 26, 2013

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583
Client ID: Duplicate-02

Date/Time Sampled: 9/19/2013 12:00:00AM

Matrix: Ground Water

Project: Coats - Toccoa Lab Number ID: AWI0583-30

Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 8	260									
Trichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
1,2,4-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
Vinyl Chloride	ND	2.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
m+p-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
o-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 14:56	3090496	CJH
Surrogate: Dibromofluoromethane	104 %	80-	120	EPA 8260B			9/24/13 9:34	9/24/13 14:56	3090496	
Surrogate: 1,2-Dichloroethane-d4	119 %	78-	120	EPA 8260B			9/24/13 9:34	9/24/13 14:56	3090496	
Surrogate: Toluene-d8	99 %	80-	120	EPA 8260B			9/24/13 9:34	9/24/13 14:56	3090496	
Surrogate: 4-Bromofluorobenzene	102 %	80-	120	EPA 8260B			9/24/13 9:34	9/24/13 14:56	3090496	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: SW-5 Lab Number ID: AWI0583-31

Date/Time Sampled: 9/19/2013 1:05:00PM Date/Time Received: 9/20/2013 10:25:00AM

Matrix: Surface Water

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 82	60									
Acetone	ND	100	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
Acrolein	ND	50	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
Acrylonitrile	ND	50	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
Benzene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
Bromobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
Bromochloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
Bromodichloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
Bromoform	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
Bromomethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
n-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
sec-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
tert-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
Carbon Disulfide	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
Carbon Tetrachloride	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
Chlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
1-Chlorobutane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
Chloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
2-Chloroethyl Vinyl Ether	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
Chloroform	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
Chloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
2-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
4-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
Dibromochloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
1,2-Dibromo-3-chloropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
1,2-Dibromoethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
Dibromomethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
1,2-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
1,3-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
1,4-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
Dichlorodifluoromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
1,1-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	
1,2-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
1,1-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
cis-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: SW-5 Lab Number ID: AWI0583-31

Date/Time Sampled: 9/19/2013 1:05:00PM Date/Time Received: 9/20/2013 10:25:00AM

Matrix: Surface Water

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 826	60									
trans-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
1,2-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
1,3-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
1,1-Dichloropropene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
cis-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
trans-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
Ethylbenzene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
p-Isopropyltoluene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
Hexachloroethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
Iodomethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
Methylene Chloride	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
Naphthalene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
Styrene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
Tetrachloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
Tetrahydrofuran	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
Toluene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
1,1,1-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
1,1,2-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Client ID: SW-5

Date/Time Sampled: 9/19/2013 1:05:00PM

Matrix: Surface Water

Project: Coats - Toccoa

Lab Number ID: AWI0583-31

Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 8	3260									
Trichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
1,2,4-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
Vinyl Chloride	ND	2.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
m+p-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
o-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:24	3090496	CJH
Surrogate: Dibromofluoromethane	102 %	80-	120	EPA 8260B			9/24/13 9:34	9/24/13 15:24	3090496	
Surrogate: 1,2-Dichloroethane-d4	120 %	78-	120	EPA 8260B			9/24/13 9:34	9/24/13 15:24	3090496	
Surrogate: Toluene-d8	99 %	80-	120	EPA 8260B			9/24/13 9:34	9/24/13 15:24	3090496	
Surrogate: 4-Bromofluorobenzene	101 %	80-	120	EPA 8260B			9/24/13 9:34	9/24/13 15:24	3090496	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583
Client ID: Duplicate-03

Date/Time Sampled: 9/19/2013 12:00:00AM

Matrix: Surface Water

Project: Coats - Toccoa

Lab Number ID: AWI0583-32

Date/Time Received: 9/20/2013 10:25:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 82	260									
Acetone	ND	100	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
Acrolein	ND	50	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
Acrylonitrile	ND	50	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
Benzene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
Bromobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
Bromochloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
Bromodichloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
Bromoform	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
Bromomethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
n-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
sec-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
tert-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
Carbon Disulfide	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
Carbon Tetrachloride	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
Chlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
1-Chlorobutane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
Chloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
2-Chloroethyl Vinyl Ether	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
Chloroform	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
Chloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
2-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
4-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
Dibromochloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
1,2-Dibromo-3-chloropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
1,2-Dibromoethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
Dibromomethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
1,2-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
1,3-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
1,4-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
Dichlorodifluoromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
1,1-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
1,2-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
1,1-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
cis-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH

September 26, 2013

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: Duplicate-03 Lab Number ID: AWI0583-32

Date/Time Sampled: 9/19/2013 12:00:00AM Date/Time Received: 9/20/2013 10:25:00AM

Matrix: Surface Water

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 826	0									
trans-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
1,2-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
1,3-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
1,1-Dichloropropene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
cis-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
trans-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
Ethylbenzene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
p-Isopropyltoluene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
Hexachloroethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
Iodomethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
Methylene Chloride	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
Naphthalene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
Styrene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
Tetrachloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
Tetrahydrofuran	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
Toluene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
1,1,1-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
1,1,2-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: Duplicate-03 Lab Number ID: AWI0583-32

Date/Time Sampled: 9/19/2013 12:00:00AM Date/Time Received: 9/20/2013 10:25:00AM

Matrix: Surface Water

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	3260									
Trichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
1,2,4-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
Vinyl Chloride	ND	2.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
m+p-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
o-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 15:52	3090496	CJH
Surrogate: Dibromofluoromethane	102 %	80-	120	EPA 8260B			9/24/13 9:34	9/24/13 15:52	3090496	
Surrogate: 1,2-Dichloroethane-d4	118 %	78-	120	EPA 8260B			9/24/13 9:34	9/24/13 15:52	3090496	
Surrogate: Toluene-d8	101 %	80-	120	EPA 8260B			9/24/13 9:34	9/24/13 15:52	3090496	
Surrogate: 4-Bromofluorobenzene	102 %	80-	120	EPA 8260B			9/24/13 9:34	9/24/13 15:52	3090496	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM 3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: Trip Blank Lab Number ID: AWI0583-33

Date/Time Sampled: 9/17/2013 8:00:00AM Date/Time Received: 9/20/2013 10:25:00AM

Matrix: Water

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	8260									
Acetone	ND	100	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
Acrolein	ND	50	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
Acrylonitrile	ND	50	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
Benzene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
Bromobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
Bromochloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
Bromodichloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
Bromoform	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
Bromomethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
n-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
sec-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
tert-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
Carbon Disulfide	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
Carbon Tetrachloride	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
Chlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
1-Chlorobutane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
Chloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
2-Chloroethyl Vinyl Ether	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
Chloroform	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
Chloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
2-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
4-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
Dibromochloromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
1,2-Dibromo-3-chloropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
1,2-Dibromoethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
Dibromomethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
1,2-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
1,3-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
1,4-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
Dichlorodifluoromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
1,1-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
1,2-Dichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
1,1-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
cis-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH

September 26, 2013

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: Trip Blank Lab Number ID: AWI0583-33

Date/Time Sampled: 9/17/2013 8:00:00AM Date/Time Received: 9/20/2013 10:25:00AM

Matrix: Water

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	8260									
trans-1,2-Dichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
1,2-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
1,3-Dichloropropane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
1,1-Dichloropropene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
cis-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
trans-1,3-Dichloropropene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
Ethylbenzene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
p-Isopropyltoluene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
Hexachloroethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
Iodomethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
Methylene Chloride	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
Naphthalene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
Styrene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
Tetrachloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
Tetrahydrofuran	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
Toluene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
1,1,1-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
1,1,2-Trichloroethane	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583 Project: Coats - Toccoa
Client ID: Trip Blank Lab Number ID: AWI0583-33

Date/Time Sampled: 9/17/2013 8:00:00AM Date/Time Received: 9/20/2013 10:25:00AM

Matrix: Water

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	8260									
Trichloroethene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	СЈН
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
1,2,4-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
Vinyl Chloride	ND	2.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
m+p-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
o-Xylene	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	9/24/13 9:34	9/24/13 16:20	3090496	CJH
Surrogate: Dibromofluoromethane	102 %	80-	120	EPA 8260B			9/24/13 9:34	9/24/13 16:20	3090496	
Surrogate: 1,2-Dichloroethane-d4	119 %	78-	120	EPA 8260B			9/24/13 9:34	9/24/13 16:20	3090496	
Surrogate: Toluene-d8	100 %	80-	120	EPA 8260B			9/24/13 9:34	9/24/13 16:20	3090496	
Surrogate: 4-Bromofluorobenzene	102 %	80-	120	EPA 8260B			9/24/13 9:34	9/24/13 16:20	3090496	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM 3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583

Volatile Organic Compounds by EPA 8260 - Quality Control

RPD Spike Source %REC Reporting Analyte Result Limit Units Level Result %REC Limits **RPD** Limit Qual Batch 3090463 - EPA 5030B Blank (3090463-BLK1) Prepared & Analyzed: 09/23/13 ND Acetone 100 ug/L Acrolein ND 50 ug/L Acrylonitrile ND 50 ug/L Allyl Chloride (3-Chloropropylene) ND 10 ug/L Benzene ND 2.0 ug/L Bromobenzene ND 10 ug/L Bromochloromethane ND 10 ug/L Bromodichloromethane ND 10 ug/L Bromoform ND 10 ug/L Bromomethane ND 10 ug/L n-Butylbenzene ND 10 ug/L sec-Butylbenzene ND 10 ug/L tert-Butylbenzene ND 10 ug/L Carbon Disulfide ND 10 ug/L Carbon Tetrachloride ND 2.0 ug/L Chlorobenzene ND 10 ug/L 1-Chlorobutane ND 10 ug/L Chloroethane ND 5.0 ug/L 2-Chloroethyl Vinyl Ether ND 10 ug/L Chloroform ND 2.0 ug/L ND 10 Chloromethane ug/L 2-Chlorotoluene ND 10 ug/L 4-Chlorotoluene ND 10 ug/L Dibromochloromethane ND 10 ug/L ND 1,2-Dibromo-3-chloropropane 10 ug/L 1,2-Dibromoethane ND 10 ug/L Dibromomethane ND 10 ug/L 1,2-Dichlorobenzene ND 10 ug/L ND 10 1,3-Dichlorobenzene ug/L ND 10 1,4-Dichlorobenzene ug/L trans-1,4-Dichloro-2-butene ND 5.0 ug/L Dichlorodifluoromethane ND 10 ug/L 1.1-Dichloroethane ND 2.0 ug/L 1,2-Dichloroethane ND 2.0 ug/L 1,1-Dichloroethene ND 2.0 ug/L ND 2.0 cis-1.2-Dichloroethene ug/L ND 2.0 trans-1,2-Dichloroethene ug/L ND 1,2-Dichloropropane 2.0 ug/L 1,3-Dichloropropane ND 2.0 ug/L ND 2,2-Dichloropropane 10 ug/L ND 1,1-Dichloropropene 10 ug/L

