

Suite 550 Atlanta, Georgia 30338

(404) 315-9113 *Telephone* (404) 315-8509 *Fax*

December 21, 2015

Mr. David Hayes Environmental Protection Division Land Protection Branch 2 Martin Luther King, Jr. Dr. Suite 1054 East Atlanta, GA 30334

Re: Voluntary Remediation Program Compliance Status Report, Revision 1 (Revised CSR) Color Spectrum, HSI Site No. 10831 29 Probasco Street LaFayette, GA 30728 HSI # 10831

Dear Mr. Hayes:

This letter and the Revised CSR are submitted on behalf of CSI Realty, LLC in response to the Georgia Environmental Protection Division's (EPD's) comment letter dated April 23, 2015 and follow-up correspondence regarding the proposed CSR and the Uniform Environmental Covenant (UEC) for the site. The EPD's April 23rd comments regarding the CSR are presented below followed by a response. The final UEC was approved by EPD, filed in July 2015, and is not discussed in this letter.

Compliance Status Report:

Risk Reduction Standards

Comment 1: The RRS values derived in Appendix H are correct for all constituents and approved for use at the site.

Response: The Risk Reduction Standards (RRSs) are included in the attached Revised CSR.

Justin Vickery, P.G. Associate

(678) 336-8538 *Direct Line* jvickery@envplanning.com

Mr. Hayes December 21, 2015 Page 2

BIOCHLOR Model

Comment 2 through Comment 8

Response: These comments were addressed in our June 26, 2015 letter titled *BIOCHLOR Model Revisions Based on EPD's April 23, 2015 Comment Letter*. The EPD approved these revisions in a letter dated October 20, 2015. The revised model is included in Appendix A of the Revised CSR.

Vapor Intrusion Screening

Comment 9 *EPD has reviewed the Johnson and Ettinger (J&E) model and determined that the toxicity and exposure factors used are correct.*

Response: These toxicity and exposure factors will continue to be used.

Comment 10 Soil concentrations used in the non-residential vapor intrusion analysis are incorrect and inconsistent with residential values. Table 2 in Appendix C shows the maximum concentrations for PCE and Freon-113 as 0.3 mg/kg and 6.3 mg/kg, respectively. The current J&E model used the following values as inputs:

PCE:	Residential	0.3 mg/kg
	Non Residential	0.015 mg/kg
Freon-113:	Residential	6.34 mg/kg
	Non Residential	4.2 mg/kg

Please amend these values to reflect the data in Table 2.

Response: The models have been re-calculated with the highest detected concentration for the constituents identified. The new values are included in Table 4 of the Revised CSR.

Comment 11 The building dimensions used in the J&E model do not match those reported in the Walker County tax records for the site. Tax records state that the building is approximately 28,700 ft^2 , rather than the 74,000 ft^2 used in the model. Please provide justification for non-residential building dimensions, or a description for how the model values were obtained.

Response: EPS examined the Walker County Tax Records and concluded that the square footage on the tax records is incorrect. Field measurements and measurements from third party sources (Google Earth) confirm the 74,000 ft^2 dimensions used in the model.

Comment 12 Vapor intrusion (VI) potential was only analyzed for two contaminants of concern (Freon-113 and PCE). In order to properly screen for VI risk, all volatile chemicals detected at the site should be considered.

Response: EPS used the J&E model for the eight constituents detected in groundwater and the six constituents detected in soil. The results are discussed in section 4.4 of the Revised CSR. The model input and output pages are included in Appendix J of the Revised CSR.

Mr. Hayes December 21, 2015 Page 3

General Comments

Comment 13 The water levels in all monitoring wells should be gauged and a revised potentiometric surface map that includes monitoring well MW-14 should be submitted to EPD.

Response: A potentiometric surface map has been prepared based on groundwater elevations measured in August 2014, which includes elevation data for MW-14. This potentiometric surface map is included as Figure 10 in Appendix C of the Revised CSR.

Comment 14 *Cross sections should be updated to include the newly installed monitoring well MW-14. Additionally, the cross sections should include isoconcentration contours.*

Response: Cross Section C-C', which includes MW-14, has been generated. Figure 9A, included in Appendix C of the Revised CSR, is a cross section location map, and Figures 9B, 9C, and 9D are Cross Sections A-A', B-B', and C-C', respectively. Soil and groundwater data are presented in data boxes on the cross sections, and the extent of the PCE is depicted on all four figures.

If you have any questions, please call.

Sincerely,

Justin Vickery

Associate

- Attachment: Voluntary Remediation Program Compliance Status Report, Revision 1 (1 paper copy, 2 electronic copies)
- cc: Tom Watters, CSI Realty, LLC Andrea Rimer, Troutman Sanders

Prepared for:

CSI REALTY, LLC 1906 South Hamilton Street Dalton, GA 30720

VOLUNTARY REMEDIATION PROGRAM COMPLIANCE STATUS REPORT REVISION 1 Color Spectrum 29 Probasco Street LaFayette, GA 30728 (HSI #10831)

Prepared by:

1050 Crown Pointe Parkway, Suite 550 Atlanta, Georgia 30338 Tel: 404-315-9113

December 2015

VOLUNTARY REMEDIATION PROGRAM COMPLIANCE STATUS REPORT REVISION 1

COLOR SPECTRUM

29 Probasco Street LaFayette, GA 30728 (HSI #10831)

Prepared for:

CSI REALTY, LLC 1906 South Hamilton Street Dalton, Georgia 30720

Prepared By:.

1050 Crown Pointe Parkway, Suite 550 Atlanta, Georgia 30338 Tel: 404-315-9113

Justin Vickery, PG

Justin Vickery, PG Associate

December 2015

VOLUNTARY REMEDIATION PROGRAM COMPLIANCE STATUS REPORT REVISION 1

COLOR SPECTRUM 29 Probasco Street LaFayette, GA 30728 (HSI #10831)

December 2015

GROUNDWATER SCIENTIST STATEMENT

CERTIFICATION OF COMPLIANCE WITH RISK REDUCTION STANDARDS	2
--	---

1	Intro	INTRODUCTION		
	1.1	Background3		
	1.2	Site Location and Description		
	1.3	Site Use and Development History 4		
	1.4	Description of Adjacent Properties4		
	1.5	Source Description and Constituents of Interest5		
2	SITE	Investigative History		
	2.1	Overview6		
	2.2	Historical Investigations and Monitoring6		
		2.2.1 October 11, 2005 Sampling Event		
		2.2.2 October 24, 2005 Sampling Event		
		2.2.3 HSRA Notification		
		2.2.4 July 2006 Sampling Event7		
		2.2.5 December 19-20, 2006 Sampling Event		
		2.2.6 June 21-28, 2007 Sampling Event		
		2.2.7 October 6-7, 2009 Sampling Event		
		2.2.8 August/November 2011 Sampling Events		
		2.2.9 March 2013 Monitoring Well Installation 11		
		2.2.10 Quarterly Groundwater Monitoring Events 11		
	2.3	Recent Field Investigation		
		2.3.1 August 2014 Monitoring Well Installation and Sampling		
		2.3.2 Well Sampling Results		

3	CON	CEPTUAL SITE MODEL	
	3.1	Geology and Hydrogeology	14
		3.1.1 Overview	14
		3.1.2 Regional Physiography and Topography	14
		3.1.3 Site Topography	14
		3.1.4 Regional and Site Geology	15
		3.1.5 Regional and Site Hydrogeology	
		3.1.6 Groundwater Flow Direction and Gradient	17
		3.1.7 Hydraulic Conductivity Data	17
		3.1.8 Groundwater Flow Velocity	
	3.2	Risk Reduction Standards	19
		3.2.1 Soil RRS	19
		3.2.2 Groundwater RRSs	19
	3.3	Potential Receptors and Exposure Pathways	19
		3.3.1 Potential Environmental Receptors	19
		3.3.2 Potential Human Receptors	21
4	GRO	UNDWATER COMPLIANCE	
	4.1	Groundwater Delineation	
	4.2	Compliance with Residential and Non-Residential RRSs	
	4.3	Groundwater Modeling	
	-	4.3.1 Introduction	
		4.3.2 Model Development and Calibration	
		4.3.3 PCE Results	
		4.3.4 Sensitivity Analysis	
		4.3.5 Conclusions	
	4.4	Vapor Intrusion Assessment	
		4.4.1 Non-Residential Exposure Modeling	
		4.4.2 Residential Exposure Modeling	
	4.5	Institutional Controls	
5	RFFF	ERENCES	
-			

APPENDICES

Appendix A: Uniform Environmental Covenant Appendix B: Groundwater Model Appendix C: Figures

- Figure 1 Site Location Map
- Figure 2 Site Plan and Site Vicinity Map
- Figure 3 USGS Quadrangle Map
- Figure 4 Historical Soil Boring Groundwater Results
- Figure 5 Soil Analytical Results
- Figure 6 Historical Monitoring Well Results
- Figure 7A Groundwater Sampling Results (March 2013)
- Figure 7B Groundwater Sampling Results (June 2013)
- Figure 7C Groundwater Sampling Results (August 2013)
- Figure 7D Groundwater Sampling Results (December 2013)
- Figure 8 Geologic Map of the Georgia Ridge and Valley
- Figure 9A Geologic Cross-Section Location Map
- Figure 9B Cross-Section A-A'
- Figure 9C Cross-Section B-B'
- Figure 9D Cross-Section C-C'
- Figure 10 Potentiometric Surface Map (August 2014)

Appendix D: Tables

- Table 1
 Summary of Groundwater Analytical Results
- Table 2
 Summary of Soil Analytical Results
- Table 3Groundwater Elevations
- Table 4Summary of Vapor Intrusion Modeling Results

Appendix E: Laboratory Analytical Reports

- Appendix F: Well Development and Well Sampling Forms
- Appendix G:Boring Logs and Well Diagrams
- Appendix H: Slug Test Data
- Appendix I: Wildlife Resources Division Letter
- Appendix J: Vapor Intrusion Model

VOLUNTARY REMEDIATION PROGRAM COMPLIANCE STATUS REPORT **REVISON 1**

COLOR SPECTRUM **29 Probasco Street** LaFayette, GA 30728 (HSI #10831)

December 2015

GROUNDWATER SCIENTIST STATEMENT

I certify that I am a qualified groundwater scientist who has received a baccalaureate or postgraduate degree in the natural sciences or engineering, and have sufficient training and experience in ground water hydrology and related fields, as demonstrated by state registration and completion of accredited university courses, that enable me to make sound professional judgments regarding groundwater monitoring and contaminant fate and transport. I further certify that this Voluntary Remediation Program Compliance Status Report for Color Spectrum. HSI #10831, was prepared by me and appropriate gualified subordinates working under my D. VICEO direction.

Certified by:

Justin D. Vickery, P.G.
Associate
No. 1745 0 PROTESS

00000 0000000

	12	-21	-15
Date:	12	~	15

VOLUNTARY REMEDIATION PROGRAM COMPLIANCE STATUS REPORT REVISON 1

COLOR SPECTRUM 29 Probasco Street LaFayette, GA 30728 (HSI #10831)

December 2015

CERTIFICATION OF COMPLIANCE WITH RISK REDUCTION STANDARDS

I certify under penalty of law that this report and all attachments were prepared under my direction in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. Based on my review of the findings of this report with respect to the Risk Reduction Standards ("RRS") of the Rules for Hazardous Site Response, Rule 391-3-19-.07, I have determined that the Site is in compliance with groundwater Residential Risk Reduction Standards with controls.

Certified by:

forWaty

Date: 12/17/15

Tom Watters CSI Realty, LLC

1 INTRODUCTION

1.1 Background

A Voluntary Remediation Program Compliance Status Report (CSR) for the property located at 29 Probasco Street, LaFayette, Walker County, Georgia (the Site) was submitted to the Georgia Environmental Protection Division (EPD) in November 2014. The EPD issued a comment letter, dated April 23, 2015, requesting additional information. This Revised CSR is being submitted on behalf of CSI Realty, LLC to demonstrate compliance with the Risk Reduction Standards (RRSs) through the use of a Uniform Environmental Covenant (UEC) (Appendix A) and a groundwater model (Appendix B) in order to request that the Site be de-listed from the Hazardous Site Inventory (HSI).

The Site was listed on the HSI (#10831) in a letter from the EPD, dated February 10, 2006, due to a release of volatile organic compounds (VOCs) to groundwater, which occurred prior to CSI Realty's acquisition of the property. The Site was approved by the EPD for entry into the Voluntary Remediation Program on March 30, 2012. Title to the property is currently held by the Walker County Development Authority as part of a tax abatement agreement with CSI Realty. Numerous investigations have been conducted at the Site, and it has been determined that the Site is in compliance with applicable RRSs.

This Revised CSR demonstrates groundwater compliance with the RRSs, and a Certification of Compliance is included on Page 2. In a letter dated June 24, 2011, the EPD concurred that the Site was in compliance with Type 1 RRSs for soil; therefore, soil certification is not addressed herein.

1.2 Site Location and Description

The Site is located at 29 Probasco Street in LaFayette, Walker County, Georgia at latitude 34° 42' 45" N and 85° 17' 19" W, and according to the Walker County Tax Assessor Office, consists of two parcels as follows:

- 1. Walker County Tax Parcel ID # 1023087, 1.38 Acres; and
- 2. Portions of the Chattooga and Chickamauga Railway Right-of-Way.

The Site contact is:

CSI Realty, LLC Tom Watters P.O. Box 5695 Rome, Georgia 30162 706-290-4179 direct tomwatters@syntecind.com

The Site is developed with one building, totaling approximately 74,000 square feet, which is used for winding and heat setting yarn. A loading dock and dumpster are located on the east side of the building. A pond is located in the northeastern portion of the Site, and a small stream, the headwaters of the Chattooga River, flows out of the pond to the east of the Site. A Site Location Map is included as Figure 1 (all figures are included in Appendix C), and a Site Plan and Site Vicinity Map, showing the Site and the surrounding properties, is included as Figure 2.

1.3 Site Use and Development History

The first known development of the Site was as a cotton mill which operated from the late 1800s until around 1980 when it was damaged by fire. The operations on the Site were then converted to twisting and heat setting of carpet yarns which has continued to the present day.

Historically, two fuel oil above ground storage tanks (ASTs) and one gasoline underground storage tank (UST) were utilized at the Site. The UST was used for fueling facility vehicles. The ASTs were used as a secondary fuel source for the facility's steam boilers. All tanks were removed in 2006, in accordance with EPD regulations.

The building is located in the area of the Site where the former cotton mill was originally constructed. Several expansions have occurred with the most recent being the addition of the warehouse in the mid-1990s.

1.4 Description of Adjacent Properties

Properties immediately adjacent to the Site as shown on Figure 2 are as follows:

- Towards the North: Vacant land, West Indiana Street, and the City of LaFayette maintenance department.
- Towards the South: A related manufacturing facility, followed by a vacant lot and a school (Head Start).
- Towards the East: A railroad right-of-way followed by a wooded, low lying area with an unnamed tributary.

• Towards the West: Residential to the northwest and west, an auto repair shop and auto salvage yard, fire station, and residences to the southwest.

Topographic elevations of the Site and surrounding properties are depicted on a USGS Quadrangle Map included as Figure 3.

1.5 Source Description and Constituents of Interest

Based on the location of the groundwater plume, the historical source of impacts appears to have occurred before the current building was constructed, in the vicinity of the current dumpster and the portion of the yarn twisting adjacent to the dumpster. The only known use of chlorinated solvents at the facility were associated with a parts cleaner, which was previously located in the maintenance area. The machine utilized Safety Kleen 105, which was a recycled cleaning solution that may contain up to 0.2 % tetrachloroethene (PCE). However, there has been no record of releases from the parts cleaner, all waste is picked up and recycled by the vendor, and samples in the vicinity of the parts cleaner do not indicate that it is a potential source. Therefore, the source of the VOCs is likely to be historical releases in connection with operations conducted in this area prior to construction of the current building.

Soil and groundwater samples have been collected for analysis of VOCs, polycyclic aromatic hydrocarbon (PAHs), arsenic, and lead. PAH constituents detected were related to a petroleum release from the former ASTs which held diesel fuel. The release from the ASTs was addressed in cooperation with the EPD Water Resources Branch and is not addressed in this Revised CSR. Regulated substances detected in groundwater at the Site consist of 1,1,1-trichloroethane (TCA), 1,1-dichloroethane (DCA), 1,1-dichloroethene (DCE), acetone, Freon-113, Freon-12, isopropylbenzene (IPB), tetrachloroethene (PCE), and lead. The one lead detection in groundwater appears to be a naturally occurring background concentration and not indicative of a release. These constituents and their associated results are summarize on Table 1 (Tables 1 through 4 are included in Appendix D).

2 SITE INVESTIGATIVE HISTORY

2.1 Overview

The findings of the subsurface investigation and monitoring conducted by EPS from October 2005 to August 2014 are discussed in this section. EPS is not aware of any previous environmental investigations performed at the Site. Site sampling was conducted in accordance with the United States Environmental Protection Agency's Field Branches Quality System and Technical Procedures (FBQSTP). Field methods for historical investigations were discussed in previous report submittals. Field methods for the August 2014 work are discussed in Section 2.3.

2.2 Historical Investigations and Monitoring

2.2.1 October 11, 2005 Sampling Event

On October 11, 2005, five soil borings, referred to as SB-1 through SB-5, were advanced to the water table on the Site and an adjacent parcel (refer to Figure 4). The soil borings were advanced using a truck-mounted direct push drilling device. Soil borings SB-1 through SB-3 were located topographically downgradient (east) of the two primary buildings. Boring SB-4 was located near the southern property boundary and SB-5 was located near the western property boundary, upgradient of the buildings.

A groundwater sample was collected from each soil boring. A surface water sample was also collected from the pond. All samples were analyzed by an independent laboratory for VOCs using EPA Method 8260B.

The laboratory detected TCA, DCA, and PCE in the groundwater sample collected from SB-1 at concentrations of 23 micrograms per liter (μ g/L), 5.6 μ g/L, and 6.4 μ g/L, respectively. VOCs were not detected in the groundwater samples collected from SB-2 through SB-5, or in the pond sample. Sample results are shown on Figure 4 and summarized in Table 1.

2.2.2 October 24, 2005 Sampling Event

On October 24, 2005, six soil borings (SB-6 through SB-11) were advanced near the fuel tanks by direct push technology to assess the extent of the VOC impacts in groundwater detected in the October 11th sampling event. During advancement of the soil borings, No. 2 fuel oil was

observed in the groundwater samples collected from three of the borings. The release of the No. 2 fuel oil was attributed to the ASTs, was addressed in cooperation with Water Resources Branch and is not included as part of this Revised CSR. Each of the six samples collected were analyzed for VOCs. Three of the samples were analyzed for PAHs using EPA Method 8270C. Laboratory results are as follows:

- TCA was detected in three samples, SB-6, SB-9, and SB-10 at concentrations below the Type 1 RRS.
- DCA was detected in SB-11 below the Type 1 RRS.
- Freon-113 was detected in all six samples at concentrations below the Type 1 RRS.
- PAHs were not detected in any samples.

Sample results are shown on Figure 4 and summarized in Table 1.

2.2.3 HSRA Notification

On December 2, 2005, a HSRA Release Notification was submitted for the Site by CSI Realty following its acquisition in November 2005. On February 10, 2006, the Site was added to the HSI.

2.2.4 July 2006 Sampling Event

On July 27, 2006, eight soil borings (SB-12 through SB-19) were advanced by direct push technology to further delineate VOCs in groundwater (refer to Figure 4). Laboratory results are as follows:

- Freon-113 was detected in SB-13 and SB-15 through SB-18, with the highest concentration being 1,800 μ g/L, which is below the Type 1 RRS.
- TCA and DCA detections were below the Type 1 RRS.
- DCE was detected in SB-13 and SB-17 at concentrations of 9.0 μ g/L and 7.1 μ g/L, respectively, which are both above the Type 1 RRS but below the Type 2 RRS.
- PCE was detected in SB-13 and SB-16 at 7.6 μ g/L and 20 μ g/L, respectively, which are both above the Type 1 RRS. The detection in SB-16 slightly exceeds the Type 2 RRS but is below the Type 4 RRS.

VOCs were not detected in SB-12 and SB-14. A groundwater sample was not collected from SB-19. Sample results are shown on Figure 4 and summarized in Table 1. Based on the presence of regulated compounds in the groundwater above laboratory detection limits, additional groundwater delineation was required.

2.2.5 December 19-20, 2006 Sampling Event

On December 19-20, 2006 nine soil borings (SB-20 through SB-28) were advanced by direct push technology to the groundwater table (refer to Figure 4). Borings (SB-20 through SB-26) were advanced indoors in the vicinity of the maintenance area which housed a parts cleaner until 2009. Borings SB-27 and SB-28 were advanced outdoors to delineate the plume to the north and south. Temporary wells were constructed in borings SB-20 through SB-23, and SB-26 through SB-28 to determine groundwater flow direction. At each well and at three existing monitoring wells, MW-1 through MW-3 (installed to assess the AST fuel oil release), the top-of-casing elevation and groundwater depths were measured. The groundwater flow direction was determined to be to the east-southeast with a hydraulic gradient of 0.04 feet/foot.

After completing the groundwater depth measurements, groundwater samples were collected from each temporary well and MW-1 through MW-3 and analyzed for VOCs. Laboratory results are as follows:

- Freon-113 was detected in all ten samples with a maximum concentration of 27,000 μ g/L, which is below the Type 1 RRS.
- TCA was detected in two samples below the Type 1 RRS. TCA was detected in SB-23 at $2,100 \mu g/L$, which is above the Type 1 RRS but below the Type 2 RRS.
- DCA was detected in four samples below the Type 1 RRS.
- DCE was detected in four samples: two of which are below the Type 1 RRS and two of which are above the Type 2 RRS but below the Type 4 RRS.
- PCE was detected in in one sample below the Type 2 RRS and in two samples above the Type 4 RRS.

Sample results are shown on Figure 4 and summarized in Table 1.

During the December 2006 sampling event, soil samples were collected from three boring locations (SB-24, SB-25, SB-26) located adjacent to the PCE parts cleaner, a potential source area. Soil samples were collected continuously from these borings and field screened for VOCs using a photoionization detector (PID). A soil sample was collected for laboratory analysis from each boring where the highest VOC concentration was measured. In borings where VOCs were not detected with a PID, a sample was collected immediately above the water table. Soil borings MW-1, MW-4 through MW-9, TW-1, and TW-2 were not screened with a PID. VOCs were not detected in any of the samples above background and therefore, samples were collected from 7 feet below the ground surface (ft-bgs), immediately above the groundwater table. Soil sampling results are shown on Figure 5 and are summarized on Table 2.

After completion of the sampling, all temporary wells and soil borings were properly plugged and abandoned.

2.2.6 June 21-28, 2007 Sampling Event

In July 2007, six monitoring wells (MW-4 through MW-9), three temporary wells (TW-1 through TW-3), and one deep well (DW-1) were installed to complete horizontal and vertical delineation of the VOCs in groundwater (refer to Figure 6 and Table 1). The wells were installed by direct push, hand auger, hollow stem auger, or air rotary drilling. Groundwater elevations were measured in monitoring wells MW-1 through MW-9, DW-1, TW-1, and TW-2 to determine groundwater flow direction. TW-3 was advanced off-site in the low-lying area to the east of the railroad right-of-way. Groundwater samples were then collected from each well for VOC analysis. Laboratory results were as follows:

- Freon-113 was detected in seven groundwater samples with a maximum concentration of 3,900 µg/L, which is below the Type 1 RRS.
- TCA and DCA were each detected in two samples at concentrations below the respective Type 1 RRSs.
- DCE was detected in one sample below the Type 2 RRS.
- PCE was detected in two samples below the Type 2 RRS.
- IPB was detected in one sample below the Type 2 RRS.

Twenty soil samples were collected by direct push technology from ten borings (SB-29 through SB-37 and MW-7) to further delineate VOCs in soil. During boring installation, soil cores were continuously collected and field screened with a PID for VOCs. In each boring soil samples were collected from 1 ft-bgs and at an intermediate depth between the ground surface and the water table. Soil sampling results are shown on Figure 5 and summarized in Table 2.

Monitoring well top-of-casing elevations were measured on July 9, 2007 by Wardlaw Land Surveying of LaFayette, Georgia. Horizontal locations were surveyed relative to the state plain coordinates and the elevations were referenced to the National Geodetic Vertical Datum. Top-of-casing elevation data is summarized on Table 3.

2.2.7 October 6-7, 2009 Sampling Event

At the request of the EPD, in October 2009, a nested monitoring well pair, MW-10 and MW-11, was installed in the apparent source area to investigate the potential for Freon-113 dense non-aqueous phase liquid (DNAPL) in this area. The wells were installed using hollow stem auger methods. Well MW-10 was screened near the water table (10 - 12.5 ft-bgs) and MW-11 was screened on top of bedrock (17.5 - 20 ft-bgs). The well locations are shown on Figure 6. Freon-113 was detected in the shallow well at 6,100 µg/L and in the deeper well at 15,000 µg/L. These elevated concentrations suggested the potential presence of DNAPL¹ in this area;

¹ Freon-113 has a solubility of 170,000 μ g/L. As a rule of thumb, DNAPL is potentially present when concentrations exceed 1% of the solubility, or 1,700 μ g/L for Freon-113.

however, the concentrations are below the Type 1 RRS and no Freon-113 was detected in nearby deep well DW-1.

The groundwater samples were analyzed for VOCs, arsenic, and lead. Constituents detected in the groundwater samples included the following:

- TCA and DCA were detected in MW-10 and MW-11 below the Type 1 RRSs.
- DCE was detected in MW-10 and MW-11 below the Type 2 RRS.
- PCE was detected in MW-10 at a concentration below the Type 4 RRS and in MW-11 at a concentration above the Type 4 RRS.
- IPB was detected in MW-10 and MW-11 below the Type 2 RRS.
- Arsenic was not detected in either groundwater sample. In response to Comment #11 from the EPD's letter dated March 30, 2012, the original laboratory report for the samples collected on October 7, 2009 had an arsenic detection limit of 50 μ g/L while the Type 1 RRS for arsenic is 10 μ g/L. Included in Appendix E are revised data sheets from the original laboratory report showing results down to the method detection limits (MDLs). Arsenic was not detected at an MDL of 4.4 μ g/L.
- Lead was detected in MW-11 at 15.6 μ g/L; however, due to slow recharge, the well could not be properly developed and the turbidity level was 800 NTUs. The sample is, therefore, not considered to be valid. A filtered sampled was also collected from this well and no lead was detected.

Groundwater sample results are shown on Figure 6 and summarized in Table 1.

Six soil samples were collected by direct push technology from six borings (SO-1 through SO-6) to further delineate VOCs in soil. During boring installation, soil samples were continuously collected and field screened with a PID for VOCs. In each boring, soil samples were collected at depths above the water table where PID readings indicated the highest potential VOC concentrations. Soil sampling results are shown on Figure 5 and summarized on Table 2.

2.2.8 August/November 2011 Sampling Events

In August 2011, the groundwater monitoring wells MW-1 through MW-11, DW-1, TW-1 and TW-2 were sampled and analyzed for VOCs. No VOCs were detected in DW-1, MW-4, MW-6, TW-1 and TW-2. Detections in other wells include the following:

- TCA was detected in MW-5, MW-7, MW-8, and MW-10 at concentrations below the Type 1 RRS.
- DCA was detected in MW-8 and MW-10 at concentrations below the Type 1 RRS.
- DCE was detected in MW-5, MW-7, MW-8, and MW-10 at concentrations above the Type 1 RRS but below the Type 4 RRS.

- Freon-113 was detected in MW-1, MW-2, MW-3, MW-5, MW-7, MW-8, MW-9, MW-10, and MW-11 at concentrations below the Type 1 RRS.
- Freon-12 was detected in MW-8 and MW-10 at concentrations below the Type 1 RRS.
- PCE was detected in MW-3, MW-5, MW-7, MW-8, and MW-10. Each of these detections is below the Type 4 RRS with the exception of MW-10.
- IPB was detected in MW-10 at a concentration of below the Type 2 RRS.

There was a significant difference in the Freon-113 concentration in MW-11 from the October 2009 event to the August 2011 event. Thus, on November 15, 2011, MW-10 and MW-11 were re-sampled to confirm the presence or absence of Freon-113 in these wells. No VOCs (including Freon-113) were detected in the deeper of the two wells, MW-11, indicating the absence of a DNAPL. TCA, DCA, DCE, Freon-113, PCE and IPB were detected in MW-10 at concentrations similar to previous detections.

Groundwater sampling results are shown on Figure 6 and summarized in Table 1. In accordance with Comment #7 from the EPD's March 30, 2012 letter, monitoring well sampling logs from November 2011 are included in Appendix F.

2.2.9 March 2013 Monitoring Well Installation

On March 6, 2013, two monitoring wells, MW-12 and MW-13, were installed on the Site in accordance with Comment #1 of the EPD's letter dated March 30, 2012. The wells were installed using hollow stem auger methods. The locations of these wells were specified in the EPD letter and were intended to capture the center of the VOC plume migrating toward the property boundary in the two different groundwater flow directions.

2.2.10 Quarterly Groundwater Monitoring Events

Quarterly groundwater monitoring events were conducted in March 2013, June 2013, August 2013, and December 2013. During these events, monitoring wells MW-2, MW-5, MW-10, TW-1, and newly installed wells MW-12 and MW-13 were sampled.

- VOCs detected in source area well MW-10 included TCA, DCA, DCE, acetone, Freon-113, Freon-12, IPB, and PCE. DCE concentrations were above the Type 2 RRS of 103 μg/L but below the Type 4 of 520 μg/L. PCE was detected above the Type 4 RRS of 98 μg/L.
- VOCs detected in mid-plume well MW-5 included TCA, Freon-113, and PCE. TCA and Freon-113 concentrations were all below the Type 1 RRSs, and PCE was below the Type 2 RRS.
- For downgradient wells MW-2, MW-12, MW-13, and TW-1, no VOCs were detected in MW-2, MW-12, or TW-1 with the exception of some minor Freon-113 detections in

MW-2 and MW-12. TCA and Freon-113 were detected in MW-13 below the Type 1 RRSs. PCE was detected in MW-13 at concentrations below the Type 2 RRS.

VOC concentrations for all wells sampled during the quarterly sampling events remained relatively steady throughout the sampling period. This data is summarized on Table 1 and on Figures 7A, 7B, 7C, and 7D for each of the four events.

2.3 Recent Field Investigation

2.3.1 August 2014 Monitoring Well Installation and Sampling

2.3.1.1 Well Installation

During the 2013 quarterly groundwater sampling events, PCE was detected in well MW-13 at concentrations slightly above the delineation criteria (Type 1 RRS). On August 6, 2014, monitoring well MW-14 was installed downgradient of MW-13 on City of LaFayette property across the Chattooga and Chickamauga Railway Right-of-Way from the Site. Because the location was not accessible with a drill rig, the well was installed using hand auger methods. The proposed well location was due east of MW-13. During the well installation, this area was underwater and the well location was offset to the south. Four hand auger borings reached refusal at a gravel layer at or very near to the water table. After several offsets, the well was finally installed approximately 25 feet south of its proposed location.

The hand auger boring was advanced to 8 ft-bgs. Monitoring well MW-14 was constructed with 5 feet of 2-inch diameter, 0.010-inch slotted PVC screen and 2-inch PVC riser installed to a depth of 8 ft-bgs. Sand was placed in the well annulus from 8 ft-bgs up to 2.25 ft-bgs, and a bentonite seal was placed in the well annulus from 2.25 ft-bgs to 1.5 ft-bgs and hydrated. A stick-up well vault was set at 1.5 ft-bgs and grouted in place, and a concrete pad was constructed around the stick-up vault. A well cap was placed on the well, and a lock was placed on the vault. The well location and top-of-casing elevation were surveyed.

On August 15, 2014, MW-14 was developed by pumping the well until it was free of visible sediment and until pH, temperature, turbidity, and specific conductivity stabilized. A total of 8.25 gallons of water were purged from the well during development. A well development log is included in Appendix F.

2.3.1.2 Well Sampling

On August 22, 2014, MW-14 was purged and sampled. Prior to purging, the groundwater depth was measured in the well with a water level meter to determine the purge volume.

MW-14 was purged and sampled using a peristaltic pump. Well purging was considered complete when, for three consecutive readings, pH was constant within 0.1 Standard Units, DCN: SYNTVRP5005 12 December 2015

specific conductance varied no more than 5 percent, and turbidity stabilized below 10 Nephelometric Turbidity Units. A well sampling form is included in Appendix F.

Once the parameters stabilized, the sample was collected using the "soda straw" method. The tubing in the well was filled with groundwater, and the pump was turned off. The tubing was then pulled out of the well and the groundwater in the tubing was drained into the sample bottles. The groundwater sample was collected for VOC analysis in two 40-milliliter glass vials preserved with hydrochloric acid. The sample was placed on ice in a cooler, logged under standard chain-of-custody procedures, and delivered to Analytical Environmental Services in Atlanta, Georgia for VOC analysis by method 8260B.

2.3.2 Well Sampling Results

No VOCs were detected in MW-14 in August 2014. Laboratory analytical results are summarized on Table 1. Figure 7D shows the August 2014 sampling results for MW-14 along with the most recent (December 2013) sampling results from the other wells. The laboratory analytical report is included in Appendix E.

3 CONCEPTUAL SITE MODEL

3.1 Geology and Hydrogeology

3.1.1 Overview

The geologic and hydrogeologic characteristics of the Site and surrounding area are described in this section. This section also includes a discussion of regional physiography and Site topography. The discussion of regional characteristics was derived from published sources. Site specific characteristics were determined based on a review of field data.

3.1.2 Regional Physiography and Topography

A review of the *Physiographic Map of Georgia* (Clark and Zisa, 1976) indicates that Walker County is located in the northwestern portion of the Valley and Ridge Physiographic Province (Figure 8). This physiographic province is generally characterized by a series of linear ridges with elevations in lowland areas about 200 - 800 ft above sea level, but the higher ridges may be above 1,600 ft. Plant species vary from area to area based on local soil type, elevation, moisture, and disturbances (Holder, 1986).

The Ridge and Valley Province is bounded on the south by the Piedmont Province, to the east by the Blue Ridge Province, and on the north and west by the Appalachian Plateau Province. The Valley and Ridge province consists of Paleozoic sedimentary rocks that have been folded and faulted to cause long northeast-southwest trending valleys and ridges that give the region its name.

3.1.3 Site Topography

The topography of the Site and surrounding areas was reviewed on a United States Geological Survey (USGS) Quadrangle Map for the LaFayette Quadrangle (Figure 3). The elevation of the Site ranges from 240 to 250 feet above mean sea level. The high point of the Site is located at the western property boundary adjacent to Probasco Street. The grade slopes gently down the parking lots to the eastern property boundary to the drainage ditch on the Chattooga and Chickamauga Railway property. The storm water drainage flows as sheet flow across the Site to the drainage ditch. Storm water from the roofs of the two buildings is controlled by gutters/downspouts where it's directed towards the drainage ditch on the eastern portion of the

Site. The drainage ditch flows into a small stream which forms the headwaters of the Chattooga River.

The pond located in the northern portion of the Site discharges to a small stream, which forms the headwaters to the Chattooga River.

3.1.4 Regional and Site Geology

Regional Geology

The strata of the Valley and Ridge include numerous carbonate units, such as the Cambro-Ordovcian Knox Dolostone and the Ordovician Chickamauga Limestone, and thus caves and karst terrain exist across large parts of the region. The Chickamauga Valley District is characterized by a series of gently rolling, discontinuous, northeast-trending valleys interrupted by low, linear, parallel ridges. The valley floors are predominantly limestone and dolomite of Cambro-Ordovician age while the ridges are capped by the more resistant cherty units of the Knox Group, also of Cambro-Ordovician age. The ridge tops are approximately 1000 feet in elevation and stand 200-300 feet above the intervening valleys. Rectangular drainage patterns in this district are indicative of structural control.

Residual soils in the Ridge and Valley Province are composed predominantly of Udults with some Ochrepts. Paleudults dominate upland areas underlain by limestone. Hapludults are in valleys underlain by shale. Dystrochrepts are common on side slopes of ridges. Hapludolls and Eutrochrepts are on bottom lands. Soils have an udic moisture regime and thermic or mesic temperature regime. Almost all soils are well drained. Soils range from shallow on sandstone and shale formations to very deep on limestone formations (US Forest Service, 1993). Soils grade into a saprolite or partially weathered bedrock with depth.

A review of the *Geologic Map of Georgia (Georgia Geological Survey, 1976)* indicates that the bedrock underlying LaFayette and nearby areas consists of a Conasauga Group dolostone. Dolostone is a sedimentary carbonate rock that contains a high percentage of the mineral dolomite. It is usually referred to as dolomite rock. Most dolostone formed as a magnesium replacement of limestone or lime mud prior to lithification. It is resistant to erosion and can either contain bedded layers or unbedded layers. It is less soluble than limestone in weakly acidic groundwater, but it can still develop solution features over time.

Site Geology

The Site geology has been investigated through the advancement of soil borings and the installation of shallow and deep monitoring wells. The shallow monitoring wells were installed at depths ranging from 13 ft-bgs to 16 ft-bgs through soil and saprolite residuum. The deep well (DW-1) was installed to a depth of 44 ft-bgs. Boring logs are included in Appendix G. In accordance with CSR Comment # 13 in EPD's April 23, 2015 letter, Figure 9A is a Geologic Cross Section Location Map and Figures 9B, 9C, and 9D are Cross Sections.

A review of the boring logs and associated cross-sections indicate that the subsurface geology consists of multi-colored clays with some gravel grading to the bedrock. Bedrock was reached in DW-1 at approximately 20 ft-bgs. Based on the hardness of the soils in other borings at the Site, it appears that bedrock exists approximately 20 ft-bgs across the Site.

3.1.5 Regional and Site Hydrogeology

Regional Hydrogeology

The upper boundary of unconfined groundwater in the Ridge and Valley is formed by the water table or surficial water bearing zones. The water table can be loosely defined as the boundary between saturated and unsaturated soil zones. The depth to the water table may range from a few ft-bgs to up to 50 ft-bgs along mountainous terrain. In the Ridge and Valley province, the water table is usually situated within the soil-saprolite residuum and the upper portion of the fractured dolomite bedrock. In areas where saprolite thicknesses are minimal, the water table may reside almost entirely in fractured bedrock. The soil-saprolite residuum generally has a relatively large storage capacity with a moderate transmissivity. The bedrock fracture system generally has a relatively low storage capacity with a high transmissivity where fracture systems are interconnected. If bedrock fracturing is significant, a hydraulic connection between the surficial water bearing zone and deeper groundwater aquifers may occur at varying depths within the bedrock.

Groundwater flow in the soil-saprolite/fractured bedrock zone often mimics the ground surface topography except where controlled by subsurface geologic structures or preferential pathways. These pathways may be caused by heterogeneities in the soil, weathering patterns of the saprolite, foliated bedding planes, faults, fractures, or other relict bedrock features. Groundwater flow is usually unconfined with recharge occurring from rainfall penetrating upland areas and discharge occurring as baseflow to streams and creeks in low lying areas. These flow regimes are commonly referred to as slope aquifer systems. Depending on the interconnection of fracture zones, a downward gradient is commonly observed in upland areas while an upward gradient is generally present in low areas.

Productive groundwater wells in the Ridge and Valley may be located in the saprolite residuum, fractured crystalline bedrock, or a combination of both. Water in the bedrock is transmitted via connected fractures within the rock unit. The quantity, size, and degree of connection between these fractures or discontinuities are generally more significant than the lithology in determining the amount of water available for withdrawal. Rates of withdrawal are often higher along contact zones between rock units. Secondary permeability and fracture size generally decrease with depth due to overburden pressures except in areas where deep thrust fractures are present. The Ridge and Valley province in the northwestern corner of Georgia is underlain by layers of sandstone, limestone, dolostone, and shale. Wells tapping limestone and dolomite aquifers in this province can be very productive (Tyson, 1993).

Site Hydrogeology

The surficial water bearing zone or uppermost aquifer beneath the Site includes the soil-saprolite unit above the bedrock interface. It is likely that this aquifer is interconnected to the bedrock aquifer beneath it via fractures in the rock. The vertical extent of the bedrock aquifer below 50 ft-bgs has not been investigated.

The groundwater under the Site flows from the high elevation at the western property boundary towards the northeast and the southeast. Considering the surface topography of the Site, the depth the groundwater, and the groundwater flow direction, groundwater at the Site is expected to enter the small stream east of the Site.

3.1.6 Groundwater Flow Direction and Gradient

The depth to groundwater at the Site was measured by EPS personnel in August 2014 in monitoring wells existing at that time. Groundwater elevations were calculated by subtracting the measured depth to groundwater from the surveyed top-of-well casing elevations. The groundwater depths and calculated elevations for the August 2014 gauging event and all previous sampling events are shown in Table 3. A Potentiometric Surface Map for August 2014 is included as Figure 10. As shown on the figure, groundwater flows toward the southeast and northeast, which is consistent with historical data. Based on the August 2014 Potentiometric Surface Map, the average horizontal hydraulic gradient for the Site is 0.03 ft/ft.

Generally, in Ridge and Valley slope aquifer systems an upward vertical flow gradient occurs near creeks or in valley areas and a downward vertical flow gradient occurs on hill sides (Lohman, 1972). The groundwater elevation for MW-7 was 794.15 ft and the elevation for the deeper well DW-1 was 793.62 ft. The lower elevation in DW-1 suggests that a downward vertical gradient may be present between the surficial soil aquifer and deeper bedrock aquifer.

3.1.7 Hydraulic Conductivity Data

On June 28, 2007 EPS performed slug tests on wells MW-4, MW-6, and MW-9 to evaluate the hydraulic conductivity of the upper aquifer. Hydraulic conductivity was determined using the Bouwer and Rice Graphical Method (Bouwer and Rice, 1976, 1989) and the results are shown below.

Well No.	K value (cm/sec)	K value (ft/day)
MW-4	7.4 x 10 ⁻⁵	0.21
MW-6	1.2 x 10 ⁻⁴	0.33
MW-9	1.5 x 10 ⁻⁴	0.42
Average	1.1 x 10 ⁻⁴	0.32

The average hydraulic conductivity value was calculated to be of 1.1×10^{-4} centimeters per second (cm/sec) or 0.32 feet per day (ft/day). This is consistent with published values for clayey soils. The Bower and Rice graphs are included in Appendix H.

3.1.8 Groundwater Flow Velocity

The seepage velocity or groundwater flow velocity is the average speed of groundwater movement by advective processes in the water-bearing zone. The seepage velocity is calculated by multiplying the hydraulic conductivity by the hydraulic gradient and dividing by the effective porosity. The effective porosity is sometimes referred to as the "drainable porosity" and is considered roughly equivalent to specific yield for sandy soils in unconfined units. This parameter is generally estimated using published values.

The groundwater flow velocity was calculated using the following formula:

$$\mathbf{V} = \left[\frac{\mathbf{K}\frac{\mathrm{d}\mathbf{h}}{\mathrm{d}\mathbf{l}}}{\mathrm{n}}\right]$$

Where: k = the average hydraulic conductivity (0.32 ft./day) dh/dl = the hydraulic gradient (0.032 ft./ft.) n = the estimated effective porosity (0.15 from Fetter, 1988)

Using this formula, a calculated groundwater flow velocity of 0.07 ft/day (26 ft/year) was determined. It should be noted that this calculated value was derived under the assumption that groundwater flow at the Site occurs through a homogeneous, isotropic, porous medium. Since groundwater flow beneath the Site likely occurs through a heterogeneous matrix that may contain secondary fracture pathways, this calculated flow value should be considered only an estimate of the actual groundwater flow velocity.

3.2 Risk Reduction Standards

3.2.1 Soil RRS

In a letter dated June 24, 2011, the EPD concurred that the Site was in compliance with Residential RRSs for soil based on CSI Realty's December 29, 2009 Revised Compliance Status Report.

3.2.2 Groundwater RRSs

Regulated substances detected in groundwater at the Site consist of TCA, DCA, DCE, acetone, Freon-113, Freon-12, IPB, PCE, and lead. Type 1 RRSs were calculated for these constituents. TCA, DCE, PCE, and IPB were detected at concentrations which exceed the Type 1 RRSs, and Type 2 RRSs were calculated for these constituents. DCE and PCE exceed the Type 2 RRSs, and Type 4 RRSs were calculated for DCE and PCE. PCE is the only constituent that exceeds the Type 4 RRS. Table 1 summarizes Types 1, 2, and 4 RRSs and compares them to the maximum detected concentrations. In the EPD's April 23, 2015 letter, the EPD stated that the calculated RRSs for the Site are correct for all constituents and approved the use of the RRSs for the Site.

3.3 Potential Receptors and Exposure Pathways

3.3.1 Potential Environmental Receptors

The Site and adjacent properties are located in a predominantly residential and industrial setting. Common environmental receptors in this type of setting may include protected species, wetland areas, public drinking water wells, and surface water bodies.

3.3.1.1 Protected Species

Information compiled by the Georgia Natural Heritage Program was reviewed for Walker County, Georgia to identify sensitive wildlife receptors or protected species near the Site. The protected species identified in the Walker County include the following:

Plants

- · Ohio Buckeye
- · Purple Foxglove
- · Heath Aster
- \cdot Phlox-leaved Aster
- · Willow-leaf Aster
- · Wild Daisy
- ·.Glade Blue Indigo
- · Bluehearts
- · Wild Hyacinth
- \cdot White Bear Lake Sedge
- \cdot Broadleaf Sedge
- \cdot Purple Sedge
- · Tussock Sedge
- · Shellbark Hickory
- · Alabama Lipfern
- · American Smoketree
- · Three-flowered Hawthorn
- · Pink Ladyslipper
- · Tennessee Fragile Fern
- · Gattinger Prairie Clover
- · Mullein Foxglove
- · Cream-flowered Tick-trefoil
- · American Dropseed
- · Log Fern

- \cdot Harbinger-of-spring
- · Mountain Witch-alder
- \cdot Blue Ash
- \cdot Goldenseal
- \cdot Glade St. Johnswort
- \cdot Twinleaf
- · Texas Plains Rush
- · Naked-fruit Rush
- \cdot Least Gladecress
- · Gladecress
- · Wood Lily
- · Broadleaf Gromwell
- · Climbing Fern
- · Fraser's Loosestrife
- · Limerock Milkvine
- · Virginia Bluebells
- · Sprouting Muhly
- · Alabama Snow-wreath
- \cdot Marble-seed
- · Limestone Adder-tongue Fern
- · American Ginseng
- · Silverling
- · Miami-mist
- \cdot Hairy Mockorange

- · Broadleaf Phlox
- · Tennessee Leafcup
- · Shadow-witch Orchid
- · Bigleaf Pondweed
- · Granite Gooseberry
- \cdot Cumberland Rose Gentian
- · Large-flowered Skullcap
- · Roundleaf Catchfly
- · Virginia Spirea
- · Nuttall's Hedge-nettle
- · Celandine Poppy
- · Silky Aster
- · Downy Bush-pea
- · Appalachian Filmy Fern
- · Dwarf Filmy Fern
- · Bent Trillium
- · Lanceleaf Trillium
- · Barksdale Trillium
- · September Elm
- · Ozark Bunchflower
- · Limerock Arrow-wood
- · Glade Violet
- · Appalachian Cliff Fern

n Dropsee

Animals

· Bachman's Sparrow	· Finelined Pocketbook	· Popeye Shiner
· Green Salamander	· Four-toed Salamander	· Burrhead Shiner
· Chickamauga Crayfish	· Flame Chub	· Telescope Shiner
· Chattooga River Crayfish	· Lined Chub	· Yellowfin Madtom
· Blackbarred Crayfish	· Tennessee Heelsplitter	· Dusky Darter
· Spotfin Shiner	· Spotted Spreadwing	· Red-cockaded Woodpecker
· Coosa Darter	· Sweetflag Spreadwing	· Pigeon Mountain Salamander
· Blueside Darter	· Scarlet Shiner	· Southern Pigtoe
· Greenbreast Darter	· Mountain Shiner	· Skirted Hornsnail
· Redline Darter	· Alabama Moccasinshell	· Tapered Cave Beetle
· Banded Darter	· Gray Myotis	· Georgian Cave Beetle
· Northern Studfish	· Eastern Small-footed Myotis	· Pygmy Shrew
· Tennessee Cave Salamander	· Southern Appalachian Woodrat	· Mountain Creekshell

A letter from the Wildlife Resources Division of the Georgia Department of Natural Resources indicated that there are no records of species of concern within the project area. The letter is attached as Appendix I.

3.3.1.2 Wetlands and Surface Water Bodies

A review of a National Wetland Inventory Map prepared by the U.S. Fish and Wildlife Service, indicates that the Site and adjacent properties are not located in identified wetland areas. A small stream, which forms the headwaters of the Chattooga River enters the Site from the north. The stream is dammed and forms a small pond on the northern end of the Site. The pond discharge then flows off the Site to the east. It is likely that groundwater flows into the stream and pond. Based on groundwater flow from the source area, the stream is considered to be a potential receptor of the groundwater plume. In October 2005, a surface water sample was collected from the pond. VOCs were not detected in this sample.

3.3.2 Potential Human Receptors

The Site includes a manufacturing building (approximately 74,000 square feet), a paved parking lot, a gravel drive leading to a paved loading dock, and a small pond. The future use of the Site will likely remain industrial; however, future residential use of the Site is evaluated below. The adjoining properties are used for residential, commercial, and industrial purposes.

3.3.2.1 Water Well Usage

In November 2005, a water well survey was performed by EPS to identify potential nearby private or public water wells. The survey involved a records search of the EPD files, communications with the City of LaFayette Water Department, a drive-by survey of the properties within a mile of the Site, and a USGS database search. The records search of the EPD files did not identify any water wells in the vicinity of the Site. EPS also reviewed the USGS water well database. No wells were identified in the USGS database within a three mile radius of the Site.

On November 28, 2005, EPS performed a drive-by survey of the properties within a one-mile radius of the Site. No private drinking water wells were observed. EPS identified the City of LaFayette drinking water intake as being located approximately 0.4 miles north of the Site.

Mr. Jim Speir, the City of LaFayette Director of Water & Sewer Utilities, confirmed that the intake location for the City of LaFayette's public water supply is located on a spring approximately 0.4 miles north of the Site. Figure 3 shows the location of the City of LaFayette drinking water intake relative to the Site. Mr. Speir stated that he was not aware of any private drinking water wells present within one mile of the Site. No other public water wells or intake locations are present in the City of LaFayette.

The only drinking water source receptor identified during this survey was the City of LaFayette water intake located along a spring approximately 0.4 miles north of the Site. The intake is located topographically upgradient and upstream of the Site and therefore, human exposure to the VOCs in the groundwater appears unlikely.

3.3.2.2 Underground Utilities

Underground utilities can act as conveyances by intercepting migrating regulated substances through a vapor phase or dissolved phase in the groundwater. In both cases, accumulation may occur inside a hollow pipe or along a preferential pathway created from permeable backfill materials used during placement of the utilities. Human exposures may occur in large diameter utility pipes, manholes, culverts, storm grates, or related access points.

The location of underground utilities in the vicinity of the groundwater plume is shown on Figure 2. The utilities identified include electrical conduits and small diameter roof drain storm water pipes. These utilities are likely located at depths between 2 and 3 ft-bgs. Based on the measured depth to groundwater of 4-5 ft-bgs, these underground utilities could intercept the groundwater table during periods of high groundwater levels.

3.3.2.3 Potential On and Off-Site Receptors

Current/Future Site Worker: Facility workers are expected to work approximately 40 hours per week at the Site. Because the soil has been certified to Residential RRS, and a UEC has been recorded for the Site limiting groundwater use, the only exposure pathway for facility workers is

vapor intrusion from the groundwater plume to the indoor air. As discussed in Section 4.4, a vapor intrusion health risk is not present at the site.

Current/Future Groundskeeper: The grounds are currently maintained by a landscaping contractor on an as-needed basis, and landscaping activity is likely to be required for any future use scenarios. Since the soil has been certified to Residential RRSs, groundskeeper exposure to the VOCs at concentrations greater than Residential RRSs is not likely.

Future Construction/Utility Worker: No construction or utility work activities are currently planned at the Site. However, it is possible that these activities could be conducted in the future. These workers could potentially have short-term (<1 year) exposure to chemicals in groundwater via ingestion, dermal contact, and inhalation of volatiles.

Future On-Site Resident: The Site is currently used for industrial purposes and will likely remain industrial in the future. In addition, the UEC for the Site prohibits residential use of the Site, until such time as the EPD has concurred that the vapor intrusion pathway has been addressed for residential use, and prohibits the extraction and use of groundwater for drinking water and other non-remedial purposes. The Site is in compliance with the soil Type 1 RRSs, and therefore, the soils are protective of residential use.

Potential Off-Site Receptors: There are no potential off-site human receptors. The property immediately downgradient of the Site is the Chattooga and Chickamauga Railway Right-of-Way and further downgradient is a stream and a lower lying area owned by the City of LaFayette. As discussed in Section 4.3.3, the groundwater plume will not impact the stream.

4 GROUNDWATER COMPLIANCE

4.1 Groundwater Delineation

Groundwater has been delineated to the Type 1 RRSs. Figures 7A through 7D show the data from the four quarterly groundwater monitoring events conducted in 2013. All four compounds (TCA, DCE, IPB, and PCE) detected above the Type 1 RRSs are shown to be delineated on these figures.

4.2 Compliance with Residential and Non-Residential RRSs

Each of the regulated constituents detected in groundwater are in compliance with the Residential RRSs with the exception of DCE and PCE. DCE is in compliance with Non-Residential RRSs while PCE is not. Although Freon-113 was not detected above its Type 1 RRS, the compound was investigated further due to elevated concentrations, and it was determined that a Freon-113 DNAPL was not present. Table 1 summarizes the constituents detected in groundwater and compares them to the RRSs.

- DCE was detected in two soil borings, located inside of the building footprint, in 2006 and more recently in MW-10, located inside the building, above the Type Residential RRS of 103 μ g/L. The maximum concentration of DCE detected was 290 μ g/L, which is below the Type 4 RRS of 520 μ g/L.
- PCE was detected above the Residential RRSs in groundwater samples from three borings and above the Non-Residential RRSs in two of these borings in 2006. More recent sampling results indicate PCE is above the Non-Residential RRS in only one monitoring well, MW-10, with concentrations fluctuating around 150 μg/L.
- Freon-113 has not been detected above the Residential RRS in groundwater. However, in 2006, it was detected at 27,000 μ g/L in groundwater samples from borings SB-22 and SB-23 located inside the building, and the EPD was concerned of the potential presence of Freon-113 DNAPL. Monitoring wells MW-10 and MW-11 were installed in the vicinity of SB-22 and SB-23 as a nested well pair, with MW-10 screened near the water table (10-12.5 ft-bgs) and MW-11 screened on top of bedrock (17.5-20 ft-bgs). Although initial sampling results from MW-11 indicated elevated concentrations (15,000 and 21,000 μ g/L) of Freon-113, follow-up sampling results were much lower (27 μ g/L and non-detect). It is therefore believed that the initial elevated concentrations were the result of poor well development (due to slow recharge). Because significantly higher concentrations of Freon-113 exist in the shallow well (MW-10) and because the Freon-

113 concentrations in the deeper well (MW-11) are minor, it does not appear that Freon-113 exists as a DNAPL.

4.3 Groundwater Modeling

4.3.1 Introduction

BIOCHLOR Natural Attenuation Decision Support System (version 2.2) was used to model biodegradation of PCE at the Site. BIOCHLOR is an analytical model approved by the U.S. Environmental Protection Agency that is used to simulate the degradation of chlorinated ethenes and ethanes. It is an Excel-based program based on the Domenico analytical solute transport model. BIOCHLOR simulates advection, 3-D dispersion, linear adsorption and biotransformation via reductive dechlorination.

Under the Georgia Voluntary Remediation Program Act, Code O.C.G.A. § 12-8-100, et seq., the point of exposure is defined as the nearest of the following:

- 1. The closest existing downgradient drinking water supply well;
- 2. The likely nearest future location of a downgradient drinking water supply well where public supply water is not currently available and is not likely to be made available within the foreseeable future; or
- 3. The hypothetical point of drinking water exposure located at a distance of 1,000 feet downgradient from the delineated site contamination under this part.

Under these drinking water scenarios, the groundwater concentrations are compared to Risk Reduction Standards. However, the EPD has requested that the model evaluate the nearby headwater stream of the Chattooga River. In this case, the target concentration for PCE is the Georgia In-Stream Water Quality Standard (ISWQS), which is $3.3 \mu g/L$.

4.3.2 Model Development and Calibration

The groundwater at the Site flows in two different directions (see Figure A in Appendix B). Accordingly, two different model simulations were developed and calibrated to simulate each of these flow directions. The highest concentrations of PCE in groundwater monitoring wells have occurred at the MW-10 location (SB-23). Thus, the zero distance area (or "initial concentrations", model variable C₀) was considered to be in the area of MW-10 flowing in two different directions. Flow Path A is to the southeast and includes wells MW-10, MW-3, MW-13 and MW-14. Following Flow Path A, the headwater of the Chattooga River is encountered approximately 250 ft from the zero distance. Flow Path B is to the north-east and includes wells MW-10, MW-7 and MW-12. Following Flow Path B, the headwaters of the Chattooga River is encountered approximately 154 ft from the zero distance.

The input parameters used in the model are presented in Tables A and B in Appendix B for Flow Path A and Flow Path B, respectively. The advection parameters (e.g., hydraulic conductivity) were based on site-specific values. The dispersion and adsorption parameters were primarily based on default values available in the model documentation. The biotransformation decay coefficients were not used as biodegradation does not appear to be a primary factor at this Site. The model assumes that there is a continuous source since 1980 when the facility converted to yarn twisting. The source thickness was based on the approximate thickness of the aquifer (15 ft). The source width was developed during model calibration.

The modeled C_o concentration and source width were developed during model calibration. Historical groundwater data (from 2006 through 2014) were used to adjust the C_o concentrations and source width to develop a model that best represented the conditions at the Site. The C_o concentrations were chosen primarily to model the data from 2006, when the highest concentration of PCE was observed in groundwater (0.35 mg/L). Although the source width (0.3 ft for Flow Path A and 0.2 ft for Flow Path B) may or may not accurately represent the actual size of the source, these are the values that result in models that best represent the groundwater data collected at the site.

4.3.3 PCE Results

The BIOCHLOR Model input screens and PCE output screens for years that data were collected from 2006 through 2014 and for year 2044 (30 years after the last groundwater sampling event) for the two different flow paths (Flow Path A and Flow Path B) are included in Appendix B. The squares on these charts represent analytical data collected from groundwater in that year. In year 2013 groundwater was collected quarterly, thus the high and low concentrations observed in 2013 are both shown on the chart to represent the range of concentrations observed.

These charts show that the model, although not perfect, is a good representation of conditions at the Site and can be used to predict future concentrations. The model actually over predicts concentrations especially the further downgradient from the source indicating that the model is conservative. Thus, the model will conservatively estimate the concentrations of PCE into the future.

The projected concentrations for year 2044 show that the modeled PCE concentrations at the Point of Demonstration wells (MW-12 and MW-14) will not exceed the Type 1 RRS (5 μ g/L). In addition, the projected concentrations for year 2044 show that the modeled PCE concentrations at the headwaters for the Chattooga River do not exceed the ISWQS (3.3 μ g/L). Therefore, in response to Comment #3 in the EPD's letter data March 30, 2014, the combination of the two flow paths does not cause PCE concentrations entering the stream at concentrations which exceed the ISWQS (3.3 μ g/L).

4.3.4 Sensitivity Analysis

A sensitivity analysis was conducted to evaluate the influence or relative importance of key input variables and assumptions on the predicted concentrations. In the initial CSR submission, the parameters evaluated included the retardation factor, hydraulic conductivity and porosity. This analysis showed that the model was not sensitive to these parameters. A new sensitivity analysis has been conducted for source width and source concentration. This analysis was run for model year 2013. For Flow Path A, the sensitivity analysis was conducted at two distances: 74 feet (MW-13) and 154 feet (MW-14). For Flow Path B, the sensitivity was conducted at 139 feet (MW-12).

The predicted concentrations (shown in Table C of Appendix B) at each of these distances were determined for three different conditions for each parameter being considered: (1) baseline, (2) a value higher than baseline, and (3) a value lower than baseline. The Flow Paths A and B input and output screens from the BIOCHLOR model sensitivity analysis are included in Appendix B.

4.3.5 Conclusions

Comparison of the model predictions to actual groundwater results at the Site indicates that the model can be used to conservatively predict future concentrations. According to the model results for the most recent year sampled (2013) and thirty years from then (2044), the PCE concentrations at the Point of Demonstration wells (MW-12 and MW-14) do not exceed the Type 1 RRS, which infers that PCE concentrations do not exceed the Type 1 RRS at the hypothetical points of drinking water exposure located at distances of 1,000 feet along each flow path downgradient from the delineated site contamination. In addition, PCE concentrations at the stream do not exceed the ISWQS.

4.4 Vapor Intrusion Assessment

Eight VOCs have been detected in soil and/or groundwater at the Site. Potential vapor intrusion risks associated with these VOCs were assessed using the advanced version of the 2004 Johnson and Ettinger Model, specific to soil and groundwater sources, to comply with Comments 9 through 12 of EPD's April 23, 2015 letter. This model, published by the U.S. EPA Office of Emergency and Remedial Response, is an enhanced implementation of the U.S. EPA Office of Solid Waste and Emergency Response's Subsurface Vapor Intrusion Guidance (U.S. EPA, 2002).

Vapor intrusion was assessed using the highest soil and groundwater concentrations detected for each of the VOC constituents. Exposure parameters listed in Appendix J were derived from Table 3 of Appendix III of the Hazardous Site Response Rule (391-3-19). The default air exchange rate of 0.25 volumes per hour was used in the models.

4.4.1 Non-Residential Exposure Modeling

The cancer risk was modeled for DCA and PCE, and the non-cancer risk was modeled for all eight of the detected VOCs, with the exception of DCA, which does not have an associated Reference Concentration. Neither the non-residential target cancer risk value of 1.0×10^{-5} nor the non-residential target hazard quotient of 1.0 was exceeded for any of the compounds using the soil or the groundwater source-based models. Model results are summarized in Table 4. Model parameters and calculations can be found in Appendix J.

4.4.2 Residential Exposure Modeling

The cancer risk was modeled for DCA and PCE, and the non-cancer risk was modeled for all eight of the detected VOCs, with the exception of DCA, which does not have an associated Reference Concentration. Neither the residential target cancer risk value of 1.0×10^{-6} nor the residential target hazard quotient of 1.0 was exceeded for any of the compounds using the soil or the groundwater source-based models, with the exception of DCA. The cancer risk associated with groundwater for DCA was 1.2×10^{-6} . The potential for a residential exposure exceeding the cancer risk has been mitigated through a property use restriction clause in the UEC. Model results are summarized in Table 4. Model parameters and calculations can be found in Appendix J.

4.5 Institutional Controls

Pursuant to Section 12-8-107(h) of the VRP Act, a UEC, dated July 13, 2015, was recorded in the deed records of the Walker County Superior Court on July 22, 2015, which:

- 1. prohibits the use of the property for residential purposes until such time as EPD has concurred that the vapor intrusion pathway has been addressed for residential use; and
- 2. prohibits the use or extraction of groundwater on the Site for drinking water or any other non-remedial purpose.

5 REFERENCES

- Bouwer, H. and Rice, R.C., 1976, A Slug Test Method for Determining Hydraulic Conductivity of Unconfined Aquifers with Completely or Partially Penetrating Wells, Water Resources Research, 12-3, pp. 423-428.
- Bouwer, H., 1989, The Bouwer and Rice Slug Test An Update, Groundwater, vol. 24, no. 3, pp. 304-309.
- Clark & Zisa, A Physiographic Map of Georgia, Department of Natural Resources, Georgia Geologic Survey, 1987.
- Fetter, C. W., 1988, Applied Hydrogeology, 2nd Edition, Macmillan Publishing Company, New York, 592 p.
- Lohman, S. W., 1972, *Ground-Water Hydraulics*, Professional Paper 708, U.S. Department of the Interior, Geological Survey, 67 p.
- Tyson, Anthony W., 1993 Georgia's Ground Water Resources, University of Georgia College of Agricultural and Environmental Sciences, Bulletin 1096 October 1993.
- U.S. Environmental Protection Agency, Region 4, *Field Branches Quality System* and Technical Procedures, Athens, Georgia.
- U.S. Environmental Protection Agency, 2002, Office of Solid Waste and Emergency Response's Subsurface Vapor Intrusion Guidance.
- U.S. Forest Service, Ecological Subregions of the U.S., November 5, 1993 http://www.fs.fed.us/land/pubs/ecoregions/ch20.html#231D

APPENDIX A

Uniform Environmental Covenant

After Recording Return to:

Andrea L. Rimer Troutman Sanders LLP 600 Peachtree Street, Suite 5200 Atlanta, GA 30308

Deed Doc: COVE Recorded 07/22/2015 09:58AM

Carter Brown Clerk Superior Court, Walker County, Ga. Bk 01854 Pg 0012-0022

Environmental Covenant

This instrument is an Environmental Covenant executed pursuant to the Georgia Uniform Environmental Covenants Act, OCGA § 44-16-1, *et seq.* This Environmental Covenant subjects the Property identified below to the activity and/or use limitations specified in this document. The effective date of this Environmental Covenant shall be the date upon which the fully executed Environmental Covenant has been recorded in accordance with OCGA § 44-16-8(a).

Fee Owner of Property/Grantor:	Walker County Development Authority 101 South Duke Street LaFayette, GA 30728
Grantee/Holder:	CSI Realty, LLC 1906 South Hamilton Street Dalton, GA 30720
Grantee/Entity with express power to enforce:	State of Georgia Department of Natural Resources Environmental Protection Division 2 Martin Luther King Jr. Drive, SE Suite 1054 East Tower Atlanta, GA 30334

Property:

The property subject to this Environmental Covenant is the former Color Spectrum property, Hazardous Site Inventory site number 10831 (hereinafter "Property"), located on 29 Probasco Street in LaFayette, Walker County, Georgia. This tract of land was conveyed on December 27, 2012 from CSI Realty, LLC to Walker County Development Authority, recorded in Deed Book 1746, Pages 797-799, Walker County Records. The area is located in Land Lot 28 of the 7th District and 4th Section of Walker County, Georgia. The property consists of approximately 1.38 acres, developed with an 80,000 square foot building used for yarn twisting and heat setting. A complete legal description of the area is attached as Exhibit A and a map of the area is attached as Exhibit B.

Tax Parcel Number(s):

Tax Parcel 1023 087 of Walker County, Georgia

Name and Location of Administrative Records:

The corrective action at the Property that is the subject of this Environmental Covenant is described in the following document[s]:

- Voluntary Investigation and Remediation Plan and Application, December 2011.
- March 30, 2012 correspondence from EPD to CSI Realty approving and providing comment on VRP Application.
- VRP Semi-Annual Status Updates, dated September 2012, March 2013, September 2013 and March 2014.
- Voluntary Remediation Program Compliance Status Report, October 2014.

These documents are available at the following location in the files for HSI Number 10831:

Georgia Environmental Protection Division Response and Remediation Program 2 MLK Jr. Drive, SE, Suite 1054 East Tower Atlanta, GA 30334 M-F 8:00 AM to 4:30 PM excluding state holidays

Description of Contamination and Corrective Action:

This Property has been listed on the state's hazardous site inventory due to a release of a regulated substance and has been designated as needing corrective action in accordance with the Rules for Hazardous Site Response. Contact the property owner or the Georgia Environmental Protection Division for further information concerning this Property. This notice is provided in compliance with the Georgia Hazardous Site Response Act.

This Declaration of Covenant is made pursuant to the Georgia Uniform Environmental Covenants Act, O.C.G.A. § 44-16-1 *et seq.* by the Walker County Development Authority, CSI Realty, LLC ("CSI Realty") and the State of Georgia, Department of Natural Resources, Environmental Protection Division (hereinafter "EPD"), and their respective successors and assigns. This Environmental Covenant is required because a release of 1,1-dichlorothene, tetrachloroethene, 1,1,1-trichloroethane, 1,1-dichloroethane, acetone, Freon-113, Freon-12, isopropylbenzene and lead occurred on the Property. These constituents are "regulated substances" as defined under the Georgia Hazardous Site Response Act, O.C.G.A. § 12-8-90 *et seq.*, and the rules promulgated thereunder (hereinafter "HSRA" and "Rules", respectively). The Corrective Action consists of the installation and maintenance of institutional controls (restrictions on use of groundwater and limitation of use to non-residential) to protect human health and the environment.

Grantor, Walker County Development Authority (hereinafter the "Authority"), hereby binds Grantor, and its successors and assigns to the activity and use restriction(s) for the Property identified herein and grants such other rights under this Environmental Covenant in favor of CSI Realty and EPD. EPD shall have full right of enforcement of the rights conveyed under this Environmental Covenant pursuant to HSRA, O.C.G.A. § 12-8-90 *et seq.*, and the rules promulgated thereunder. Failure to timely enforce compliance with this Environmental Covenant or the use or activity limitations contained herein by any person shall not bar subsequent enforcement by such person and shall not be deemed a waiver of the person's right to take action to enforce any non-compliance. Nothing in this Environmental Covenant shall restrict EPD from exercising any authority under applicable law. The Authority makes the following declaration as to limitations, restrictions, and uses to which the Property may be put and specifies that such declarations shall constitute covenants to run with the land, pursuant to O.C.G.A. § 44-16-5(a); is perpetual, unless modified or terminated pursuant to the terms of this Covenant pursuant to O.C.G.A. § 44-16-9 and 10; and shall be binding on all parties and all persons claiming under them, including all current and future owners of any portion of or interest in the Property (hereinafter "Owner"). Should a transfer or sale of the Property occur before such time as this Environmental Covenant has been amended or revoked then said Environmental Covenant shall be binding on the transferee(s) or purchaser(s).

The Environmental Covenant shall inure to the benefit of CSI Realty, EPD, the Authority and their respective successors and assigns and shall be enforceable by the Director or his agents or assigns, CSI Realty or its successors, agents and assigns, the Authority or its successors, agents and assigns, and other party(ies) as provided for in O.C.G.A. § 44-16-11 in a court of competent jurisdiction.

Activity and/or Use Limitation(s)

- 1. <u>Registry</u>. Pursuant to O.C.G.A. § 44-16-12, this Environmental Covenant and any amendment or termination thereof, may be contained in EPD's registry for environmental covenants.
- 2. <u>Notice.</u> The Owner of the Property must give thirty (30) day advance written notice to EPD of the Owner's intent to convey an ownership interest in the Property. No conveyance of title, easement, lease, or other interest in the Property shall be consummated by the Owner without adequate and complete provision for continued monitoring, operation, and maintenance of the Corrective Action. The Owner of the Property must also give thirty (30) days advance written notice to EPD of the Owner's intent to change the use of the Property, apply for building permit(s) or propose any site work that would materially affect the Property.
- 3. <u>Notice of Limitation in Future Conveyances.</u> Each instrument hereafter conveying an interest in the Property subject to this Environmental Covenant shall contain a notice of the activity and use limitations set forth in this Environmental Covenant and shall provide the recorded location of the Environmental Covenant.
- 4. <u>Periodic Reporting.</u> The Owner shall inspect the Property and applicable property instruments at least annually to ensure compliance with this document. Annually, by no later than December 31st, in the year following the effective date of this Environmental Covenant, the Owner shall complete and submit to EPD the VRP Annual Property Evaluation Form attached to this document as Exhibit C. This report will document whether or not the activity and use limitations in this Environmental Covenant are being abided by.
- 5. <u>Activity and Use Limitation(s)</u>. The Property shall be used only for non-residential uses, as defined in Section 391-3-19-.02 of the Rules and defined in and allowed under the Walker County zoning regulations as of the date of this Environmental Covenant. Any residential use of the Property shall be prohibited until such time as EPD has concurred that the vapor intrusion pathway has been addressed for residential use. Any activity on the Property that may result in the release or exposure to the regulated substances that were contained as part of the Corrective Action, or create a new exposure pathway, is prohibited.
- 6. <u>Groundwater Limitation</u>. The use or extraction of groundwater beneath the Property for drinking water or for any other non-remedial purposes shall be prohibited.
- 7. <u>Right of Access.</u> In addition to any rights already possessed by EPD and/or CSI Realty, the Owner shall allow authorized representatives of EPD and/or CSI Realty the right to enter the Property at reasonable times for the purpose of evaluating the Corrective Action; to take samples, to inspect the

Corrective Action conducted at the Property, to determine compliance with this Environmental Covenant, and to inspect records that are related to the Corrective Action.

- 8. <u>Recording of Environmental Covenant and Proof of Notification.</u> Within thirty (30) days after the date of the Director's signature, the Owner shall file this Environmental Covenant with the Recorders of Deeds for each County in which the Property is located, and send a file stamped copy of this Environmental Covenant to EPD within thirty (30) days of recording. Within that time period, the Owner shall also send a file-stamped copy to each of the following: (1) CSI Realty as Holder, (2) each person holding a recorded interest in the Property subject to the covenant, (3) each person in possession of the real property subject to the covenant, (4) each municipality, county, consolidated government, or other unit of local government in which real property subject to the covenant is located, and (5) each owner in fee simple whose property abuts the property subject to the Environmental Covenant.
- 9. <u>Termination or Modification</u>. The Environmental Covenant shall remain in full force and effect in accordance with O.C.G.A. § 44-5-60, unless and until the Director determines that the Property is in compliance with the Type 1, 2, 3, or 4 Risk Reduction Standards, as defined in Georgia Rules for Hazardous Site Response (Rules) Section 391-3-19-.07 and removes the Property from the Hazardous Site Inventory, whereupon the Environmental Covenant may be amended or revoked in accordance with Section 391-3-19-08(7) of the Rules and O.C.G.A. § 44-16-1 et seq.
- 10. <u>Severability</u>. If any provision of this Environmental Covenant is found to be unenforceable in any respect, the validity, legality, and enforceability of the remaining provisions shall not in any way be affected or impaired.
- 11. <u>No Property Interest Created in EPD</u>. This Environmental Covenant does not in any way create any interest by EPD in the Property that is subject to the Environmental Covenant. Furthermore, the act of approving this Environmental Covenant does not in any way create any interest by EPD in the Property in accordance with O.C.G.A. § 44-16-3(b).

Representations and Warranties.

Grantor hereby represents and warrants to the other signatories hereto:

- a) That the Grantor has the power and authority to enter into this Environmental Covenant, to grant the rights and interests herein provided and to carry out all obligations hereunder;
- b) That the Grantor is the sole owner of the Property and holds fee simple title which is free, clear and unencumbered;
- c) That the Grantor has identified all other parties that hold any interest (e.g., encumbrance) in the Property and notified such parties of the Grantor's intention to enter into this Environmental Covenant;
- d) That this Environmental Covenant will not materially violate, contravene, or constitute a material default under any other agreement, document or instrument to which Grantor is a party, by which Grantor may be bound or affected;
- e) That the Grantor has served each of the people or entities referenced in Activity 8 above with an identical copy of this Environmental Covenant in accordance with O.C.G.A. § 44-16-4(d).
- f) That this Environmental Covenant will not materially violate or contravene any zoning law or other law regulating use of the Property; and
- g) That this Environmental Covenant does not authorize a use of the Property that is otherwise prohibited by a recorded instrument that has priority over the Environmental Covenant.

Notices.

Any document or communication required to be sent pursuant to the terms of this Environmental Covenant shall be sent to the following persons:

Georgia Environmental Protection Division Branch Chief Land Protection Branch 2 Martin Luther King Jr. Drive SE Suite 1054 East Tower Atlanta, GA 30334

CSI Realty, LLC 1906 South Hamilton Street Dalton, GA 30720

Grantor has caused this Environmental Covenant to be executed pursuant to The Georgia Uniform Environmental Covenants Act, on the 13^{10} day of 5u/y, 2015.