September 26, 2013

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM 3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

September 26, 2013

Report No.: AWI0583

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch 3090463 - EPA 5030B										
Blank (3090463-BLK1)					Prep	ared & A	nalyzed:	09/23/13	1	
cis-1,3-Dichloropropene	ND	2.0	ug/L							
trans-1,3-Dichloropropene	ND	2.0	ug/L							
Ethylbenzene	ND	2.0	ug/L							
Ethyl Methacrylate	ND	10	ug/L							
Hexachlorobutadiene	ND	10	ug/L							
p-Isopropyltoluene	ND	10	ug/L							
Hexachloroethane	ND	10	ug/L							
Iodomethane	ND	10	ug/L							
Isopropylbenzene	ND	10	ug/L							
Methacrylonitrile	ND	10	ug/L							
Methyl Acrylate	ND	10	ug/L							
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L							
Methylene Chloride	ND	5.0	ug/L							
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L							
Methyl Methacrylate	ND	10	ug/L							
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L							
Methyl-tert-Butyl Ether	ND	10	ug/L							
Naphthalene	ND	10	ug/L							
2-Nitropropane	ND	10	ug/L							
Propionitrile (Ethyl Cyanide)	ND	20	ug/L							
n-Propylbenzene	ND	10	ug/L							
Styrene	ND	5.0	ug/L							
1,1,1,2-Tetrachloroethane	ND	2.0	ug/L							
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L							
Tetrachloroethene	ND	2.0	ug/L							
Tetrahydrofuran	ND	10	ug/L							
Toluene	ND	2.0	ug/L							
1,2,3-Trichlorobenzene	ND	10	ug/L							
1,2,4-Trichlorobenzene	ND	10	ug/L							
1,1,1-Trichloroethane	ND	2.0	ug/L							
1,1,2-Trichloroethane	ND	2.0	ug/L							
Trichloroethene	ND	2.0	ug/L							
Trichlorofluoromethane	ND	10	ug/L							
1,2,3-Trichloropropane	ND	10	ug/L							
1,2,4-Trimethylbenzene	ND	10	ug/L							
1,3,5-Trimethylbenzene	ND	10	ug/L							
Vinyl Acetate	ND	10	ug/L							
Vinyl Chloride	ND	2.0	ug/L							
m+p-Xylene	ND	5.0	ug/L							
o-Xylene	ND	5.0	ug/L							
Xylenes, total	ND	5.0	ug/L							

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W Atlanta GA, 30339

Attention: Ms. Adria Reimer

Report No.: AWI0583

Anglista	Dogult	Reporting Limit	Lloito	Spike	Source	%REC	%REC	RPD	RPD Limit	Ougl
Analyte	Result	LITTIIL	Units	Level	Result	%REC	Limits	RPD	LITTIIL	Qual
Batch 3090463 - EPA 5030B										
Blank (3090463-BLK1)					Prep	ared & A	nalyzed:	09/23/13		
Surrogate: Dibromofluoromethane	50		ug/L	50.000		100	80-120			
Surrogate: 1,2-Dichloroethane-d4	54		ug/L	50.000		107	78-120			
Surrogate: Toluene-d8	49		ug/L	50.000		98	80-120			
Surrogate: 4-Bromofluorobenzene	50		ug/L	50.000		100	80-120			
LCS (3090463-BS1)					Prep	ared & A	nalyzed:	09/23/13		
Benzene	54		ug/L	50.000	•	108	67-134			
Chlorobenzene	52		ug/L	50.000		103	69-122			
1,1-Dichloroethene	59		ug/L	50.000		117	58-142			
Toluene	53		ug/L	50.000		105	68-127			
Trichloroethene	57		ug/L	50.000		115	72-132			
Surrogate: Dibromofluoromethane	50		ug/L	50.000		99	80-120			
Surrogate: 1,2-Dichloroethane-d4	53		ug/L	50.000		106	78-120			
Surrogate: Toluene-d8	49		ug/L	50.000		98	80-120			
Surrogate: 4-Bromofluorobenzene	50		ug/L	50.000		99	80-120			
Matrix Spike (3090463-MS1)	So	urce: AWI0	583-01		Prep	ared & A	nalyzed:	09/23/13		
Benzene	48		ug/L	50.000	ND	96	67-134			
Chlorobenzene	45		ug/L	50.000	0.1	90	69-122			
1,1-Dichloroethene	53		ug/L	50.000	ND	106	58-142			
Toluene	47		ug/L	50.000	ND	93	68-127			
Trichloroethene	50		ug/L	50.000	0.6	99	72-132			
Surrogate: Dibromofluoromethane	52		ug/L	50.000		103	80-120			
Surrogate: 1,2-Dichloroethane-d4	58		ug/L	50.000		116	78-120			
Surrogate: Toluene-d8	49		ug/L	50.000		98	80-120			
Surrogate: 4-Bromofluorobenzene	51		ug/L	50.000		101	80-120			
Matrix Spike Dup (3090463-MSD1)	So	urce: AWI0	583-01		Prep	ared & A	nalyzed:	09/23/13		
Benzene	47		ug/L	50.000	ND	95	67-134	1	9	
Chlorobenzene	45		ug/L	50.000	0.1	89	69-122	2	13	
1,1-Dichloroethene	51		ug/L	50.000	ND	102	58-142	3	9	
Toluene	46		ug/L	50.000	ND	92	68-127	1	9	
Trichloroethene	48		ug/L	50.000	0.6	95	72-132	3	11	
Surrogate: Dibromofluoromethane	52		ug/L	50.000		104	80-120			
Surrogate: 1,2-Dichloroethane-d4	58		ug/L	50.000		117	78-120			
Surrogate: Toluene-d8	49		ug/L	50.000		99	80-120			
Surrogate: 4-Bromofluorobenzene	50		ug/L	50.000		100	80-120			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM 3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

September 26, 2013

Report No.: AWI0583

Batch 3090496 - EPA 5030B Blank (3090496-BLK1) Acetone Acrolein Acrylonitrile Allyl Chloride (3-Chloropropylene) Benzene Bromobenzene Bromochloromethane Bromodichloromethane	ND	100 50 50 10 2.0 10 10	ug/L ug/L ug/L ug/L ug/L	Prep	ared & A	nalyzed: (09/24/13	
Acetone Acrolein Acrylonitrile Allyl Chloride (3-Chloropropylene) Benzene Bromobenzene Bromochloromethane	ND ND ND ND ND ND	50 50 10 2.0 10	ug/L ug/L ug/L ug/L	Prep	ared & A	nalyzed: (09/24/13	
Acrolein Acrylonitrile Allyl Chloride (3-Chloropropylene) Benzene Bromobenzene Bromochloromethane	ND ND ND ND ND ND	50 50 10 2.0 10	ug/L ug/L ug/L ug/L					_
Acrylonitrile Allyl Chloride (3-Chloropropylene) Benzene Bromobenzene Bromochloromethane	ND ND ND ND ND ND	50 10 2.0 10 10	ug/L ug/L ug/L					
Allyl Chloride (3-Chloropropylene) Benzene Bromobenzene Bromochloromethane	ND ND ND ND ND	10 2.0 10 10	ug/L ug/L					
Benzene Bromobenzene Bromochloromethane	ND ND ND ND ND	2.0 10 10	ug/L					
Bromobenzene Bromochloromethane	ND ND ND ND	10 10						
Bromochloromethane	ND ND ND	10	ug/L					
	ND ND							
Bromodichloromethane	ND	10	ug/L					
			ug/L					
Bromoform		10	ug/L					
Bromomethane	ND	10	ug/L					
n-Butylbenzene	ND	10	ug/L					
sec-Butylbenzene	ND	10	ug/L					
tert-Butylbenzene	ND	10	ug/L					
Carbon Disulfide	ND	10	ug/L					
Carbon Tetrachloride	ND	2.0	ug/L					
Chlorobenzene	ND	10	ug/L					
1-Chlorobutane	ND	10	ug/L					
Chloroethane	ND	5.0	ug/L					
2-Chloroethyl Vinyl Ether	ND	10	ug/L					
Chloroform	ND	2.0	ug/L					
Chloromethane	ND	10	ug/L					
2-Chlorotoluene	ND	10	ug/L					
4-Chlorotoluene	ND	10	ug/L					
Dibromochloromethane	ND	10	ug/L					
1,2-Dibromo-3-chloropropane	ND	10	ug/L					
1,2-Dibromoethane	ND	10	ug/L					
Dibromomethane	ND	10	ug/L					
1,2-Dichlorobenzene	ND	10	ug/L					
1,3-Dichlorobenzene	ND	10	ug/L					
1,4-Dichlorobenzene	ND	10	ug/L					
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L					
Dichlorodifluoromethane	ND	10	ug/L					
1,1-Dichloroethane	ND	2.0	ug/L					
1.2-Dichloroethane	ND	2.0	ug/L					
1,1-Dichloroethene	ND	2.0	ug/L					
cis-1,2-Dichloroethene	ND	2.0	ug/L					
trans-1,2-Dichloroethene	ND	2.0	ug/L					
1,2-Dichloropropane	ND	2.0	ug/L					
1,3-Dichloropropane	ND	2.0	ug/L ug/L					
2,2-Dichloropropane	ND ND	10	ug/L ug/L					
1,1-Dichloropropane	ND ND	10	ug/L ug/L					

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM 3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

September 26, 2013

Report No.: AWI0583

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch 3090496 - EPA 5030B										
Blank (3090496-BLK1)					Pres	oared & A	nalvzed:	09/24/13		
cis-1,3-Dichloropropene	ND	2.0	ug/L		-1					
trans-1,3-Dichloropropene	ND	2.0	ug/L							
Ethylbenzene	ND	2.0	ug/L							
Ethyl Methacrylate	ND	10	ug/L							
Hexachlorobutadiene	ND	10	ug/L							
p-Isopropyltoluene	ND	10	ug/L							
Hexachloroethane	ND	10	ug/L							
Iodomethane	ND	10	ug/L							
Isopropylbenzene	ND	10	ug/L							
Methacrylonitrile	ND	10	ug/L							
Methyl Acrylate	ND	10	ug/L							
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L							
Methylene Chloride	ND	5.0	ug/L							
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L							
Methyl Methacrylate	ND	10	ug/L							
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L							
Methyl-tert-Butyl Ether	ND	10	ug/L							
Naphthalene	ND	10	ug/L							
2-Nitropropane	ND	10	ug/L							
Propionitrile (Ethyl Cyanide)	ND	20	ug/L							
n-Propylbenzene	ND	10	ug/L							
Styrene	ND	5.0	ug/L							
1,1,1,2-Tetrachloroethane	ND	2.0	ug/L							
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L							
Tetrachloroethene	ND	2.0	ug/L							
Tetrahydrofuran	ND	10	ug/L							
Toluene	ND	2.0	ug/L							
1,2,3-Trichlorobenzene	ND	10	ug/L							
1,2,4-Trichlorobenzene	ND	10	ug/L							
1,1,1-Trichloroethane	ND	2.0	ug/L							
1,1,2-Trichloroethane	ND	2.0	ug/L							
Trichloroethene	ND	2.0	ug/L							
Trichlorofluoromethane	ND	10	ug/L							
1,2,3-Trichloropropane	ND	10	ug/L							
1,2,4-Trimethylbenzene	ND	10	ug/L							
1,3,5-Trimethylbenzene	ND	10	ug/L							
Vinyl Acetate	ND	10	ug/L							
Vinyl Chloride	ND	2.0	ug/L							
m+p-Xylene	ND	5.0	ug/L							
o-Xylene	ND	5.0	ug/L							
Xylenes, total	ND ND	5.0	ug/L ug/L							

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM 3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

September 26, 2013

Report No.: AWI0583

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch 3090496 - EPA 5030B										
Blank (3090496-BLK1)					Prep	ared & A	nalyzed:	09/24/13		
Surrogate: Dibromofluoromethane	51		ug/L	50.000		102	80-120			
Surrogate: 1,2-Dichloroethane-d4	59		ug/L	50.000		118	78-120			
Surrogate: Toluene-d8	50		ug/L	50.000		100	80-120			
Surrogate: 4-Bromofluorobenzene	50		ug/L	50.000		100	80-120			
LCS (3090496-BS1)					Prep	ared & A	nalyzed:	09/24/13		
Benzene	53		ug/L	50.000	•	106	67-134			
Chlorobenzene	49		ug/L	50.000		97	69-122			
1,1-Dichloroethene	60		ug/L	50.000		119	58-142			
Toluene	51		ug/L	50.000		103	68-127			
Trichloroethene	55		ug/L	50.000		109	72-132			
Surrogate: Dibromofluoromethane	52		ug/L	50.000		104	80-120			
Surrogate: 1,2-Dichloroethane-d4	58		ug/L	50.000		117	78-120			
Surrogate: Toluene-d8	49		ug/L	50.000		98	80-120			
Surrogate: 4-Bromofluorobenzene	50		ug/L	50.000		100	80-120			
Matrix Spike (3090496-MS1)	Sc	urce: AWI0	583-11		Prep	ared & A	nalyzed:	09/24/13		
Benzene	47		ug/L	50.000	ND	95	67-134			
Chlorobenzene	44		ug/L	50.000	ND	89	69-122			
1,1-Dichloroethene	54		ug/L	50.000	ND	109	58-142			
Toluene	46		ug/L	50.000	ND	92	68-127			
Trichloroethene	49		ug/L	50.000	ND	97	72-132			
Surrogate: Dibromofluoromethane	51		ug/L	50.000		102	80-120			
Surrogate: 1,2-Dichloroethane-d4	60		ug/L	50.000		120	78-120			
Surrogate: Toluene-d8	50		ug/L	50.000		99	80-120			
Surrogate: 4-Bromofluorobenzene	51		ug/L	50.000		101	80-120			
Matrix Spike Dup (3090496-MSD1)	Source: AWI0583-11			Prepared & Analyzed: 09/24/13						
Benzene	48		ug/L	50.000	ND	95	67-134	0.6	9	
Chlorobenzene	45		ug/L	50.000	ND	89	69-122	0.5	13	
1,1-Dichloroethene	54		ug/L	50.000	ND	109	58-142	0.04	9	
Toluene	45		ug/L	50.000	ND	91	68-127	0.9	9	
Trichloroethene	49		ug/L	50.000	ND	98	72-132	0.3	11	
Surrogate: Dibromofluoromethane	51		ug/L	50.000		102	80-120			
Surrogate: 1,2-Dichloroethane-d4	60		ug/L	50.000		120	78-120			
Surrogate: Toluene-d8	49		ug/L	50.000		99	80-120			
Surrogate: 4-Bromofluorobenzene	50		ug/L	50.000		101	80-120			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Adria Reimer

Laboratory Certifications

Code	Description	Number	Expires
LA	Louisiana	02069	06/30/2014
NC	North Carolina	381	12/31/2013
NELAC	FL DOH (Non-Pot. Water, Solids) Eff:: 07/01/2012	E87315	06/30/2014
SC	South Carolina	98011001	06/30/2014
TX	Texas	T104704397-08-TX	03/31/2014
VA	Virginia	1340	12/14/2013

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W Atlanta GA, 30339

Attention: Ms. Adria Reimer

Legend

Definition of Laboratory Terms

- ND None Detected at the Reporting Limit
- TIC Tentatively Identified Compound
- CFU Colony Forming Units
- SOP Method run per ASI Standard Operating Procedure
 - **RL** Reporting Limit
 - **DF** Dilution Factor
 - Analyte not included in the NELAC list of certified analytes.

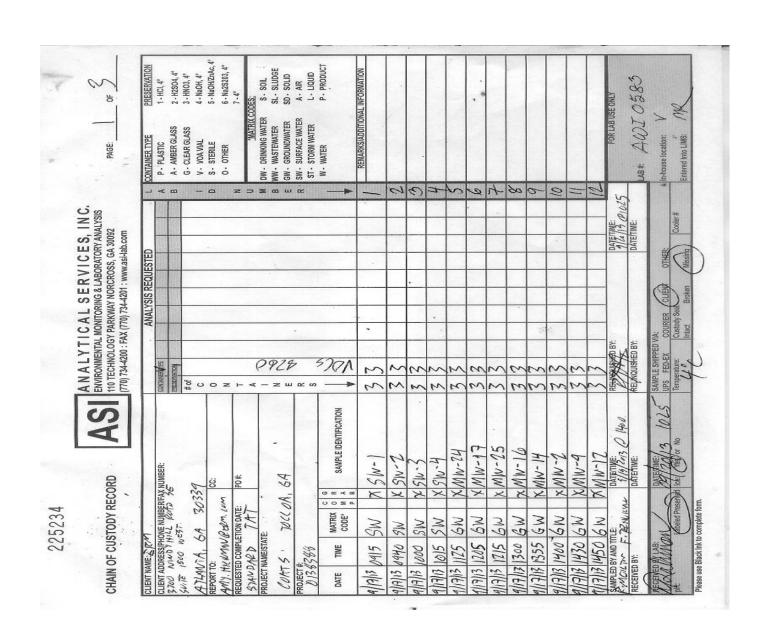
Sample Information

N-Nitrosodiphenylamine breaks down to diphenylamine in the GCMS; both analytes are reported as N-Nitrososdiphenylamine. ASI is not NELAC certified for diphenylamine.

Phthalic acid and phthalic anhydride are reported as dimethyl phthalate

Maleic acid and maleic anhydride are reported as dimethyl malate

1,2-Diphenylhydrazine breaks down to azobenzene in the GCMS; both analytes are reported as azobenzene **Definition of Qualifiers**