[Signatures on next page]

Signed, sealed, and delivered in the presence of:

Uno

ness (Signature) itness Address (Print)

Pamele Doursend Notary Public (Signature)

My Commission Expires: 5-27-17

For the Grantor Walker County Development Authority:

Name of/Grantor (Print) Grantor's Authorized Representative (Signature) (Seal)

Larry Brooks Authorized Representative Name (Print)

Executive Director

Title of Authorized Representative (Print)

Dated: 6/5/15

For the State of Georgia Environmental Protection Division:

Signed, sealed, and delivered in the presence of:

Unofficial

oral

Unofficial Witness Name (Print)

315 Dated:

Unofficial Witness (Signature)

Unofficial Witness Address (Print) Notary Public (Signature)

My Commission Expires:

(Signature)

Director

Judson H. Turner

(Seal)

Signed, sealed, and delivered in the presence of:

Undfficial Witness (Signature) Witness Name (Print) Unofficial 0 Unofficial Witness (Signature) NP Y Unofficial Witness Name (Print)

For the Grantee/Holder CSI Realty, LLC:

CST Kently Name of Grangee/Holder (Print)

Graptee's Authorized Representative (Signature)

(Seal)

J. Ton We Has ye. Authorized Representative Name (Print)

Title of Authorized Representative (Print)

Dated:

(NOTARY SEAL)

Hick) (Signature) ICA mmission Expires:_ "The state of the 3

EXHIBIT A

LEGAL DESCRIPTION

Tract III, Parcel A:

All that tract or parcel of land lying and being in Land Lot 28 in the 7^s District and 4th Section of Walker County, Georgia and being more particularly described by plat of survey prepared by Bakkum-DeLoach & Associates, Inc. dated December 12, 1986, as follows: BEGINNING at a point where the North right of way line of Black Road intersects the East right of way line of Probasco Street; thence North 01 degree 55 minutes 00 seconds East, along the East right of way line of Probasco Street, 170.00 feet to an iron pin; thence North 89 degrees 49 minutes 59 seconds East, 232.59 feet to an iron pipe located in the West right of way line of Black Road and the West right of way line of the Central of Georgia Railroad; thence along the West right of way line of said Railroad and Black Road, the following courses and distances: South 09 degrees 54 minutes 43 seconds West, 95.15 feet; South 05 degrees 41 minutes 38 seconds West, 122.48 feet; thence continuing along the right of way of Black Road, the following courses and distances: South 34 degrees 31 minutes 03 seconds West, 26.63 feet; South 80 degrees 20 minutes 50 seconds West, 24.41 feet; North 72 degrees 57 minutes 06 seconds West, 27.18 feet; North 61 degrees 13 minutes 20 seconds West, 55.96 feet; North 66 degrees 02 minutes 02 seconds West, 58.33 feet and North 73 degrees 33 minutes 44 seconds West, 44.06 feet to the point of beginning.

Tract III, Parcel B:

All that tract or parcel of land lying and being in Land Lot No. 28, of the 7th District and 4th Section of Walker County, Georgia, and being more particularly described by a plat of survey prepared by Bakkum-DeLosch & Associates, Inc., dated December 12, 1986, as follows: BEGINNING at the point where the southern right of way line of Black Road intersects the eastern right of way line of Probasco Street: thence along the southerly right of way line of said Black Road the following courses and distances: south 72 degrees 01 minute 42 seconds east, 36.08 feet; south 65 degrees 49 minutes 08 seconds east, 53.55 feet; south 61 degrees 17 minutes 29 seconds east, 57.10 feet; south 74 degrees 00 minutes 07 seconds east, 38.39 feet and north 87 degrees 19 minutes 29 seconds east, 37.68 feet to the westerly right of way line of the Central of Georgia Railroad Company; thence the following courses and distances along the western right of way line of said Central of Georgia Railway Company: south 02 degrees 56 minutes 33 seconds west, 33.98 feet; south 00 degrees 01 minute 06 seconds east, 104.34 feet: south 01 degree 13 minutes 42 seconds east, 101.49 feet; and south 01 degree 45 minutes 48 seconds east, 166.74 feet to an iron pin; thence north 85 degrees 29 minutes 46 seconds west, 221.79 feet to an iron pipe located on the eastern right of way line of said Probasco Street; thence north 00 degrees 58 minutes 46 seconds east, along the eastern right of way line of said Probasco Street, a distance of 461.80 feet to the southeastern corner of the intersection of said Probasco Street and Black Road, and the point of beginning.

Being the same property as conveyed in Deed Book 1370, Page 497, in the Office of the Clerk of the Superior Court of Walker County, Georgia.

Exhibit B

Property Map

Exhibit C

VRP ANNUAL PROPERTY EVALUATION FORM Former Color Spectrum Property, HSI Site No. 10831 29 Probasco Street, LaFayette, Walker County, Georgia Tax Parcel 1023 087

ТҮРЕ	No.	CRITERIA RESPONSE	YES	NO
Land Use	1	Does this VRP property meet the definition of non-residential property as defined in Section 391-3-19.02(2) of the Rules? "Non-residential property means any property or portion of a property not currently being used for human habitation or for other purposes with a similar potential for human exposure, at which activities have been or are being conducted that can be categorized in one of the 1987 Standard Industrial Classification major group"		
	la	If no to 1, provide an explanation including a residential vapor intrusion exposure pathway evaluation to the EPD.		
Exposure	2	Has groundwater beneath the property been used or extracted for drinking water or any other non-remedial purpose?		
	2a	If yes to 2, use should be immediately terminated and a revised corrective action plan (CAP) that describes the actions necessary to bring the site's groundwater into compliance with appropriate risk reduction standards provided to EPD within 30 days.		
Property Instruments	3	Do all leases or other property instruments for the site have the applicable deed notice language inserted into them?		
	3a	If no to 3, provide a written explanation (attached) to the EPD.		

Certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

NAME (Please type or print)

TITLE

SIGNATURE

DATE

APPENDIX B

Groundwater Model

Figure

Tables

Mechanism	Parameter	Value	Units			Basis			
Advection	Hydraulic Conductivity	1.10E-04	cm/s	Average hydraulic conductivity presented in the 2009 Revised CSR (EF				(EPS, 2009)	
	Hydraulic Gradient	0.015 ft/ft		Based on MW-10 to MW-13					
	Effective Porosity	0.15	unitless	Typical value for lithological formation (EPA, 2000) and used historically for the Pro-					
Dispersion	Alpha X	6.2711	ft/ft						
	Alpha Y/Alpha X		unitless						
	Alpha Z/Alpha X	5.00E-02		EPA model defa	ult				
Adsorption	Soil Bulk Density	1.7	kg/L	EPA model defa	ult				
	Fraction Organic Carbon	0.001	unitless	EPA model defa	ult				
	Organic Carbon Partitioning Coefficients								
	PCE	426	L/kg	EPA model defa	ult				
	TCE	130	L/kg	EPA model defa	ult				
	DCE	125	L/kg	EPA model defa	ult				
	VC	30	L/kg	EPA model defa	ult				
	Ethenes	302	L/kg	EPA model defa	ult				
	Retardation Factor	2.47		Calcualted based	l on above value	es			
Biotransformation	1st Order Decay Coefficients	0 1/yr							
General	Simulation Time	varies	yr	Assuming the so	urce began in 19	980			
	Modeled Area Width	700 ft		Assumption					
	Modeled Area Length	250	ft	Distance to strea	m				
	Zone length	250	ft	Assuming one-zone					
Source Contribution	Туре	Continuous		Assumes continuous source concentrations throughout time Approximate thickness of aquifer					
	Source Thickness in Saturated Zone	15	ft						
	Source Width	0.3	ft	Based on model	calibration				
	Source Concentrations								
	PCE	0.35	mg/L	Based on model	calibration				
				Analytical Results (mg/L)					
Well Along Flow Path	Distance Downgradient of Source (ft)	2006	2007	2009	2011	2013	2014		
						0.12, 0.12, 0.16,			
MW-10	0			0.054, 0.042	0.13, 0.12	0.14, 0.15			
MW-3	39	0.0087	0.0076		0.0052				
						<0.005, 0.0073,			
MW-13	74					0.0086, 0.007			
MW-14	154						< 0.00039		

Table A. Input Parameters for the BIOCHLOR Model - Flow Path A

EPA,2000: BIOCHLOR Natural Attenuation Decision Support System. User's Manual Version 1.0 USEPA. January 2000 EPA,2002: BIOCHLOR Natural Attenuation Decision Support System. User's Manual Addendum. USEPA. March 2002.

Mechanism	Parameter	Value	Units			Basis	
Advection	Hydraulic Conductivity	1.10E-04	cm/s	Average hydraulic conductivity presented in the 2009 Revised CSR (EPS, 2009)			
	Hydraulic Gradient	0.02	ft/ft	Based on MW-7 to MW-12			
	Effective Porosity	0.15	0.15 unitless Typical value for lithological formation (EPA, 2000) and used			1 (EPA, 2000) and used historically for the Property	
Dispersion	Alpha X	6.2711	ft/ft	Modified Xu Eckstein (L approx 85 ft)			
	Alpha Y/Alpha X	0.1	unitless	EPA model defaul	t		
	Alpha Z/Alpha X	5.00E-02	unitless	EPA model defaul	t		
Adsorption	Soil Bulk Density	1.7	kg/L	EPA model defaul	t		
	Fraction Organic Carbon	0.001	unitless	EPA model defaul	t		
	Organic Carbon Partitioning Coefficients						
	PCE	426	L/kg	EPA model defaul	t		
	TCE	130	L/kg	EPA model defaul	t		
	DCE	125	L/kg	EPA model defaul	t		
	VC	30	L/kg	EPA model defaul	t		
	Ethenes	302	L/kg	EPA model defaul	t		
	Retardation Factor	2.47	-	Calcualted based of	n above values		
Biotransformation	1st Order Decay Coefficients	0	1/yr				
General	Simulation Time	varies	yr	Assuming the sour	ce began in 1980		
	Modeled Area Width	700	ft	Assumption Distance to stream			
	Modeled Area Length	154	ft				
	Zone length	154	ft	Assuming one-zone			
Source Contribution	Туре	Continuous		Assumes continuous source concentrations throughout time			
	Source Thickness in Saturated Zone	15	ft	Approximate thick	ness of aquifer		
	Source Width	0.2	ft	Based on model ca	libration		
	Source Concentrations						
	PCE	0.35 mg/L		Based on model calibration			
			Analyti	cal Results (mg/L)			
Well Along Flow Path	Distance Downgradient of Source (ft)	2007	2009	2011	2013		
					0.12, 0.12, 0.16,		
MW-10	0		0.054, 0.042	0.13, 0.12	0.14, 0.15		
MW-7	32	< 0.005		0.0086			
					<0.00047,		
					<0.00047,		
					<0.00047,		
MW-12	139				< 0.00047		

Table B. Input Parameters for the BIOCHLOR Model - Flow Path B

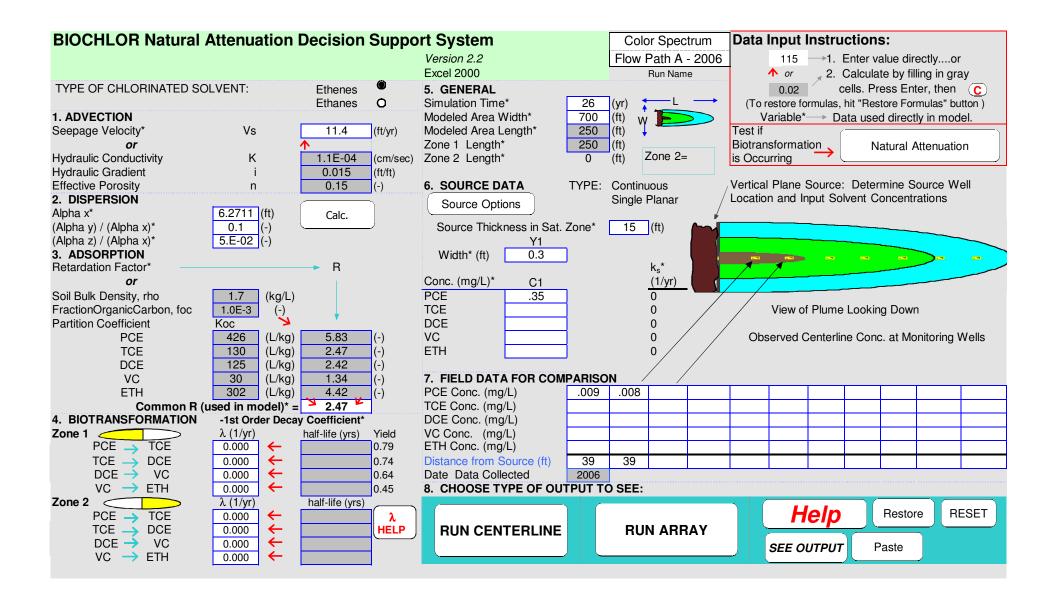
EPA,2000: BIOCHLOR Natural Attenuation Decision Support System. User's Manual Version 1.0 USEPA. January 2000 EPA,2002: BIOCHLOR Natural Attenuation Decision Support System. User's Manual Addendum. USEPA. March 2002.

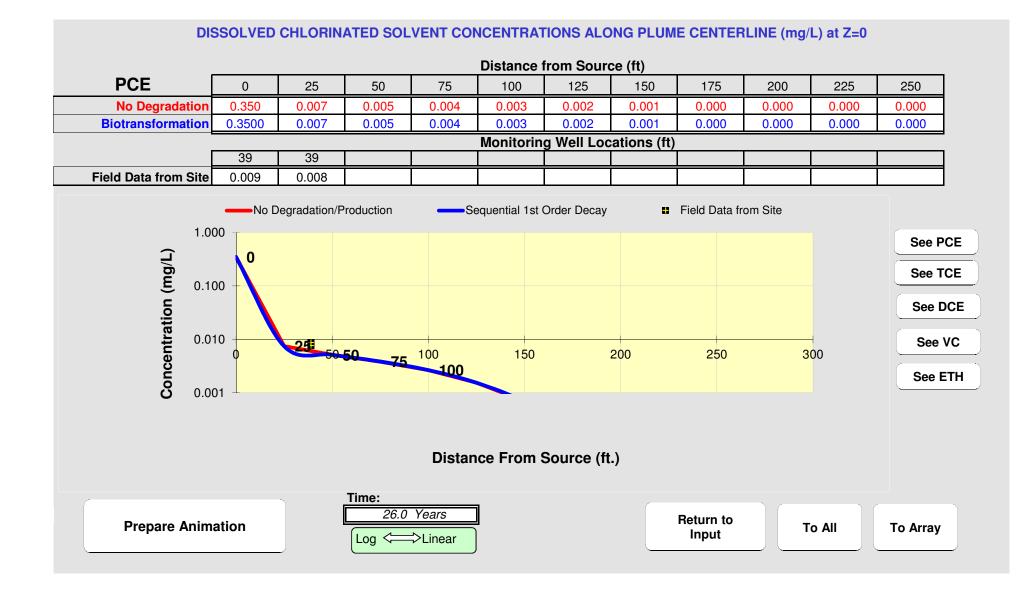
Table C. Sensitivity Analysis (Year 2013)

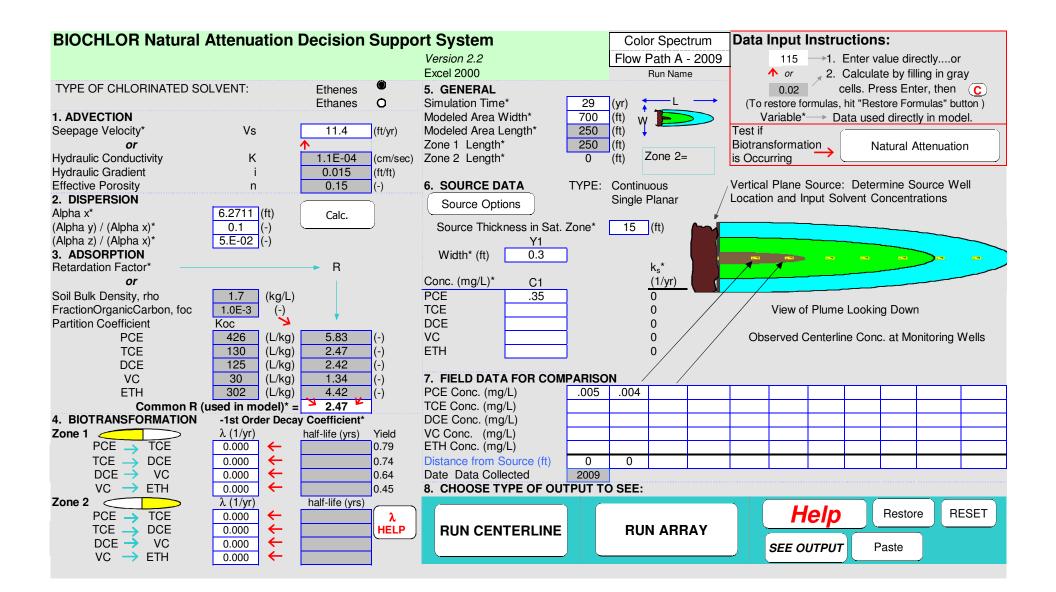
Source Width

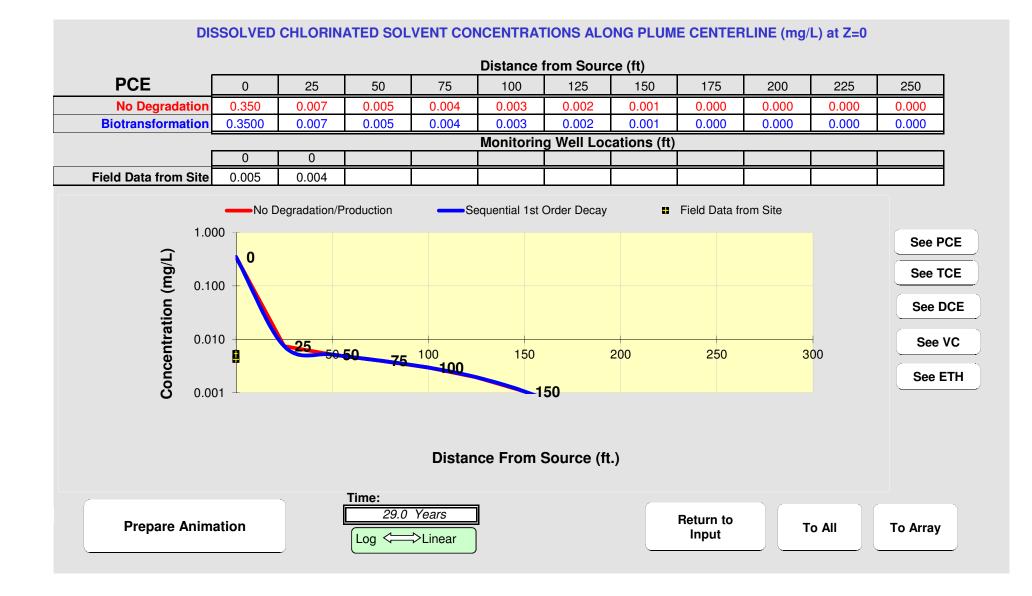
	PCE Concentrations (mg/L)						
	Actual Concentration	w=0.01	w=0.3 (Baseline)	w=1	w=5		
	<0.005, 0.007,		(Dusenne)	,, - 1	0		
Flow Path A at MW-13 (74 ft)	0.0073, 0.0086	0	0.004	0.014	0.068		
Flow Path A at MW-14 (154 ft)	< 0.00039	0	0.002	0.005	0.025		
	<0.00047, <0.00047,						
Flow Path B at MW-12 (139 ft)	<0.00047, <0.00047	0	0.002	0.0085	0.043		

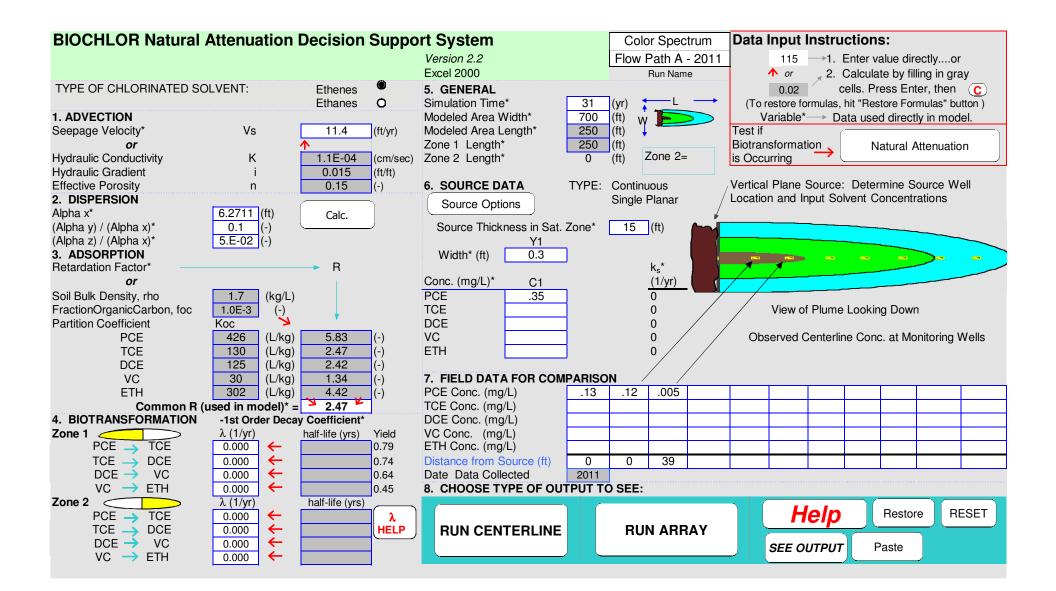
Source Concentration

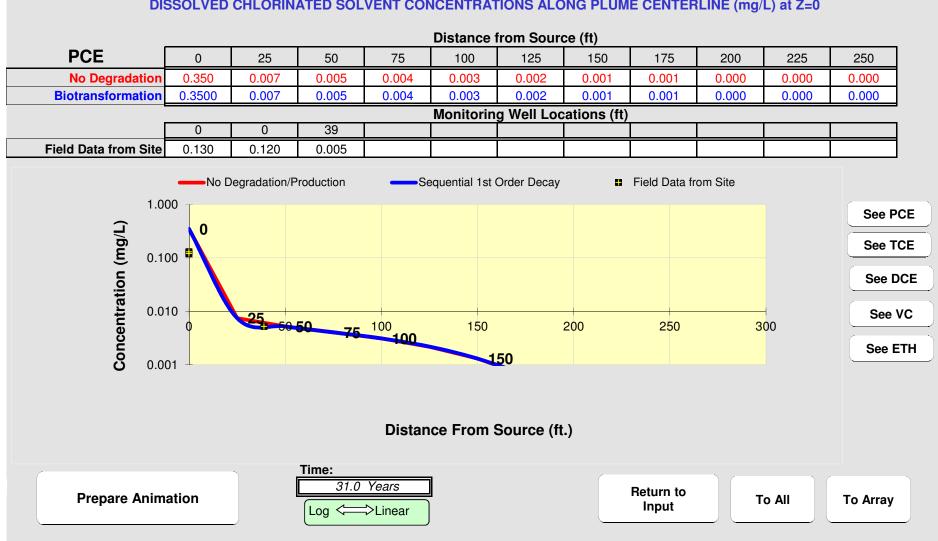

	PCE Concentration (mg/L)						
	Actual		C=0.35				
	Concentration	C=0.1	(Baseline)	C=0.75			
	<0.005, 0.007,						
Flow Path A at MW-13 (74 ft)	0.0073, 0.0086	0.001	0.004	0.009			
Flow Path A at MW-14 (154 ft)	< 0.00039	0	0.002	0.0025			
	<0.00047, <0.00047,						
Flow Path B at MW-12 (139 ft)	<0.00047, <0.00047	0	0.002	0.004			

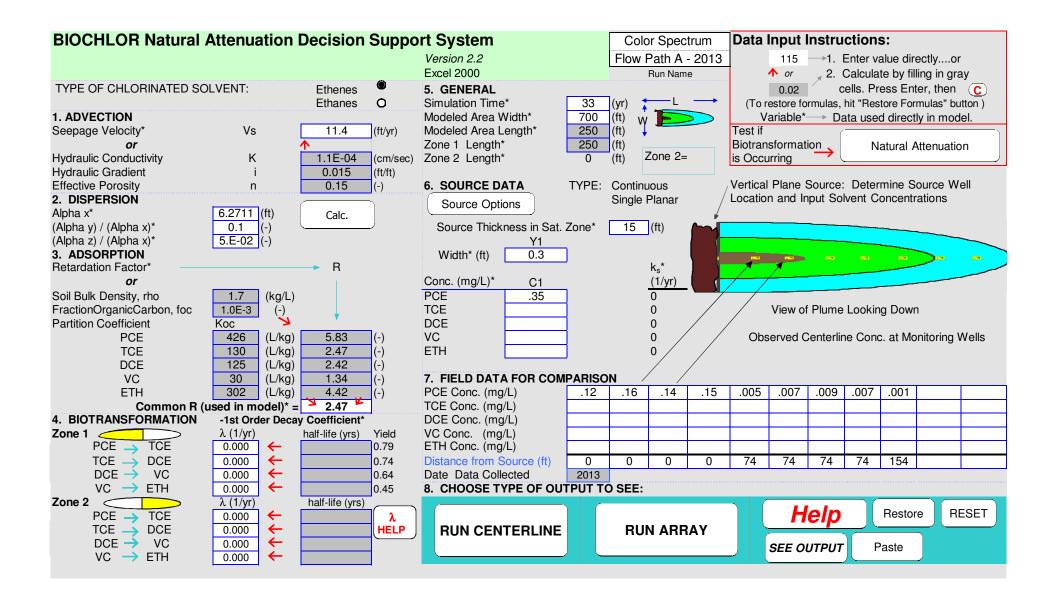


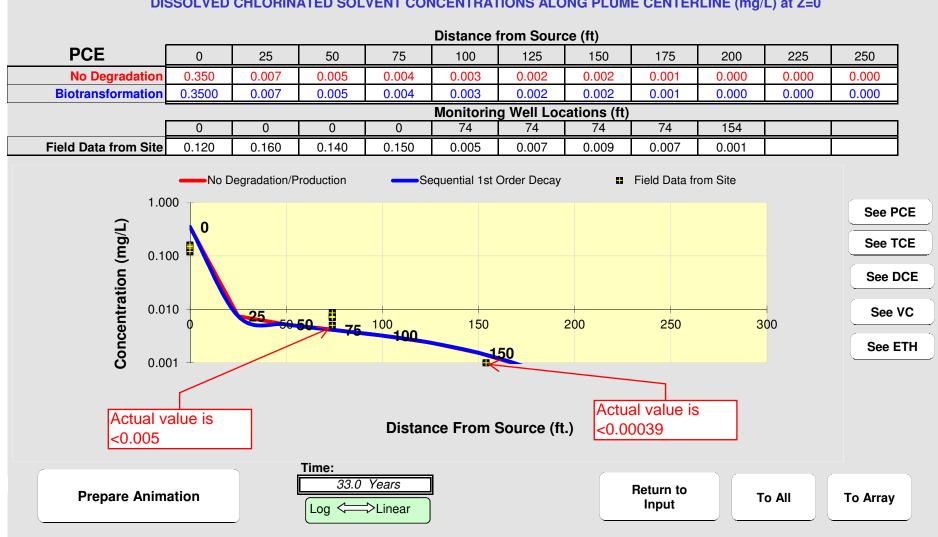

BIOCHLOR Model

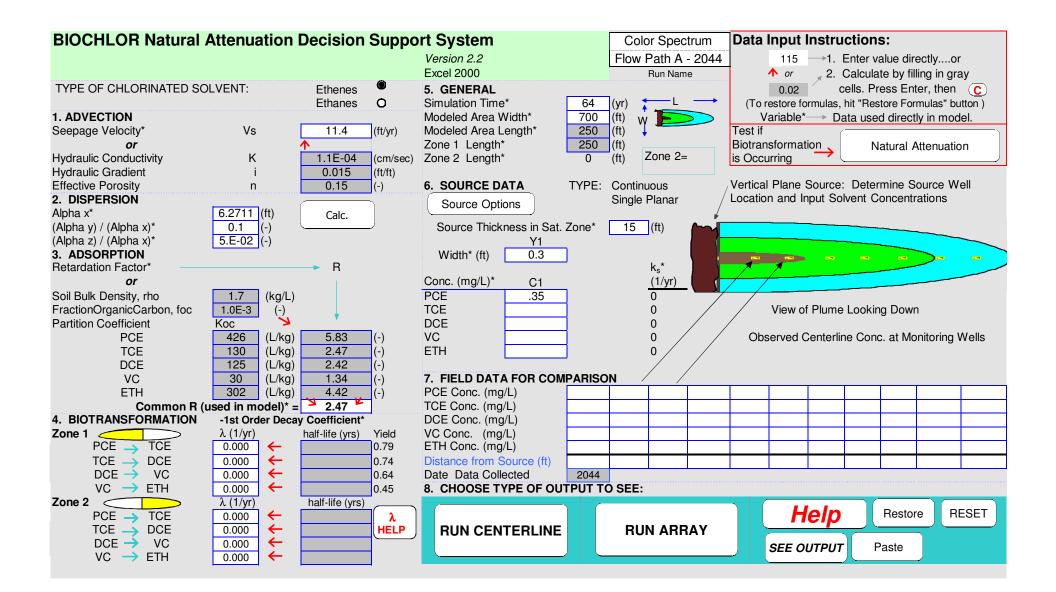

Input/Output Screens

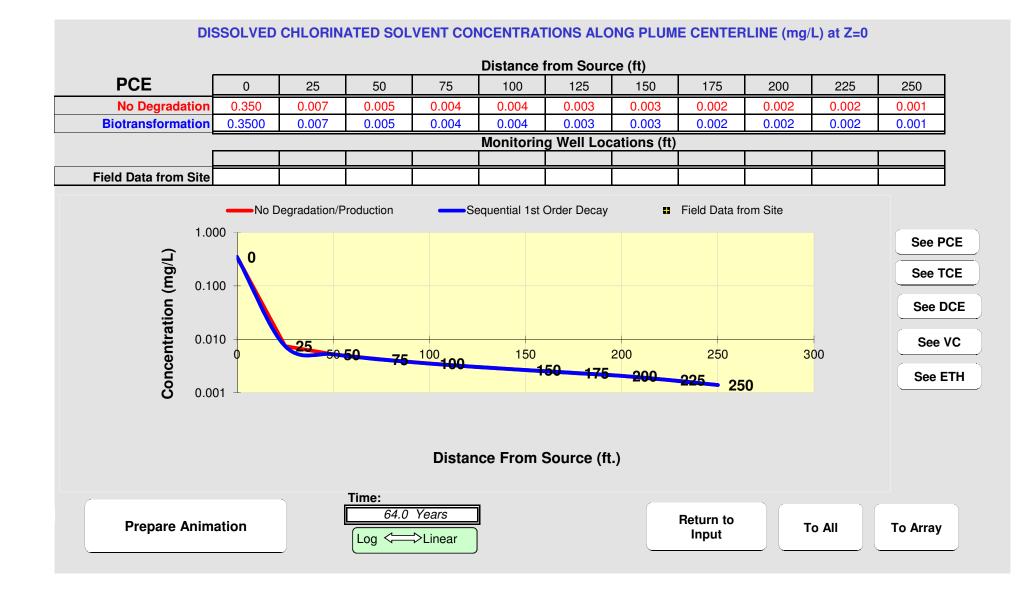

Flow Path A



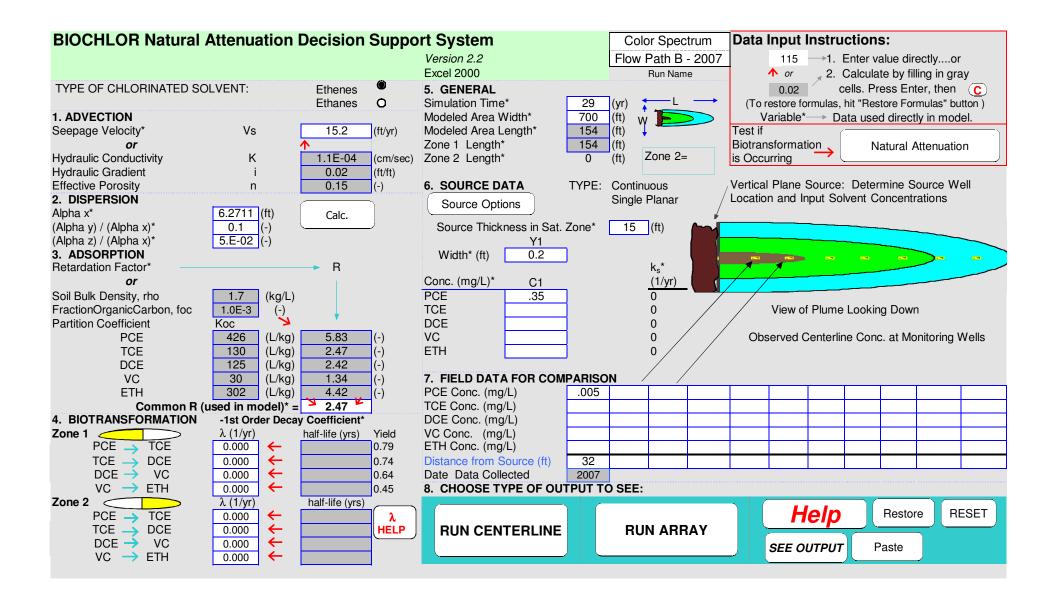


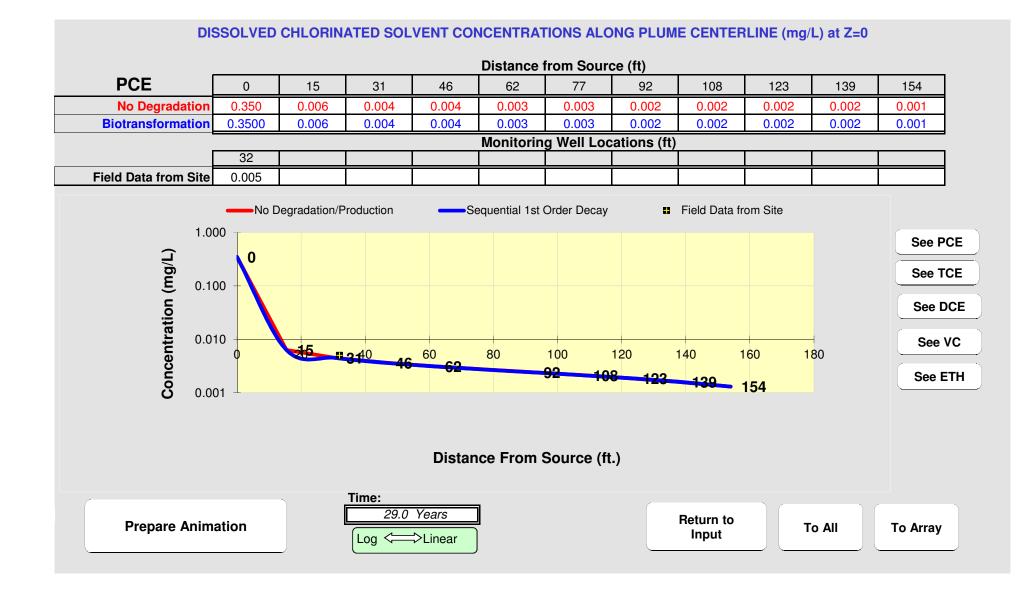


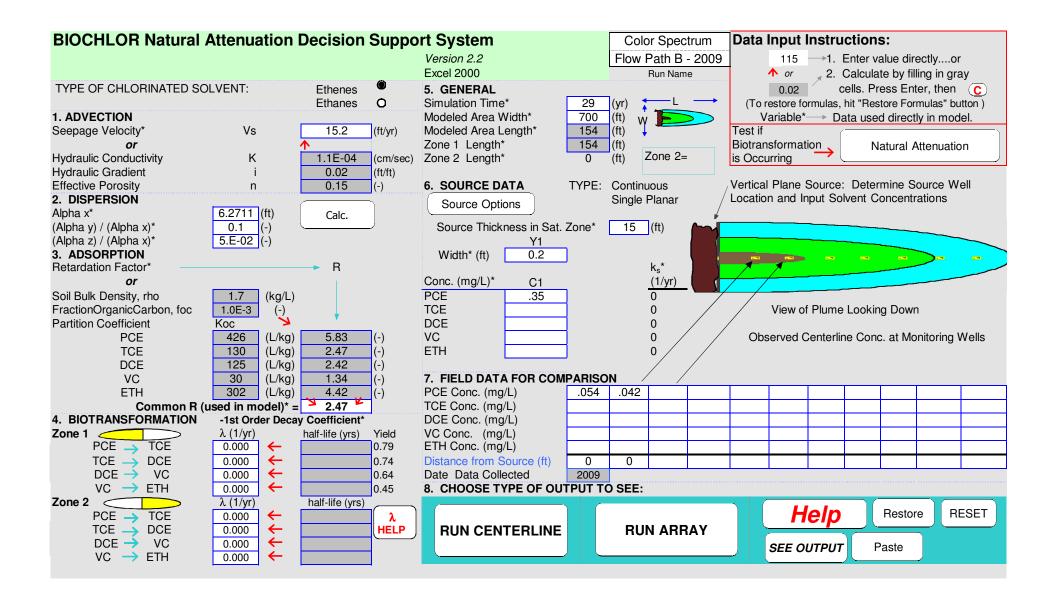


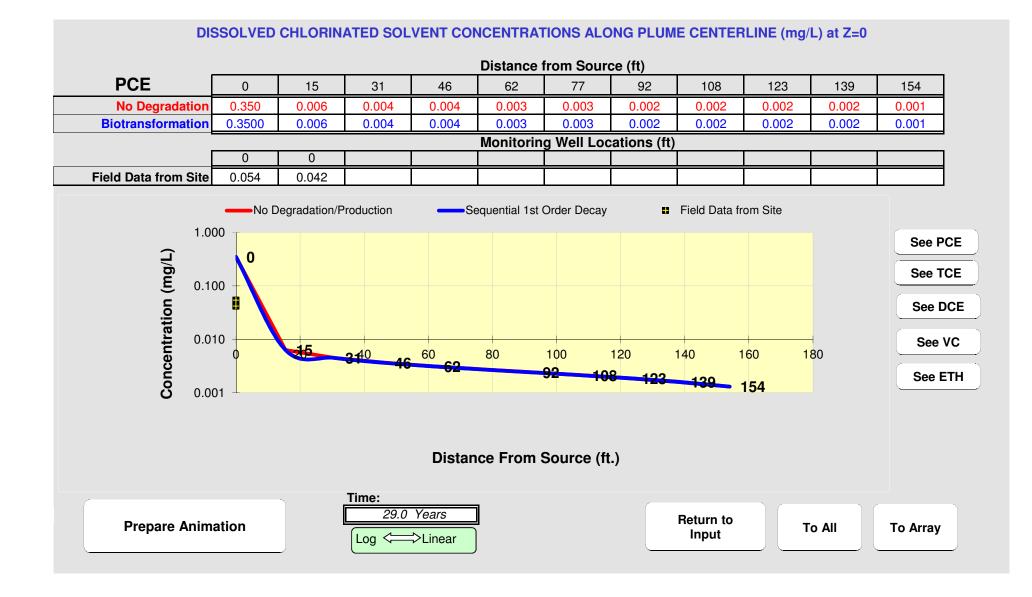

DISSOLVED CHLORINATED SOLVENT CONCENTRATIONS ALONG PLUME CENTERLINE (mg/L) at Z=0

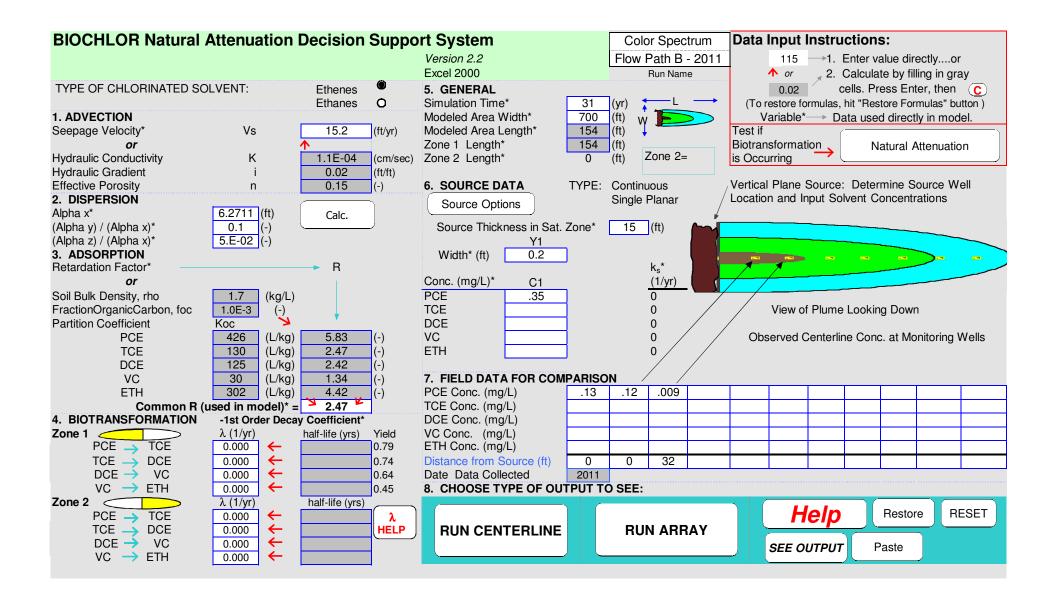
DISSOLVED CHLORINATED SOLVENT CONCENTRATIONS ALONG PLUME CENTERLINE (mg/L) at Z=0