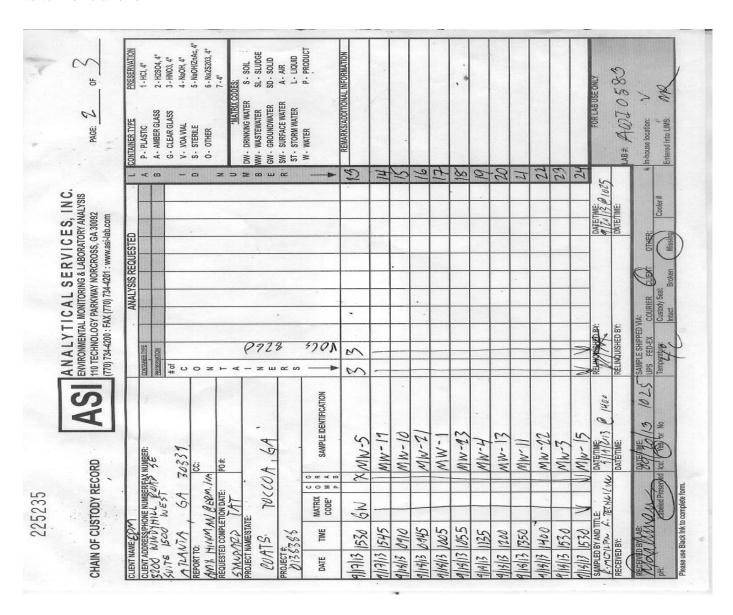

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W Atlanta GA, 30339

Attention: Ms. Adria Reimer

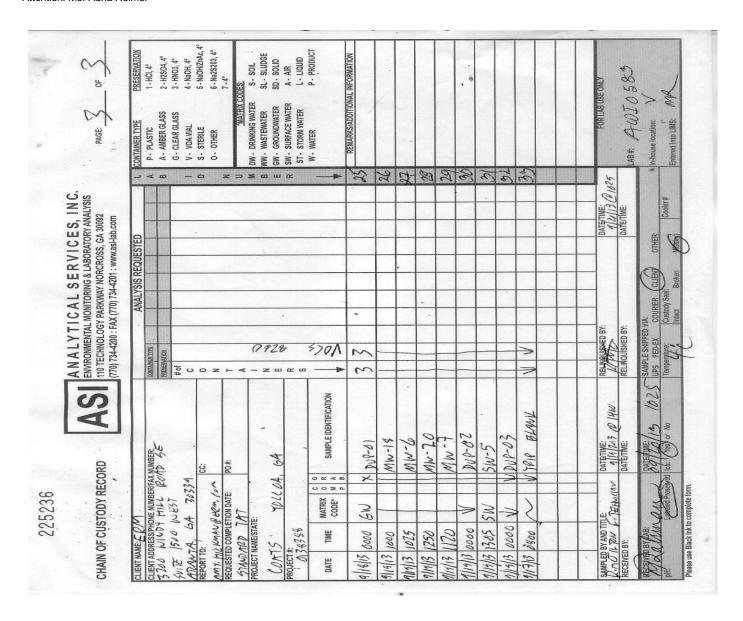

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W Atlanta GA, 30339

Attention: Ms. Adria Reimer


Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

September 26, 2013

3200 Windy Hill Road, Suite 1500W Atlanta GA, 30339

Attention: Ms. Adria Reimer

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

LOG-IN CHECKLIST

Printed: 9/26/2013 2:55:57PM

Attn: Ms. Adria Reimer

Client: ERM

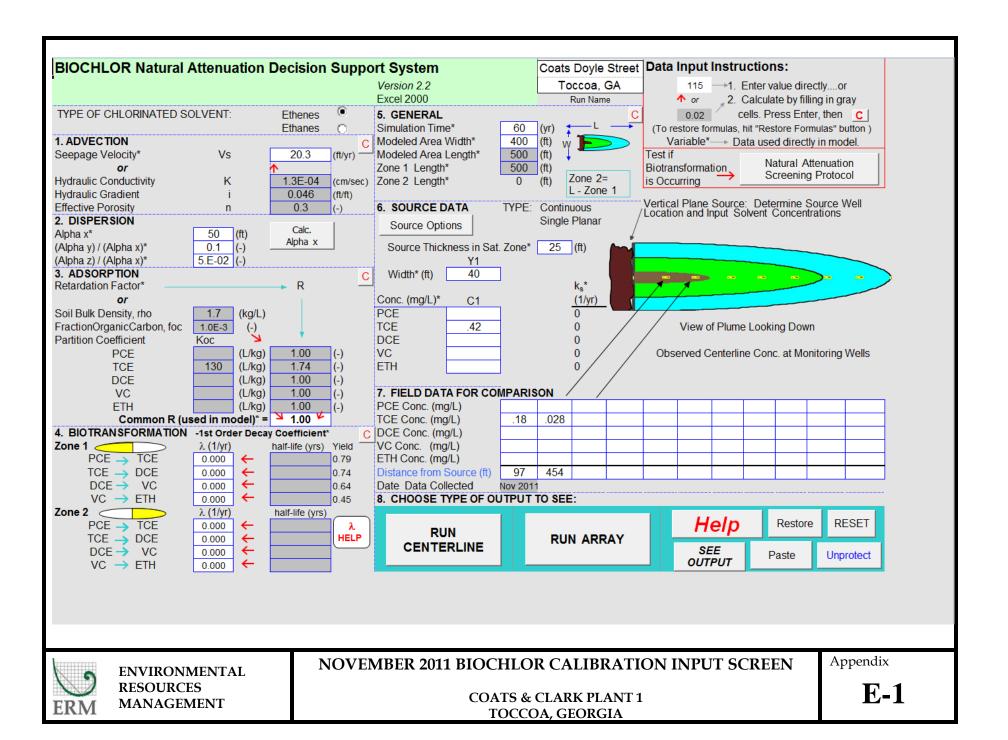
Work Order: AWI0583 Project: Coats - Toccoa

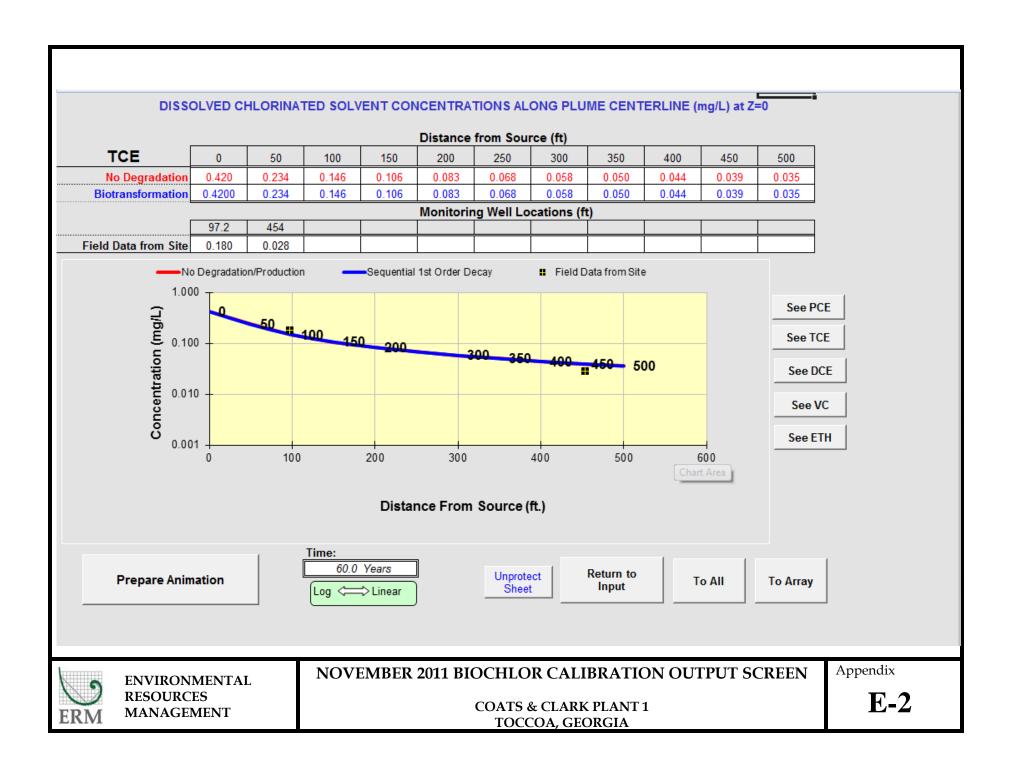
Date Received: 09/20/13 10:25 Logged In By: Mohammad M. Rahman