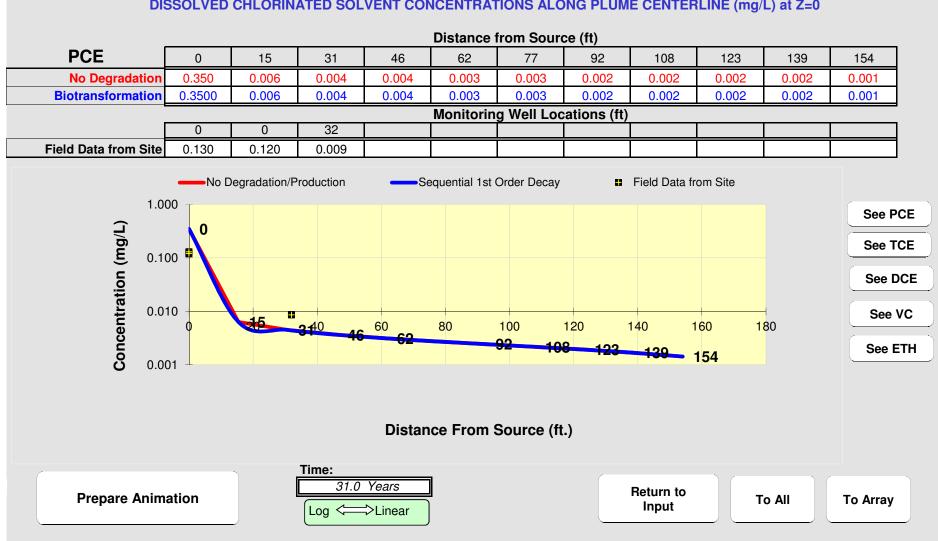


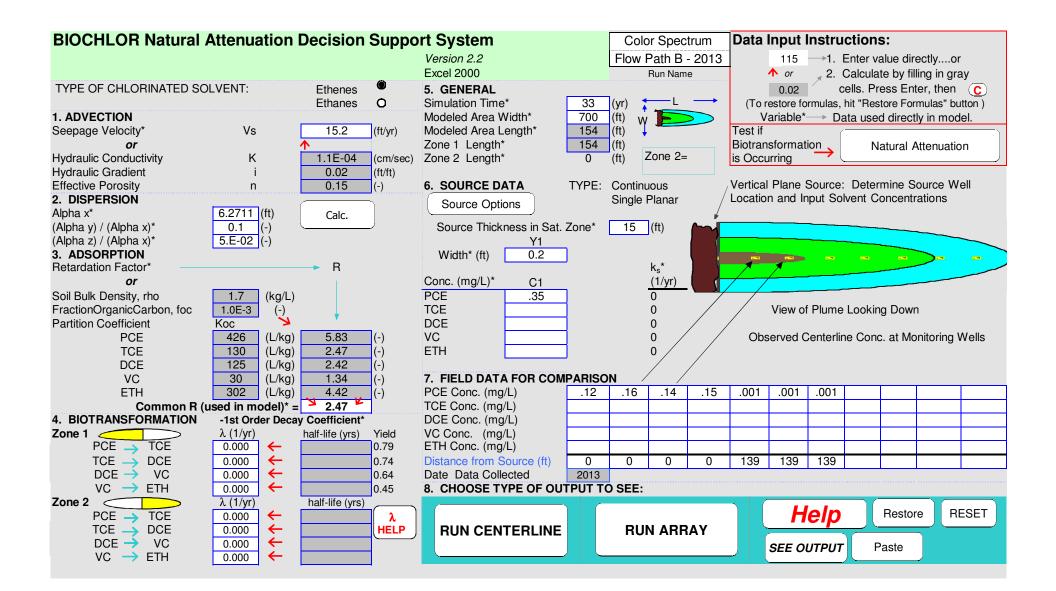


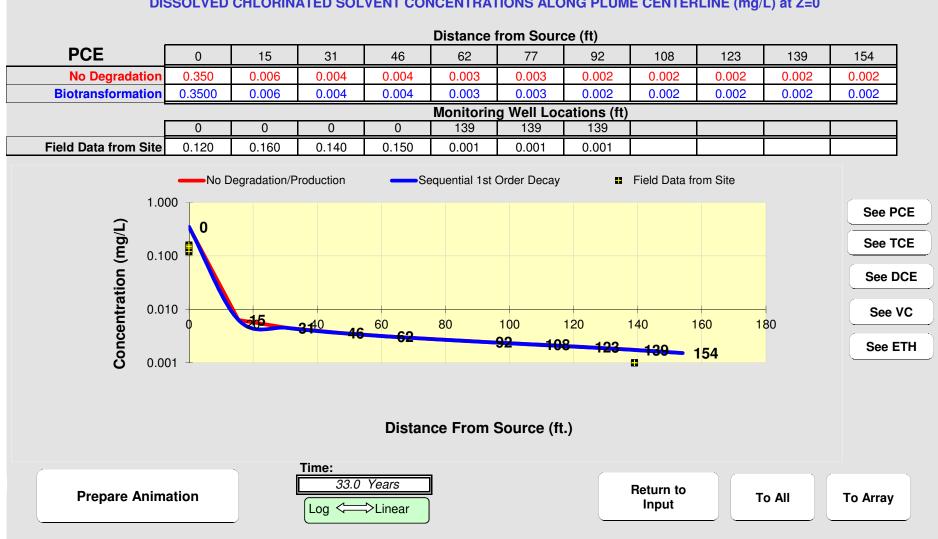


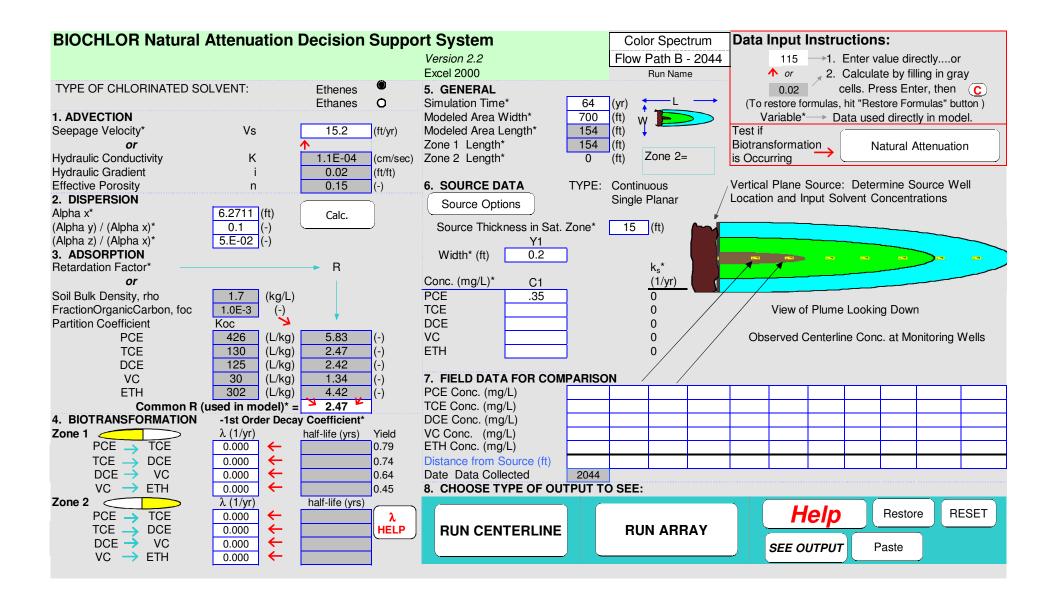

BIOCHLOR Model Input/Output Screens

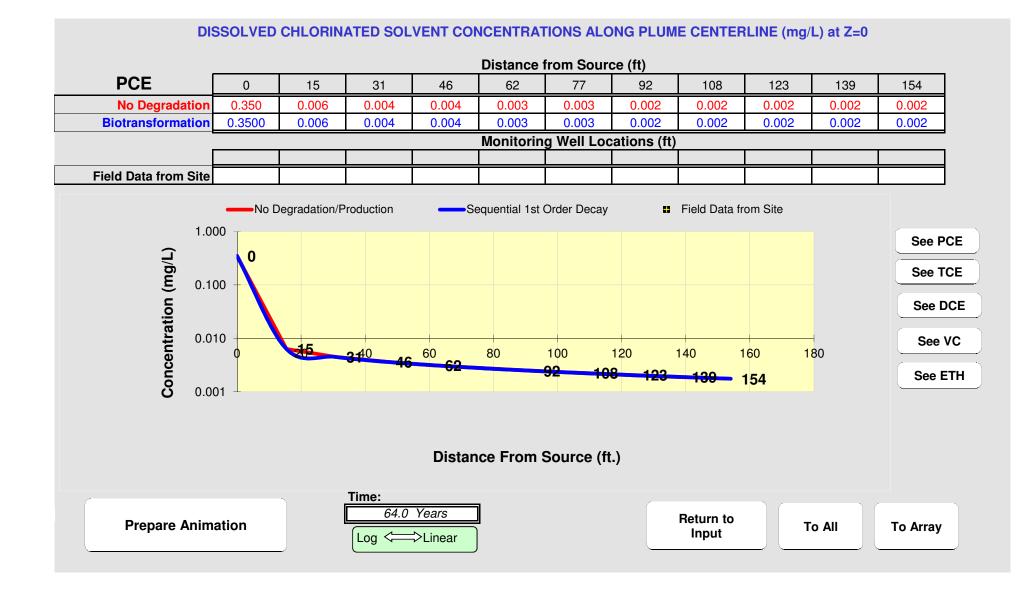

Flow Path B

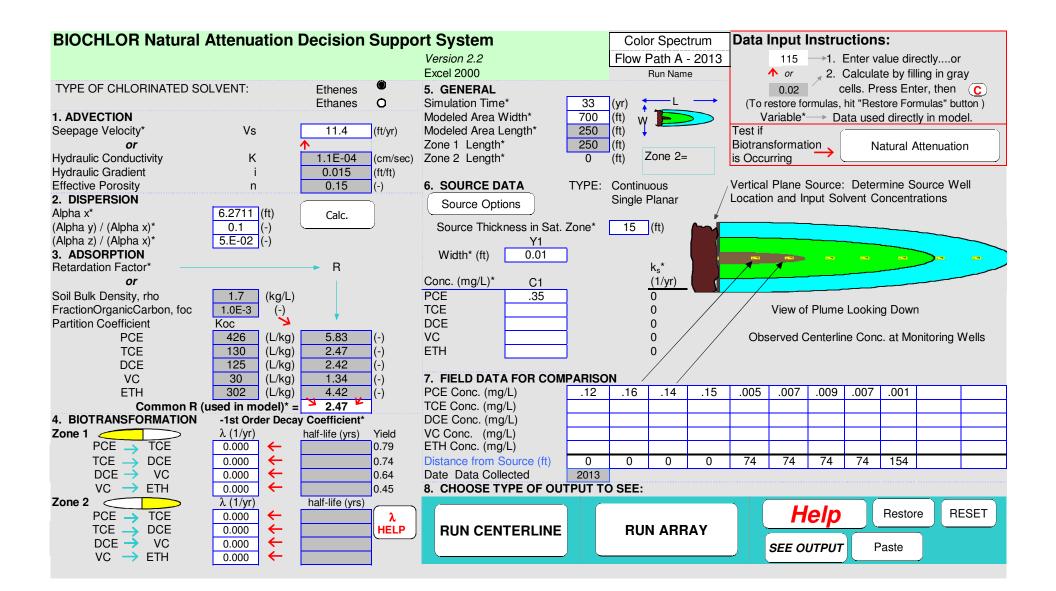


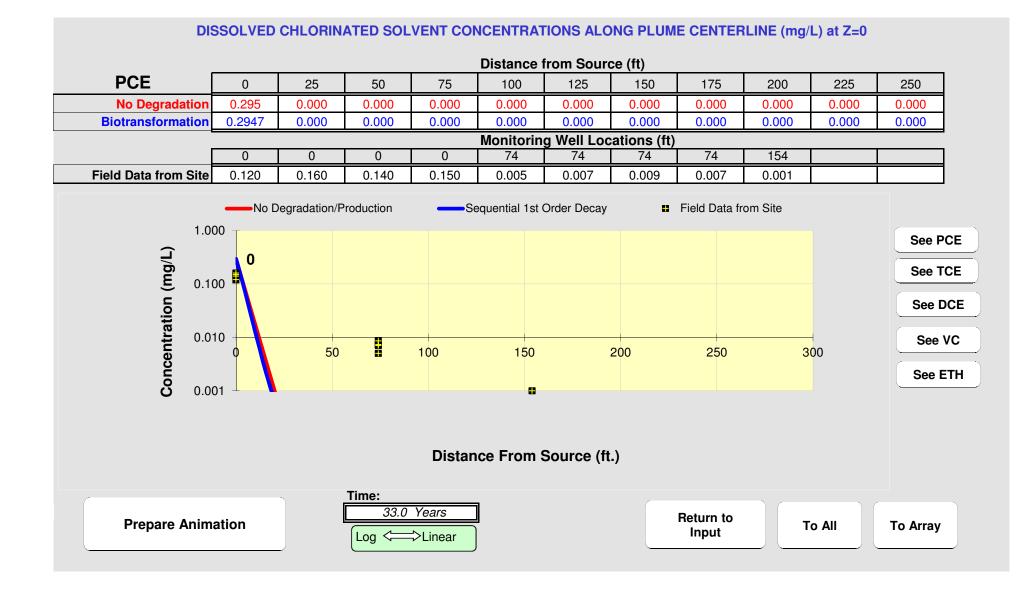


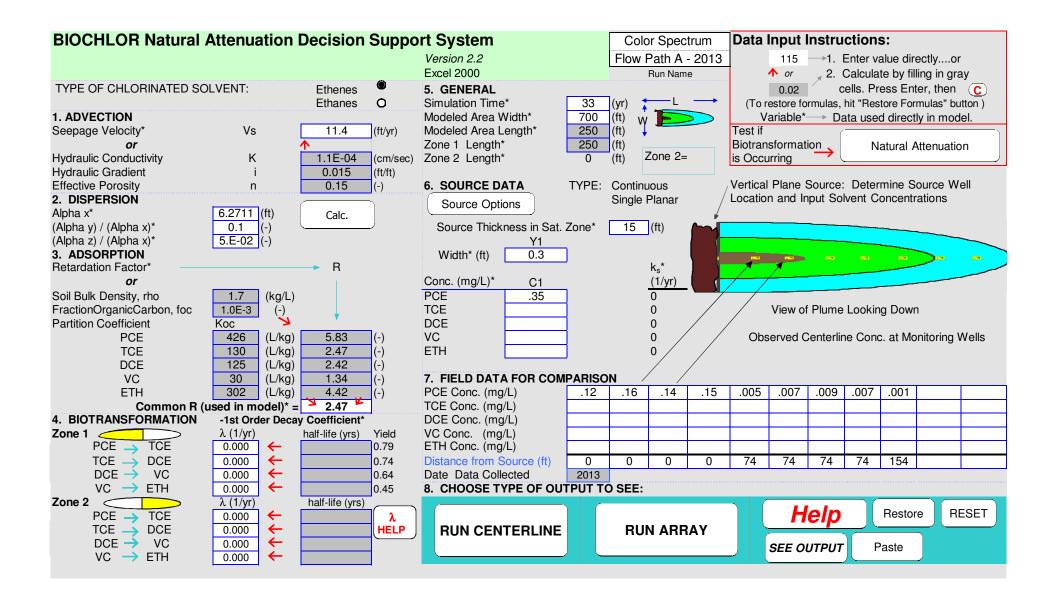


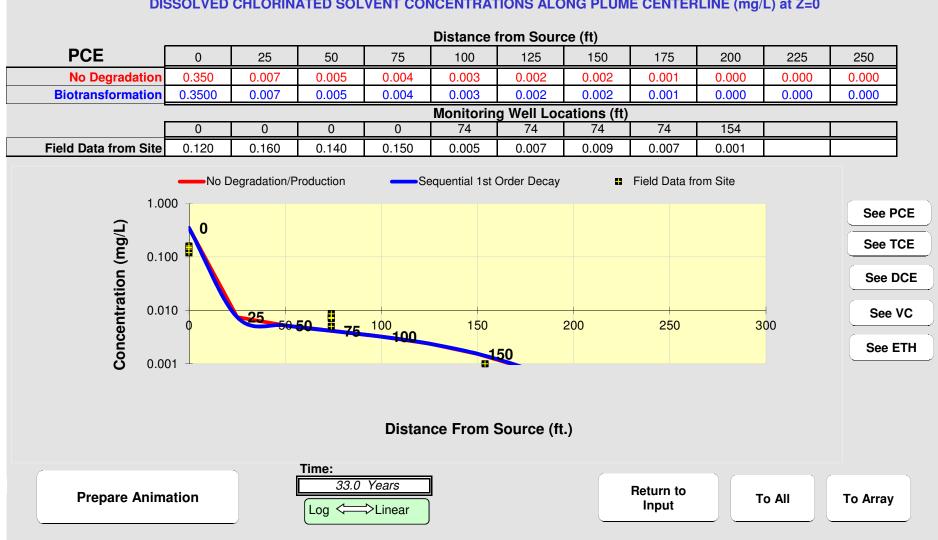


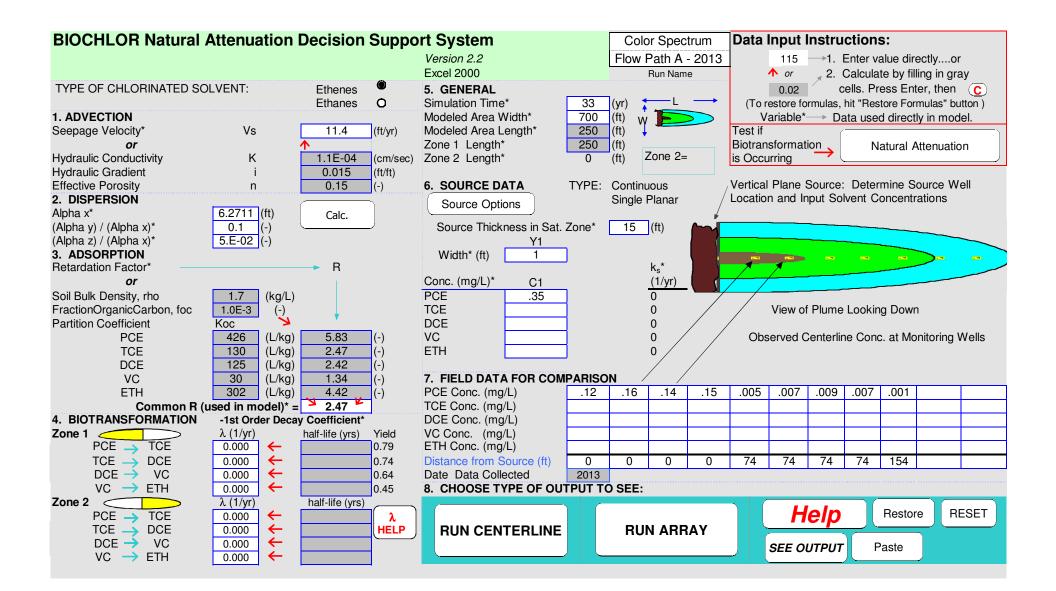


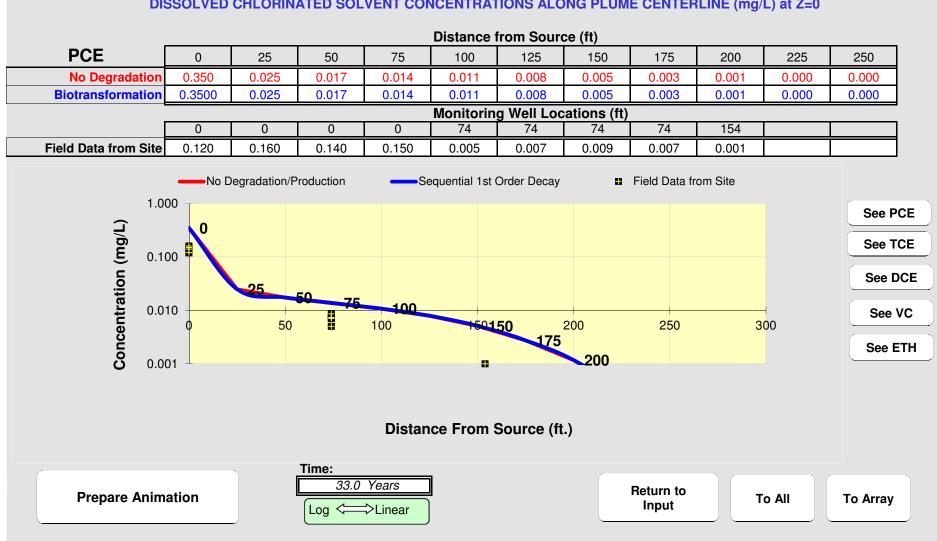


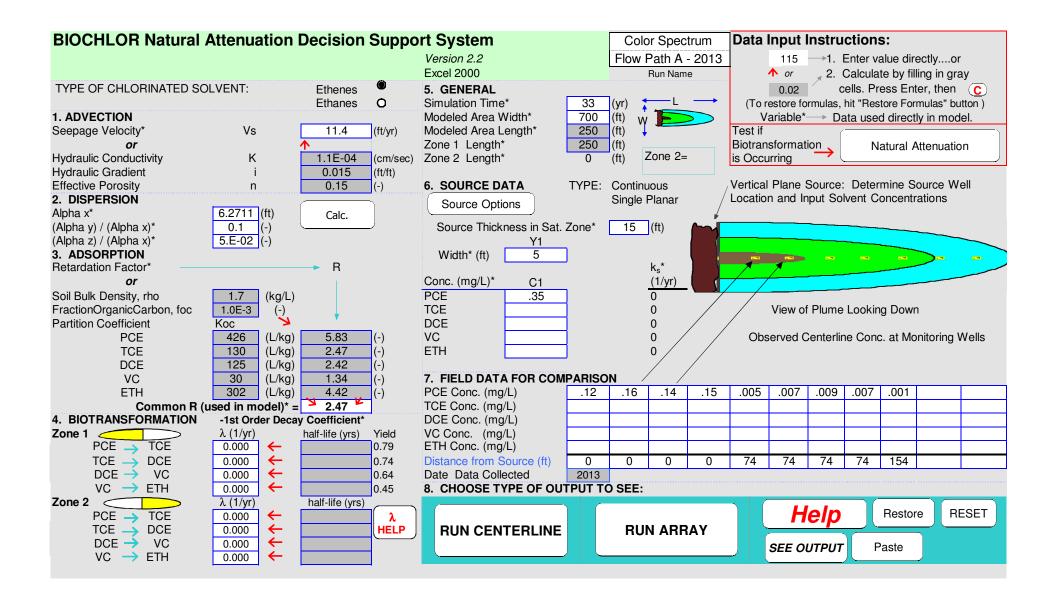


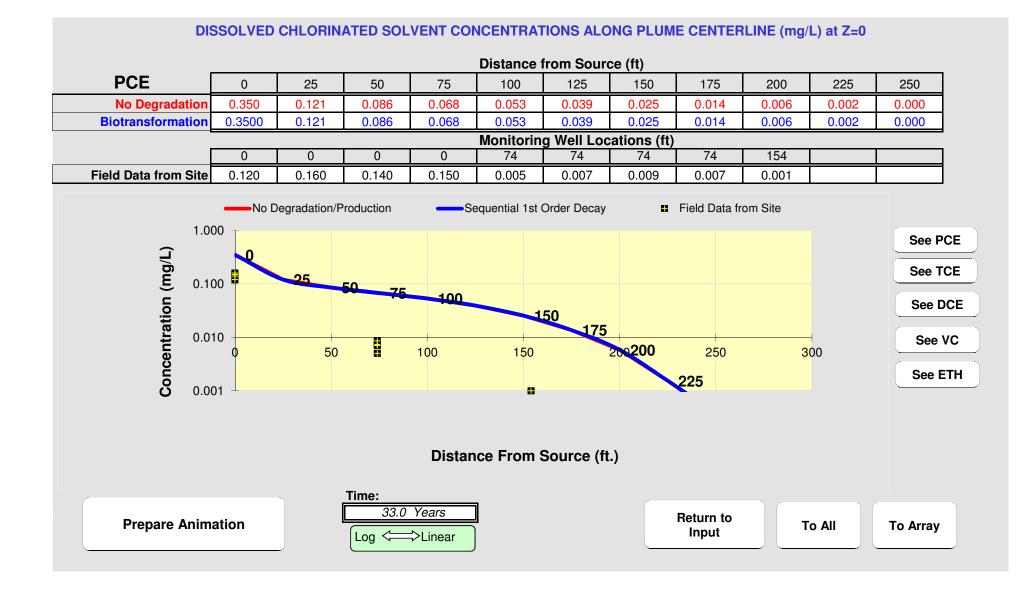

Sensitivity Analysis

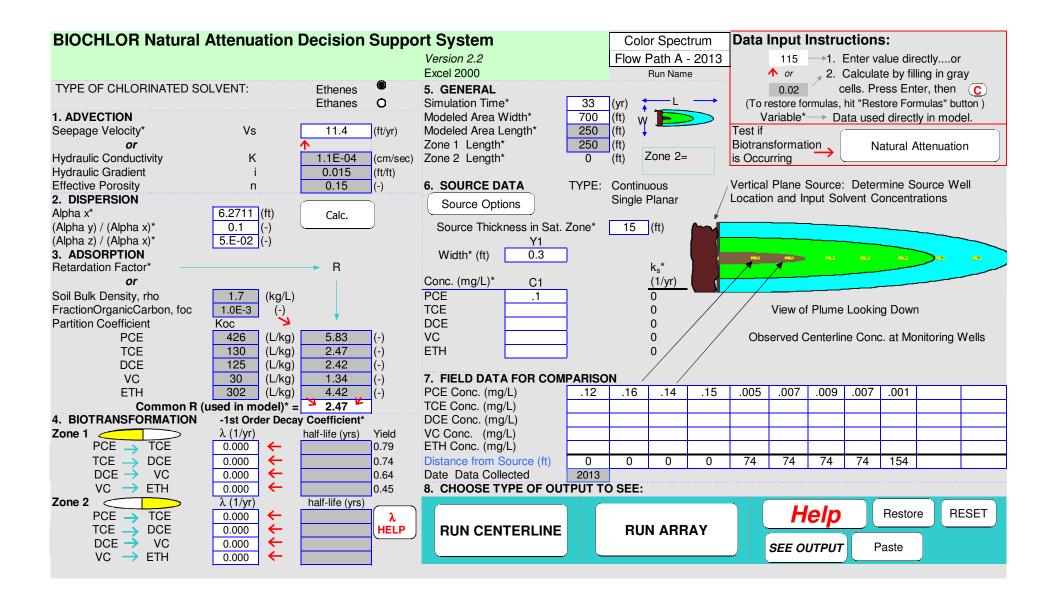

Input/Output Screens

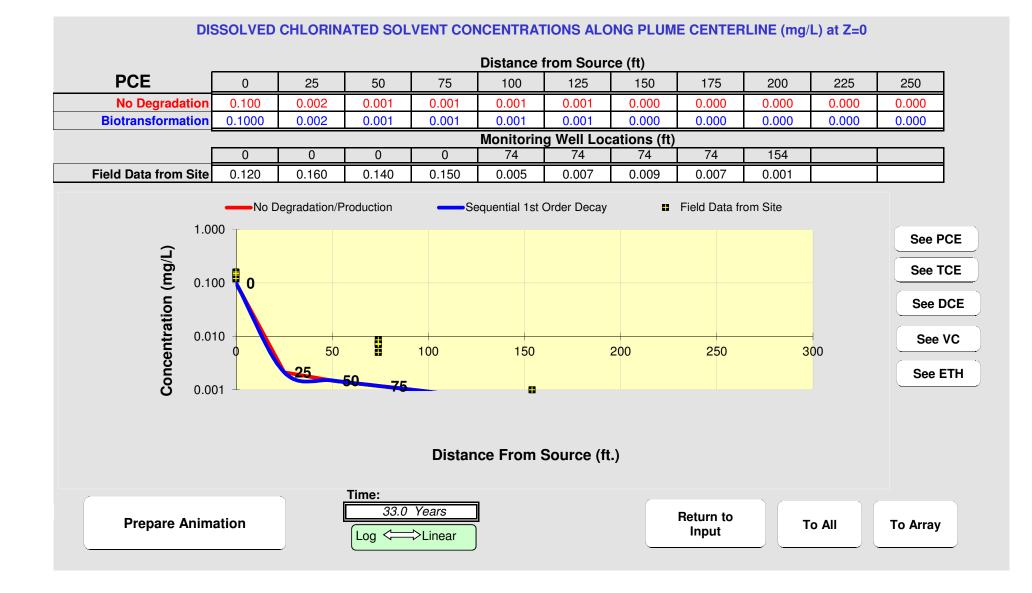

Flow Path A

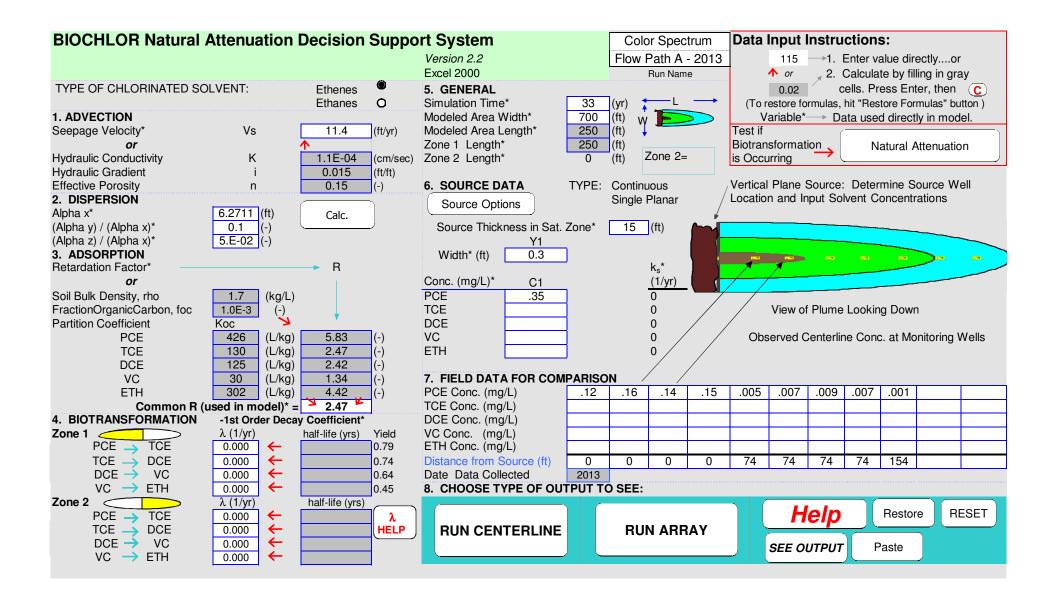


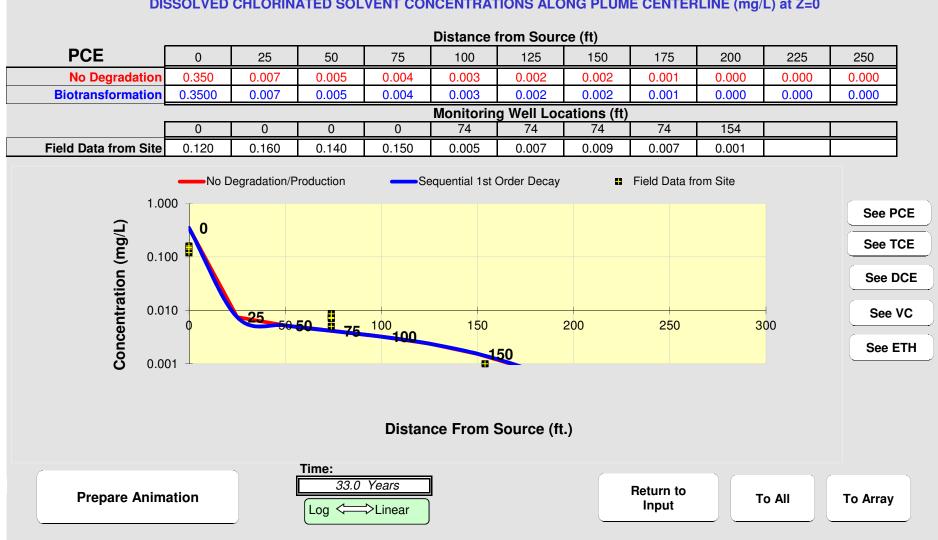


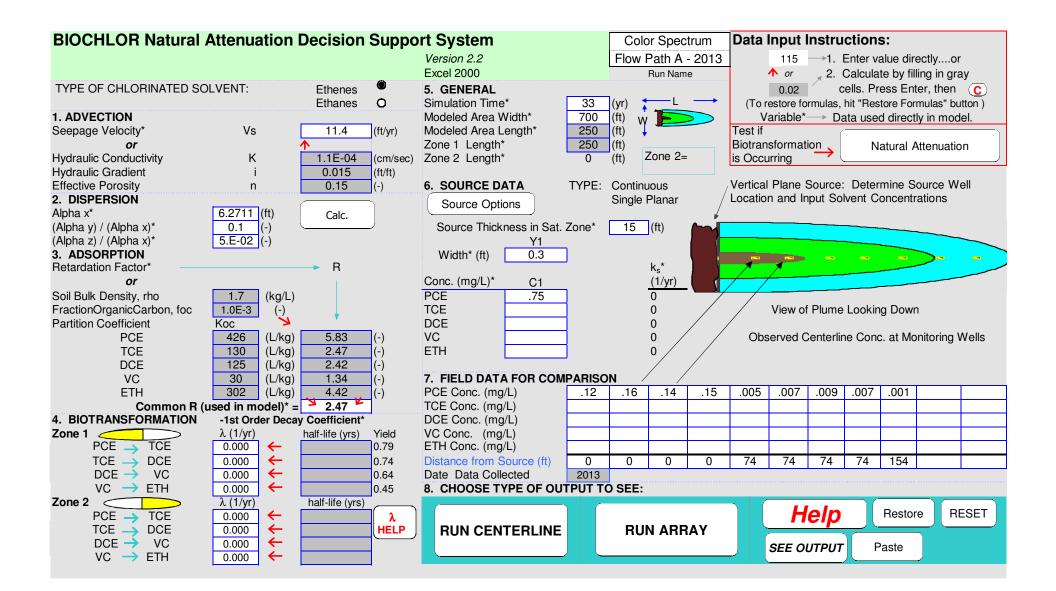


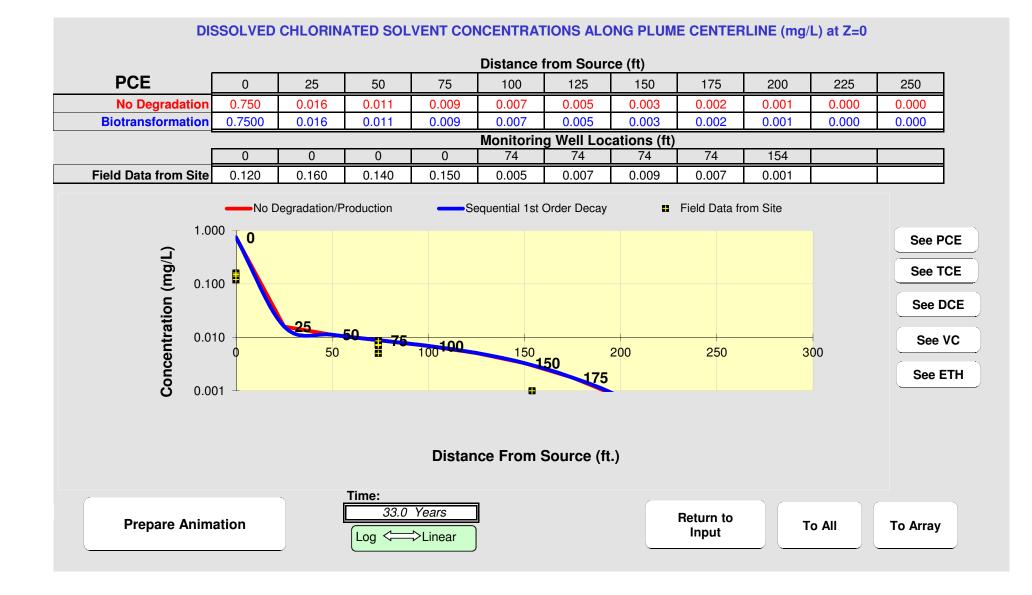


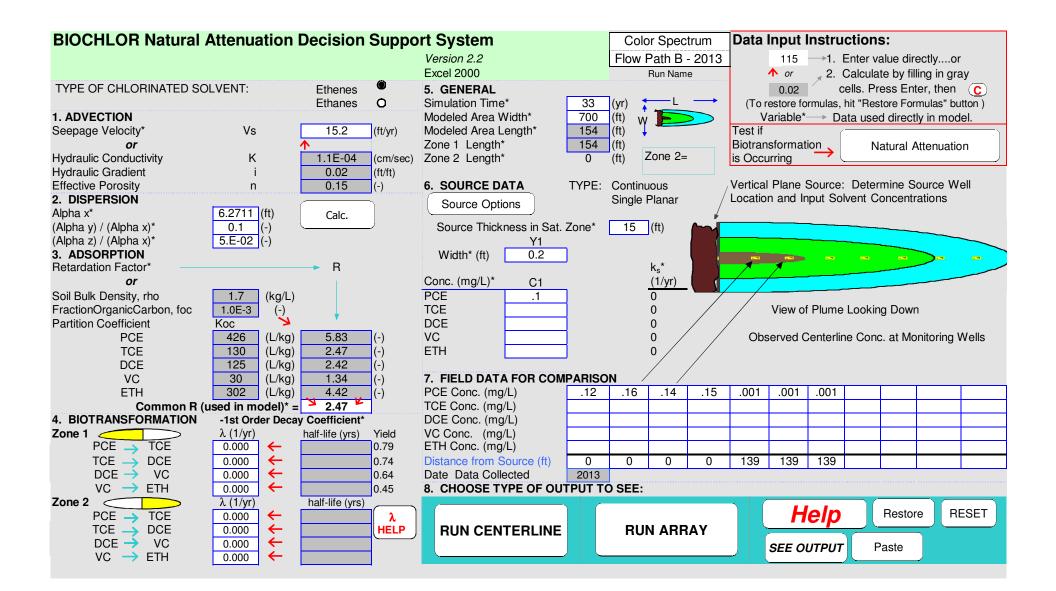


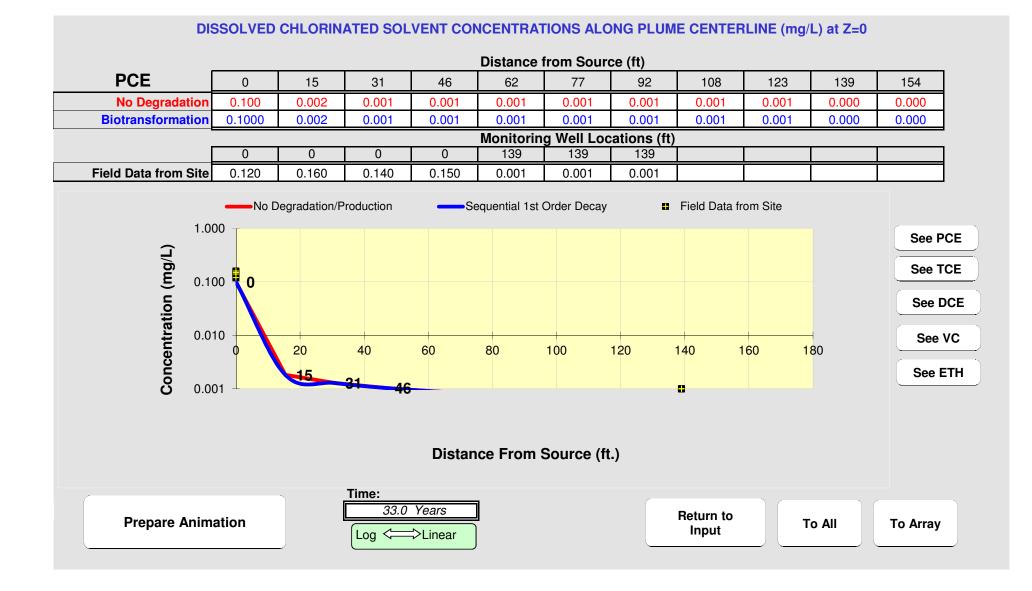


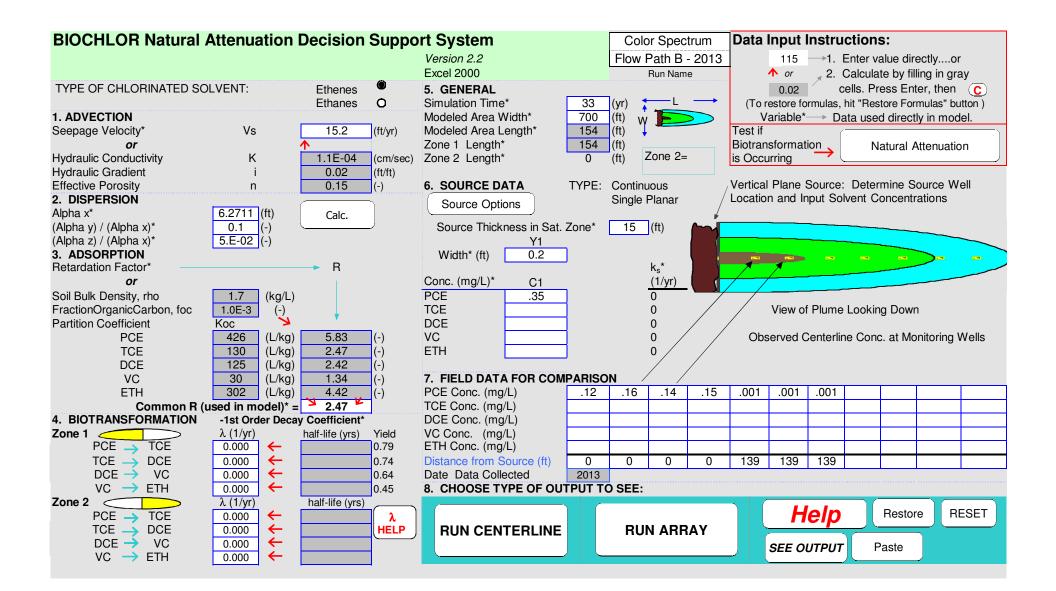


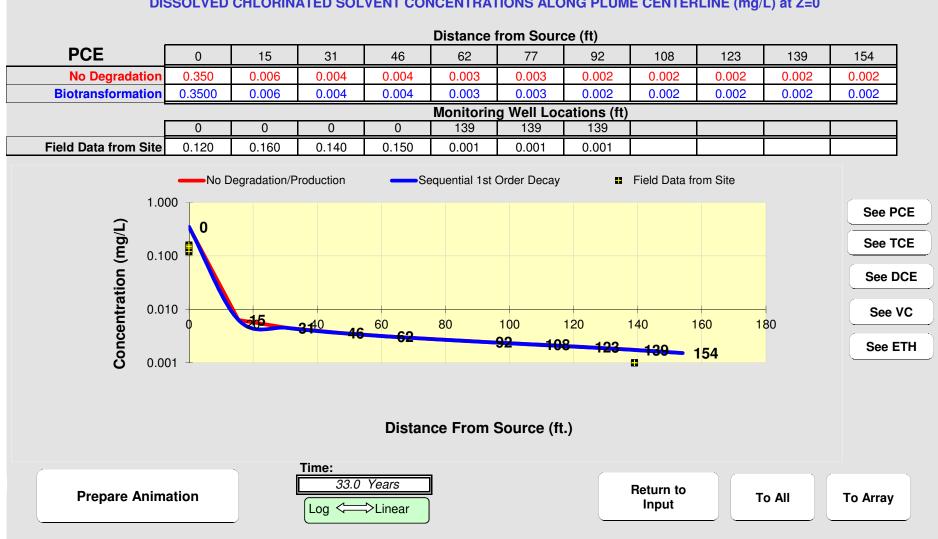


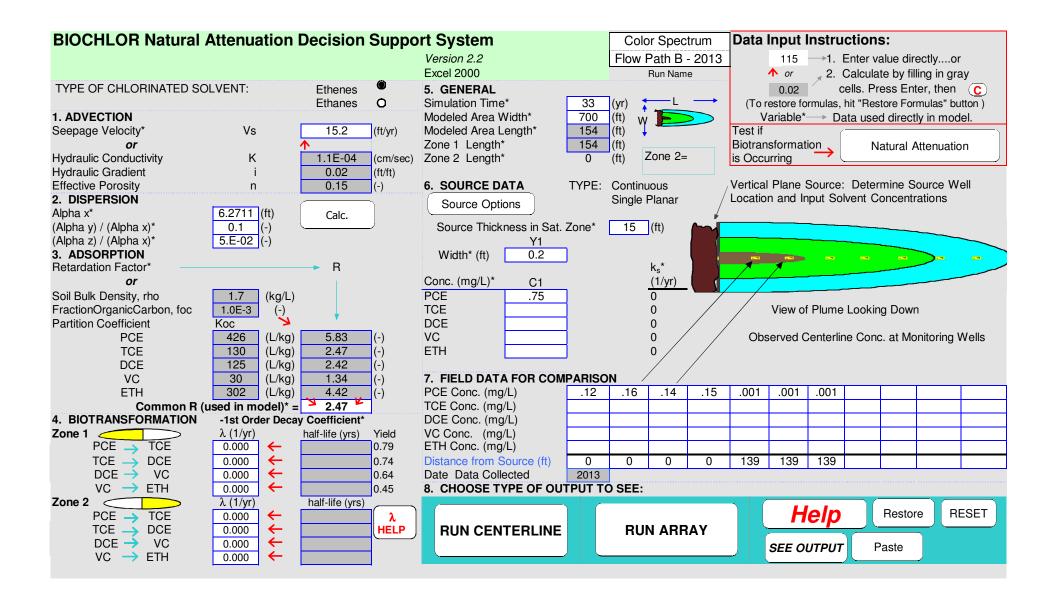


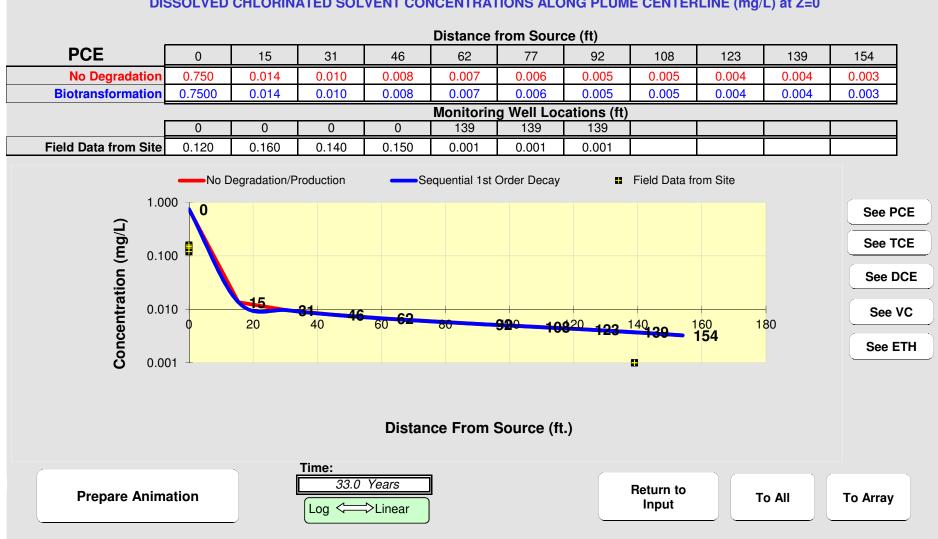


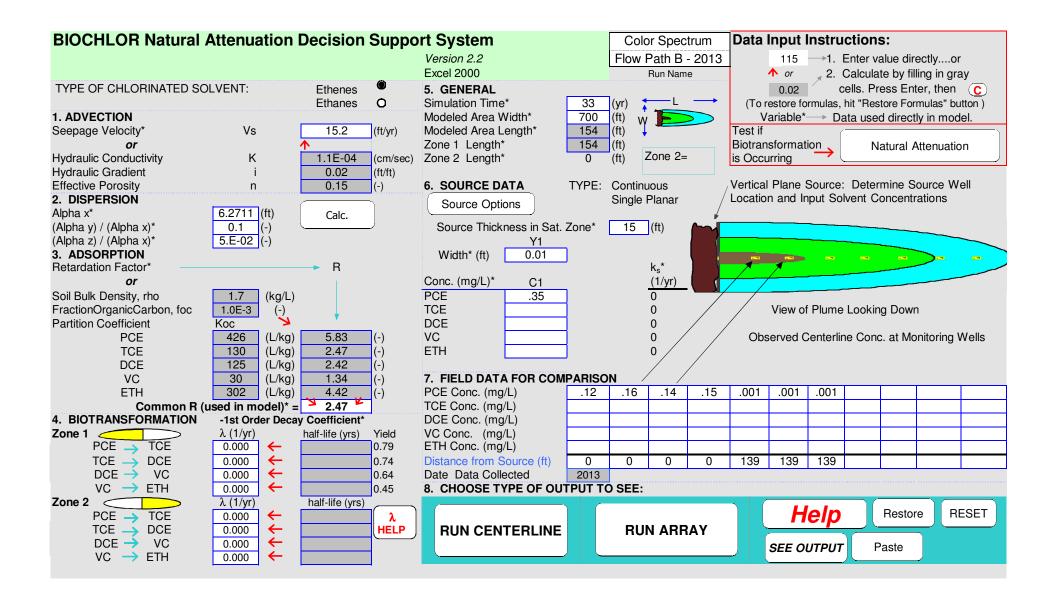


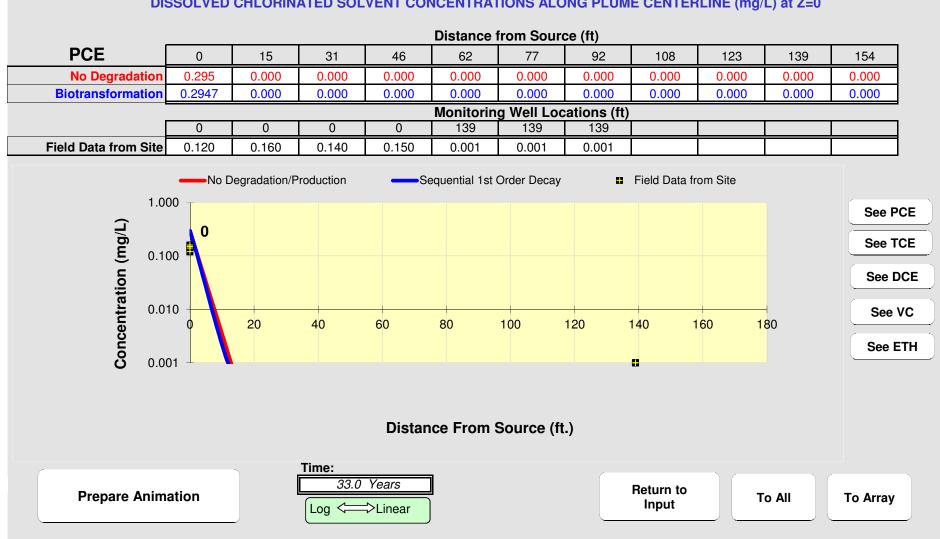


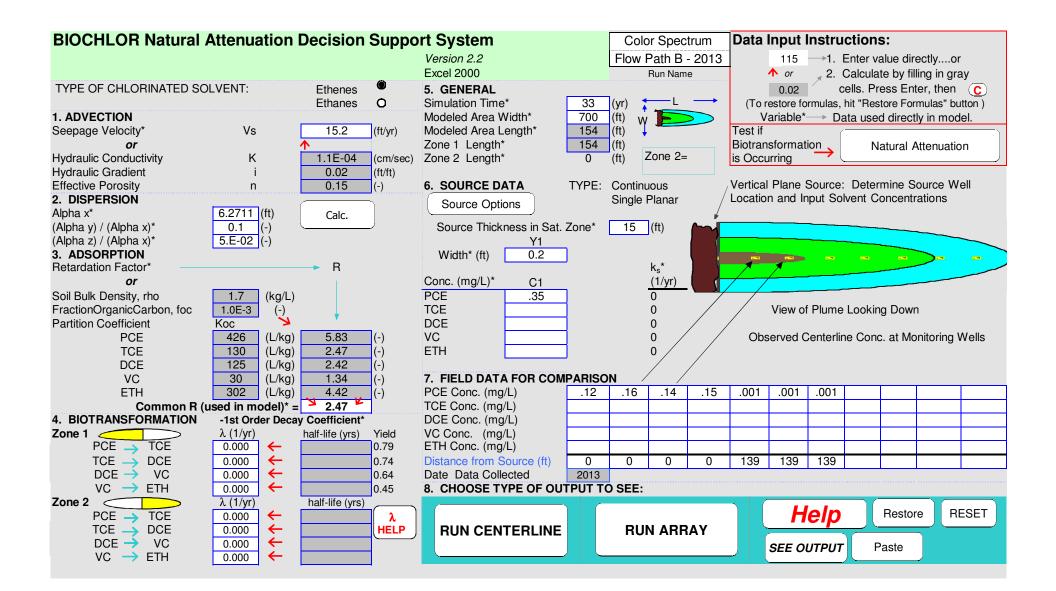

Sensitivity Analysis Input/Output Screens

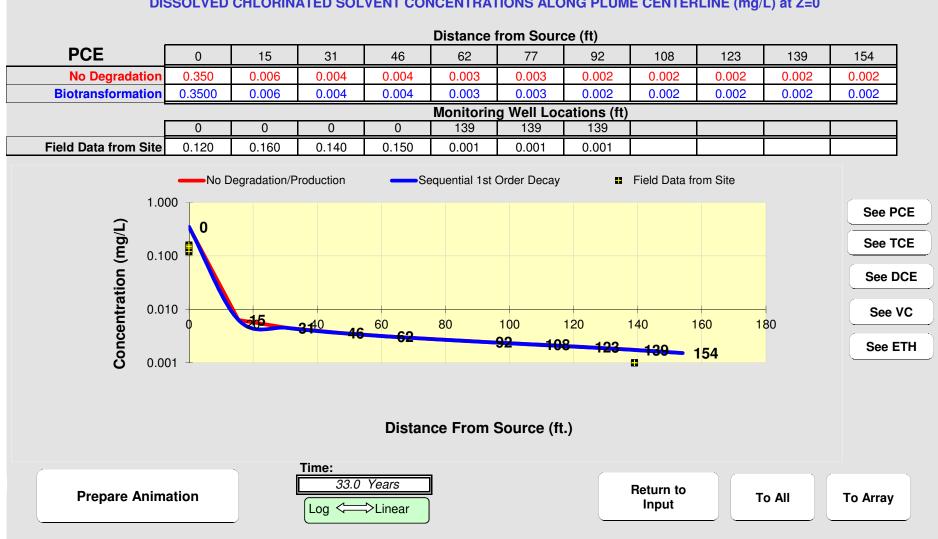

Flow Path B

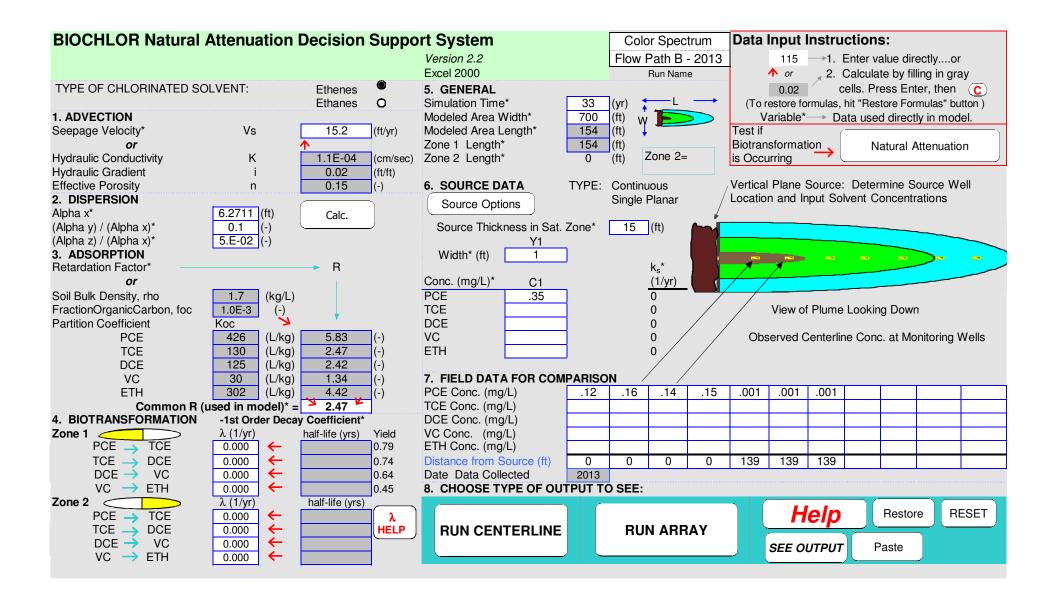


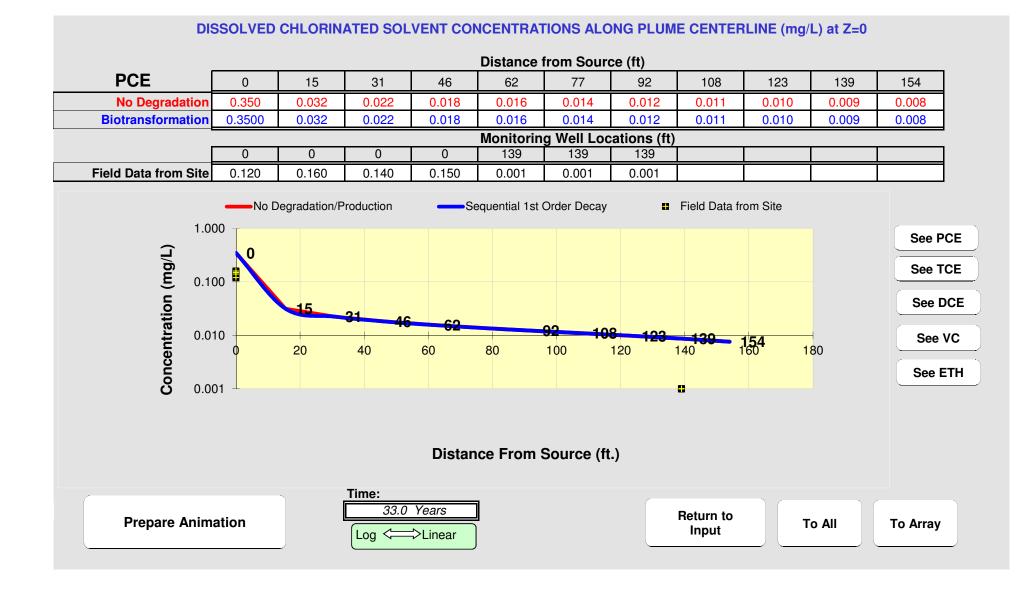


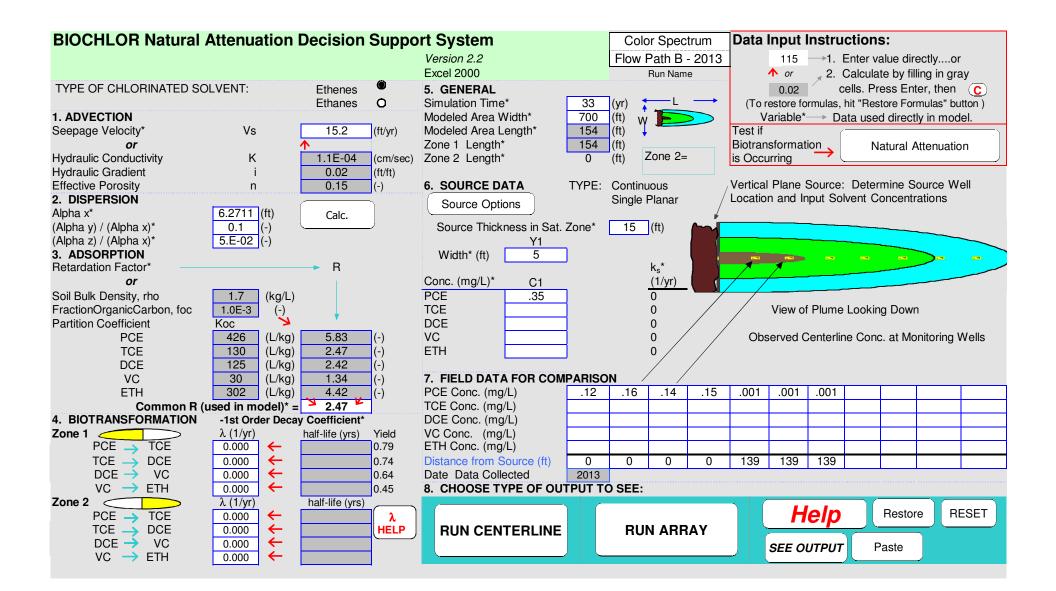


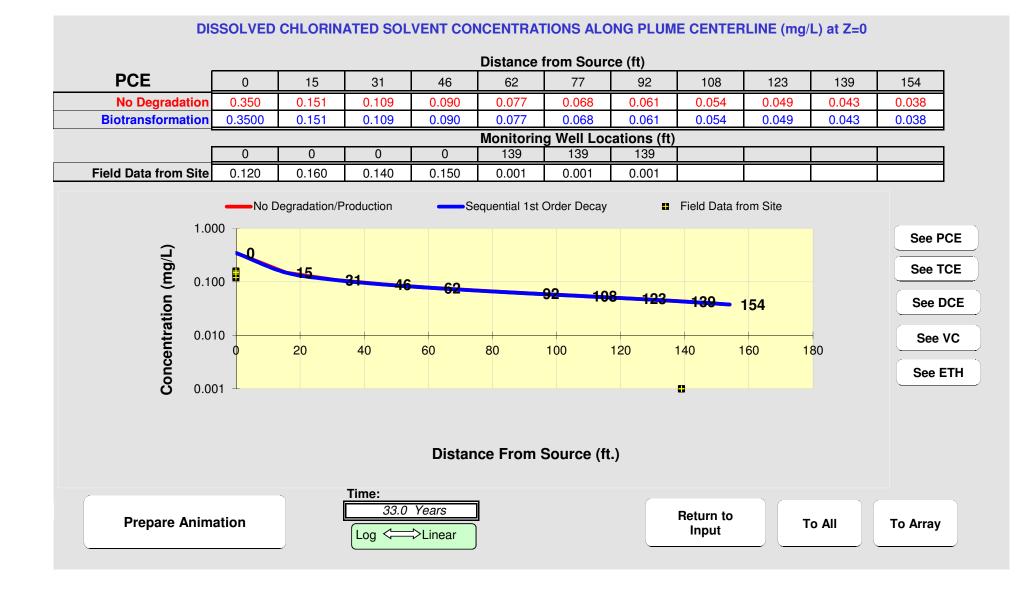


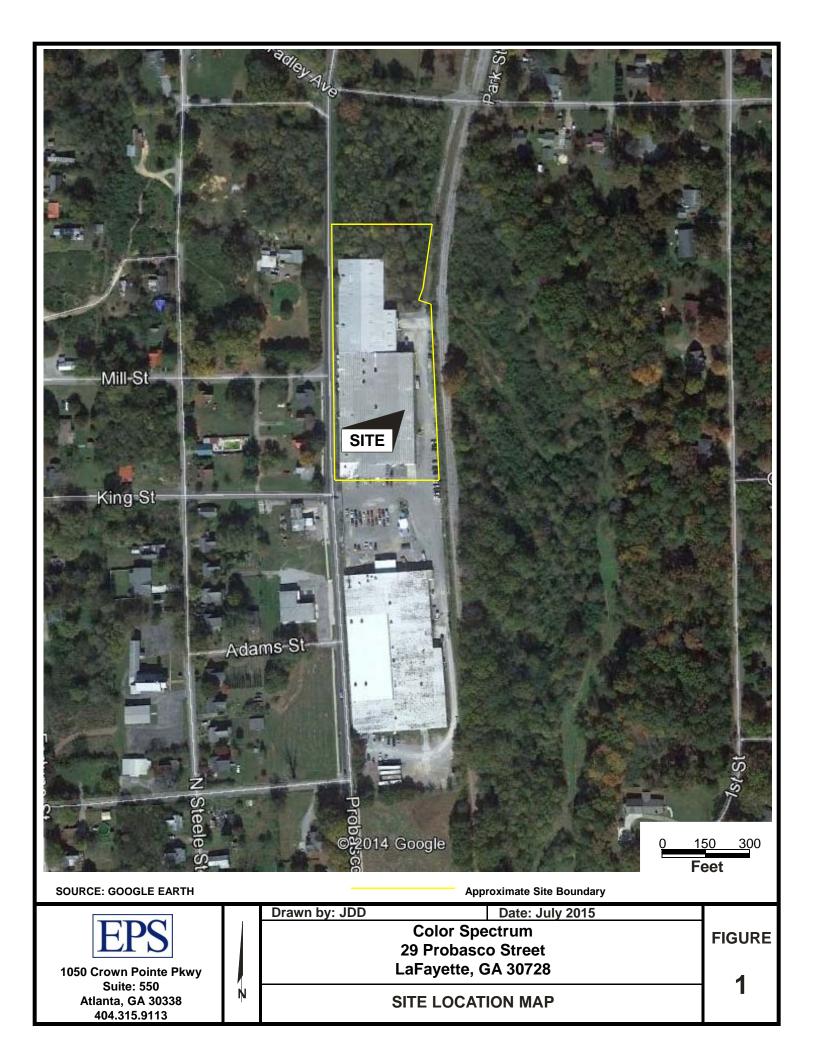


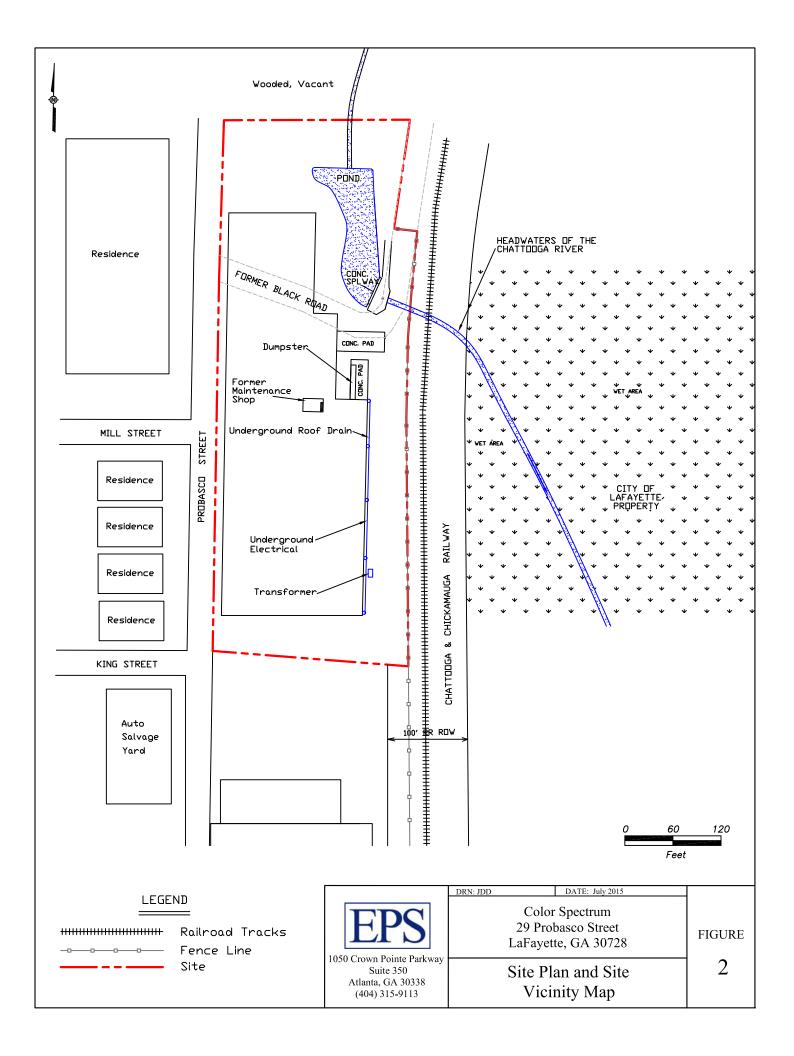


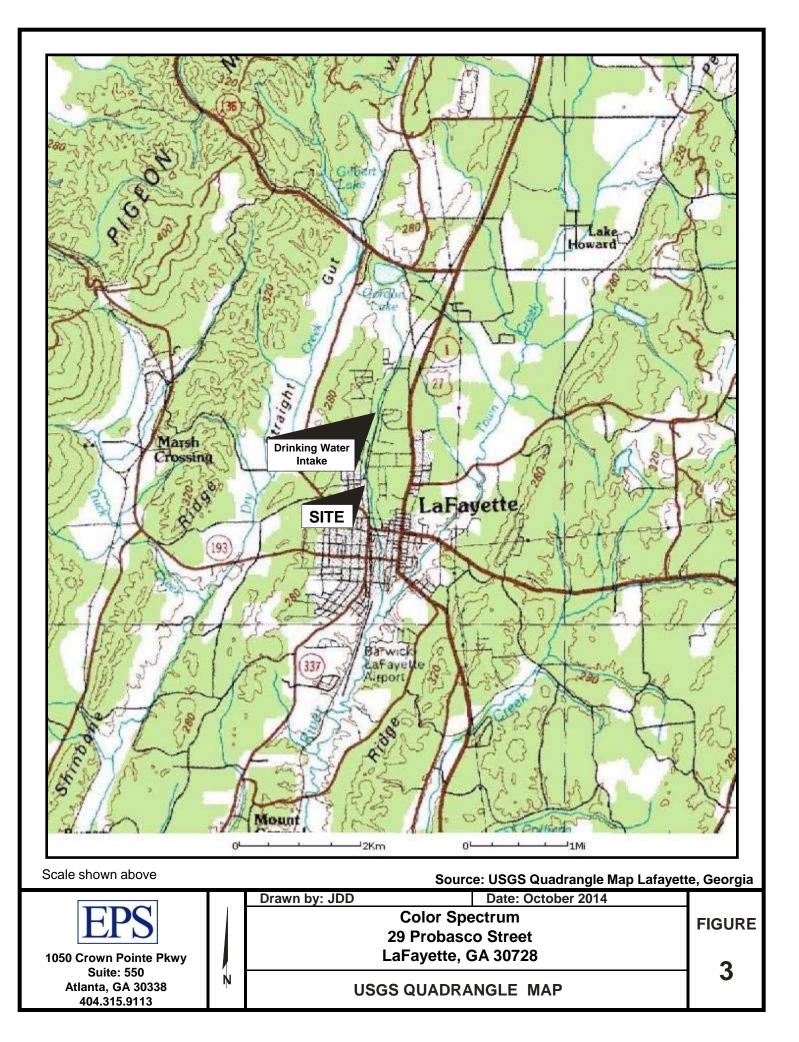


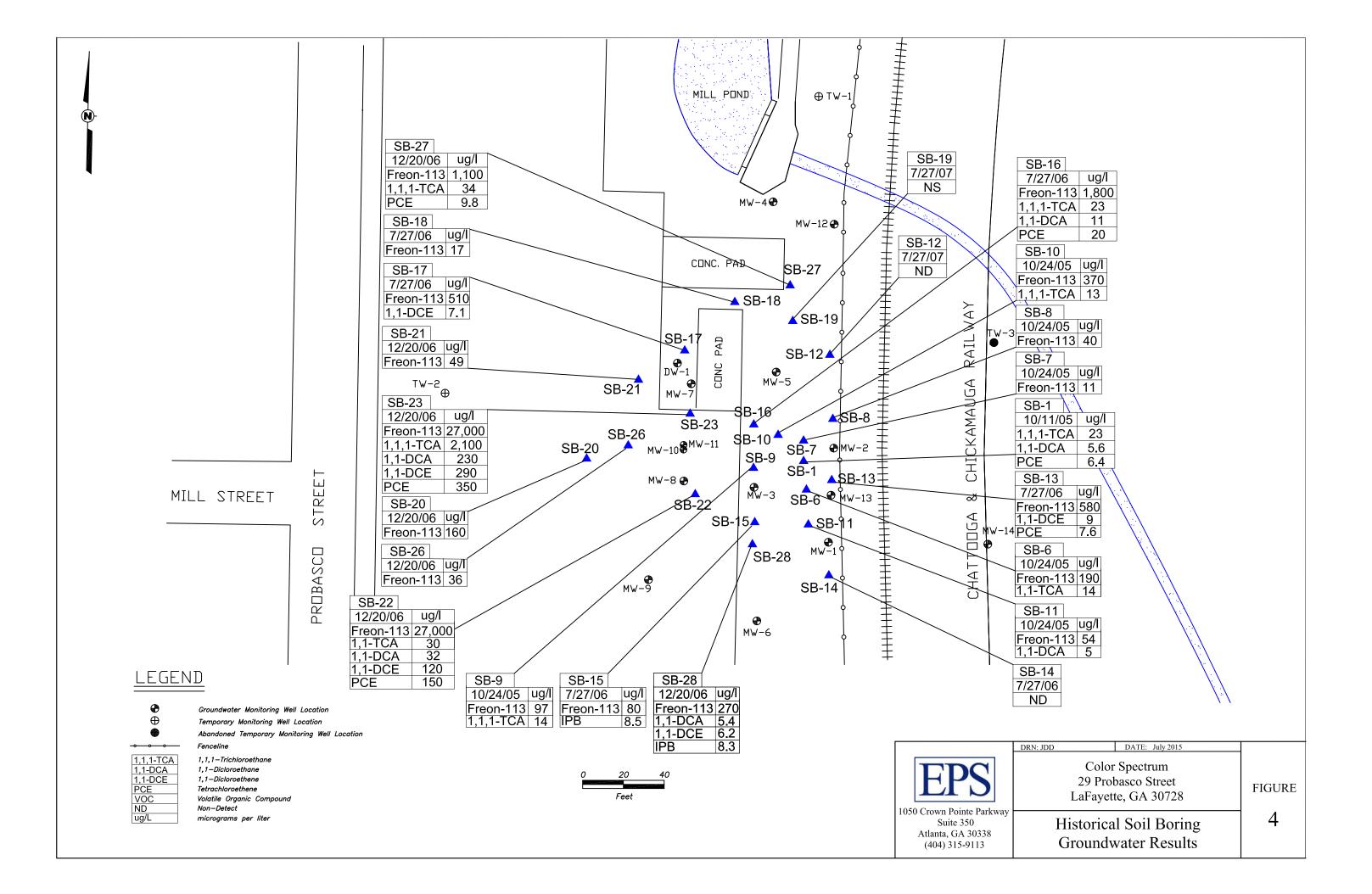


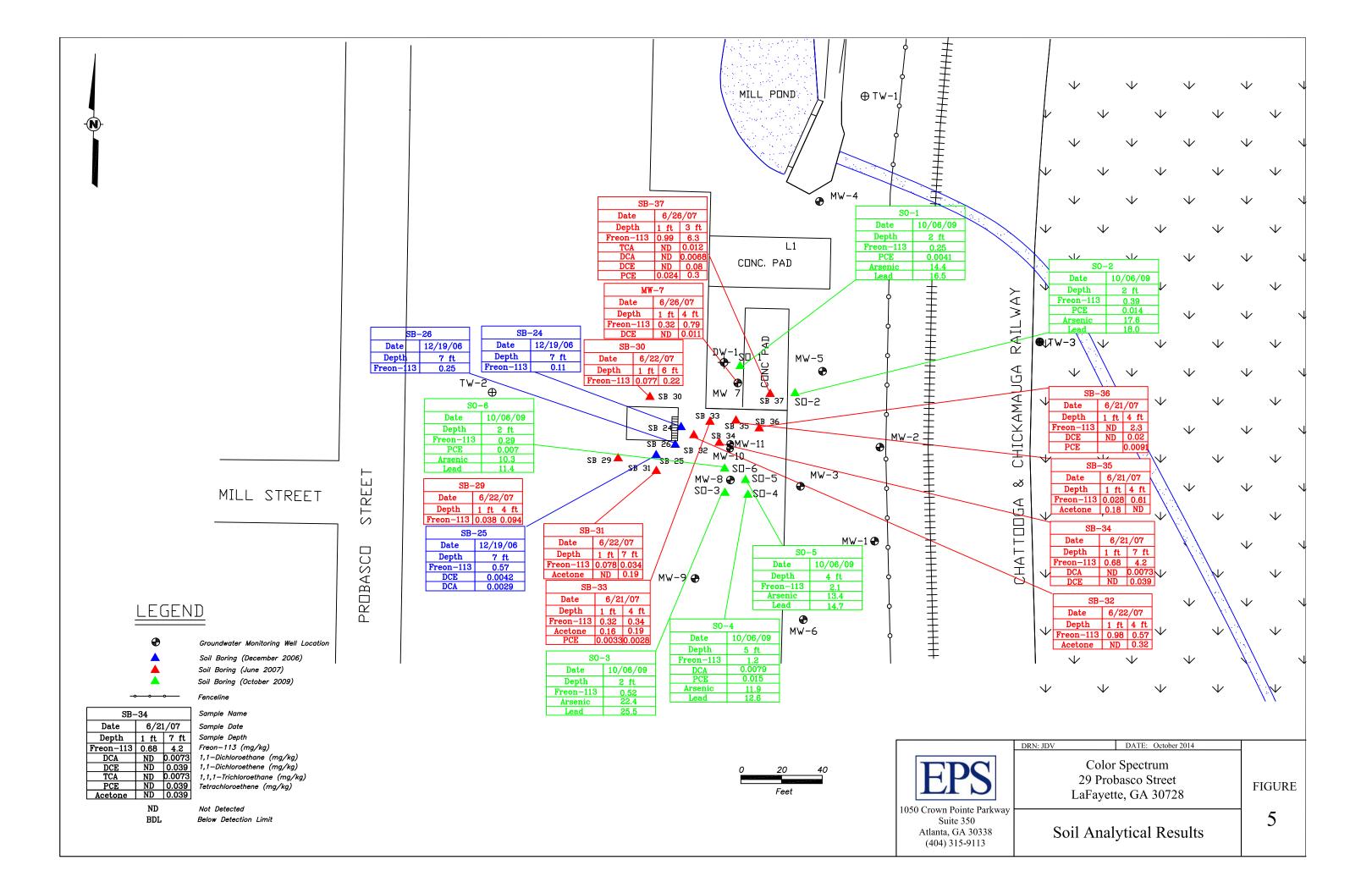


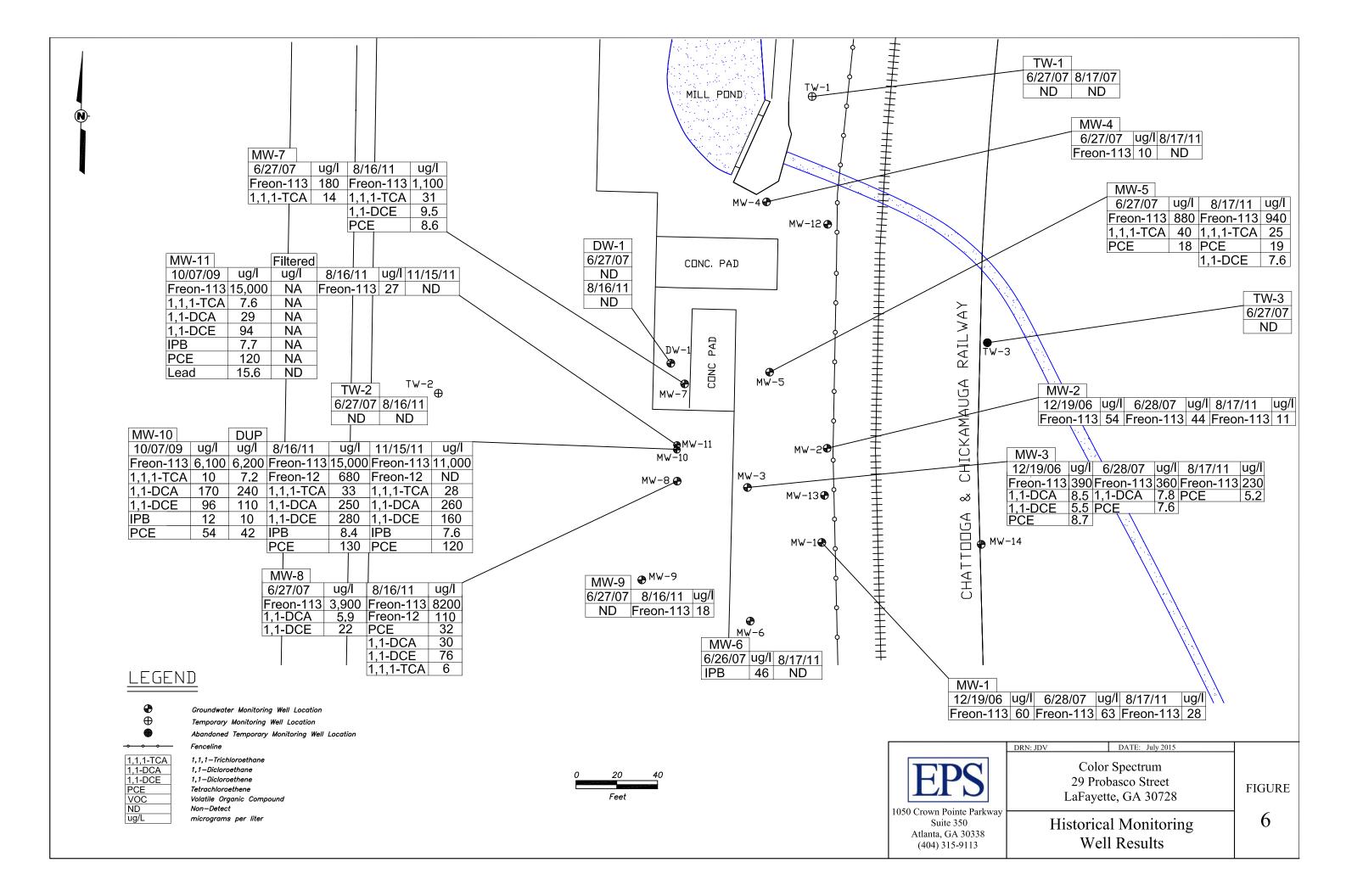


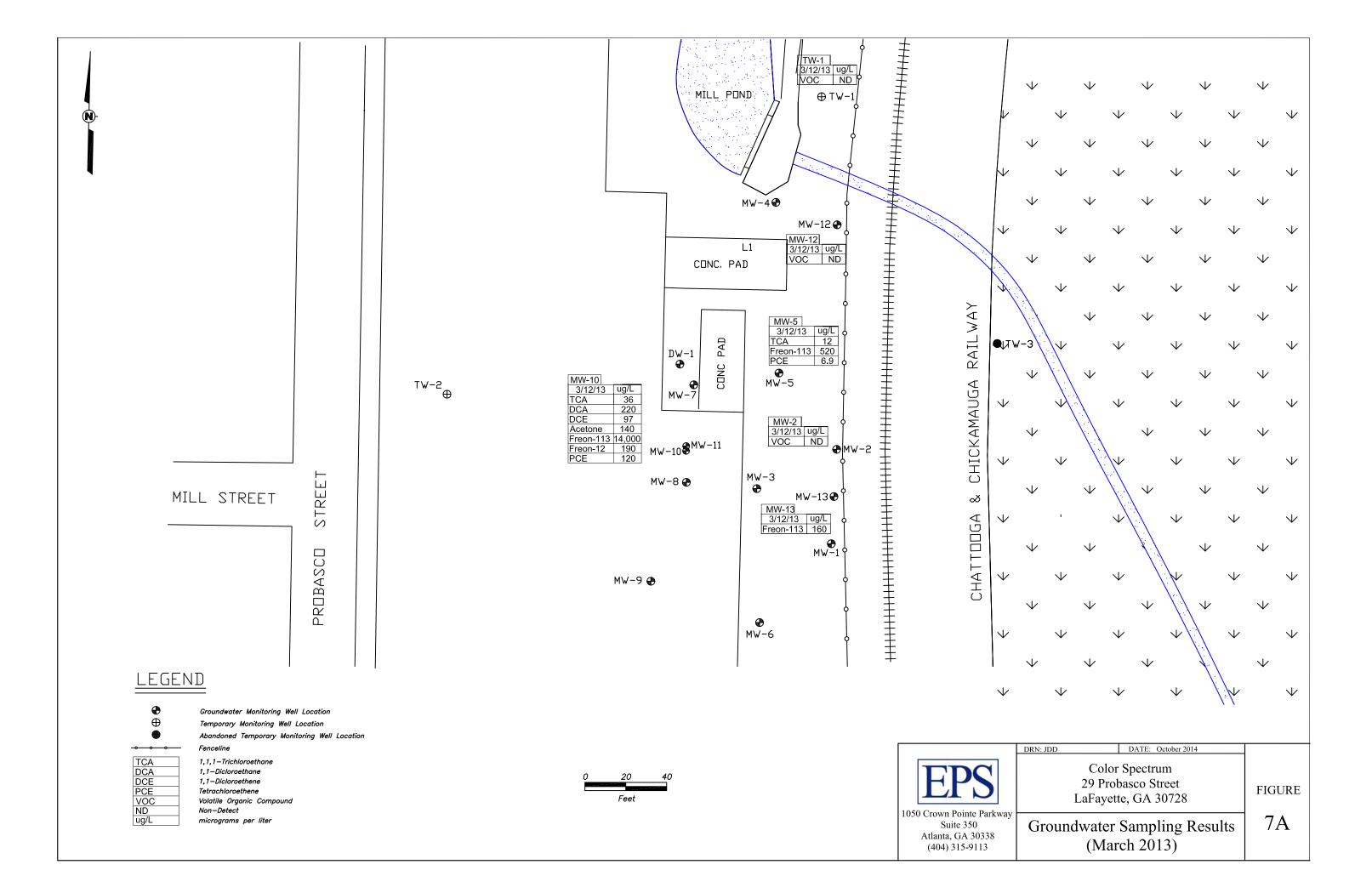


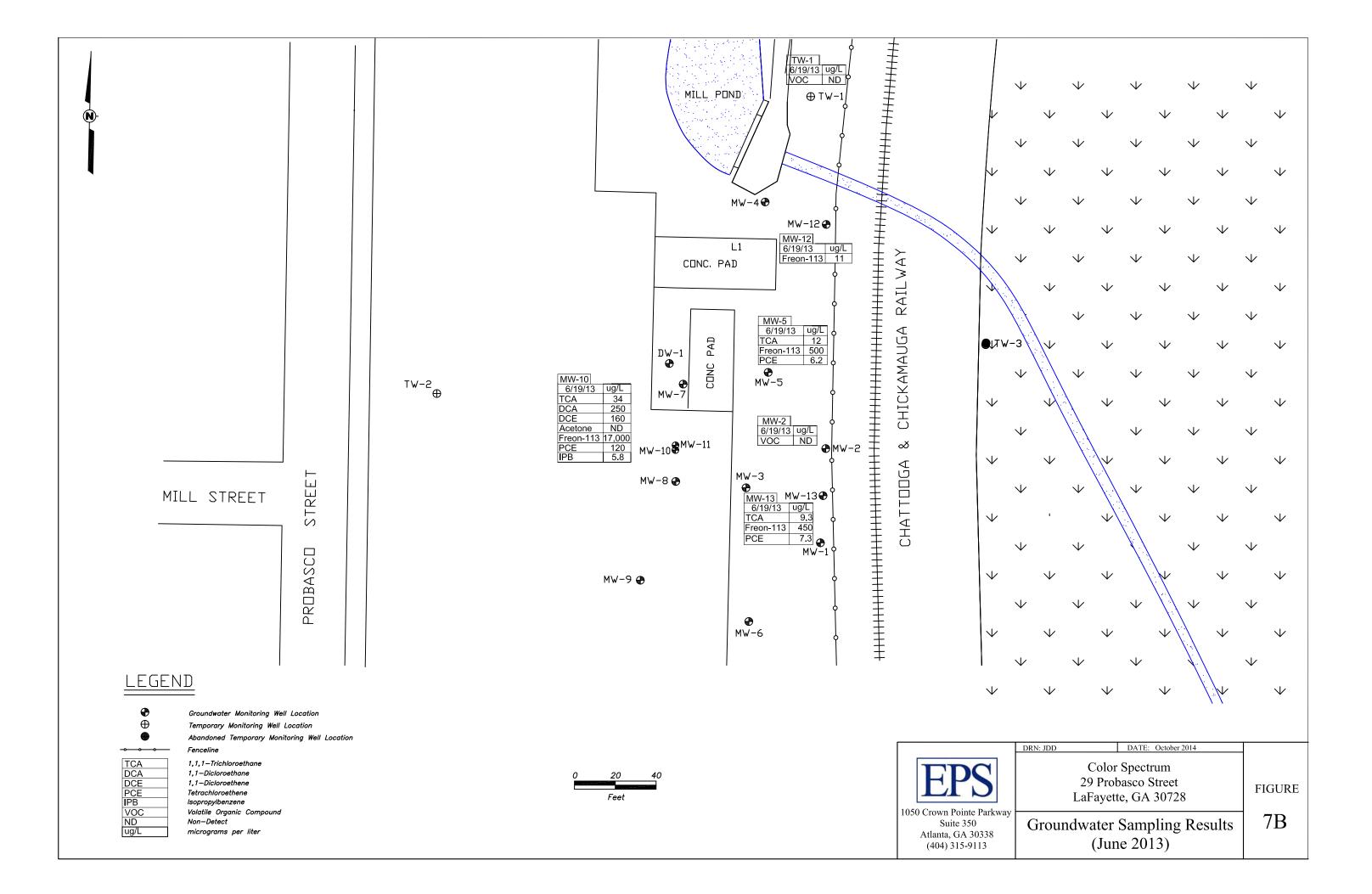


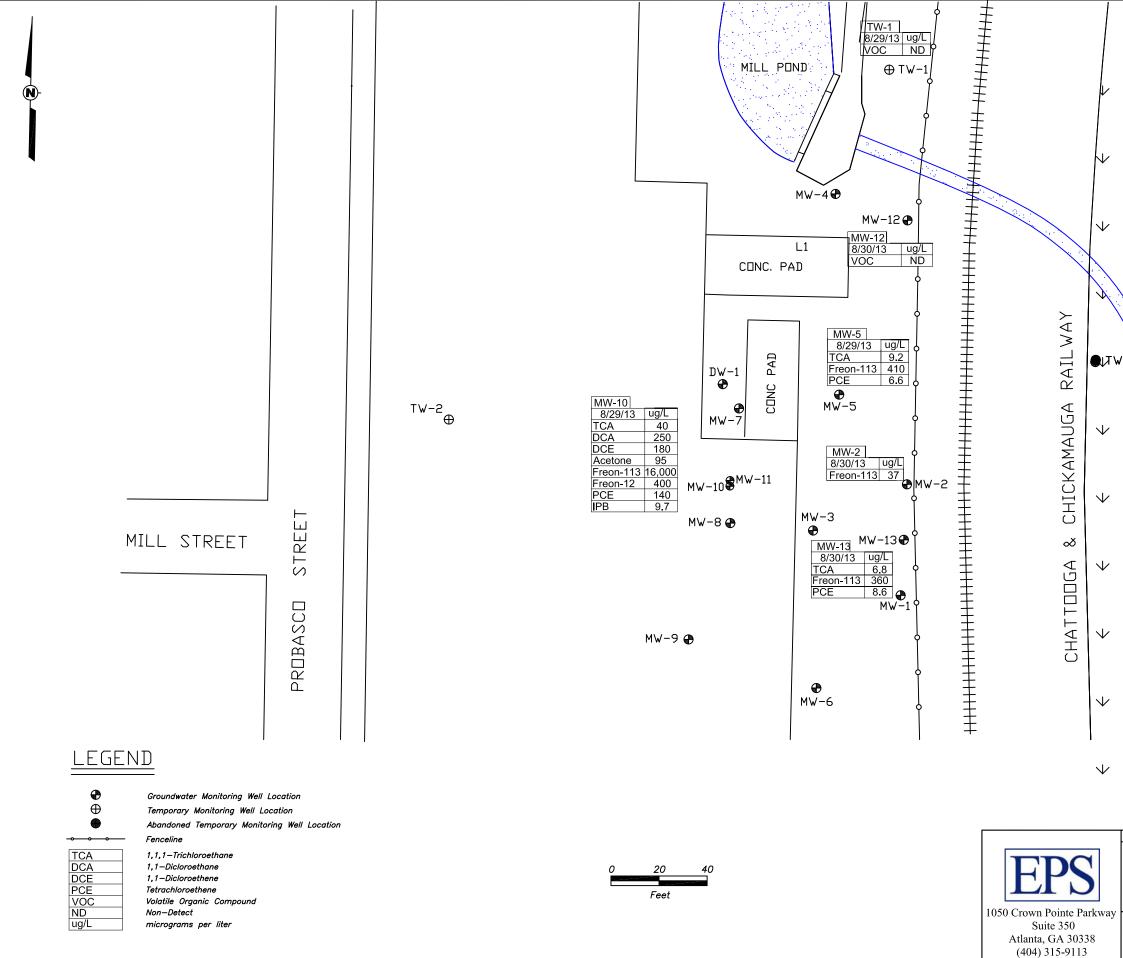

APPENDIX C

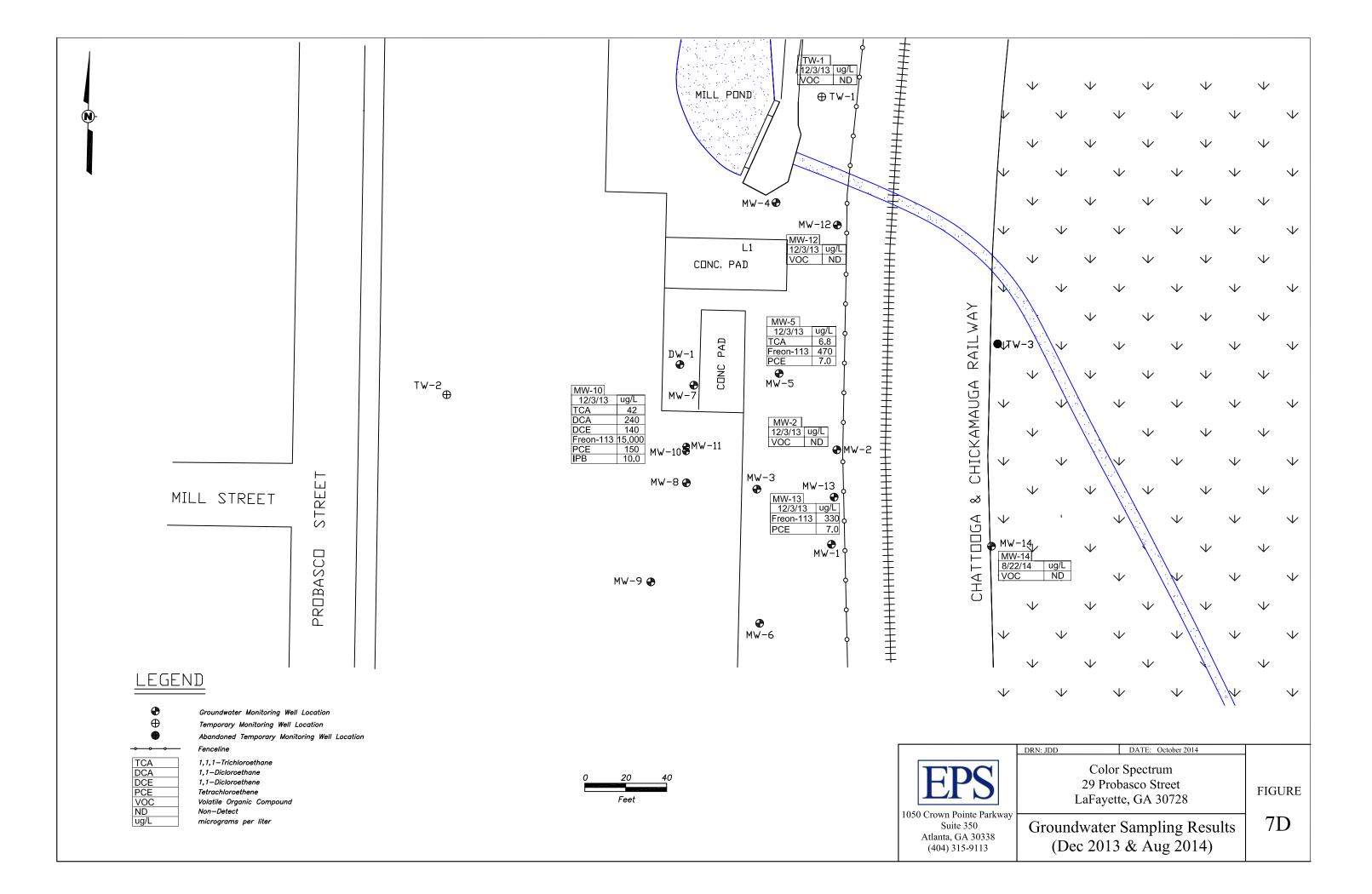

Figures

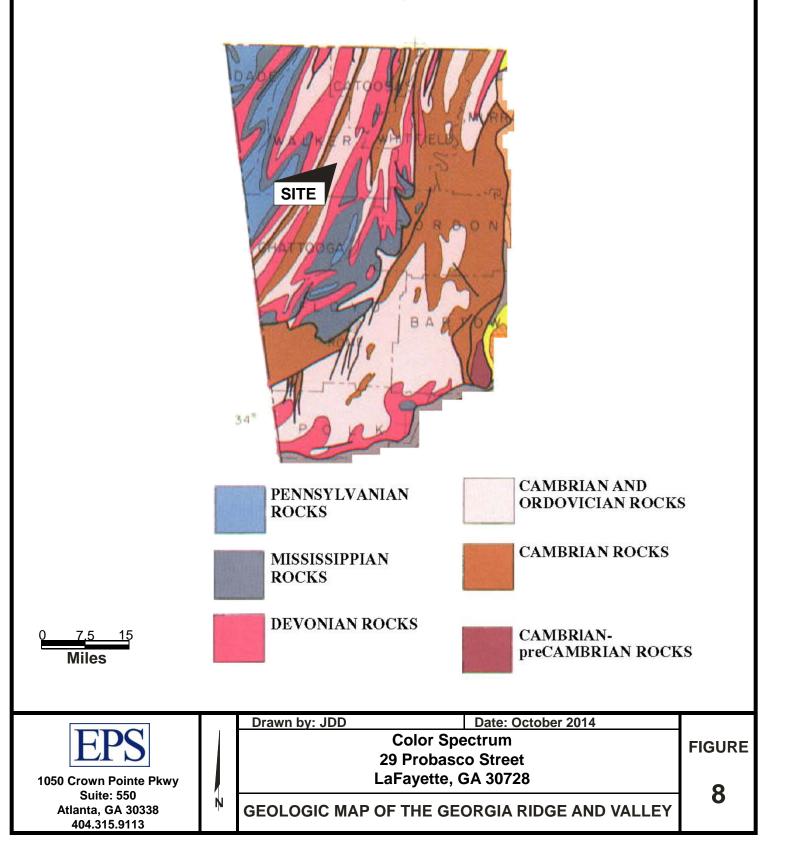


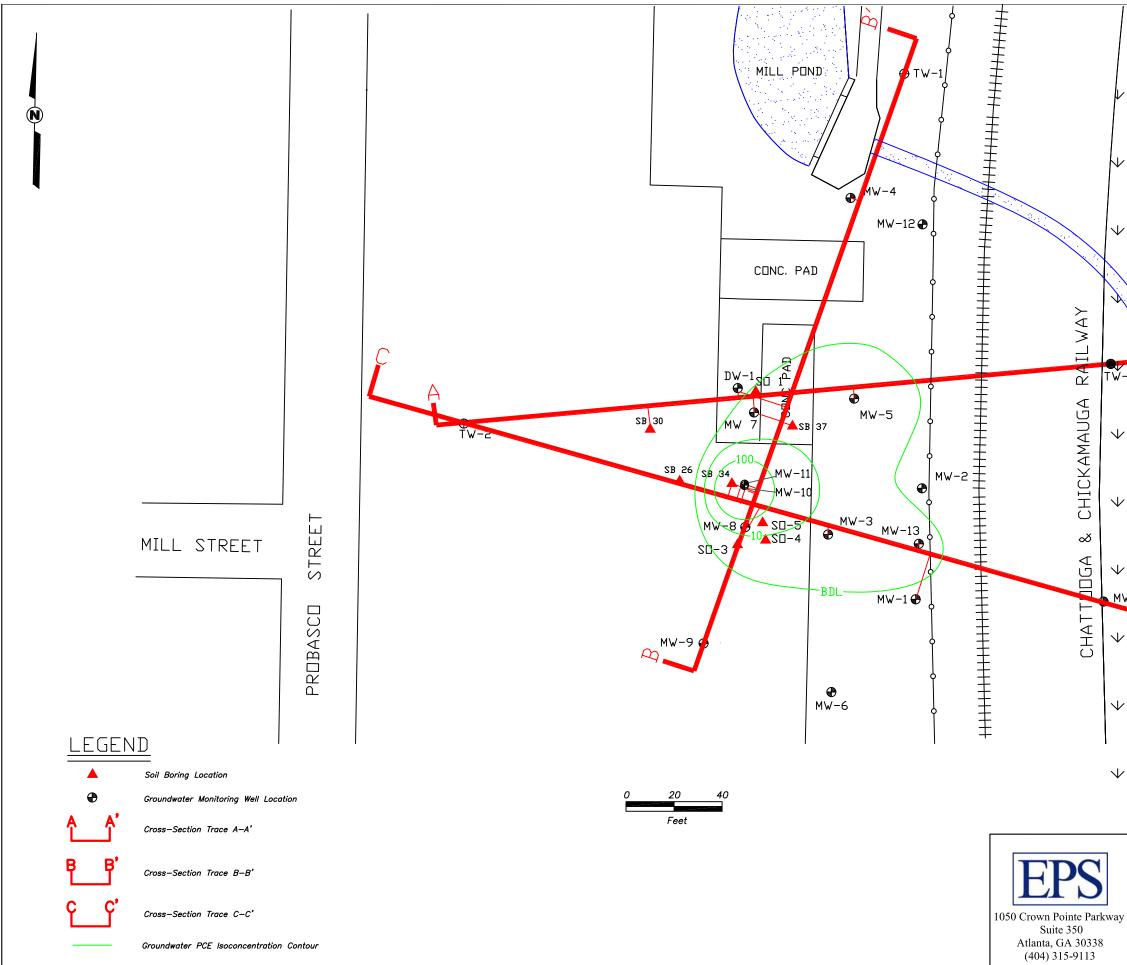




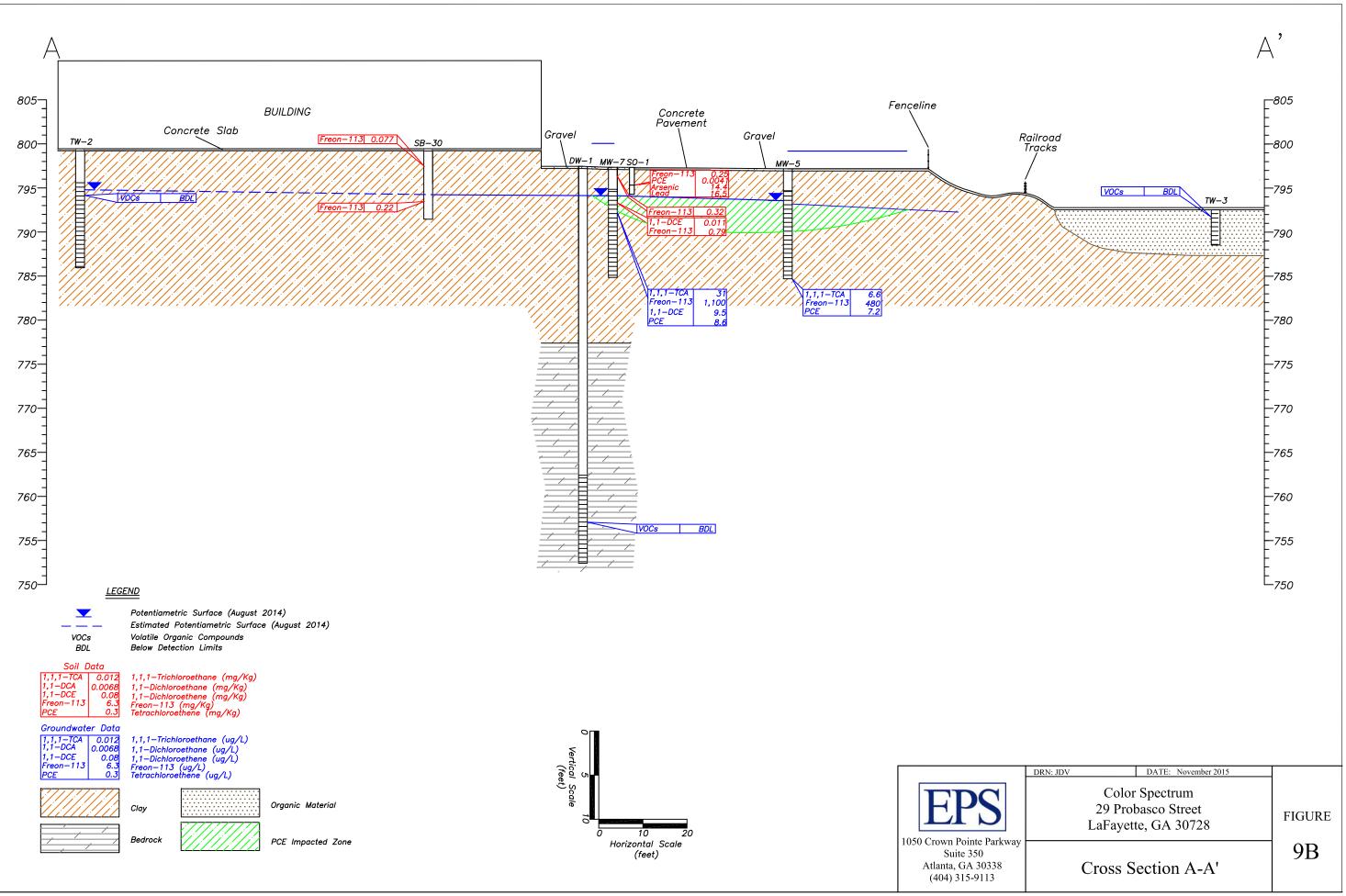


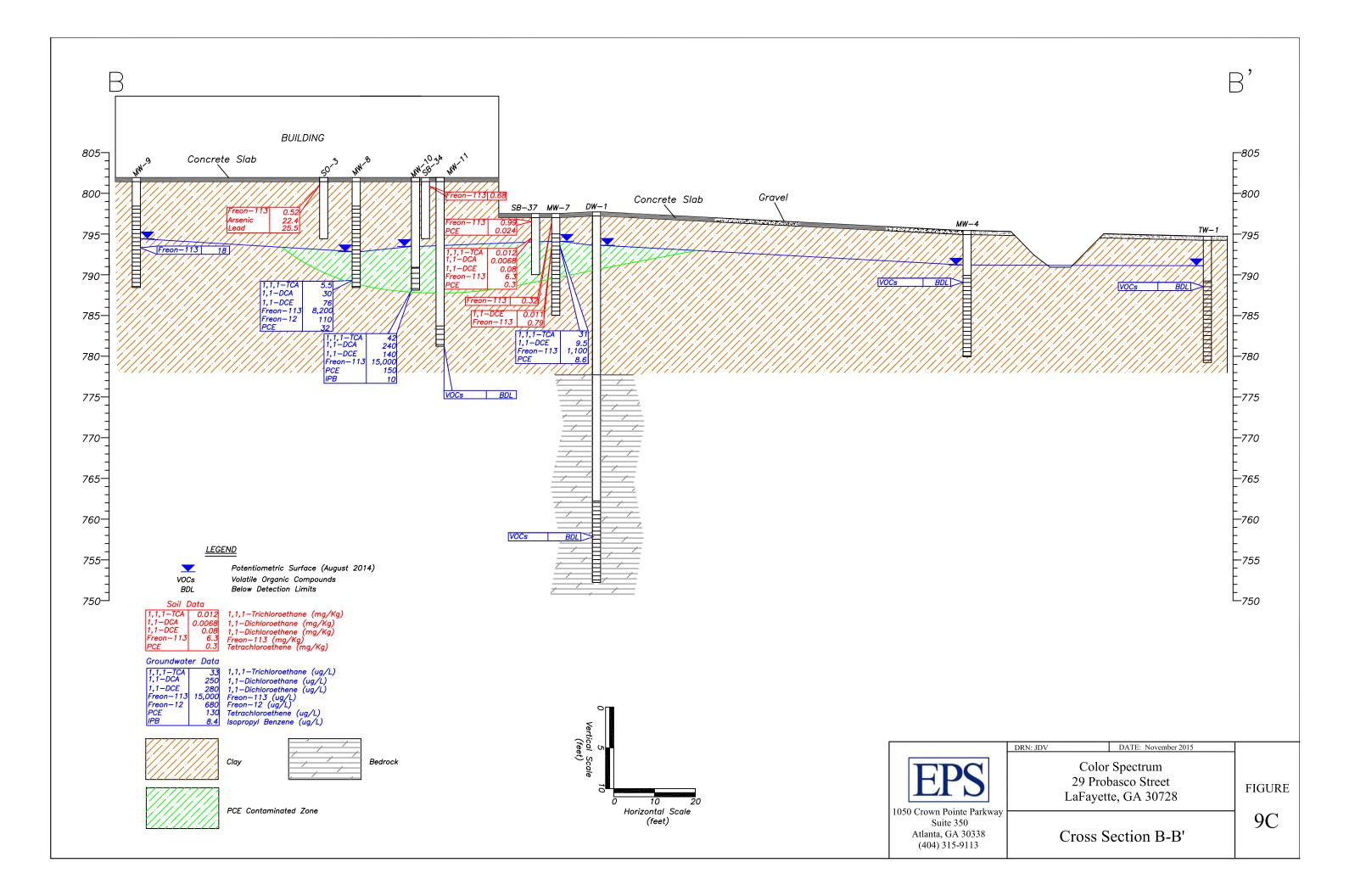


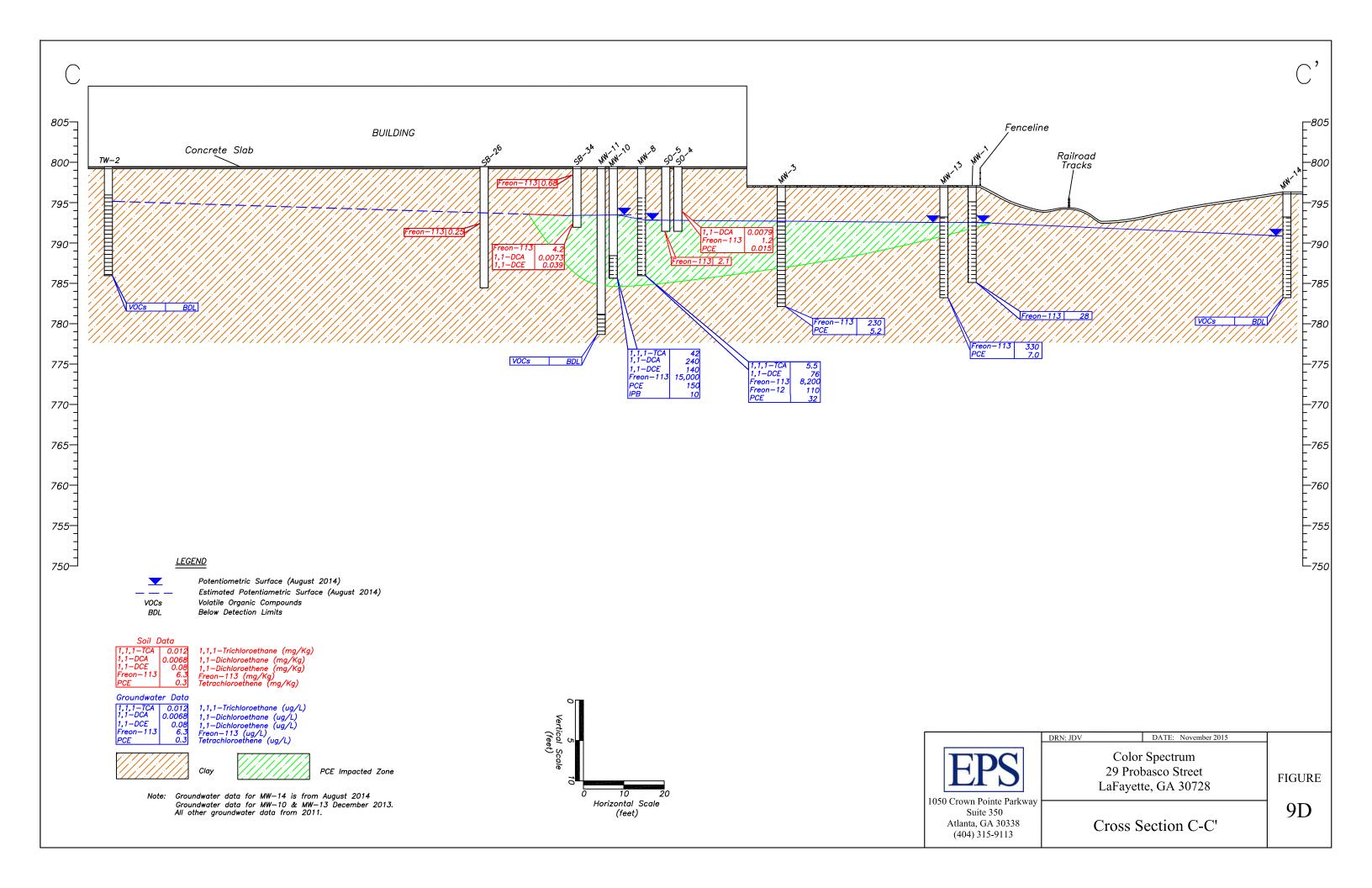

\checkmark		\checkmark		\checkmark		\checkmark		\checkmark				
	\checkmark		\checkmark		$\mathbf{\Psi}$		\checkmark		\checkmark			
\checkmark		\checkmark		\checkmark		\checkmark		\checkmark				
	\checkmark		\checkmark		\checkmark		\checkmark		\checkmark			
\checkmark		\checkmark		\checkmark		\checkmark		\checkmark				
	\checkmark		\checkmark		\checkmark		\checkmark		\checkmark			
\checkmark		\checkmark		\checkmark		\checkmark		\checkmark				
	\checkmark		\checkmark		\checkmark		\checkmark		\checkmark			
		\checkmark		\checkmark		\checkmark		\checkmark				
/-3	\mathbb{A}		\checkmark		\checkmark		\checkmark		\checkmark			
\checkmark		\forall		\checkmark		\checkmark		\checkmark				
	V.		\checkmark		\checkmark		\checkmark		\checkmark			
\checkmark			λ.	\checkmark		\checkmark		\checkmark				
	\checkmark	λ.	\mathbb{A}		\checkmark		\checkmark		\checkmark			
\checkmark		\checkmark		\vee		\checkmark		\checkmark				
	I		\checkmark		\checkmark		\checkmark		\checkmark			
\checkmark		\checkmark				\checkmark		\checkmark				
	\checkmark		\checkmark	\			\checkmark		\checkmark			
\checkmark		\forall		\checkmark		\ \		\checkmark				
	\checkmark		\checkmark		\vee		\checkmark		\checkmark			
\checkmark		\checkmark		\checkmark	·		\.	\checkmark				
	\forall		\forall		\checkmark	X			\checkmark			
DBV	IDD)-+-h - 21	214						
DKN:	DRN: JDD DATE: October 2014 Color Spectrum 29 Probasco Street ELCURE											
			Probas yette,					FIG	URE			
Gı	Groundwater Sampling Results 7C											
		(A	ugus	t 20	13)							

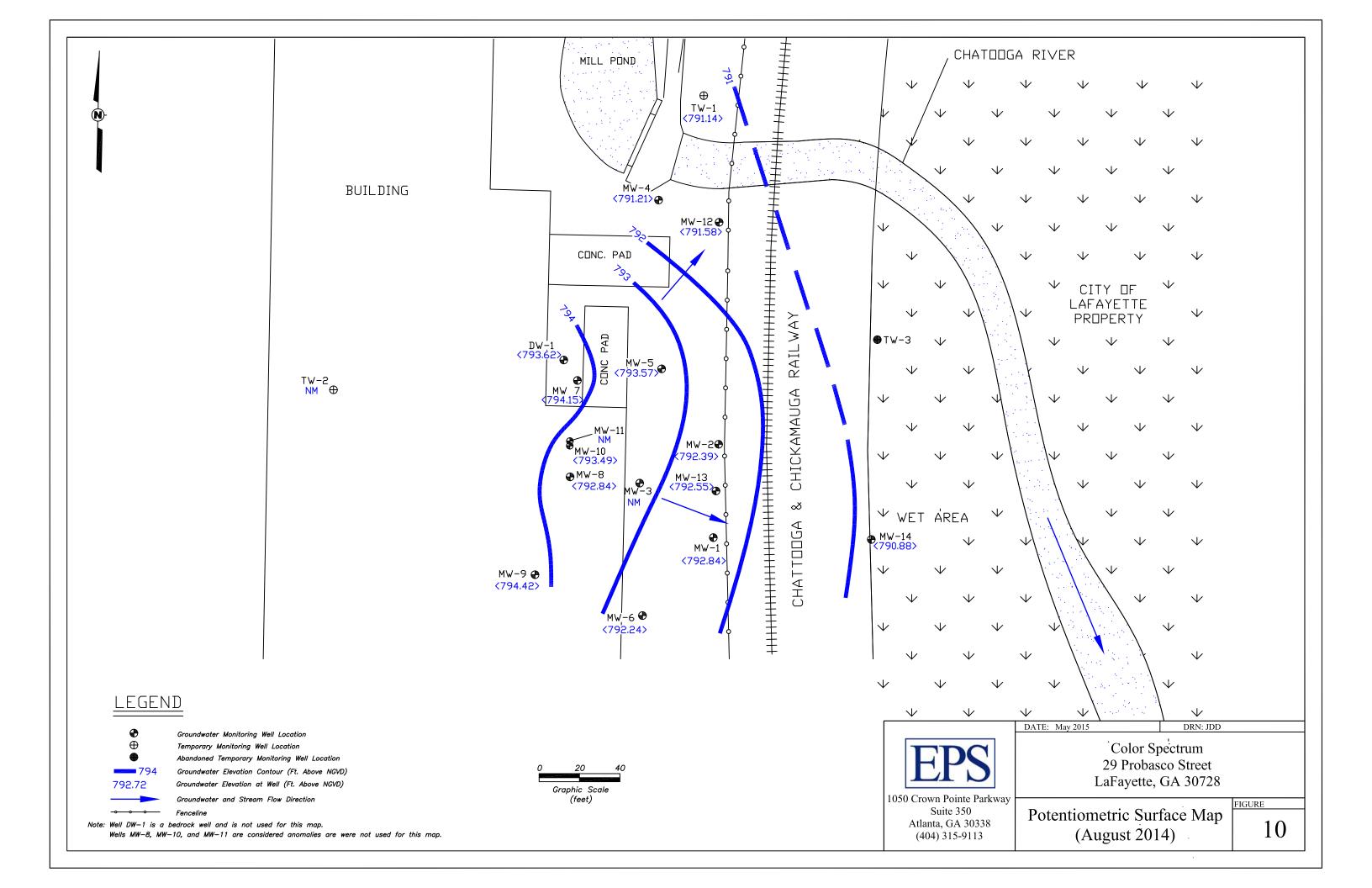


Geologic Map of Georgia -- Ridge and Valley


Georgia Geologic Survey 1977


David E. Lawton





			9A							
y		Ι	29 Pı LaFay	or Sp obaso ette, (ectrur co Stro GA 30 oss S	n eet)728			FIGU	
7	DRN: JI	DV		D	ATE: No	vember 2	015			
/		\checkmark		\checkmark		\checkmark	/			\checkmark
	\checkmark		\checkmark		\checkmark				\checkmark	
/		\checkmark		\checkmark		\checkmark		\checkmark		\checkmark
	\checkmark		\checkmark		\checkmark		\checkmark		\checkmark	
/		\checkmark		\checkmark				\checkmark		\mathbf{V}
W	14		\checkmark				\checkmark		\checkmark	
/	C -	I				\checkmark		\checkmark		\checkmark
	\checkmark	•	\checkmark		\checkmark	•	\checkmark	•	\checkmark	*
,	v	\checkmark		\downarrow	¥	\checkmark	¥	\checkmark	v	\mathbf{V}
		V.		\mathbf{V}		V		\checkmark		¥
,	\checkmark		\checkmark		\checkmark		\checkmark		\checkmark	
_:	3	$\downarrow \downarrow$		\checkmark	·	\checkmark		\checkmark		\checkmark
		\	\checkmark		\checkmark		\checkmark		\checkmark	
		\checkmark		\checkmark		\checkmark		\checkmark		\checkmark
	\checkmark		\checkmark		\checkmark		\checkmark		\checkmark	
/		\checkmark		\checkmark		\checkmark		\checkmark		\checkmark
	\checkmark		\checkmark		\checkmark		\checkmark		\checkmark	
/		\checkmark		\checkmark		\checkmark		\checkmark		\checkmark
	\checkmark	¥	\checkmark	¥	\checkmark	•	\checkmark	*	\checkmark	*
,	V		V	\checkmark	V	\checkmark	V		V	
	. 1.						. 1 .		. 1.	
Γ										

APPENDIX D Tables

Table 1Summary of Groundwater Analytical ResultsColor SpectrumLaFayette, Georgia

Sample	Sample	TCA	DCA	DCE	Acetone	Freon-113	Freon-12	IPB	PCE	Arsenic	Lead
Location	Date	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
	Type 1 RRS	200	4,000	7	4,000	1,000,000	1,000	5*	5	10	15
	Type 2 RRS	2,720	NC	103	NC	NC	NC	207	19	NC	NC
	Type 4 RRS	13,600	NC	520	NC	NC	NC	1,050	98	NC	NC***
	etected Value	5.5	5.0	5.5	95	10	110	6	5	ND	15.6
	etected Value	2,100	280	290	140	27,000	680	46	350	ND	15.6
MW-1	12/19/06	<5.0	<5.0	<5.0		60	<10	<5.0	<5.0		
	06/28/07	<5.0	<5.0	<5.0		63	<10	<5.0	<5.0		
	08/17/11	<5.0	<5.0	<5.0	<50	28	<10	<5.0	<5.0		
MW-2	12/19/06	<5.0	<5.0	<5.0		54	<10	<5.0	<5.0		
	06/28/07	<5.0	<5.0	<5.0		44	<10	<5.0	<5.0		
	08/17/11	<5.0	<5.0	<5.0	<50	11	<10	<5.0	<5.0		
	03/12/13	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
Duplicate	03/12/13	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
	06/19/13	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
Dunlicata	08/30/13	<5.0	<5.0	<5.0	<50	37	<10	<5.0	<5.0		
Duplicate	08/30/13	<5.0	<5.0	<5.0	<50	36	<10	<5.0	<5.0		
	12/03/13	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
MW-3	12/19/06	<5.0	8.5	5.5		390	<10	<5.0	8.7		
	06/28/07	<5.0	7.8	<5.0		360	<10	<5.0	7.6		
	08/17/11	<5.0	<5.0	<5.0	<50	230	<10	<5.0	5.2		
MW-4	06/27/07	<5.0	<5.0	<5.0		10	<10	<5.0	<5.0		
	08/17/11	<5.0	<5.0	<5.0	<50	<5.0	<10	<5.0	<5.0		
MW-5	06/27/07	40	<5.0	<5.0		880	<10	<5.0	18		
	08/17/11	25	<5.0	7.6	<50	940	<10	<5.0	19		
	03/12/13	12	<5.0	<5.0	<50	520	<10	<5.0	6.9		
	06/19/13	12	<5.0	<5.0	<50	500	<10	<5.0	6.2		
	08/29/13	9.2	<5.0	<5.0	<50	410	<10	<5.0	6.6		
	12/03/13	6.8	<5.0	<5.0	<50	470	<10	<5.0	7.0		
Duplicate	12/03/13	6.6	<5.0	<5.0	<50	480	<10	<5.0	7.2		
MW-6	06/27/07	<5.0	<5.0	<5.0		<10	<10	46	<5.0		
	08/17/11	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
Duplicate	08/17/11	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
MW-7	06/27/07	14	<5.0	<5.0		180	<10	<5.0	<5.0		
	08/16/11	31	<5.0	9.5	<50	1,100	<10	<5.0	8.6		
MW-8	06/27/07	<5.0	5.9	22		3,900	<10	<5.0	<5.0		
	08/16/11	5.5	30	76	<50	8,200	110	<5.0	32		
MW-9	06/27/07	<5.0	<5.0	<5.0		<10	<10	<5.0	<5.0		
	08/16/11	<5.0	<5.0	<5.0	<50	18	<10	<5.0	<5.0		
MW-10	10/07/09	10	170	96	<50	6,100	<10	12	54	<4.4**	<10
Duplicate	10/07/09	7.2	240	110	<50	6,200	<10	10	42	<4.4**	<10
	08/16/11	33	250	280	<50	15,000	680	8.4	130		
	11/15/11	28	260	160	<50	11,000	<10	7.6	120		
	03/12/13	36	220	97	140	14,000	190	<5.0	120		
	06/19/13	34	250	160	<50	17,000	<10	5.8	120		
Duplicate	06/19/13	48	280	280	<50	12,000	<10	8.2	160		
	08/29/13	40	250	180	95	16,000	400	9.7	140		
	12/03/13	42	240	140	<50	15,000	<10	10	150		
MW-11	10/07/09	7.6	29	94	<50	15,000	<10	7.7	120	<4.4**	15.6***
MW-11(F)	10/07/09	11	33	100	<50	21,000	<10	7.5	64	<4.4**	<10
	08/16/11	<5.0	<5.0	<5.0	<50	27	<10	<5.0	<5.0		
	11/15/11	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
	08/30/13										<10
Duplicate	08/30/13										<10
			l	l				l	l		

Table 1Summary of Groundwater Analytical ResultsColor SpectrumLaFayette, Georgia

Location (rg/L) (rg/	Sample	Sample	TCA	DCA	DCE	Acetone	Freon-113	Freon-12	IPB	PCE	Arsenic	Lead
Type 2 Res 3.7.20 NC 103 NC	Location	Date	(μg/L)	(µg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)
Type 4 R813.60KC520NCNCNC1005980NCNC***MN-206/19/134.60 </th <th></th> <th>Type 1 RRS</th> <th>200</th> <th>4,000</th> <th>7</th> <th>4,000</th> <th>1,000,000</th> <th>1,000</th> <th>5*</th> <th>5</th> <th>10</th> <th>15</th>		Type 1 RRS	200	4,000	7	4,000	1,000,000	1,000	5*	5	10	15
NW-12 01/12/13 4.0		Type 2 RRS	2,720	NC	103	NC	NC	NC	207	19	NC	NC
06/19/13 cd0 cd		Type 4 RRS	13,600	NC	520	NC	NC	NC	1,050	98	NC	NC***
08/30/13 4.50	MW-12	03/12/13	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
12/03/13 -5.0		06/19/13	<5.0	<5.0	<5.0	<50	11	<10	<5.0	<5.0		
MW-13 05/12/13 4.50		08/30/13	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
		12/03/13	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
08/30/13 6.8 c.5.0 c.5.0 <t< td=""><td>MW-13</td><td>03/12/13</td><td><5.0</td><td><5.0</td><td><5.0</td><td><50</td><td>160</td><td><10</td><td><5.0</td><td><5.0</td><td></td><td></td></t<>	MW-13	03/12/13	<5.0	<5.0	<5.0	<50	160	<10	<5.0	<5.0		
12/03/13 -6.0 -6.0 -6.0 -6.0 -6.0 -7.0 MW-14 08/22/14 -6.0 -6.0 -6.0 -10 -10 -6.0 -6.0 DW1-1 06/27/07 -6.0 -6.0 -6.0 -10 -10 -6.0 -6.0 08/17/17 -6.0 -6.0 -6.0 <td></td> <td>06/19/13</td> <td>9.3</td> <td><5.0</td> <td><5.0</td> <td><50</td> <td>450</td> <td><10</td> <td><5.0</td> <td>7.3</td> <td></td> <td></td>		06/19/13	9.3	<5.0	<5.0	<50	450	<10	<5.0	7.3		
MW-14 08/22/14			6.8	<5.0	<5.0	<50	360	<10	<5.0			
DW-1 06/27/07 < 5.0 < 5.0 < -10 < 10 < 0 < -0 $-$ 08/16/11 < 5.0 < 5.0 < 5.0 < -0 < 10 < 5.0 < -0 $ -$ TW-1 08/17/11 < 5.0 < 5.0 < 5.0 < -0 < 10 < 10 < 5.0 < 5.0 $ -$ 08/17/11 < 5.0 < 5.0 < 5.0 < 5.0 $< -$ -<		12/03/13	<5.0	<5.0	<5.0	<50	330	<10	<5.0	7.0		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	MW-14	08/22/14	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DW-1	06/27/07	<5.0	<5.0	<5.0		<10	<10	<5.0	<5.0		
08/17/11 -6.0 -6.0 -6.0 -6.0 -1.0		08/16/11	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
03/12/13 06/19/13 06/29/13 12/03/13 12/03/13 <td>TW-1</td> <td>06/27/07</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td></td> <td><10</td> <td><10</td> <td><5.0</td> <td><5.0</td> <td></td> <td></td>	TW-1	06/27/07	<5.0	<5.0	<5.0		<10	<10	<5.0	<5.0		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		08/17/11	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
08/29/13 		03/12/13	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		06/19/13	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
TW-206/27/07 <5.0 <5.0 <5.0 $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ <t< td=""><td></td><td>08/29/13</td><td><5.0</td><td><5.0</td><td><5.0</td><td><50</td><td><10</td><td><10</td><td><5.0</td><td><5.0</td><td></td><td></td></t<>		08/29/13	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		12/03/13	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	TW-2	06/27/07	<5.0	<5.0	<5.0		<10	<10	<5.0	<5.0		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		08/16/11	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	TW-3	06/27/07	<5.0	<5.0	<5.0		<10	<10	<5.0	<5.0		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SB-1	10/11/05	23	5.6	<5.0	<50	<10	<10	<5.0	6.4		
SB-4 10/11/05 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	SB-2	10/11/05	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
SB-5 10/11/05 <5.0 <5.0 <5.0 <10 <10 <10 <5.0 <5.0 < SB-6 10/24/05 14 <5.0	SB-3	10/11/05	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
SB-6 10/24/05 14 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0 <.5.0	SB-4	10/11/05	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SB-5	10/11/05	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
SB-8 $10/24/05$ < 5.0 < 5.0 < 6.0 < 50 40 < 10 < 5.0 < 5.0 $ -$ SB-9 $10/24/05$ 14 < 5.0 < 5.0 < 50 97 < 10 < 5.0 < 5.0 $ -$ SB-10 $10/24/05$ 13 < 5.0 < 5.0 < 50 370 < 10 < 5.0 < 5.0 $ -$ SB-11 $10/24/05$ 13 < 5.0 < 5.0 < 50 < 50 < 50 < 50 < 5.0 $ -$ SB-12 $07/27/06$ < 5.0 < 5.0 < 5.0 < 50 < 50 < 50 < 50 $< -$ SB-13 $07/27/06$ < 5.0 < 5.0 < 5.0 < 50 < 50 < 10 < 10 < 5.0 < 5.0 $ -$ SB-14 $07/27/06$ < 5.0 < 5.0 < 5.0 < 50 < 10 < 10 < 5.0 < 5.0 $ -$ SB-15 $07/27/06$ < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 $ -$ SB-16 $07/27/06$ < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 $ -$ SB-18 $07/27/06$ < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 $ -$ SB-18 $07/27/06$ < 5.0 < 5.0 < 5.0 <t< td=""><td></td><td></td><td>14</td><td><5.0</td><td><5.0</td><td><50</td><td></td><td><10</td><td><5.0</td><td><5.0</td><td></td><td></td></t<>			14	<5.0	<5.0	<50		<10	<5.0	<5.0		
SB-9 10/24/05 14 <5.0 <5.0 <5.0 <1.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <			<5.0	<5.0	<5.0	<50		<10	<5.0	<5.0		
SB-10 10/24/05 13 <5.0 <5.0 <50 370 <10 <5.0 <5.0 - - SB-11 10/24/05 <5.0				<5.0	<5.0	<50		<10	<5.0	<5.0		
SB-11 10/24/05 < 5.0 < <				<5.0	<5.0	<50		<10	<5.0	<5.0		
SB-12 07/27/06 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0			13		<5.0	<50		<10	<5.0	<5.0		
SB-13 07/27/06 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0				5.0	<5.0	<50	54	<10	<5.0	<5.0		
SB-14 07/27/06 <5.0 <5.0 <5.0 <10 <10 <5.0 <5.0 <- - SB-15 07/27/06 <5.0												
SB-15 07/27/06 <5.0 <5.0 <50 80 <10 8.5 <5.0 SB-16 07/27/06 23 11 <5.0												
SB-16 07/27/06 23 11 <5.0 <50 1,800 <10 <5.0 20 SB-17 07/27/06 <5.0												
SB-17 07/27/06 <5.0 <5.0 7.1 <50 510 <10 <5.0 <5.0 SB-18 07/27/06 <5.0												
SB-18 07/27/06 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0							-					
SB-19 07/27/06 NS												
SB-20 12/20/06 <5.0 <5.0 <5.0 < 160 <10 <5.0 <5.0 < < SB-21 12/20/06 <5.0												
SB-21 12/20/06 <5.0 <5.0 <5.0 < 49 <10 <5.0 <5.0 < < SB-22 12/20/06 30 32 120 27,000 <10												
SB-22 12/20/06 30 32 120 27,000 <10 <5.0 150 SB-23 12/20/06 2,100 230 290 27,000 <10												
SB-23 12/20/06 2,100 230 290 27,000 <10 <5.0 350 SB-26 12/20/06 <5.0												
SB-26 12/20/06 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0							-					
Duplicate 12/20/06 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0												
SB-27 12/20/06 34 <5.0 <5.0 1,100 <10 <5.0 9.8 SB-28 12/20/06 <5.0												
SB-28 12/20/06 <5.0 5.4 6.2 270 <10 8.3 <5.0 POND 10/11/05 <5.0												
POND 10/11/05 <5.0 <5.0 <50 <10 <10 <5.0							-					
	Field Blank	12/20/06	<5.0	<5.0	<5.0		<10	<10	<5.0	<5.0		

Table 1 Summary of Groundwater Analytical Results Color Spectrum LaFayette, Georgia

Sample Location	Sample Date	TCA (μg/L)	DCA (µg/L)	DCE (µg/L)	Acetone (µg/L)	Freon-113 (µg/L)	Freon-12 (µg/L)	IPB (μg/L)	PCE (µg/L)	Arsenic (µg/L)	Lead (µg/L)
	Type 1 RRS Type 2 RRS Type 4 RRS	200 2,720 13,600	4,000 NC NC	7 103 520	4,000 NC NC	1,000,000 NC NC	1,000 NC NC	5* 207 1,050	5 19 98	10 NC NC	15 NC NC***
Trip Blank	10/24/05	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
	12/20/06	<5.0	<5.0	<5.0		<10	<10	<5.0	<5.0		
	06/29/07	<5.0	<5.0	<5.0		<10	<10	<5.0	<5.0		
	10/07/09	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
	08/18/11	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
	03/11/13	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
	08/29/13	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
	12/03/13	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
Rinsate	10/07/09	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
	08/17/11	<5.0	<5.0	<5.0	<50	<11	<10	<5.0	<5.0		

Notes:

ug/L = micrograms per liter

<5.0 = constituent was not detected above the detection limit.

NS = not sampled

* A value does not exist on Table 1 of Appendix III for this compound. The Reporting Limit was used for the Type 1 RRS.

** This result is reported down to the Method Detection Limit because

the Reporting Limit was greater than the Type 1 RRS.

*** The well could not be fully developed due to slow recharge. The result represents a highly turbid sample and is not considered valid. Lead was not detected in a filtered sample

collected from the same well.

- NC = Not Calculated
- TCA = 1,1,1-Trichloroethane
- DCA = 1,1-Dichloroethane
- DCE = 1,1-Dichloroethene
- PCE = Tetrachloroethene
- IPB = Isopropylbenzene
- -- = Constituent Not Analyzed
- NR = Not Regulated
- (F) = Filtered
 - Above Residential RRS (Type 1/2 RRS)

Above Non-Residential RRS (Type 4 RRS)

Table 2 Summary of Soil Analytical Results Color Spectrum LaFayette, Georgia

Sample	Depth	Sample	TCA	DCA	DCE	Acetone	Freon-113	PCE	Arsenic	Lead
Location	(feet)	Date	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
SB-24	7	12/19/06	<0.0035	<0.0035	<0.0035	NS	0.11	<0.0035		
SB-25	7	12/19/06	<0.0024	0.0029	0.0042	NS	0.57	<0.0024		
SB-26	7	12/19/06	<0.0033	<0.0033	<0.0033	NS	0.25	<0.0033		
SB-29	1	06/22/07	<0.0046	<0.0046	<0.0046	<0.092	0.038	<0.0046		
SB-29	4	06/22/07	<0.0038	<0.0038	<0.0038	<0.076	0.094	<0.0038		
SB-30	1	06/22/07	<0.0030	<0.0030	<0.0030	<0.061	0.077	<0.0030		
SB-30	6	06/22/07	<0.0035	<0.0035	<0.0035	<0.070	0.22	<0.0035		
SB-31	1	06/22/07	<0.0044	<0.0044	<0.0044	<0.087	0.078	<0.0044		
SB-31	7	06/22/07	<0.0036	<0.0036	<0.0036	0.19	0.034	<0.0036		
SB-32	1	06/22/07	<0.0035	<0.0035	<0.0035	<0.069	0.98	<0.0035		
SB-32	4	06/22/07	<0.0031	<0.0031	<0.0031	0.32	0.57	<0.0031		
SB-33	1	06/21/07	<0.0028	<0.0028	<0.0028	0.16	0.32	0.0033		
SB-33	4	06/21/07	<0.0027	<0.0027	<0.0027	0.19	0.34	0.0028		
SB-34	1	06/21/07	<0.0033	<0.0033	<0.0033	<0.066	0.68	<0.0033		
SB-34	7	06/21/07	<0.0027	0.0073	0.039	<0.054	4.2	<0.0027		
SB-35	1	06/21/07	<0.0034	<0.0034	<0.0034	0.18	0.028	<0.0034		
SB-35	4	06/21/07	<0.0041	<0.0041	<0.0041	<0.082	0.61	<0.0041		
SB-36	1	06/21/07	<0.0046	<0.0046	<0.0046	<0.092	<0.0092	<0.0046		
SB-36	4	06/21/07	<0.0038	<0.0038	0.020	<0.077	2.3	0.0091		
SB-37	1	06/26/07	<0.0039	<0.0039	<0.0039	<0.077	0.99	0.024		
SB-37	3	06/26/07	0.012	0.0068	0.08	<0.059	6.3	0.30		
MW-7	1	06/26/07	<0.0032	<0.0032	<0.0032	<0.064	0.32	<0.0032		
MW-7	4	06/26/07	<0.0031	<0.0031	0.011	<0.061	0.79	<0.0031		
SO-1	2	10/06/09	<0.0031	<0.0031	<0.0031	<0.063	0.25	0.0041	14.4	16.5
SO-2	2	10/06/09	<0.0030	<0.0030	<0.0030	<0.061	0.39	0.014	17.6	18
SO-3	2	10/06/09	<0.0032	<0.0032	<0.0032	<0.064	0.52	<0.0032	22.4	25.5
SO-4	5	10/06/09	<0.0042	0.0079	<0.0042	<0.084	1.2	0.015	11.9	12.6
SO-5	4	10/06/09	<0.0044	<0.0044	<0.0044	<0.087	2.1	<0.0044	13.4	14.7
Duplicate	4	10/06/09	<0.0037	<0.0037	<0.0037	<0.074	1.6	<0.0037	12.7	10.8
SO-6	4	10/06/09	<0.0066	<0.0066	<0.0066	<0.13	0.29	0.007	10.3	11.4

Notes:

mg/Kg = milligrams per kilogram

<0.0035 = constituent was not detected above the detection limit.

NS = Not Sampled

TCA = 1,1,1-Trichloroethane

DCA = 1,1-Dichloroethane

DCE = 1,1-Dichloroethene

PCE = Tetrachloroethene

NC = Not Calculated

-- = Constituent Not Analyzed

Table 3 Groundwater Elevations Color Spectrum LaFayette, Georgia

		Ground Surface	TOC	Screened	Depth to	Depth to	Groundwater
Well		Elevation	Elevation	Interval	Groundwater	Product	Elevation
Location	Date	(ft above NGVD)	(ft above NGVD)	(ft below TOC)	(ft below TOC)	(ft below TOC)	(ft above NGVD)
MW-1	6/28/2007	796.96	796.64	2-12	5.06	ND	791.58
	8/16/2011				5.58	ND	791.06
	3/12/2013		796.34		3.56	ND	792.78
	8/29/2013				4.51	ND	791.83
	12/3/2013				3.65	ND	792.69
	8/22/2014				3.50	ND	792.84
MW-2*	6/28/2007	796.43	796.06	2-12	5.48	NM	790.58
	8/16/2011				5.20	5.15	791.27
	3/12/2013				3.70	3.65	792.77
	6/19/2013				4.10	3.00	793.27
	8/29/2013				5.36	4.36	791.92
	12/3/2013				4.65	4.64	791.79
	8/22/2014				3.67	ND	792.39
MW-3	6/28/2007	797.46	797.14	2-15	5.45	ND	791.69
	8/16/2011				5.59	ND	791.55
	3/12/2013				NM	NM	NM
	8/29/2013				NM	NM	NM
	12/3/2013				NM	NM	NM
	8/22/2014				NM	NM	NM
MW-4	6/28/2007	795.58	795.43	6-16	4.48	ND	790.95
	8/16/2011				4.82	ND	790.61
	3/12/2013				4.26	ND	791.17
	8/29/2013				4.39	ND	791.04
	12/3/2013				4.33	ND	791.10
	8/22/2014				4.22	ND	791.21
MW-5	6/28/2007	797.46	797.19	3-13	5.10	ND	792.09
	8/16/2011				4.65	ND	792.54
	3/12/2013				3.82	ND	793.37
	6/19/2013				3.84	ND	793.35
	8/29/2013				4.01	ND	793.18
	12/3/2013				3.99	ND	793.20
	8/22/2014				3.62	ND	793.57
MW-6	6/28/2007	796.92	796.62	3-13	4.45	ND	792.17
	8/16/2011				4.83	ND	791.79
	3/12/2013				3.90	ND	792.72
	8/29/2013				3.81	ND	792.81
	12/3/2013				4.33	ND	792.29
	8/22/2014				4.38	ND	792.24
MW-7	6/28/2007	797.89	797.52	3.5-13.5	3.69	ND	793.83
	8/16/2011				3.63	ND	793.89
	3/12/2013				3.28	ND	794.24
	8/29/2013				3.30	ND	794.22
	12/3/2013				3.40	ND	794.12
	8/22/2014				3.37	ND	794.15

Table 3 Groundwater Elevations Color Spectrum LaFayette, Georgia

		Ground Surface	тос	Screened	Depth to	Depth to	Groundwater
Well		Elevation	Elevation	Interval	Groundwater	Product	Elevation
Location	Date	(ft above NGVD)	(ft above NGVD)	(ft below TOC)	(ft below TOC)	(ft below TOC)	(ft above NGVD)
MW-8	6/28/2007	801.96	801.74	4-14	12.17	ND	789.57
	8/16/2011				9.27	ND	792.47
	3/12/2013				8.47	ND	793.27
	8/29/2013				8.45	ND	793.29
	12/3/2013				8.91	ND	792.83
	8/22/2014				8.90	ND	792.84
MW-9	6/28/2007	801.97	801.53	4-14	7.45	ND	794.08
	8/16/2011				7.41	ND	794.12
	3/12/2013				7.02	ND	794.51
	8/29/2013				6.98	ND	794.55
	12/3/2013				7.15	ND	794.38
	8/22/2014				7.11	ND	794.42
MW-10	10/6/2009	801.96	801.62	10-12.5	9.24	ND	792.38
	8/16/2011				8.78	ND	792.84
	3/12/2013				8.06	ND	793.56
	6/19/2013				8.04	ND	793.58
	8/29/2013				7.81	ND	793.81
	12/3/2013				8.31	ND	793.31
	8/22/2014				8.13	ND	793.49
MW-11	10/6/2009	801.96	801.75	17.5-20	14.21	ND	787.54
	8/16/2011				9.35	ND	792.40
	3/12/2013				8.65	ND	793.10
	6/19/2013				8.65	ND	793.10
	8/29/2013				7.96	ND	793.79
	12/3/2013				9.00	ND	792.75
	8/22/2014				NM	NM	NM
MW-12	3/12/2013	NM	795.29	3-13	3.78	ND	791.51
	6/19/2013				3.65	ND	791.64
	8/29/2013				3.76	ND	791.53
	12/3/2013				3.78	ND	791.51
	8/22/2014				3.71	ND	791.58
MW-13	3/12/2013	NM	796.24		3.57	ND	792.67
	6/19/2013				3.63	ND	792.61
	8/29/2013				4.41	ND	791.83
	12/3/2013				4.12	ND	792.12
	8/22/2014				3.69	ND	792.55
MW-14	8/22/2014	NM	796.34		5.46	ND	790.88
TW-1	6/28/2007	795.01	794.73	6-16	3.81	ND	790.92
	8/16/2011				4.10	ND	790.63
	3/12/2013				3.05	ND	791.68
	6/19/2013				3.49	ND	791.24
	8/29/2013				3.65	ND	791.08
	12/3/2013				3.61	ND	791.12
	8/22/2014				3.59	ND	791.14

Table 3 **Groundwater Elevations Color Spectrum** LaFayette, Georgia

Well Location	Date	Ground Surface Elevation (ft above NGVD)	TOC Elevation (ft above NGVD)	Screened Interval (ft below TOC)	Depth to Groundwater (ft below TOC)	Depth to Product (ft below TOC)	Groundwater Elevation (ft above NGVD)
TW-2	6/28/2007	801.94	801.74	4-14	7.36	ND	794.38
	8/16/2011				6.89	ND	794.85
	3/12/2013				NM	NM	NM
	8/29/2013				NM	NM	NM
	12/3/2013				5.92	ND	795.82
	8/22/2014				NM	NM	NM
DW-1	6/28/2007	798.10	797.72	35.6-45.6	4.70	ND	793.02
	8/16/2011				4.45	ND	793.27
	3/12/2013				3.45	ND	794.27
	8/29/2013				3.77	ND	793.95
	12/3/2013				4.10	ND	793.62
	8/22/2014				4.10	ND	793.62

Notes

ft = feet NGVD = National Geodetic Vertical Datum

*'= corrected for free product, measurements are approximate

TOC = top of casing NM = not measured A specific gravity correction factor of 0.85 was used to adjust potentiometric surface elevations for MW-2.

EPS

Table 4 Summary of Vapor Intrusion Modeling Results Color Spectrum LaFayette, Georgia

			Estimated	Modeled		Concentration		
	Property Use		Area Volume	Air Exchange (AE)	Sample	μg/L (GW)	Cancer	Hazard
Compound	Scenario	Matrix	ft ³	Volume (1/h)	Location	mg/kg (soil)	Risk*	Quotient
	Non-Residential	GW	1,628,000	0.25	SB-23	2,100		7.1E-04
тса	Residential	GW	1,000	0.25	SB-23	2,100		3.4E-03
ICA	Non-Residential	Soil	1,628,000	0.25	SB-37	0.012		6.7E-06
	Residential	Soil	1,000	0.25	SB-37	0.012		2.3.E-05
	Non-Residential	GW	1,628,000	0.25	MW-10	280	1.7E-07	
DCA	Residential	GW	1,000	0.25	MW-10	280	1.2E-06	
DCA	Non-Residential	Soil	1,628,000	0.25	SO-4	0.0079	1.3E-08	
	Residential	Soil	1,000	0.25	SO-4	0.0079	5.1E-08	
	Non-Residential	GW	1,628,000	0.25	SB-23	290		4.0E-03
DCE	Residential	GW	1,000	0.25	SB-23	290		2.0E-02
DCE	Non-Residential	Soil	1,628,000	0.25	SB-37	0.08		1.1E-03
	Residential	Soil	1,000	0.25	SB-37	0.08		3.8E-03
	Non-Residential	GW	1,628,000	0.25	MW-10	140		8.7E-08
Asstans	Residential	GW	1,000	0.25	MW-10	140		3.9E-06
Acetone	Non-Residential	Soil	1,628,000	0.25	SB-34	0.32		1.7E-06
	Residential	Soil	1,000	0.25	SB-34	0.32		9.8E-05
	Non-Residential	GW	1,628,000	0.25	SB-23	27,000		1.7E-02
Freon-113	Residential	GW	1,000	0.25	SB-23	27,000		7.3E-02
Freon-113	Non-Residential	Soil	1,628,000	0.25	SB-34	6.3		1.2E-03
	Residential	Soil	1,000	0.25	SB-34	6.3		4.0E-03
E	Non-Residential	GW	1,628,000	0.25	MW-10	680		1.5E-01
Freon-12	Residential	GW	1,000	0.25	MW-10	680		7.0E-01
IPB	Non-Residential	GW	1,628,000	0.25	MW-6	46		1.3E-04
IPB	Residential	GW	1,000	0.25	MW-6	46		6.3E-04
	Non-Residential	GW	1,628,000	0.25	SB-23	350	4.9E-08	1.3E-02
DOF	Residential	GW	1,000	0.25	SB-23	350	2.8E-07	6.2E-02
PCE	Non-Residential	Soil	1,628,000	0.25	SB-37	0.3	7.8E-08	2.1E-02
	Residential	Soil	1,000	0.25	SB-37	0.3	3.2E-07	7.1E-02

Notes:

µg/L = micrograms per liter

TCA = 1,1,1-Trichloroethane

DCA = 1,1-Dichloroethane

DCE = 1,1-Dichloroethene

PCE = Tetrachloroethene

IPB = Isopropylbenzene

1/hr = 1 building volume per hour

* = Estimated Risk is calculated based on measured groundwater and soil PCE concentrations

APPENDIX E Laboratory Analytical Reports

CLIENT:Environmental Planning Specialists, Inc.Lab Order:0910778Project:Color SpectrumLab ID:0910778-011

Date: 21-Oct-14

Client Sample ID: 09280-MW-10 Collection Date: 10/7/2009 11:40:00 AM

Analyses		Result Qual	MDL	Rpt. Limit Units	BatchID	DF	Date Analyzed
METALS, TOTA	L SW6010C			(SW3010A)		Ana	lyst: JY
Arsenic		BRL	0.0044	0.0500 mg/L	119718	1	10/12/2009 2:32:15 PM
Lead		BRL	0.0022	0.0100 mg/L	119718	1	10/12/2009 2:32:15 PM
ICL VOLATILE	ORGANICS SW8260B	8		(SW5030B)		Ana	lyst: JCT
1,1,1-Trichloroeth		10	0.14	5.0 ug/L	119752	1	10/11/2009 3:02:00 AM
1,1,2,2-Tetrachlor	roethane	BRL	0.16	5.0 ug/L	119752	1	10/11/2009 3:02:00 AM
1,1,2-Trichloroeth	ane	BRL	0.15	5.0 ug/L	119752	1	10/11/2009 3:02:00 AM
1,1-Dichloroethan	ie	170	0.13	5.0 ug/L	119752	1	10/11/2009 3:02:00 AM
1,1-Dichloroethen	ie	96	0.27	5.0 ug/L	119752	1	10/11/2009 3:02:00 AN
1,2,4-Trichlorober	nzene	BRL	0.21	5.0 ug/L	119752	1	10/11/2009 3:02:00 AM
1,2-Dibromo-3-ch	loropropane	BRL	0.28	5.0 ug/L	119752	1	10/11/2009 3:02:00 AN
1,2-Dibromoethar		BRL	0.24	5.0 ug/L	119752	1	10/11/2009 3:02:00 AM
1,2-Dichlorobenze	ene	BRL	0.16	5.0 ug/L	119752	1	10/11/2009 3:02:00 AM
1,2-Dichloroethan		BRL	0.12	5.0 ug/L	119752	1	10/11/2009 3:02:00 AM
1,2-Dichloropropa		BRL	0.17	5.0 ug/L	119752	1	10/11/2009 3:02:00 AN
1,3-Dichlorobenze		BRL	0.13	5.0 ug/L	119752	1	10/11/2009 3:02:00 AN
1,4-Dichlorobenze		BRL	0.11	5.0 ug/L	119752	1	10/11/2009 3:02:00 AN
2-Butanone		BRL	5.4	50 ug/L	119752	1	10/11/2009 3:02:00 AN
2-Hexanone		BRL	0.21	10 ug/L	119752	1	10/11/2009 3:02:00 AN
4-Methyl-2-pentar	none	BRL	0.41	10 ug/L	119752	1	10/11/2009 3:02:00 AN
Acetone		BRL	5.5	50 ug/L	119752	1	10/11/2009 3:02:00 AN
Benzene		0.91 J	0.13	5.0 ug/L	119752	1	10/11/2009 3:02:00 AM
Bromodichlorome	thane	BRL	0.13	5.0 ug/L	119752	1	10/11/2009 3:02:00 AM
Bromoform		BRL	0.30	5.0 ug/L	119752	1	10/11/2009 3:02:00 AM
Bromomethane		BRL	1.9	5.0 ug/L	119752	1	10/11/2009 3:02:00 AN
Carbon disulfide		BRL	0.19	5.0 ug/L	119752	1	10/11/2009 3:02:00 AM
Carbon tetrachlori	ide	BRL	0.18	5.0 ug/L	119752	1	10/11/2009 3:02:00 AM
Chlorobenzene	lue	BRL	0.088	5.0 ug/L	119752	1	10/11/2009 3:02:00 AN
Chloroethane		BRL	0.000	10 ug/L	119752	1	10/11/2009 3:02:00 AN
Chloroform		1.3 J	0.20	5.0 ug/L	119752	1	10/11/2009 3:02:00 AN
Chloromethane		BRL	0.15	10 ug/L	119752	1	10/11/2009 3:02:00 AN
cis-1,2-Dichloroet	hono	BRL	0.13	5.0 ug/L	119752	1	10/11/2009 3:02:00 AN
cis-1,3-Dichloropr		BRL	0.070	5.0 ug/L	119752	1	10/11/2009 3:02:00 AN
Cyclohexane	opene	BRL	0.17	5.0 ug/L	119752	י 1	10/11/2009 3:02:00 AN
Dibromochlorome	thana	BRL	0.80	5.0 ug/L	119752	-	10/11/2009 3:02:00 AN
Dichlorodifluorom				-		1	
	CIIIAIIE	BRL	0.21	10 ug/L	119752	1	10/11/2009 3:02:00 AN
Ethylbenzene		BRL	0.085	5.0 ug/L	119752	1	10/11/2009 3:02:00 AN
Freon-113		6100	16	1000 ug/L	119752	100	10/12/2009 7:13:00 PM
Isopropylbenzene		12	0.069	5.0 ug/L	119752	1	10/11/2009 3:02:00 AN
m,p-Xylene Methyl acetate		BRL BRL	0.092 0.31	10 ug/L 5.0 ug/L	119752 119752	1 1	10/11/2009 3:02:00 AM 10/11/2009 3:02:00 AM
-			0.01			•	
Qualifiers: *	value exceeds maximal			< Less than Res			
>				•	ted in the associat		
E		e			s for preparation o	r analys	sis exceeded
J	Estimated value detected	I below Reporting Limit		N Analyte not N	ELAC certified		

CLIENT:Environmental Planning Specialists, Inc.Lab Order:0910778Project:Color SpectrumLab ID:0910778-011

Date: 21-Oct-14

Client Sample ID: 09280-MW-10 Collection Date: 10/7/2009 11:40:00 AM

Analyses		Result	Qual	MDL	Rpt. Limit	Units	BatchID	DF	Date Analyzed
TCL VOLATILE ORGANICS	SW8260B				(SW	5030B)		Ana	lyst: JCT
Methyl tert-butyl ether		2.7	J	0.073	5.0	ug/L	119752	1	10/11/2009 3:02:00 AM
Methylcyclohexane		BRL		0.13	5.0	ug/L	119752	1	10/11/2009 3:02:00 AM
Methylene chloride		BRL		0.96	5.0	ug/L	119752	1	10/11/2009 3:02:00 AM
o-Xylene		BRL		0.053	5.0	ug/L	119752	1	10/11/2009 3:02:00 AM
Styrene		BRL		0.12	5.0	ug/L	119752	1	10/11/2009 3:02:00 AM
Tetrachloroethene		54		0.17	5.0	ug/L	119752	1	10/11/2009 3:02:00 AM
Toluene		BRL		0.15	5.0	ug/L	119752	1	10/11/2009 3:02:00 AM
trans-1,2-Dichloroethene		BRL		0.20	5.0	ug/L	119752	1	10/11/2009 3:02:00 AM
trans-1,3-Dichloropropene		BRL		0.098	5.0	ug/L	119752	1	10/11/2009 3:02:00 AM
Trichloroethene		BRL		0.12	5.0	ug/L	119752	1	10/11/2009 3:02:00 AM
Trichlorofluoromethane		BRL		0.17	5.0	ug/L	119752	1	10/11/2009 3:02:00 AM
Vinyl chloride		BRL		0.19	2.0	ug/L	119752	1	10/11/2009 3:02:00 AM
Surr: 4-Bromofluorobenzene		84.3		0	61.3-128	%REC	119752	100	10/12/2009 7:13:00 PM
Surr: 4-Bromofluorobenzene		92.9		0	61.3-128	%REC	119752	1	10/11/2009 3:02:00 AM
Surr: Dibromofluoromethane		105		0	67.8-130	%REC	119752	1	10/11/2009 3:02:00 AM
Surr: Dibromofluoromethane		95.5		0	67.8-130	%REC	119752	100	10/12/2009 7:13:00 PM
Surr: Toluene-d8		89.2		0	70.6-121	%REC	119752	1	10/11/2009 3:02:00 AM
Surr: Toluene-d8		83.9		0	70.6-121	%REC	119752	100	10/12/2009 7:13:00 PM

Oualifiers:	*	Value exceeds Maximum Contaminant Level	<	Less than Result value
Q	>	Greater than Result value	В	Analyte detected in the associated Method Blank
	Е	Estimated value above quantitation range	Н	Holding times for preparation or analysis exceeded
	J	Estimated value detected below Reporting Limit	Ν	Analyte not NELAC certified

CLIENT:Environmental Planning Specialists, Inc.Lab Order:0910778Project:Color SpectrumLab ID:0910778-012

Date: 21-Oct-14

Client Sample ID: 09280-MW-11 Collection Date: 10/7/2009 2:35:00 PM

Analyses		Result Qual	MDL	Rpt. Limit Units	BatchID	DF	Date Analyzed
METALS, TOTA	L SW6010C			(SW3010A)		Ana	lyst: JY
Arsenic		BRL	0.0044	0.0500 mg/L	119718	1	10/12/2009 2:35:58 PM
Lead		0.0156	0.0022	0.0100 mg/L	119718	1	10/12/2009 2:35:58 PM
TCL VOLATILE	ORGANICS S	W8260B		(SW5030B)		Ana	lyst: JCT
1,1,1-Trichloroet		7.6	0.14	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
1,1,2,2-Tetrachlo	roethane	BRL	0.16	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
1,1,2-Trichloroet	nane	BRL	0.15	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
1,1-Dichloroetha	ne	29	0.13	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
1,1-Dichloroethe	ne	94	0.27	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
1,2,4-Trichlorobe	nzene	BRL	0.21	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
1,2-Dibromo-3-cl	nloropropane	BRL	0.28	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
1,2-Dibromoetha		BRL	0.24	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
1,2-Dichlorobenz		BRL	0.16	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
1,2-Dichloroetha		BRL	0.12	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
1,2-Dichloroprop		BRL	0.17	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
1,3-Dichlorobenz		BRL	0.13	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
1,4-Dichlorobenz		BRL	0.11	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
2-Butanone		BRL	5.4	50 ug/L	119752	1	10/11/2009 3:30:00 AM
2-Hexanone		BRL	0.21	10 ug/L	119752	1	10/11/2009 3:30:00 AM
4-Methyl-2-penta	none	BRL	0.41	10 ug/L	119752	1	10/11/2009 3:30:00 AM
Acetone		BRL	5.5	50 ug/L	119752	1	10/11/2009 3:30:00 AM
Benzene		BRL	0.13	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
Bromodichlorom	othane	BRL	0.13	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
Bromoform		BRL	0.30	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
Bromomethane		BRL	1.9	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
Carbon disulfide		BRL	0.19	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
Carbon tetrachlo	rido	BRL	0.19	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
Chlorobenzene	nue	BRL	0.088	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
Chloroethane		BRL	0.000	10 ug/L	119752	1	10/11/2009 3:30:00 AM
Chloroform		BRL	0.20	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
Chloromethane		BRL	0.15	10 ug/L	119752	1	10/11/2009 3:30:00 AM
	thana	BRL	0.13	-		1	
cis-1,2-Dichloroe		BRL	0.070	5.0 ug/L	119752 119752		10/11/2009 3:30:00 AM 10/11/2009 3:30:00 AM
cis-1,3-Dichlorop	Topene	BRL		5.0 ug/L		1	
Cyclohexane	- 4h		0.80	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
Dibromochlorom		BRL	0.12	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
Dichlorodifluoron	leinane	BRL	0.21	10 ug/L	119752	1	10/11/2009 3:30:00 AM
Ethylbenzene		BRL	0.085	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
Freon-113	-	15000	16	1000 ug/L	119752	100	10/12/2009 7:41:00 PM
Isopropylbenzen	9	7.7	0.069	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
m,p-Xylene Methyl acetate		BRL BRL	0.092 0.31	10 ug/L 5.0 ug/L	119752 119752	1 1	10/11/2009 3:30:00 AM 10/11/2009 3:30:00 AM
-			2.0.	-			
Qualifiers:	value execcus	Maximum Contaminant Level		< Less than Re			
>				•	ected in the associat		
I		e above quantitation range		•	es for preparation o	r analy	sis exceeded
J	Estimated valu	e detected below Reporting Limi	t	N Analyte not	NELAC certified		

CLIENT:Environmental Planning Specialists, Inc.Lab Order:0910778Project:Color SpectrumLab ID:0910778-012

Date: 21-Oct-14

Client Sample ID: 09280-MW-11 Collection Date: 10/7/2009 2:35:00 PM

Analyses	Result Qual	MDL	Rpt. Limit Units	BatchID	DF	Date Analyzed
TCL VOLATILE ORGANICS SW8260E	3		(SW5030B)		Ana	lyst: JCT
Methyl tert-butyl ether	1.4 J	0.073	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
Methylcyclohexane	BRL	0.13	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
Methylene chloride	BRL	0.96	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
o-Xylene	BRL	0.053	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
Styrene	BRL	0.12	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
Tetrachloroethene	120	0.17	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
Toluene	BRL	0.15	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
trans-1,2-Dichloroethene	BRL	0.20	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
trans-1,3-Dichloropropene	BRL	0.098	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
Trichloroethene	BRL	0.12	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
Trichlorofluoromethane	BRL	0.17	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
Vinyl chloride	BRL	0.19	2.0 ug/L	119752	1	10/11/2009 3:30:00 AM
Surr: 4-Bromofluorobenzene	83.7	0	61.3-128 %REC	119752	100	10/12/2009 7:41:00 PM
Surr: 4-Bromofluorobenzene	85.6	0	61.3-128 %REC	119752	1	10/11/2009 3:30:00 AM
Surr: Dibromofluoromethane	106	0	67.8-130 %REC	119752	1	10/11/2009 3:30:00 AM
Surr: Dibromofluoromethane	96.2	0	67.8-130 %REC	119752	100	10/12/2009 7:41:00 PM
Surr: Toluene-d8	87.5	0	70.6-121 %REC	119752	1	10/11/2009 3:30:00 AM
Surr: Toluene-d8	86.3	0	70.6-121 %REC	119752	100	10/12/2009 7:41:00 PM

Oualifiers:	*	Value exceeds Maximum Contaminant Level	<	Less than Result value
	>	Greater than Result value	В	Analyte detected in the associated Method Blank
	Е	Estimated value above quantitation range	Н	Holding times for preparation or analysis exceeded
	J	Estimated value detected below Reporting Limit	Ν	Analyte not NELAC certified

CLIENT:Environmental Planning Specialists, Inc.Lab Order:0910778Project:Color SpectrumLab ID:0910778-013

Date: 21-Oct-14

Client Sample ID: 09280-MW-11 F Collection Date: 10/7/2009 2:30:00 PM

Analyses	Result	Qual MD	L Rpt. Limit	Units B	BatchID	DF	Date Analyzed
METALS, TOTAL SW6010C			(SW3	3010A)		Ana	lyst: JY
Arsenic	BRL	0.0044	0.0500	mg/L	119718	1	10/12/2009 2:39:34 PM
Lead	0.0039	J 0.0022	2 0.0100 i	mg/L	119718	1	10/12/2009 2:39:34 PM
TCL VOLATILE ORGANICS SW8260	В		(SW5	5030B)		Ana	lyst: JCT
1,1,1-Trichloroethane	11	0.14	•	•	119752	1	10/11/2009 4:27:00 AM
1,1,2,2-Tetrachloroethane	BRL	0.16	5.0 (ug/L	119752	1	10/11/2009 4:27:00 AM
1,1,2-Trichloroethane	BRL	0.15		-	119752	1	10/11/2009 4:27:00 AM
1,1-Dichloroethane	33	0.13	5.0	ug/L	119752	1	10/11/2009 4:27:00 AM
1,1-Dichloroethene	100	0.27		-	119752	1	10/11/2009 4:27:00 AM
1,2,4-Trichlorobenzene	BRL	0.21		-	119752	1	10/11/2009 4:27:00 AM
1,2-Dibromo-3-chloropropane	BRL	0.28		-	119752	1	10/11/2009 4:27:00 AM
1,2-Dibromoethane	BRL	0.24		-	119752	1	10/11/2009 4:27:00 AM
1,2-Dichlorobenzene	BRL	0.16		-	119752	1	10/11/2009 4:27:00 AM
1,2-Dichloroethane	BRL	0.12		-	119752	1	10/11/2009 4:27:00 AM
1,2-Dichloropropane	BRL	0.17		-	119752	1	10/11/2009 4:27:00 AM
1,3-Dichlorobenzene	BRL	0.13		•	119752	1	10/11/2009 4:27:00 AM
1,4-Dichlorobenzene	BRL	0.11		-	119752	1	10/11/2009 4:27:00 AM
2-Butanone	BRL	5.4		-	119752	1	10/11/2009 4:27:00 AM
2-Hexanone	BRL	0.21		-	119752	1	10/11/2009 4:27:00 AM
4-Methyl-2-pentanone	BRL	0.41		-	119752	1	10/11/2009 4:27:00 AM
Acetone	BRL	5.5		-	119752	1	10/11/2009 4:27:00 AM
Benzene	BRL	0.13		-	119752	1	10/11/2009 4:27:00 AM
Bromodichloromethane	BRL	0.13		-	119752	1	10/11/2009 4:27:00 AM
Bromoform	BRL	0.30		-	119752	1	10/11/2009 4:27:00 AM
Bromomethane	BRL	1.9		-	119752	1	10/11/2009 4:27:00 AM
Carbon disulfide	BRL	0.19		-	119752	1	10/11/2009 4:27:00 AM
Carbon tetrachloride	BRL	0.18		-	119752	1	10/11/2009 4:27:00 AM
Chlorobenzene	BRL	0.08		-	119752	1	10/11/2009 4:27:00 AM
Chloroethane	BRL	0.20		-	119752	1	10/11/2009 4:27:00 AM
Chloroform	BRL	0.15		-	119752	1	10/11/2009 4:27:00 AM
Chloromethane	BRL	0.15		-	119752	1	10/11/2009 4:27:00 AM
cis-1,2-Dichloroethene	BRL	0.070		-		1	
	BRL			-	119752		10/11/2009 4:27:00 AM
cis-1,3-Dichloropropene		0.17		-	119752	1	10/11/2009 4:27:00 AM
Cyclohexane	BRL	0.80		0	119752	1	10/11/2009 4:27:00 AM
Dibromochloromethane	BRL	0.12		•	119752	1	10/11/2009 4:27:00 AM
Dichlorodifluoromethane	BRL	0.21		-	119752	1	10/11/2009 4:27:00 AM
Ethylbenzene	2.7	J 0.085		-	119752	1	10/11/2009 4:27:00 AM
Freon-113		E 0.16		-	119752	1	10/11/2009 4:27:00 AM
	7.5	0.069		•	119752	1	10/11/2009 4:27:00 AM
m,p-Xylene Methyl acetate	1.5 BRL	J 0.092 0.31		-	119752 119752	1 1	10/11/2009 4:27:00 AM 10/11/2009 4:27:00 AM
-				-		-	
Qualifiers: * Value exceeds Maximu		Level		ess than Result valu		1.5.5	
> Greater than Result val				nalyte detected in the			
E Estimated value above				olding times for pre	•	analys	sis exceeded
J Estimated value detected	ed below Reporti	ng Limit	N A	nalyte not NELAC	certified		

CLIENT:Environmental Planning Specialists, Inc.Lab Order:0910778Project:Color SpectrumLab ID:0910778-013

Date: 21-Oct-14

Client Sample ID: 09280-MW-11 F Collection Date: 10/7/2009 2:30:00 PM

Analyses		Result	Qual	MDL	Rpt. Limit Units	BatchID	DF	Date Analyzed
TCL VOLATILE ORGANICS	SW8260B				(SW5030B)		Ana	lyst: JCT
Methyl tert-butyl ether		1.6	J	0.073	5.0 ug/L	119752	1	10/11/2009 4:27:00 AM
Methylcyclohexane		BRL		0.13	5.0 ug/L	119752	1	10/11/2009 4:27:00 AM
Methylene chloride		BRL		0.96	5.0 ug/L	119752	1	10/11/2009 4:27:00 AM
o-Xylene		3.0	J	0.053	5.0 ug/L	119752	1	10/11/2009 4:27:00 AM
Styrene		BRL		0.12	5.0 ug/L	119752	1	10/11/2009 4:27:00 AM
Tetrachloroethene		64		0.17	5.0 ug/L	119752	1	10/11/2009 4:27:00 AM
Toluene		5.2		0.15	5.0 ug/L	119752	1	10/11/2009 4:27:00 AM
trans-1,2-Dichloroethene		BRL		0.20	5.0 ug/L	119752	1	10/11/2009 4:27:00 AM
trans-1,3-Dichloropropene		BRL		0.098	5.0 ug/L	119752	1	10/11/2009 4:27:00 AM
Trichloroethene		BRL		0.12	5.0 ug/L	119752	1	10/11/2009 4:27:00 AM
Trichlorofluoromethane		BRL		0.17	5.0 ug/L	119752	1	10/11/2009 4:27:00 AM
Vinyl chloride		BRL		0.19	2.0 ug/L	119752	1	10/11/2009 4:27:00 AM
Surr: 4-Bromofluorobenzene		92.4		0	61.3-128 %REC	119752	1	10/11/2009 4:27:00 AM
Surr: Dibromofluoromethane		100		0	67.8-130 %REC	119752	1	10/11/2009 4:27:00 AM
Surr: Toluene-d8		86.8		0	70.6-121 %REC	119752	1	10/11/2009 4:27:00 AM

Oualifiers:	*	Value exceeds Maximum Contaminant Level	<	Less than Result value
•	>	Greater than Result value	В	Analyte detected in the associated Method Blank
	Е	Estimated value above quantitation range	Н	Holding times for preparation or analysis exceeded
	J	Estimated value detected below Reporting Limit	Ν	Analyte not NELAC certified

CLIENT:Environmental Planning Specialists, Inc.Lab Order:0910778Project:Color SpectrumLab ID:0910778-014

Date: 21-Oct-14

Client Sample ID: 09280-DUP Collection Date: 10/7/2009

Analyses		Result	Qual	MDL	Rpt. Limit Units	BatchID	DF	Date Analyzed
METALS, TOT	AL SW601)C			(SW3010A)		Ana	lyst: JY
Arsenic		BRL		0.0044	0.0500 mg/L	119718	1	10/12/2009 2:43:06 PM
Lead		BRL		0.0022	0.0100 mg/L	119718	1	10/12/2009 2:43:06 PM
	E ORGANICS	SW8260B			(SW5030B)		Ana	lyst: JCT
1,1,1-Trichloroe	ethane	7.2		0.14	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
1,1,2,2-Tetrach	loroethane	BRL		0.16	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
1,1,2-Trichloroe	ethane	BRL		0.15	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
1,1-Dichloroeth	ane	240		1.3	50 ug/L	119752	10	10/13/2009 1:47:00 AM
1,1-Dichloroeth	iene	110		0.27	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
1,2,4-Trichlorol		BRL		0.21	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
1,2-Dibromo-3-		BRL		0.28	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
1,2-Dibromoeth		BRL		0.24	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
1,2-Dichlorobei		BRL		0.16	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
1,2-Dichloroeth		1.0	J	0.12	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
1,2-Dichloropro		BRL	C C	0.17	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
1,3-Dichlorobei	•	BRL		0.13	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
1,4-Dichlorobei		BRL		0.10	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
2-Butanone		BRL		5.4	50 ug/L	119752	1	10/11/2009 5:52:00 AM
2-Hexanone		BRL		0.21	10 ug/L	119752	1	10/11/2009 5:52:00 AM
4-Methyl-2-pen	tanone	BRL		0.41	10 ug/L	119752	1	10/11/2009 5:52:00 AM
Acetone	tanone	BRL		5.5	50 ug/L	119752	1	10/11/2009 5:52:00 AM
Benzene		1.1	J	0.13	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
Bromodichloro	methane	BRL	5	0.13	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
Bromoform	nethane	BRL		0.13	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
Bromomethane		BRL		1.9	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
Carbon disulfid		BRL		0.19	5.0 ug/L	119752	1	
		BRL			-			10/11/2009 5:52:00 AM
Carbon tetrach		BRL		0.18	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
Chlorobenzene	:	BRL		0.088	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
Chloroethane		BRL		0.20	10 ug/L	119752	1	10/11/2009 5:52:00 AM
Chloroform				0.15	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
Chloromethane		BRL		0.15	10 ug/L	119752	1	10/11/2009 5:52:00 AM
cis-1,2-Dichlor		BRL		0.070	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
cis-1,3-Dichlor	ppropene	BRL		0.17	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
Cyclohexane		BRL		0.80	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
Dibromochloro		BRL		0.12	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
Dichlorodifluor	omethane	BRL		0.21	10 ug/L	119752	1	10/11/2009 5:52:00 AM
Ethylbenzene		BRL		0.085	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
Freon-113		6200		16	1000 ug/L	119752	100	10/12/2009 8:37:00 PM
Isopropylbenze	ene	10		0.069	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
m,p-Xylene		0.46	J	0.092	10 ug/L	119752	1	10/11/2009 5:52:00 AM
Methyl acetate		BRL		0.31	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
Qualifiers:		eds Maximum Contaminan	t Level			Result value		
		n Result value			2	tected in the associat		
	E Estimated v	alue above quantitation rat	nge		H Holding tir	nes for preparation o	r analy:	sis exceeded
	J Estimated v	alue detected below Report	ting Limi	t	N Analyte no	t NELAC certified		

CLIENT:Environmental Planning Specialists, Inc.Lab Order:0910778Project:Color SpectrumLab ID:0910778-014

Date: 21-Oct-14

Client Sample ID: 09280-DUP Collection Date: 10/7/2009

Analyses	Resul	t Qual	MDL	Rpt. Limit Units	BatchID	DF	Date Analyzed
TCL VOLATILE ORGANICS S	W8260B			(SW5030B)		Ana	lyst: JCT
Methyl tert-butyl ether	4.6	J	0.073	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
Methylcyclohexane	BRL		0.13	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
Methylene chloride	BRL		0.96	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
o-Xylene	BRL		0.053	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
Styrene	BRL		0.12	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
Tetrachloroethene	42		0.17	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
Toluene	0.73	J	0.15	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
trans-1,2-Dichloroethene	BRL		0.20	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
trans-1,3-Dichloropropene	BRL		0.098	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
Trichloroethene	BRL		0.12	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
Trichlorofluoromethane	BRL		0.17	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
Vinyl chloride	BRL		0.19	2.0 ug/L	119752	1	10/11/2009 5:52:00 AM
Surr: 4-Bromofluorobenzene	81.3		0	61.3-128 %REC	119752	10	10/13/2009 1:47:00 AM
Surr: 4-Bromofluorobenzene	83.7		0	61.3-128 %REC	119752	100	10/12/2009 8:37:00 PM
Surr: 4-Bromofluorobenzene	89.6		0	61.3-128 %REC	119752	1	10/11/2009 5:52:00 AM
Surr: Dibromofluoromethane	101		0	67.8-130 %REC	119752	10	10/13/2009 1:47:00 AM
Surr: Dibromofluoromethane	99.8		0	67.8-130 %REC	119752	100	10/12/2009 8:37:00 PM
Surr: Dibromofluoromethane	100		0	67.8-130 %REC	119752	1	10/11/2009 5:52:00 AM
Surr: Toluene-d8	86.5		0	70.6-121 %REC	119752	10	10/13/2009 1:47:00 AM
Surr: Toluene-d8	83.5		0	70.6-121 %REC	119752	1	10/11/2009 5:52:00 AM
Surr: Toluene-d8	84.4		0	70.6-121 %REC	119752	100	10/12/2009 8:37:00 PM

Oualifiers:	*	Value exceeds Maximum Contaminant Level	<	Less than Result value
Q	>	Greater than Result value	В	Analyte detected in the associated Method Blank
	Е	Estimated value above quantitation range	Н	Holding times for preparation or analysis exceeded
	J	Estimated value detected below Reporting Limit	Ν	Analyte not NELAC certified

ANALYTICAL ENVIRONMENTAL SERVICES, INC.

August 29, 2014

Justin Vickerv Environmental Planning Specialists, Inc. 1050 Crown Pointe Parkway Atlanta GA 30338

TEL: (404) 315-9113 FAX: (404) 315-8509

RE: Color Spectrum

Dear Justin Vickery:

Order No: 1408K76

Analytical Environmental Services, Inc. received 2 samples on 8/22/2014 3:55:00 PM for the analyses presented in following report.

No problems were encountered during the analyses. Additionally, all results for the associated Quality Control samples were within EPA and/or AES established limits. Any discrepancies associated with the analyses contained herein will be noted and submitted in the form of a project Case Narrative.

AES' certifications are as follows:

-NELAC/Florida Certification number E87582 for analysis of Environmental Water, soil/hazardous waste, and Drinking Water Microbiology, effective 07/01/14-06/30/15. -AIHA-LAP, LLC Laboratory ID: 100671 for Industrial Hygiene samples (Organics, Inorganics), Environmental Lead (Paint, Soil, Dust Wipes, Air), and Environmental Microbiology (Fungal) Direct Examination, effective until 09/01/15.

These results relate only to the items tested. This report may only be reproduced in full.

If you have any questions regarding these test results, please feel free to call.