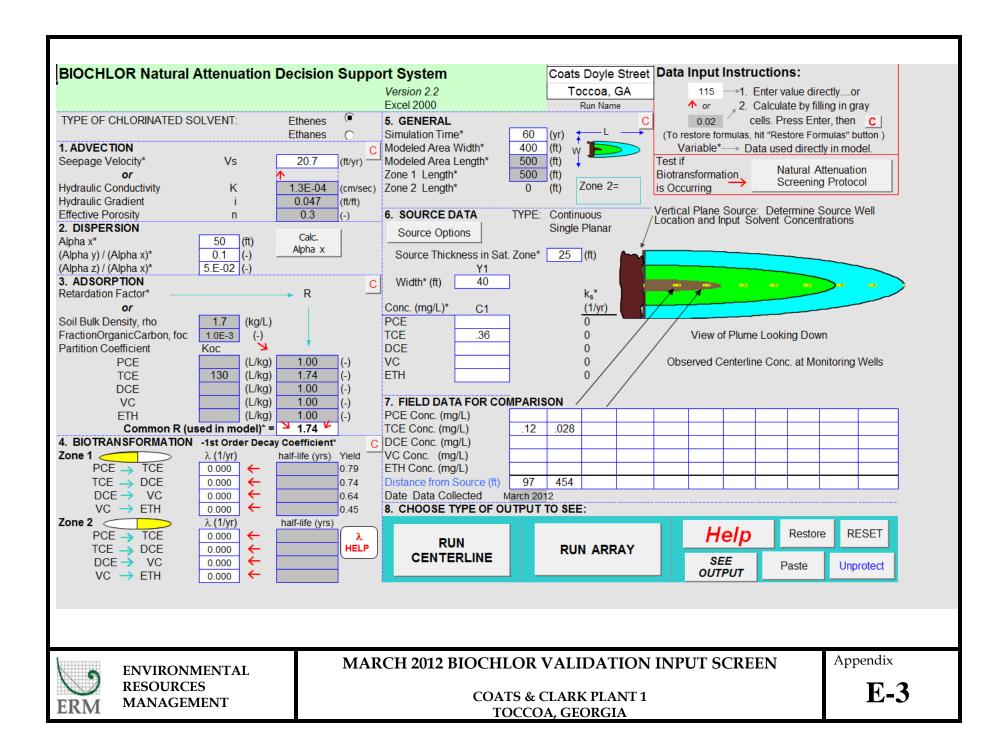
OBSERVATIONS

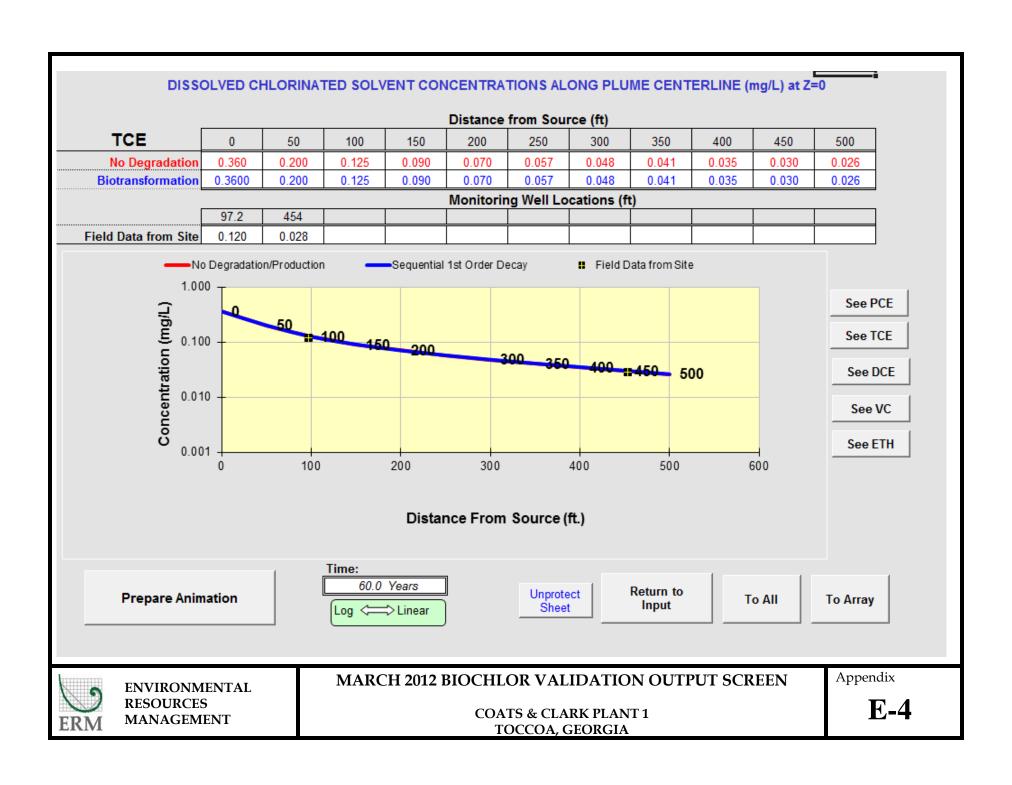
#Samples: 33 **#Containers:** 99

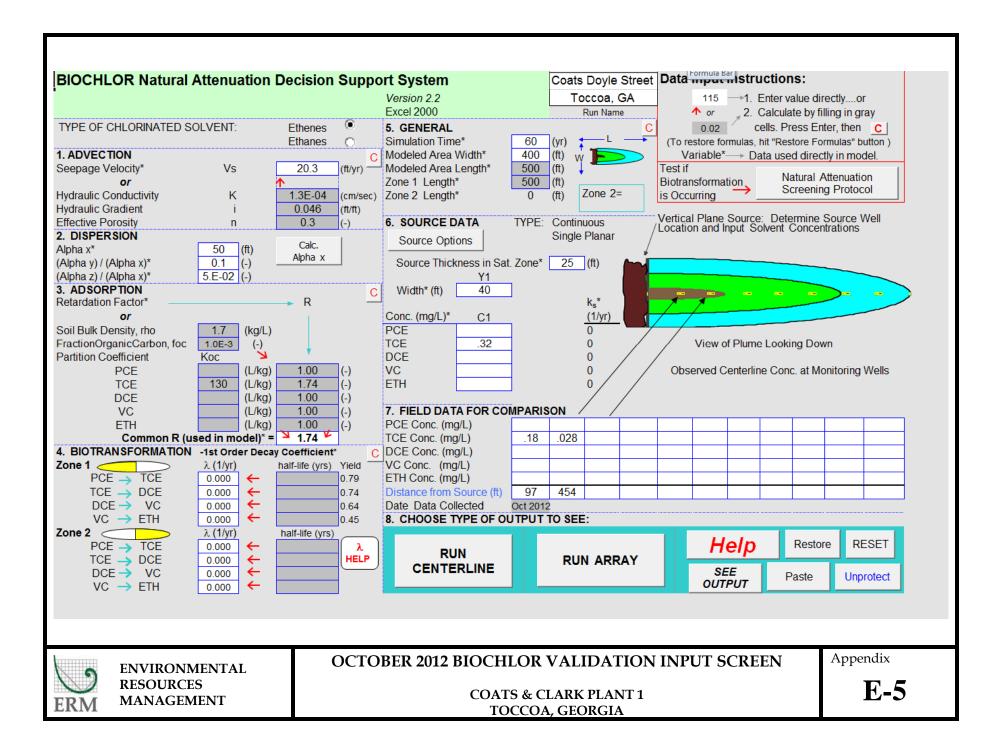
Minimum Temp(C): 4.0**Maximum Temp(C):** 4.0 Custody Seal(s) Used: No