James Forrest Project Manager

ANALYTICAL ENVIRONMENTAL SERVICES, INC

CHAIN OF CUSTODY

Work Order: 1408K 760

3080 Presidential Drive, Atlanta GA 30340-3704

XES TEL.: (770) 457-8177 / TOLL-FREE (800) 972-4889 / FAX: (770) 457-8188

Date:	8	-22-14	Page	(of	¥

COMPANY:		un Pointe f		isite 1	556	ANALYSIS REQUESTED								Visit our website				
EPS Inc.	FAX:	GA 3037															www.aesatlanta.com	of
404-315- 9113			A			ss											your results, place both	le jiers
PHONE: 404-315-9113 SAMPLED BY: Alex Testift	SIGNATURE:	: Jeatt	~			Vocs											orders, etc.	# of Containers
	SAN	APLED		lte	(\$2													No # o
# SAMPLE ID			Grab	Composite	Matrix (See codes)	-F			F	PRESE	RVAT	NOI I	See code	\$)	<u>т т</u>		REMARKS	
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	DATE 8-22-14	TIME		రి	-	Tart ,			_			_	_	_				
1 14234-MW-14 2 Trip Black	5 26-14	1106	\times		GW	\times		_							┝──┤			2
2 Inp Plank					W						_	-+		-	$\left \right $			2
4			-	1						+			-	_				
5				<u> </u>				-			+				$\left \right $			
6										\neg	-+		-	+			· · · · · · · · · · · · · · · · · · ·	
7						-							+	+	++			-
8														1				
9				1							\top							1
10				1														+
12														1				
13																		
14		1																
RELINQUISHED BY DATE/TE	AE RECEIVED B	Y			DATE/TIM	E	ECTN	IAME	¥				MATIC	N			RECEIPT	
RELINQUISHED BY DATE/TE 1: alg Jost 8-22-14 3:5 2:	> latoy	o Reeve	<u>08</u> 2	2/14	3:55 p	<u>}</u>	2011	: <u>-</u>	Col	or	Sje	ch(m				Total # of Containers	4
2:	2: U					PROJ	ECT#	: <u>-</u>	e la	5							Turnaround Time Requ	:st
3:	3:					SITE	ADDF	ESS:	Fai	4 Her	2.(GA					Standard 5 Business Day	'S
						SENI	REP	ORT TO	0: 1	J. J.	erin	Qen	uplan	ing.c	can .		2 Business Day Rush Next Business Day Rush	1
SPECIAL INSTRUCTIONS/COMMENTS:		SHIPMEN		OD		INVO	DICE T	°O:	~	testri	Alexandre	enople	ning	ning.c	1		O Same Day Rush (auth r	
	OUT / IN /	· /	VIA:			(IF D	IFFER	ENT F	ROM .	ABOV	E)						O Other	<u></u>
	CLIEI	NT BedEx L	VIA: JPS MAI	IL COU	JRIER												STATE PROGRAM (if any); E-mail? Y / N; Fax? Y / N	
			THER			QUO	TE #:_					P	D#:		<u></u>			
SAMPLES RECEIVED AFTER 3PM OR ON SATURDAY ARE SAMPLES ARE DISPOSED 30 DAYS AFTER REPORT COMP	CONSIDERED R LETION UNLESS	ECEIVED THE	E NEXT B ANGEME	SUSINES	S DAY. IF T E MADE.	URNA	ROUN	D TIM	IE IS I	NOTI	NDIC.	ATED	AES V	ILL PE	ROCEE	d with	H STANDARD TAT OF SAMPLES.	
MATRIX CODES: A = Air GW = Groundwater SE = Sedin							inling	Wator	(Plan)	ke) C) O4		20160	147147 - 1	TATe et a X			

MATRIX CODES: A = Air GW = Groundwater SE = Sediment SO = Soil SW = Surface water w - water (Dialus) GV = Dialuary (Dialus) GV = Dialuary

Client:Environmental Planning SProject Name:Color SpectrumLab ID:1408K76-001	Specialists, Inc.			Client San Collection Matrix:	-	14234-M 8/22/2014 Groundw		
Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analys
Volatile Organic Compounds by GC/M	AS SW8260B			(SV	V5030B)			
1,1,1-Trichloroethane	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
1,1,2,2-Tetrachloroethane	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
1,1,2-Trichloroethane	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
1,1-Dichloroethane	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
1,1-Dichloroethene	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
1,2,4-Trichlorobenzene	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
1,2-Dibromo-3-chloropropane	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
1,2-Dibromoethane	BRL	5.0		ug/L	195485		08/28/2014 15:09	NP
1,2-Dichlorobenzene	BRL	5.0		ug/L	195485		08/28/2014 15:09	NP
1,2-Dichloroethane	BRL	5.0		ug/L	195485		08/28/2014 15:09	NP
1,2-Dichloropropane	BRL	5.0		ug/L	195485		08/28/2014 15:09	NP
1,3-Dichlorobenzene	BRL	5.0		ug/L	195485		08/28/2014 15:09	NP
1,4-Dichlorobenzene	BRL	5.0		ug/L	195485		08/28/2014 15:09	NP
	BRL	150		ug/L	195485		08/28/2014 15:09	NP
1,4-Dioxane	BRL	50		ug/L ug/L	195485		08/28/2014 15:09	NP
2-Butanone	BRL	30 10		ug/L ug/L	195485		08/28/2014 15:09	NP
2-Hexanone	BRL	10		ug/L ug/L	195485		08/28/2014 15:09	NP
4-Methyl-2-pentanone								
Acetone	BRL	50		ug/L	195485		08/28/2014 15:09	NP
Benzene	BRL	5.0		ug/L	195485		08/28/2014 15:09	NP
Bromodichloromethane	BRL	5.0		ug/L	195485		08/28/2014 15:09	NP
Bromoform	BRL	5.0		ug/L	195485		08/28/2014 15:09	NP
Bromomethane	BRL	5.0		ug/L	195485		08/28/2014 15:09	NP
Carbon disulfide	BRL	5.0		ug/L	195485		08/28/2014 15:09	NP
Carbon tetrachloride	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
Chlorobenzene	BRL	5.0		ug/L	195485		08/28/2014 15:09	NP
Chloroethane	BRL	10		ug/L	195485	1	08/28/2014 15:09	NP
Chloroform	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
Chloromethane	BRL	10		ug/L	195485	1	08/28/2014 15:09	NP
cis-1,2-Dichloroethene	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
cis-1,3-Dichloropropene	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
Cyclohexane	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
Dibromochloromethane	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
Dichlorodifluoromethane	BRL	10		ug/L	195485	1	08/28/2014 15:09	NP
Ethylbenzene	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
Freon-113	BRL	10		ug/L	195485	1	08/28/2014 15:09	NP
Isopropylbenzene	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
Methyl acetate	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
Methyl tert-butyl ether	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
Methylcyclohexane	BRL	5.0		ug/L	195485		08/28/2014 15:09	NP
Methylene chloride	BRL	5.0		ug/L	195485		08/28/2014 15:09	NP
Styrene	BRL	5.0		ug/L	195485		08/28/2014 15:09	NP

Qualifiers:

Value exceeds maximum contaminant level

BRL Below reporting limit

*

H Holding times for preparation or analysis exceeded

Ν Analyte not NELAC certified

Analyte detected in the associated method blank В

> Greater than Result value E Estimated (value above quantitation range)

Spike Recovery outside limits due to matrix S

Narr See case narrative

NC Not confirmed

Less than Result value <

J Estimated value detected below Reporting Limit

Analytical Environmental Services		Date:	29-Aug-14					
Client:Environmental PlanningProject Name:Color SpectrumLab ID:1408K76-001	Specialists, Inc.		(Client San Collection Matrix:	•	14234-M 8/22/2014 Groundw	4 11:06:00 AM	
Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
Volatile Organic Compounds by GC/	MS SW8260B			(SV	V5030B)			
Tetrachloroethene	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
Toluene	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
trans-1,2-Dichloroethene	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
trans-1,3-Dichloropropene	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
Trichloroethene	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
Trichlorofluoromethane	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
Vinyl chloride	BRL	2.0		ug/L	195485	1	08/28/2014 15:09	NP
Xylenes, Total	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
Surr: 4-Bromofluorobenzene	81.9	66.2-120		%REC	195485	1	08/28/2014 15:09	NP
Surr: Dibromofluoromethane	105	79.5-121		%REC	195485	1	08/28/2014 15:09	NP
Surr: Toluene-d8	103	77-117		%REC	195485	1	08/28/2014 15:09	NP

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified
- B Analyte detected in the associated method blank
- > Greater than Result value

- E Estimated (value above quantitation range)
- S Spike Recovery outside limits due to matrix
- Narr See case narrative
- NC Not confirmed
- < Less than Result value
- J Estimated value detected below Reporting Limit

Client:Environmental PlanningProject Name:Color SpectrumLab ID:1408K76-002	Specialists, Inc.	cialists, Inc. C C M				TRIP BL 8/22/2014 Aqueous		
Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analys
Volatile Organic Compounds by GC/	MS SW8260B			(SV	V5030B)			
1,1,1-Trichloroethane	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
1,1,2,2-Tetrachloroethane	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
1,1,2-Trichloroethane	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
1,1-Dichloroethane	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
1,1-Dichloroethene	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
1,2,4-Trichlorobenzene	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
1,2-Dibromo-3-chloropropane	BRL	5.0		ug/L	195485		08/28/2014 14:45	NP
1,2-Dibromoethane	BRL	5.0		ug/L	195485		08/28/2014 14:45	NP
1,2-Dichlorobenzene	BRL	5.0		ug/L	195485		08/28/2014 14:45	NP
1,2-Dichloroethane	BRL	5.0		ug/L	195485		08/28/2014 14:45	NP
1,2-Dichloropropane	BRL	5.0		ug/L	195485		08/28/2014 14:45	NP
1,3-Dichlorobenzene	BRL	5.0		ug/L ug/L	195485		08/28/2014 14:45	NP
1,4-Dichlorobenzene	BRL	5.0		ug/L ug/L	195485		08/28/2014 14:45	NP
	BRL	150		ug/L ug/L	195485		08/28/2014 14:45	NP
1,4-Dioxane	BRL	50		ug/L ug/L	195485		08/28/2014 14:45	NP
2-Butanone								
2-Hexanone	BRL	10		ug/L	195485		08/28/2014 14:45	NP
4-Methyl-2-pentanone	BRL	10		ug/L	195485		08/28/2014 14:45	NP
Acetone	BRL	50		ug/L	195485		08/28/2014 14:45	NP
Benzene	BRL	5.0		ug/L	195485		08/28/2014 14:45	NP
Bromodichloromethane	BRL	5.0		ug/L	195485		08/28/2014 14:45	NP
Bromoform	BRL	5.0		ug/L	195485		08/28/2014 14:45	NP
Bromomethane	BRL	5.0		ug/L	195485		08/28/2014 14:45	NP
Carbon disulfide	BRL	5.0		ug/L	195485		08/28/2014 14:45	NP
Carbon tetrachloride	BRL	5.0		ug/L	195485		08/28/2014 14:45	NP
Chlorobenzene	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
Chloroethane	BRL	10		ug/L	195485	1	08/28/2014 14:45	NP
Chloroform	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
Chloromethane	BRL	10		ug/L	195485	1	08/28/2014 14:45	NP
cis-1,2-Dichloroethene	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
cis-1,3-Dichloropropene	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
Cyclohexane	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
Dibromochloromethane	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
Dichlorodifluoromethane	BRL	10		ug/L	195485	1	08/28/2014 14:45	NP
Ethylbenzene	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
Freon-113	BRL	10		ug/L	195485	1	08/28/2014 14:45	NP
Isopropylbenzene	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
Methyl acetate	BRL	5.0		ug/L	195485		08/28/2014 14:45	NP
Methyl tert-butyl ether	BRL	5.0		ug/L	195485		08/28/2014 14:45	NP
Methylcyclohexane	BRL	5.0		ug/L	195485		08/28/2014 14:45	NP
Methylene chloride	BRL	5.0		ug/L	195485		08/28/2014 14:45	NP
Styrene	BRL	5.0		ug/L	195485		08/28/2014 14:45	NP

Qualifiers:

BRL Below reporting limit

Bitte Below reporting init

*

H Holding times for preparation or analysis exceeded

Value exceeds maximum contaminant level

- N Analyte not NELAC certified
- B Analyte detected in the associated method blank
- > Greater than Result value

- E Estimated (value above quantitation range)
- S Spike Recovery outside limits due to matrix
- Narr See case narrative
- NC Not confirmed
- < Less than Result value
- J Estimated value detected below Reporting Limit

Analytical Environmental Services	, Inc					Date:	29-Aug-14	
Client:Environmental PlanningProject Name:Color SpectrumLab ID:1408K76-002	Specialists, Inc.			Client San Collection Matrix:		TRIP BL 8/22/2014 Aqueous	4	
Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
Volatile Organic Compounds by GC/	MS SW8260B			(SW	(5030B)			
Tetrachloroethene	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
Toluene	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
trans-1,2-Dichloroethene	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
trans-1,3-Dichloropropene	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
Trichloroethene	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
Trichlorofluoromethane	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
Vinyl chloride	BRL	2.0		ug/L	195485	1	08/28/2014 14:45	NP
Xylenes, Total	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
Surr: 4-Bromofluorobenzene	82.6	66.2-120		%REC	195485	1	08/28/2014 14:45	NP
Surr: Dibromofluoromethane	107	79.5-121		%REC	195485	1	08/28/2014 14:45	NP
Surr: Toluene-d8	105	77-117		%REC	195485	1	08/28/2014 14:45	NP

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

- H Holding times for preparation or analysis exceeded
- Ν Analyte not NELAC certified
- Analyte detected in the associated method blank В
- > Greater than Result value

- E Estimated (value above quantitation range)
- S Spike Recovery outside limits due to matrix
- Narr See case narrative
- NC Not confirmed
- Less than Result value <
- J Estimated value detected below Reporting Limit

Sample/Cooler Receipt Checklist

Client Env. Planning Specialists		Work Order	Number	1408KH6
Checklist completed by <u>Loana</u> Pacurar Signature Date	8/22/14	r 		
Carrier name: FedEx UPS Courier Client US	5 Mail Other	ľ	_	
Shipping container/cooler in good condition?	Yes	No	Not Present	
Custody seals intact on shipping container/cooler?	Yes	No	Not Present	
Custody seals intact on sample bottles?	Yes	No	Not Present	
Container/Temp Blank temperature in compliance? (0°≤6°C)	*Yes	No		
Cooler #1 <u>3.4</u> °C Cooler #2 Cooler #3	_ Cooler #4 _	Cool	er#5	Cooler #6
Chain of custody present?	Yes 🧹	No		
Chain of custody signed when relinquished and received?	Yes 🔟	No		
Chain of custody agrees with sample labels?	Yes _	No		
Samples in proper container/bottle?	Yes 🖌	No		
Sample containers intact?	Yes 🖌	No		
Sufficient sample volume for indicated test?	Yes 🖌	No		
All samples received within holding time?	Yes 🗹	No		
Was TAT marked on the COC?	Yes	No		
Proceed with Standard TAT as per project history?	Yes	No	Not Applicat	ole
Water - VOA vials have zero headspace? No VOA vials su	bmitted	Yes 🗹	No	
Water - pH acceptable upon receipt?	Yes 🧹	No	Not Applicat	ble
Adjusted?	Chec	ked by		_
Sample Condition: Good Other(Explain)				<u> </u>
(For diffusive samples or AIHA lead) Is a known blank include	ed? Yes	No)	

See Case Narrative for resolution of the Non-Conformance.

* Samples do not have to comply with the given range for certain parameters.

\\Aes_server\l\Sample Receipt\My Documents\COCs and pH Adjustment Sheet\Sample_Cooler_Recipt_Checklist_Rev1.rtf

Client:Environmental Planning Specialists, Inc.Project Name:Color SpectrumWorkorder:1408K76

ANALYTICAL QC SUMMARY REPORT

Date:

29-Aug-14

BatchID: 195485

Sample ID: MB-195485 SampleType: MBLK	Client ID: TestCode: Vol	atile Organic Compou	nds by GC/MS	SW8260B	Un Bat	its: ug/L cchID: 195485			08/27/2014 08/27/2014	Run No: 27462 Seq No: 57956	
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref	Val %RPD	O RPD Limit	Qual
1,1,1-Trichloroethane	BRL	5.0									
1,1,2,2-Tetrachloroethane	BRL	5.0									
1,1,2-Trichloroethane	BRL	5.0									
1,1-Dichloroethane	BRL	5.0									
1,1-Dichloroethene	BRL	5.0									
1,2,4-Trichlorobenzene	BRL	5.0									
1,2-Dibromo-3-chloropropane	BRL	5.0									
1,2-Dibromoethane	BRL	5.0									
1,2-Dichlorobenzene	BRL	5.0									
1,2-Dichloroethane	BRL	5.0									
1,2-Dichloropropane	BRL	5.0									
1,3-Dichlorobenzene	BRL	5.0									
1,4-Dichlorobenzene	BRL	5.0									
2-Butanone	BRL	50									
2-Hexanone	BRL	10									
4-Methyl-2-pentanone	BRL	10									
Acetone	BRL	50									
Benzene	BRL	5.0									
Bromodichloromethane	BRL	5.0									
Bromoform	BRL	5.0									
Bromomethane	BRL	5.0									
Carbon disulfide	BRL	5.0									
Carbon tetrachloride	BRL	5.0									
Chlorobenzene	BRL	5.0									
Chloroethane	BRL	10									
Chloroform	BRL	5.0									
Chloromethane	BRL	10									

Qualifiers: > Greater than Result value

Greater than Result value

BRL Below reporting limit

J Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

Less than Result value

<

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

R RPD outside limits due to matrix

29-Aug-14 Date:

Client: Environmental Planning Specialists, Inc. Color Spectrum **Project Name:** 1408K76 Workorder:

ANALYTICAL QC SUMMARY REPORT

BatchID: 195485

Sample ID: MB-195485	Client ID:				Uni	0		Date: 08/27		Run No: 274624	
SampleType: MBLK	TestCode: V	olatile Organic Compo	unds by GC/MS	SW8260B	Bat	chID: 195485	Ana	lysis Date: 08/27	/2014 5	Seq No: 579561	1
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit	Qual
cis-1,2-Dichloroethene	BRL	5.0									
cis-1,3-Dichloropropene	BRL	5.0									
Cyclohexane	BRL	5.0									
Dibromochloromethane	BRL	5.0									
Dichlorodifluoromethane	BRL	10									
Ethylbenzene	BRL	5.0									
Freon-113	BRL	10									
Isopropylbenzene	BRL	5.0									
Methyl acetate	BRL	5.0									
Methyl tert-butyl ether	BRL	5.0									
Methylcyclohexane	BRL	5.0									
Methylene chloride	BRL	5.0									
Styrene	BRL	5.0									
Tetrachloroethene	BRL	5.0									
Toluene	BRL	5.0									
trans-1,2-Dichloroethene	BRL	5.0									
trans-1,3-Dichloropropene	BRL	5.0									
Trichloroethene	BRL	5.0									
Trichlorofluoromethane	BRL	5.0									
Vinyl chloride	BRL	2.0									
Xylenes, Total	BRL	5.0									
Surr: 4-Bromofluorobenzene	42.71	0	50.00		85.4	66.2	120				
Surr: Dibromofluoromethane	50.65	0	50.00		101	79.5	121				
Surr: Toluene-d8	50.65	0	50.00		101	77	117				

Qualifiers:	>	Greater than Result value	<	Less than Result
	BRL	Below reporting limit	Е	Estimated (value
	J	Estimated value detected below Reporting Limit	Ν	Analyte not NEL

Rpt Lim Reporting Limit

- ult value
- ue above quantitation range)
- Analyte not NELAC certified Ν
- S Spike Recovery outside limits due to matrix

- B Analyte detected in the associated method blank
- H Holding times for preparation or analysis exceeded
- R RPD outside limits due to matrix

Client:Environmental Planning Specialists, Inc.Project Name:Color SpectrumWorkorder:1408K76

ANALYTICAL QC SUMMARY REPORT

Date:

29-Aug-14

BatchID: 195485

Sample ID: LCS-195485 SampleType: LCS	Client ID: TestCode:	Volatile Organic Compo	unds by GC/MS	SW8260B	Un Bat	its: ug/L tchID: 195485		ep Date: nalysis Date:	08/27/2014 08/27/2014		Run No: Seq No:		
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Re	f Val %	6RPD	RPD	Limit	Qual
,1-Dichloroethene	52.29	5.0	50.00		105	63.1	140						
Benzene	51.45	5.0	50.00		103	74.2	129						
Chlorobenzene	45.89	5.0	50.00		91.8	70	129						
oluene	52.63	5.0	50.00		105	74.2	129						
richloroethene	51.22	5.0	50.00		102	71.2	135						
Surr: 4-Bromofluorobenzene	43.23	0	50.00		86.5	66.2	120						
Surr: Dibromofluoromethane	48.48	0	50.00		97.0	79.5	121						
Surr: Toluene-d8	50.83	0	50.00		102	77	117						
Sample ID: 1408K90-022AMS SampleType: MS	Client ID: TestCode:	Volatile Organic Compo	unds by GC/MS	SW8260B	Un Bat	its: ug/L tchID: 195485		ep Date: nalysis Date:	08/27/2014 08/27/2014		Run No: Seq No:		
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Re	f Val %	6RPD	RPD	Limit	Qua
,1-Dichloroethene	635500	50000	500000		127	60.2	159						
enzene	560300	50000	500000		112	70.2	138						
hlorobenzene	491400	50000	500000		98.3	70.1	133						
oluene	586400	50000	500000		117	70	139						
richloroethene	552100	50000	500000		110	70.1	144						
Surr: 4-Bromofluorobenzene	421200	0	500000		84.2	66.2	120						
Surr: Dibromofluoromethane	506400	0	500000		101	79.5	121						
Surr: Toluene-d8	505900	0	500000		101	77	117						
Sample ID: 1408K90-022AMSD SampleType: MSD	Client ID: TestCode:	Volatile Organic Compo	unds by GC/MS	SW8260B	Un Bat	its: ug/L tchID: 195485		ep Date: nalysis Date:	08/27/2014 08/27/2014		Run No: Seq No:		
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Re	f Val %	6RPD	RPD	Limit	Qua
1-Dichloroethene	630900	50000	500000		126	60.2	159	63550	00 (0.726	19	0.2	
enzene	550700	50000	500000		110	70.2	138	56030	00	1.73	2	0	
ualifiers: > Greater than Result valu	e		< Less	than Result value			В	Analyte detected	in the associated	method b	olank		
BRL Below reporting limit			E Estim	ated (value above quantit	ation range)		Н	Holding times for	or preparation or a	nalysis e	ceeded		
J Estimated value detecte	d below Reporting	Limit	N Analy	te not NELAC certified			R	RPD outside lin	nits due to matrix				
Rpt Lim Reporting Limit			S Spike	Recovery outside limits of	lue to matrix								

Client:Environmental Planning Specialists, Inc.Project Name:Color SpectrumWorkorder:1408K76

ANALYTICAL QC SUMMARY REPORT

Date:

29-Aug-14

BatchID: 195485

Sample ID: 1408K90-022AMSD SampleType: MSD	Client ID: TestCode:	Volatile Organic Compo	unds by GC/MS	SW8260B	Uni Bat	ts: ug/L chID: 195485	1	Date: 08/27/ lysis Date: 08/27/		Run No: 274624 Seq No: 5795624
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
Chlorobenzene	489600	50000	500000		97.9	70.1	133	491400	0.367	20
Toluene	578000	50000	500000		116	70	139	586400	1.44	20
Trichloroethene	542400	50000	500000		108	70.1	144	552100	1.77	20
Surr: 4-Bromofluorobenzene	419900	0	500000		84.0	66.2	120	421200	0	0
Surr: Dibromofluoromethane	508400	0	500000		102	79.5	121	506400	0	0
Surr: Toluene-d8	514500	0	500000		103	77	117	505900	0	0

Qualifiers: > Greater than Result value

BRL Below reporting limit

J Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

- < Less than Result value
- E Estimated (value above quantitation range)
- N Analyte not NELAC certified
- S Spike Recovery outside limits due to matrix

- B Analyte detected in the associated method blank
- H Holding times for preparation or analysis exceeded
- R RPD outside limits due to matrix

APPENDIX F

Well Development and Well Sampling Forms

Monitoring Well Sampling Form

-

EPS Project	Color S	speinm					Date: 11-17	5 (1)					
Well ID: Sampling Perf	ormed By:	G. Henry			Fie	d Conditions:	Biomi -	600					
Well Construc			the March		General Condition of Well:								
Well Labeled:		Well Cap:	700	Well Locked:									
Well depth from		12.37		-		Depth to Wate	r from TOC:	-8.77	ac. Menar				
Well Diameter		21			Metho	d of measure:	wilm						
Height (Ht) of y	water in well (V	Vell depth from	TOC - Static le	vel from TOC):		3.6							
Volume of wat	er in well (Ht.)	x(.16 for 2")(.653	for 4")(1.469 f	for 6"):	0.58		Three Well V	olumes (ga	al): 1.73				
Purging Metho		forstubic	- bourfroom	~ (Shre>>		Start of Purge:	1055						
Sample Metho	a:	Thomb			Samp	le Parameters:	YOL 826	NB					
				T		<u> </u>							
	Volume			Cond.		Turbidity							
Time	(gal)	Temp (oC)	рН	(mS/cm)	DO (mg/L)	(NTU)	ORP (mV)	Drue	Comments				
1120	.5	21.03	Le. 81	0.827	6-20	17.2	-70	9.75					
1135	<u>15</u>	21.12	6.83	0.325	5.12	7.42	-77	9.77					
1150	1.0	21.18	6.94	0.810	4.06	5.57	- 86	10.02					
1202	1.25	21.17	4.95	0.816	3.94	3.45	- 27	(0.05					
1215	1.50	21.10	6.93	0.919	3.31	8.24	- 92	10.04					
1225	1.75	21.11	6.93	0.816	3.28	2.45	- 80	10.09					
·		<u> </u>											
		┢─────┤											
	-												
				·									
		╏────╂			<u> </u>								
		┟────┨											
		<u> </u> − − †					— — — — — — — — — — — — — — — — — — —						
							·		<u></u>				

Time Collected: 1225

____ Technician Signature____

EPS Project	Color !	Spectrum					Date: N-15	· • N	
Well ID: Sampling Perf Well Construct	Mus-1) ormed By: tion: Mos m TOC: (in): water in well (M er in well (Ht. x od:	Co-Henro Well Cap: 19.99 (2' Vell depth from (.16 for 2")(.653	TOC - Static le 3 for 4")(1.469	vel from TOC):	 Metho Time @	eld Conditions: General Condi Condition of s Depth to Wate d of measure: ریبری Start of Purge: le Parameters:	tion of Well: urrounding are r from TOC: <u>WLM</u> Three Well V 920	Fair a: <u>Concor</u> 9.43 olumes (ga	eleinterior 1): <u>5.02</u>
Time	Volume (gal)	Temp (oC)	рН	Cond. (mS/cm)	DO (mg/L)	Turbidity (NTU)	ORP (mV)	DIM	Comments
950	0.5	20.06	ce.71	0.342	Cerese 1.88	79.6	249	4.95	
605	1.0	20.51	7.35	0.336	1.07	73.2	217	14.31	
1024	1.5	20.60	7.46	0.332	10-1	128	202	16.35	
1040	2.0	20.61	7.53	0.328	0.96	172	194	18.95	
1355	Pings	20,97	2.25 quilos	1) - Will	41017 to	rechange t	Collect Somme		
							25	<u></u>	
									·
÷			l	 	 				
· · · ·									

Technician Signature

Monitoring Well Sampling Form

	,	<u> </u>								
EPS Project	: Color	Spectron	n					Date: 08/	15/201	ı)
Well ID:	MW-1					. Fi	eld Conditions:	clear,	~73°F	
Sampling Peri Well Construct			am Crow	12			General Cond	ition of Well:	900d	
Well Labeled:	$- \lambda$	Well Cap:			Well Locked:			urrounding are	a col	
Well depth fro			10.90	и —	_		Depth to Wate	r from TOC	4.43	
Well Diameter	(in):		2"			Metho	od of measure:	1.1/-40	- 919 3	· · · · · · · · · · · · · · · · · · ·
		Vell depth from	TOC - Static le	vel from TOC)	;	•	6.51	(A) - 50(
		(.16 for 2")(.653				.04	101.2	Three Well V	olumes (gal):	3.12
Purging Metho			Peri Pump			Time @	Start of Purge:	1001	elainee (gal).	3.10
Sample Metho	d:			· · · · · · · · · · · · · · · · · · ·			le Parameters:			
				· · · ·	····	•		····	· · · · · · · · · · · · · · · · · · ·	
	Volume	Down hole	Flow Cell			Cond.	Truckidite			
Time				l			Turbidity		Depth to	
Time	(gal)	Temp (°C)	Temp (°C)	pH	ORP (mV)	(mS/cm)	(NTU)	DO (mg/L)	Water (ft)	Comments
10:47	6.0		26.48	6.17	143	0.400	47.9	1.96		use bailer to purge
1052	6.25		20.55	6.08	-37	0.398	31.2	0.64		well until turbidity
1057	6.75		20.49	6.13	-67	0.400	15.7	0.00		is low then use
1102	2.25		20.55	6.16	-76	0.400	6.24	0.00		Deci-Dump to
107	7.75		20.55	6.18	-79	0.399	4.72	0.00		Complete
1112	6.178.25		20.56	6.17	-82	0.399	4.29	000		development
					-					Dreed ACJ Several
							<u> </u>			Jimes Cses notes
				· · · · ·						for certails)
		· · · · · · · · · · · · · · · · · · ·								
										
									· · · · · · · · · · · · · · · · · · ·	
					1					
Temp probe ID							Ferrous Iror	n (Fe ²⁺)=	mg/L	· · · · · · · · · · · · · · · · · · ·

Sample ID:

Time Collected:

Technician Signature

0

EPS Project	t: Color	Spectrum						Date: 8-	22-14	
Well ID:	Mw-1	ч		-		Fi	eld Conditions:		F, clear	
Sampling Peri		Ale	x Testatt			•			· · · · · · · · · · · · · · · · · · ·	*
Well Construc							General Cond	ition of Well:	9000	<i>)</i>
Well Labeled:	_nd	Well Cap:		421	Well Locked:	425		urrounding are		sted
Well depth fro		8.0					Depth to Wate		5-46	MCG
Well Diameter		2				Meth	od of measure:			
Height (Ht) of	water in well (V	Well depth from	TOC - Static le	vel from TOC)	:		2.54	107		
Volume of wat	er in well (Ht.	x(.16 for 2")(.653	3 for 4")(1.469 f	ог 6"):	0.4	a		Three Well V	olumes (gal):	1-23
Purging Metho	od:		astaltic four			Time @	Start of Purge:	1038		1. 62
Sample Metho	d:		hillet				ple Parameters:			
	Volume	Down hole	Flow Cell	······		Oand				
Time						Cond.	Turbidity		Depth to	
	(gal)	Temp (°C)	Temp (°C)	рН	ORP (mV)	(mS/cm)	(NTU)	DO (mg/L)	Water (ft)	Comments
1044	0.5		24.26	6.51	~74	0.212	0-65	19.61	5.63	
01001050	10		22.82	6.55	-83	0.209	0.75	5.24	5.64	
1057	1.50		22.60	6055	-81	0.210	0.62	3-99	5.65	
1103	2.0		22.48	6.56	-91	0.209	0.56	3,21	5.66	
									2.66	
										· · · · · · · · · · · · · · · · · · ·
										······
					┢────┤					
					ļ					
				·	II					
					╂─────┤					
					↓ ─────↓		<u> </u>			
		1			╉┈───┤		<u> </u>			
		 			┟────┤		<u> </u>		<u> </u>	
					┫─────┤					
					<u> </u>					
Temp probe ID:							Ferrous Iror	1 (Fe ²⁺)=	mg/L	

Sample ID: 14234 - MW-14

Time Collected: 1106

Technician Signature____

APPENDIX G

Boring Logs and Well Diagrams

PROJECT: Syntec I	Industries, Inc.	Log of Bo	ring No	D. MW-1		
SITE LOCATION:	La Fayette, GA	TOP OF CASING ELE	VATION (ft):	N/A		
DRILLING CONTRACTOR:	Atlas Geo-Sampling	DATE STARTED: DATE FINISI 6/20/06 6/20/0				
DRILLING METHOD:	Direct Push	TOTAL DEPTH (ft.):	12	SCREEN INTERVAL (ft.): 2-12		
DRILLING EQUIPMENT:	AMS Power Probe	DEPTH TO WATER A OF BORING (ft.):	Γ ΤΙΜΕ	CASING (ft.): 0-2		
SAMPLING METHOD: Mac	crocore w/ Acetate Liner	BOREHOLE DIAMETER (In.):	7.25	WELL DIAMETER (In.): 2		
LOGGED BY:	K. Moore					
E E e c c e	DESCRIPTION					
DEPTH (feet) (feet) No. No. Location Blows/ Foot PID	Top of Casing Elevation (ft): N/A			ILS AND/OR NG REMARKS		
5- 10- 20- 25- 30- 35- 40- 45- 50-	Tan orange sandy clay (fill) odor at 7 ft at tra	some petroleum insition	Termina	ted at 12 ft-bls.		

PROJE		Sy	nte	c I	ndustrie	s, Inc.	L	og o	of Bori	ing No	D.	MW-2
SITE LO	ОСАТ	ION:			La	ayette, GA	тс	P OF CA	SING ELEV	ATION (ft):	N/A	
DRILLI	NG CO	ONTR	ACTC	R: A	Atlas Geo-Sa	mpling	DA	DATE STARTED: DATE FINIS 6/20/06 6/20/				
DRILLI	NG MI	ETHC	D:		Direct F	lush	TO	TAL DEP	'TH (ft.):	12	SCREEN INT	2
DRILLI	NG EC	QUIPI	MENT:		AMS Power	Probe		PTH TO BORING	WATER AT ⁻ G (ft.):	TIME	CASING (ft.): 0-2	
SAMPL	LING N	ИЕТН	od:	Mac	rocore w/ Ac	etate Liner		REHOLE		7.25	WELL DIAMETER (In.): 2
LOGG					K. Moor	e						
DEPTH (feet)		AMPL		PID Reading		DESCRIPTION					ONSTRUCTI	
	Sample	Locat	Blows/ Foot	Р Rea	Top of Casing E	levation (ft): N/A				DRILLI	NG REMARK	S
0 _ _ _ _ 5-				0		Tan orange sand						
5-				0.5		Tan orange sandy clay native at	(fill) transition 7 ft.	to				
10				0.5 5.5		Tan gray clayey cours some foliation	e grain sand wi - saprolite	th		Termina	ted at 12 ft-b	ols.
15-												
20-												
25-												
- - 30 -												
35— - -												
40												
45— - -												
50— -												
E	PS	5										

PROJECT: Syntec I	ndustries, Inc.	Log of Bo	ring No	o. MW-3
SITE LOCATION:	La Fayette, GA	TOP OF CASING ELE	EVATION (ft):	N/A
DRILLING CONTRACTOR:	Atlas Geo-Sampling	DATE STARTED: 6/20/06	DATE FINISHED: 6/20/06	
DRILLING METHOD:	Direct Push	TOTAL DEPTH (ft.):	15	SCREEN INTERVAL (ft.): 2-15
DRILLING EQUIPMENT:	AMS Power Probe	DEPTH TO WATER A OF BORING (ft.):	T TIME	CASING (ft.): 0-2
SAMPLING METHOD: Mac	crocore w/ Acetate Liner	BOREHOLE DIAMETER (In.):	7.25	WELL DIAMETER (In.): 2
LOGGED BY:	K. Moore			
E C C C	DESCRIPTION			
DEPTH (feet) Sample No. Location Blows/ Foot	Top of Casing Elevation (ft): N/A			NLS AND/OR NG REMARKS
0 5 10 10 10 15 0.5 0.2 0.1 15 0 20 25 30 35 40 40 45 50 0 0 0 0 0 0 0 0 0 0 0 0 0	Gray brown clayey medium Gray brown clayey medium (moist) Tan gray clayey course grain saprolite Gray brown clayey course saprolite	grain sand quartz sands -	Termina	ted at 15 ft-bls.

PROJECT: Syntec I	ndustries, Inc.	Log of Bo		
SITE LOCATION:	La Fayette, GA	TOP OF CASING ELE	VATION (ft):	795.43
DRILLING CONTRACTOR:	Atlas Geo-Sampling	DATE STARTED: 6/21/07	DATE FINISHED: 6/21/07	
DRILLING METHOD:	Direct Push and HSA	TOTAL DEPTH (ft.):	16	SCREEN INTERVAL (ft.): 6-16
DRILLING EQUIPMENT:	GeoProbe	DEPTH TO WATER A OF BORING (ft.):		CASING (ft.): 0-6
SAMPLING METHOD: Ma	crocore Acetate Liner	BOREHOLE DIAMETER (In.):	7.25	WELL DIAMETER (In.): 2
LOGGED BY: N/A	G. Henry			
SAMPLES	DESCRIPTION			CONSTRUCTION
DEPTH (feet) Sample No. Location Blows/ Foot PID Reading	Top of Casing Elevation (ft): 795.43			AILS AND/OR ING REMARKS
0 5 - 10 - 15 - 20 - 25 - 30 - 35 - 40 - 45 - 50 -	Dark brown clayey sam Black weathered Tan clay with some g Tan weathered rock with d Tan clay with r	ravel (wet)	Termin	ated at 16 ft-bls.

PROJECT: Syntec Ir	ndustries, Inc.		Boring N				
SITE LOCATION:	La Fayette, GA	TOP OF CASING	G ELEVATION (ft):	797.19			
DRILLING CONTRACTOR: A	tlas Geo-Sampling	DATE STARTED	DATE FINISHED: 6/21/07				
DRILLING METHOD:	Hollow Stem Auger	TOTAL DEPTH (TOTAL DEPTH (ft.): SCREEN INTERV 13 3-13				
DRILLING EQUIPMENT:	Deitrich	DEPTH TO WAT OF BORING (ft.)		CASING (ft.): 0-3			
SAMPLING METHOD:	Split Spoon	BOREHOLE DIAMETER (In.):		WELL DIAMETER (In.): 2			
LOGGED BY: N/A	G. Henry						
DE PTH (feet) Sample No. No. Soution Foot Reading	DESCRIPTION		DET	CONSTRUCTION AILS AND/OR ING REMARKS			
0 - 5 - 10 - 10 - 15 - - 20 - - - - - - - - - - - - -	Gravel Red clay with come black depos Black clay with some w Red clay with interbedded some grav Dark red clay with some bl Orange-red clay with rock	e rock gravel and its	Termina	ated at 13ft-bls.			

PROJECT		nte	c I	ndustrie	s, Inc.	Lo	og of Bor	rina No	o. MW-6
SITE LOCA	-				Fayette, GA		OF CASING ELE		
DRILLING	CONTR	ACTC	R: A	Atlas Geo-Sa	-		E STARTED: 6/21/07		DATE FINISHED: 6/21/07
DRILLING	METHO	D:		Hollow Ster	n Auger	тот	AL DEPTH (ft.):	13	SCREEN INTERVAL (ft.): 3-13
DRILLING	EQUIPN	MENT:		Deitric	h		TH TO WATER AT SORING (ft.):	TIME	CASING (ft.): 0-3
SAMPLING	G METH	OD:		Split Spo	oon	BOR	EHOLE //ETER (In.):	<u>4.45</u> 7.25	WELL DIAMETER (In.): 2
LOGGED	BY:		N/A	G. Hen	ſy			1.20	
	SAMPL		PID Reading		DESCRIPTION				ONSTRUCTION AILS AND/OR
DEI (fe Samt	No.	Blows/ Foot	Р Rea	Top of Casing E					NG REMARKS
					Gravel Red-orange clay with some Brown-black clay with some Black clay and silt with so Brown-tan clay with some gravel Tan clay with some black so Tan-gray clay with some gray and gravel Green-gray cl	e rock and si me rock grav grey clay and ands and gra avel and blac y clay deposi	lts el d vel	Termina	ted at 13ft-bls.
EP	S	L		1					

PROJE		Sy	nte	ec I	ndustrie	s, Inc.			Log	of Bor	ing N	0.	MW-	-7
SITE L	OCAT	ION:			La	Fayette, G	A		TOP OF (CASING ELEV	ATION (ft):	797.52		
DRILLI	NG CO	ONTR	ACTO	R: A	Atlas Geo-Sa	-			DATE STA			DATE FINI 6/26		
DRILLI	NG MI	ETHC	D:		Direct Push	and HSA			TOTAL DE	EPTH (ft.):	13.5	SCREEN I	NTERVAL (ft. 13.5	.):
DRILLI	NG EC		MENT:	:	GeoPro	be			DEPTH TO	O WATER AT		CASING (ff		
SAMPL	LING N	ИЕТН	OD:	Ма	crocore Ace	tate Liner			BOREHO	LE	7.25	WELL DIAMETER		
LOGG	ED BY	′ :		N/A	G. Heni	ъ					1.20	120002121	<u>((,,,)</u>	
Ξ		AMPL		p		DESCR	IPTION					CONSTRUC		
DEPTH (feet)	Sample No.	ocation	Blows/ Foot	PID Reading			797.52					AILS AND/O ING REMAF		
0	S	Ľ	шш		Top of Casing E		Rock gra	avel						
5						Red	Red clay with		t)					
10									.,		Termina	ated at 13.5	ft-bls.	
15														
20														
25														
- 30 -														
35— - -														
40														
- 45— - -														
50- -														
E	PS	5												

PROJE		Sy	nte	ec l	ndustrie	s, Inc.	L	.og	of Bori	ng N	0.	MW-8
SITE L	OCAT	ION:			La	Fayette, GA	тс	P OF C	ASING ELEVA	TION (ft):	801.96	
DRILLI	ING C	ONTR	ACTC	R: A	Atlas Geo-Sa			TE STA			DATE FINIS	
DRILLI	ING M	ETHC	DD:		Direct Push	and HSA	TO		PTH (ft.):	14	SCREEN IN 4-1	ITERVAL (ft.):
DRILLI	ING E	QUIPI	MENT	:	GeoPro	be		PTH TC BORIN	WATER AT T		CASING (ft. 0-	.):
SAMPI	LING N	ИЕТН	OD:	Ма	acrocore Ace	tate Liner	BO	REHOL	E	7.25	WELL DIAMETER	
LOGG	ED BY	<u>':</u>		N/A	G. Henr	У					1	
Ξ		AMPL c		bu		DESCRIPTION					ONSTRUCT	
DEPTH (feet)	Sample	ocatio	Blows/ Foot	PID Reading	Top of Casing E	levation (ft): 801.96					AILS AND/OF	
0_	0,					Concrete						
5 5 10						Red clay with gra	avel					
-						Grey-brown clay with s	some rock			Termina	nted at 14ft-b	ols.
15— - - 20— - -												
25— - -												
30												
35-												
40												
45— - -												
50— -												
E	PS	5										

PROJ		Sy	nte	ec I	ndusti	rie	s, Inc.	Lo	g of Bor	ing N	0.	MW-	9
SITE L	OCAT	ION:				La I	Fayette, GA	TOP C	OF CASING ELEV	ATION (ft):	801.93		
DRILLI	ING C	ONTR	ACTO	R: A	Atlas Geo			DATE	STARTED: 6/22/07		DATE FINI 6/22		
DRILLI	ING M	ETHC	DD:		Direct Pu	lsh	and HSA	TOTAL	_ DEPTH (ft.):	14	SCREEN IN	NTERVAL (ft.)):
DRILLI	ING E	QUIPI	MENT		Geo	Pro	be		H TO WATER AT RING (ft.):		CASING (ft 0-):	
SAMPI		ИЕТН	OD:	Ма	crocore /	Ace	tate Liner	BORE		7.25	WELL DIAMETER		
LOGG	ED BY	<i>(</i> :		N/A	G. F	lenr	у				1		
et)		AMPL 5		D ding			DESCRIPTION				CONSTRUCT		
DEPTH (feet)	Sample	Locatio	Blows/ Foot	PID Reading	Top of Cas	ing E	levation (ft): 801.93				ING REMAR		
0_							Concrete						
							Red clay with gravel						
5							Red-brown clay with grave	el					
-						$\sim \sim$	Rock layer						
10							Gray-brown clay with some r	ock					
15— -										Termina	ated at 14ft-	bls.	
20													
25— - -													
30- - -													
- 35— -													
40													
- 45 -													
- - 50													
E	PS	5											

Color Spectrum	Log of Boring No. MW-10
SITE LOCATION: LaFayette, GA	TOP OF CASING ELEVATION (ft): N/A
DRILLING CONTRACTOR: Atlas Geo-Sampling	DATE STARTED: DATE FINISHED: 10/6/09
DRILLING METHOD: Hollow Stem Auger	TOTAL DEPTH (ft.): 12.5 10-12.5
DRILLING EQUIPMENT: AMS Power Probe	DEPTH TO WATER AT TIME CASING (ft.):
SAMPLING METHOD: None	OF BORING (ft.): 9.24 10 BOREHOLE WELL DIAMETER (In.): 7.25 DIAMETER (In.): 2
LOGGED BY: R. Jones	
E SAMPLES DESCRIPTION	WELL CONSTRUCTION
Image: Solution line Image: Solution line <td>DETAILS AND/OR DRILLING REMARKS</td>	DETAILS AND/OR DRILLING REMARKS
5- 5- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ed
	Boring terminated at 12.5-ft below land surface. Installed well using 2-inch screen. Gauged and collected groundwater sample on 10/7/09.

ITE LOCATION: RILLING CONTRACTOR: RILLING METHOD: RILLING EQUIPMENT:	LaFayette, GA Atlas Geo-Sampling	Log of Bori TOP OF CASING ELEVA			
RILLING METHOD:				N/A	
RILLING METHOD:		DATE STARTED:		DATE FINISHED:)/6/09
RILLING EQUIPMENT:	Hollow Stem Auger	TOTAL DEPTH (ft.):		SCREEN INTERV	
	AMS Power Probe	DEPTH TO WATER AT T	IME C	CASING (ft.):	17.5
AMPLING METHOD:	None	BOREHOLE		VELL DIAMETER (In.):	2
OGGED BY:	R. Jones		1.23 L		
SAMPLES			WELL CON	ISTRUCTION	
DEPTH (feet) No. Location Blows/ Foot PID Reading	Ground Surface Elevation (ft): N/A		DETAIL	S AND/OR G REMARKS	
	No soils collected		below land well using Gauged ar	minated at 20-ft d surface. Insta 2-inch screen. nd collected ter sample on	t

PROJECT: Color S	pectrum	Log of B	oring No	o. MW-12
SITE LOCATION:	aFayette, GA	TOP OF CASING E	ELEVATION (ft):	795.29
DRILLING CONTRACTOR:	Geo Lab	DATE STARTED:	3/6/2013	DATE FINISHED: 3/6/2013
DRILLING METHOD: HC	ollow Stem Auger	TOTAL DEPTH (ft.)		SCREEN INTERVAL (ft.): 3-13
DRILLING EQUIPMENT:	Geoprobe	DEPTH TO WATEF OF BORING (ft.):		CASING (ft.): 0-3
SAMPLING METHOD:	N/A	BOREHOLE DIAMETER (In.):	7.25	WELL DIAMETER (In.): 2
LOGGED BY:	B. Crowe			
DEPTH (feet) (feet) No. No. No. No. PlD PlD PlD Reading Reading	DESCRIPTION		DETA	ONSTRUCTION AILS AND/OR NG REMARKS
	und Surface Elevation (ft): N/A		Filter Sa	
EPS				

PROJECT: Color Spectrum	Log of Boring No. MW-13
SITE LOCATION: LaFayette, GA	TOP OF CASING ELEVATION (ft): 796.24
DRILLING CONTRACTOR: Geo Lab	DATE STARTED: DATE FINISHED: 3/6/2013 3/6/2013
DRILLING METHOD: Hollow Stem Auger	TOTAL DEPTH (ft.): SCREEN INTERVAL (ft.): 13 3-13
DRILLING EQUIPMENT: Geoprobe	DEPTH TO WATER AT TIME OF BORING (ft.): OF BORING (ft.): N/A 0-3
SAMPLING METHOD: N/A	BOREHOLE DIAMETER (In.): 7.25 WELL DIAMETER (In.): 2
LOGGED BY: B. Crowe	
SAMPLES DESCRIPTION Image: Second constraint of the second cons	WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS
	Flush mounted vault set in concrete Grout 1-1.5 Bentonite 1.5-2.5 ft-bls Filter Sand 2.5-13 ft-bls. Boring terminated at 13 ft-bls.
EPS	

PROJI		ynte	ec l	ndustrie	s, Inc.		Log	g of Bo	ring No). MV	N-1 4
SITE L	OCATIO	N:		La Fayett	e, GA		TOP OF	CASING ELE		N/A	
ORILLI	ING CON	TRACT	OR:	N/A			DATE S	TARTED:	8/6/2014	DATE FINISHED: 8/6	6/2014
DRILLI	ING MET	HOD:		Hand A	uger		TOTAL I	DEPTH (ft.):	8	SCREEN INTERV	AL (ft.): 3-8
ORILLI	ING EQU	IPMEN	:	Hand A	uger			TO WATER AI RING (ft.):	^{T TIME} 2.5	CASING (ft.):	0-3
SAMPI	LING ME	THOD:		N/A			BOREH		4	WELL DIAMETER (In.):	2
LOGG	ED BY:		Be	n Crowe / Ale	ex Testoff					<u> ()</u>	
H_		IPLES	- D		DESCRIP	TION				NSTRUCTION	
DEPTH (feet)	Sample No.	Blows/	PID Reading	Top of Casing E		N/A				ILS AND/OR IG REMARKS	
0 _	<u> </u>					sand and roots			Grout		
-						clayey sand		2_2	Bentonite	Э	
5—						sandy gravel			Filter Sar	ad	
-					`	clay			Filler Sai	liu	
- 10-									Terminat	ed at 8 ft-bls.	
10											
-											
15—											
-											
20-											
-											
25—											
-											
20											
30-											
-											
35—											
-											
40—											
-											
45-											
-											
-											
50-											
F	PS	I	-	и —							

	-				, Inc.		g of Borin	-	
SITE L	OCATION:				ayette, GA		F CASING ELEVAT	ιον (π):	
DRILLI	NG CONT	RACTO	R:	ESN Southe	ast		STARTED: 6/21/07		DATE FINISHED: 6/22/07
DRILLI	NG METHO	DD:		Hollow Stem	Auger	TOTAL	DEPTH (ft.):	SCREEN INTERVAL (ft.): 36-46	
DRILLI	NG EQUIP	MENT:		Deitrich			I TO WATER AT TIN RING (ft.):	ΛE	CASING (ft.): 0-36
SAMPI	ING METH	IOD:		N/A		BOREI DIAME	HOLE TER (In.):		WELL DIAMETER (In.):
.OGG	ED BY:		N/A	G. Henry					
ΗÐ	SAMPI ₀ ⊊		o ing		DESCRIPTION		,		
DEPTH (feet)	Sample No. Location	Blows/ Foot	PID Reading	Top of Casing Ele	vation (ft): N/A				ILS AND/OR NG REMARKS
0 _	<u> </u>				Gravel				
					Red clay and gr	avel		Bore hole Well dia:	e dia: 10.25 in 4 in
- - - 10-					Brown to dark grey cla	ay with silt	Ш		
-					Brown-tan clay w	ith silt	Ш		
15— - - 20—					Brown clay				
-								to 20ft-b	le dia: 4 in
25— - -									
30									
35— - -					Bedrock with some fragues unconsolidated ma				
40-									
45-								Defuer	anonymeters of st
 50—								50ft-bls.	encountered at Cave in occurred 5 to 50ft-bls.

PROJE	ECT:	С	olo	r Spectru	ım		g of Bor		
SITE LO	OCATION	N:	1	15 Probasco	Street, LaFayette, GA	TOP C	OF CASING ELE	ATION (ft):	794.73
DRILLII	NG CON	TRACTO	DR: A	Atlas Geo-Sa	mpling	DATE	STARTED: 6/21/2007	7	DATE FINISHED: 6/21/2007
DRILLII	NG METI	HOD:		Direct Push a	and HSA	TOTAL	TOTAL DEPTH (ft.): SCREEN INTE 16 5.5-15.		
DRILLII	NG EQU	IPMENT	:	AMS Power	Probe		DEPTH TO WATER AT TIME OF BORING (ft.): 3.81 0-5.5		
SAMPL	ING ME	гнод:	lacr	ocore with A	cetate Liner	BORE		3.5	WELL DIAMETER (In.): 1
LOGGE	ED BY:			G.Henr	/				
DEPTH (feet)		PLES	PID Reading		DESCRIPTION			DETA	ONSTRUCTION AILS AND/OR
	Sample No. Location	Blows/ Foot	B	Top of Casing E	levation (ft): 794.73			DRILLI	NG REMARKS
0_					Dark brown clayey	sand			
5-					Weathered rock	<			
-					Dark brown clayey sand	(very wet)			
10					Green to tan clay wit	h rock			
- - - 20- - - -								Termina	ated at 16 ft-bls.
25									
- 30- -									
35— - -									
- 40 -									
- 45— - -									
- - 50									
E	PS								

PROJECT: Color Spectr	um		of Bor		
SITE LOCATION: 15 Probasco	Street, LaFayette, GA	TOP OF C	CASING ELEV	ATION (ft):	801.74
DRILLING CONTRACTOR: Atlas Geo-Sa	ampling	DATE STA	RTED: 5/22/2007		DATE FINISHED: 6/22/2007
DRILLING METHOD: Direct Push	and HSA	TOTAL DE	PTH (ft.):	14	SCREEN INTERVAL (ft.): 3.5-13.5
DRILLING EQUIPMENT: AMS Powe	r Probe	DEPTH TO OF BORIN	O WATER AT		CASING (ft.): 0-3.5
SAMPLING METHOD: Macrocore with	Acetate Liner	BOREHOL	_E	3.5	WELL DIAMETER (In.): 1
LOGGED BY: G.Hen	ry			0.0	
E C SAMPLES	DESCRIPTION				ONSTRUCTION
Reading Readin	Elevation (ft): 801.74				ILS AND/OR NG REMARKS
	Concrete	/			
	Red clay with gravel				
	Red-brown clay with some ro	ock		Refusal 14ft-bls.	encountered at
EPS					

PROJ		Sy	nte	ec I	ndustrie	s, Inc.		Log	of Bori	ing No	o. TW-3
SITE L	OCAT	ION:			La	Fayette, G	A	TOP OF	CASING ELEVA	ATION (ft):	N/A
DRILL	ING C	ONTR	ACTO	R:	N/A			DATE ST	TARTED: 6/27/09		DATE FINISHED: 6/27/09
DRILL	ING M	ETHC	D:		Direct F	Push		TOTAL DEPTH (ft.): SCREEN INTER 4 0-4			SCREEN INTERVAL (ft.):
DRILL	ING E	QUIPN	MENT:		Hand Au	ger		DEPTH TO WATER AT TIME CASING (ft.):			CASING (ft.): N/A
SAMP	LING N	METH	OD:		N/A			BOREHOLE WELL			WELL DIAMETER (In.): 1
LOGG	ED BY	<i>(</i> :			G. Heni	у			_		
DEPTH (feet)				PID Reading		DESCR	IPTION				ONSTRUCTION ILS AND/OR
	Sample	Locat	Blows/ Foot	Rea Rea	Top of Casing E	levation (ft):	N/A		[*: we we!: !!	DRILLI	NG REMARKS
0_							Organic material				ted at 4 ft-bls. Well led immediately after g.
5											
10											
15— -											
20											
25— - -											
30-											
35											
40											
45											
50-											
E	PS	5									

PROJ	ECT:		C	Cole	or Spectrum Inc.	Log o	f Boring	No. SB	-1 to SB-19	
PROJE	CT LO	CATIO	ON:	La	a Fayette, GA	GROUND S	SURFACE ELEV	ation an \/M	D DATUM:	
DRILL	ING C	ONTR	АСТС	R: A	tlas Geo-Sampling	DATE INSTA		/19/06		
DRILL	ING M	ETHO	D:		Direct Push	TOTAL DE	^{PTH (ft.):} 15 (averag		SCREEN INTERVAL (ft.): N/A	
DRILL	ING E	QUIPN	/ENT:	A	MS Powerprobe	DEPTH TO WATER:	FIRST: ~5	COMPL.	CASING: N/A	
SAMP	LING N	ИЕТН	OD:		N/S	LOGGED B	Y: K. Moor			
Ŧ							WELL CONSTRUCTION DETAILS AND/OR			
DEPTH (feet)	Sample No.	Sample	Blows/ Foot	PID Reading	Top of Casing Elevation: N/M				IG REMARKS	
0 - - - - - - - - - - - - -					No Soil Samples Collected			groun scree Boring	ils collected, dwater collected with n point sampler. gs were abandoned sampling.	
	5P	5		_	+	_				

PROJ	ECT:		С	olo	or Spectrum Inc.		Log c	of Bor	ing No). SB-20
PROJE	CT LO	CATIO	ON:	Lá	a Fayette, GA		GROUND SI		-	
DRILL	ING C	ONTR	АСТО		ESN Southeast		DATE INSTA		2/19/06	
DRILL	ING M	ЕТНО	D:		Direct Push		TOTAL DEPTH (ft.): SCREEN INTE 9-14			
DRILL	ING E	QUIPN	/ENT:		GeoProbe		DEPTH TO FIRST: COMPL. CASING: water: ~10 8.51 0-9			
SAMP		METH	OD:		N/S		LOGGED BY	r: ore		
I I A	SAMPLES DESCRIPTIO				ION	1			DNSTRUCTION ILS AND/OR	
DEPTH (feet)	Sample No.	Sample	Blows/ Foot	PID Readii	Top of Casing Elevation: N/M					IG REMARKS
					No Soil Samples	s Collected			ft-bls aban	g terminated at 14 . Temporary well doned after collection bundwater sample.
	=P	5				+			1	

PROJ	ECT:		C	olo	or Spectrum Inc.	Lo	g of	Во	rir	ng No	9. SB-21
PROJE	CT LO	CATIO	ON:	La	a Fayette, GA	GROL	JND SUR	FACE	ELEV	ATION AN	ID DATUM:
DRILL	ING CO	ONTR	АСТС	R:	ESN Southeast	DATE I	NSTALL	ED:		/19/06	
DRILL	ING MI	ETHO	D:		Direct Push	тота 15		l (ft.):	12/	10/00	SCREEN INTERVAL (ft.): 10-15
DRILL	ING EC	QUIPN	/ENT:		GeoProbe	DEPT	н то 🗏	FIRST: ~14	1.5	COMPL. 14.45	CASING: 0-10
SAMP	LING N	1ETH	OD:		N/S	LOGG	ED BY: . Moo	re			
т				DESCRIPTIO	N			V		DNSTRUCTION LS AND/OR	
O DEPTH (feet)	Sample No.	Sample	Blows/ Foot	PID Reading	Top of Casing Elevation: N/M						IG REMARKS
- 1-	-										
2-											
3-	-										
4	-										
5	-										
6—	-										
7-	-				No Soil Samples Col	lected					
8— - 9—	-										
9-	-										
10—											
11-											
12-											
13—											
14—										ft-bls	t push refusal at 15 Temporary well
15— _ 16							-			aband of gro	doned after collection bundwater sample.
100	-12	5			+						

PROJ	ECT:		С	olo	or Spectrum Inc.		Log o	of Bori	na No	. SB-22
PROJE	CT LO	CATIO			a Fayette, GA		GROUND SL		VATION AN	
DRILL					ESN Southeast		DATE INSTAL		<u>N/M</u>	
DRILL					Direct Push			12 TH (ft.):	2/19/06	SCREEN INTERVAL (ft.):
DRILL					GeoProbe		15 DEPTH TO	FIRST: ~13	COMPL.	10-15 CASING:
SAMP					N/S		WATER: LOGGED BY K. MO	<u>':</u>	11.39	0-10
	0			DESCRIPT	ION				NSTRUCTION	
DEPTH (feet)	ender and the second se		Top of Casing Elevation: N/M	N/M			DETAILS AND/OR DRILLING REMARKS			
0 - 1-										
- 2—										
3-										
4										
5										
6										
7— - 8—					No Soil Samples	s Collected				
9—										
- 10-	-									
- 11—										
- 12—										
- 13—										
14—									Direct	push refusal at 15 Temporary well
15—									aband	doned after collection bundwater sample.
16	-12	5	[+				

PROJ	ECT:		C	olo	or Spect	rum Inc.	Log	of Bori	ng No	o. SB-24	
PROJE	CT LO	CATI	ON:	La	a Fayette, G	4	GROUND	SURFACE ELE	EVATION AN	ND DATUM:	
DRILL	ING C	ONTR	ACTC	R:	ESN Southe	ast	DATE STA	rted: 12/19/06		DATE FINISHED: 12/19/06	
DRILL	ING M	ETHO	D:		Direct Push		TOTAL DE	PTH (ft.):		SCREEN INTERVAL (ft.): 5-15	
DRILL	ING E	QUIPN	/ENT:	(GeoProbe		DEPTH TO WATER:	FIRST:	COMPL. 8.07	CASING: 0-5	
SAMP	LING N	ИЕТН	OD:	N	lacrocore Ac	etate Liner	LOGGED E		1 0.01		
						DESCRIPTION			WELL CONSTRUCTION		
DEPTH (feet)					Elevation: 106.64		_		ILS AND/OR NG REMARKS		
0 - 1 2	-					Concrete/concrete base-no reco	overy				
2 3- - 4-	-			0		Red orange fine grain sandy clay gravel inclusions (fill)	[,] with				
5	-			1		Red orange medium grain sandy cl gravel size dolomite inclusion	ay with ıs				
- 7— - 8—	SB-24			1.1		Red orange coarse grain sandy cla gravel size dolomite	ay with				
9— - 10—	-					Orange red clay with yellow mottling-satured-tight trace dolomit	e gravel				
	-					No recovery-saturated					
14— - 15— _ 16									Term	inate boring at 15 ft-bls	
1	5P	5				+					

PROJ	ECT:		C	olo	or Spect	rum Inc.	Log	of Borin	ng No	D. SB-26		
PROJE	CT LO	CATI	SN:	La	a Fayette, G	4	GROUND	SURFACE ELEV	ATION AN	ND DATUM:		
DRILL	ING CO	ONTR	АСТС	R:	ESN Southe	ast	DATE ST			DATE FINISHED: 12/19/06		
DRILL	ING ME	ЕТНО	D:		Direct Push		TOTAL DI	DTAL DEPTH (ft.): SCREEN INTERVAL (f				
DRILL	ING EC		IENT:	C	GeoProbe		DEPTH TO WATER:	O FIRST:	COMPL. 7.87	CASING: 0-5		
SAMP	LING M	1ETH	OD:	M	lacrocore Ac	cetate Liner	LOGGED		1.01			
						DESCRIPTION			VELL CO	ONSTRUCTION		
DEPTH (feet)	H (interpretent constraints) Big (interpretent constraints) Big (interpretent constraints) Big (interpretent constraints) H (interpretent constraints) Big (interpretent constraints) Big (interpretent constraints) Top of Casing Elevation: 106.41					_	DETA	ILS AND/OR NG REMARKS				
0 1 2	-					Concrete with large concrete	aggregate					
2 3- - 4-				0		Orange brown fine grain sandy	v clay-tight		Bore h Well di	ole dia: 3.5 in ia: 1 in		
- 5— - 6—				0		Red orange coarse grain sandy medium dolomite inclusions 1-	/ clay with 2 cm-tight					
- 7— - 8—	SB-26			1.5		Red orange medium grain sand yellow mottling - dry-tig	y clay with ght					
- 9— - 10—						Yellow orange red fine grain sa with large dolomite inclusions saturated and loose	> 2 cm -					
- 11— -												
12— - 13—						No recovery						
14— - 15—									Term	inate boring at 15 ft-bls		
-												
16	=P	5				+						

PROJE	CT:		С	olo	or Spect	rum Ind	С.	Log	of E	Borin	ng No	o. SB-27
ROJE		ATIC	N:	La	Fayette, GA	4		GROUNI	O SURFA			ND DATUM:
DRILLII	NG CO	NTRA	АСТО	R:	ESN Southe	ast		DATE ST	DATE STARTED: 12/20/06			DATE FINISHED: 12/20/06
DRILLII	NG ME	THO	D:		Direct Push			TOTAL D	DEPTH (ft.):		SCREEN INTERVAL (ft.): 5-10
DRILLII	NG EQ	UIPM	ENT:	Ģ	GeoProbe			DEPTH WATER:		ST: 5	COMPL. 4.63	CASING: 0-5
SAMPL	ING M	ЕТНС	DD:	N	lacrocore Ac	etate Line	er	LOGGED	BY: Moore	I		1
SAMPLES DESCRIPTION						Ι		V		ONSTRUCTION		
H G G G G G G G G G G G G G G G G G G G				102.35		ILS AND/OR NG REMARKS						
0							Gravel/road bed					
1— _ 2—						Yellow ora	ange silty clay-loose	and dry			1	hole dia: 3.5 in dia: 1 in
- 3- 4- 5-						Terra cot	tta with soot (from b	urning)				
6— _ 7— _							No recovery					
8— 10—											Term	inate boring at 10 ft-bls
1	P.	5					+					

PROJ	ECT:		С	olo	or Spect	rum In	Color Spectrum Inc.							
PROJE	CT LO	CATIC			• a Fayette, GA				g of E		EVATION AND DATUM:			
DRILL	ING CO	DNTR/	АСТО		ESN Southe			DATE	STARTED: 12/19			DATE FINISHED: 12/19/06		
DRILL	ING ME	ETHO	D:		Direct Push			тотаі 10	_ DEPTH (ft.):		SCREEN INTERVAL (ft.): 5-10		
DRILL	ING EC	QUIPM	IENT:	Ģ	GeoProbe			DEPTI	HTO FIRS	ST: 6	COMPL. 7.75	CASING: 0-5		
SAMP	LING M	IETHC	DD:	N	lacrocore Ac	etate Lir	her	LOGG	ED BY: . Moore	•	1.10	00		
SAMPLES DESCRIPTION							WELL CONSTRUCTION							
DEPTH (feet)	Sample No.	Sample	Blows/ Foot	PID Reading	Top of Casing E	levation:	99.84				DETA	ILS AND/OR NG REMARKS		
0 1							ange silty clay w lomite inclusions							
2—						Black c	hared/organics f	rom burning			Boreh	ole dia: 3.5 in		
- 3—						-	Terra cotta fragn	nents				ia: 1 in		
- 4— 5—						Brown bla	ck organic rich s	ilty clay - tight						
5— 6— 7—						Brown bla	ck organic rich s	ilty clay - tight	100000000000000000000000000000000000000					
- 8—						Yellow ora	ange tan mottled sandy clay	medium grain						
9— - 10—							Sanuy Udy				Term	inate boring at 10 ft-bls		

PROJECT: Color Spectrur	n	Log	j of Bor	ing No	o. SB-29
SITE LOCATION: 15 Probasco St	reet, LaFayette, GA	TOP OF	CASING ELE	/ATION (ft):	N/A
DRILLING CONTRACTOR: Atlas Geo-Sam	pling				DATE FINISHED: 6/22/2007
DRILLING METHOD: Direct Push ar	nd HSA	TOTAL	DEPTH (ft.):	8	SCREEN INTERVAL (ft.): N/A
DRILLING EQUIPMENT: AMS Power P	robe		TO WATER AT RING (ft.):		CASING (ft.): N/A
SAMPLING METHOD: Macrocore with Ace	etate Liner	BOREH		3.5	WELL DIAMETER (In.): N/A
LOGGED BY: G.Henry					
E C C C C	DESCRIPTION				ONSTRUCTION
Left diagonal le	vation (ft): N/A				NILS AND/OR NG REMARKS
	Concrete				
	Red clay with gravel				
12.6				Termina	ted at 8ft-bls.
10-					
30-					
35-					
40					
45					
50-					
EPS					

PROJECT: Color Spectrum	n	Log	of Bor	ing No	D. SB-30
SITE LOCATION: 15 Probasco Str	eet, LaFayette, GA	TOP OF	CASING ELEV	ATION (ft):	N/A
DRILLING CONTRACTOR: Atlas Geo-Samp	ling	DATE STARTED: 6/22/2007			DATE FINISHED: 6/22/2007
DRILLING METHOD: Direct Push and	d HSA	TOTAL D	DEPTH (ft.):	8	SCREEN INTERVAL (ft.): N/A
DRILLING EQUIPMENT: AMS Power Pr	obe	DEPTH T OF BOR	TO WATER AT		CASING (ft.): N/A
SAMPLING METHOD: Macrocore with Ace	ate Liner	BOREHO	OLE	3.5	WELL DIAMETER (In.): N/A
LOGGED BY: G.Henry					
SAMPLES E fa e fo to fe	DESCRIPTION				ONSTRUCTION ILS AND/OR
C C C C C C C C C C C C C C C C C C C	ation (ft): N/A				NG REMARKS
	Concrete	I			
$ \begin{array}{c} 0 \\ - \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	Red clay with gravel			Termina	ted at 8ft-bls.
30-					
35-					
40					
50					
EPS					

PROJE	CT:		Сс	olo	r Spectru	ım	Lo	bg	of Bor	ing No	D. SB-	31
SITE LO	CAT	ION:		1	5 Probasco	Street, LaFayette, GA	TOF	OF C	ASING ELEV	ATION (ft):	N/A	
DRILLIN	NG C	ONTR	RACTO	R: A	Atlas Geo-Sa	mpling	DAT		RTED: 5/22/2007		DATE FINISHED: 6/22/2007	
DRILLIN	NG M	ETHC	DD:		Direct Push	and HSA	тот	AL DE	PTH (ft.):	8	SCREEN INTERVAL (ft.):
DRILLIN	NG E	QUIPI	MENT:		AMS Power	Probe			WATER AT G (ft.):		CASING (ft.): N/A	
SAMPL	ING I	ИЕТН	od:N	lacro	ocore with A	cetate Liner	BOR	EHOL		3.5	WELL DIAMETER (In.): N//	A
LOGGE	ED B`	Y:			G.Henr	у					<u> </u>	
Ξ		AMPL c		ng		DESCRIPTION					ONSTRUCTION	
DEPTH (feet)	Sample	ocatio	Blows/ Foot	PID Reading	Top of Casing E	levation (ft): N/A		-			ILS AND/OR NG REMARKS	
0_	SB-31 (1) S			2.3		Concrete						
-	SB-3											
5—				1.8		Red clay with gravel						
-	SB-31 (7)			2.8						Terminat	ed at 8ft-bls.	
10-	SB											
-												
45												
15—												
-												
20-												
-												
25_												
-												
30-												
-												
 35—												
-												
-												
40												
45—												
-												
50-												
E	P.	>										

PROJECT: Color Spectrum		Log	ı of Bor	ing No	o. SB-32
SITE LOCATION: 15 Probasco Street,	LaFayette, GA	TOP OF	CASING ELEV	ATION (ft):	N/A
DRILLING CONTRACTOR: Atlas Geo-Sampling					DATE FINISHED: 6/22/2007
DRILLING METHOD: Direct Push and HS	A	TOTAL DEPTH (ft.): SCREEN IN			SCREEN INTERVAL (ft.): N/A
DRILLING EQUIPMENT: AMS Power Probe			TO WATER AT RING (ft.):		CASING (ft.): N/A
SAMPLING METHOD: Macrocore with Acetate	Liner	BOREH		3.5	WELL DIAMETER (In.): N/A
LOGGED BY: G.Henry				0.0	
SAMPLES For S P DES	SCRIPTION				ONSTRUCTION
DES Le Data Le Data					NILS AND/OR NG REMARKS
	Concrete				
	Red clay with gravel			Termina	ted at 8ft-bls.
30-					
35					
⁵⁰ EPS					

PROJECT: Color Spectrum	Lo	bg	of Bor	ing No	o. SB-34
SITE LOCATION: 15 Probasco Street, LaFayette, G	A TOP	OF C	ASING ELEV	ATION (ft):	N/A
DRILLING CONTRACTOR: Atlas Geo-Sampling	DATE	E STA	RTED: 5/21/2007		DATE FINISHED: 6/21/2007
DRILLING METHOD: Direct Push and HSA	TOTA	AL DE	PTH (ft.):	8	SCREEN INTERVAL (ft.): N/A
DRILLING EQUIPMENT: AMS Power Probe) WATER AT G (ft.):		CASING (ft.): N/A
SAMPLING METHOD: Macrocore with Acetate Liner	BOR	EHOL		3.5	WELL DIAMETER (In.): N/A
LOGGED BY: G.Henry			. ,		
E C DESCRIPTION					ONSTRUCTION
H (1997) H (199					NILS AND/OR NG REMARKS
$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	te				
5 Red clay wi	n gravel				
				Termina	ted at 8ft-bls.
25-					
30-					
40					
45-					
50-					
EPS					

PROJECT: Color Spectrum	Lo	g of Bor	ing No	D. SB-35
SITE LOCATION: 15 Probasco Street, LaFayette, GA	TOP C	OF CASING ELEV	ATION (ft):	N/A
DRILLING CONTRACTOR: Atlas Geo-Sampling	DATE	STARTED: 6/21/2007		DATE FINISHED: 6/21/2007
DRILLING METHOD: Direct Push and HSA	TOTAL	_ DEPTH (ft.):	12	SCREEN INTERVAL (ft.): N/A
DRILLING EQUIPMENT: AMS Power Probe		H TO WATER AT DRING (ft.):	TIME 4.5	CASING (ft.): N/A
SAMPLING METHOD: Macrocore with Acetate Liner	BORE		3.5	WELL DIAMETER (In.): N/A
LOGGED BY: G.Henry	I			
SAMPLES Le Di Contraction (ft): N/A				ONSTRUCTION
L Grand Contraction (ft): N/A	DETAILS AND/OR DRILLING REMARKS			
0 - E Concrete	I	_		
0 E 0 - E 0 - E Red clay with gravel				
10	ət)		Termina	ted at 12ft-bls.
30				
35-				
40				
EPS				

PROJECT:	or Spectru	m	Lo	g of B	oring N	o. SB-36
SITE LOCATION:	15 Probasco S	Street, LaFayette, GA	TOP C	F CASING E	LEVATION (ft):	N/A
DRILLING CONTRACTOR:			DATE S	STARTED: 6/21/20	07	DATE FINISHED: 6/21/2007
DRILLING METHOD:	Direct Push a	nd HSA	TOTAL	DEPTH (ft.):	12	SCREEN INTERVAL (ft.): N/A
DRILLING EQUIPMENT:	AMS Power	Probe		I TO WATER RING (ft.):		CASING (ft.): N/A
SAMPLING METHOD: Macr	rocore with Ac	etate Liner	BORE		3.5	WELL DIAMETER (In.): N/A
LOGGED BY:	G.Henry	,	I			· · · · · · · · · · · · · · · · · · ·
DEPTH (feet) Sample No. Coation Foot Reading		DESCRIPTION			DET	ONSTRUCTION AILS AND/OR
	Top of Casing Ele	evation (ft): N/A Concrete	DETAILS AND/OK DRILLING REMARKS			NG REMARKS
0 0.6 5 0.6 5 0.6 10 0 10		Red clay with grav	el		Termina	ated at 12ft-bls.