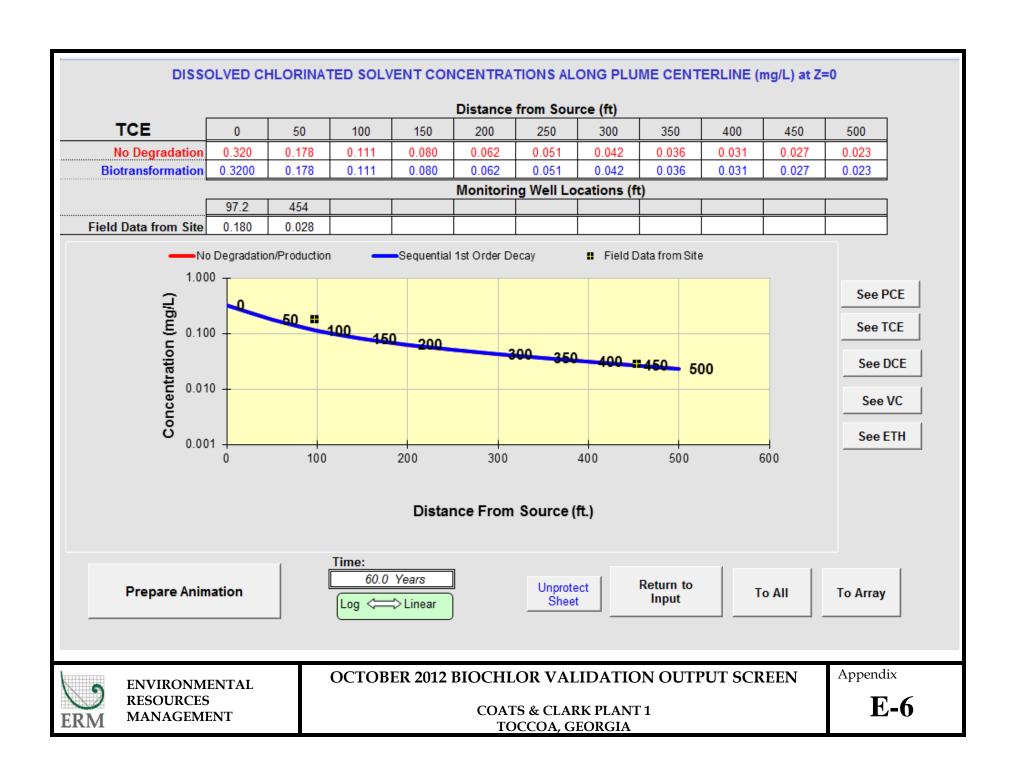

CHECKLIST ITEMS

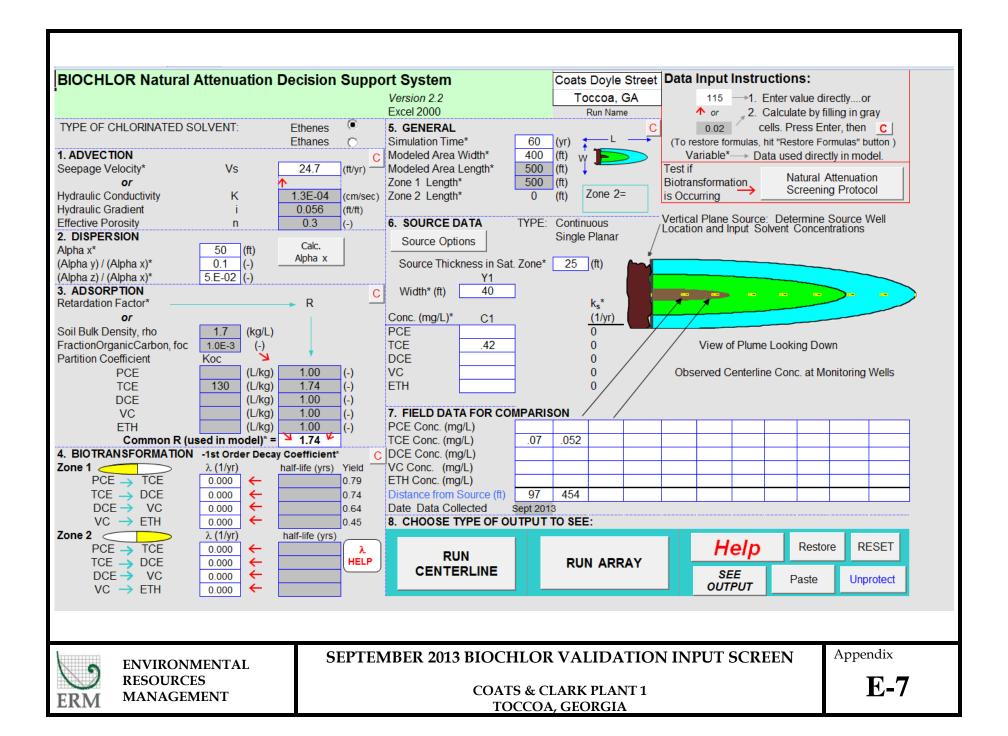

YES
YES
YES
YES
NO
YES

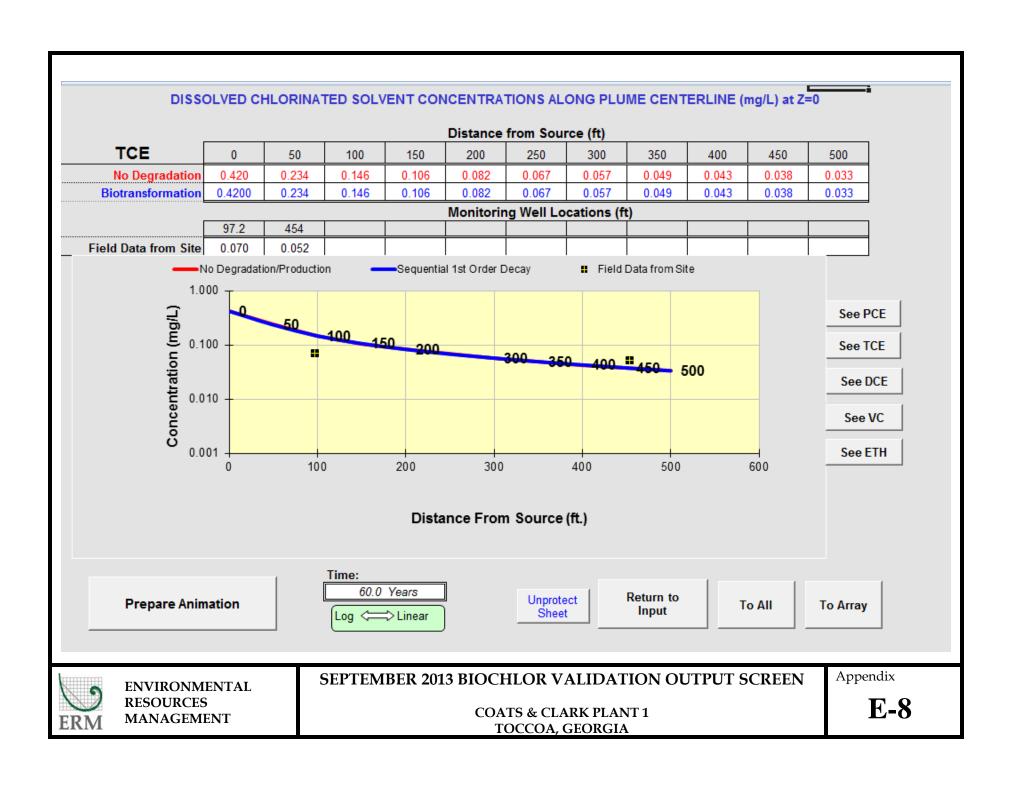

Comments:

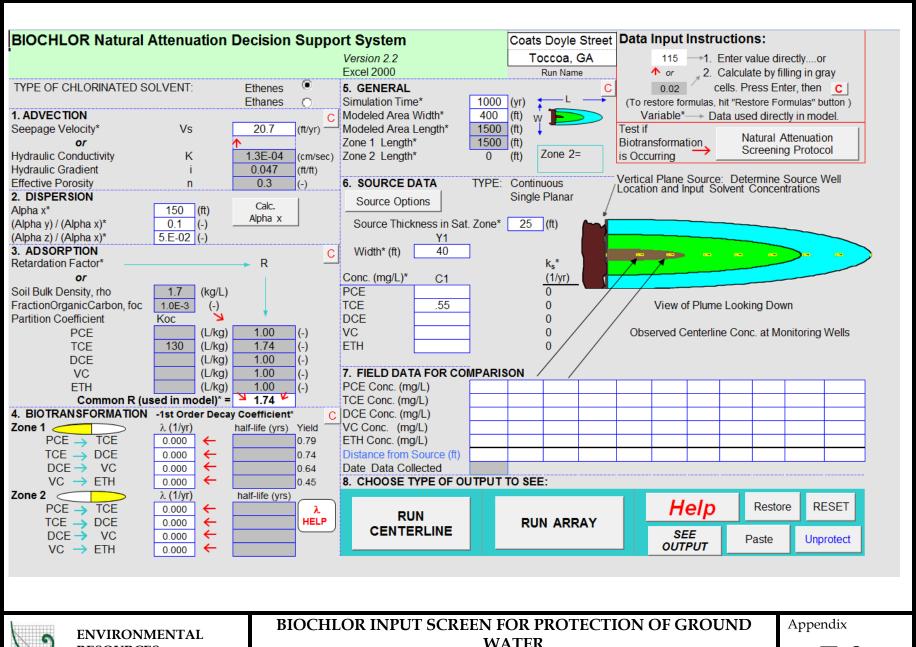

Appendix D BIOCHLOR Modeling Electronic Files (on Compact Disc)

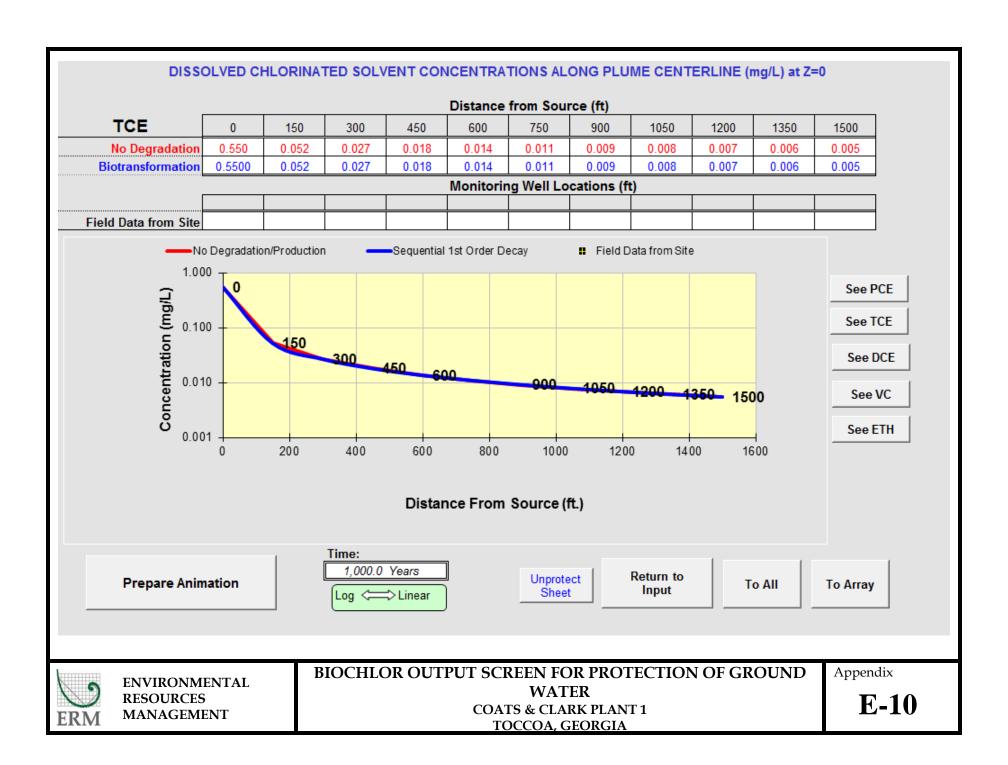

Appendix E BIOCHLOR Modeling Screenshots

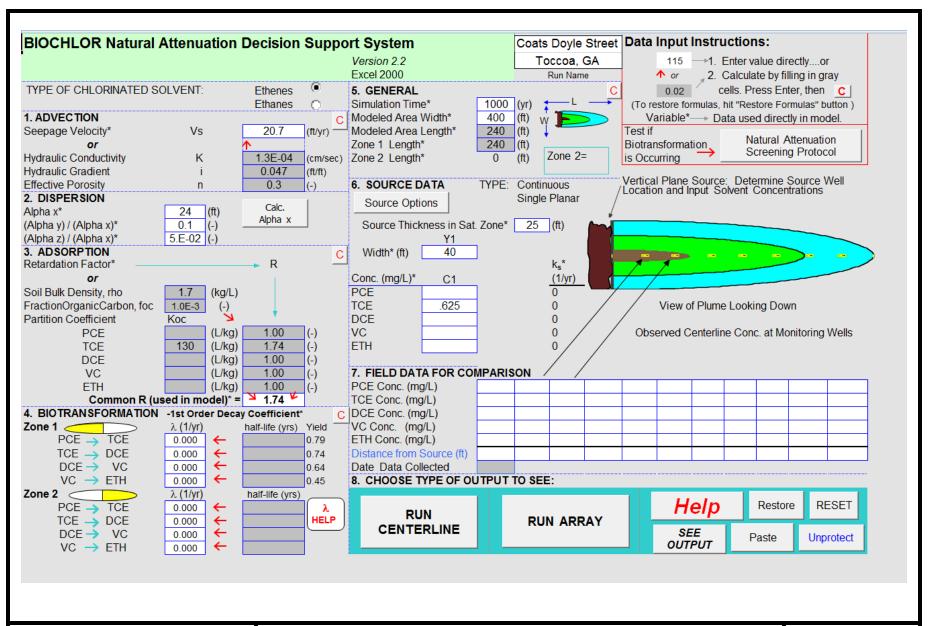






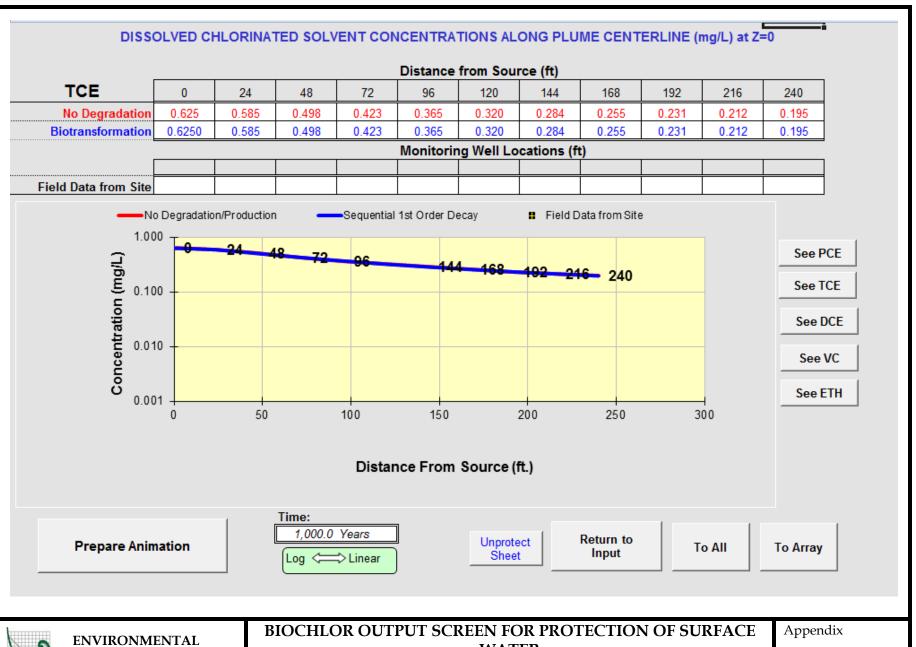






ENVIRONMENTAL RESOURCES MANAGEMENT BIOCHLOR INPUT SCREEN FOR PROTECTION OF GROUND
WATER
COATS & CLARK PLANT 1
TOCCOA, GEORGIA

E-9



BIOCHLOR INPUT SCREEN FOR PROTECTION OF SURFACE WATER
COATS & CLARK PLANT 1
TOCCOA, GEORGIA

Appendix

E-11

WATER COATS & CLARK PLANT 1

TOCCOA, GEORGIA

E-12

Appendix F Proposed Uniform Environmental Covenant

After Recording Return to:

Georgia Environmental Protection Division Response and Remediation Program 2 Martin Luther King, Jr. Drive, SE Suite 1462 East Atlanta, Georgia 30334

Environmental Covenant

This instrument is an Environmental Covenant executed pursuant to the Georgia Uniform Environmental Covenants Act, OCGA § 44-16-1, *et seq.* This Environmental Covenant subjects the Property identified below to the activity and/or use limitations specified in this document. The effective date of this Environmental Covenant shall be the date upon which the fully executed Environmental Covenant has been recorded in accordance with OCGA § 44-16-8(a).