PROJECT: Color Spectru	um	Log of	Boring No). SB-37
SITE LOCATION: 15 Probasco	Street, LaFayette, GA	TOP OF CASI	NG ELEVATION (ft):	N/A
DRILLING CONTRACTOR: Atlas Geo-Sa	mpling	DATE STARTE	D: 5/2007	DATE FINISHED: 6/26/2007
DRILLING METHOD: Direct Push	and HSA	TOTAL DEPTH	(ft.): 8	SCREEN INTERVAL (ft.): N/A
DRILLING EQUIPMENT: AMS Power	Probe	DEPTH TO WA	TER AT TIME	CASING (ft.): N/A
SAMPLING METHOD: Macrocore with A	cetate Liner	BOREHOLE DIAMETER (In	_	WELL DIAMETER (In.): 2
LOGGED BY: G.Henr	у	, v	, .	
Clearly Constraint Samples Samples Constraint Sample Sampl	DESCRIPTION		DETA	DNSTRUCTION ILS AND/OR
o, _			DRILLIN	IG REMARKS
	Concrete and rock Red-orange clay with some	rock		
	Red-brown clay with some roc	k (wet)	Terminat	ed at 8ft-bls.
35				
50-				
EPS		I		

PROJI	ECT:	Сс	olo	r Spectru	ım	Lo	og of Bo	ring No	D. SO-1
SITE L	OCATION:			LaFayette,	GA	TOP	OF CASING ELE	VATION (ft):	N/A
DRILLI	ING CONTR	RACTO	R: A	Atlas Geo-Sa	mpling	DATE	STARTED:	10/6/09	DATE FINISHED: 10/6/09
DRILLI	ING METHO	DD:		Direct P	ush	ΤΟΤΑ	AL DEPTH (ft.):	3	SCREEN INTERVAL (ft.):
DRILLI	NG EQUIP	MENT:		AMS Power	Probe		TH TO WATER A ORING (ft.):		CASING (ft.):
SAMPI	LING METH	IOD:	Mac	rocore w/ Ac	etate Liner	BOR	EHOLE IETER (In.):	3	WELL DIAMETER (In.): N/A
LOGG	ED BY:			R. Jone	S				· · · · · · · · · · · · · · · · · · ·
DEPTH (feet)			PID Reading		DESCRIPTION				ONSTRUCTION
					()			DRILLII	NG REMARKS
0 -	09279-SO-1-2		0 0		Gravel, gray san Red clay with rock (o Red clay with sand and we	quartz)		Boring t land sur	erminated at 3-ft below
- 5 - - - 10 - - - - -									
15— - - 20— -									
E	PS	<u> </u>							

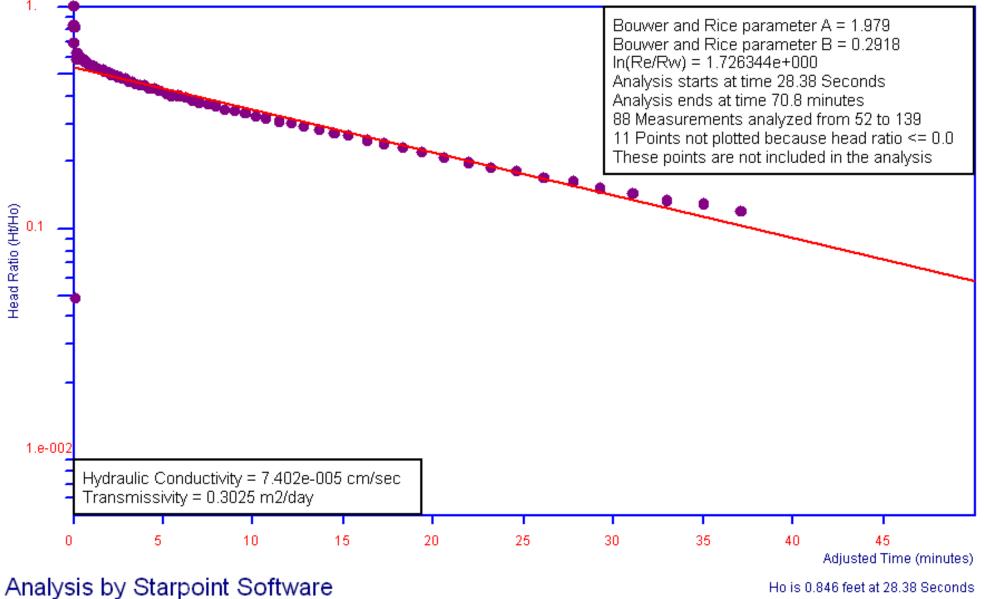
PROJI	ECT:	Сс	olo	r Spectru	ım	L	og of	Bori	ng No) .	SO-2
SITE L	OCATION:			LaFayette,	GA	TOF	P OF CASI	NG ELEVA	TION (ft):	N/A	
DRILLI	ING CONTR	RACTO	R: A	Atlas Geo-Sa	mpling	DAT	E STARTE	:D: 10)/6/09	DATE FINISH	ED: 10/6/09
DRILLI	ING METHO	DD:		Direct P	ush	тот	AL DEPTH		3	SCREEN INT	
DRILLI	ING EQUIP	MENT:		AMS Power	Probe		TH TO WA	ATER AT T		CASING (ft.):	N/A
SAMPI	LING METH	IOD:	Mac	rocore w/ Ac	etate Liner	BOF	REHOLE METER (In		3	WELL DIAMETER (I	
LOGG	ED BY:			R. Jone	S			/			,
et) €	SAMPL		D ding		DESCRIPTION					ONSTRUCTIO	N
DEPTH (feet)	Sample No. Location	Blows/ Foot	PID Reading	Ground Surface	Elevation (ft): N/A					NG REMARKS	6
0					Gravel, gray sa	Ind					I
_	09279-SO-2-2		0		Red clay with rock (quartz)					
-	092		0 0		Red clay with sand and we	eathered roc	k		Boring to land sur	erminated at 3 face.	3-ft below
_			Ū								
5—											
-											
_											
10—											
_											
-											
-											
_											
15—											
_											
-											
_											
-											
20—											
_											
	DC										
E	PS										

PROJI	ECT:		Сс	olo	r Spectru	ım	L	og of Bo	oring No	o. SO-3
SITE L	OCAT	ION:			LaFayette,	GA	TOF	OF CASING EL	EVATION (ft):	N/A
DRILLI	NG CO	ONTR	ACTC	R: A	Atlas Geo-Sa	mpling	DAT	E STARTED:	10/6/09	DATE FINISHED: 10/6/09
DRILLI	NG M	ETHC	D:		Direct P	ush	тот	AL DEPTH (ft.):	8	SCREEN INTERVAL (ft.): N/A
DRILLI	ING EQ	QUIPN	MENT:		AMS Power	Probe		TH TO WATER BORING (ft.):		CASING (ft.):
SAMPI		ЛЕТН	OD:	Mac	rocore w/ Ac	etate Liner	BOF	REHOLE METER (In.):	3	WELL DIAMETER (In.): N/A
LOGG	ED BY	' :			R. Jone	S				
DEPTH (feet)				PID Reading		DESCRIPTION			DETA	ONSTRUCTION ILS AND/OR
	Sample No	Locat	Blows/ Foot	Rea	Ground Surface	Elevation (ft): N/A	DRILLIN			NG REMARKS
0	09279-SO-3-2			6.2 6.1 4.3		Concrete, gravel and g				
5-				4.5 4.4		Red clay with sand and we	eathered roc	k		
-				5.2 7.3		Red clay with weathe	red rock		Boring t land sur	erminated at 8-ft below face.
10										
- 15— -										
20-										
E	PS	5		<u> </u>	<u>II </u>			I	I	

PROJE	ECT:		Сс	olo	r Spectru	ım	Lo	og of Bo	ring No	o. SO-4
SITE L	OCAT	ION:			LaFayette,	GA	TOP	OF CASING ELE	VATION (ft):	N/A
DRILLI	NG C	ONTR	ACTO	R: A	Atlas Geo-Sa	mpling	DATE	E STARTED:	10/6/09	DATE FINISHED: 10/6/09
DRILLI	NG M	IETHC	D:		Direct P	ush	ΤΟΤΑ	AL DEPTH (ft.):	8	SCREEN INTERVAL (ft.):
DRILLI	NG E	QUIPI	MENT		AMS Power	Probe		TH TO WATER A ORING (ft.):		CASING (ft.):
SAMPL	_ING I	МЕТН	OD:	Mac	rocore w/ Ac	etate Liner	BOR	EHOLE 1ETER (In.):	3	WELL DIAMETER (In.): N/A
LOGG	ED B	Y:			R. Jone	S	12000			
DEPTH (feet)		AMPL		PID Reading		DESCRIPTION			DETA	ONSTRUCTION ILS AND/OR
	Sam	Location	Blows/ Foot	Rea	Ground Surface	Elevation (ft): N/A	DRILLING RE			NG REMARKS
0				2.9 3 2.7		Concrete, gravel and g				
5-	09279-SO-4-5			2.7 6.4		Red clay with sand and we	eathered rock	٢		
-	60			6.7 1.7		Red clay with weathe	red rock		Boring t land sur	erminated at 8-ft below face.
10										
- 15										
20-										
E	PS	5	I	I	и			I		

PROJE	ECT:		Сс	olo	r Spectru	ım	L	og o	f Bori	ing No	D. SO-5
SITE L	OCAT	ION:			LaFayette,	GA	TOF	P OF CAS	SING ELEV	ATION (ft):	N/A
DRILLI	NG C	ONTF	ACTC	R: A	Atlas Geo-Sa	mpling	DAT	E STAR	TED: 1	0/6/09	DATE FINISHED: 10/6/09
DRILLI	NG M	IETHO	DD:		Direct P	ush	тот	AL DEPT		8	SCREEN INTERVAL (ft.):
DRILLI	NG E	QUIPI	MENT:		AMS Power	Probe		TH TO V BORING	VATER AT		CASING (ft.): N/A
SAMPI	ING	МЕТН	OD:	Mac	rocore w/ Ac	etate Liner	BOF	REHOLE METER (3	WELL DIAMETER (In.): N/A
LOGG	ED B`	Y:			R. Jone	S	Dirt			0	
DEPTH (feet)				PID Reading		DESCRIPTION					ONSTRUCTION ILS AND/OR
DE (fe	Sam	Location	Blows/ Foot	P Rea	Ground Surface	Elevation (ft): N/A	D				NG REMARKS
0	50-5-4			4.7 4.7 4.4		Concrete, gravel and g					
_	09279-SO-5-4			4.8		Red clay with sand and we	eathered roo	k			
5				4.2 6.3 6.3		Red clay with weathe	red rock			Boring to land sur	erminated at 8-ft below face.
- 10											
15											
20—											
E	PS	5	I		и					J	

PROJE	ECT:		Сс	olo	r Spectru	ım	Lo	og of Bo	oring No	D. SO-6
SITE L	OCAT	ION:			LaFayette,	GA	TOP	OF CASING EL	EVATION (ft):	N/A
DRILLI	NG C	ONTF	ACTO	DR: A	Atlas Geo-Sa	mpling	DATE	E STARTED:	10/6/09	DATE FINISHED: 10/6/09
DRILLI	NG M	IETHO	DD:		Direct P	ush	ΤΟΤΑ	AL DEPTH (ft.):	8	SCREEN INTERVAL (ft.): N/A
DRILLI	NG E	QUIPI	MENT	:	AMS Power	Probe		TH TO WATER ORING (ft.):		CASING (ft.): N/A
SAMPI	ING	МЕТН	OD:	Mac	rocore w/ Ac	etate Liner	BOR	EHOLE METER (In.):	3	WELL DIAMETER (In.): N/A
LOGG	ED B`	Y:			R. Jone	S			0	
DEPTH (feet)				PID Reading		DESCRIPTION				ONSTRUCTION ILS AND/OR
DE (fe	Sam	Location	Blows/ Foot	Rea Rea	Ground Surface	Elevation (ft): N/A				NG REMARKS
0	D-6-4			4.1 4.2 5.1		Concrete, gravel and g				
_	09279-SO-6-4			5.2		Red clay with sand and we	eathered rock	ĸ		
5—				4.1		Red clay with weathe	red rock		Boring t land sur	erminated at 8-ft below face.
10-										
- 15										
20—										
E	P	5	I	I	И			I	I	



APPENDIX H

Slug Test Data

Color Spectrum

Bouwer and Rice Graph MW-4

Ho is 0.846 feet at 28.38 Seconds

Report Date:7/2/2007 11:51Report User Name:amodiReport Computer Name:EPS-DIM-2400Log File PropertiesFile NameMW4 2007-06-28 09.57.08.wslCreate Date6/28/2007 12:56

Device Properties Device Site Device Name Serial Number Firmware Version

LevelTroll 700 color spectrum mw-4 MW4 114123

Log Configuration

MW4 Log Name Created By Unknown Computer Name Pocket PC Application WinSituMobile.exe **Application Version** 5.1.0.11 Create Date 6/28/2007 11:45 4096 Notes Size(bytes) True Logarithmic Type Overwrite when full Disabled Scheduled Start Manual Start Scheduled Stop No Stop Time Days: 0 Hours: 00 Mins: 20 Secs: 00 Max Interval

2.04

Level Reference Settings At Log Creation Level Measurement Mode Depth Specific Gravity

0.999

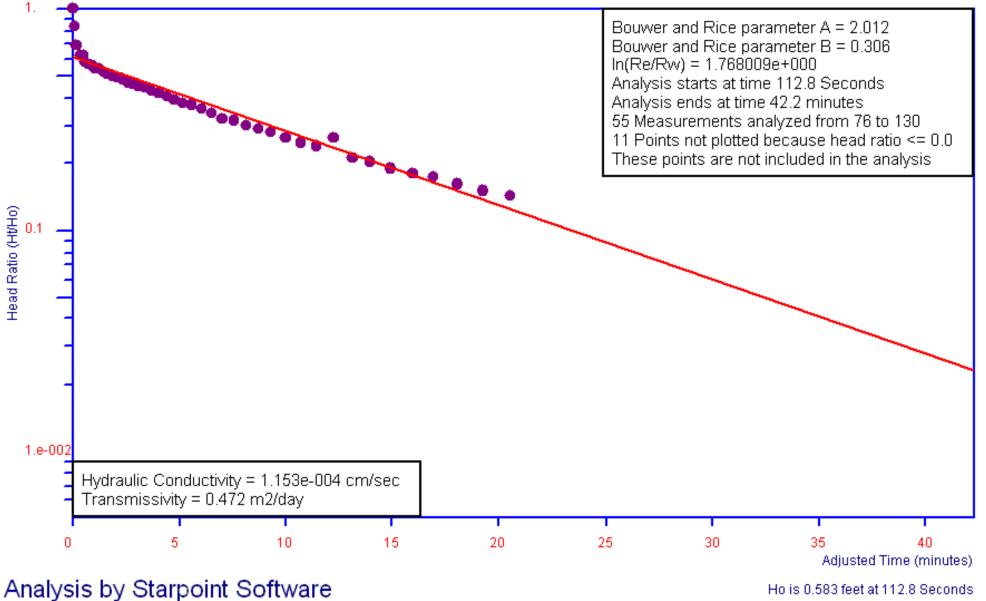
Log Notes: Date and Time Note 6/28/2007 11:45 Manual Start Command 6/28/2007 12:56 Suspend Command 6/28/2007 12:56 Manual Stop Command

Log Data: Record Count

139

				Sensor: Pres 15G	
	Elapsed Time		SN#: 114123	SN#: 114123	SN#: 114123
Date and Time	Seconds		Pressure (PSI)	Depth (ft)	Temperature (F)
6/28/2007 11:4	5	0	3.498	8.077	68.414
6/28/2007 11:4	5	0.251	3.499	8.08	68.442
6/28/2007 11:4	5	0.502	3.5	8.082	68.464
6/28/2007 11:4	5	0.751	3.499	8.079	68.478
6/28/2007 11:4	5	1.001	3.499	8.079	68.485

6/28/2007 11:45	1.251	3.499	8.078	68.491
6/28/2007 11:45	1.501	3.499	8.078	68.501
6/28/2007 11:45	1.751	3.498	8.076	68.505
6/28/2007 11:45	2.001	3.499	8.078	68.509
6/28/2007 11:45	2.251	3.498	8.077	68.509
6/28/2007 11:45	2.501	3.498	8.078	68.513
6/28/2007 11:45	2.751	3.499	8.078	68.513
6/28/2007 11:45	3.001	3.498	8.078	68.511
6/28/2007 11:45	3.251	3.498	8.076	68.508
6/28/2007 11:45	3.501	3.498	8.077	68.508
6/28/2007 11:45	3.751	3.499	8.079	68.512
6/28/2007 11:45	4.001	3.498	8.077	68.505
6/28/2007 11:45	4.251	3.498	8.077	68.506
6/28/2007 11:45	4.501	3.498	8.077	68.51
6/28/2007 11:45	4.751	3.498	8.076	68.502
6/28/2007 11:45	5.001	3.498	8.077	68.505
6/28/2007 11:45	5.251	3.498	8.077	68.495
6/28/2007 11:45	5.501	3.499	8.079	68.494
6/28/2007 11:45	5.751	3.497	8.075	68.491
6/28/2007 11:45	6.001	3.498	8.077	68.492
6/28/2007 11:45	6.361	3.498	8.078	68.471
6/28/2007 11:45	6.721	3.498	8.077	68.457
6/28/2007 11:45	7.141	3.499	8.078	68.437
6/28/2007 11:45	7.561	3.498	8.077	68.423
6/28/2007 11:45	7.981	3.499	8.08	68.42
6/28/2007 11:45	8.461	3.498	8.078	68.403
6/28/2007 11:45	9.001	3.498	8.077	68.386
6/28/2007 11:45	9.481	3.499	8.079	68.376
6/28/2007 11:45	10.081	3.498	8.078	68.359
6/28/2007 11:45	10.681	3.499	8.078	68.348
6/28/2007 11:45	11.281	3.498	8.077	68.335
6/28/2007 11:45	12.074	3.499	8.078	68.308
6/28/2007 11:45	12.66	3.498	8.077	68.336
6/28/2007 11:45	13.441	3.499	8.079	68.301
6/28/2007 11:45	14.221	3.499	8.079	68.283
6/28/2007 11:45	15.061	3.5	8.08	68.259
6/28/2007 11:45	15.961	3.499	8.078	68.242
6/28/2007 11:45	16.92	3.499	8.08	68.228
6/28/2007 11:45	17.88	3.5	8.081	68.206
6/28/2007 11:45	18.961	3.501	8.083	68.184
6/28/2007 11:45	20.101	3.503	8.088	68.164
6/28/2007 11:45	21.301	3.504	8.09	68.147
6/28/2007 11:45	22.561	3.381	7.807	68.124
6/28/2007 11:45	23.88	3.612	8.34	68.131
6/28/2007 11:45	25.321	3.859	8.91	68.084
6/28/2007 11:45	26.821	3.726	8.603	68.063
6/28/2007 11:45	28.38	3.864	8.923	68.041
6/28/2007 11:45	30.061	3.801	8.776	68.008
6/28/2007 11:45	31.86	3.751	8.66	67.975
6/28/2007 11:45	33.721	3.795	8.763	67.974
6/28/2007 11:46	35.761	3.795	8.762	67.93
6/28/2007 11:46	37.86	3.516	8.118	67.891
6/28/2007 11:46	40.081	3.709	8.563	67.869
6/28/2007 11:46	42.481	3.725	8.602	67.826
6/28/2007 11:46	45	3.721	8.592	67.805


6/28/2007 11:46	47.64	3.719	8.588	67.763
6/28/2007 11:46	50.461	3.718	8.584	67.722
6/28/2007 11:46	53.473	3.716	8.58	67.715
6/28/2007 11:46	56.64	3.714	8.576	67.646
6/28/2007 11:46	60.001	3.711	8.569	67.599
6/28/2007 11:46	63.6	3.71	8.565	67.58
6/28/2007 11:46	67.2	3.708	8.561	67.515
6/28/2007 11:46	71.401	3.706	8.556	67.455
6/28/2007 11:46	75.6	3.703	8.551	67.417
6/28/2007 11:46	79.8	3.703	8.549	67.359
6/28/2007 11:46	84.6	3.7	8.544	67.311
6/28/2007 11:46	90	3.699	8.54	67.247
6/28/2007 11:46	94.8	3.697	8.536	67.204
6/28/2007 11:47	100.801	3.695	8.532	67.137
6/28/2007 11:47	106.8	3.693	8.527	67.081
6/28/2007 11:47	112.801	3.692	8.526	67.016
6/28/2007 11:47	119.4	3.69	8.521	66.956
6/28/2007 11:47	126.6	3.688	8.516	66.891
6/28/2007 11:47	134.4	3.686	8.511	66.835
6/28/2007 11:47	142.201	3.684	8.507	66.761
6/28/2007 11:47	150.601	3.683	8.504	66.694
6/28/2007 11:48	159.6	3.68	8.497	66.635
6/28/2007 11:48	169.201	3.678	8.492	66.559
6/28/2007 11:48	178.801	3.677	8.489	66.498
6/28/2007 11:48	189.6	3.674	8.483	66.43
6/28/2007 11:48	201.001	3.672	8.478	66.359
6/28/2007 11:48	213.049	3.668	8.468	66.292
6/28/2007 11:49	225.6	3.666	8.465	66.226
6/28/2007 11:49	238.801	3.664	8.459	66.158
6/28/2007 11:49	253.237	3.661	8.454	66.144
6/28/2007 11:49	268.2	3.659	8.449	66.029
6/28/2007 11:50	283.8	3.656	8.441	65.98
6/28/2007 11:50	300.6	3.653	8.436	65.899
6/28/2007 11:50	318.6	3.651	8.43	65.842
6/28/2007 11:51	337.2	3.648	8.422	65.779
6/28/2007 11:51	357.6	3.645	8.416	65.72
6/28/2007 11:51	378.6	3.643	8.412	65.666
6/28/2007 11:52	400.8	3.641	8.407	65.609
6/28/2007 11:52	424.8	3.636	8.396	65.561
6/28/2007 11:52	450	3.634	8.391	65.503
6/28/2007 11:53	476.4	3.632	8.386	65.46
6/28/2007 11:53	504.6	3.629	8.379	65.422
6/28/2007 11:54	534.6	3.624	8.369	65.375
6/28/2007 11:54	566.4	3.623	8.366	65.322
6/28/2007 11:55	600	3.619	8.356	65.281
6/28/2007 11:56	636	3.616	8.35	65.252
6/28/2007 11:56	672	3.613	8.342	65.21
6/28/2007 11:57	714.179	3.609	8.334	65.209
6/28/2007 11:58	756	3.607	8.328	65.147
6/28/2007 11:58	798	3.604	8.321	65.114
6/28/2007 11:59	846	3.6	8.313	65.087
6/28/2007 12:00	900	3.596	8.303	65.056
6/28/2007 12:01	948	3.594	8.298	65.037
6/28/2007 12:02	1008	3.59	8.29	65.007
6/28/2007 12:03	1068	3.587	8.281	64.988

6/28/2007 12:04	1128	3.583	8.272	64.97
6/28/2007 12:05	1194.057	3.579	8.264	64.984
6/28/2007 12:06	1266	3.575	8.254	64.934
6/28/2007 12:07	1344.115	3.571	8.245	64.943
6/28/2007 12:09	1422	3.568	8.237	64.894
6/28/2007 12:10	1506	3.564	8.229	64.888
6/28/2007 12:12	1596	3.56	8.22	64.875
6/28/2007 12:13	1692	3.557	8.214	64.85
6/28/2007 12:15	1788	3.554	8.206	64.84
6/28/2007 12:17	1896	3.551	8.199	64.83
6/28/2007 12:18	2010	3.547	8.19	64.816
6/28/2007 12:20	2130	3.545	8.186	64.797
6/28/2007 12:23	2256	3.542	8.179	64.788
6/28/2007 12:25	2388	3.335	7.701	64.772
6/28/2007 12:27	2532	3.376	7.796	64.745
6/28/2007 12:30	2682	3.4	7.85	64.744
6/28/2007 12:32	2838	3.42	7.896	64.788
6/28/2007 12:35	3006	3.436	7.934	64.934
6/28/2007 12:38	3186	3.451	7.968	65.066
6/28/2007 12:41	3372	3.461	7.992	65.069
6/28/2007 12:45	3576	3.472	8.016	65.061
6/28/2007 12:48	3786	3.479	8.033	64.985
6/28/2007 12:52	4008	3.488	8.053	64.928
6/28/2007 12:56	4248	3.493	8.066	64.884

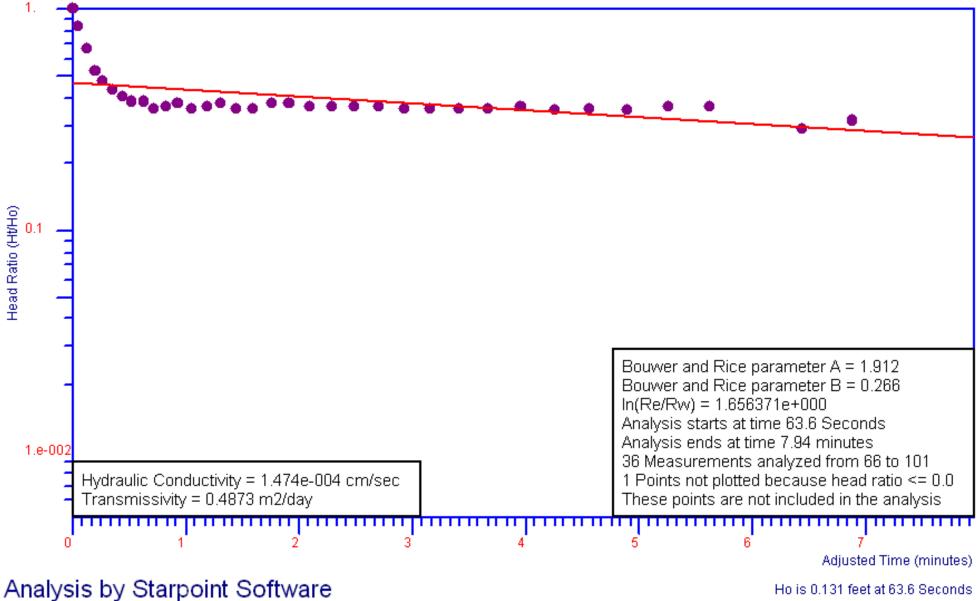
Color Spectrum

LaFayette, GA June 28, 2007

Bouwer and Rice Graph MW-6

Report Date: Report User Name: Report Computer Name:	7/2/2007 11 amodi EPS-DIM-2400	1:52				
Log File Properties File Name Create Date	MW6 2007-06-28 11.22.20.wsl 6/28/2007 14					
Device Properties Device Site Device Name Serial Number Firmware Version		123 2.04				
Log Configuration	Log Name Created By Computer Name Application Application Version Create Date Notes Size(bytes) Type Overwrite when full Scheduled Start Scheduled Stop Max Interval		MW6 Unknown Pocket PC WinSituMob 5.1.0.11 6/28/2007 True Logarit Disabled Manual Star No Stop Tim Days: 0 Hou	7 13:38 4096 hmic t	s: 00	
Level Reference Settings	At Log Creation Level Measurement Mode Specific Gravity	9	Depth	0.999		
	Note Manual Start Command Manual Stop Command					
Log Data: Record Count		130				
Date and Time 6/28/2007 13:38 6/28/2007 13:38 6/28/2007 13:38 6/28/2007 13:38 6/28/2007 13:38 6/28/2007 13:38 6/28/2007 13:38	3 0. 3 0. 3 1. 3 1	0 0.25 .501 .794 .002 1.25 1.5		3		3

6/28/2007 13:38	1.75	3.869	8.933	71.489
6/28/2007 13:38	2	3.868	8.931	71.486
6/28/2007 13:38	2.25	3.868	8.93	71.486
6/28/2007 13:38	2.5	3.869	8.932	71.485
6/28/2007 13:38	2.75	3.869	8.933	71.484
6/28/2007 13:38	3	3.868	8.932	71.481
6/28/2007 13:38	3.25	3.869	8.933	71.476
6/28/2007 13:38	3.5	3.867	8.93	71.472
6/28/2007 13:38	3.75	3.868	8.931	71.471
6/28/2007 13:38	4	3.868	8.931	71.468
6/28/2007 13:38	4.25	3.867	8.929	71.463
6/28/2007 13:38	4.5	3.868	8.931	71.461
6/28/2007 13:38	4.75	3.869	8.933	71.457
6/28/2007 13:38	5.176	3.868	8.931	71.425
6/28/2007 13:38	5.379	3.869	8.934	71.468
6/28/2007 13:38	5.712	3.867	8.93	71.424
6/28/2007 13:38	6.103	3.867	8.93	71.441
6/28/2007 13:38	6.306	3.867	8.93	71.438
6/28/2007 13:38	6.511	3.867	8.93	71.441
6/28/2007 13:38	6.716	3.868	8.931	71.441
6/28/2007 13:38	7.14	3.868	8.93	71.395
6/28/2007 13:38	7.56	3.867	8.928	71.379
6/28/2007 13:38	7.98	3.868	8.931	71.354
6/28/2007 13:38	8.46	3.867	8.93	71.329
6/28/2007 13:38	9	3.868	8.932	71.306
6/28/2007 13:38	9.48	3.867	8.928	71.292
6/28/2007 13:38	10.08	3.867	8.93	71.268
6/28/2007 13:38	10.68	3.868	8.931	71.24
6/28/2007 13:38	11.28	3.868	8.931	71.224
6/28/2007 13:38	11.94	3.868	8.931	71.208
6/28/2007 13:38	12.66	3.868	8.932	71.187
6/28/2007 13:38	13.44	3.867	8.93	71.164
6/28/2007 13:38	14.22	3.868	8.931	71.14
6/28/2007 13:38	15.06	3.868	8.931	71.112
6/28/2007 13:38	15.96	3.867	8.929	71.09
6/28/2007 13:38	16.92	3.868	8.931	71.093
6/28/2007 13:38	17.88	3.868	8.931	71.035
6/28/2007 13:38	18.96	3.869	8.933	71.040
6/28/2007 13:38	20.1	3.869	8.934	70.981
6/28/2007 13:38	21.3	3.868	8.931	70.949
6/28/2007 13:38	22.56	3.869	8.933	70.919
6/28/2007 13:38	23.88	3.869	8.932	70.879
6/28/2007 13:38	25.32	3.868	8.932	70.844
6/28/2007 13:38	26.82	3.868	8.931	70.837
6/28/2007 13:38	28.38	3.868	8.931	70.78
6/28/2007 13:38	30.06	3.868	8.931	70.738
6/28/2007 13:38	31.86	3.868	8.932	70.688
6/28/2007 13:38	33.72	3.868	8.931	70.644
6/28/2007 13:39	35.76	3.868	8.932	70.597
6/28/2007 13:39	37.86	3.868	8.931	70.564
6/28/2007 13:39	40.08	3.869	8.934	70.504
6/28/2007 13:39	40.08	3.869	8.933	70.3
6/28/2007 13:39	42.48	3.869	8.933	70.434
6/28/2007 13:39	45 47.64	3.868	8.932	70.405
6/28/2007 13:39	47.64 50.46	3.869	8.933	70.355 70.281
6/28/2007 13:39	53.46	3.868	8.93	70.201
012012001 13.33	00.40	5.000	0.93	10.211


6/28/2007 13:39	56.649	3.868	8.93	70.189
6/28/2007 13:39	60	3.868	8.931	70.115
6/28/2007 13:39	63.6	3.868	8.932	70.024
6/28/2007 13:39	67.199	3.868	8.931	69.952
6/28/2007 13:39	71.4	3.867	8.929	69.886
6/28/2007 13:39	75.6	3.867	8.929	69.794
6/28/2007 13:39	79.8	3.868	8.931	69.723
6/28/2007 13:39	84.6	3.867	8.929	69.641
6/28/2007 13:39	90.023	3.867	8.93	69.548
6/28/2007 13:40	94.8	3.868	8.932	69.481
6/28/2007 13:40	100.8	3.866	8.927	69.401
6/28/2007 13:40	106.8	3.872	8.94	69.288
6/28/2007 13:40	112.8	4.121	9.516	69.2
6/28/2007 13:40	119.4	4.081	9.423	69.106
6/28/2007 13:40	126.6	4.045	9.339	69.007
6/28/2007 13:40	134.399	4.026	9.296	68.896
6/28/2007 13:40	142.199	4.025	9.294	68.8
6/28/2007 13:40	150.6	4.016	9.273	68.714
6/28/2007 13:41	159.6	4.012	9.263	68.581
6/28/2007 13:41	169.2	4.009	9.257	68.473
6/28/2007 13:41	178.8	4.006	9.25	68.377
6/28/2007 13:41	189.599	4.004	9.245	68.264
6/28/2007 13:41	201	4.004	9.235	68.174
6/28/2007 13:41	213	3.997	9.229	68.07
6/28/2007 13:41	213	3.995	9.229	67.965
6/28/2007 13:42	238.8	3.995	9.218	67.871
6/28/2007 13:42	253.199	3.992	9.216	67.777
6/28/2007 13:42	268.2	3.987		67.676
			9.205	
6/28/2007 13:43	283.799	3.985	9.201	67.589
6/28/2007 13:43	300.599	3.982	9.195	67.522
6/28/2007 13:43	318.599	3.981	9.193	67.399
6/28/2007 13:44	337.2	3.977	9.182	67.309
6/28/2007 13:44	357.599	3.974	9.176	67.221
6/28/2007 13:44	378.599	3.971	9.168	67.149
6/28/2007 13:45	400.799	3.968	9.161	67.104
6/28/2007 13:45	424.799	3.964	9.153	67.006
6/28/2007 13:45	450.041	3.961	9.147	66.945
6/28/2007 13:46	476.399	3.958	9.14	66.885
6/28/2007 13:46	504.599	3.955	9.131	66.835
6/28/2007 13:47	534.599	3.95	9.121	66.78
6/28/2007 13:47	566.4	3.949	9.117	66.73
6/28/2007 13:48	600.1	3.944	9.107	66.685
6/28/2007 13:49	636	3.941	9.101	66.638
6/28/2007 13:49	672	3.939	9.095	66.603
6/28/2007 13:50	713.999	3.935	9.086	66.567
6/28/2007 13:51	756	3.932	9.078	66.533
6/28/2007 13:51	797.999	3.929	9.073	66.501
6/28/2007 13:52	845.999	3.936	9.087	66.462
6/28/2007 13:53	900.114	3.923	9.058	66.444
6/28/2007 13:54	948	3.921	9.053	66.421
6/28/2007 13:55	1008	3.918	9.045	66.391
6/28/2007 13:56	1068	3.915	9.039	66.36
6/28/2007 13:57	1128	3.913	9.035	66.328
6/28/2007 13:58	1193.999	3.91	9.028	66.311
6/28/2007 13:59	1265.999	3.907	9.021	66.287
6/28/2007 14:00	1343.999	3.905	9.016	66.259

6/28/2007 14:02	1421.999	3.734	8.621	66.241
6/28/2007 14:03	1505.999	3.755	8.669	66.177
6/28/2007 14:05	1596	3.767	8.699	66.116
6/28/2007 14:06	1691.999	3.778	8.723	66.095
6/28/2007 14:08	1788	3.787	8.743	66.057
6/28/2007 14:10	1896	3.795	8.762	66.038
6/28/2007 14:11	2010.024	3.803	8.78	66.022
6/28/2007 14:13	2130.032	3.808	8.793	66.003
6/28/2007 14:16	2256	3.814	8.808	65.987
6/28/2007 14:18	2388	3.82	8.821	65.96
6/28/2007 14:20	2531.999	3.825	8.833	65.944

Color Spectrum

Bouwer and Rice Graph MW-9

LaFayette, GA June 28, 2007

Report Date: Report User Name: Report Computer Name:	7/2/200 amodi EPS-DIM-2400	7 11:52	2				
Log File Properties File Name Create Date	MW 9-[2] 2007-06-28 11.50. 6/28/200)				
Device Properties Device Site Device Name Serial Number Firmware Version	LevelTroll 700 color spectrum mw-4 MW4	114123 2.04					
Log Configuration	Log Name Created By Computer Name Application Application Version Create Date Notes Size(bytes) Type Overwrite when full Scheduled Start Scheduled Stop Max Interval		MW 9-[2] Unknown Pocket PC WinSituMobi 5.1.0.11 6/28/200 True Logarith Disabled Manual Start No Stop Tim Days: 0 Hou	7 14:41 4096 hmic t e		00	
Level Reference Settings	At Log Creation Level Measurement Mo Specific Gravity	de	Depth	0.999)		
6/28/2007 14:50	Note 2 Manual Start Command 9 Suspend Command 9 Manual Stop Command						
Log Data: Record Count		101	I				
Date and Time 6/28/2007 14:42 6/28/2007 14:42 6/28/2007 14:42 6/28/2007 14:42 6/28/2007 14:42 6/28/2007 14:42 6/28/2007 14:42		0.25 0.501 0.966 1.17 1.374 1.581	5 	3)		73.245 73.274 73.269 73.296 73.296 73.31

6/28/2007 14:42	1.785	2.829	6.532	73.342
6/28/2007 14:42	2	2.829	6.533	73.35
6/28/2007 14:42	2.25	2.829	6.532	73.346
6/28/2007 14:42	2.5	2.829	6.532	73.353
6/28/2007 14:42	2.75	2.829	6.532	73.35
6/28/2007 14:42	3	2.829	6.532	73.36
6/28/2007 14:42	3.25	2.829	6.532	73.363
6/28/2007 14:42	3.5	2.829	6.533	73.366
6/28/2007 14:42	3.75	2.83	6.533	73.372
6/28/2007 14:42	4	2.828	6.531	73.366
6/28/2007 14:42	4.25	2.829	6.531	73.377
6/28/2007 14:42			6.531	73.37
	4.5	2.829		
6/28/2007 14:42	4.75	2.828	6.53	73.378
6/28/2007 14:42	5	2.828	6.53	73.382
6/28/2007 14:42	5.389	2.829	6.532	73.366
6/28/2007 14:42	5.592	2.829	6.531	73.41
6/28/2007 14:42	5.925	2.829	6.531	73.38
6/28/2007 14:42	6.316	2.83	6.535	73.396
6/28/2007 14:42	6.521	2.829	6.532	73.403
6/28/2007 14:42	6.726	2.829	6.532	73.413
6/28/2007 14:42	7.14	2.828	6.529	73.375
6/28/2007 14:42	7.56	2.829	6.533	73.361
6/28/2007 14:42	7.98	2.829	6.531	73.356
6/28/2007 14:42	8.46	2.829	6.531	73.349
6/28/2007 14:42	9	2.828	6.53	73.331
6/28/2007 14:42	9.48	2.828	6.531	73.333
6/28/2007 14:42	10.08	2.829	6.532	73.325
6/28/2007 14:42	10.68	2.829	6.532	73.348
6/28/2007 14:42	11.28			
		2.828	6.531	73.324
6/28/2007 14:42	11.94	2.829	6.532	73.317
6/28/2007 14:42	12.66	2.83	6.535	73.306
6/28/2007 14:42	13.44	2.829	6.532	73.3
6/28/2007 14:42	14.22	2.829	6.531	73.295
6/28/2007 14:42	15.06	2.829	6.532	73.294
6/28/2007 14:42	15.96	2.829	6.531	73.288
6/28/2007 14:42	16.92	2.829	6.532	73.283
6/28/2007 14:42	17.88	2.828	6.531	73.285
6/28/2007 14:42	18.96	2.829	6.532	73.281
6/28/2007 14:42	20.1	2.83	6.533	73.275
6/28/2007 14:42	21.467	2.829	6.533	73.297
6/28/2007 14:42	22.56	2.829	6.533	73.279
6/28/2007 14:42	23.88	2.829	6.532	73.267
6/28/2007 14:42	25.32	2.829	6.532	73.264
6/28/2007 14:42	26.82	2.829	6.532	73.261
6/28/2007 14:42	28.38	2.83	6.534	73.257
6/28/2007 14:42	30.06	2.83	6.535	73.257
6/28/2007 14:42	31.86	2.829	6.533	73.279
6/28/2007 14:42	33.72	2.83	6.535	73.25
6/28/2007 14:42	35.72	2.83	6.535	73.247
6/28/2007 14:42	37.86	2.829	6.533	73.245
6/28/2007 14:42	40.08	2.83	6.535	73.243
6/28/2007 14:42	42.48	2.83	6.534	73.246
6/28/2007 14:42	45	2.83	6.535	73.241
6/28/2007 14:43	47.64	2.831	6.537	73.231
6/28/2007 14:43	50.46	2.835	6.545	73.235
6/28/2007 14:43	53.46	3.15	7.274	73.237
6/28/2007 14:43	56.64	2.908	6.715	73.227

6/28/2007 14:43	60	2.939	6.785	73.222
6/28/2007 14:43	63.6	2.886	6.664	73.228
6/28/2007 14:43	67.199	2.877	6.644	73.223
6/28/2007 14:43	71.472	2.867	6.62	73.249
6/28/2007 14:43	75.6	2.86	6.603	73.217
6/28/2007 14:43	79.8	2.856	6.595	73.212
6/28/2007 14:43	84.6	2.854	6.59	73.212
6/28/2007 14:43	90	2.852	6.586	73.21
6/28/2007 14:43	94.8	2.851	6.583	73.21
6/28/2007 14:43	100.99	2.851	6.583	73.204
6/28/2007 14:43	106.8	2.85	6.58	73.206
6/28/2007 14:44	112.8	2.85	6.581	73.217
6/28/2007 14:44	119.4	2.851	6.582	73.208
6/28/2007 14:44	126.6	2.85	6.58	73.209
6/28/2007 14:44	134.399	2.85	6.581	73.208
6/28/2007 14:44	142.199	2.851	6.582	73.218
6/28/2007 14:44	150.6	2.85	6.58	73.202
6/28/2007 14:44	159.6	2.85	6.58	73.198
6/28/2007 14:45	169.2	2.85	6.582	73.197
6/28/2007 14:45	178.8	2.851	6.582	73.189
6/28/2007 14:45	189.6	2.85	6.581	73.183
6/28/2007 14:45	201.045	2.85	6.581	73.185
6/28/2007 14:45	213	2.85	6.581	73.188
6/28/2007 14:45	225.599	2.85	6.581	73.174
6/28/2007 14:46	238.8	2.85	6.58	73.178
6/28/2007 14:46	253.199	2.85	6.58	73.186
6/28/2007 14:46	268.199	2.85	6.58	73.181
6/28/2007 14:46	283.799	2.85	6.58	73.196
6/28/2007 14:47	300.6	2.85	6.581	73.199
6/28/2007 14:47	318.599	2.849	6.579	73.206
6/28/2007 14:47	337.2	2.85	6.58	73.216
6/28/2007 14:48	357.6	2.85	6.579	73.217
6/28/2007 14:48	378.599	2.85	6.581	73.22
6/28/2007 14:48	400.98	2.85	6.581	73.26
6/28/2007 14:49	424.799	2.79	6.441	73.231
6/28/2007 14:49	450	2.846	6.571	73.225
6/28/2007 14:50	476.399	2.847	6.574	73.229

APPENDIX I

Wildlife Resources Division Letter

Georgia Department of Natural Resources Wildlife Resources Division

Nongame Conservation Section 2065 U.S. Highway 278, S.E., Social Circle, Georgia 30025-4743 (770) 918 6411

December 6, 2007

Justin Vickery, Senior Geologist EPS 900 Ashwood Parkway Atlanta, GA 30338

Subject: Known Occurrences of Conservation Areas and Special Concern Animals and Plants On or Near EPD Hazardour Site Compliance Status Report, T&E Species Review, Walker County, Georgia

Dear Mr. Vickery:

This is in response to your request of November 27, 2007. According to our records, within a three-mile radius of the project site there are the following Natural Heritage Database occurrences:

Aesculus glabra (Ohio Buckeye) approx. 2.5 mi. W of site

- GA Aneides aeneus (Green Salamander) approx. 3.0 mi. W of site Carya laciniosa (Shellbark Hickory) approx. 3.0 mi. W of site
- GA Crataegus triflora (Three-flowered Hawthorn) approx. 3.0 mi. W of site Etheostoma coosae (Coosa Darter) approx. 1.0 mi. SE of site in Town Creek Etheostoma coosae (Coosa Darter) approx. 2.5 mi. N of site in Dry Creek Etheostoma coosae (Coosa Darter) approx. 2.5 mi. W of site in Duck Creek Fraxinus quadrangulata (Blue Ash) approx. 3.0 mi. W of site
- GA Jeffersonia diphylla (Twinleaf) approx. 3.0 mi. W of site
- GA Neviusia alabamensis (Alabama Snow-wreath) approx. 3.0 mi. W of site Phacelia purshii (Miami-mist) approx. 2.5 mi. W of site Ponthieva racemosa (Shadow-witch Orchid) approx. 3.0 mi. W of site Potamogeton amplifolius (Bigleaf Pondweed) approx. 1.0 mi. N of site Blue Hole [Cave] approx. 3.0 mi. W of site Chattooga River [High Priority Stream] approx. 1.0 mi. SE of site Crockford-Pigeon Mountain WMA [GA DNR] approx. 2.5 mi. W of site Duck Creek [High Priority Stream] approx. 2.0 mi. SW of site Wayne's Dudhole [Cave] approx. 3.0 mi. W of site

* Entries above proceeded by "US" indicates species with federal status in Georgia (Protected or Candidate). Species that are federally protected in Georgia are also state protected; "GA" indicates Georgia protected species.

Recommendations:

We have no records of species of concern within the project area. Please encourage strict measures to protect the important aquatic resources near this site. This site occurs near Duck

Creek and the Chattooga River, both high priority streams. As part of an effort to develop a comprehensive wildlife conservation strategy for the state of Georgia, the Wildlife Resources division has developed and mapped a list of streams that are important to the protection or restoration of rare aquatic species and aquatic communities. High priority waters and their surrounding watersheds are a high priority for a broad array of conservation activities, but do not receive any additional legal protections. We now have GIS ESRI shapefiles of GA high priority waters available on our website

(http://www.georgiawildlife.com/content/displaycontent.asp?txtDocument=89&txtPage=13). Please contact the Georgia Natural Heritage Program if you would like additional information on high priority waters.

New Data Available on the Nongame Conservation Section Website

We have recently updated the Nongame Conservation Section Website!!! You can view the updated rare species and natural community information by Quarter Quad, County and HUC8 Watershed. To access this information, please visit our GA Rare Species and Natural Community Information page at:

http://georgiawildlife.dnr.state.ga.us/content/displaycontent.asp?txtDocument=89 An updated ESRI shape file of our rare species and natural community data by quarter quad and county is also available. It can be downloaded from:

http://georgiawildlife.dnr.state.ga.us/assets/documents/gnhp/gnhpds.zip

Disclaimer:

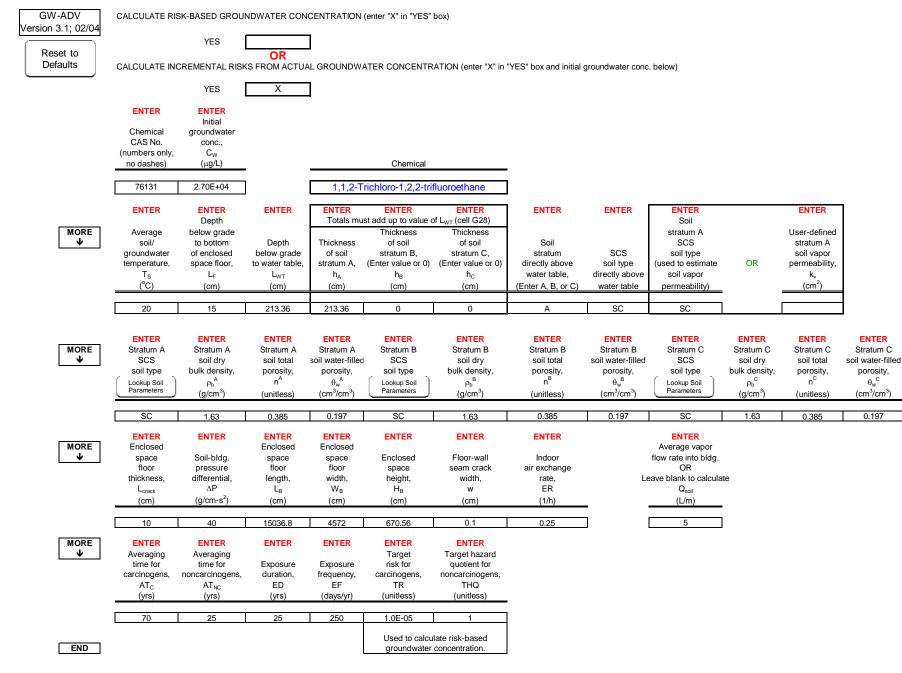
Please keep in mind the limitations of our database. The data collected by the Nongame Conservation Section comes from a variety of sources, including museum and herbarium records, literature, and reports from individuals and organizations, as well as field surveys by our staff biologists. In most cases the information is not the result of a recent on-site survey by our staff. Many areas of Georgia have never been surveyed thoroughly. Therefore, the Nongame Conservation Section can only occasionally provide definitive information on the presence or absence of rare species on a given site. Our files are updated constantly as new information is received. Thus, information provided by our program represents the existing data in our files at the time of the request and should not be considered a final statement on the species or area under consideration.

If you know of populations of special concern species that are not in our database, please fill out the appropriate data collection form and send it to our office. Forms can be obtained through our web site (http://www.georgiawildlife.com) or by contacting our office. If I can be of further assistance, please let me know.

Sincerely,

Think Moris

Katrina Morris Environmental Review Coordinator



APPENDIX J

Vapor Intrusion Model

Non-Residential Freon-113 Groundwater

DATA ENTRY SHEET

CHEMICAL PROPERTIES SHEET

Diffusivity in air, D _a (cm ² /s)	Diffusivity in water, D _w (cm ² /s)	Henry's law constant at reference temperature, H (atm-m ³ /mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, ΔH _{v,b} (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _C (°K)	Organic carbon partition coefficient, K _{oc} (cm ³ /g)	Pure component water solubility, S (mg/L)	Unit risk factor, URF (µg/m ³) ⁻¹	Reference conc., RfC (mg/m ³)
3.76E-02	8.59E-06	5.26E-01	25	6,463	320.70	487.30	1.11E+04	1.70E+02	0.0E+00	3.0E+01
END										

1 of 1

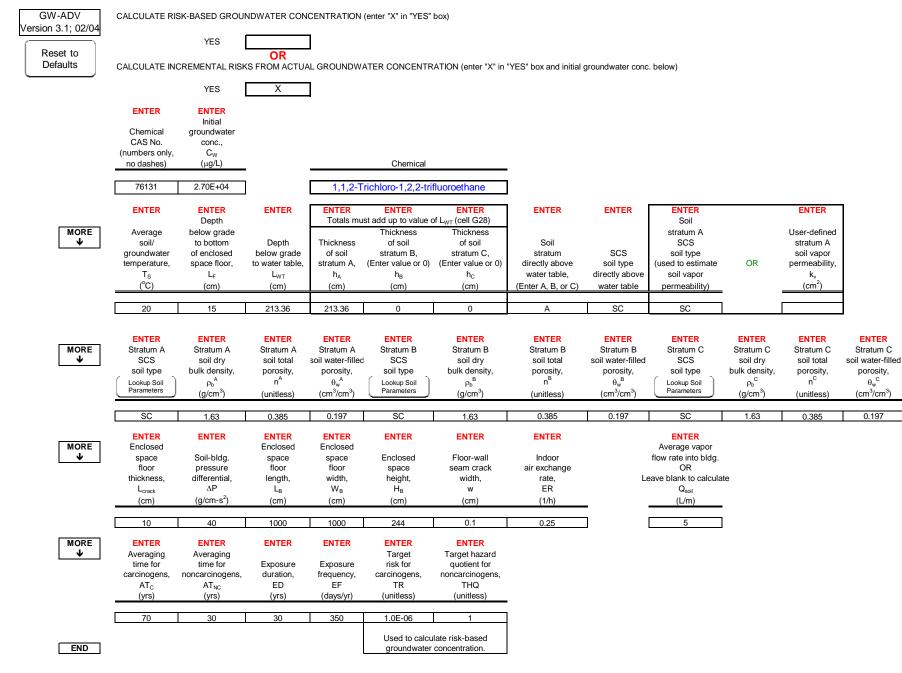
INTERMEDIATE CALCULATIONS SHEET

Exposure duration, τ (sec)	Source- building separation, L _T (cm)	$\begin{array}{c} \text{Stratum A} \\ \text{soil} \\ \text{air-filled} \\ \text{porosity,} \\ \theta_a{}^A \\ (\text{cm}^3/\text{cm}^3) \end{array}$	Stratum B soil air-filled porosity, θ_a^B (cm ³ /cm ³)	$\begin{array}{c} \text{Stratum C} \\ \text{soil} \\ \text{air-filled} \\ \text{porosity,} \\ \theta_a^{\text{C}} \\ (\text{cm}^3/\text{cm}^3) \end{array}$	Stratum A effective total fluid saturation, S _{te} (cm ³ /cm ³)	Stratum A soil intrinsic permeability, k _i (cm ²)	Stratum A soil relative air permeability, k _{rg} (cm ²)	Stratum A soil effective vapor permeability, k _v (cm ²)	Thickness of capillary zone, L _{cz} (cm)	Total porosity in capillary zone, n _{cz} (cm ³ /cm ³)	Air-filled porosity in capillary zone, θ _{a,cz} (cm ³ /cm ³)	Water-filled porosity in capillary zone, $\theta_{w,cz}$ (cm ³ /cm ³)	Floor- wall seam perimeter, X _{crack} (cm)
7.88E+08	198.36	0.188	0.188	0.188	0.299	1.77E-09	0.837	1.48E-09	30.00	0.385	0.030	0.355	39,218
Bldg. ventilation rate, Q _{bullding} (cm ³ /s)	Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. groundwater temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. groundwater temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. groundwater temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, μ _{TS} (g/cm-s)	Stratum A effective diffusion coefficient, D ^{eff} _A (cm ² /s)	Stratum B effective diffusion coefficient, D ^{eff} _B (cm ² /s)	Stratum C effective diffusion coefficient, D ^{eff} c (cm ² /s)	Capillary zone effective diffusion coefficient, D ^{eff} cz (cm ² /s)	Total overall effective diffusion coefficient, D ^{eff} T (cm ² /s)	Diffusion path length, L _d (cm)
3.20E+06	6.93E+07	5.66E-05	15	6,840	4.32E-01	1.80E+01	1.78E-04	9.70E-04	0.00E+00	0.00E+00	2.29E-06	1.49E-05	198.36
Convection path length, L _p (cm)	Source vapor conc., C _{source} (μg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (μg/m ³)	Unit risk factor, URF (μg/m ³⁾⁻¹	Reference conc., RfC (mg/m ³)			
15	4.85E+08	0.10	8.33E+01	9.70E-04	3.92E+03	1.34E+95	1.54E-06	7.45E+02	NA	3.0E+01]		

RESULTS SHEET

RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS: INCR

INCREMENTAL RISK CALCULATIONS:


Indoor	Indoor	Risk-based	Pure	Final		Incremental risk from	Hazard quotient
exposure	exposure	indoor	component	indoor		vapor	from vapor
groundwater conc., carcinogen	groundwater conc., noncarcinogen	exposure groundwater conc.,	water solubility, S	exposure groundwater conc.,		intrusion to indoor air, carcinogen	intrusion to indoor air, noncarcinogen
(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	-	(unitless)	(unitless)
NA	NA	NA	1.70E+05	NA]	NA	1.7E-02

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

Residential Freon-113 Groundwater

DATA ENTRY SHEET

CHEMICAL PROPERTIES SHEET

Diffusivity in air, D _a (cm ² /s)	Diffusivity in water, D _w (cm ² /s)	Henry's law constant at reference temperature, H (atm-m ³ /mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, ΔH _{v,b} (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _C (°K)	Organic carbon partition coefficient, K _{oc} (cm ³ /g)	Pure component water solubility, S (mg/L)	Unit risk factor, URF (µg/m ³) ⁻¹	Reference conc., RfC (mg/m ³)
3.76E-02	8.59E-06	5.26E-01	25	6,463	320.70	487.30	1.11E+04	1.70E+02	0.0E+00	3.0E+01
END										

1 of 1

INTERMEDIATE CALCULATIONS SHEET

Exposure duration, τ (sec)	Source- building separation, L _T (cm)	Stratum A soil air-filled porosity, θ_a^A (cm ³ /cm ³)	$\begin{array}{c} \text{Stratum B} \\ \text{soil} \\ \text{air-filled} \\ \text{porosity,} \\ \theta_a{}^B \\ (\text{cm}^3/\text{cm}^3) \end{array}$	$\begin{array}{c} \text{Stratum C} \\ \text{soil} \\ \text{air-filled} \\ \text{porosity,} \\ \theta_a^{\text{C}} \\ (\text{cm}^3/\text{cm}^3) \end{array}$	Stratum A effective total fluid saturation, S _{te} (cm ³ /cm ³)	Stratum A soil intrinsic permeability, k _i (cm ²)	Stratum A soil relative air permeability, k _{rg} (cm ²)	Stratum A soil effective vapor permeability, k _v (cm ²)	Thickness of capillary zone, L _{cz} (cm)	Total porosity in capillary zone, n _{cz} (cm ³ /cm ³)	Air-filled porosity in capillary zone, θ _{a,cz} (cm ³ /cm ³)	Water-filled porosity in capillary zone, $\theta_{w,cz}$ (cm ³ /cm ³)	Floor- wall seam perimeter, X _{crack} (cm)
9.46E+08	198.36	0.188	0.188	0.188	0.299	1.77E-09	0.837	1.48E-09	30.00	0.385	0.030	0.355	4,000
Bidg. ventilation rate, Q _{building} (cm ³ /s)	Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{v,TS}$ (cal/mol)	Henry's law constant at ave. groundwater temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. groundwater temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, µ _{TS} (g/cm-s)	Stratum A effective diffusion coefficient, D ^{eff} _A (cm ² /s)	Stratum B effective diffusion coefficient, D ^{eff} _B (cm ² /s)	Stratum C effective diffusion coefficient, D ^{eff} c (cm ² /s)	Capillary zone effective diffusion coefficient, D ^{eff} _{cz} (cm ² /s)	Total overall effective diffusion coefficient, D ^{eff} T (cm ² /s)	Diffusion path length, L _d (cm)
1.69E+04	1.06E+06	3.77E-04	15	6,840	4.32E-01	1.80E+01	1.78E-04	9.70E-04	0.00E+00	0.00E+00	2.29E-06	1.49E-05	198.36
Convection path length, L _p (cm)	Source vapor conc., C _{source} (μg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (μg/m ³)	Unit risk factor, URF (μg/m ³⁾⁻¹	Reference conc., RfC (mg/m ³)	-		
15	4.85E+08	0.10	8.33E+01	9.70E-04	4.00E+02	#NUM!	4.71E-06	2.28E+03	NA	3.0E+01]		

RESULTS SHEET

RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS: INCREM

INCREMENTAL RISK CALCULATIONS:

Indoor exposure groundwater conc., carcinogen (μg/L)	Indoor exposure groundwater conc., noncarcinogen (µg/L)	Risk-based indoor exposure groundwater conc., (μg/L)	Pure component water solubility, S (μg/L)	Final indoor exposure groundwater conc., (µg/L)		Incremental risk from vapor intrusion to indoor air, carcinogen (unitless)	Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless)
NA	NA	NA	1.70E+05	NA		NA	7.3E-02

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

Non-Residential Freon-113 Soil

SL-ADV Version 3.1; 02/04	CALCULATE RISK	K-BASED SOIL CO	NCENTRATION (ente	er "X" in "YES" box)											
()		YES]											
Reset to Defaults	CALCULATE INCR	REMENTAL RISKS	OR FROM ACTUAL SOI	L CONCENTRATION (enter "X" in "YES"	box and initial soil co	onc. below)								
		YES	х]											
	ENTER	ENTER Initial													
	Chemical	soil													
	CAS No.	conc.,													
	(numbers only, no dashes)	C _R (µg/kg)			Chemical										
	76131		-	((0 T))			-								
	76131	6.34E+03		1,1,2-1rich	loro-1,2,2-triflu	proethane	1								
MORE	ENTER	ENTER Depth	ENTER	ENTER Depth below	ENTER Totals mu	ENTER st add up to value of	ENTER L, (cell G28)	ENTER Soil		ENTER					
		below grade		grade to bottom		Thickness	Thickness	stratum A		User-defined					
	Average	to bottom	Depth below	of contamination,	Thickness	of soil	of soil	SCS		stratum A					
	soil temperature,	of enclosed space floor,	grade to top of contamination,	(enter value of 0 if value is unknown)	of soil stratum A,	stratum B, (Enter value or 0)	stratum C, (Enter value or 0)	soil type (used to estimate	OR	soil vapor permeability,					
	Ts	L _F	L,	L _b	h _A	h _B	h _c	soil vapor	U.V.	k _v					
	(°C)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	permeability)		(cm ²)					
	20	15	30.48	213.36	30.48	0	0	SC	1						
		•													
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER
MORE ↓	Stratum A	Stratum A	Stratum A	Stratum A	Stratum A	Stratum B	Stratum B	Stratum B	Stratum B	Stratum B	Stratum C	Stratum C	Stratum C	Stratum C	Stratum C
¥	SCS soil type	soil dry bulk density,	soil total porosity,	soil water-filled porosity,	soil organic carbon fraction,	SCS soil type	soil dry bulk density,	soil total porosity,	soil water-filled porosity,	soil organic carbon fraction,	SCS soil type	soil dry bulk density,	soil total porosity,	soil water-filled porosity,	soil organic carbon fraction,
	Lookup Soil	Pb ^A	n ^A	θ _w ^A	f _{oc} ^A	Lookup Soil	ρ _b ^B	n ^B	θ _w ^B	f _{oc} ^B	Lookup Soil	ρ _b ^C	n ^C	θ _w ^C	f _{oc} ^C
	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	(unitless)	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	(unitless)	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	(unitless)
	SC	1.63	0.385	0.197	0.002	SC	1.63	0.385	0.197	0.002	SC	1.63	0.385	0.197	0.002
				•		•									
MORE	ENTER Enclosed	ENTER	ENTER Enclosed	ENTER Enclosed	ENTER	ENTER	ENTER		ENTER Average vapor						
4	space	Soil-bldg.	space	space	Enclosed	Floor-wall	Indoor	f	low rate into bldg						
	floor thickness.	pressure differential,	floor	floor width,	space	seam crack	air exchange		OR we blank to calcu	1-4-					
	L _{crack}	ΔP	length, L _B	Width, W _B	height, H _B	width, w	rate, ER	Lea	Q _{soil}	late					
	(cm)	(g/cm-s ²)	(cm)	(cm)	(cm)	(cm)	(1/h)	-	(L/m)						
	10	40	15036.8	4572	670.56	0.1	0.25	1	5						
						•		1							
	ENTER Averaging	ENTER Averaging	ENTER	ENTER	ENTER Target	ENTER Target hazard									
	time for	time for	Exposure	Exposure	risk for	quotient for									
	carcinogens,	noncarcinogens,	duration,	frequency,	carcinogens,	noncarcinogens,									
	AT _C (yrs)	AT _{NC} (yrs)	ED (yrs)	EF (days/yr)	TR (unitless)	THQ (unitless)									
							=								
	70	25	25	250	1.0E-05	1	4								
END						ulate risk-based centration.									
END					SOIL CON	centration.	1								

CHEMICAL PROPERTIES SHEET

Diffusivity in air, D _a (cm ² /s)	Diffusivity in water, D _w (cm ² /s)	Henry's law constant at reference temperature, H (atm-m ³ /mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, ΔH _{v,b} (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _C (°K)	Organic carbon partition coefficient, K _{oc} (cm ³ /g)	Pure component water solubility, S (mg/L)	Unit risk factor, URF (μg/m ³⁾⁻¹	Reference conc., RfC (mg/m ³)	Physical state at soil temperature, (S,L,G)
								1 = 2 = 2 = 2			
3.76E-02	8.59E-06	5.26E-01	25	6,463	320.70	487.30	1.11E+04	1.70E+02	0.0E+00	3.0E+01	L

INTERMEDIATE CALCULATIONS SHEET

Exposure duration, τ (sec)	Source- building separation, L _T (cm)	$\begin{array}{c} \text{Stratum A} \\ \text{soil} \\ \text{air-filled} \\ \text{porosity,} \\ \theta_a^A \\ (\text{cm}^3/\text{cm}^3) \end{array}$	Stratum B soil air-filled porosity, θ_a^B (cm ³ /cm ³)	Stratum C soil air-filled porosity, θ_a^C (cm ³ /cm ³)	Stratum A effective total fluid saturation, S _{te} (cm ³ /cm ³)	Stratum A soil intrinsic permeability, k _i (cm ²)	Stratum A soil relative air permeability, k _{rg} (cm ²)	Stratum A soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Initial soil concentration used, C _R (µg/kg)	Bldg. ventilation rate, Q _{building} (cm ³ /s)	-
7.88E+08	15.48	0.188	0.188	0.188	0.299	1.77E-09	0.837	1.48E-09	39,218	6.34E+03	3.20E+06]
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, μ _{TS} (g/cm-s)	Stratum A effective diffusion coefficient, D ^{eff} A (cm ² /s)	Stratum B effective diffusion coefficient, D ^{eff} B (cm ² /s)	Stratum C effective diffusion coefficient, D ^{eff} c (cm ² /s)	Total overall effective diffusion coefficient, D ^{eff} T (cm ² /s)	Diffusion path length, L _d (cm)	Convection path length, L _p (cm)
6.93E+07	5.66E-05	15	6,840	4.32E-01	1.80E+01	1.78E-04	9.70E-04	0.00E+00	0.00E+00	9.70E-04	15.48	15
Soil-water partition coefficient, K _d (cm ³ /g)	Source vapor conc., C _{source} (µg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{orack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ¹) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (µg/m ³)	Finite source β term (unitless)	Finite source ψ term (sec) ⁻¹	Time for source depletion, ^T D (sec)	Exposure duration > time for source depletion (YES/NO)
2.23E+01	4.65E+06	0.10	8.33E+01	9.70E-04	3.92E+03	1.34E+95	NA	NA	5.31E+01	1.82E-06	3.83E+08	YES
Finite source indoor attenuation coefficient, $<\alpha>$ (unitless)	Mass limit bldg. conc., C _{building} (μg/m ³)	Finite source bldg. conc., C _{building} (µg/m ³)	Final finite source bldg. conc., C _{building} (µg/m ³)	Unit risk factor, URF (μg/m ³) ⁻¹	Reference conc., RfC (mg/m ³)	_						
NA	5.19E+01	NA	5.19E+01	NA	3.0E+01							
END]											

RESULTS SHEET

RISK-BASED SOIL CONCENTRATION CALCULATIONS:

INCREMENTAL RISK CALCULATIONS:

(μq/kq) (μq/kq) (μq/kq) (μq/kq) (μα/kq) (unitless) (unitless)	Indoor exposure soil conc., carcinogen (μg/kg)	Indoor exposure soil conc., noncarcinogen (μg/kg)	Risk-based indoor exposure soil conc., (µg/kg)	Soil saturation conc., C _{sat} (μg/kg)	Final indoor exposure soil conc., (µg/kg)	Incremental risk from vapor intrusion to indoor air, carcinogen (unitless)	Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless)
---	---	--	---	---	--	--	--

MESSAGE AND ERROR SUMMARY B	ELOW: (DO NOT USE RESULTS	IF ERRORS ARE PRESENT)

Residential Freon-113 Soil

SL-ADV Version 3.1; 02/04	CALCULATE RISK	K-BASED SOIL CO	NCENTRATION (ente	er "X" in "YES" box)											
()		YES]											
Reset to Defaults	CALCULATE INCR	REMENTAL RISKS	OR FROM ACTUAL SOI	IL CONCENTRATION (enter "X" in "YES"	box and initial soil co	onc. below)								
		YES	Х]											
	ENTER	ENTER Initial													
	Chemical	soil													
	CAS No.	conc.,													
	(numbers only, no dashes)	C _R (µg/kg)			Chemical										
	76131	6.34E+03	- -				-								
	76131	0.34E+03	1	1,1,2-1rich	loro-1,2,2-triflu	proetnane	J								
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER		ENTER					
MORE ↓		Depth		Depth below grade to bottom	Totals mu	st add up to value of Thickness	L _t (cell G28) Thickness	Soil stratum A		User-defined					
¥	Average	below grade to bottom	Depth below	of contamination,	Thickness	of soil	of soil	SCS		stratum A					
	soil	of enclosed	grade to top	(enter value of 0	of soil	stratum B,	stratum C,	soil type		soil vapor					
	temperature,	space floor,	of contamination,	if value is unknown)	stratum A,	(Enter value or 0)		(used to estimate	OR	permeability,					
	Ts (°C)	L _F (cm)	L _i (cm)	L _b (cm)	h _A (cm)	h _B (cm)	h _c (cm)	soil vapor permeability)		k _v (cm ²)					
			A 7	()											
	20	15	30.48	213.36	30.48	0	0	SC							
MORE	ENTER Stratum A	ENTER Stratum A	ENTER Stratum A	ENTER Stratum A	ENTER Stratum A	ENTER Stratum B	ENTER Stratum B	ENTER Stratum B	ENTER Stratum B	ENTER Stratum B	ENTER Stratum C	ENTER Stratum C	ENTER Stratum C	ENTER Stratum C	ENTER Stratum C
¥	SCS	soil dry	soil total	soil water-filled	soil organic	SCS	soil dry	soil total	soil water-filled	soil organic	SCS	soil dry	soil total	soil water-filled	soil organic
	soil type	bulk density,	porosity,	porosity,	carbon fraction,	soil type	bulk density,	porosity,	porosity,	carbon fraction,	soil type	bulk density,	porosity,	porosity,	carbon fraction,
	Lookup Soil Parameters	ρ _b ^A (g/cm ³)	n ^A (unitless)	θ _w ^A (cm ³ /cm ³)	f _{oc} ^A (unitless)	Lookup Soil Parameters	ρ _b ^B (g/cm ³)	n ^B (unitless)	θ _w ^B (cm ³ /cm ³)	f _{oc} ^B (unitless)	Lookup Soil Parameters	ρ _b ^C (g/cm ³)	n ^c (unitless)	θ _w ^C (cm ³ /cm ³)	f _{oc} ^C
	<u> </u>	(g/ciii)	(unitiess)	(uni/uni)	(unitiess)	$\underline{}$	(9/6117)	(unitiess)	(cm/cm)	(unitiess)		(g/ciii)	(unitiess)	(cm/cm/)	(unitless)
	SC	1.63	0.385	0.197	0.002	SC	1.63	0.385	0.197	0.002	SC	1.63	0.385	0.197	0.002
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER		ENTER						
MORE	Enclosed		Enclosed	Enclosed					Average vapor						
\mathbf{v}	space floor	Soil-bldg. pressure	space floor	space floor	Enclosed space	Floor-wall seam crack	Indoor air exchange	1	flow rate into bldg OR						
	thickness,	differential,	length,	width,	height,	width,	rate,	Lea	ave blank to calcul	ate					
	L _{crack}	ΔP	LB	WB	HB	w	ER		Q _{soil}						
	(cm)	(g/cm-s ²)	(cm)	(cm)	(cm)	(cm)	(1/h)	-	(L/m)						
	10	40	1000	1000	244	0.1	0.25]	5						
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER									
	Averaging	Averaging			Target	Target hazard									
	time for	time for	Exposure duration,	Exposure	risk for	quotient for									
	carcinogens, AT _c	noncarcinogens, AT _{NC}	ED	frequency, EF	carcinogens, TR	noncarcinogens, THQ									
	(yrs)	(yrs)	(yrs)	(days/yr)	(unitless)	(unitless)	=								
	70	30	30	350	1.0E-06	1	1								
						· ·	1								
END						ulate risk-based centration.									

CHEMICAL PROPERTIES SHEET

Diffusivity in air, D _a (cm ² /s)	Diffusivity in water, D _w (cm ² /s)	Henry's law constant at reference temperature, H (atm-m ³ /mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, ΔH _{v,b} (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _C (°K)	Organic carbon partition coefficient, K _{oc} (cm ³ /g)	Pure component water solubility, S (mg/L)	Unit risk factor, URF (μg/m ³⁾⁻¹	Reference conc., RfC (mg/m ³)	Physical state at soil temperature, (S,L,G)
								1 705 00			· · · · · · · · · · · · · · · · · · ·
3.76E-02	8.59E-06	5.26E-01	25	6,463	320.70	487.30	1.11E+04	1.70E+02	0.0E+00	3.0E+01	L

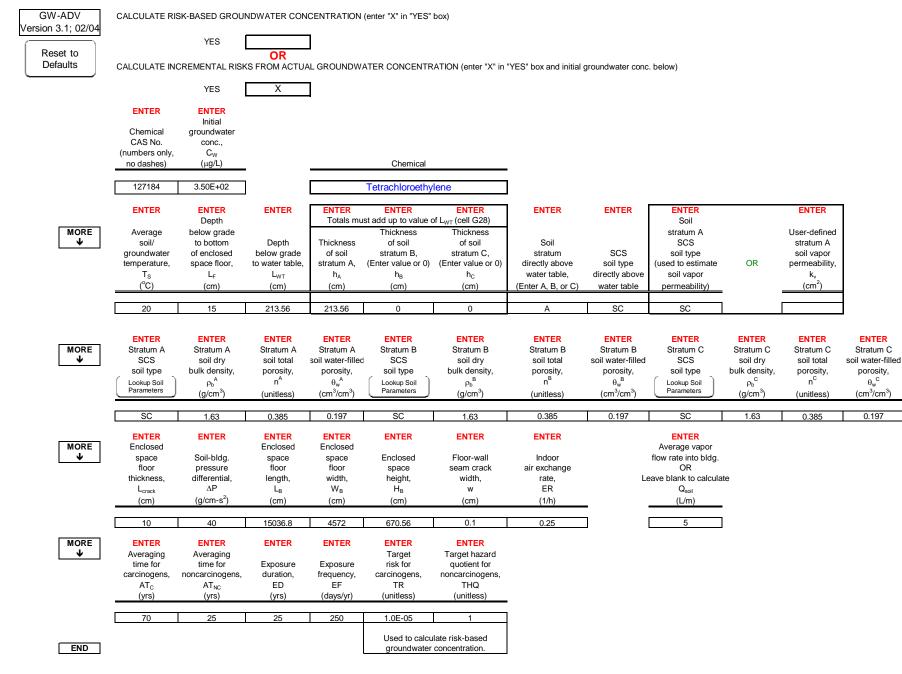
INTERMEDIATE CALCULATIONS SHEET

Exposure duration, τ (sec)	Source- building separation, L _T (cm)	Stratum A soil air-filled porosity, θ_a^A (cm ³ /cm ³)	Stratum B soil air-filled porosity, θ_a^B (cm ³ /cm ³)	Stratum C soil air-filled porosity, θ_a^{C} (cm ³ /cm ³)	Stratum A effective total fluid saturation, S _{te} (cm ³ /cm ³)	Stratum A soil intrinsic permeability, k _i (cm ²)	Stratum A soil relative air permeability, k _{rg} (cm ²)	Stratum A soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Initial soil concentration used, C _R (μg/kg)	Bldg. ventilation rate, Q _{building} (cm ³ /s)	_
9.46E+08	15.48	0.188	0.188	0.188	0.299	1.77E-09	0.837	1.48E-09	4,000	6.34E+03	1.69E+04	
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, μ _{TS} (g/cm-s)	Stratum A effective diffusion coefficient, D ^{eff} A (cm ² /s)	Stratum B effective diffusion coefficient, D ^{eff} B (cm ² /s)	Stratum C effective diffusion coefficient, D ^{eff} c (cm ² /s)	Total overall effective diffusion coefficient, D ^{eff} T (cm ² /s)	Diffusion path length, L _d (cm)	Convection path length, L _p (cm)
1.06E+06	3.77E-04	15	6,840	4.32E-01	1.80E+01	1.78E-04	9.70E-04	0.00E+00	0.00E+00	9.70E-04	15.48	15
Soil-water partition coefficient, K _d (cm ³ /g)	Source vapor conc., C _{source} (µg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe') (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (µg/m ³)	Finite source β term (unitless)	Finite source ψ term (sec) ⁻¹	Time for source depletion, ^τ _D (sec)	Exposure duration > time for source depletion (YES/NO)
2.23E+01	4.65E+06	0.10	8.33E+01	9.70E-04	4.00E+02	#NUM!	NA	NA	1.80E+00	1.82E-06	5.00E+07	YES
Finite source indoor attenuation coefficient, <a> (unitless)	Mass limit bldg. conc., C _{building} (μg/m ³) 1.25E+02	Finite source bldg. conc., C _{building} (µg/m ³) NA	Final finite source bldg. conc., C _{building} (µg/m ³) 1.25E+02	Unit risk factor, URF (μg/m ³) ⁻¹ NA	Reference conc., RfC (mg/m ³) 3.0E+01	-]						

RESULTS SHEET

RISK-BASED SOIL CONCENTRATION CALCULATIONS:

INCREMENTAL RISK CALCULATIONS:


Indoor exposure soil conc.,	Indoor exposure soil conc.,	Risk-based indoor exposure soil	Soil saturation conc.,	Final indoor exposure soil	Incremental risk from vapor intrusion to indoor air,	quotient from vapor intrusion to indoor air,
carcinogen (µg/kg)	noncarcinogen (µg/kg)	conc., (μg/kg)	C _{sat} (µg/kg)	conc., (µg/kg)	carcinogen (unitless)	noncarcinogen (unitless)
NA	NA	NA	4.16E+06	NA	NA	4.0E-03

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PI	RESENT)

Non-Residential Tetrachloroethene Groundwater

DATA ENTRY SHEET

CHEMICAL PROPERTIES SHEET

Diffusivity in air, D _a (cm ² /s)	Diffusivity in water, D _w (cm ² /s)	Henry's law constant at reference temperature, H (atm-m ³ /mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, ΔH _{v,b} (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _C (°K)	Organic carbon partition coefficient, K _{oc} (cm ³ /g)	Pure component water solubility, S (mg/L)	Unit risk factor, URF (µg/m ³) ⁻¹	Reference conc., RfC (mg/m ³)
5.00E-02	9.50E-06	1.77E-02	25	8,288	394.40	620.20	1.55E+02	2.06E+02	2.6E-07	4.0E-02
END										

1 of 1

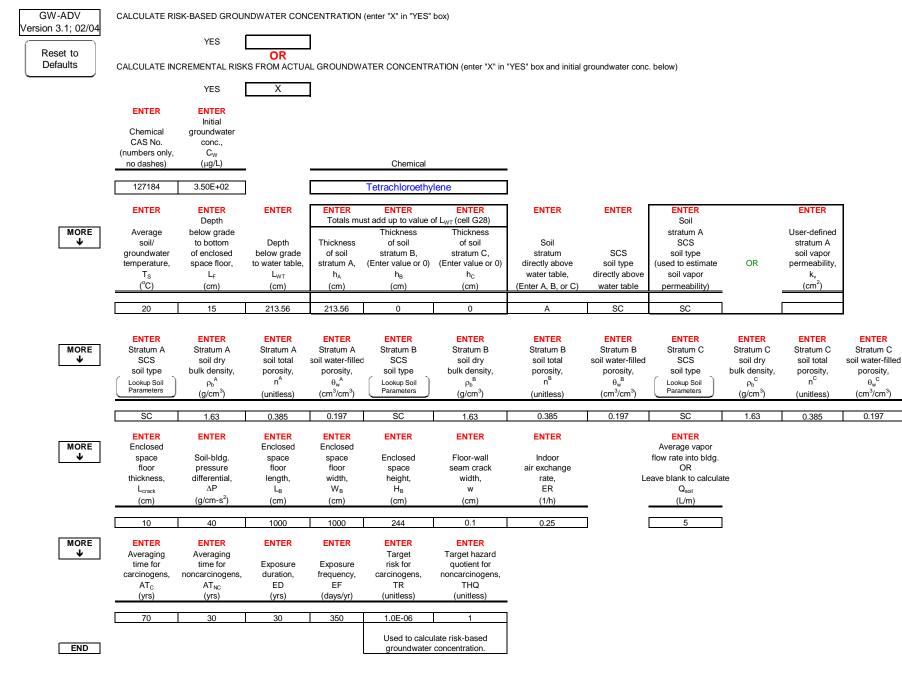
INTERMEDIATE CALCULATIONS SHEET

Exposure duration, τ (sec)	Source- building separation, L _T (cm)	Stratum A soil air-filled porosity, θ_a^A (cm ³ /cm ³)	Stratum B soil air-filled porosity, θ _a ^B (cm ³ /cm ³)	$\begin{array}{c} \text{Stratum C} \\ \text{soil} \\ \text{air-filled} \\ \text{porosity,} \\ \theta_a{}^c \\ (\text{cm}^3/\text{cm}^3) \end{array}$	Stratum A effective total fluid saturation, S _{te} (cm ³ /cm ³)	Stratum A soil intrinsic permeability, k _i (cm ²)	Stratum A soil relative air permeability, k _{rg} (cm ²)	Stratum A soil effective vapor permeability, k _v (cm ²)	Thickness of capillary zone, L _{cz} (cm)	Total porosity in capillary zone, n _{cz} (cm ³ /cm ³)	Air-filled porosity in capillary zone, θ _{a,cz} (cm ³ /cm ³)	Water-filled porosity in capillary zone, $\theta_{w,cz}$ (cm ³ /cm ³)	Floor- wall seam perimeter, X _{crack} (cm)
7.88E+08	198.56	0.188	0.188	0.188	0.299	1.77E-09	0.837	1.48E-09	30.00	0.385	0.030	0.355	39,218
Bldg. ventilation rate, Q _{building} (cm ³ /s)	Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{v,TS}$ (cal/mol)	Henry's law constant at ave. groundwater temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. groundwater temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, µ _{TS} (g/cm-s)	Stratum A effective diffusion coefficient, D ^{eff} _A (cm ² /s)	Stratum B effective diffusion coefficient, D ^{eff} _B (cm ² /s)	Stratum C effective diffusion coefficient, D ^{eff} c (cm ² /s)	Capillary zone effective diffusion coefficient, D ^{eff} _{cz} (cm ² /s)	Total overall effective diffusion coefficient, D ^{eff} T (cm ² /s)	Diffusion path length, L _d (cm)
3.20E+06	6.93E+07	5.66E-05	15	9,451	1.35E-02	5.61E-01	1.78E-04	1.29E-03	0.00E+00	0.00E+00	6.54E-06	4.21E-05	198.56
Convection path length, L _p (cm)	Source vapor conc., C _{source} (μg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (μg/m ³)	Unit risk factor, URF (μg/m ³⁾⁻¹	Reference conc., RfC (mg/m ³)	_		
15	1.96E+05	0.10	8.33E+01	1.29E-03	3.92E+03	2.77E+71	3.90E-06	7.66E-01	2.6E-07	4.0E-02]		

RESULTS SHEET

RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS: INC

INCREMENTAL RISK CALCULATIONS:


Indoor	Indoor	Risk-based	Pure	Final		remental sk from	Hazard quotient
exposure groundwater conc., carcinogen	exposure groundwater conc., noncarcinogen	indoor exposure groundwater conc.,	component water solubility, S	indoor exposure groundwater conc.,	inti inc cai	vapor rusion to door air, rcinogen	from vapor intrusion to indoor air, noncarcinogen
(μg/L) NA	(μg/L) NA	(μg/L) NA	(μg/L) 2.06E+05	(μg/L) NA		nitless)	(unitless)

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

Residential Tetrachloroethene Groundwater

DATA ENTRY SHEET

CHEMICAL PROPERTIES SHEET

Diffusivity in air, D _a (cm ² /s)	Diffusivity in water, D _w (cm ² /s)	Henry's law constant at reference temperature, H (atm-m ³ /mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, ΔH _{v,b} (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _C (°K)	Organic carbon partition coefficient, K _{oc} (cm ³ /g)	Pure component water solubility, S (mg/L)	Unit risk factor, URF (µg/m ³) ⁻¹	Reference conc., RfC (mg/m ³)
5.00E-02	9.50E-06	1.77E-02	25	8,288	394.40	620.20	1.55E+02	2.06E+02	2.6E-07	4.0E-02
END										

1 of 1

INTERMEDIATE CALCULATIONS SHEET

Exposure duration, τ (sec)	Source- building separation, L _T (cm)	$\begin{array}{c} \text{Stratum A} \\ \text{soil} \\ \text{air-filled} \\ \text{porosity,} \\ \theta_a^{\ A} \\ (\text{cm}^3/\text{cm}^3) \end{array}$	$\begin{array}{c} \text{Stratum B} \\ \text{soil} \\ \text{air-filled} \\ \text{porosity,} \\ \theta_a{}^B \\ (\text{cm}^3/\text{cm}^3) \end{array}$	$\begin{array}{c} \text{Stratum C} \\ \text{soil} \\ \text{air-filled} \\ \text{porosity,} \\ \theta_a^{\text{C}} \\ (\text{cm}^3/\text{cm}^3) \end{array}$	Stratum A effective total fluid saturation, S _{te} (cm ³ /cm ³)	Stratum A soil intrinsic permeability, k _i (cm ²)	Stratum A soil relative air permeability, k _{rg} (cm ²)	Stratum A soil effective vapor permeability, k _v (cm ²)	Thickness of capillary zone, L _{cz} (cm)	Total porosity in capillary zone, n _{cz} (cm ³ /cm ³)	Air-filled porosity in capillary zone, θ _{a,cz} (cm ³ /cm ³)	Water-filled porosity in capillary zone, $\theta_{w,cz}$ (cm ³ /cm ³)	Floor- wall seam perimeter, X _{crack} (cm)
9.46E+08	198.56	0.188	0.188	0.188	0.299	1.77E-09	0.837	1.48E-09	30.00	0.385	0.030	0.355	4,000
Bidg. ventilation rate, Q _{building} (cm ³ /s)	Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{v,TS}$ (cal/mol)	Henry's law constant at ave. groundwater temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. groundwater temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, µ _{TS} (g/cm-s)	Stratum A effective diffusion coefficient, D ^{eff} _A (cm ² /s)	Stratum B effective diffusion coefficient, D ^{eff} _B (cm ² /s)	Stratum C effective diffusion coefficient, D ^{eff} c (cm ² /s)	Capillary zone effective diffusion coefficient, D ^{eff} _{cz} (cm ² /s)	Total overall effective diffusion coefficient, D ^{eff} _T (cm ² /s)	Diffusion path length, L _d (cm)
1.69E+04	1.06E+06	3.77E-04	15	9,451	1.35E-02	5.61E-01	1.78E-04	1.29E-03	0.00E+00	0.00E+00	6.54E-06	4.21E-05	198.56
Convection path length, L _p (cm)	Source vapor conc., C _{source} (μg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (μg/m ³)	Unit risk factor, URF (μg/m ³⁾⁻¹	Reference conc., RfC (mg/m ³)	-		
15	1.96E+05	0.10	8.33E+01	1.29E-03	4.00E+02	#NUM!	1.32E-05	2.60E+00	2.6E-07	4.0E-02]		

RESULTS SHEET

RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS:

INCREMENTAL RISK CALCULATIONS:

Indoor exposure groundwater conc., carcinogen (μg/L)	Indoor exposure groundwater conc., noncarcinogen (µg/L)	Risk-based indoor exposure groundwater conc., (µg/L)	Pure component water solubility, S (µg/L)	Final indoor exposure groundwater conc., (µg/L)	 Incremental risk from vapor intrusion to indoor air, carcinogen (unitless)	Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless)
NA	NA	NA	2.06E+05	NA	2.8E-07	6.2E-02

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

Non-Residential Tetrachloroethene Soil

SL-ADV Version 3.1; 02/04	CALCULATE RISK	-BASED SOIL CO	NCENTRATION (ente	er "X" in "YES" box)											
()		YES]											
Reset to Defaults	CALCULATE INCR	REMENTAL RISKS	OR FROM ACTUAL SOI	L CONCENTRATION	enter "X" in "YES"	box and initial soil co	onc. below)								
		YES	Х]											
	ENTER	ENTER Initial													
	Chemical	soil													
	CAS No. (numbers only,	conc., C _R													
	no dashes)	(µg/kg)			Chemical										
	127184	3.00E+02	-	Tet	rachloroethyler	he	-								
							4								
MORE	ENTER	ENTER Depth	ENTER	ENTER Depth below	ENTER Totals mu	ENTER st add up to value of	ENTER f L _t (cell G28)	ENTER Soil		ENTER					
$\mathbf{+}$		below grade		grade to bottom		Thickness	Thickness	stratum A		User-defined					
	Average soil	to bottom of enclosed	Depth below grade to top	of contamination, (enter value of 0	Thickness of soil	of soil stratum B,	of soil stratum C,	SCS soil type		stratum A soil vapor					
	temperature,	space floor,	of contamination,	if value is unknown)	stratum A,	(Enter value or 0)		(used to estimate	OR	permeability,					
	Ts	LF	L	Lb	h _A	h _B	hc	soil vapor		k _v					
	(°C)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	permeability)	=	(cm ²)					
	20	15	60.96	152.4	60.96	0	0	SC	٦						
		•		•	-	•									
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER
MORE	Stratum A	Stratum A	Stratum A	Stratum A	Stratum A	Stratum B	Stratum B	Stratum B	Stratum B	Stratum B	Stratum C	Stratum C	Stratum C	Stratum C	Stratum C
¥	SCS soil type	soil dry bulk density,	soil total porosity,	soil water-filled porosity,	soil organic carbon fraction,	SCS soil type	soil dry bulk density,	soil total porosity,	soil water-filled porosity,	soil organic carbon fraction,	SCS soil type	soil dry bulk density,	soil total porosity,	soil water-filled porosity,	soil organic carbon fraction,
	Lookup Soil	ρ _b ^A	n ^A	θ _w ^A	f _{oc} ^A	Lookup Soil	ρ _b ^B	n ^B	θ _w ^B	f _{oc} ^B	Lookup Soil		n ^C	θ _w ^C	f _{oc} ^C
	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	(unitless)	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	(unitless)	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	(unitless)
		T					1					T			
	SC	1.63	0.385	0.197	0.002	SC	1.63	0.385	0.197	0.002	SC	1.63	0.385	0.197	0.002
MORE	ENTER Enclosed	ENTER	ENTER Enclosed	ENTER Enclosed	ENTER	ENTER	ENTER		ENTER Average vapor						
₩OKE ↓	space	Soil-bldg.	space	space	Enclosed	Floor-wall	Indoor		flow rate into bldo						
	floor	pressure	floor	floor	space	seam crack	air exchange		OR						
	thickness,	differential, ∆P	length,	width, W _B	height,	width,	rate, ER	Le	ave blank to calcu	late					
	L _{crack} (cm)	(g/cm-s ²)	L _B (cm)	(cm)	H _B (cm)	w (cm)	(1/h)		Q _{soil} (L/m)						
	``´														
	10	40	15036.8	4572	670.56	0.1	0.25	J	5	l					
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER									
	Averaging	Averaging			Target	Target hazard									
	time for carcinogens,	time for noncarcinogens,	Exposure duration,	Exposure frequency,	risk for carcinogens,	quotient for noncarcinogens,									
	AT _c	AT _{NC}	ED	EF	TR	THQ									
	(yrs)	(yrs)	(yrs)	(days/yr)	(unitless)	(unitless)	=								
	70	25	25	250	1.0E-05	1]								
END						ulate risk-based centration.									
					00110011		4								

H T _R m ³ /mol) (°C)	∆H _{v,b} (cal/mol)	^г в (°К)	°К)	K _{oc} (cm³/g)	5 (mg/L)	URF (µg/m ³) ⁻¹	RfC (mg/m ³)	temperature, (S,L,G)
7E 02 25	9.209	204 40	620.20	1.555+02	2.06E±02	2.6E.07	4 0E 02	
n		n ³ /mol) (°C) (cal/mol)	n ³ /mol) (°C) (cal/mol) (°K)	n ³ /mol) (°C) (cal/mol) (°K) (°K)	n ³ /mol) (°C) (cal/mol) (°K) (°K) (cm ³ /g)	n ³ /mol) (°C) (cal/mol) (°K) (°K) (cm ³ /g) (mg/L)	n ³ /mol) (°C) (cal/mol) (°K) (°K) (cm ³ /g) (mg/L) (µg/m ³) ⁻¹	n ³ /mol) (°C) (cal/mol) (°K) (°K) (cm ³ /g) (mg/L) (μg/m ³) ⁻¹ (mg/m ³)

Exposure duration, τ (sec)	Source- building separation, L _T (cm)	Stratum A soil air-filled porosity, θ_a^A (cm ³ /cm ³)	Stratum B soil air-filled porosity, θ_a^B (cm ³ /cm ³)	Stratum C soil air-filled porosity, θ_a^C (cm ³ /cm ³)	Stratum A effective total fluid saturation, S _{te} (cm ³ /cm ³)	Stratum A soil intrinsic permeability, k _i (cm ²)	Stratum A soil relative air permeability, k _{rg} (cm ²)	Stratum A soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Initial soil concentration used, C _R (µg/kg)	Bldg. ventilation rate, Q _{building} (cm ³ /s)	-
7.88E+08	45.96	0.188	0.188	0.188	0.299	1.77E-09	0.837	1.48E-09	39,218	3.00E+02	3.20E+06	
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, $\Delta H_{v,TS}$ (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, μ _{Ts} (g/cm-s)	Stratum A effective diffusion coefficient, D ^{eff} _A (cm ² /s)	Stratum B effective diffusion coefficient, D ^{eff} B (cm ² /s)	Stratum C effective diffusion coefficient, D ^{eff} c (cm ² /s)	Total overall effective diffusion coefficient, D ^{eff} T (cm ² /s)	Diffusion path length, L _d (cm)	Convection path length, L _p (cm)
6.93E+07	5.66E-05	15	9,451	1.35E-02	5.61E-01	1.78E-04	1.29E-03	0.00E+00	0.00E+00	1.29E-03	45.96	15
Soil-water partition coefficient, K _d (cm ³ /g)	Source vapor conc., C _{source} (μg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{orack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe') (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (µg/m ³)	Finite source β term (unitless)	Finite source ψ term (sec) ⁻¹	Time for source depletion, ^T D (sec)	Exposure duration > time for source depletion (YES/NO)
3.10E-01	3.39E+05	0.10	8.33E+01	1.29E-03	3.92E+03	2.77E+71	NA	NA	2.44E+01	4.24E-07	1.19E+08	YES
Finite source indoor attenuation coefficient, $<\alpha>$ (unitless)	Mass limit bldg. conc., C _{building} (µg/m ³)	Finite source bldg. conc., C _{building} (μg/m ³)	Final finite source bldg. conc., C _{building} (µg/m ³) 1.23E+00	Unit risk factor, URF (μg/m ³) ⁻¹ 2.6E-07	Reference conc., RfC (mg/m ³) 4.0E-02	- 1						
END	<u> </u>		•	•	•	_						

RISK-BASED SOIL CONCENTRATION CALCULATIONS:

INCREMENTAL RISK CALCULATIONS:

$(\mu g/\kappa g)$ $(\mu g/\kappa g)$ $(\mu g/\kappa g)$ $(\mu g/\kappa g)$ $(\mu m m ess)$ $(\mu m m ess)$	Indoor exposure soil conc., carcinogen (μg/kg)	Indoor exposure soil conc., noncarcinogen (μg/kg)	Risk-based indoor exposure soil conc., (µg/kg)	Soil saturation conc., C _{sat} (μg/kg)	Final indoor exposure soil conc., (µg/kg)	Incremental risk from vapor intrusion to indoor air, carcinogen (unitless)	Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless)
---	---	--	---	---	--	--	--

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

Residential Tetrachloroethene Soil

SL-ADV Version 3.1; 02/04	CALCULATE RISK	-BASED SOIL COI	NCENTRATION (ente	er "X" in "YES" box)											
()		YES]											
Reset to Defaults	CALCULATE INCR	REMENTAL RISKS	OR FROM ACTUAL SOI	IL CONCENTRATION (enter "X" in "YES"	box and initial soil co	onc. below)								
		YES	Х]											
	ENTER	ENTER Initial													
	Chemical	soil													
	CAS No. (numbers only,	conc., C _R													
	no dashes)	(μg/kg)			Chemical										
	127184	3.00E+02	-	Tot	rachloroethyle	~~	-								
	127104	3.00L+02]	Tet	rachioroethyle	le	J								
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER		ENTER					
MORE		Depth below grade		Depth below grade to bottom	I otais mu	st add up to value of Thickness	Thickness	Soil stratum A		User-defined					
	Average	to bottom	Depth below	of contamination,	Thickness	of soil	of soil	SCS		stratum A					
	soil	of enclosed	grade to top	(enter value of 0	of soil	stratum B,	stratum C,	soil type		soil vapor					
	temperature,	space floor,	of contamination,	if value is unknown)	stratum A,	(Enter value or 0)		(used to estimate	OR	permeability,					
	Ts (°C)	L _F (cm)	L, (cm)	L _b (cm)	h _A (cm)	h _B (cm)	h _c (cm)	soil vapor permeability)		k _v (cm ²)					
		()		(· · /					-	`, ,					
	20	15	60.96	152.4	60.96	0	0	SC							
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER
MORE ↓	Stratum A SCS	Stratum A soil dry	Stratum A soil total	Stratum A soil water-filled	Stratum A soil organic	Stratum B SCS	Stratum B soil dry	Stratum B soil total	Stratum B soil water-filled	Stratum B soil organic	Stratum C SCS	Stratum C soil dry	Stratum C soil total	Stratum C soil water-filled	Stratum C soil organic
	soil type	bulk density,	porosity,	porosity,	carbon fraction,	soil type	bulk density,	porosity,	porosity,	carbon fraction,	soil type	bulk density.	porosity,		carbon fraction,
	Lookup Soil	ρ	n ^A	θw	f _{oc} A	Lookup Soil	ρ _b ^B	n ^B	θw ^B	f _{oc} ^B	Lookup Soil	ρϧϹ	n ^C	θw ^C	f _{oc} ^C
	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	(unitless)	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	(unitless)	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	(unitless)
	SC	1.63	0.385	0.197	0.002	SC	1.63	0.385	0.197	0.002	SC	1.63	0.385	0.197	0.002
			•			•		0.000		0.002	00	1.00	0.000	0.107	0.002
MORE	ENTER Enclosed	ENTER	ENTER Enclosed	ENTER Enclosed	ENTER	ENTER	ENTER		ENTER Average vapor						
₩OKL ¥	space	Soil-bldg.	space	space	Enclosed	Floor-wall	Indoor		flow rate into bldg	1.					
	floor	pressure	floor	floor	space	seam crack	air exchange		OR	,					
	thickness,	differential,	length,	width,	height,	width,	rate,	Lea	ave blank to calcu	late					
	L _{crack} (cm)	ΔP (g/cm-s ²)	L _B (cm)	W _B (cm)	H _B (cm)	w (cm)	ER (1/h)		Q _{soil} (L/m)						
	(cn)	(9/6113)	(cm)	(cm)	(cm)	(cm)	(1/1)	•	(L/III)	•					
	10	40	1000	1000	244	0.1	0.25]	5]					
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER									
	Averaging	Averaging			Target	Target hazard									
	time for	time for	Exposure	Exposure	risk for	quotient for									
	carcinogens, AT _c	noncarcinogens, AT _{NC}	duration, ED	frequency, EF	carcinogens, TR	noncarcinogens, THQ									
	(yrs)	(yrs)	(yrs)	(days/yr)	(unitless)	(unitless)	_								
	70	30	30	350	1.0E-06	1	-								
	10	30	30	300			1								
END						ulate risk-based centration.									

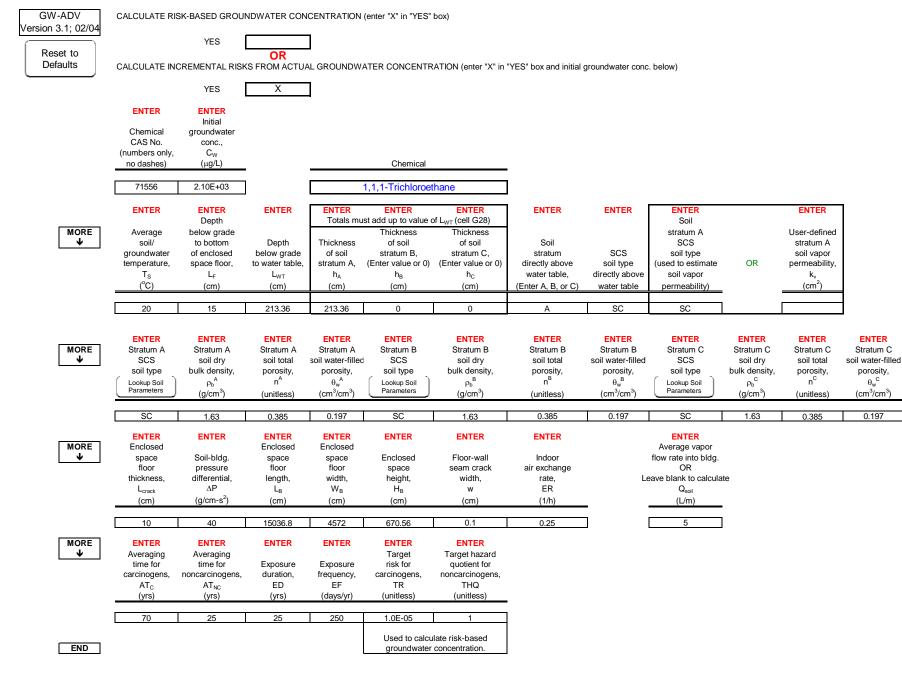
H T _R m ³ /mol) (°C)	∆H _{v,b} (cal/mol)	^г в (°К)	°К)	K _{oc} (cm³/g)	5 (mg/L)	URF (µg/m ³) ⁻¹	RfC (mg/m ³)	temperature, (S,L,G)
7E 02 25	9.209	204 40	620.20	1.555+02	2.06E±02	2.6E.07	4 0E 02	
n		n ³ /mol) (°C) (cal/mol)	n ³ /mol) (°C) (cal/mol) (°K)	n ³ /mol) (°C) (cal/mol) (°K) (°K)	n ³ /mol) (°C) (cal/mol) (°K) (°K) (cm ³ /g)	n ³ /mol) (°C) (cal/mol) (°K) (°K) (cm ³ /g) (mg/L)	n ³ /mol) (°C) (cal/mol) (°K) (°K) (cm ³ /g) (mg/L) (µg/m ³) ⁻¹	n ³ /mol) (°C) (cal/mol) (°K) (°K) (cm ³ /g) (mg/L) (μg/m ³) ⁻¹ (mg/m ³)

Exposure duration, τ (sec)	Source- building separation, L _T (cm)	Stratum A soil air-filled porosity, θ_a^A (cm ³ /cm ³)	Stratum B soil air-filled porosity, θ_a^B (cm ³ /cm ³)	Stratum C soil air-filled porosity, θ_a^C (cm ³ /cm ³)	Stratum A effective total fluid saturation, S _{te} (cm ³ /cm ³)	Stratum A soil intrinsic permeability, k _i (cm ²)	Stratum A soil relative air permeability, k _{rg} (cm ²)	Stratum A soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Initial soil concentration used, C _R (μg/kg)	Bldg. ventilation rate, Q _{building} (cm ³ /s)	-
9.46E+08	45.96	0.188	0.188	0.188	0.299	1.77E-09	0.837	1.48E-09	4,000	3.00E+02	1.69E+04]
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, μ _{TS} (g/cm-s)	Stratum A effective diffusion coefficient, D ^{eff} A (cm ² /s)	Stratum B effective diffusion coefficient, D ^{eff} _B (cm ² /s)	Stratum C effective diffusion coefficient, D ^{eff} c (cm ² /s)	Total overall effective diffusion coefficient, D ^{eff} T (cm ² /s)	Diffusion path length, L _d (cm)	Convection path length, L _p (cm)
1.06E+06	3.77E-04	15	9,451	1.35E-02	5.61E-01	1.78E-04	1.29E-03	0.00E+00	0.00E+00	1.29E-03	45.96	15
Soil-water partition coefficient, K _d (cm ³ /g)	Source vapor conc., C _{source} (µg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^t) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (µg/m ³)	Finite source β term (unitless)	Finite source ψ term (sec) ⁻¹	Time for source depletion, τ _D (sec)	Exposure duration > time for source depletion (YES/NO)
3.10E-01	3.39E+05	0.10	8.33E+01	1.29E-03	4.00E+02	#NUM!	NA	NA	1.36E+00	4.24E-07	1.10E+07	YES
Finite source indoor attenuation coefficient, <a> (unitless)	Mass limit bldg. conc., C _{building} (μg/m ³) 2.96E+00	Finite source bldg. conc., C _{building} (μg/m ³)	Final finite source bldg. conc., C _{building} (µg/m ³) 2.96E+00	Unit risk factor, URF (μg/m ³) ⁻¹ 2.6E-07	Reference conc., RfC (mg/m ³) 4.0E-02	-						
END]											

1 of 1

RISK-BASED SOIL CONCENTRATION CALCULATIONS:

INCREMENTAL RISK CALCULATIONS:


Indoor exposure soil conc., carcinogen (μg/kg)	Indoor exposure soil conc., noncarcinogen (μg/kg)	Risk-based indoor exposure soil conc., (µg/kg)	Soil saturation conc., C _{sat} (μg/kg)	Final indoor exposure soil conc., (μg/kg)	Incrementa risk from vapor intrusion to indoor air, carcinoger (unitless)	quotient from vapor intrusion to indoor air,
NA	NA	NA	1.02E+05	NA	3.2E-07	7.1E-02

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESEN	T)

Non-Residential 1,1,1-Trichloroethane Groundwater

DATA ENTRY SHEET

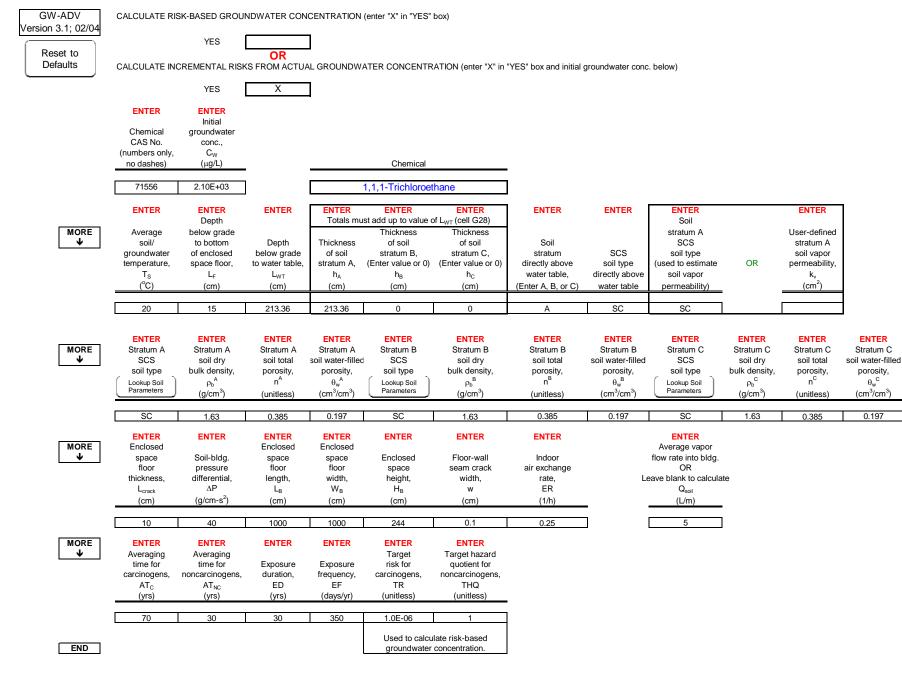
Diffusivity in air, D _a (cm ² /s)	Diffusivity in water, D _w (cm ² /s)	Henry's law constant at reference temperature, H (atm-m ³ /mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, ΔH _{v,b} (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _C (°K)	Organic carbon partition coefficient, K _{oc} (cm ³ /g)	Pure component water solubility, S (mg/L)	Unit risk factor, URF (µg/m ³) ⁻¹	Reference conc., RfC (mg/m ³)
6.48E-02	9.60E-06	1.72E-02	25	7,136	347.24	545.00	1.10E+02	1.29E+03	0.0E+00	5.0E+00
END										

1 of 1

Exposure duration, τ (sec)	Source- building separation, L _T (cm)	Stratum A soil air-filled porosity, θ_a^A (cm ³ /cm ³)	Stratum B soil air-filled porosity, θ _a ^B (cm ³ /cm ³)	$\begin{array}{c} \text{Stratum C} \\ \text{soil} \\ \text{air-filled} \\ \text{porosity,} \\ \theta_a{}^c \\ (\text{cm}^3/\text{cm}^3) \end{array}$	Stratum A effective total fluid saturation, S _{te} (cm ³ /cm ³)	Stratum A soil intrinsic permeability, k _i (cm ²)	Stratum A soil relative air permeability, k _{rg} (cm ²)	Stratum A soil effective vapor permeability, k _v (cm ²)	Thickness of capillary zone, L _{cz} (cm)	Total porosity in capillary zone, n _{cz} (cm ³ /cm ³)	Air-filled porosity in capillary zone, θ _{a,cz} (cm ³ /cm ³)	Water-filled porosity in capillary zone, $\theta_{w,cz}$ (cm ³ /cm ³)	Floor- wall seam perimeter, X _{crack} (cm)
7.88E+08	198.36	0.188	0.188	0.188	0.299	1.77E-09	0.837	1.48E-09	30.00	0.385	0.030	0.355	39,218
Bidg. ventilation rate, Q _{building} (cm ³ /s)	Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{v,TS}$ (cal/mol)	Henry's law constant at ave. groundwater temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. groundwater temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, µ _{TS} (g/cm-s)	Stratum A effective diffusion coefficient, D ^{eff} _A (cm ² /s)	Stratum B effective diffusion coefficient, D ^{eff} _B (cm ² /s)	Stratum C effective diffusion coefficient, D ^{eff} c (cm ² /s)	Capillary zone effective diffusion coefficient, D ^{eff} _{cz} (cm ² /s)	Total overall effective diffusion coefficient, D ^{eff} T (cm ² /s)	Diffusion path length, L _d (cm)
3.20E+06	6.93E+07	5.66E-05	15	7,776	1.38E-02	5.72E-01	1.78E-04	1.67E-03	0.00E+00	0.00E+00	7.37E-06	4.76E-05	198.36
Convection path length, L _p (cm)	Source vapor conc., C _{source} (μg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (μg/m ³)	Unit risk factor, URF (μg/m ³⁾⁻¹	Reference conc., RfC (mg/m ³)			
15	1.20E+06	0.10	8.33E+01	1.67E-03	3.92E+03	1.31E+55	4.33E-06	5.20E+00	NA	5.0E+00]		

RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS: INCRE

INCREMENTAL RISK CALCULATIONS:


Indoor exposure groundwater conc., carcinogen (μg/L)	Indoor exposure groundwater conc., noncarcinogen (μg/L)	Risk-based indoor exposure groundwater conc., (µg/L)	Pure component water solubility, S (μg/L)	Final indoor exposure groundwater conc., (µg/L)		Incremental risk from vapor intrusion to indoor air, carcinogen (unitless)	Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless)
NA	NA	NA	1.29E+06	NA	1	NA	7.1E-04

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

Residential 1,1,1-Trichloroethane Groundwater

DATA ENTRY SHEET

Diffusivity in air, D _a (cm ² /s)	Diffusivity in water, D _w (cm ² /s)	Henry's law constant at reference temperature, H (atm-m ³ /mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, ΔH _{v,b} (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _C (°K)	Organic carbon partition coefficient, K _{oc} (cm ³ /g)	Pure component water solubility, S (mg/L)	Unit risk factor, URF (µg/m ³) ⁻¹	Reference conc., RfC (mg/m ³)
6.48E-02	9.60E-06	1.72E-02	25	7,136	347.24	545.00	1.10E+02	1.29E+03	0.0E+00	5.0E+00
END										

1 of 1

Exposure duration, τ (sec)	Source- building separation, L _T (cm)	Stratum A soil air-filled porosity, θ_a^A (cm ³ /cm ³)	$\begin{array}{c} \text{Stratum B} \\ \text{soil} \\ \text{air-filled} \\ \text{porosity,} \\ \theta_a{}^B \\ (\text{cm}^3/\text{cm}^3) \end{array}$	$\begin{array}{c} \text{Stratum C} \\ \text{soil} \\ \text{air-filled} \\ \text{porosity,} \\ \theta_a^{\text{C}} \\ (\text{cm}^3/\text{cm}^3) \end{array}$	Stratum A effective total fluid saturation, S _{te} (cm ³ /cm ³)	Stratum A soil intrinsic permeability, k _i (cm ²)	Stratum A soil relative air permeability, k _{rg} (cm ²)	Stratum A soil effective vapor permeability, k _v (cm ²)	Thickness of capillary zone, L _{cz} (cm)	Total porosity in capillary zone, n _{cz} (cm ³ /cm ³)	Air-filled porosity in capillary zone, θ _{a,cz} (cm ³ /cm ³)	Water-filled porosity in capillary zone, $\theta_{w,cz}$ (cm ³ /cm ³)	Floor- wall seam perimeter, X _{crack} (cm)
9.46E+08	198.36	0.188	0.188	0.188	0.299	1.77E-09	0.837	1.48E-09	30.00	0.385	0.030	0.355	4,000
Bidg. ventilation rate, Q _{building} (cm ³ /s)	Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{v,TS}$ (cal/mol)	Henry's law constant at ave. groundwater temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. groundwater temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, µ _{TS} (g/cm-s)	Stratum A effective diffusion coefficient, D ^{eff} _A (cm ² /s)	Stratum B effective diffusion coefficient, D ^{eff} _B (cm ² /s)	Stratum C effective diffusion coefficient, D ^{eff} c (cm ² /s)	Capillary zone effective diffusion coefficient, D ^{eff} _{cz} (cm ² /s)	Total overall effective diffusion coefficient, D ^{eff} _T (cm ² /s)	Diffusion path length, L _d (cm)
1.69E+04	1.06E+06	3.77E-04	15	7,776	1.38E-02	5.72E-01	1.78E-04	1.67E-03	0.00E+00	0.00E+00	7.37E-06	4.76E-05	198.36
Convection path length, L _p (cm)	Source vapor conc., C _{source} (μg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (μg/m ³)	Unit risk factor, URF (μg/m ³⁾⁻¹	Reference conc., RfC (mg/m ³)	-		
15	1.20E+06	0.10	8.33E+01	1.67E-03	4.00E+02	#NUM!	1.50E-05	1.80E+01	NA	5.0E+00]		

RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS: INCREM

INCREMENTAL RISK CALCULATIONS:

Indoor exposure groundwater conc., carcinogen (μg/L)	Indoor exposure groundwater conc., noncarcinogen (μg/L)	Risk-based indoor exposure groundwater conc., (µg/L)	Pure component water solubility, S (μg/L)	Final indoor exposure groundwater conc., (µg/L)		Incremental risk from vapor intrusion to indoor air, carcinogen (unitless)	Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless)
NA	NA	NA	1.29E+06	NA] Г	NA	3.4E-03

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

Non-Residential 1,1,1-Trichloroethane Soil

SL-ADV Version 3.1; 02/04	CALCULATE RISK	-BASED SOIL CO	NCENTRATION (ente	er "X" in "YES" box)											
()		YES]											
Reset to Defaults	CALCULATE INCR	REMENTAL RISKS	OR FROM ACTUAL SOI	L CONCENTRATION (enter "X" in "YES"	box and initial soil co	onc. below)								
		YES	Х]											
	ENTER	ENTER Initial													
	Chemical	soil													
	CAS No. (numbers only,	conc., C _R													
	no dashes)	(µg/kg)			Chemical										
	71556	1.20E+01	-	11	1-Trichloroetha	ne	-								
			1				1								
MORE	ENTER	ENTER Depth	ENTER	ENTER Depth below	ENTER Totals mu	ENTER st add up to value of	ENTER f L _t (cell G28)	ENTER Soil		ENTER					
$\mathbf{+}$		below grade		grade to bottom		Thickness	Thickness	stratum A		User-defined					
	Average soil	to bottom of enclosed	Depth below grade to top	of contamination, (enter value of 0	Thickness of soil	of soil stratum B,	of soil stratum C,	SCS soil type		stratum A soil vapor					
	temperature,	space floor,	of contamination,	if value is unknown)	stratum A,	(Enter value or 0)		(used to estimate	OR	permeability,					
	Ts	LF	L,	L	h _A	h _B	h _C	soil vapor		k _v					
	(°C)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	permeability)	=	(cm²)					
	20	15	60.96	152.4	60.96	0	0	SC	ו						
								-							
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER
MORE	Stratum A	Stratum A	Stratum A	Stratum A	Stratum A	Stratum B	Stratum B	Stratum B	Stratum B	Stratum B	Stratum C	Stratum C	Stratum C	Stratum C	Stratum C
$\mathbf{+}$	SCS soil type	soil dry bulk density,	soil total porosity,	soil water-filled porosity,	soil organic carbon fraction,	SCS soil type	soil dry bulk density,	soil total porosity,	soil water-filled porosity,	soil organic carbon fraction,	SCS soil type	soil dry bulk density,	soil total porosity,	soil water-filled porosity,	soil organic carbon fraction,
	Lookup Soil	ρ _b ^A	n ^A	θ_w^A	f _{oc} ^A	Lookup Soil	ρ _b ^B	n ^B	θ _w ^B	f _{oc} ^B	Lookup Soil	ρ _b ^C	n ^C	θ _w ^C	f _{oc} ^C
	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	(unitless)	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	(unitless)	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	(unitless)
	SC	1.63	0.385	0.197	0.002	SC	1.63	0.385	0.197	0.002	SC	1.63	0.385	0.197	0.002
	30	1.63	0.365	0.197	0.002	30	1.63	0.365	0.197	0.002	30	1.03	0.365	0.197	0.002
MORE	ENTER Enclosed	ENTER	ENTER Enclosed	ENTER Enclosed	ENTER	ENTER	ENTER		ENTER Average vapor						
WORE V	space	Soil-bldg.	space	space	Enclosed	Floor-wall	Indoor		flow rate into bldo	L					
	floor	pressure	floor	floor	space	seam crack	air exchange		OR						
	thickness,	differential, ∆P	length,	width,	height,	width,	rate, ER	Le	ave blank to calcu	late					
	L _{crack} (cm)	(g/cm-s ²)	L _B (cm)	W _B (cm)	H _B (cm)	w (cm)	ER (1/h)		Q _{soil} (L/m)						
	(ciii)	(9	(ciii)	(ciii)	(ciii)	(cm)	(1/1)	-	(1)						
	10	40	15036.8	4572	670.56	0.1	0.25]	5)					
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER									
	Averaging	Averaging			Target	Target hazard									
	time for carcinogens,	time for noncarcinogens,	Exposure duration,	Exposure frequency,	risk for carcinogens,	quotient for noncarcinogens,									
	AT _c	AT _{NC}	ED	EF	TR	THQ									
	(yrs)	(yrs)	(yrs)	(days/yr)	(unitless)	(unitless)	=								
	70	25	25	250	1.0E-05	1]								
					Used to calc	ulate risk-based									
END					soil con	centration.	J								

Diffusivity in air, D _a (cm ² /s)	Diffusivity in water, D _w (cm ² /s)	Henry's law constant at reference temperature, H (atm-m ³ /mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, ΔH _{v,b} (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _C (°K)	Organic carbon partition coefficient, K _{oc} (cm ³ /g)	Pure component water solubility, S (mg/L)	Unit risk factor, URF (μg/m ³⁾⁻¹	Reference conc., RfC (mg/m ³)	Physical state at soil temperature, (S,L,G)
								1 0 0 5 0 0			· · · · · · · · · · · · · · · · · · ·
6.48E-02	9.60E-06	1.72E-02	25	7,136	347.24	545.00	1.10E+02	1.29E+03	0.0E+00	5.0E+00	L

Exposure duration, τ (sec)	Source- building separation, L _T (cm)	$\begin{array}{c} \text{Stratum A} \\ \text{soil} \\ \text{air-filled} \\ \text{porosity,} \\ \theta_a^A \\ (\text{cm}^3/\text{cm}^3) \end{array}$	Stratum B soil air-filled porosity, θ_a^B (cm ³ /cm ³)	Stratum C soil air-filled porosity, θ_a^C (cm ³ /cm ³)	Stratum A effective total fluid saturation, S _{te} (cm ³ /cm ³)	Stratum A soil intrinsic permeability, k _i (cm ²)	Stratum A soil relative air permeability, k _{rg} (cm ²)	Stratum A soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Initial soil concentration used, C _R (µg/kg)	Bldg. ventilation rate, Q _{building} (cm ³ /s)	-
7.88E+08	45.96	0.188	0.188	0.188	0.299	1.77E-09	0.837	1.48E-09	39,218	1.20E+01	3.20E+06	
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, μ _{Ts} (g/cm-s)	Stratum A effective diffusion coefficient, D ^{eff} A (cm ² /s)	Stratum B effective diffusion coefficient, D ^{eff} B (cm ² /s)	Stratum C effective diffusion coefficient, D ^{eff} c (cm ² /s)	Total overall effective diffusion coefficient, D ^{eff} T (cm ² /s)	Diffusion path length, L _d (cm)	Convection path length, L _p (cm)
6.93E+07	5.66E-05	15	7,776	1.38E-02	5.72E-01	1.78E-04	1.67E-03	0.00E+00	0.00E+00	1.67E-03	45.96	15
Soil-water partition coefficient, K _d (cm ³ /g)	Source vapor conc., C _{source} (µg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^t) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (µg/m ³)	Finite source β term (unitless)	Finite source ψ term (sec) ⁻¹	Time for source depletion, ^T D (sec)	Exposure duration > time for source depletion (YES/NO)
2.20E-01	1.69E+04	0.10	8.33E+01	1.67E-03	3.92E+03	1.31E+55	NA	NA	3.13E+01	6.83E-07	9.41E+07	YES
Finite source indoor attenuation coefficient, $<\alpha>$ (unitless)	Mass limit bldg. conc., C _{building} (μg/m ³)	Finite source bldg. conc., C _{building} (µg/m ³)	Final finite source bldg. conc., C _{building} (µg/m ³)	Unit risk factor, URF (μg/m ³) ⁻¹	Reference conc., RfC (mg/m ³)	-						
NA	4.91E-02	NA	4.91E-02	NA	5.0E+00]						
END]					_						

RISK-BASED SOIL CONCENTRATION CALCULATIONS:

INCREMENTAL RISK CALCULATIONS:

Indoor exposure soil conc., carcinogen (μg/kg)	Indoor exposure soil conc., noncarcinogen (μg/kg)	Risk-based indoor exposure soil conc., (µg/kg)	Soil saturation conc., C _{sat} (μg/kg)	Final indoor exposure soil conc., (µg/kg)	Incremental risk from vapor intrusion to indoor air, carcinogen (unitless)	Hazard quotient from vapor intrusion to indoor air, noncarcinoger (unitless)
NA	NA	NA	5.25E+05	NA	NA	6.7E-06

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

Residential 1,1,1-Trichloroethane Soil

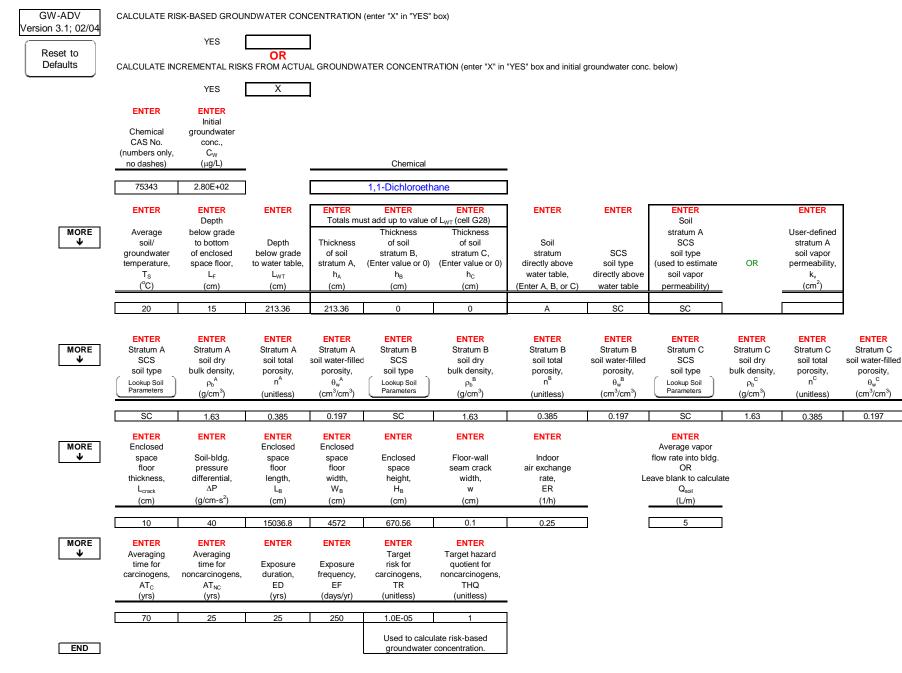
SL-ADV Version 3.1; 02/04	CALCULATE RISK	-BASED SOIL COM	NCENTRATION (ente	er "X" in "YES" box)											
()		YES]											
Reset to Defaults	CALCULATE INCR	REMENTAL RISKS	OR FROM ACTUAL SOI	L CONCENTRATION (enter "X" in "YES"	box and initial soil co	onc. below)								
		YES	х]											
	ENTER	ENTER Initial													
	Chemical	soil													
	CAS No. (numbers only,	conc., C _R													
	no dashes)	(µg/kg)			Chemical										
	71556	1.20E+01	•	1,1,	1-Trichloroetha	ine	- 1								
		·					.								
MORE	ENTER	ENTER Depth	ENTER	ENTER Depth below	ENTER Totals mu	ENTER st add up to value of	ENTER	ENTER Soil		ENTER					
		below grade		grade to bottom	Totalo Ind	Thickness	Thickness	stratum A		User-defined					
	Average	to bottom	Depth below	of contamination,	Thickness	of soil	of soil	SCS		stratum A					
	soil	of enclosed	grade to top	(enter value of 0	of soil	stratum B,	stratum C,	soil type	OR	soil vapor					
	temperature, T _S	space floor, L _F	of contamination, L	if value is unknown) L _b	stratum A, h _A	(Enter value or 0) h _B	(Enter value or 0) h _c	(used to estimate soil vapor	UR	permeability, k _v					
	(°C)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	permeability)	_	(cm ²)					
		15		450.4	00.00				-						
	20	15	60.96	152.4	60.96	0	0	SC							
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER
MORE	Stratum A	Stratum A	Stratum A	Stratum A	Stratum A	Stratum B	Stratum B	Stratum B	Stratum B	Stratum B	Stratum C	Stratum C	Stratum C	Stratum C	Stratum C
$\mathbf{+}$	SCS	soil dry	soil total	soil water-filled	soil organic	SCS	soil dry	soil total	soil water-filled	soil organic	SCS	soil dry	soil total	soil water-filled	soil organic
	soil type	bulk density,	porosity, n ^A	porosity, θ _w ^A	carbon fraction,	soil type	bulk density,	porosity, n ^B	porosity, θ _w ^B	carbon fraction,	soil type	bulk density, ρ _b ^C	porosity, n ^c	porosity, θw ^C	carbon fraction, f _{oc} ^C
	Lookup Soil Parameters	ρ _ь ^A (g/cm ³)	(unitless)	e _w (cm ³ /cm ³)	f _{oc} ^A (unitless)	Lookup Soil Parameters	ρ _ь (g/cm ³)	(unitless)	θ _w (cm ³ /cm ³)	f _{oc} ^B (unitless)	Lookup Soil Parameters	ρ _b (g/cm ³)	(unitless)	(cm ³ /cm ³)	T _{oc} (unitless)
	<u> </u>	(3 -)					(0 - 7				<u>`</u>				(41111000)
	SC	1.63	0.385	0.197	0.002	SC	1.63	0.385	0.197	0.002	SC	1.63	0.385	0.197	0.002
MORE	ENTER Enclosed	ENTER	ENTER Enclosed	ENTER Enclosed	ENTER	ENTER	ENTER		ENTER Average vapor						
WORE V	space	Soil-bldg.	space	space	Enclosed	Floor-wall	Indoor	1	flow rate into bldo						
	floor	pressure	floor	floor	space	seam crack	air exchange		OR						
	thickness,	differential,	length,	width,	height,	width,	rate,	Lea	ave blank to calcu	late					
	L _{crack} (cm)	ΔP (g/cm-s ²)	L _B (cm)	W _B (cm)	H _B (cm)	w (cm)	ER (1/h)		Q _{soil} (L/m)						
	(only	(3.1.1.7)	(011)	(011)	(011)	(011)	()		(2.11)	l i					
	10	40	1000	1000	244	0.1	0.25		5						
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER									
	Averaging	Averaging	_	_	Target	Target hazard									
	time for carcinogens,	time for noncarcinogens,	Exposure duration,	Exposure frequency,	risk for carcinogens,	quotient for noncarcinogens,									
	AT _c	AT _{NC}	ED	EF	TR	THQ									
	(yrs)	(yrs)	(yrs)	(days/yr)	(unitless)	(unitless)	=								
	70	30	30	350	1.0E-06	1	1								
						ulate risk-based]								
END						centration.	J								

Diffusivity in air, D _a (cm ² /s)	Diffusivity in water, D _w (cm ² /s)	Henry's law constant at reference temperature, H (atm-m ³ /mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, ΔH _{v,b} (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _C (°K)	Organic carbon partition coefficient, K _{oc} (cm ³ /g)	Pure component water solubility, S (mg/L)	Unit risk factor, URF (μg/m ³⁾⁻¹	Reference conc., RfC (mg/m ³)	Physical state at soil temperature, (S,L,G)
								1 0 0 5 0 0			· · · · · · · · · · · · · · · · · · ·
6.48E-02	9.60E-06	1.72E-02	25	7,136	347.24	545.00	1.10E+02	1.29E+03	0.0E+00	5.0E+00	L

Exposure duration, τ (sec)	Source- building separation, L _T (cm)	Stratum A soil air-filled porosity, θ_a^A (cm ³ /cm ³)	Stratum B soil air-filled porosity, θ_a^B (cm ³ /cm ³)	Stratum C soil air-filled porosity, θ_a^C (cm ³ /cm ³)	Stratum A effective total fluid saturation, S _{te} (cm ³ /cm ³)	Stratum A soil intrinsic permeability, k _i (cm ²)	Stratum A soil relative air permeability, k _{rg} (cm ²)	Stratum A soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Initial soil concentration used, C _R (μg/kg)	Bldg. ventilation rate, Q _{building} (cm ³ /s)	-
9.46E+08	45.96	0.188	0.188	0.188	0.299	1.77E-09	0.837	1.48E-09	4,000	1.20E+01	1.69E+04	
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, µ _{TS} (g/cm-s)	Stratum A effective diffusion coefficient, D ^{eff} A (cm ² /s)	Stratum B effective diffusion coefficient, D ^{eff} s (cm ² /s)	Stratum C effective diffusion coefficient, D ^{eff} c (cm ² /s)	Total overall effective diffusion coefficient, D ^{eff} T (cm ² /s)	Diffusion path length, L _d (cm)	Convection path length, L _p (cm)
1.06E+06	3.77E-04	15	7,776	1.38E-02	5.72E-01	1.78E-04	1.67E-03	0.00E+00	0.00E+00	1.67E-03	45.96	15
Soil-water partition coefficient, K _d (cm ³ /g)	Source vapor conc., C _{source} (µg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^I) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (µg/m ³)	Finite source β term (unitless)	Finite source ψ term (sec) ⁻¹	Time for source depletion, ^{τ_D (sec)}	Exposure duration > time for source depletion (YES/NO)
2.20E-01	1.69E+04	0.10	8.33E+01	1.67E-03	4.00E+02	#NUM!	NA	NA	1.46E+00	6.83E-07	7.16E+06	YES
Finite source indoor attenuation coefficient, $<\alpha>$ (unitless)	Mass limit bldg. conc., C _{building} (μg/m ³)	Finite source bldg. conc., C _{building} (µg/m ³)	Final finite source bldg. conc., C _{building} (µg/m ³)	Unit risk factor, URF (μg/m ³) ⁻¹	Reference conc., RfC (mg/m ³)	-						
NA	1.18E-01	NA	1.18E-01	NA	5.0E+00]						
END]											

RISK-BASED SOIL CONCENTRATION CALCULATIONS:

INCREMENTAL RISK CALCULATIONS:


Indoor exposure soil conc., carcinogen	Indoor exposure soil conc., noncarcinogen	Risk-based indoor exposure soil conc.,	Soil saturation conc., C _{sat}	Final indoor exposure soil conc.,	Incremental risk from vapor intrusion to indoor air, carcinogen	Hazard quotient from vapor intrusion to indoor air, noncarcinogen
carcinogen (μg/kg)	noncarcinogen (μg/kg)	conc., (μg/kg)	C _{sat} (μg/kg)	conc., (μg/kg)	(unitless)	noncarcinogen (unitless)
NA	NA	NA	5.25E+05	NA	NA	2.3E-05

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT	USE RESULTS IF ERRORS ARE PRESENT)

Non-Residential 1,1-Dichloroethane Groundwater

DATA ENTRY SHEET

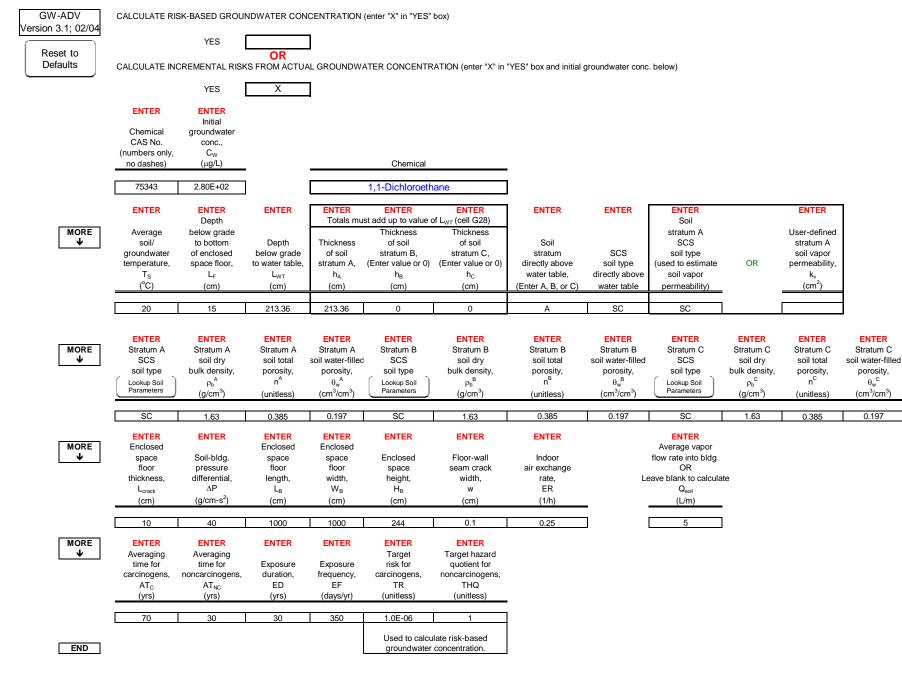
Diffusivity in air, D _a (cm ² /s)	Diffusivity in water, D _w (cm ² /s)	Henry's law constant at reference temperature, H (atm-m ³ /mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, ΔH _{v,b} (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _C (°K)	Organic carbon partition coefficient, K _{oc} (cm ³ /g)	Pure component water solubility, S (mg/L)	Unit risk factor, URF (µg/m ³) ⁻¹	Reference conc., RfC (mg/m ³)
8.36E-02	1.06E-05	5.62E-03	25	6,895	330.55	523.00	3.16E+01	5.04E+03	1.6E-06	0.0E+00
END										

1 of 1

Exposure duration, τ (sec)	Source- building separation, L _T (cm)	Stratum A soil air-filled porosity, θ_a^A (cm ³ /cm ³)	$\begin{array}{c} \text{Stratum B} \\ \text{soil} \\ \text{air-filled} \\ \text{porosity,} \\ \theta_a{}^B \\ (\text{cm}^3/\text{cm}^3) \end{array}$	$\begin{array}{c} \text{Stratum C} \\ \text{soil} \\ \text{air-filled} \\ \text{porosity,} \\ \theta_a^{\text{C}} \\ (\text{cm}^3/\text{cm}^3) \end{array}$	Stratum A effective total fluid saturation, S _{te} (cm ³ /cm ³)	Stratum A soil intrinsic permeability, k _i (cm ²)	Stratum A soil relative air permeability, k _{rg} (cm ²)	Stratum A soil effective vapor permeability, k _v (cm ²)	Thickness of capillary zone, L _{cz} (cm)	Total porosity in capillary zone, n _{cz} (cm ³ /cm ³)	Air-filled porosity in capillary zone, θ _{a,cz} (cm ³ /cm ³)	Water-filled porosity in capillary zone, $\theta_{w,cz}$ (cm ³ /cm ³)	Floor- wall seam perimeter, X _{crack} (cm)
7.88E+08	198.36	0.188	0.188	0.188	0.299	1.77E-09	0.837	1.48E-09	30.00	0.385	0.030	0.355	39,218
Bidg. ventilation rate, Q _{buliding} (cm ³ /s)	Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. groundwater temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. groundwater temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. groundwater temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, µ _{TS} (g/cm-s)	Stratum A effective diffusion coefficient, D ^{eff} _A (cm ² /s)	Stratum B effective diffusion coefficient, D ^{eff} _B (cm ² /s)	Stratum C effective diffusion coefficient, D ^{eff} c (cm ² /s)	Capillary zone effective diffusion coefficient, D ^{eff} _{cz} (cm ² /s)	Total overall effective diffusion coefficient, D ^{eff} T (cm ² /s)	Diffusion path length, L _d (cm)
3.20E+06	6.93E+07	5.66E-05	15	7,339	4.55E-03	1.89E-01	1.78E-04	2.16E-03	0.00E+00	0.00E+00	1.69E-05	1.07E-04	198.36
Convection path length, L _p (cm)	Source vapor conc., C _{source} (μg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ¹) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (μg/m ³)	Unit risk factor, URF (μg/m ³) ⁻¹	Reference conc., RfC (mg/m ³)			
15	5.30E+04	0.10	8.33E+01	2.16E-03	3.92E+03	4.89E+42	8.06E-06	4.27E-01	1.6E-06	NA]		

RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS:

INCREMENTAL RISK CALCULATIONS:


Indoor	Indoor	Risk-based	Pure	Final		Incremental risk from	Hazard quotient
exposure	exposure	indoor	component	indoor		vapor	from vapor
groundwater	groundwater	exposure	water	exposure		intrusion to	intrusion to
conc.,	conc.,	groundwater	solubility,	groundwater		indoor air,	indoor air,
carcinogen	noncarcinogen	conc.,	S	conc.,		carcinogen	noncarcinogen
(μg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)		(unitless)	(unitless)
NA	NA	NA	5.04E+06	NA]	1.7E-07	NA

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

Residential 1,1-Dichloroethane Groundwater

DATA ENTRY SHEET

Diffusivity in air, D _a (cm ² /s)	Diffusivity in water, D _w (cm ² /s)	Henry's law constant at reference temperature, H (atm-m ³ /mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, ΔH _{v,b} (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _C (°K)	Organic carbon partition coefficient, K _{oc} (cm ³ /g)	Pure component water solubility, S (mg/L)	Unit risk factor, URF (µg/m ³) ⁻¹	Reference conc., RfC (mg/m ³)
8.36E-02	1.06E-05	5.62E-03	25	6,895	330.55	523.00	3.16E+01	5.04E+03	1.6E-06	0.0E+00
END										

1 of 1

Exposure duration, τ (sec)	Source- building separation, L _T (cm)	$\begin{array}{c} \text{Stratum A} \\ \text{soil} \\ \text{air-filled} \\ \text{porosity,} \\ \theta_a{}^A \\ (\text{cm}^3/\text{cm}^3) \end{array}$	$\begin{array}{c} \text{Stratum B} \\ \text{soil} \\ \text{air-filled} \\ \text{porosity,} \\ \theta_a{}^B \\ (\text{cm}^3/\text{cm}^3) \end{array}$	$\begin{array}{c} \text{Stratum C} \\ \text{soil} \\ \text{air-filled} \\ \text{porosity,} \\ \theta_a^{\text{C}} \\ (\text{cm}^3/\text{cm}^3) \end{array}$	Stratum A effective total fluid saturation, S _{te} (cm ³ /cm ³)	Stratum A soil intrinsic permeability, k _i (cm ²)	Stratum A soil relative air permeability, k _{rg} (cm ²)	Stratum A soil effective vapor permeability, k _v (cm ²)	Thickness of capillary zone, L _{cz} (cm)	Total porosity in capillary zone, n _{cz} (cm ³ /cm ³)	Air-filled porosity in capillary zone, θ _{a,cz} (cm ³ /cm ³)	Water-filled porosity in capillary zone, $\theta_{w,cz}$ (cm ³ /cm ³)	Floor- wall seam perimeter, X _{crack} (cm)
9.46E+08	198.36	0.188	0.188	0.188	0.299	1.77E-09	0.837	1.48E-09	30.00	0.385	0.030	0.355	4,000
Bidg. ventilation rate, Q _{building} (cm ³ /s)	Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. groundwater temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. groundwater temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. groundwater temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, µ _{TS} (g/cm-s)	Stratum A effective diffusion coefficient, D ^{eff} _A (cm ² /s)	Stratum B effective diffusion coefficient, D ^{eff} _B (cm ² /s)	Stratum C effective diffusion coefficient, D ^{eff} c (cm ² /s)	Capillary zone effective diffusion coefficient, D ^{eff} _{cz} (cm ² /s)	Total overall effective diffusion coefficient, D ^{eff} _T (cm ² /s)	Diffusion path length, L _d (cm)
1.69E+04	1.06E+06	3.77E-04	15	7,339	4.55E-03	1.89E-01	1.78E-04	2.16E-03	0.00E+00	0.00E+00	1.69E-05	1.07E-04	198.36
Convection path length, L _p (cm)	Source vapor conc., C _{source} (μg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (μg/m ³)	Unit risk factor, URF (μg/m ³) ⁻¹	Reference conc., RfC (mg/m ³)			
15	5.30E+04	0.10	8.33E+01	2.16E-03	4.00E+02	#NUM!	3.35E-05	1.77E+00	1.6E-06	NA]		

RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS:

INCREMENTAL RISK CALCULATIONS:

Indoor exposure groundwater conc., carcinogen (μg/L)	Indoor exposure groundwater conc., noncarcinogen (μg/L)	Risk-based indoor exposure groundwater conc., (μg/L)	Pure component water solubility, S (μg/L)	Final indoor exposure groundwater conc., (µg/L)		Incremental risk from vapor intrusion to indoor air, carcinogen (unitless)	Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless)
NA	NA	NA	5.04E+06	NA]	1.2E-06	NA

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

Non-Residential 1,1-Dichloroethane Soil

SL-ADV Version 3.1; 02/04	CALCULATE RISK	-BASED SOIL COI	NCENTRATION (ente	er "X" in "YES" box)											
()		YES]											
Reset to Defaults	CALCULATE INCR	EMENTAL RISKS	OR FROM ACTUAL SOI	IL CONCENTRATION	enter "X" in "YES"	box and initial soil co	onc. below)								
		YES	Х]											
	ENTER	ENTER Initial													
	Chemical	soil													
	CAS No.	conc.,													
	(numbers only, no dashes)	C _R (µg/kg)			Chemical										
	75343	7.90E+00	-				•								
	75343	7.90E+00	1	1,1	I-Dichloroethar	le	1								
MORE	ENTER	ENTER Depth	ENTER	ENTER Depth below	ENTER Totals mu	ENTER st add up to value of	ENTER L ₁ (cell G28)	ENTER Soil		ENTER					
\mathbf{v}		below grade		grade to bottom		Thickness	Thickness	stratum A		User-defined					
	Average soil	to bottom	Depth below	of contamination, (enter value of 0	Thickness of soil	of soil stratum B,	of soil stratum C,	SCS soil type		stratum A soil vapor					
	temperature,	of enclosed space floor,	grade to top of contamination,	(enter value or 0 if value is unknown)	stratum A,	(Enter value or 0)		(used to estimate	OR	permeability,					
	Ts	LF	L	L _b	h _A	h _B	hc	soil vapor		k _v					
	(°C)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	permeability)	=	(cm²)					
	20	15	60.96	152.4	60.96	0	0	SC	٦						
	•				-		•	•							
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER
MORE	Stratum A	Stratum A	Stratum A	Stratum A	Stratum A	Stratum B	Stratum B	Stratum B	Stratum B	Stratum B	Stratum C	Stratum C	Stratum C	Stratum C	Stratum C
$\mathbf{+}$	SCS soil type	soil dry bulk density,	soil total porosity,	soil water-filled porosity,	soil organic carbon fraction,	SCS soil type	soil dry bulk density,	soil total porosity,	soil water-filled porosity,	soil organic carbon fraction,	SCS soil type	soil dry bulk density,	soil total porosity,	soil water-filled porosity,	soil organic carbon fraction,
	Lookup Soil	ρ _b ^A	n ^A	θ _w ^A	f _{oc} ^A	Lookup Soil	ρ _b ^B	n ^B	θ _w ^B	f _{oc} ^B	Lookup Soil	ρ _b ^C	n ^C	θw ^C	f _{oc} ^C
	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	(unitless)	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	(unitless)	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	(unitless)
	SC	1.63	0.385	0.197	0.002	SC	1.63	0.385	0.197	0.002	SC	1.63	0.385	0.197	0.002
		•						0.000		0.002	00	1.00	0.000	0.101	0.002
MORE	ENTER Enclosed	ENTER	ENTER Enclosed	ENTER Enclosed	ENTER	ENTER	ENTER		ENTER Average vapor						
₩ UNL	space	Soil-bldg.	space	space	Enclosed	Floor-wall	Indoor		flow rate into bldg	I.					
	floor	pressure	floor	floor	space	seam crack	air exchange		OR						
	thickness, L _{crack}	differential, ∆P	length, L _B	width, W _B	height, H _B	width, w	rate, ER	Le	ave blank to calcu Q _{soil}	late					
	(cm)	(g/cm-s ²)	(cm)	(cm)	(cm)	(cm)	(1/h)		(L/m)						
				1			1	•		•					
	10	40	15036.8	4572	670.56	0.1	0.25	1	5	1					
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER									
	Averaging	Averaging	Eveneure	Evenoure	Target	Target hazard									
	time for carcinogens,	time for noncarcinogens,	Exposure duration,	Exposure frequency,	risk for carcinogens,	quotient for noncarcinogens,									
	ATc	AT _{NC}	ED	EF	TR	THQ									
	(yrs)	(yrs)	(yrs)	(days/yr)	(unitless)	(unitless)	=								
	70	25	25	250	1.0E-05	1	1								
						ulate risk-based centration.									
END															

Diffusivity in air, D _a (cm ² /s)	Diffusivity in water, D _w (cm ² /s)	Henry's law constant at reference temperature, H (atm-m ³ /mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, ΔH _{v,b} (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _C (°K)	Organic carbon partition coefficient, K _{oc} (cm ³ /g)	Pure component water solubility, S (mg/L)	Unit risk factor, URF (μg/m ³⁾⁻¹	Reference conc., RfC (mg/m ³)	Physical state at soil temperature, (S,L,G)
0.005.00	4.005.05	F 00F 00	05	0.005	220 55	500.00	0.405.04	E 04E 02	4.05.00	0.05.00	
8.36E-02	1.06E-05	5.62E-03	25	6,895	330.55	523.00	3.16E+01	5.04E+03	1.6E-06	0.0E+00	L

T.88E+0845.960.1880.1880.1880.2991.77E-090.8371.48E-0939.2187.90E+003.20E+06Area of enclosedCrackEnthalpy of vaporization at area belowHany's law vaporization at ave. soilVapor ave. soilStratum ave. soilStratum ave. soilStratum ave. soilTotal overallgrade, (cm ²)grade, (cm ²)temperature, (catmo)temperature, temperature, temperature, temperature, temperature, temperature, temperature, (cm ²) M_{175} M_{1	Exposure duration, τ (sec)	Source- building separation, L _T (cm)	Stratum A soil air-filled porosity, θ_a^A (cm ³ /cm ³)	Stratum B soil air-filled porosity, θ_a^B (cm ³ /cm ³)	Stratum C soil air-filled porosity, θ_a^C (cm ³ /cm ³)	Stratum A effective total fluid saturation, S _{te} (cm ³ /cm ³)	Stratum A soil intrinsic permeability, k _i (cm ²)	Stratum A soil relative air permeability, k _{rg} (cm ²)	Stratum A soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Initial soil concentration used, C _R (µg/kg)	Bldg. ventilation rate, Q _{building} (cm ³ /s)	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	7.88E+08	45.96	0.188	0.188	0.188	0.299	1.77E-09	0.837	1.48E-09	39,218	7.90E+00	3.20E+06	
Soli-waterSourceAverage vaporCrack effectiveInfinite sourceExponent of equivalentInfinite sourceExposureTime for duration > time for duration > time for duration > time for duration > time forTime for duration > time for duration duration duration duration duration > time for duration duration du	enclosed space below grade, A _B	to-total area ratio, η	depth below grade, Z _{crack}	vaporization at ave. soil temperature, ΔH _{v,TS}	constant at ave. soil temperature, H _{TS}	constant at ave. soil temperature, H' _{⊤s}	viscosity at ave. soil temperature, µ _{TS}	A effective diffusion coefficient, D ^{eff} _A	B effective diffusion coefficient, D ^{eff} _B	C effective diffusion coefficient, D ^{eff} c	overall effective diffusion coefficient, D ^{eff} T	path length, L _d	path length, L _p
Soli-waterSourceAverage vaporCrack effectiveInfinite sourceExponent of equivalentInfinite sourceExposureTime for duration > time for duration > time for duration > time for duration > time forTime for duration > time for duration duration duration duration duration > time for duration duration du	6.93E+07	5.66E-05	15	7.339	4.55E-03	1.89E-01	1.78E-04	2.16E-03	0.00E+00	0.00E+00	2.16E-03	45.96	15
Finite sourceFiniteFinal indoorindoorlimit sourcefiniteUnit timitattenuationbldg.bldg.source bldg.riskcoefficient, conc.,conc.,conc.,< α >C buildingC buildingURFRfC RfC(unitless)(μ g/m ³)(μ g/m ³)(μ g/m ³)NA3.23E-02NA3.23E-021.6E-06NA	partition coefficient, K _d	vapor conc., C _{source}	radius, r _{crack}	Average vapor flow rate into bldg., Q _{soil}	effective diffusion coefficient, D ^{crack}	crack, A _{crack}	equivalent foundation Peclet number, exp(Pe ^t)	source indoor attenuation coefficient, α	source bldg. conc., C _{building}	source β term	source ψ term	source depletion, τ_D	duration > time for source depletion
sourceMassFiniteFinalindoorlimitsourcefiniteUnitattenuationbldg.bldg.source bldg.riskReferencecoefficient,conc.,conc.,conc.,factor,conc., $< \alpha >$ C _{building} C _{building} URFRfC(unitless)($\mu g/m^3$)($\mu g/m^3$)($\mu g/m^3$)-1(mg/m^3)NA3.23E-02NA3.23E-021.6E-06NA	6.32E-02	7.26E+03	0.10	8.33E+01	2.16E-03	3.92E+03	4.89E+42	NA	NA	4.01E+01	5.77E-07	1.42E+08	YES
	source indoor attenuation coefficient, <a> (unitless)	limit bldg. conc., C _{building} (μg/m ³)	source bldg. conc., C _{building} (μg/m ³)	finite source bldg. conc., C _{building} (μg/m ³)	risk factor, URF (μg/m ³) ⁻¹	conc., RfC (mg/m ³)	-						
	END]		0.202 02	1.02.00	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	_						

RISK-BASED SOIL CONCENTRATION CALCULATIONS:

INCREMENTAL RISK CALCULATIONS:

Indoor exposure soil conc., carcinogen	Indoor exposure soil conc., noncarcinogen	Risk-based indoor exposure soil conc.,	Soil saturation conc., C _{sat}	Final indoor exposure soil conc.,		Incremental risk from vapor intrusion to indoor air, carcinogen	Hazard quotient from vapor intrusion to indoor air, noncarcinogen
(μg/kg)	(μg/kg)	(μg/kg)	(μg/kg)	(μg/kg)	_	(unitless)	(unitless)
NA	NA	NA	1.04E+06	NA	ז ר	1.3E-08	NA

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESEN	T)

Residential 1,1-Dichloroethane Soil

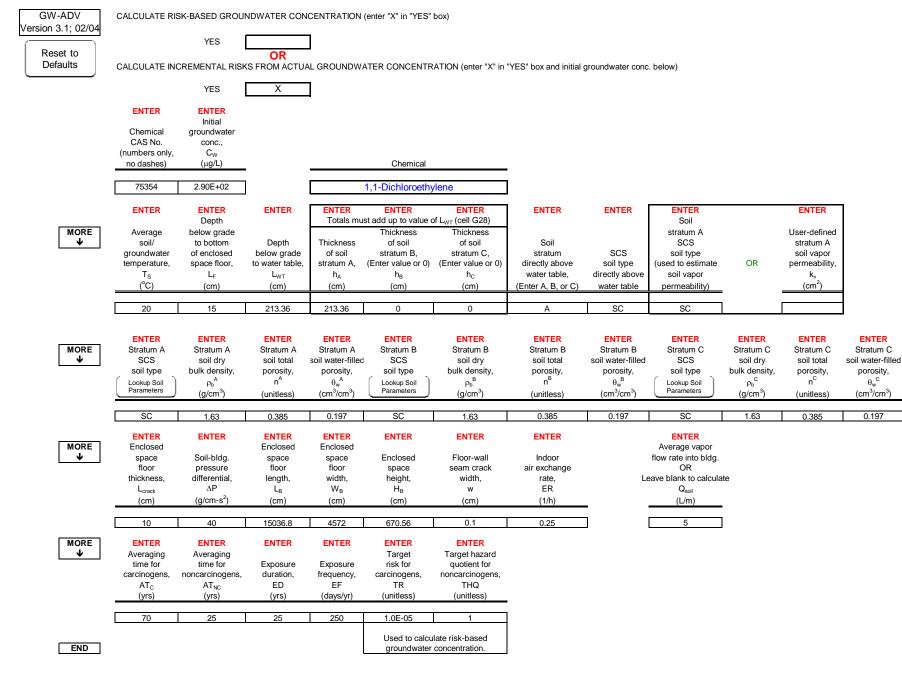
SL-ADV Version 3.1; 02/04	CALCULATE RISK	-BASED SOIL COM	NCENTRATION (ente	er "X" in "YES" box)											
()		YES]											
Reset to Defaults	CALCULATE INCR	EMENTAL RISKS	OR FROM ACTUAL SOI	L CONCENTRATION	enter "X" in "YES"	box and initial soil co	onc. below)								
		YES	х]											
	ENTER	ENTER Initial													
	Chemical	soil													
	CAS No.	conc.,													
	(numbers only, no dashes)	C _R (µg/kg)			Chemical										
			-		Chemical		-								
	75343	7.90E+00]	1,1	I-Dichloroethar	1e]								
MORE	ENTER	ENTER Depth	ENTER	ENTER Depth below	ENTER Totals mu	ENTER st add up to value of	ENTER L, (cell G28)	ENTER Soil		ENTER					
$\mathbf{+}$		below grade		grade to bottom		Thickness	Thickness	stratum A		User-defined					
	Average	to bottom	Depth below	of contamination,	Thickness	of soil	of soil	SCS		stratum A					
	soil temperature,	of enclosed space floor,	grade to top of contamination,	(enter value of 0 if value is unknown)	of soil stratum A,	stratum B, (Enter value or 0)	stratum C, (Enter value or 0)	soil type (used to estimate	OR	soil vapor permeability,					
	T _s	L _F	L	L _b	h _A	h _B	h _c	soil vapor	U.V.	k _v					
	(°C)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	permeability)	=	(cm ²)					
	20	15	60.96	152.4	60.96	0	0	SC	ר						
	20	10	00.00	102.1	00.00	0	0								
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER
MORE	Stratum A	Stratum A	Stratum A	Stratum A	Stratum A	Stratum B	Stratum B	Stratum B	Stratum B	Stratum B	Stratum C	Stratum C	Stratum C	Stratum C	Stratum C
¥	SCS soil type	soil dry	soil total	soil water-filled	soil organic carbon fraction,	SCS	soil dry	soil total	soil water-filled	soil organic	SCS	soil dry	soil total	soil water-filled	soil organic
	Lookup Soil	bulk density, ρ _b ^A	porosity, n ^A	porosity, θ _w ^A	foc ^A	Lookup Soil	bulk density,	porosity, n ^B	porosity, θ _w ^B	carbon fraction, foc. ^B	Lookup Soil	bulk density, ρ _b ^C	porosity, n ^C	porosity, θ _w ^C	carbon fraction, foc C
	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	(unitless)	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	(unitless)	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	(unitless)
							T					1			
	SC	1.63	0.385	0.197	0.002	SC	1.63	0.385	0.197	0.002	SC	1.63	0.385	0.197	0.002
MORE	ENTER Enclosed	ENTER	ENTER Enclosed	ENTER Enclosed	ENTER	ENTER	ENTER		ENTER Average vapor						
	space	Soil-bldg.	space	space	Enclosed	Floor-wall	Indoor		flow rate into bldg	I.					
	floor	pressure	floor	floor	space	seam crack	air exchange		OR						
	thickness,	differential, ∆P	length,	width, W _B	height,	width, w	rate, ER	Lei	ave blank to calcu	late					
	L _{crack} (cm)	(g/cm-s ²)	L _B (cm)	(cm)	H _B (cm)	(cm)	(1/h)		Q _{soil} (L/m)						
								-							
	10	40	1000	1000	244	0.1	0.25	J	5	J					
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER									
	Averaging	Averaging	_	_	Target	Target hazard									
	time for carcinogens,	time for noncarcinogens,	Exposure duration,	Exposure frequency,	risk for carcinogens,	quotient for noncarcinogens,									
	AT _c	AT _{NC}	ED	EF	TR	THQ									
	(yrs)	(yrs)	(yrs)	(days/yr)	(unitless)	(unitless)	=								
	70	30	30	350	1.0E-06	1]								
					Used to calc	ulate risk-based									
END					soil con	centration.	J								

Diffusivity in air, D _a (cm ² /s)	Diffusivity in water, D _w (cm ² /s)	Henry's law constant at reference temperature, H (atm-m ³ /mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, ΔH _{v,b} (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _C (°K)	Organic carbon partition coefficient, K _{oc} (cm ³ /g)	Pure component water solubility, S (mg/L)	Unit risk factor, URF (μg/m ³⁾⁻¹	Reference conc., RfC (mg/m ³)	Physical state at soil temperature, (S,L,G)
0.005.00	4.005.05	F 00F 00	05	0.005	220 55	500.00	0.405.04	E 04E 02	4.05.00	0.05.00	
8.36E-02	1.06E-05	5.62E-03	25	6,895	330.55	523.00	3.16E+01	5.04E+03	1.6E-06	0.0E+00	L

Exposure duration, τ (sec)	Source- building separation, L _T (cm)	Stratum A soil air-filled porosity, θ_a^A (cm ³ /cm ³)	Stratum B soil air-filled porosity, θ_a^B (cm ³ /cm ³)	Stratum C soil air-filled porosity, θ_a^C (cm ³ /cm ³)	Stratum A effective total fluid saturation, S _{te} (cm ³ /cm ³)	Stratum A soil intrinsic permeability, k _i (cm ²)	Stratum A soil relative air permeability, k _{rg} (cm ²)	Stratum A soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Initial soil concentration used, C _R (μg/kg)	Bldg. ventilation rate, Q _{building} (cm ³ /s)	-
9.46E+08	45.96	0.188	0.188	0.188	0.299	1.77E-09	0.837	1.48E-09	4,000	7.90E+00	1.69E+04	
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, μ _{TS} (g/cm-s)	Stratum A effective diffusion coefficient, D ^{eff} A (cm ² /s)	Stratum B effective diffusion coefficient, D ^{eff} s (cm ² /s)	Stratum C effective diffusion coefficient, D ^{eff} c (cm ² /s)	Total overall effective diffusion coefficient, D ^{eff} T (cm ² /s)	Diffusion path length, L _d (cm)	Convection path length, L _p (cm)
1.06E+06	3.77E-04	15	7,339	4.55E-03	1.89E-01	1.78E-04	2.16E-03	0.00E+00	0.00E+00	2.16E-03	45.96	15
Soil-water partition coefficient, K _d (cm ³ /g)	Source vapor conc., C _{source} (μg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^I) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (µg/m ³)	Finite source β term (unitless)	Finite source ψ term (sec) ⁻¹	Time for source depletion, ^τ _D (sec)	Exposure duration > time for source depletion (YES/NO)
6.32E-02	7.26E+03	0.10	8.33E+01	2.16E-03	4.00E+02	#NUM!	NA	NA	1.60E+00	5.77E-07	8.94E+06	YES
Finite source indoor attenuation coefficient, $<\alpha>$ (unitless)	Mass limit bldg. conc., C _{building} (μg/m ³) 7.79E-02	Finite source bldg. conc., C _{building} (μg/m ³)	Final finite source bldg. conc., C _{building} (µg/m ³) 7.79E-02	Unit risk factor, URF (μg/m ³) ⁻¹ 1.6E-06	Reference conc., RfC (mg/m ³) NA	-						
	1.19L-02		1.192-02		11/7							
END	1											