Fee Owner of Property/Grantor:	<company individual(s)="" name="" or=""> <mailing address=""></mailing></company>
Grantee/Holder:	<company individual(s)="" name="" or=""> <mailing address=""></mailing></company>
Grantee/Entity with express power to enforce:	State of Georgia Department of Natural Resources Environmental Protection Division 2 Martin Luther King Jr. Drive, SE Suite 1152 East Tower Atlanta, GA 30334
Parties with interest in the Property:	<company individual(s)="" name="" or=""> <mailing address=""></mailing></company>
Property:	
"Property"), located on <street address=""> in was conveyed on from to County Records. The area is located in</street>	rironmental Covenant is the <pre></pre>
Tax Parcel Number(s):	
<tax id="" number="" parcel=""> of <county name:<="" th=""><td>> County, Georgia</td></county></tax>	> County, Georgia

Name and Location of Administrative Records:

The corrective action at the Property that is the subject of this Environmental Covenant is described in the following document[s]:

list documents here>

These documents are available at the following locations:

Georgia Environmental Protection Division Response and Remediation Program 2 MLK Jr. Drive, SE, Suite 1462 East Tower Atlanta, GA 30334 M-F 8:00 AM to 4:30 PM excluding state holidays

dist additional locations>

Description of Contamination and Corrective Action:

[This Property has/has not been listed on the state's hazardous site inventory and has been designated as needing corrective action due to the presence of hazardous wastes, hazardous constituents, or hazardous substances regulated under state law. Contact the property owner or the Georgia Environmental Protection Division for further information concerning this Property. This notice is provided in compliance with the Georgia Hazardous Site Response Act.]

This Declaration of Covenant is made pursuant to the Georgia Uniform Environmental Covenants Act, O.C.G.A. § 44-16-1 *et seq.* by <name of Grantor>, its successors and assigns, <name of Grantee/Holder>, and the State of Georgia, Department of Natural Resources, Environmental Protection Division (hereinafter "EPD"), its successors and assigns. This Environmental Covenant is required because a release of list regulated substances> occurred on the Property. list regulated substances> are "regulated substances" as defined under the Georgia Hazardous Site Response Act, O.C.G.A. § 12-8-90 *et seq.*, and the rules promulgated thereunder (hereinafter "HSRA" and "Rules", respectively). The Corrective Action consists of the installation and maintenance of engineering controls (
brief description here if appropriate – for example, clay cap and groundwater monitoring system>) and institutional controls (
brief description here if appropriate – for example, limit use to non-residential activities>) to protect human health and the environment.

Grantor, <Name of Grantor> (hereinafter "<company name>"), hereby binds Grantor, its successors and assigns to the activity and use restriction(s) for the Property identified herein and grants such other rights under this Environmental Covenant in favor of the <name of Holder> and EPD. EPD shall have full right of enforcement of the rights conveyed under this Environmental Covenant pursuant to HSRA, O.C.G.A. § 12-8-90 *et seq.*, and the rules promulgated thereunder. Failure to timely enforce compliance with this Environmental Covenant or the use or activity limitations contained herein by any person shall not bar subsequent enforcement by such person and shall not be deemed a waiver of the person's right to take action to enforce any non-compliance. Nothing in this Environmental Covenant shall restrict EPD from excising any authority under applicable law.

<Name of Grantor> makes the following declaration as to limitations, restrictions, and uses to which the Property may be put and specifies that such declarations shall constitute covenants to run with the land, pursuant to O.C.G.A. § 44-16-5(a); is perpetual, unless modified or terminated pursuant to the terms of this Covenant pursuant to O.C.G.A. § 44-16-9; and shall be binding on all parties and all persons claiming under them, including all current and future owners of any portion of or interest in the Property (hereinafter "Owner"). Should a transfer or sale of the Property occur before such time as this

Environmental Covenant has been amended or revoked then said Environmental Covenant shall be binding on the transferee(s) or purchaser(s).

The Environmental Covenant shall inure to the benefit of <name of Holder>, EPD, <name of Grantor> and their respective successors and assigns and shall be enforceable by the Director or his agents or assigns, <name of Holder> or its successors and assigns, <name of Grantor> or its successors and assigns, and other party(ies) as provided for in O.C.G.A. § 44-16-11 in a court of competent jurisdiction.

Activity and/or Use Limitation(s)

- 1. <u>Registry.</u> Pursuant to O.C.G.A. § 44-16-12, this Environmental Covenant and any amendment or termination thereof, may be contained in EPD's registry for environmental covenants.
- 2. <u>Notice.</u> The Owner of the Property must give thirty (30) day advance written notice to EPD of the Owner's intent to convey any interest in the Property. No conveyance of title, easement, lease, or other interest in the Property shall be consummated by the Owner without adequate and complete provision for continued monitoring, operation, and maintenance of the Corrective Action.
- 3. <u>Notice of Limitation in Future Conveyances.</u> Each instrument hereafter conveying an interest in the Property subject to this Environmental Covenant shall contain a notice of the activity and use limitations set forth in this Environmental Covenant and shall provide the recorded location of the Environmental Covenant.
- 4. <u>Groundwater Limitation.</u> The use or extraction of groundwater beneath the Property for drinking water or for any other non-remedial purposes shall be prohibited.
- 5. <u>Permanent Markers.</u> Permanent markers on one side of the Property shall be installed and maintained that delineate the restricted area as specified in Section 391-3-19-.07(10) of the Rules. Disturbance or removal of such markers is prohibited.
- 6. <u>Right of Access.</u> In addition to any rights already possessed by EPD and/or the <name of Holder>, the Owner shall allow authorized representatives of EPD and/or <name of Holder> the right to enter the Property at reasonable times for the purpose of evaluating the Corrective Action; to take samples, to inspect the Corrective Action conducted at the Property, to determine compliance with this Environmental Covenant, and to inspect records that are related to the Corrective Action.
- 7. Recording of Environmental Covenant and Proof of Notification. Within thirty (30) days after the date of the Director's signature, the Owner shall file this Environmental Covenant with the Recorders of Deeds for each County in which the Property is located, and send a file stamped copy of this Environmental Covenant to EPD within thirty (30) days of recording. Within that time period, the Owner shall also send a file-stamped copy to each of the following: (1) <name of Holder>, (2) each person holding a recorded interest in the Property subject to the covenant, (3) each person in possession of the real property subject to the covenant, (4) each municipality, county, consolidated government, or other unit of local government in which real property subject to the covenant is located, and (5) each owner in fee simple whose property abuts the property subject to the Environmental Covenant.
- 8. Termination or Modification. The Environmental Covenant shall remain in full force and effect in accordance with O.C.G.A. § 44-5-60, unless and until the Director determines that the Property is in compliance with the Type 1, 2, 3, or 4 Risk Reduction Standards, as defined in Georgia Rules of Hazardous Site Response (Rules) Section 391-3-19-.07 and removes the Property from the Hazardous Site Inventory, whereupon the Environmental Covenant may be amended or revoked in accordance with Section 391-3-19-08(7) of the Rules and O.C.G.A. § 44-16-1 et seq.

- 9. Severability. If any provision of this Environmental Covenant is found to be unenforceable in any respect, the validity, legality, and enforceability of the remaining provisions shall not in any way be affected or impaired.
- 10. No Property Interest Created in EPD. This Environmental Covenant does not in any way create any interest by EPD in the Property that is subject to the Environmental Covenant. Furthermore, the act of approving this Environmental Covenant does not in any way create any interest by EPD in the Property in accordance with O.C.G.A. § 44-16-3(b).

Representations and Warranties.

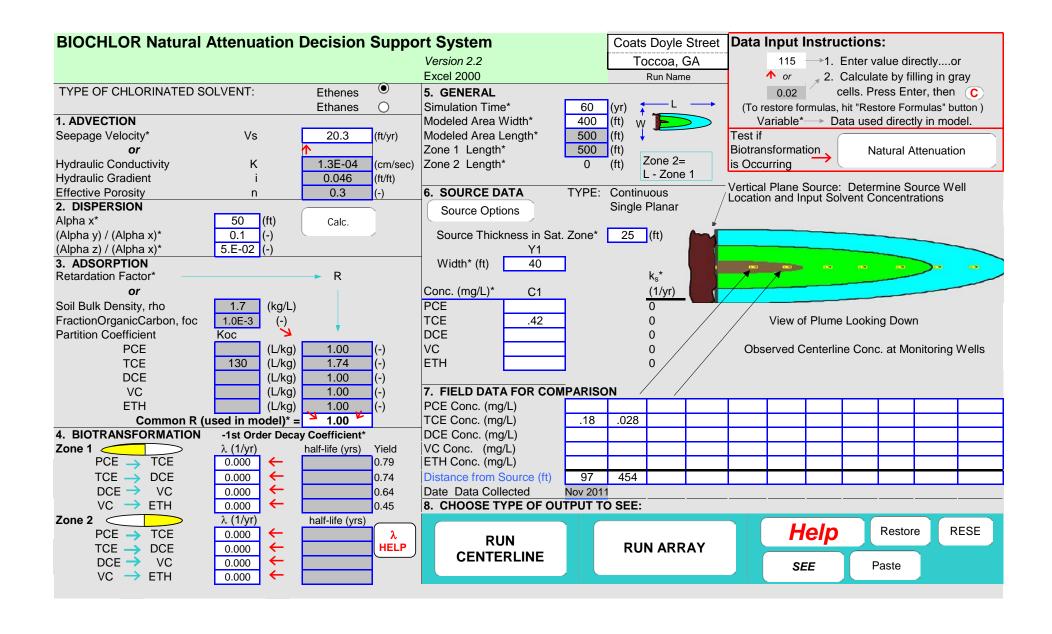
Grantor hereby represents and warrants to the other signatories hereto:

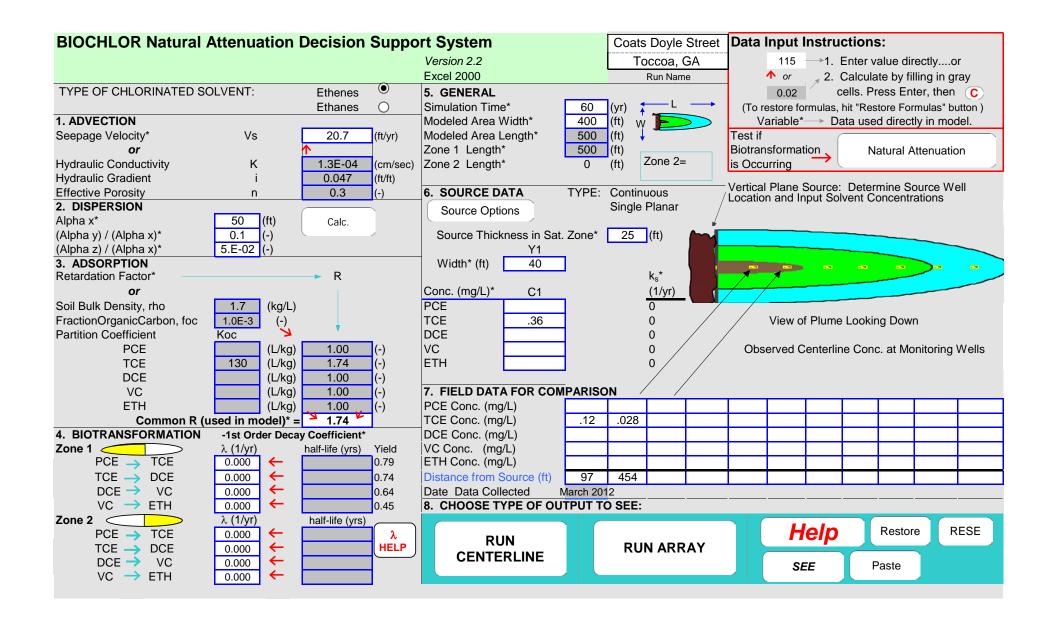
- a) That the Grantor has the power and authority to enter into this Environmental Covenant, to grant the rights and interests herein provided and to carry out all obligations hereunder;
- b) That the Grantor is the sole owner of the Property and holds fee simple title which is free, clear and unencumbered;
- c) That the Grantor has identified all other parties that hold any interest (e.g., encumbrance) in the Property and notified such parties of the Grantor's intention to enter into this Environmental Covenant:
- d) That this Environmental Covenant will not materially violate, contravene, or constitute a material default under any other agreement, document or instrument to which Grantor is a party, by which Grantor may be bound or affected;
- e) That the Grantor has served each of the people or entities referenced in Activity 10 above with an identical copy of this Environmental Covenant in accordance with O.C.G.A. § 44-16-4(d).
- f) That this Environmental Covenant will not materially violate or contravene any zoning law or other law regulating use of the Property; and
- g) That this Environmental Covenant does not authorize a use of the Property that is otherwise prohibited by a recorded instrument that has priority over the Environmental Covenant.

Notices.

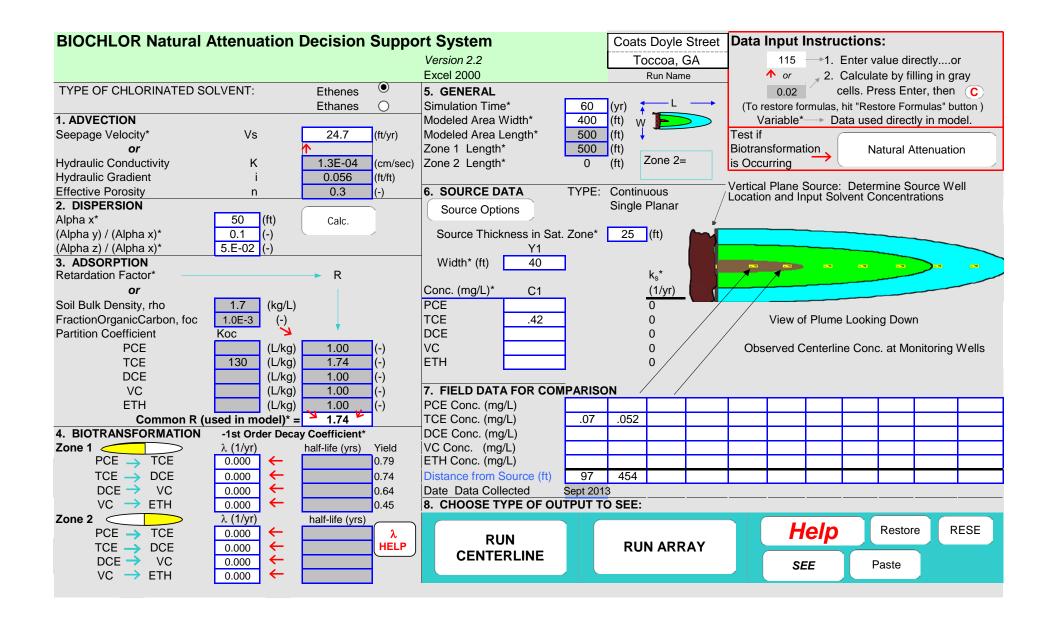
Any document or communication required to be sent pursuant to the terms of this Environmental Covenant shall be sent to the following persons:

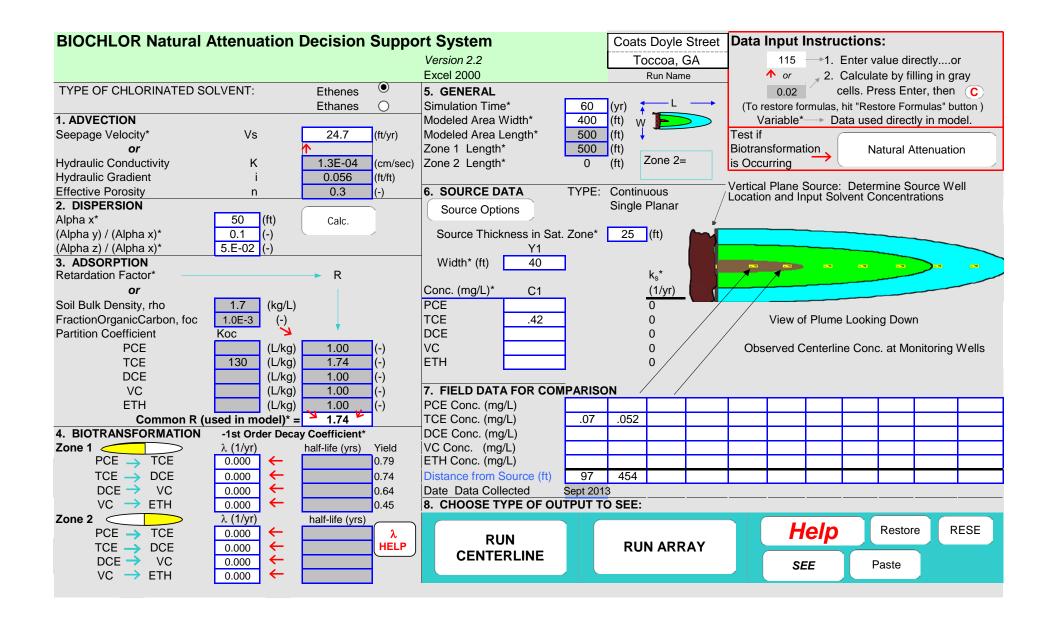
Georgia Environmental Protection Divisio	n
Branch Chief	
and Protection Branch	
Martin Luther King Jr. Drive SE	
Suite 1154 East Tower	
Atlanta, GA 30334	


Bi	ranch Chief
La	and Protection Branch
2	Martin Luther King Jr. Drive SE
Su	nite 1154 East Tower
A	tlanta, GA 30334
<r< td=""><td>name and mailing address of Holder></td></r<>	name and mailing address of Holder>
	has caused this Environmental Covenant to be executed pursuant to The Georgia Uniform hental Covenants Act, on the day of, 20
<name< td=""><td>OF GRANTOR></td></name<>	OF GRANTOR>


[Name of Signatory] [Title]		
Dated: <name holder="" of=""></name>		
[Name of Person Acknowledging Receipt] [Title]		
Dated:		
STATE OF GEORGIA ENVIRONMENTAL PROTECTION DIVISION		
[Name of Person Acknowledging Receipt] [Title]		
Dated:		


[INDIVIDUAL ACKNOWLEDGMENT]


COUNTY OF	
	, 20, I certify that personally
	ne/she is the individual described herein and who executed ed the same at his/her free and voluntary act and deed for
	Notary Public in and for the State of
	Georgia, residing at My appointment expires
	[CORPORATE ACKNOWLEDGMENT]
STATE OF COUNTY OF	
appeared before me, acknowledged that he/sh that executed the within and foregoing instru	e is the of the corporation ment, and signed said instrument by free and voluntary act purposes therein mentioned, and on oath stated that he/she said corporation.
	Notary Public in and for the State of
	Georgia, residing at My appointment expires
STATE OFCOUNTY OF	[REPRESENTATIVE ACKNOWLEDGEMENT]
he/she was authorized to execute [type of authorized to be the free and voluntary act as	, 20, I certify that ed that he/she signed this instrument, on oath stated that this instrument, and acknowledged it as the prity] of [name of party being and deed of such party for the uses and purposes mentioned
in the instrument.	
	Notary Public in and for the State of Georgia, residing at
	My appointment expires


Exhibit A Legal Description