RISK-BASED SOIL CONCENTRATION CALCULATIONS:

INCREMENTAL RISK CALCULATIONS:


Indoor exposure	Indoor exposure	Risk-based indoor	Soil	Final indoor		Incremental risk from vapor	Hazard quotient from vapor
soil conc., carcinogen	soil conc., noncarcinogen	exposure soil conc.,	saturation conc., C _{sat}	exposure soil conc.,		intrusion to indoor air, carcinogen	intrusion to indoor air, noncarcinogen
(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	-	(unitless)	(unitless)
NA	NA	NA	1.04E+06	NA] [5.1E-08	NA

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT US	SE RESULTS IF ERRORS ARE PRESENT)

Non-Residential 1,1-Dichloroethylene Groundwater

DATA ENTRY SHEET

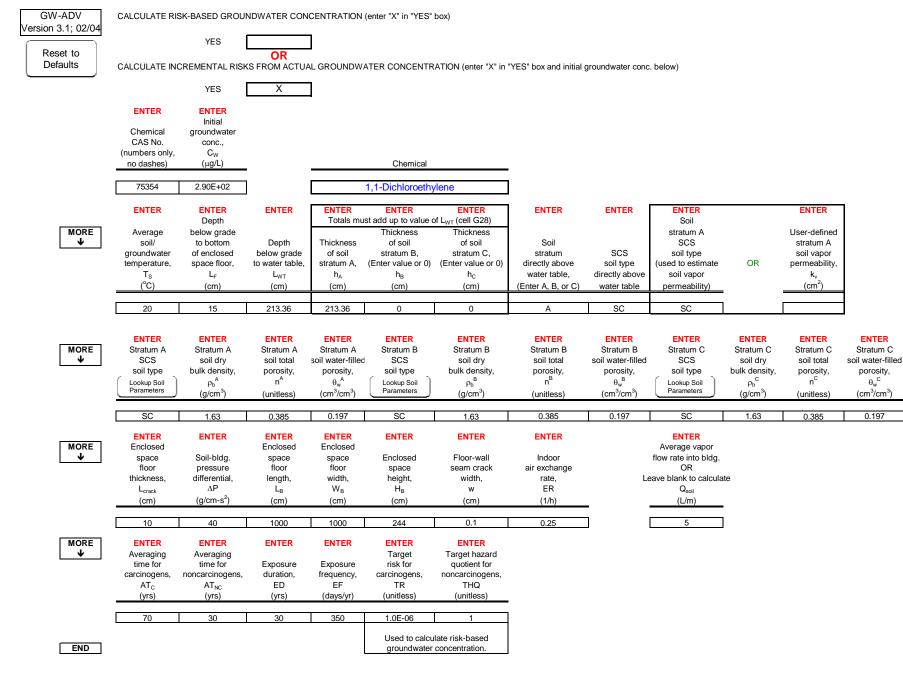
Diffusivity in air, D _a (cm ² /s)	Diffusivity in water, D _w (cm ² /s)	Henry's law constant at reference temperature, H (atm-m ³ /mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, ΔH _{v,b} (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _c (°K)	Organic carbon partition coefficient, K _{oc} (cm ³ /g)	Pure component water solubility, S (mg/L)	Unit risk factor, URF (µg/m ³) ⁻¹	Reference conc., RfC (mg/m ³)
8.63E-02	1.10E-05	2.61E-02	25	6,247	304.75	576.05	5.89E+01	2.42E+03	0.0E+00	2.0E-01
END										

1 of 1

Exposure duration, τ (sec)	Source- building separation, L _T (cm)	Stratum A soil air-filled porosity, θ_a^A (cm ³ /cm ³)	Stratum B soil air-filled porosity, θ _a ^B (cm ³ /cm ³)	$\begin{array}{c} \text{Stratum C} \\ \text{soil} \\ \text{air-filled} \\ \text{porosity,} \\ \theta_a^{\ C} \\ (\text{cm}^3/\text{cm}^3) \end{array}$	Stratum A effective total fluid saturation, S _{te} (cm ³ /cm ³)	Stratum A soil intrinsic permeability, k _i (cm ²)	Stratum A soil relative air permeability, k _{rg} (cm ²)	Stratum A soil effective vapor permeability, k _v (cm ²)	Thickness of capillary zone, L _{cz} (cm)	Total porosity in capillary zone, n _{cz} (cm ³ /cm ³)	Air-filled porosity in capillary zone, θ _{a,cz} (cm ³ /cm ³)	Water-filled porosity in capillary zone, $\theta_{w,cz}$ (cm ³ /cm ³)	Floor- wall seam perimeter, X _{crack} (cm)
7.88E+08	198.36	0.188	0.188	0.188	0.299	1.77E-09	0.837	1.48E-09	30.00	0.385	0.030	0.355	39,218
Bidg. ventilation rate, Q _{buliding} (cm ³ /s)	Area of enclosed space below grade, A_B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. groundwater temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. groundwater temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. groundwater temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, µ _{TS} (g/cm-s)	Stratum A effective diffusion coefficient, D ^{eff} _A (cm ² /s)	Stratum B effective diffusion coefficient, D ^{eff} _B (cm ² /s)	Stratum C effective diffusion coefficient, D ^{eff} c (cm ² /s)	Capillary zone effective diffusion coefficient, D ^{eff} _{cz} (cm ² /s)	Total overall effective diffusion coefficient, D ^{eff} T (cm ² /s)	Diffusion path length, L _d (cm)
3.20E+06	6.93E+07	5.66E-05	15	6,326	2.18E-02	9.04E-01	1.78E-04	2.23E-03	0.00E+00	0.00E+00	7.63E-06	4.95E-05	198.36
Convection path length, L _p (cm)	Source vapor conc., C _{source} (μg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (μg/m ³)	Unit risk factor, URF (μg/m ³⁾⁻¹	Reference conc., RfC (mg/m ³)	-		
15	2.62E+05	0.10	8.33E+01	2.23E-03	3.92E+03	2.48E+41	4.48E-06	1.17E+00	NA	2.0E-01]		

RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS: INCREMEN

INCREMENTAL RISK CALCULATIONS:


Indoor exposure groundwater conc., carcinogen (μg/L)	Indoor exposure groundwater conc., noncarcinogen (μg/L)	Risk-based indoor exposure groundwater conc., (µg/L)	Pure component water solubility, S (µg/L)	Final indoor exposure groundwater conc., (µg/L)		Incremental risk from vapor intrusion to indoor air, carcinogen (unitless)	Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless)
NA	NA	NA	2.42E+06	NA	1	NA	4.0E-03

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

Residential 1,1-Dichloroethylene Groundwater

DATA ENTRY SHEET

Diffusivity in air, D _a (cm ² /s)	Diffusivity in water, D _w (cm ² /s)	Henry's law constant at reference temperature, H (atm-m ³ /mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, ΔH _{v,b} (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _c (°K)	Organic carbon partition coefficient, K _{oc} (cm ³ /g)	Pure component water solubility, S (mg/L)	Unit risk factor, URF (µg/m ³) ⁻¹	Reference conc., RfC (mg/m ³)
8.63E-02	1.10E-05	2.61E-02	25	6,247	304.75	576.05	5.89E+01	2.42E+03	0.0E+00	2.0E-01
END										

1 of 1

Exposure duration, τ (sec)	Source- building separation, L _T (cm)	Stratum A soil air-filled porosity, θ_a^A (cm ³ /cm ³)	Stratum B soil air-filled porosity, θ _a ^B (cm ³ /cm ³)	$\begin{array}{c} \text{Stratum C} \\ \text{soil} \\ \text{air-filled} \\ \text{porosity,} \\ \theta_a^{\ C} \\ (\text{cm}^3/\text{cm}^3) \end{array}$	Stratum A effective total fluid saturation, S _{te} (cm ³ /cm ³)	Stratum A soil intrinsic permeability, k _i (cm ²)	Stratum A soil relative air permeability, k _{rg} (cm ²)	Stratum A soil effective vapor permeability, k _v (cm ²)	Thickness of capillary zone, L _{cz} (cm)	Total porosity in capillary zone, n _{cz} (cm ³ /cm ³)	Air-filled porosity in capillary zone, θ _{a,cz} (cm ³ /cm ³)	Water-filled porosity in capillary zone, $\theta_{w,cz}$ (cm ³ /cm ³)	Floor- wall seam perimeter, X _{crack} (cm)
9.46E+08	198.36	0.188	0.188	0.188	0.299	1.77E-09	0.837	1.48E-09	30.00	0.385	0.030	0.355	4,000
Bidg. ventilation rate, Q _{buliding} (cm ³ /s)	Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. groundwater temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. groundwater temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. groundwater temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, µ _{TS} (g/cm-s)	Stratum A effective diffusion coefficient, D ^{eff} _A (cm ² /s)	Stratum B effective diffusion coefficient, D ^{eff} _B (cm ² /s)	Stratum C effective diffusion coefficient, D ^{eff} c (cm ² /s)	Capillary zone effective diffusion coefficient, D ^{eff} _{cz} (cm ² /s)	Total overall effective diffusion coefficient, D ^{eff} T (cm ² /s)	Diffusion path length, L _d (cm)
1.69E+04	1.06E+06	3.77E-04	15	6,326	2.18E-02	9.04E-01	1.78E-04	2.23E-03	0.00E+00	0.00E+00	7.63E-06	4.95E-05	198.36
Convection path length, L _p (cm)	Source vapor conc., C _{source} (μg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (μg/m ³)	Unit risk factor, URF (μg/m ³⁾⁻¹	Reference conc., RfC (mg/m ³)	- -		
15	2.62E+05	0.10	8.33E+01	2.23E-03	4.00E+02	#NUM!	1.56E-05	4.08E+00	NA	2.0E-01]		

RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS: INCREM

INCREMENTAL RISK CALCULATIONS:

Indoor exposure groundwater conc., carcinogen (μg/L)	Indoor exposure groundwater conc., noncarcinogen (μg/L)	Risk-based indoor exposure groundwater conc., (µg/L)	Pure component water solubility, S (μg/L)	Final indoor exposure groundwater conc., (µg/L)		Incremental risk from vapor intrusion to indoor air, carcinogen (unitless)	Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless)
NA	NA	NA	2.42E+06	NA]	NA	2.0E-02

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

Non-Residential 1,1-Dichloroethylene Soil

SL-ADV Version 3.1; 02/04	CALCULATE RISK	-BASED SOIL COI	NCENTRATION (ente	er "X" in "YES" box)											
()		YES]											
Reset to Defaults	CALCULATE INCR	EMENTAL RISKS	OR FROM ACTUAL SOI	L CONCENTRATION	enter "X" in "YES"	box and initial soil co	onc. below)								
		YES	х]											
	ENTER	ENTER Initial													
	Chemical	soil													
	CAS No.	conc.,													
	(numbers only, no dashes)	C _R (µg/kg)			Chemical										
			-				-								
	75354	8.00E+01	J	1,1	-Dichloroethyle	ne	J								
MORE	ENTER	ENTER Depth	ENTER	ENTER Depth below	ENTER Totals mu	ENTER st add up to value of	ENTER f L _t (cell G28)	ENTER Soil		ENTER					
4		below grade		grade to bottom		Thickness	Thickness	stratum A		User-defined					
	Average soil	to bottom of enclosed	Depth below grade to top	of contamination, (enter value of 0	Thickness of soil	of soil stratum B,	of soil stratum C,	SCS soil type		stratum A soil vapor					
	temperature,	space floor,	of contamination,	if value is unknown)	stratum A,	(Enter value or 0)		(used to estimate	OR	permeability,					
	Ts	L _F	L	Lb	h _A	h _B	h _C	soil vapor		k _v					
	(°C)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	permeability)	=	(cm²)					
	20	15	60.96	152.4	60.96	0	0	SC	٦						
		•	•	•		•									
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER
MORE	Stratum A	Stratum A	Stratum A	Stratum A	Stratum A	Stratum B	Stratum B	Stratum B	Stratum B	Stratum B	Stratum C	Stratum C	Stratum C	Stratum C	Stratum C
¥	SCS soil type	soil dry bulk density,	soil total porosity,	soil water-filled porosity,	soil organic carbon fraction,	SCS soil type	soil dry bulk density,	soil total porosity,	soil water-filled porosity,	soil organic carbon fraction,	SCS soil type	soil dry bulk density,	soil total porosity,	soil water-filled porosity,	soil organic carbon fraction,
	Lookup Soil	ρ _b ^A	n ^A	θ _w ^A	f _{oc} ^A	Lookup Soil	ρ _b ^B	n ^B	θ _w ^B	f _{oc} ^B	Lookup Soil		n ^C	θ _w ^C	f _{oc} ^C
	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	(unitless)	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	(unitless)	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	(unitless)
			0.005	0.407	0.000			0.005	0.407	0.000			0.005		
	SC	1.63	0.385	0.197	0.002	SC	1.63	0.385	0.197	0.002	SC	1.63	0.385	0.197	0.002
MORE	ENTER Enclosed	ENTER	ENTER Enclosed	ENTER Enclosed	ENTER	ENTER	ENTER		ENTER Average vapor						
	space	Soil-bldg.	space	space	Enclosed	Floor-wall	Indoor		flow rate into bldg	ı.					
	floor	pressure	floor	floor	space	seam crack	air exchange		OR						
	thickness, L _{crack}	differential, ∆P	length, L _B	width, W _B	height, H _B	width, w	rate, ER	Le	ave blank to calcu Q _{soil}	late					
	(cm)	(g/cm-s ²)	(cm)	(cm)	(cm)	(cm)	(1/h)		(L/m)						
		•			•	•		•							
	10	40	15036.8	4572	670.56	0.1	0.25]	5]					
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER									
	Averaging	Averaging	_	_	Target	Target hazard									
	time for carcinogens,	time for noncarcinogens,	Exposure duration,	Exposure frequency,	risk for carcinogens,	quotient for noncarcinogens,									
	AT _c	AT _{NC}	ED	EF	TR	THQ									
	(yrs)	(yrs)	(yrs)	(days/yr)	(unitless)	(unitless)	=								
	70	25	25	250	1.0E-05	1	1								
						ulate risk-based									
END					soil con	centration.	J								

Diffusivity in air, D _a (cm ² /s)	Diffusivity in water, D _w (cm ² /s)	Henry's law constant at reference temperature, H (atm-m ³ /mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, ΔH _{v,b} (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _C (°K)	Organic carbon partition coefficient, K _{oc} (cm ³ /g)	Pure component water solubility, S (mg/L)	Unit risk factor, URF (μg/m ³⁾⁻¹	Reference conc., RfC (mg/m ³)	Physical state at soil temperature, (S,L,G)
8.63E-02	1.10E-05	2.61E-02	25	6,247	304.75	576.05	5.89E+01	2.42E+03	0.0E+00	2.0E-01	L

Exposure duration, τ (sec)	Source- building separation, L _T (cm)	Stratum A soil air-filled porosity, θ_a^A (cm ³ /cm ³)	Stratum B soil air-filled porosity, θ_a^B (cm ³ /cm ³)	Stratum C soil air-filled porosity, θ_a^C (cm ³ /cm ³)	Stratum A effective total fluid saturation, S _{te} (cm ³ /cm ³)	Stratum A soil intrinsic permeability, k _i (cm ²)	Stratum A soil relative air permeability, k _{rg} (cm ²)	Stratum A soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Initial soil concentration used, C _R (μg/kg)	Bldg. ventilation rate, Q _{building} (cm ³ /s)	-
7.88E+08	45.96	0.188	0.188	0.188	0.299	1.77E-09	0.837	1.48E-09	39,218	8.00E+01	3.20E+06	
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, μ _{TS} (g/cm-s)	Stratum A effective diffusion coefficient, D ^{eff} A (cm ² /s)	Stratum B effective diffusion coefficient, D ^{eff} _B (cm ² /s)	Stratum C effective diffusion coefficient, D ^{eff} c (cm ² /s)	Total overall effective diffusion coefficient, D ^{eff} T (cm ² /s)	Diffusion path length, L _d (cm)	Convection path length, L _p (cm)
6.93E+07	5.66E-05	15	6,326	2.18E-02	9.04E-01	1.78E-04	2.23E-03	0.00E+00	0.00E+00	2.23E-03	45.96	15
Soil-water partition coefficient, K _d (cm ³ /g)	Source vapor conc., C _{source} (µg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{orack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe') (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (µg/m ³)	Finite source β term (unitless)	Finite source ψ term (sec) ⁻¹	Time for source depletion, τ _D (sec)	Exposure duration > time for source depletion (YES/NO)
1.18E-01	2.11E+05	0.10	8.33E+01	2.23E-03	3.92E+03	2.48E+41	NA	NA	4.14E+01	1.71E-06	4.94E+07	YES
Finite source indoor attenuation coefficient, $<\alpha>$ (unitless)	Mass limit bldg. conc., C _{building} (μg/m ³)	Finite source bldg. conc., C _{building} (µg/m ³)	Final finite source bldg. conc., C _{buliding} (µg/m ³)	Unit risk factor, URF (µg/m ³) ⁻¹	Reference conc., RfC (mg/m ³)	-						
NA	3.28E-01	NA	3.28E-01	NA	2.0E-01							
END]											

RISK-BASED SOIL CONCENTRATION CALCULATIONS:

INCREMENTAL RISK CALCULATIONS:

Indoor exposure soil conc., carcinogen (μg/kg)	Indoor exposure soil conc., noncarcinogen (μg/kg)	Risk-based indoor exposure soil conc., (µg/kg)	Soil saturation conc., C _{sat} (μg/kg)	Final indoor exposure soil conc., (µg/kg)	Incremental risk from vapor intrusion to indoor air, carcinogen (unitless)	Hazard quotient from vapor intrusion to indoor air, noncarcinoger (unitless)
NA	NA	NA	8.30E+05	NA	NA	1.1E-03

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESEN	T)

Residential 1,1-Dichloroethylene Soil

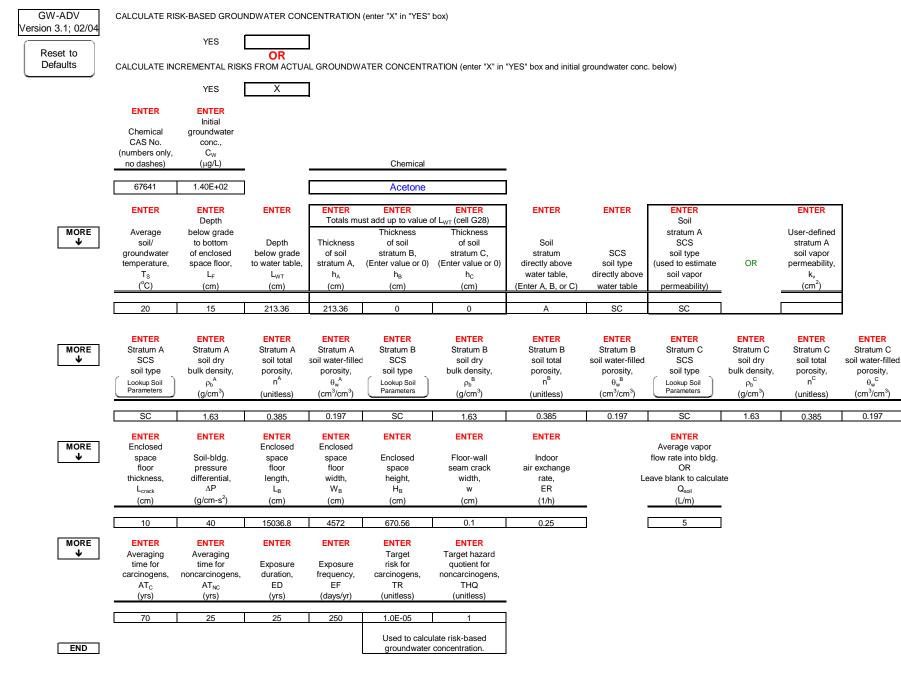
SL-ADV Version 3.1; 02/04	CALCULATE RISK	K-BASED SOIL COI	NCENTRATION (ent	er "X" in "YES" box)											
()		YES]											
Reset to Defaults	CALCULATE INCR	REMENTAL RISKS	OR FROM ACTUAL SO	L CONCENTRATION	enter "X" in "YES"	box and initial soil c	onc. below)								
		YES	Х]											
	ENTER	ENTER Initial													
	Chemical	soil													
	CAS No.	conc.,													
	(numbers only, no dashes)	C _R (µg/kg)			Chemical										
			-				-								
	75354	8.00E+01	J		Dichloroethyle										
MORE	ENTER	ENTER Depth	ENTER	ENTER Depth below	ENTER Totals mu	ENTER st add up to value of		ENTER Soil		ENTER					
¥		below grade		grade to bottom		Thickness	Thickness	stratum A		User-defined					
	Average soil	to bottom of enclosed	Depth below grade to top	of contamination, (enter value of 0	Thickness of soil	of soil stratum B,	of soil stratum C,	SCS soil type		stratum A soil vapor					
	temperature,	space floor,	of contamination,	if value is unknown)	stratum A,	(Enter value or 0)		(used to estimate	OR	permeability,					
	Ts	L _F	L	L	h _A	h _B	hc	soil vapor		k _v					
	(°C)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	permeability)	-	(cm ²)					
	20	15	60.96	152.4	60.96	0	0	SC	1						
		•	•	•											
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER
MORE	Stratum A	Stratum A	Stratum A	Stratum A	Stratum A	Stratum B	Stratum B	Stratum B	Stratum B	Stratum B	Stratum C	Stratum C	Stratum C	Stratum C	Stratum C
$\mathbf{+}$	SCS soil type	soil dry bulk density,	soil total porosity,	soil water-filled porosity,	soil organic carbon fraction,	SCS soil type	soil dry bulk density,	soil total porosity,	soil water-filled porosity,	soil organic carbon fraction,	SCS soil type	soil dry bulk density,	soil total porosity,	soil water-filled porosity,	soil organic carbon fraction,
	Lookup Soil	ρ _b ^A	n ^A	θ _w ^A	f _{oc} ^A	Lookup Soil	ρ _b ^B	n ^B	θ _w ^B	f _{oc} ^B	Lookup Soil	ρ _b ^C	n ^C	θ _w ^C	f _{oc} ^C
	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	(unitless)	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	(unitless)	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	(unitless)
	-														
	SC	1.63	0.385	0.197	0.002	SC	1.63	0.385	0.197	0.002	SC	1.63	0.385	0.197	0.002
MORE	ENTER Enclosed	ENTER	ENTER Enclosed	ENTER Enclosed	ENTER	ENTER	ENTER		ENTER Average vapor						
₩0112	space	Soil-bldg.	space	space	Enclosed	Floor-wall	Indoor		flow rate into bldg	ı.					
	floor	pressure	floor	floor	space	seam crack	air exchange		OR						
	thickness,	differential, ∆P	length,	width,	height,	width,	rate,	Lei	ave blank to calcu	late					
	L _{crack} (cm)	(g/cm-s ²)	L _B (cm)	W _B (cm)	H _B (cm)	w (cm)	ER (1/h)		Q _{soil} (L/m)						
	(ciii)	(9,011,0.)	(cili)	(cm)	(cili)	(cm)	(1/1)	•	(12/11)						
	10	40	1000	1000	244	0.1	0.25]	5)					
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER									
	Averaging	Averaging	_	-	Target	Target hazard									
	time for carcinogens,	time for noncarcinogens,	Exposure duration,	Exposure frequency,	risk for carcinogens,	quotient for noncarcinogens,									
	AT _C	AT _{NC}	ED	EF	TR	THQ									
	(yrs)	(yrs)	(yrs)	(days/yr)	(unitless)	(unitless)	=								
	70	30	30	350	1.0E-06	1]								
END						ulate risk-based centration.									
					00110011		1								

Diffusivity in air, D _a (cm ² /s)	Diffusivity in water, D _w (cm ² /s)	Henry's law constant at reference temperature, H (atm-m ³ /mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, ΔH _{v,b} (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _C (°K)	Organic carbon partition coefficient, K _{oc} (cm ³ /g)	Pure component water solubility, S (mg/L)	Unit risk factor, URF (μg/m ³⁾⁻¹	Reference conc., RfC (mg/m ³)	Physical state at soil temperature, (S,L,G)
8.63E-02	1.10E-05	2.61E-02	25	6,247	304.75	576.05	5.89E+01	2.42E+03	0.0E+00	2.0E-01	L

Exposure duration, τ (sec)	Source- building separation, L _T (cm)	$\begin{array}{c} \text{Stratum A} \\ \text{soil} \\ \text{air-filled} \\ \text{porosity}, \\ \theta_a^A \\ (\text{cm}^3/\text{cm}^3) \end{array}$	Stratum B soil air-filled porosity, θ_a^B (cm ³ /cm ³)	Stratum C soil air-filled porosity, θ_a^C (cm ³ /cm ³)	Stratum A effective total fluid saturation, S _{te} (cm ³ /cm ³)	Stratum A soil intrinsic permeability, k _i (cm ²)	Stratum A soil relative air permeability, k _{rg} (cm ²)	Stratum A soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Initial soil concentration used, C _R (µg/kg)	Bldg. ventilation rate, Q _{building} (cm ³ /s)	-
9.46E+08	45.96	0.188	0.188	0.188	0.299	1.77E-09	0.837	1.48E-09	4,000	8.00E+01	1.69E+04]
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, µ _{TS} (g/cm-s)	Stratum A effective diffusion coefficient, D ^{eff} A (cm ² /s)	Stratum B effective diffusion coefficient, D ^{eff} 8 (cm ² /s)	Stratum C effective diffusion coefficient, D ^{eff} c (cm ² /s)	Total overall effective diffusion coefficient, D ^{eff} T (cm ² /s)	Diffusion path length, L _d (cm)	Convection path length, L _p (cm)
1.06E+06	3.77E-04	15	6,326	2.18E-02	9.04E-01	1.78E-04	2.23E-03	0.00E+00	0.00E+00	2.23E-03	45.96	15
Soil-water partition coefficient, K _d (cm ³ /g)	Source vapor conc., C _{source} (µg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{orack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ¹) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (µg/m ³)	Finite source β term (unitless)	Finite source ψ term (sec) ⁻¹	Time for source depletion, ^τ _D (sec)	Exposure duration > time for source depletion (YES/NO)
1.18E-01	2.11E+05	0.10	8.33E+01	2.23E-03	4.00E+02	#NUM!	NA	NA	1.62E+00	1.71E-06	3.04E+06	YES
Finite source indoor attenuation coefficient, $<\alpha>$ (unitless)	Mass limit bldg. conc., C _{building} (μg/m ³)	Finite source bldg. conc., C _{building} (µg/m ³)	Final finite source bldg. conc., C _{buliding} (µg/m ³)	Unit risk factor, URF (µg/m ³⁾⁻¹	Reference conc., RfC (mg/m ³)	-						
NA	7.88E-01	NA	7.88E-01	NA	2.0E-01							
END]											

RISK-BASED SOIL CONCENTRATION CALCULATIONS:

INCREMENTAL RISK CALCULATIONS:


Indoor exposure soil conc., carcinogen	Indoor exposure soil conc., noncarcinogen	Risk-based indoor exposure soil conc.,	Soil saturation conc., C _{sat}	Final indoor exposure soil conc.,	Incremental risk from vapor intrusion to indoor air, carcinogen	Hazard quotient from vapor intrusion to indoor air, noncarcinogen
(μg/kg)	μg/kg)	(μg/kg)	(μg/kg)	(μg/kg)	(unitless)	(unitless)
NA	NA	NA	8.30E+05	NA	NA	3.8E-03

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS AF	RE PRESENT)

Non-Residential Acetone Groundwater

DATA ENTRY SHEET

Diffusivity in air, D _a (cm ² /s)	Diffusivity in water, D _w (cm ² /s)	Henry's law constant at reference temperature, H (atm-m ³ /mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, ΔH _{v,b} (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _C (°K)	Organic carbon partition coefficient, K _{oc} (cm ³ /g)	Pure component water solubility, S (mg/L)	Unit risk factor, URF (µg/m ³) ⁻¹	Reference conc., RfC (mg/m ³)
1.06E-01	1.15E-05	3.50E-05	25	6,955	329.20	508.10	5.75E-01	1.00E+06	0.0E+00	3.1E+01
END										

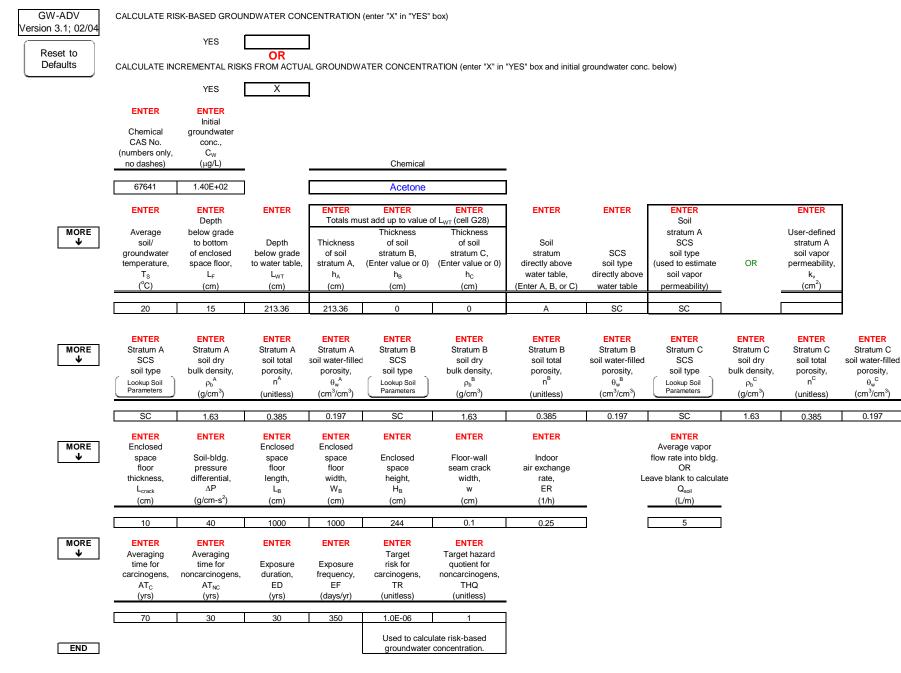
1 of 1

Exposure duration, τ (sec)	Source- building separation, L _T (cm)	Stratum A soil air-filled porosity, θ_a^A (cm ³ /cm ³)	$\begin{array}{c} \text{Stratum B} \\ \text{soil} \\ \text{air-filled} \\ \text{porosity,} \\ \theta_a{}^B \\ (\text{cm}^3/\text{cm}^3) \end{array}$	$\begin{array}{c} \text{Stratum C} \\ \text{soil} \\ \text{air-filled} \\ \text{porosity,} \\ \theta_a^{\text{C}} \\ (\text{cm}^3/\text{cm}^3) \end{array}$	Stratum A effective total fluid saturation, S _{te} (cm ³ /cm ³)	Stratum A soil intrinsic permeability, k _i (cm ²)	Stratum A soil relative air permeability, k _{rg} (cm ²)	Stratum A soil effective vapor permeability, k _v (cm ²)	Thickness of capillary zone, L _{cz} (cm)	Total porosity in capillary zone, n _{cz} (cm ³ /cm ³)	Air-filled porosity in capillary zone, θ _{a,cz} (cm ³ /cm ³)	Water-filled porosity in capillary zone, $\theta_{w,cz}$ (cm ³ /cm ³)	Floor- wall seam perimeter, X _{crack} (cm)
7.88E+08	198.36	0.188	0.188	0.188	0.299	1.77E-09	0.837	1.48E-09	30.00	0.385	0.030	0.355	39,218
Bidg. ventilation rate, Q _{building} (cm ³ /s)	Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. groundwater temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. groundwater temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. groundwater temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, µ _{TS} (g/cm-s)	Stratum A effective diffusion coefficient, D ^{eff} _A (cm ² /s)	Stratum B effective diffusion coefficient, D ^{eff} _B (cm ² /s)	Stratum C effective diffusion coefficient, D ^{eff} c (cm ² /s)	Capillary zone effective diffusion coefficient, D ^{eff} _{cz} (cm ² /s)	Total overall effective diffusion coefficient, D ^{eff} T (cm ² /s)	Diffusion path length, L _d (cm)
3.20E+06	6.93E+07	5.66E-05	15	7,435	2.83E-05	1.17E-03	1.78E-04	3.03E-03	0.00E+00	0.00E+00	2.10E-03	2.84E-03	198.36
Convection path length, L _p (cm)	Source vapor conc., C _{source} (μg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ¹) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (μg/m ³)	Unit risk factor, URF (μg/m ³) ⁻¹	Reference conc., RfC (mg/m ³)			
15	1.64E+02	0.10	8.33E+01	3.03E-03	3.92E+03	2.81E+30	2.40E-05	3.95E-03	NA	3.1E+01]		

RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS: INCREMENTAL

INCREMENTAL RISK CALCULATIONS:

onc., cinogen	conc., noncarcinogen	exposure groundwater conc.,	water solubility, S	exposure groundwater conc.,	intrusion to indoor air, carcinogen	intrusion to indoor air, noncarcinogen
cinogen μg/L)	noncarcinogen (μg/L)	conc., (μg/L)	S (μg/L)	conc., (μg/L)	carcinogen (unitless)	noncarcinogen (unitless)
 NA	NA	NA	1.00E+09	NA	NA	8.7E-08


MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

MESSAGE: Risk/HQ or risk-based groundwater concentration is based on a route-to-route extrapolation.

Residential Acetone Groundwater

DATA ENTRY SHEET

Diffusivity in air, D _a (cm ² /s)	Diffusivity in water, D _w (cm ² /s)	Henry's law constant at reference temperature, H (atm-m ³ /mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, ΔH _{v,b} (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _C (°K)	Organic carbon partition coefficient, K _{oc} (cm ³ /g)	Pure component water solubility, S (mg/L)	Unit risk factor, URF (µg/m ³) ⁻¹	Reference conc., RfC (mg/m ³)
1.06E-01	1.15E-05	3.50E-05	25	6,955	329.20	508.10	5.75E-01	1.00E+06	0.0E+00	3.1E+01
END										

1 of 1

Exposure duration, τ (sec)	Source- building separation, L _T (cm)	Stratum A soil air-filled porosity, θ_a^A (cm ³ /cm ³)	Stratum B soil air-filled porosity, $\theta_a^{\ B}$ (cm ³ /cm ³)	$\begin{array}{c} \text{Stratum C} \\ \text{soil} \\ \text{air-filled} \\ \text{porosity,} \\ \theta_a^{\ C} \\ (\text{cm}^3/\text{cm}^3) \end{array}$	Stratum A effective total fluid saturation, S _{te} (cm ³ /cm ³)	Stratum A soil intrinsic permeability, k _i (cm ²)	Stratum A soil relative air permeability, k _{rg} (cm ²)	Stratum A soil effective vapor permeability, k _v (cm ²)	Thickness of capillary zone, L _{cz} (cm)	Total porosity in capillary zone, n _{cz} (cm ³ /cm ³)	Air-filled porosity in capillary zone, θ _{a,cz} (cm ³ /cm ³)	Water-filled porosity in capillary zone, $\theta_{w,cz}$ (cm ³ /cm ³)	Floor- wall seam perimeter, X _{crack} (cm)
9.46E+08	198.36	0.188	0.188	0.188	0.299	1.77E-09	0.837	1.48E-09	30.00	0.385	0.030	0.355	4,000
Bidg. ventilation rate, Q _{buliding} (cm ³ /s)	Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. groundwater temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. groundwater temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. groundwater temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, µ _{TS} (g/cm-s)	Stratum A effective diffusion coefficient, D ^{eff} _A (cm ² /s)	Stratum B effective diffusion coefficient, D ^{eff} _B (cm ² /s)	Stratum C effective diffusion coefficient, D ^{eff} c (cm ² /s)	Capillary zone effective diffusion coefficient, D ^{eff} _{cz} (cm ² /s)	Total overall effective diffusion coefficient, D ^{eff} T (cm ² /s)	Diffusion path length, L _d (cm)
1.69E+04	1.06E+06	3.77E-04	15	7,435	2.83E-05	1.17E-03	1.78E-04	3.03E-03	0.00E+00	0.00E+00	2.10E-03	2.84E-03	198.36
Convection path length, L _p (cm)	Source vapor conc., C _{source} (μg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (μg/m ³)	Unit risk factor, URF (μg/m ³⁾⁻¹	Reference conc., RfC (mg/m ³)	_		
15	1.64E+02	0.10	8.33E+01	3.03E-03	4.00E+02	3.39E+298	7.58E-04	1.25E-01	NA	3.1E+01]		

RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS: INCREMENTAL

INCREMENTAL RISK CALCULATIONS:

Indoor exposure groundwater conc.,	Indoor exposure groundwater conc.,	Risk-based indoor exposure groundwater	Pure component water solubility,	Final indoor exposure groundwater		Incremental risk from vapor intrusion to indoor air,	Hazard quotient from vapor intrusion to indoor air,
carcinogen (μg/L)	noncarcinogen (μg/L)	conc., (µg/L)	S (µg/L)	conc., (µg/L)	_	carcinogen (unitless)	noncarcinogen (unitless)
NA	NA	NA	1.00E+09	NA		NA	3.9E-06

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

MESSAGE: Risk/HQ or risk-based groundwater concentration is based on a route-to-route extrapolation.

Non-Residential Acetone Soil

SL-ADV Version 3.1; 02/04	CALCULATE RISK	-BASED SOIL COI	NCENTRATION (ente	er "X" in "YES" box)											
()		YES]											
Reset to Defaults	CALCULATE INCR	REMENTAL RISKS	OR FROM ACTUAL SOI	IL CONCENTRATION	enter "X" in "YES"	box and initial soil co	onc. below)								
		YES	Х]											
	ENTER	ENTER Initial													
	Chemical	soil													
	CAS No. (numbers only,	conc., C _R													
	no dashes)	(μg/kg)			Chemical										
			-	·			-								
	67641	3.20E+02]		Acetone										
MORE	ENTER	ENTER Depth	ENTER	ENTER Depth below	ENTER Totals mu	ENTER st add up to value of	ENTER f L _t (cell G28)	ENTER Soil		ENTER					
4		below grade		grade to bottom		Thickness	Thickness	stratum A		User-defined					
	Average	to bottom	Depth below	of contamination,	Thickness	of soil	of soil	SCS		stratum A					
	soil temperature,	of enclosed space floor,	grade to top of contamination,	(enter value of 0 if value is unknown)	of soil stratum A,	stratum B, (Enter value or 0)	stratum C, (Enter value or 0)	soil type (used to estimate	OR	soil vapor permeability,					
	T _s	L _F	L	L _b	h _A	h _B	h _c	soil vapor	U.I.	k _v					
	(°C)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	permeability)	=	(cm ²)					
	20	15	60.96	152.4	60.96	0	0	SC	1						
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER
MORE	Stratum A	Stratum A	Stratum A	Stratum A	Stratum A	Stratum B	Stratum B	Stratum B	Stratum B	Stratum B	Stratum C	Stratum C	Stratum C	Stratum C	Stratum C
¥	SCS	soil dry bulk density,	soil total	soil water-filled	soil organic carbon fraction,	SCS	soil dry bulk density,	soil total	soil water-filled	soil organic carbon fraction,	SCS	soil dry	soil total	soil water-filled	soil organic carbon fraction,
	Lookup Soil	ρ _b ^A	porosity, n ^A	porosity, θ _w ^A	f _{oc} ^A	Lookup Soil	ρ _b ^B	porosity, n ^B	porosity, θ _w ^B	f _{oc} ^B	Lookup Soil	bulk density, ρ _b ^C	porosity, n ^c	porosity, θ _w ^C	f _{oc} ^C
	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	(unitless)	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	(unitless)	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	(unitless)
		10	((======)			(======)		(2	<u>`</u>		(1.1.1000)		(4111555)
	SC	1.63	0.385	0.197	0.002	SC	1.63	0.385	0.197	0.002	SC	1.63	0.385	0.197	0.002
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER		ENTER						
MORE ↓	Enclosed space	Soil-bldg.	Enclosed space	Enclosed space	Enclosed	Floor-wall	Indoor		Average vapor flow rate into bldg						
•	floor	pressure	floor	floor	space	seam crack	air exchange		OR						
	thickness,	differential,	length,	width,	height,	width,	rate,	Lea	ave blank to calcu	late					
	L _{crack}	ΔP	LB	WB	HB	w	ER		Q _{soil}						
	(cm)	(g/cm-s ²)	(cm)	(cm)	(cm)	(cm)	(1/h)	•	(L/m)						
	10	40	15036.8	4572	670.56	0.1	0.25]	5)					
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER									
	Averaging	Averaging			Target	Target hazard									
	time for	time for	Exposure	Exposure	risk for	quotient for									
	carcinogens, AT _c	noncarcinogens, AT _{NC}	duration, ED	frequency, EF	carcinogens, TR	noncarcinogens, THQ									
	(yrs)	AT _{NC} (yrs)	ED (yrs)	(days/yr)	(unitless)	(unitless)	=								
	70	25	25	250	1.0E-05	1]								
					Lised to color	late risk-based									
END						centration.]								

Diffusivity in air, D _a (cm ² /s)	Diffusivity in water, D _w (cm ² /s)	Henry's law constant at reference temperature, H (atm-m ³ /mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, ΔH _{v,b} (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _C (°K)	Organic carbon partition coefficient, K _{oc} (cm ³ /g)	Pure component water solubility, S (mg/L)	Unit risk factor, URF (μg/m ³⁾⁻¹	Reference conc., RfC (mg/m ³)	Physical state at soil temperature, (S,L,G)
1.06E-01	1.15E-05	3.50E-05	25	6.955	329.20	508.10	5.75E-01	1.00E+06	0.0E+00	3.1E+01	1
1.00E-01	1.15E-05	3.50E-05	20	0,900	329.20	508.10	5.75E-01	1.00E+00	0.02+00	3.12+01	L

Exposure duration, τ (sec)	Source- building separation, L _T (cm)	Stratum A soil air-filled porosity, θ_a^A (cm ³ /cm ³)	Stratum B soil air-filled porosity, θ_a^B (cm ³ /cm ³)	Stratum C soil air-filled porosity, θ_a^C (cm ³ /cm ³)	Stratum A effective total fluid saturation, S _{te} (cm ³ /cm ³)	Stratum A soil intrinsic permeability, k _i (cm ²)	Stratum A soil relative air permeability, k _{rg} (cm ²)	Stratum A soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Initial soil concentration used, C _R (μg/kg)	Bldg. ventilation rate, Q _{building} (cm ³ /s)	-
7.88E+08	45.96	0.188	0.188	0.188	0.299	1.77E-09	0.837	1.48E-09	39,218	3.20E+02	3.20E+06	
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, μ _{TS} (g/cm-s)	Stratum A effective diffusion coefficient, D ^{eff} A (cm ² /s)	Stratum B effective diffusion coefficient, D ^{eff} B (cm ² /s)	Stratum C effective diffusion coefficient, D ^{eff} c (cm ² /s)	Total overall effective diffusion coefficient, D ^{eff} T (cm ² /s)	Diffusion path length, L _d (cm)	Convection path length, L _p (cm)
6.93E+07	5.66E-05	15	7,435	2.83E-05	1.17E-03	1.78E-04	3.03E-03	0.00E+00	0.00E+00	3.03E-03	45.96	15
Soil-water partition coefficient, K _d (cm ³ /g)	Source vapor conc., C _{source} (µg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ¹) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (µg/m ³)	Finite source β term (unitless)	Finite source ψ term (sec) ⁻¹	Time for source depletion, ^τ _D (sec)	Exposure duration > time for source depletion (YES/NO)
1.15E-03	3.08E+03	0.10	8.33E+01	3.03E-03	3.92E+03	2.81E+30	NA	NA	5.59E+01	8.47E-09	1.34E+10	NO
Finite source indoor attenuation coefficient, <a> (unitless) 2.55E-05	Mass limit bldg. conc., C _{building} (μg/m ³)	Finite source bldg. conc., C _{building} (µg/m ³) 7.86E-02	Final finite source bldg. conc., C _{building} (µg/m ³) 7.86E-02	Unit risk factor, URF (μg/m ³) ⁻¹ NA	Reference conc., RfC (mg/m ³) 3.1E+01	-]						
END]											

RISK-BASED SOIL CONCENTRATION CALCULATIONS:

INCREMENTAL RISK CALCULATIONS:

Indoor exposure soil conc., carcinogen (μg/kg)	Indoor exposure soil conc., noncarcinogen (µg/kg)	Risk-based indoor exposure soil conc., (µg/kg)	Soil saturation conc., C _{sat} (μg/kg)	Final indoor exposure soil conc., (μg/kg)		Incremental risk from vapor intrusion to indoor air, carcinogen (unitless)	Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless)
NA	NA	NA	1.22E+08	NA] [NA	1.7E-06

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

MESSAGE: Risk/HQ or risk-based soil concentration is based on a route-to-route extrapolation.

Residential Acetone Soil

SL-ADV	CALCULATE RISK	-BASED SOIL COM	NCENTRATION (ente	er "X" in "YES" box)											
Version 3.1; 02/04		YES													
Reset to Defaults	CALCULATE INCR	EMENTAL RISKS	OR FROM ACTUAL SOI	L CONCENTRATION	enter "X" in "YES"	box and initial soil co	onc. below)								
		YES	x	1											
	ENTER	ENTER		4											
		Initial													
	Chemical	soil													
	CAS No. (numbers only,	conc., C _R													
	no dashes)	(µg/kg)	-		Chemical		-								
	67641	3.20E+02]		Acetone]								
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER		ENTER					
MORE		Depth		Depth below	Totals mus	st add up to value of		Soil							
¥	Average	below grade to bottom	Depth below	grade to bottom of contamination,	Thickness	Thickness of soil	Thickness of soil	stratum A SCS		User-defined stratum A					
	soil	of enclosed	grade to top	(enter value of 0	of soil	stratum B,	stratum C,	soil type		soil vapor					
	temperature,	space floor,	of contamination,	if value is unknown)	stratum A,	(Enter value or 0)		(used to estimate	OR	permeability,					
	Ts (°C)	L _F (cm)	L, (cm)	L _b (cm)	h _A (cm)	h _B (cm)	h _c (cm)	soil vapor permeability)		k _v (cm ²)					
	<u> </u>	(5.1.)	(4.1.)	(*)	(0.1.9	(4)	(4)		=	<u> </u>					
	20	15	60.96	152.4	60.96	0	0	SC							
MORE	ENTER Stratum A	ENTER Stratum A	ENTER Stratum A	ENTER Stratum A	ENTER Stratum A	ENTER Stratum B	ENTER Stratum B	ENTER Stratum B	ENTER Stratum B	ENTER Stratum B	ENTER Stratum C	ENTER Stratum C	ENTER Stratum C	ENTER Stratum C	ENTER Stratum C
₩OKE ↓	SCS	soil dry	soil total	soil water-filled	soil organic	SCS	soil dry	soil total	soil water-filled	soil organic	SCS	soil dry	soil total	soil water-filled	soil organic
	soil type	bulk density,	porosity,	porosity,	carbon fraction,	soil type	bulk density,	porosity,	porosity,	carbon fraction,	soil type	bulk density,	porosity,	porosity,	carbon fraction,
	Lookup Soil Parameters	ρ _b ^A	n ^A	θ_w^A	f _{oc} ^A	Lookup Soil Parameters	Pb ^B	n ^B	θ _w ^B	f _{oc} ^B	Lookup Soil Parameters	ρ ₆ ς	n ^C	θ_w^c	f _{oc} ^C
		(g/cm ³)	(unitless)	(cm ³ /cm ³)	(unitless)		(g/cm ³)	(unitless)	(cm ³ /cm ³)	(unitless)	L'ulaineterio	(g/cm ³)	(unitless)	(cm ³ /cm ³)	(unitless)
	SC	1.63	0.385	0.197	0.002	SC	1.63	0.385	0.197	0.002	SC	1.63	0.385	0.197	0.002
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER		ENTER						
MORE	Enclosed		Enclosed	Enclosed					Average vapor						
Ŷ	space floor	Soil-bldg.	space	space	Enclosed	Floor-wall	Indoor		flow rate into bldg OR						
	thickness.	pressure differential.	floor length,	floor width,	space height,	seam crack width,	air exchange rate,	Lei	ave blank to calcu	late					
	L _{crack}	ΔP	LB	WB	H	w	ER		Q _{soil}						
	(cm)	(g/cm-s ²)	(cm)	(cm)	(cm)	(cm)	(1/h)	-	(L/m)						
	10	40	1000	1000	244	0.1	0.25]	5	1					
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER									
	Averaging	Averaging			Target	Target hazard									
	time for	time for	Exposure	Exposure	risk for	quotient for									
	carcinogens, AT _c	noncarcinogens, AT _{NC}	duration, ED	frequency, EF	carcinogens, TR	noncarcinogens, THQ									
	(yrs)	(yrs)	(yrs)	(days/yr)	(unitless)	(unitless)	=								
	70	30	30	350	1.0E-06	1]								
					Used to calcu	ulate risk-based									
END					soil con	centration.	J								

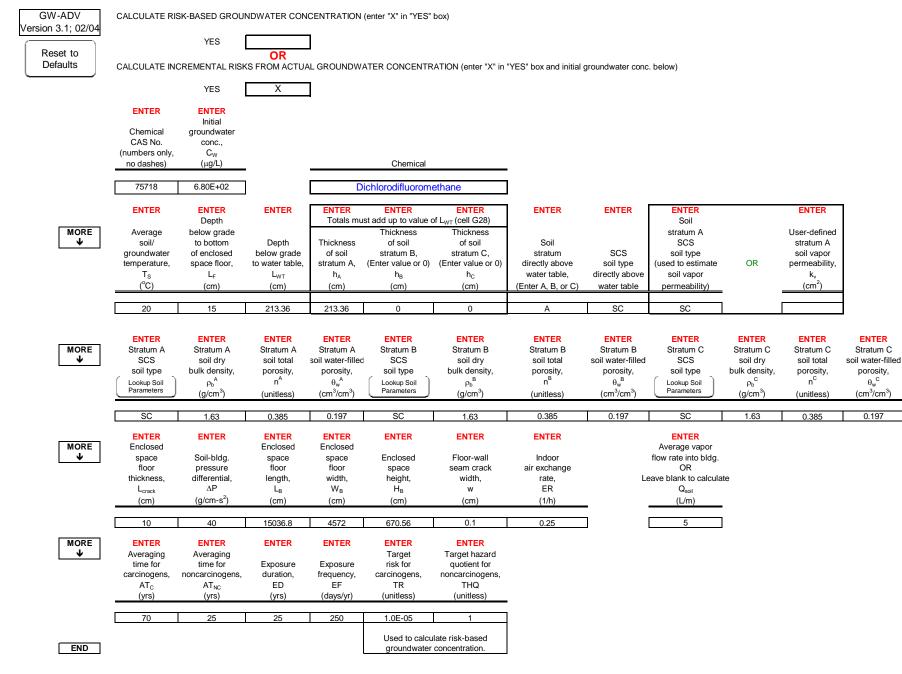
Diffusivity in air, D _a (cm ² /s)	Diffusivity in water, D _w (cm ² /s)	Henry's law constant at reference temperature, H (atm-m ³ /mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, ΔH _{v,b} (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _C (°K)	Organic carbon partition coefficient, K _{oc} (cm ³ /g)	Pure component water solubility, S (mg/L)	Unit risk factor, URF (μg/m ³⁾⁻¹	Reference conc., RfC (mg/m ³)	Physical state at soil temperature, (S,L,G)
1.06E-01	1.15E-05	3.50E-05	25	6.955	329.20	508.10	5.75E-01	1.00E+06	0.0E+00	3.1E+01	1
1.00E-01	1.15E-05	3.50E-05	20	0,900	329.20	508.10	5.75E-01	1.00E+00	0.02+00	3.12+01	L

Exposure duration, τ (sec)	Source- building separation, L _T (cm)	Stratum A soil air-filled porosity, θ_a^A (cm ³ /cm ³)	Stratum B soil air-filled porosity, θ_a^B (cm ³ /cm ³)	Stratum C soil air-filled porosity, θ_a^C (cm ³ /cm ³)	Stratum A effective total fluid saturation, S _{te} (cm ³ /cm ³)	Stratum A soil intrinsic permeability, k _i (cm ²)	Stratum A soil relative air permeability, k _{rg} (cm ²)	Stratum A soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Initial soil concentration used, C _R (μg/kg)	Bldg. ventilation rate, Q _{building} (cm ³ /s)	-
9.46E+08	45.96	0.188	0.188	0.188	0.299	1.77E-09	0.837	1.48E-09	4,000	3.20E+02	1.69E+04	
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, μ _{Ts} (g/cm-s)	Stratum A effective diffusion coefficient, D ^{eff} A (cm ² /s)	Stratum B effective diffusion coefficient, D ^{eff} 8 (cm ² /s)	Stratum C effective diffusion coefficient, D ^{eff} c (cm ² /s)	Total overall effective diffusion coefficient, D ^{eff} T (cm ² /s)	Diffusion path length, L _d (cm)	Convection path length, L _p (cm)
1.06E+06	3.77E-04	15	7,435	2.83E-05	1.17E-03	1.78E-04	3.03E-03	0.00E+00	0.00E+00	3.03E-03	45.96	15
Soil-water partition coefficient, K _d (cm ³ /g)	Source vapor conc., C _{source} (µg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe') (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (µg/m ³)	Finite source β term (unitless)	Finite source ψ term (sec) ⁻¹	Time for source depletion, ^τ _D (sec)	Exposure duration > time for source depletion (YES/NO)
1.15E-03	3.08E+03	0.10	8.33E+01	3.03E-03	4.00E+02	3.39E+298	NA	NA	1.84E+00	8.47E-09	6.66E+08	YES
Finite source indoor attenuation coefficient, $< \alpha >$ (unitless)	Mass limit bldg. conc., C _{building} (μg/m ³)	Finite source bldg. conc., C _{building} (µg/m ³)	Final finite source bldg. conc., C _{buliding} (µg/m ³)	Unit risk factor, URF (µg/m ³) ⁻¹	Reference conc., RfC (mg/m³)	-						
NA	3.15E+00	NA	3.15E+00	NA	3.1E+01	_						
END]											

RISK-BASED SOIL CONCENTRATION CALCULATIONS:

INCREMENTAL RISK CALCULATIONS:

Indoor exposure soil conc., carcinogen (μg/kg)	Indoor exposure soil conc., noncarcinogen (µg/kg)	Risk-based indoor exposure soil conc., (µg/kg)	Soil saturation conc., C _{sat} (μg/kg)	Final indoor exposure soil conc., (µg/kg)		Incremental risk from vapor intrusion to indoor air, carcinogen (unitless)	Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless)
NA	NA	NA	1.22E+08	NA	1	NA	9.8E-05


MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

MESSAGE: Risk/HQ or risk-based soil concentration is based on a route-to-route extrapolation.

Non-Residential Freon-12 Groundwater

DATA ENTRY SHEET

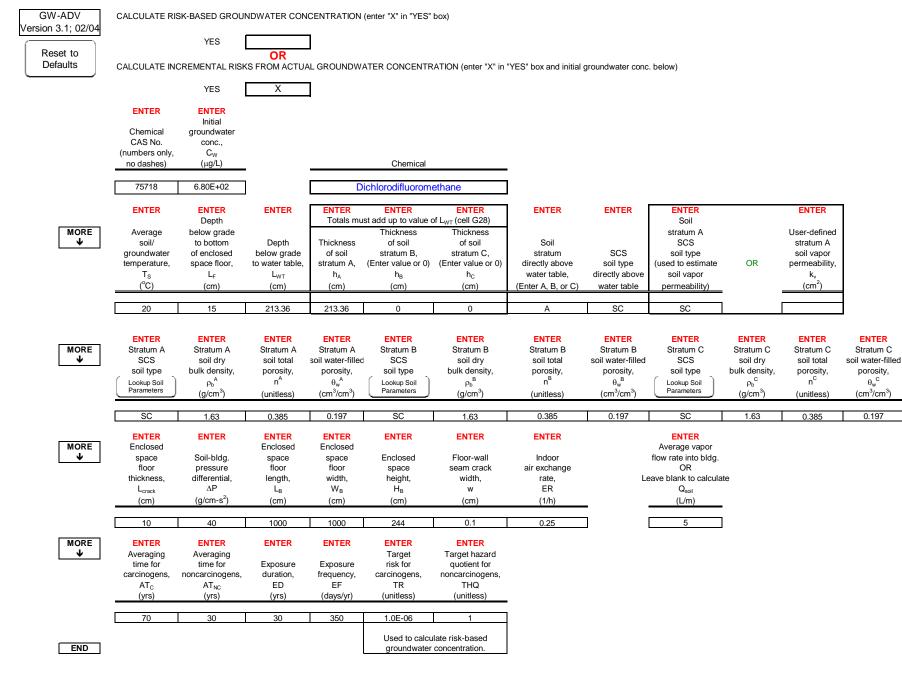
Diffusivi in air, D _a (cm²/s)	in water, D _w	Henry's law constant at reference temperature, H (atm-m ³ /mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, ΔH _{v,b} (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _c (°K)	Organic carbon partition coefficient, K _{oc} (cm ³ /g)	Pure component water solubility, S (mg/L)	Unit risk factor, URF (µg/m ³) ⁻¹	Reference conc., RfC (mg/m ³)
7.60E-0	2 1.08E-05	3.42E-01	25	9,421	243.20	384.95	4.57E+02	2.80E+02	0.0E+00	1.0E-01
END										

1 of 1

Exposure duration, τ (sec)	Source- building separation, L _T (cm)	Stratum A soil air-filled porosity, θ_a^A (cm ³ /cm ³)	Stratum B soil air-filled porosity, θ _a ^B (cm ³ /cm ³)	$\begin{array}{c} \text{Stratum C} \\ \text{soil} \\ \text{air-filled} \\ \text{porosity,} \\ \theta_a{}^c \\ (\text{cm}^3/\text{cm}^3) \end{array}$	Stratum A effective total fluid saturation, S _{te} (cm ³ /cm ³)	Stratum A soil intrinsic permeability, k _i (cm ²)	Stratum A soil relative air permeability, k _{rg} (cm ²)	Stratum A soil effective vapor permeability, k _v (cm ²)	Thickness of capillary zone, L _{cz} (cm)	Total porosity in capillary zone, n _{cz} (cm ³ /cm ³)	Air-filled porosity in capillary zone, θ _{a,cz} (cm ³ /cm ³)	Water-filled porosity in capillary zone, $\theta_{w,cz}$ (cm ³ /cm ³)	Floor- wall seam perimeter, X _{crack} (cm)
7.88E+08	198.36	0.188	0.188	0.188	0.299	1.77E-09	0.837	1.48E-09	30.00	0.385	0.030	0.355	39,218
Bldg. ventilation rate, Q _{building} (cm ³ /s)	Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{v,TS}$ (cal/mol)	Henry's law constant at ave. groundwater temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. groundwater temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, µ _{TS} (g/cm-s)	Stratum A effective diffusion coefficient, D ^{eff} _A (cm ² /s)	Stratum B effective diffusion coefficient, D ^{eff} _B (cm ² /s)	Stratum C effective diffusion coefficient, D ^{eff} c (cm ² /s)	Capillary zone effective diffusion coefficient, D ^{eff} _{cz} (cm ² /s)	Total overall effective diffusion coefficient, D ^{eff} T (cm ² /s)	Diffusion path length, L _d (cm)
3.20E+06	6.93E+07	5.66E-05	15	8,087	2.71E-01	1.13E+01	1.78E-04	1.96E-03	0.00E+00	0.00E+00	4.63E-06	3.02E-05	198.36
Convection path length, L _p (cm)	Source vapor conc., C _{source} (μg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (μg/m ³)	Unit risk factor, URF (μg/m ³) ⁻¹	Reference conc., RfC (mg/m ³)			
15	7.66E+06	0.10	8.33E+01	1.96E-03	3.92E+03	1.00E+47	2.93E-06	2.25E+01	NA	1.0E-01			

RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS: INCREME

INCREMENTAL RISK CALCULATIONS:


Indoor exposure groundwater conc., carcinogen (μg/L)	Indoor exposure groundwater conc., noncarcinogen (µg/L)	Risk-based indoor exposure groundwater conc., (µg/L)	Pure component water solubility, S (µg/L)	Final indoor exposure groundwater conc., (µg/L)		Incremental risk from vapor intrusion to indoor air, carcinogen (unitless)	Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless)
NA	NA	NA	2.80E+05	NA]	NA	1.5E-01

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

Residential Freon-12 Groundwater

DATA ENTRY SHEET

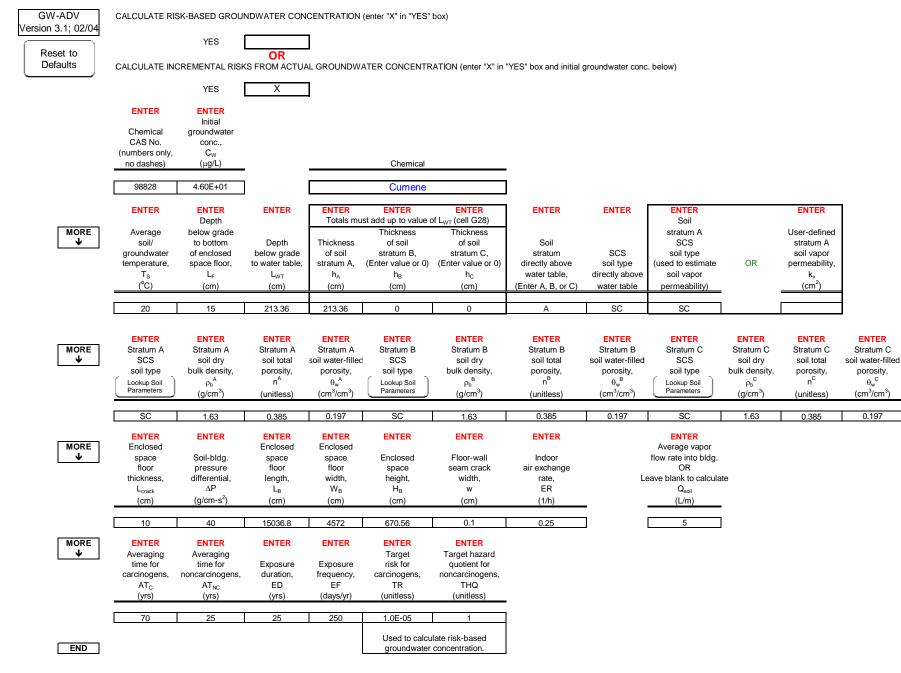
Diffusivi in air, D _a (cm²/s)	in water, D _w	Henry's law constant at reference temperature, H (atm-m ³ /mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, ΔH _{v,b} (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _c (°K)	Organic carbon partition coefficient, K _{oc} (cm ³ /g)	Pure component water solubility, S (mg/L)	Unit risk factor, URF (µg/m ³) ⁻¹	Reference conc., RfC (mg/m ³)
7.60E-0	2 1.08E-05	3.42E-01	25	9,421	243.20	384.95	4.57E+02	2.80E+02	0.0E+00	1.0E-01
END										

1 of 1

Exposure duration, τ (sec)	Source- building separation, L _T (cm)	Stratum A soil air-filled porosity, θ_a^A (cm ³ /cm ³)	Stratum B soil air-filled porosity, θ _a ^B (cm ³ /cm ³)	$\begin{array}{c} \text{Stratum C} \\ \text{soil} \\ \text{air-filled} \\ \text{porosity,} \\ \theta_a{}^c \\ (\text{cm}^3/\text{cm}^3) \end{array}$	Stratum A effective total fluid saturation, S _{te} (cm ³ /cm ³)	Stratum A soil intrinsic permeability, k _i (cm ²)	Stratum A soil relative air permeability, k _{rg} (cm ²)	Stratum A soil effective vapor permeability, k _v (cm ²)	Thickness of capillary zone, L _{cz} (cm)	Total porosity in capillary zone, n _{cz} (cm ³ /cm ³)	Air-filled porosity in capillary zone, θ _{a,cz} (cm ³ /cm ³)	Water-filled porosity in capillary zone, $\theta_{w,cz}$ (cm ³ /cm ³)	Floor- wall seam perimeter, X _{crack} (cm)
9.46E+08	198.36	0.188	0.188	0.188	0.299	1.77E-09	0.837	1.48E-09	30.00	0.385	0.030	0.355	4,000
Bidg. ventilation rate, Q _{building} (cm ³ /s)	Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{v,TS}$ (cal/mol)	Henry's law constant at ave. groundwater temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. groundwater temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, µ _{TS} (g/cm-s)	Stratum A effective diffusion coefficient, D ^{eff} _A (cm ² /s)	Stratum B effective diffusion coefficient, D ^{eff} _B (cm ² /s)	Stratum C effective diffusion coefficient, D ^{eff} c (cm ² /s)	Capillary zone effective diffusion coefficient, D ^{eff} _{cz} (cm ² /s)	Total overall effective diffusion coefficient, D ^{eff} T (cm ² /s)	Diffusion path length, L _d (cm)
1.69E+04	1.06E+06	3.77E-04	15	8,087	2.71E-01	1.13E+01	1.78E-04	1.96E-03	0.00E+00	0.00E+00	4.63E-06	3.02E-05	198.36
Convection path length, L _p (cm)	Source vapor conc., C _{source} (μg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (μg/m ³)	Unit risk factor, URF (μg/m ³⁾⁻¹	Reference conc., RfC (mg/m ³)	- -		
15	7.66E+06	0.10	8.33E+01	1.96E-03	4.00E+02	#NUM!	9.52E-06	7.29E+01	NA	1.0E-01]		

RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS: INCREME

INCREMENTAL RISK CALCULATIONS:


Indoor exposure groundwater conc., carcinogen (μg/L)	Indoor exposure groundwater conc., noncarcinogen (μg/L)	Risk-based indoor exposure groundwater conc., (μg/L)	Pure component water solubility, S (μg/L)	Final indoor exposure groundwater conc., (μg/L)	. .	Incremental risk from vapor intrusion to indoor air, carcinogen (unitless)	Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless)
NA	NA	NA	2.80E+05	NA]	NA	7.0E-01

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

Non-Residential Isopropylbenzene Groundwater

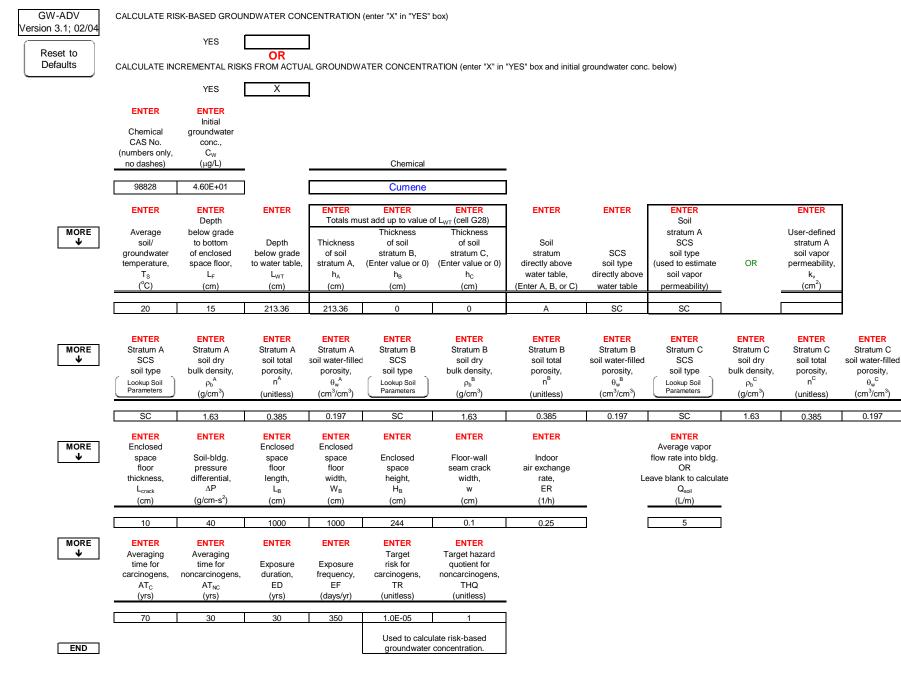
DATA ENTRY SHEET

Diffusivity in air, D _a (cm ² /s)	Diffusivity in water, D _w (cm ² /s)	Henry's law constant at reference temperature, H (atm-m ³ /mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, ΔH _{v,b} (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _C (°K)	Organic carbon partition coefficient, K _{oc} (cm ³ /g)	Pure component water solubility, S (mg/L)	Unit risk factor, URF (µg/m ³) ⁻¹	Reference conc., RfC (mg/m ³)
6.03E-02	7.86E-06	1.15E-02	25	10,335	425.56	631.10	4.89E+02	6.13E+01	0.0E+00	4.0E-01
END										

Exposure duration, τ (sec)	Source- building separation, L _T (cm)	Stratum A soil air-filled porosity, θ_a^A (cm ³ /cm ³)	Stratum B soil air-filled porosity, θ_a^B (cm ³ /cm ³)	$\begin{array}{c} \text{Stratum C} \\ \text{soil} \\ \text{air-filled} \\ \text{porosity,} \\ \theta_a^{\text{C}} \\ (\text{cm}^3/\text{cm}^3) \end{array}$	Stratum A effective total fluid saturation, S _{te} (cm ³ /cm ³)	Stratum A soil intrinsic permeability, k _i (cm ²)	Stratum A soil relative air permeability, k _{rg} (cm ²)	Stratum A soil effective vapor permeability, k _v (cm ²)	Thickness of capillary zone, L _{cz} (cm)	Total porosity in capillary zone, n _{cz} (cm ³ /cm ³)	Air-filled porosity in capillary zone, θ _{a,cz} (cm ³ /cm ³)	Water-filled porosity in capillary zone, $\theta_{w,cz}$ (cm ³ /cm ³)	Floor- wall seam perimeter, X _{crack} (cm)
7.88E+08	198.36	0.188	0.188	0.188	0.299	1.77E-09	0.837	1.48E-09	30.00	0.385	0.030	0.355	39,218
Bldg. ventilation rate, Q _{building} (cm ³ /s)	Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. groundwater temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. groundwater temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. groundwater temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, μ _{Ts} (g/cm-s)	Stratum A effective diffusion coefficient, D ^{eff} _A (cm ² /s)	Stratum B effective diffusion coefficient, D ^{eff} _B (cm ² /s)	Stratum C effective diffusion coefficient, D ^{eff} c (cm ² /s)	Capillary zone effective diffusion coefficient, D ^{eff} cz (cm ² /s)	Total overall effective diffusion coefficient, D ^{eff} T (cm ² /s)	Diffusion path length, L _d (cm)
3.20E+06	6.93E+07	5.66E-05	15	12,504	8.02E-03	3.34E-01	1.78E-04	1.56E-03	0.00E+00	0.00E+00	8.56E-06	5.49E-05	198.36
Convection path length, L _p (cm)	Source vapor conc., C _{source} (μg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (μg/m ³)	Unit risk factor, URF (μg/m ³) ⁻¹	Reference conc., RfC (mg/m ³)	-		
15	1.53E+04	0.10	8.33E+01	1.56E-03	3.92E+03	1.70E+59	4.87E-06	7.47E-02	NA	4.0E-01]		

RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS: INCREM

INCREMENTAL RISK CALCULATIONS:


Indoor exposure groundwater conc., carcinogen (μg/L)	Indoor exposure groundwater conc., noncarcinogen (μg/L)	Risk-based indoor exposure groundwater conc., (µg/L)	Pure component water solubility, S (μg/L)	Final indoor exposure groundwater conc., (µg/L)		Incremental risk from vapor intrusion to indoor air, carcinogen (unitless)	Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless)
NA	NA	NA	6.13E+04	NA]	NA	1.3E-04

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

Residential Isopropylbenzene Groundwater

DATA ENTRY SHEET

Diffusivity in air, D _a (cm ² /s)	Diffusivity in water, D _w (cm ² /s)	Henry's law constant at reference temperature, H (atm-m ³ /mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, ΔH _{v,b} (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _C (°K)	Organic carbon partition coefficient, K _{oc} (cm ³ /g)	Pure component water solubility, S (mg/L)	Unit risk factor, URF (µg/m ³) ⁻¹	Reference conc., RfC (mg/m ³)
6.03E-02	7.86E-06	1.15E-02	25	10,335	425.56	631.10	4.89E+02	6.13E+01	0.0E+00	4.0E-01
END										

Exposure duration, τ (sec)	Source- building separation, L _T (cm)	Stratum A soil air-filled porosity, θ_a^A (cm ³ /cm ³)	Stratum B soil air-filled porosity, $\theta_a^{\ B}$ (cm ³ /cm ³)	$\begin{array}{c} \text{Stratum C} \\ \text{soil} \\ \text{air-filled} \\ \text{porosity,} \\ \theta_a^{\ C} \\ (\text{cm}^3/\text{cm}^3) \end{array}$	Stratum A effective total fluid saturation, S _{te} (cm ³ /cm ³)	Stratum A soil intrinsic permeability, k _i (cm ²)	Stratum A soil relative air permeability, k _{rg} (cm ²)	Stratum A soil effective vapor permeability, k _v (cm ²)	Thickness of capillary zone, L _{cz} (cm)	Total porosity in capillary zone, n _{cz} (cm ³ /cm ³)	Air-filled porosity in capillary zone, θ _{a,cz} (cm ³ /cm ³)	Water-filled porosity in capillary zone, $\theta_{w,cz}$ (cm ³ /cm ³)	Floor- wall seam perimeter, X _{crack} (cm)
9.46E+08	198.36	0.188	0.188	0.188	0.299	1.77E-09	0.837	1.48E-09	30.00	0.385	0.030	0.355	4,000
Bidg. ventilation rate, Q _{building} (cm ³ /s)	Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{v,TS}$ (cal/mol)	Henry's law constant at ave. groundwater temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. groundwater temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, µ _{TS} (g/cm-s)	Stratum A effective diffusion coefficient, D ^{eff} _A (cm ² /s)	Stratum B effective diffusion coefficient, D ^{eff} _B (cm ² /s)	Stratum C effective diffusion coefficient, D ^{eff} c (cm ² /s)	Capillary zone effective diffusion coefficient, D ^{eff} _{cz} (cm ² /s)	Total overall effective diffusion coefficient, D ^{eff} _T (cm ² /s)	Diffusion path length, L _d (cm)
1.69E+04	1.06E+06	3.77E-04	15	12,504	8.02E-03	3.34E-01	1.78E-04	1.56E-03	0.00E+00	0.00E+00	8.56E-06	5.49E-05	198.36
Convection path length, L _p (cm)	Source vapor conc., C _{source} (μg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (μg/m ³)	Unit risk factor, URF (μg/m ³⁾⁻¹	Reference conc., RfC (mg/m ³)	_		
15	1.53E+04	0.10	8.33E+01	1.56E-03	4.00E+02	#NUM!	1.72E-05	2.65E-01	NA	4.0E-01]		

RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS: INCRE

INCREMENTAL RISK CALCULATIONS:

Indoor	Indoor	Risk-based	Pure	Final		Incremental risk from	Hazard quotient
exposure groundwater	exposure groundwater	indoor exposure	component water	indoor exposure		vapor intrusion to	from vapor intrusion to
conc., carcinogen	conc., noncarcinogen	groundwater conc.,	solubility, S	groundwater conc.,		indoor air, carcinogen	indoor air, noncarcinogen
(μg/L)	(μg/L)	(µg/L)	(μg/L)	(µg/L)		(unitless)	(unitless)
NA	NA	NA	6.13E+04	NA]	NA	6.3E-04

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

